WorldWideScience

Sample records for safety organization jnes

  1. International contributions of JNES on seismic safety areas

    International Nuclear Information System (INIS)

    Ebisawa, Katsumi; Uchiyama, Yuichi; Yamada, Hiroyuki

    2010-01-01

    JNES actively promotes the international cooperation in seismic safety areas, aiming to play a role as the important international hub for it. To meet this purpose, JNES is now mainly focusing on the increased support of the international organizations including IAEA and the technological improvement in the seismic related assessment of Asian countries. This paper summarizes these efforts made by JNES. (author)

  2. Safety research activities on radioactive waste management in JNES

    International Nuclear Information System (INIS)

    Otsuka, Ichiro; Aoki, Hiroomi; Suko, Takeshi; Onishi, Yuko; Masuda, Yusuke; Kato, Masami

    2010-01-01

    Research activities in safety regulation of radioactive waste management are presented. Major activities are as follows. As for the geological disposal, major research areas are, developing 'safety indicators' to judge the adequacy of site investigation results presented by an implementer (NUMO), compiling basic requirements of safety design and safety assessment needed to make a safety review of the license application and developing an independent safety assessment methodology. In proceeding research, JNES, Japan Atomic Energy Agency (JAEA) and the National Institute of Advanced Industrial Science and Technology (AIST) signed an agreement of cooperative study on geological disposal in 2007. One of the ongoing joint studies under this agreement has been aimed at investigating regional-scale hydrogeological modeling using JAEA's Horonobe Underground Research Center. In the intermediate depth disposal, JNES conducted example analysis of reference facility and submitted the result to Nuclear Safety Commission of Japan (NSC). JNES is also listing issues to be addressed in the safety review of the license application and tries to make criteria of the review. Furthermore, JNES is developing analysis tool to evaluate long term safety of the facility and conducting an experiment to investigate long term behavior of engineered barrier system. In the near surface disposal of waste package, it must be confirmed by a regulatory inspector whether each package meets safety requirements. JNES continuously updates the confirmation methodology depending on new processing technologies. The clearance system was established in 2005. Two stages of regulatory involvement were adapted, 1) approval for measurement and judgment methods developed by the nuclear operator and 2) confirmation of measurement and judgment results based on approved methods. JNES is developing verification methodology for each stage. As for decommissioning, based on the regulatory needs and a research program

  3. Regulatory support activities of JNES by thermal-hydraulic and safety analyses

    International Nuclear Information System (INIS)

    Kasahara, Fumio

    2008-01-01

    Current status and some related topics on regulatory support activities of Japan Nuclear Energy Safety Organization (JNES) by thermal-hydraulic and safety analyses are reported. The safety of nuclear facilities is secured primarily by plant owners and operators. However, the regulatory body NISA (Nuclear and Industrial Safety Agency) has conducted a strict regulation to confirm the adequacy of the site condition as well as the basic and detailed design. The JNES has been conducting independent analyses from applicants (audit analyses, etc.) by direction of NISA and supporting its review. In addition to the audit analysis, thermal-hydraulic and safety analyses are used in such areas as analytical evaluation for investigation of causes of accidents and troubles, level 2 PSA for risk informed regulation, etc. Recent activities of audit analyses are for the application of Tsuruga 3 and 4 (APWR), the spent fuel storage facility for the establishment, and the LMFBR Monju for the core change. For the trouble event evaluation, the criticality accident analysis of Sika1 was carried out and the evaluation of effectiveness of accident management (AM) measure for Tomari 3 (PWR) and Monju was performed. The analytical codes for these evaluations are continuously revised by reflecting the state-of-art technical information and validated using the information provided by the data from JAEA, OECD project, etc. (author)

  4. Validation and Improvement of the FEMAXI-JNES Code by Using PIE Data at Extended Burnup. Final Report for FUMEX-III

    International Nuclear Information System (INIS)

    Hirose, Tsutomu; Miura, Hiromichi; Kitamura, Toshiya; Kamimura, Katsuichiro

    2013-01-01

    Japan Nuclear Energy Safety Organization (JNES) has participated in the IAEA FUMEX-III Coordinated Research Project (CRP) on the Improvement of Computer Codes Used for Fuel Behaviour Simulation for the following purpose. 1. Cooperate between member states and exchange information and expertise for understanding of fuel modelling and improvement 2. Develop and improve the FEMAXI-JNES code as an audit code for Japanese safety licensing review of fuel rod design, especially, - High burnup fuel - MOX fuel 3. Set the standard models for the FEMAXI-JNES code to provide best-estimate predictions of the thermal and mechanical performance of LWR fuel rod This is the JNES's final report for the FUMEX-III CRP. During the period of the CRP, JNES has modified pellet swelling and fission gas release models, and demonstrated the predictive capability relative to fuel centerline temperature, fission gas release, fuel rod internal gas pressure, cladding diametral deformation and cladding elongation by comparisons of integral code predictions of these parameters to experimental (measured) data from OECD/NEA IFPE database. (author)

  5. Research of the improvement of the process, organization, etc. related to the emergency correspondence of JNES based on the cause analysis about emergency correspondence of JNES in case of the Fukushima Dai-ichi nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    At the time of the occurrence of the Fukushima Dai-ichi nuclear power plant accident, JNES implemented various emergency correspondences. On the other hand, various organizations published the report about the Fukushima Dai-ichi nuclear power plant accident. In them, the problems about the regulatory body's regulatory process, regulatory organization, etc. are also pointed out. JNES is a designated public institution. JNES is required to improve process, organization, etc. related to emergency correspondence continuously based on the lessons learned obtained from the emergency corresponding experience about the Fukushima Dai-ichi nuclear power plant accident. Specifically, the following activities will be implemented in the 2014 and 2015 fiscal year. 1. Collect systematically and comprehensively the information about emergency correspondence of JNES in case of the Fukushima Dai-ichi nuclear power plant accident, and create the timeline of the event. 2. Specify problems and analyze human factors and organizational factors. 3. Specify the requirements for establishing a designated public institution's emergency correspondence based on the viewpoint of a human and an organization. 4. Publish the report which indicates collected information, the contents of analysis, proposals of improvement, etc. (author)

  6. Physical protection enhancements in Japan and the role of JNES

    International Nuclear Information System (INIS)

    Nishida, Seishi

    2010-01-01

    The possibility of terrorist attacks on nuclear material and nuclear facilities has posed a continuing threat since the events of September 11, 2001. The Japanese government has strengthened its physical protection regime, including legislative amendments, due to the necessity of upgrading the degree of protection of nuclear facilities to be equivalent to international levels, in order to cope effectively with the threat of theft of nuclear material and sabotage of nuclear facilities. In relation to these enhancements of the physical protection regime in Japan, the Japan Nuclear Energy Safety Organization (JNES) gives technical support to the regulatory agency, the Nuclear and Industrial Safety Agency (NISA), in the area of physical protection examination and inspection, through the development of technical guides for inspectors and operators, acquisition, analysis, and evaluation of related information, and international cooperation. This support is aimed at ensuring the consistent implementation of physical protection measures in Japan. In the future also, the JNES will provide further support to the NISA aimed at a well-developed physical protection framework in Japan, giving consideration to international physical protection enhancements such as publication of IAEA nuclear security series documents, inter alia Recommendations for physical protection of nuclear material and nuclear facilities being also Revision 5 of INFCIRC 225. (author)

  7. Collection and accumulation of seismic safety research findings, and considerations for information dissemination

    International Nuclear Information System (INIS)

    2013-01-01

    Seismic Safety Division of JNES is collecting and analyzing the findings of seismic safety research, and is developing a system to organize and disseminate the information internally and internationally. These tasks have been conducted in response to the lessons learned from Fukushima Daiichi NPP accident. The overview of the tasks is as follows; 1) Collection of the knowledge and findings from seismic safety research. JNES collects information on seismic safety researches including the 2011 off the Pacific coast of Tohoku Earthquake. The information is analyzed whether it is important for regulation to increase seismic safety of NPP. 2) Constructing database of seismic safety research. JNES collects information based on documents published by committee and constructs database of active faults around NPP sites in order to incorporate in the seismic safety review. 3) Dissemination of information related to seismic safety. JNES disseminates outcomes of own researches internally and internationally. (author)

  8. Collection and accumulation of seismic safety research findings, and considerations for information dissemination

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Seismic Safety Division of JNES is collecting and analyzing the findings of seismic safety research, and is developing a system to organize and disseminate the information internally and internationally. These tasks have been conducted in response to the lessons learned from Fukushima Daiichi NPP accident. The overview of the tasks is as follows; 1) Collection of the knowledge and findings from seismic safety research. JNES collects information on seismic safety researches including the 2011 off the Pacific coast of Tohoku Earthquake. The information is analyzed whether it is important for regulation to increase seismic safety of NPP. 2) Constructing database of seismic safety research. JNES collects information based on documents published by committee and constructs database of active faults around NPP sites in order to incorporate in the seismic safety review. 3) Dissemination of information related to seismic safety. JNES disseminates outcomes of own researches internally and internationally. (author)

  9. JNES's Activities in the Extra-budgetary Programme of the International Seismic Safety Centre: WA1 Seismic Hazard

    International Nuclear Information System (INIS)

    Wu, Changjiang

    2014-01-01

    Issues in design basis ground motion development, the study items of Work Area 1 of IAEA/ISSC/EBP, and JNES's contributions were explained. It was also noted that the discussions and resolutions of this WS would be summarized in a technical document as task 1.4 of WA1. (author)

  10. Safety technical investigation activities for shipment of damaged spent fuels from Fukushima Daiichi Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Japan Nuclear Energy Safety Organization(JNES) carries out the investigation for damaged fuel transportation from Fukushima Daiichi Nuclear Power Station(1F) under safety condition to support Nuclear Regulation Authority (NRA). In 2012 fiscal year, JNES carried out the investigation of spent fuel condition in unit 4 of 1F and actual result of leak fuel transport in domestic /other countries. From this result, Package containing damaged fuel from unit 4 in 1F were considered. (author)

  11. Annual safety research report, JFY 2010

    International Nuclear Information System (INIS)

    2011-09-01

    In the safety infrastructure research working group report, 'the effective conducting of nuclear safety infrastructure research', published by METI in March 2010, the roles of regulatory agencies and JNES and their cooperation, and the research road map for nuclear safety regulation researches were summarized. As for the regulatory issues the governments or JNES considered necessary, JNES had compiled' safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. Safety research areas, subjects and research projects were as follows: design review of nuclear power plant (4 subjects and each subject having several research projects totaled 19), control management of nuclear power plant (3 subjects and each subject having several research projects totaled 11), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 5), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 6), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 5) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 7). In JFY 2010, JNES worked on the 53 research projects of 17 subjects in 6 areas as safety researches. This annual safety research report summarized respective achievements and stage of regulatory tools necessary for solving regulatory issues according to the safety research plan, JFY 2010 Edition as well as the situation of the reflection for the safety regulations. (T. Tanaka)

  12. Annual safety research report, JFY 2012

    International Nuclear Information System (INIS)

    2013-08-01

    As for the regulatory issues the governments or JNES considered necessary, JNES had compiled 'safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. Safety research areas, subjects and research projects were as follows: design review of nuclear power plant (5 subjects and each subject having several research projects totaled 20), control management of nuclear power plant (3 subjects and each subject having several research projects totaled 6), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 4), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 6), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 7) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 6). In addition to these 49 research projects of 18 subjects in 6 areas, JNES worked on 19 research projects of 7 subjects in added areas (specific research projects on of the disaster at Fukushima Daiichi NPP accident and other challenges JNES considered necessary) in JFY 2012. This annual safety research report summarized respective achievements and state of regulatory tools necessary for solving regulatory issues according to the safety research plan, JFY 2012 Edition as well as the situation of the reflection for the safety regulations, and also described 16 research projects of 4 subjects: examination for new safety regulation (8 research projects), development of newly necessary evaluation methods (one research project), evaluation of the validity for the work for convergence at Fukushima Daiichi NPP accident (4 research project) and horizontal development to other nuclear power plants (3 research projects), and 3 research projects of 3 subjects as other challenges. A list of JNES

  13. Safety evaluation for the prototype Fast Breeder Reactor MONJU as a Japanese TSO

    International Nuclear Information System (INIS)

    Endo, Hiroshi

    2010-01-01

    In the safety field of fast breeder reactors (FBRs), JNES is conducting an evaluation work of the safety regulation by Nuclear and Industry Safety Agency (NISA) for the re-start of a prototype FBR MONJU. MONJU has been stopped over 14 years since 1995 due to a sodium leakage accident at a secondary heat transport system, and is now reached to the criticality on 8th of May, 2010. JNES is supporting the safety regulation work conducted by NISA based on the following activities: i) Support of the technical evaluation of the application for the establishment license prepared by Japan Atomic Energy Agency (JAEA), ii) Support of the description of the safety review report by NISA based on independent safety analyses for the major accident events such as unprotected loss-of-flow (ULOF) by employing the latest findings on the study of core disruptive accidents (CDAs) independently conducted by JNES, iii) Support of the risk-informed-regulation (RIR) such as an accident management (AM) review, iv), and Consideration on the safety regulation policy from the points of severe accidents and source-term behaviors including the cesium (Cs). The objective of this paper is to introduce the major activities of JNES in the safety domain of MONJU regulations. (author)

  14. Safety research activities for Japanese regulations of spent fuel interim storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Japan Nuclear Energy Safety Organization (JNES) carries out (a) preparation of technical documents, (b) technical evaluations of standards (prepared by academic societies), etc. and (c) other R and D activities, to support Nuclear Regulation Authority (NRA: which controls the regulations for Spent Fuel Interim Storage Facilities). In 2012 fiscal year, JNES carried out dynamic test of spent fuel to examine the integrity of spent fuel under cask drop accidents, and preparation for PWR spent fuel storage test to prove long term integrity of spent fuel and cask itself. Some of these tests will be also carried out in 2013 fiscal year and after. (author)

  15. Consecutive collection of new finding and knowledge on science and technology to be reflected to seismic safety assessment for nuclear facilities

    International Nuclear Information System (INIS)

    Tsutsumi, Hideaki; Iijima, Toru

    2013-05-01

    JNES had been collecting and analyzing new finding and knowledge on science and technology to be reflected to seismic safety assessment for nuclear facilities, which was updated so as to develop a system to organize and disseminate such information in response to Nuclear Regulation Authority (NRA)'s policy on new safety regulations requesting enhanced protective measures against extreme natural hazards. The tasks were as follows; (1) collection of new finding and knowledge from seismic safety research of JNES, (2) constructing database of seismic safety research from documents published by committees and including the Great East Japan Earthquake and (3) dissemination of information related to seismic research. As for JFY 2012 activities, collecting and analyzing new finding and knowledge were on three areas such as active fault, seismic source/ground motion and tsunami. 4 theme related with the Great East Japan Earthquake, 7 items not related with the Great East Japan Earthquake and one item on external event were collected and analyzed whether incorporating in seismic safety research important for regulation to increase seismic safety of nuclear facilities, with no such theme confirmed. (T. Tanaka)

  16. Enhancement of safety for reprocessing facilities

    International Nuclear Information System (INIS)

    2012-06-01

    The adequacy of the safety measures for utility loss accidents in nuclear fuel reprocessing facilities which have been formulated by the nuclear enterprises is investigated in JNES which organizes an advanced committee to specifically study this problem. The results are reviewed in the present report including the case of such severe accidents as in Fukushima Daiichi Nuclear Power Plant. The report also represents a tentative proposal for examination standards of such unimaginable severe accidents as 'station blackout,' urgent safety measures necessary for reoperation of nuclear power plants and requested by nuclear and industrial safety agency, and pointing out and clarification of the potential weakness from the safety point of view, and collective and composite evaluation of safety of the relevant facilities. Furthermore, the definition of accident management is given as of controlled condition and the authorized way of thinking for the cases of plural events happening at the same time and the cases when risks exist radioactivity emits with explosion. (S. Ohno)

  17. 76 FR 79192 - Patient Safety Organizations: Voluntary Relinquishment From HSMS Patient Safety Organization

    Science.gov (United States)

    2011-12-21

    ... Organizations: Voluntary Relinquishment From HSMS Patient Safety Organization AGENCY: Agency for Healthcare... voluntary relinquishment from the HSMS Patient Safety Organization of its status as a Patient Safety Organization (PSO). The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act), Public Law 109...

  18. Safety research plan, JFY 2013 edition

    International Nuclear Information System (INIS)

    2013-09-01

    As for the regulatory issues the governments or JNES considered necessary, JNES had updated every year 'safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. 'Safety research plan, JFY 2013 Edition' was compiled aiming at promotion of appropriate reflection and flexible application of research achievements for tacking the regulatory issues taking account of importance and urgency dependent on trend of nuclear safety regulations as well as collective management of safety research and safety survey. 5 new research projects were established with 4 unified research projects and 6 terminated research projects. Finally modified safety research areas, subjects and research projects, JFY 2013 Edition were as follows: design review of nuclear power plant (7 subjects and each subject having several research projects totaled 19), control management of nuclear power plant (one subject having 4 research projects), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 4), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 5), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 7) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 6). Safety reviews consisted of 6 projects in 3 areas extracting the regulatory issues. As for urgent research projects on the basis of the disaster at Fukushima Daiichi NPP accident, 7 research projects in 4 urgent subjects were as follows: examination for new safety regulation (4 research projects generalized in the above research projects), development of newly necessary evaluation methods (one research project generalized in the above research project), evaluation of the validity for the work for convergence at Fukushima

  19. Proceedings of the JNES Congress and DERBI International Conference

    International Nuclear Information System (INIS)

    2016-06-01

    The DERBI (Development of Renewable Energies in Building and Industry) competitiveness cluster and the CNRS via the Federation for Research on Solar Energy (FedEsol) have joined forces once again to co-host 'The 2015 International Conference DERBI 2016' and 'The 2015 JNES Congress' from 29-30 June on the University Campus in Perpignan. The combination of these two events provides the national community working in the field of the use and the rational exploitation of solar energy with a forum for information and exchange across the entire range of themes within the industry, thus facilitating intensive interaction between the scientific and industrial communities. This year will see a particular focus on the theme of energy storage. The Production-Consumption adequacy, in combination with today's life styles in our societies, requires the massive development of auxiliary energy storage systems adapted to local resources and uses. These systems must warrant the networks stability and peaks smoothing in a context of continuous implementation of renewable energies, the operation of isolated sites, and finally, the de-compartmentalisation of energy vectors (electricity, gas, heat..). Scientific issues, technological challenges and economic models cover various domains such as: materials, components, systems, solar and renewable resource knowledge, optimized storage control, distributed or centralized storage through network connection and/or conversion into other energy vectors, city planning and architectures, and mobilities planning. The 3 days are made up of round tables, discussion sessions, posters and thematic workshops, enabling attendees to play an active role and learn about the latest innovations, new technologies and operational solutions. This document brings together 57 available abstracts of presentations given at the conferences

  20. Independent safety organization

    International Nuclear Information System (INIS)

    Kato, W.Y.; Weinstock, E.V.; Carew, J.F.; Cerbone, R.J.; Guppy, J.G.; Hall, R.E.; Taylor, J.H.

    1985-01-01

    Brookhaven National Laboratory has conducted a study on the need and feasibility of an independent organization to investigate significant safety events for the Office for Analysis and Evaluation of Operational Data, USNRC. The study consists of three parts: the need for an independent organization to investigate significant safety events, alternative organizations to conduct investigations, and legislative requirements. The determination of need was investigated by reviewing current NRC investigation practices, comparing aviation and nuclear industry practices, and interviewing a spectrum of representatives from the nuclear industry, the regulatory agency, and the public sector. The advantages and disadvantages of alternative independent organizations were studied, namely, an Office of Nuclear Safety headed by a director reporting to the Executive Director for Operations (EDO) of NRC; an Office of Nuclear Safety headed by a director reporting to the NRC Commissioners; a multi-member NTSB-type Nuclear Safety Board independent of the NRC. The costs associated with operating a Nuclear Safety Board were also included in the study. The legislative requirements, both new authority and changes to the existing NRC legislative authority, were studied. 134 references

  1. 76 FR 58812 - Patient Safety Organizations: Delisting for Cause of Patient Safety Organization One, Inc.

    Science.gov (United States)

    2011-09-22

    ... Organizations: Delisting for Cause of Patient Safety Organization One, Inc. AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION: Notice of Delisting. SUMMARY: Patient Safety Organization One, Inc.: AHRQ has delisted Patient Safety Organization One, Inc. as a Patient Safety Organization (PSO...

  2. 78 FR 59036 - Patient Safety Organizations: Voluntary Relinquishment From Cogent Patient Safety Organization, Inc.

    Science.gov (United States)

    2013-09-25

    ... Organizations: Voluntary Relinquishment From Cogent Patient Safety Organization, Inc. AGENCY: Agency for... for the formation of Patient Safety Organizations (PSOs), which collect, aggregate, and analyze... Cogent Patient Safety Organization, Inc. of its status as a PSO, and has delisted the PSO accordingly...

  3. 76 FR 9350 - Patient Safety Organizations: Voluntary Delisting From Rocky Mountain Patient Safety Organization

    Science.gov (United States)

    2011-02-17

    ... Organizations: Voluntary Delisting From Rocky Mountain Patient Safety Organization AGENCY: Agency for Healthcare... Organization: AHRQ has accepted a notification of voluntary relinquishment from Rocky Mountain Patient Safety Organization, a component entity of Colorado Hospital Association, of its status as a Patient Safety...

  4. Safety organization

    International Nuclear Information System (INIS)

    Lutz, M.

    1984-06-01

    After a rapid definition of a nuclear basis installation, the national organization of nuclear safety in France is presented, as also the main organizations concerned and their functions. This report shows how the licensing procedure leading to the construction and exploitation of such installations is applied in the case of nuclear laboratories of research and development: examinations of nuclear safety problems are carried out at different levels: - centralized to define the frame out of which the installation has not to operate, - decentralized to follow in a more detailed manner its evolution [fr

  5. Food safety and organic meats.

    Science.gov (United States)

    Van Loo, Ellen J; Alali, Walid; Ricke, Steven C

    2012-01-01

    The organic meat industry in the United States has grown substantially in the past decade in response to consumer demand for nonconventionally produced products. Consumers are often not aware that the United States Department of Agriculture (USDA) organic standards are based only on the methods used for production and processing of the product and not on the product's safety. Food safety hazards associated with organic meats remain unclear because of the limited research conducted to determine the safety of organic meat from farm-to-fork. The objective of this review is to provide an overview of the published results on the microbiological safety of organic meats. In addition, antimicrobial resistance of microbes in organic food animal production is addressed. Determining the food safety risks associated with organic meat production requires systematic longitudinal studies that quantify the risks of microbial and nonmicrobial hazards from farm-to-fork.

  6. Organization and Nuclear Safety: Safety culture

    International Nuclear Information System (INIS)

    Martin Marquinez, A.

    1998-01-01

    This book presents the experience in nuclear safety and its influence in the exploitation on nuclear power plants. The safety organization and quality management before and after Chernobylsk and three mile island accidents

  7. Validation study of core analysis methods for full MOX BWR

    International Nuclear Information System (INIS)

    2013-01-01

    JNES has been developing a technical database used in reviewing validation of core analysis methods of LWRs in the coming occasions: (1) confirming the core safety parameters of the initial core (one-third MOX core) through a full MOX core in Oma Nuclear Power Plant, which is under the construction, (2) licensing high-burnup MOX cores in the future and (3) reviewing topical reports on core analysis codes for safety design and evaluation. Based on the technical database, JNES will issue a guide of reviewing the core analysis methods used for safety design and evaluation of LWRs. The database will be also used for validation and improving of core analysis codes developed by JNES. JNES has progressed with the projects: (1) improving a Doppler reactivity analysis model in a Monte Carlo calculation code MVP, (2) sensitivity study of nuclear cross section date on reactivity calculation of experimental cores composed of UO 2 and MOX fuel rods, (3) analysis of isotopic composition data for UO 2 and MOX fuels and (4) the guide of reviewing the core analysis codes and others. (author)

  8. Validation study of core analysis methods for full MOX BWR

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    JNES has been developing a technical database used in reviewing validation of core analysis methods of LWRs in the coming occasions: (1) confirming the core safety parameters of the initial core (one-third MOX core) through a full MOX core in Oma Nuclear Power Plant, which is under the construction, (2) licensing high-burnup MOX cores in the future and (3) reviewing topical reports on core analysis codes for safety design and evaluation. Based on the technical database, JNES will issue a guide of reviewing the core analysis methods used for safety design and evaluation of LWRs. The database will be also used for validation and improving of core analysis codes developed by JNES. JNES has progressed with the projects: (1) improving a Doppler reactivity analysis model in a Monte Carlo calculation code MVP, (2) sensitivity study of nuclear cross section date on reactivity calculation of experimental cores composed of UO{sub 2} and MOX fuel rods, (3) analysis of isotopic composition data for UO{sub 2} and MOX fuels and (4) the guide of reviewing the core analysis codes and others. (author)

  9. Status of the support researches for the regulation of nuclear facilities decommissioning in Japan

    International Nuclear Information System (INIS)

    Masuda, Yusuke; Iguchi, Yukihiro; Kawasaki, Satoru; Kato, Masami

    2011-01-01

    In Japan, 4 nuclear power stations are under decommissioning and some nuclear fuel cycle facilities are expected to be decommissioned in the future. On the other hand, the safety regulation of decommissioning of nuclear facilities was changed by amending act in 2005. An approval system after review process of decommissioning plan was adopted and applied to the power stations above. In this situation, based on the experiences of the new regulatory system, the system should be well established and moreover, it should be improved and enhanced in the future. Nuclear Industry and Safety Agency (NISA) is in charge of regulation of commercial nuclear facilities in Japan and decommissioning of them is included. Japan Nuclear Energy Safety Organization (JNES) is in charge of technical supports for NISA as a TSO (Technical Support Organization) also in this field. As for decommissioning, based on regulatory needs, JNES has been continuing research activities from October 2003, when JNES has been established. Considering the 'Prioritized Nuclear Safety Research Plan (August 2009)' of the Nuclear Safety Commission of Japan and the situation of operators facilities, 'Regulatory Support Research Plan between FY 2010-2014' was established in November 2009, which shows the present regulatory needs and a research program. This program consists of researches for 1. review process of decommissioning plan of power reactors, 2. review process of decommissioning plan of nuclear fuel cycle facilities, 3. termination of license at the end of decommissioning and 4. management of decommissioning waste. For the item 1, JNES studied safety assessment methods of dismantling, e.g. obtaining data and analysis of behavior of dust diffusion and risk assessment during decommissioning, which are useful findings for the review process. For the item 2, safety requirements for the decommissioning of nuclear fuel cycle facilities was compiled, which will be used in the future review. For the item 3

  10. 14 CFR 415.33 - Safety organization.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Safety organization. 415.33 Section 415.33....33 Safety organization. (a) An applicant shall maintain a safety organization and document it by... communication, both within the applicant's organization and between the applicant and any federal launch range...

  11. Prerequisites of ideal safety-critical organizations

    International Nuclear Information System (INIS)

    Takeuchi, Michiru; Hikono, Masaru; Matsui, Yuko; Goto, Manabu; Sakuda, Hiroshi

    2013-01-01

    This study explores the prerequisites of ideal safety-critical organizations, marshalling arguments of 4 areas of organizational research on safety, each of which has overlap: a safety culture, high reliability organizations (HROs), organizational resilience, and leadership especially in safety-critical organizations. The approach taken in this study was to retrieve questionnaire items or items on checklists of the 4 research areas and use them as materials of abduction (as referred to in the KJ method). The results showed that the prerequisites of ideal safety-oriented organizations consist of 9 factors as follows: (1) The organization provides resources and infrastructure to ensure safety. (2) The organization has a sharable vision. (3) Management attaches importance to safety. (4) Employees openly communicate issues and share wide-ranging information with each other. (5) Adjustments and improvements are made as the organization's situation changes. (6) Learning activities from mistakes and failures are performed. (7) Management creates a positive work environment and promotes good relations in the workplace. (8) Workers have good relations in the workplace. (9) Employees have all the necessary requirements to undertake their own functions, and act conservatively. (author)

  12. Food safety in an organic perspective

    OpenAIRE

    Kristensen, Erik Steen; Alrøe, Hugo Fjelsted; Hansen, Birgitte

    2002-01-01

    The holistic perspective of organic farming implies a broader conception of food safety that includes both product safety and agri-food system safety. The credibility of organic food can only be maintained if the organic agri-food system is developed in correspondence with the basic organic principles. In this way it will be possible to show the whole organic agri-food system as a safer alternative to conventional farming. Thereby trust will be supported in organic foods despite the sparse (a...

  13. 14 CFR 431.33 - Safety organization.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Safety organization. 431.33 Section 431.33... Launch and Reentry of a Reusable Launch Vehicle § 431.33 Safety organization. (a) An applicant shall maintain a safety organization and document it by identifying lines of communication and approval authority...

  14. A guideline for comprehensive evaluation of a licensee's effort to cultivate safety culture

    International Nuclear Information System (INIS)

    Makino, Maomi; Ishii, Yoichi

    2009-01-01

    The nuclear industry in Japan had held excellent performance in safety in the world during 90's. However recent events stem from organizational factors and defects of safety culture are pointed out in their contexts. In order to reduce accidents caused by organizational factors, the Japanese Regulatory body NISA (Nuclear and Industrial Safety Agency) decided to evaluate a licensee's effort for the cultivation of safety culture, and to order all licensses to add the provision of cultivating safety culture to their safety preservation rules. The inspection for the new safety preservation rules started in December, 2007. For a measure of evaluation by resident inspectors, NISA and the Japan Nuclear Energy Safety Organization (JNES) prepared a guideline for the prevention of degradation of safety culture and organizational climate. In this guideline, 14 items were defined as the components of the safety culture or as the viewpoints to evaluate the effort made to prevent any degradation of safety culture and organizational climate in the daily safety preservation activities. The 14 items are also used to establish the method to comprehensively evaluate the effort to prevent degradation of safety culture and organizational climate. This method consists of 10 steps: two steps to taken prior to start of the evaluation, two steps to be taken during the evaluation period, 5 steps to be taken during a comprehensive evaluation period and a final step to be taken for comprehensive findings for safety culture. This paper mainly describes the viewpoints to evaluate comprehensively a licensee's effort for cultivation of safety culture. (author)

  15. Study of applicable methods on safety verification of disposal facilities and waste packages

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Three subjects about safety verification on the disposal of low level radioactive waste were investigated in FY. 2012. For radioactive waste disposal facilities, specs and construction techniques of covering with soil to prevent possible destruction caused by natural events (e.g. earthquake) were studied to consider verification methods for those specs. For waste packages subject to near surface pit disposal, settings of scaling factor and average radioactivity concentration (hereafter referred to as ''SF'') on container-filled and solidified waste packages generated from Kashiwazaki Kariwa Nuclear Power Station Unit 1-5, setting of cesium residual ratio of molten solidified waste generated from Tokai and Tokai No.2 Power Stations, etc. were studied. Those results were finalized in consideration of the opinion from advisory panel, and publicly opened as JNES-EV reports. In FY 2012, five JNES reports were published and these have been used as standards of safety verification on waste packages. The verification method of radioactive wastes subject to near-surface trench disposal and intermediate depth disposal were also studied. For radioactive wastes which will be returned from overseas, determination methods of radioactive concentration, heat rate and hydrogen generation rate of CSD-C were established. Determination methods of radioactive concentration and heat rate of CSD-B were also established. These results will be referred to verification manuals. (author)

  16. 76 FR 71345 - Patient Safety Organizations: Voluntary Relinquishment From Child Health Patient Safety...

    Science.gov (United States)

    2011-11-17

    ... Organizations: Voluntary Relinquishment From Child Health Patient Safety Organization, Inc. AGENCY: Agency for... notification of voluntary relinquishment from Child Health Patient Safety Organization, Inc. of its status as a Patient Safety Organization (PSO). The Patient Safety and Quality Improvement Act of 2005 (Patient Safety...

  17. 14 CFR 417.103 - Safety organization.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Safety organization. 417.103 Section 417... organization. (a) A launch operator must maintain and document a safety organization. A launch operator must... within the launch operator's organization and between the launch operator and any federal launch range or...

  18. An overview on development of safety culture of regulatory body in Korea

    International Nuclear Information System (INIS)

    Yoon, Myunghyun; Choi, Young Sung; Yi, Kyungjoo

    2015-01-01

    Fukushima accident revealed not only licensees but also regulatory bodies' (RBs) establishment of robust safety culture (SC) is crucial to implement effective safety regulation. Result of the IAEA IRRS held in 2011 required regulatory body in Korea to make improvement measure for the enhancement of safety culture of regulatory body (SCRB). Compared to works done to assess SC focused on working organizations of nuclear industry, not enough attention has been paid to assess the RBs. To achieve this goal, long-term comprehensive drive plan has to be made. The IAEA is putting great effort to establish and enhance SC in RBs. OECD/NEA CNRA is planning to produce Green Booklet on SCRB for regulatory guidance. SCRB is an organization's culture, RBs ultimately has to possess in order to assure secure use of nuclear energy. An organization's culture emerges from, and is manifested in, the interplay of its members' emotion, cognition, attitudes, behaviors and interaction patterns. As a result of this mechanism, organizational structures and culture influence individual's attitude and behavior when entered into a situation. Each organization has its strengths and weakness in SC. Safety culture defective components of the Fukushima accident was analyzed by JNES in 2012. According to the casual factors indicated in the investigation report, Nuclear Regulatory Organizations (NROs) of Korea also had weakness of the SCRB in terms of questioning attitude, continuous learning, issue identification and resolution and safety leadership. It doesn't have to be same but necessary for both NSSC and KINS to be consistent in building SC traits to carry out a coherent policy with synergy effect. NROs should communicated and convey consistent message to the stakeholders. Not limited to development of SCRB itself, influence of SCRB on licensee's SC is recommended for further study. Also, what behaviors are expected to make positive effects and whether they can

  19. An overview on development of safety culture of regulatory body in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Myunghyun; Choi, Young Sung; Yi, Kyungjoo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    Fukushima accident revealed not only licensees but also regulatory bodies' (RBs) establishment of robust safety culture (SC) is crucial to implement effective safety regulation. Result of the IAEA IRRS held in 2011 required regulatory body in Korea to make improvement measure for the enhancement of safety culture of regulatory body (SCRB). Compared to works done to assess SC focused on working organizations of nuclear industry, not enough attention has been paid to assess the RBs. To achieve this goal, long-term comprehensive drive plan has to be made. The IAEA is putting great effort to establish and enhance SC in RBs. OECD/NEA CNRA is planning to produce Green Booklet on SCRB for regulatory guidance. SCRB is an organization's culture, RBs ultimately has to possess in order to assure secure use of nuclear energy. An organization's culture emerges from, and is manifested in, the interplay of its members' emotion, cognition, attitudes, behaviors and interaction patterns. As a result of this mechanism, organizational structures and culture influence individual's attitude and behavior when entered into a situation. Each organization has its strengths and weakness in SC. Safety culture defective components of the Fukushima accident was analyzed by JNES in 2012. According to the casual factors indicated in the investigation report, Nuclear Regulatory Organizations (NROs) of Korea also had weakness of the SCRB in terms of questioning attitude, continuous learning, issue identification and resolution and safety leadership. It doesn't have to be same but necessary for both NSSC and KINS to be consistent in building SC traits to carry out a coherent policy with synergy effect. NROs should communicated and convey consistent message to the stakeholders. Not limited to development of SCRB itself, influence of SCRB on licensee's SC is recommended for further study. Also, what behaviors are expected to make positive effects and whether they can

  20. Preparation of the requirements for the safety regulation related to human and organizational factors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The outline of the project in the current fiscal year is to investigate and analyze issues associated with Human and Organizational Factors involved in incidents of nuclear facilities, and to study and develop evaluation methods of these countermeasures. The guideline to evaluate licensee's safety culture and root cause analysis (RCA) had been developed for further improving safety on nuclear power plants at 2007. These guidelines have been used at regulatory inspection since that time. Based on experience of using these existing guidelines, some activities for improving guidelines are now under investigation; these are selecting candidate quantitative indicators for safety culture evaluation and researching good practices for RCA issues. JNES implemented human factor analysis about 18 domestic events including the Fukushima Dai-ichi nuclear power plant accident. (author)

  1. 77 FR 11120 - Patient Safety Organizations: Voluntary Relinquishment From UAB Health System Patient Safety...

    Science.gov (United States)

    2012-02-24

    ... Organizations: Voluntary Relinquishment From UAB Health System Patient Safety Organization AGENCY: Agency for... notification of voluntary relinquishment from the UAB Health System Patient Safety Organization of its status as a Patient Safety Organization (PSO). The Patient Safety and Quality Improvement Act of 2005...

  2. Improvement of numerical simulation methods on safety assessment of the spent fuel storage facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Improvement of numerical simulation methods on safety assessment of the spent fuel storage facility is one of main objectives of JNES activities. For the thermal and structural analyses, the radiative heat transfer analysis code S-FOKS has been developed to reduce computing time and to avoid using large memory area. In order to simulate the specular reflection, a new model (called 'model-2') is planned to install to S-FOKS code. The theoretical values with the specular reflection in simple geometry were lead to verify S-FOKS model-2. (author)

  3. Improvement of infrastructure for risk-informed regulation

    International Nuclear Information System (INIS)

    Muta, Hitoshi; Tanji, Junichi; Kondo, Keisuke; Uchida, Tsuyoshi; Ito, Tomomichi

    2011-01-01

    Improvement of the infrastructure of probabilistic safety assessment (PSA) is essential to the risk-informed regulation for nuclear power plants. JNES conducted update of initiating event frequency and improvement of method for uncertainty analysis to enhance the technology bases of PSA in 2010. Furthermore, JNES improved human reliability assessment method and reliability assessment method for digital reactor protection systems. JNES estimated initiating event frequencies both for power and shutdown operation based on the recent operating experiences in NPPs of Japan using hierarchical Bayesian method. As for improvement of uncertainty analysis method, JNES conducted trial analysis using SOKC (State-Of-Knowledge Correlation) for representative PWR and BWR of Japan. The study on the advanced HRA method with operator cognitive action model was conducted. The study on reliability analysis method for digital reactor protection systems using Bayesian Network Method was conducted. In order to ensure the quality of PSA, JNES studied requirements and methods for PSA peer review via the preparation of peer review for PSA of a representative Japanese BWR plant conducted by JNES. As an effort to develop the procedures of internal fire PSA and internal flooding PSA, trial analyses were conducted to grasp the risk level cause by fire and flooding in nuclear power plants. JNES participated in OECD/NEA PRISME and FIRE project to obtain the latest information and data to validate and improve the fire propagation analysis codes and the parameters for fire PSA. Furthermore, JNES studies schemes for endorsement and application in risk-informed regulation of PSA standards established by Atomic Energy Society of Japan. (author)

  4. 76 FR 60495 - Patient Safety Organizations: Voluntary Relinquishment From the Patient Safety Group

    Science.gov (United States)

    2011-09-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety Organizations: Voluntary Relinquishment From the Patient Safety Group AGENCY: Agency for Healthcare Research and... voluntary relinquishment from The Patient Safety Group of its status as a Patient Safety Organization (PSO...

  5. 75 FR 57281 - Patient Safety Organizations: Voluntary delisting

    Science.gov (United States)

    2010-09-20

    ... Organizations: Voluntary delisting AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS ACTION: Notice... Patient Safety Corporation of its status as a Patient Safety Organization (PSO). The Patient Safety and... the listing of PSOs, which are entities or component organizations whose mission and primary activity...

  6. Project of integrity assessment of flawed components with structural discontinuity (IAF). Data book for estimation stress intensity factor. Surface crack on ICM housing for penetration in reactor vessel

    International Nuclear Information System (INIS)

    2012-12-01

    The project of Integrity Assessment of Flawed Components with Structural Discontinuity (IAF) was entrusted to Japan Power Engineering and Inspection Corporation (JAPEIC) from Nuclear and Industrial Safety Agency (NISA) and started from FY 2001. And then, it was taken over to Japan Nuclear Energy Safety Organization (JNES) which was established in October 2003 and carried out until FY 2007. In the IAF project, weld joints between nickel based alloys and low alloy steels around penetrations in reactor vessel, safe-end of nozzles and shroud supports were selected from among components and pipe arrangements in nuclear power plants, where high residual stresses were generated due to welding and complex structure. Residual stresses around of the weld joints were estimated by finite element analysis method (FEM) with a general modeling method, then the reasonability and the conservativeness was evaluated. In addition, for postulated surface crack of stress corrosion cracking (SCC), a simple calculation method of stress intensity factor (K) required to estimate the crack growth was proposed and the effectiveness was confirmed. JNES compiled results of the IAF project into Data Books of Residual Stress Analysis of Weld Joint, and Data Book of Simplified Stress Intensity Factor Calculation for Penetration of Reactor as typical Structure Discontinuity, respectively. Data Books of Residual Stress Analysis in Weld Joint. 1. Butt Weld Joint of Small Diameter Cylinder (4B Sch40) (JNES-RE-2012-0005), 2. Dissimilar Metal Weld Joint in Safe End (One-Side Groove Joint (JNES-RE-2012-0006), 3. Dissimilar Metal Weld Joint in Safe End (Large Diameter Both-Side Groove Joint) (JNES-RE-2012-0007), 4. Weld Joint around Penetrations in Reactor Vessel (Insert Joint) (JNES-RE-2012-0008), 5. Weld Joint in Shroud Support (H8, H9, H10 and H11 Welds) (JNES-RE-2012-0009), 6. Analysis Model of Dissimilar Metal Weld Joint Applied Post Weld Heat Treatment (PWHT) (JNES-RE-2012-0010). Data Book of

  7. 77 FR 25179 - Patient Safety Organizations: Voluntary Relinquishment From Surgical Safety Institute

    Science.gov (United States)

    2012-04-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... voluntary relinquishment from the Surgical Safety Institute of its status as a Patient Safety Organization (PSO). The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act) authorizes the...

  8. Development and trial application of risk information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    JNES has been doing various activities to stimulate the introduction of Risk Informed Regulation (RIR) to the safety regulation of nuclear power plants (NPPs) in Japan. Some applications are already incorporated, such as the regulatory review of Maintenance Programs and Safety Significance Evaluation for Inspection Findings. In consideration with the experience of the accident in Fukushima Daiichi Nuclear Power Station, JNES addressed development of regulatory guidelines, evaluation of the current condition of Fukushima Daiichi Nuclear Power Station, evaluation of effectiveness of severe accident management measures with the backgrounds of insights and experiences on probabilistic risk assessment (PRA) and RIR. Especially, the experiences were applied to the development of the methodologies for evaluation of effectiveness of severe accident managements. As for inspection and operation of NPPs, JNES enhanced the PRA scope applied to the importance analysis for Maintenance Program, SDP and RI-ISI in consideration with the insights of RIR in Japan and other countries. (author)

  9. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  10. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  11. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  12. 75 FR 57477 - Patient Safety Organizations: Voluntary Delisting

    Science.gov (United States)

    2010-09-21

    ... Organizations: Voluntary Delisting AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION... Creighton Center for Health Services Research and Patient Safety (CHRP) Patient Safety Organization (PSO... the listing of PSOs, which are entities or component organizations whose mission and primary activity...

  13. IAEA Issues Report on Mission to Review Japan's Nuclear Power Plant Safety Assessment Process

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: A team of international nuclear safety experts has delivered its report on a mission it conducted from 21-31 January 2012 to review Japan's process for assessing nuclear safety at the nation's nuclear power plants. International Atomic Energy Agency (IAEA) officials delivered the IAEA Mission Report to Japanese officials yesterday and made it publicly available today. Following the 11 March 2011 accident at TEPCO's Fukushima Daiichi Nuclear Power Station, Japan's Nuclear and Industrial Safety Agency (NISA) announced the development of a revised safety assessment process for the nation's nuclear power reactors. At the request of the Government of Japan, the IAEA organized a team of five IAEA and three international nuclear safety experts and visited Japan to review NISA's approach to the Comprehensive Assessments for the Safety of Existing Power Reactor Facilities and how NISA examines the results submitted by nuclear operators. A Preliminary Summary Report was issued on 31 January. 'The mission report provides additional information regarding the team's recommendations and overall finding that NISA's instructions to power plants and its review process for the Comprehensive Safety Assessments are generally consistent with IAEA Safety Standards', said team leader James Lyons, Director of the IAEA's Nuclear Installation Safety Division. National safety assessments and their peer review by the IAEA are a key component of the IAEA Action Plan on Nuclear Safety, which was approved by the Agency's Member States following last year's nuclear accident at Fukushima Daiichi Nuclear Power Station. The IAEA safety review mission held meetings in Tokyo with officials from NISA, the Japanese Nuclear Energy Safety Organization (JNES), and the Kansai Electric Power Company (KEPCO), and the team visited the Ohi Nuclear Power Station to see an example of how Japan's Comprehensive Safety Assessment is being implemented by nuclear operators. In its report delivered today

  14. 75 FR 75471 - Patient Safety Organizations: Voluntary Delisting

    Science.gov (United States)

    2010-12-03

    ... Organizations: Voluntary Delisting AGENCY: Agency for Healthcare Research and Quality, HHS. ACTION: Notice of..., LLC of its status as a Patient Safety Organization (PSO). The Patient Safety and Quality Improvement... or component organizations whose mission and primary activity is to conduct activities to improve...

  15. 75 FR 57048 - Patient Safety Organizations: Voluntary Delisting

    Science.gov (United States)

    2010-09-17

    ... Organizations: Voluntary Delisting AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION... Organization (PSO). The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act), Public Law 109... the listing of PSOs, which are entities or component organizations whose mission and primary activity...

  16. Development of tsunami hazard analysis

    International Nuclear Information System (INIS)

    2012-01-01

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidebooks on tsunami deposit survey in JAPAN. In order to prepare the guidebook of tsunami deposits survey and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, and (2) field survey on tsunami deposit to prepare the guidebook. As to (1), we especially gear to tsunami deposits distributed in the Pacific coast of Tohoku region, and organize the information gained about tsunami deposits in the database. In addition, as to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. These results are reflected in the guidebook on the tsunami deposits in the lake as needed. (author)

  17. Development of tsunami hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidebooks on tsunami deposit survey in JAPAN. In order to prepare the guidebook of tsunami deposits survey and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, and (2) field survey on tsunami deposit to prepare the guidebook. As to (1), we especially gear to tsunami deposits distributed in the Pacific coast of Tohoku region, and organize the information gained about tsunami deposits in the database. In addition, as to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. These results are reflected in the guidebook on the tsunami deposits in the lake as needed. (author)

  18. 75 FR 75473 - Patient Safety Organizations: Voluntary Delisting

    Science.gov (United States)

    2010-12-03

    ... Organizations: Voluntary Delisting AGENCY: Agency for Healthcare Research and Quality, HHS. ACTION: Notice of... entity of Harbor Medical, Inc., of its status as a Patient Safety Organization (PSO). The Patient Safety... the listing of PSOs, which are entities or component organizations whose mission and primary activity...

  19. 75 FR 75472 - Patient Safety Organizations: Voluntary Delisting

    Science.gov (United States)

    2010-12-03

    ... Organizations: Voluntary Delisting AGENCY: Agency for Healthcare Research and Quality, HHS. ACTION: Notice of.... Patient Safety Group (A Component of Helmet Fire, Inc. of its status as a Patient Safety Organization (PSO... the listing of PSOs, which are entities or component organizations whose mission and primary activity...

  20. Project of integrity assessment of flawed components with structural discontinuity (IAF). Data book for residual stress analysis in weld joint. Analysis model of dissimilar metal weld joint applied post weld heat treatment (PWHT)

    International Nuclear Information System (INIS)

    2012-12-01

    The project of Integrity Assessment of Flawed Components with Structural Discontinuity (IAF) was entrusted to Japan Power Engineering and Inspection Corporation (JAPEIC) from Nuclear and Industrial Safety Agency (NISA) and started from FY 2001. And then, it was taken over to Japan Nuclear Energy Safety Organization (JNES) which was established in October 2003 and carried out until FY 2007. In the IAF project, weld joints between nickel based alloys and low alloy steels around penetrations in reactor vessel, safe-end of nozzles and shroud supports were selected from among components and pipe arrangements in nuclear power plants, where high residual stresses were generated due to welding and complex structure. Residual stresses around of the weld joints were estimated by finite element analysis method (FEM) with a general modeling method, then the reasonability and the conservativeness was evaluated. In addition, for postulated surface crack of stress corrosion cracking (SCC), a simple calculation method of stress intensity factor (K) required to estimate the crack growth was proposed and the effectiveness was confirmed. JNES compiled results of the IAF project into Data Books of Residual Stress Analysis of Weld Joint, and Data Book of Simplified Stress Intensity Factor Calculation for Penetration of Reactor as typical Structure Discontinuity, respectively. Data Books of Residual Stress Analysis in Weld Joint. 1. Butt Weld Joint of Small Diameter Cylinder (4B Sch40) (JNES-RE-2012-0005), 2. Dissimilar Metal Weld Joint in Safe End (One-Side Groove Joint (JNES-RE-2012-0006), 3. Dissimilar Metal Weld Joint in Safe End (Large Diameter Both-Side Groove Joint) (JNES-RE-2012-0007), 4. Weld Joint around Penetrations in Reactor Vessel (Insert Joint) (JNES-RE-2012-0008), 5. Weld Joint in Shroud Support (H8, H9, H10 and H11 Welds) (JNES-RE-2012-0009), 6. Analysis Model of Dissimilar Metal Weld Joint Applied Post Weld Heat Treatment (PWHT) (JNES-RE-2012-0010). Data Book of

  1. Study on post-earthquake plant evaluation and communication (Annual safety research report, JFY 2011)

    International Nuclear Information System (INIS)

    2012-01-01

    The aims of this study are to establish a post-earthquake plant evaluation method and to develop a communication system for the improving seismic safety regulations as well as encouraging public communication. The Miyagiken-oki earthquake in 2005, Onagawa Nuclear Power Plant shut down automatically. Subsequently, JNES started development of post-earthquake plant evaluation and communication system based on the experience of the cross-check analysis for Onagawa Nuclear Power Plant. The Niigata-ken Chuetsu-oki Earthquake in 2007, the plant situation was not transmitted promptly. The loss of information sharing between local community and related organizations caused the public anxiety. The importance of plant information transmission as well as seismic information gathering were recognized. The proposal for the solution of the information issues were performed by government committee, In this study the evaluation method for soundness of the main structure and equipment after earthquake event were updated. Moreover, information dissemination to the public and transparent communication methodology was examined by the Industry-Academia-Government cooperation in the Kashiwazaki-Kariwa region. (author)

  2. Improvement of infrastructure for risk-informed regulation

    International Nuclear Information System (INIS)

    2012-01-01

    Improvement of the infrastructure of probabilistic safety assessment (PSA) is essential to the risk-informed regulation for nuclear power plants. JNES conducted update of initiating event frequencies and improvement of the method for uncertainty analysis to enhance the technology bases of PSA in 2011. Furthermore, JNES improved the human reliability analysis method and the reliability analysis method for digital reactor protection systems. JNES estimated initiating event frequencies both for power and shutdown operation based on the recent operating experiences in Nuclear Power Plants (NPPs) of Japan using the hierarchical Bayesian method. As for improvement of the uncertainty analysis method, JNES conducted trial analyses using SOKC (State-Of-Knowledge Correlation) for the representative PWR plant and BWR plant of Japan. The study on the advanced HRA method with operator cognitive action model was conducted to improve a quality of HRA. The study on analyses of 'defense in depth' and 'diversity' for introducing digital instrumentation and control (I and C) systems was conducted. In order to ensure the quality of PSA, JNES conducted a peer review of a representative Japanese BWR plant PSA by the professional PSA engineers from the U.S. in order to extract to improve quality of PSA, and made an effort to develop the procedures of internal fire PSA. JNES participated in OECD/NEA PRISME and FIRE project to obtain the latest information and data to validate and improve the fire propagation analysis codes and the parameters for fire PSA as well. Furthermore, JNES studied schemes for the endorsement and application in the risk-informed regulation of PSA standards established by Atomic Energy Society of Japan. (author)

  3. Evaluating safety-critical organizations - emphasis on the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Teemu; Oedewald, Pia (VTT, Technical Research Centre of Finland (Finland))

    2009-04-15

    An organizational evaluation plays a key role in the monitoring, as well as controlling and steering, of the organizational safety culture. If left unattended, organizations have a tendency to gradually drift into a condition where they have trouble identifying their vulnerabilities and mechanisms or practices that create or maintain these vulnerabilities. The aim of an organizational evaluation should be to promote increased understanding of the sociotechnical system and its changing vulnerabilities. Evaluation contributes to organizational development and management. Evaluations are used in various situations, but when the aim is to learn about possible new vulnerabilities, identify organizational reasons for problems, or prepare for future challenges, the organization is most open to genuine surprises and new findings. It is recommended that organizational evaluations should be conducted when - there are changes in the organizational structures - new tools are implemented - when the people report increased workplace stress or a decreased working climate - when incidents and near-misses increase - when work starts to become routine - when weak signals (such as employees voicing safety concerns or other worries, the organization 'feels' different, organizational climate has changed) are perceived. In organizations that already have a high safety level, safety managers work for their successors. This means that they seldom see the results of their successful efforts to improve safety. This is due to the fact that it takes time for the improvement to become noticeable in terms of increased measurable safety levels. The most challenging issue in an organizational evaluation is the definition of criteria for safety. We have adopted a system safety perspective and we state that an organization has a high potential for safety when - safety is genuinely valued and the members of the organization are motivated to put effort on achieving high levels of safety

  4. Evaluating safety-critical organizations - emphasis on the nuclear industry

    International Nuclear Information System (INIS)

    Reiman, Teemu; Oedewald, Pia

    2009-04-01

    An organizational evaluation plays a key role in the monitoring, as well as controlling and steering, of the organizational safety culture. If left unattended, organizations have a tendency to gradually drift into a condition where they have trouble identifying their vulnerabilities and mechanisms or practices that create or maintain these vulnerabilities. The aim of an organizational evaluation should be to promote increased understanding of the sociotechnical system and its changing vulnerabilities. Evaluation contributes to organizational development and management. Evaluations are used in various situations, but when the aim is to learn about possible new vulnerabilities, identify organizational reasons for problems, or prepare for future challenges, the organization is most open to genuine surprises and new findings. It is recommended that organizational evaluations should be conducted when - there are changes in the organizational structures - new tools are implemented - when the people report increased workplace stress or a decreased working climate - when incidents and near-misses increase - when work starts to become routine - when weak signals (such as employees voicing safety concerns or other worries, the organization 'feels' different, organizational climate has changed) are perceived. In organizations that already have a high safety level, safety managers work for their successors. This means that they seldom see the results of their successful efforts to improve safety. This is due to the fact that it takes time for the improvement to become noticeable in terms of increased measurable safety levels. The most challenging issue in an organizational evaluation is the definition of criteria for safety. We have adopted a system safety perspective and we state that an organization has a high potential for safety when - safety is genuinely valued and the members of the organization are motivated to put effort on achieving high levels of safety - it is

  5. Organic Tanks Safety Program: Advanced organic analysis FY 1996 progress report

    International Nuclear Information System (INIS)

    1996-09-01

    Major focus during the first part of FY96 was to evaluate using organic functional group concentrations to screen for energetics. Fourier transform infrared and Raman spectroscopy would be useful screening tools for determining C-H and COO- organic content in tank wastes analyzed in a hot cell. These techniques would be used for identifying tanks of potential safety concern that may require further analysis. Samples from Tanks 241-C-106 and -C-204 were analyzed; the major organic in C-106 was B2EHPA and in C-204 was TBP. Analyses of simulated wastes were also performed for the Waste Aging Studies Task; organics formed as a result of degradation were identified, and the original starting components were monitored quantitatively. Sample analysis is not routine and required considerable methods adaptation and optimization. Several techniques have been evaluated for directly analyzing chelator and chelator fragments in tank wastes: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and liquid chromatography with ultraviolet detection using Cu complexation. Although not directly funded by the Tanks Safety Program, the success of these techniques have implications for both the Flammable Gas and Organic Tanks Safety Programs

  6. 76 FR 71345 - Patient Safety Organizations: Voluntary Relinquishment From Emergency Medicine Patient Safety...

    Science.gov (United States)

    2011-11-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety Organizations: Voluntary Relinquishment From Emergency Medicine Patient Safety Foundation AGENCY: Agency for... notification of voluntary relinquishment from Emergency Medicine Patient Safety Foundation of its status as a...

  7. 78 FR 40146 - Patient Safety Organizations: Voluntary Relinquishment From Northern Metropolitan Patient Safety...

    Science.gov (United States)

    2013-07-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety Organizations: Voluntary Relinquishment From Northern Metropolitan Patient Safety Institute AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION: Notice of Delisting. SUMMARY: The Patient Safety and...

  8. 76 FR 7853 - Patient Safety Organizations: Voluntary Delisting From Oregon Patient Safety Commission

    Science.gov (United States)

    2011-02-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety Organizations: Voluntary Delisting From Oregon Patient Safety Commission AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION: Notice of delisting. SUMMARY: Oregon Patient Safety Commission: AHRQ...

  9. Tsunami deposits

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidelines on tsunami deposit survey in JAPAN. In order to prepare the guideline of tsunami deposits survey and evaluation and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, (2) field survey on tsunami deposit, and (3) designing the analysis code of sediment transport due to tsunami. As to (1), we organize the information gained about tsunami deposits in the database. As to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. In addition, as to (3), we design the experimental instrument for hydraulic experiment on sediment transport and sedimentation due to tsunamis. These results are reflected in the guideline on the tsunami deposits survey and evaluation. (author)

  10. Tsunami deposits

    International Nuclear Information System (INIS)

    2013-01-01

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidelines on tsunami deposit survey in JAPAN. In order to prepare the guideline of tsunami deposits survey and evaluation and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, (2) field survey on tsunami deposit, and (3) designing the analysis code of sediment transport due to tsunami. As to (1), we organize the information gained about tsunami deposits in the database. As to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. In addition, as to (3), we design the experimental instrument for hydraulic experiment on sediment transport and sedimentation due to tsunamis. These results are reflected in the guideline on the tsunami deposits survey and evaluation. (author)

  11. Safety Cultural Competency Modeling in Nuclear Organizations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa Kil; Oh, Yeon Ju; Luo, Meiling; Lee, Yong Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear safety cultural competency model should be supplemented through a bottom-up approach such as behavioral event interview. The developed model, however, is meaningful for determining what should be dealt for enhancing safety cultural competency of nuclear organizations. The more details of the developing process, results, and applications will be introduced later. Organizational culture include safety culture in terms of its organizational characteristics.

  12. Study on post-earthquake plant evaluation and communication (Annual safety research report, JFY 2010)

    International Nuclear Information System (INIS)

    Iijima, Toru; Taoka, Hideto; Yamada, Hiroyuki; Sano, Kyoko

    2011-01-01

    The aims of this study are to establish a post-earthquake plant evaluation method and to develop a communication system for the improving seismic safety regulations as well as encouraging public communication. The Miyagiken-oki earthquake in 2005, Onagawa Nuclear Power Plant shut down automatically. Subsequently, JNES started development of post-earthquake plant evaluation and communication system based on the experience of the cross-check analysis for Onagawa Nuclear Power Plant. The Niigata-ken Chuetsu-oki Earthquake in 2007, the plant situation was not transmitted promptly. The loss of information sharing between local community and related organizations caused the public anxiety. The importance of plant information transmission as well as seismic information gathering were recognized. The proposal for the solution of the information issues were performed by government committee. In this study, the evaluation method for soundness of the main structure and equipment after earthquake event were updated. Moreover, procedure of the post-earthquake plant soundness evaluation and multi-functional seismic information system were developed. In addition, the implementation strategy of the easy-to -understand information dissemination to the public and transparent communication methodology was examined by the Industry-Academia-Government cooperation in the Kashiwazaki-Kariwa region. (author)

  13. Statistical safety evaluation of BWR turbine trip scenario using coupled neutron kinetics and thermal hydraulics analysis code SKETCH-INS/TRACE5.0

    International Nuclear Information System (INIS)

    Ichikawa, Ryoko; Masuhara, Yasuhiro; Kasahara, Fumio

    2012-01-01

    The Best Estimate Plus Uncertainty (BEPU) method has been prepared for the regulatory cross-check analysis at Japan Nuclear Energy Safety Organization (JNES) on base of the three-dimensional neutron-kinetics/thermal-hydraulics coupled code SKETCH-INS/TRACE5.0. In the preparation, TRACE5.0 is verified against the large-scale thermal-hydraulic tests carried out with NUPEC facility. These tests were focused on the pressure drop of steam-liquid two phase flow and void fraction distribution. From the comparison of the experimental data with other codes (RELAP5/MOD3.3 and TRAC-BF1), TRACE5.0 was judged better than other codes. It was confirmed that TRACE5.0 has high reliability for thermal hydraulics behavior and are used as a best-estimate code for the statistical safety evaluation. Next, the coupled code SKETCH-INS/TRACE5.0 was applied to turbine trip tests performed at the Peach Bottom-2 BWR4 Plant. The turbine trip event shows the rapid power peak due to the voids collapse with the pressure increase. The analyzed peak value of core power is better simulated than the previous version SKETCH-INS/TRAC-BF1. And the statistical safety evaluation using SKETCH-INS/TRACE5.0 was applied to the loss of load transient for examining the influence of the choice of sampling method. (author)

  14. Safety culture in regulatory expert organization : analysis result of survey for KINS employees

    International Nuclear Information System (INIS)

    Choi, G. S.; Choi, Y. S.

    2003-01-01

    Much has been discussed on safety culture of operating organizations, however, little has been done on that of regulatory organization. Current issues and activities related to nuclear safety culture at IAEA, OECD/NEA, etc. were investigated and relevant literatures were reviewed. Elements essential for safety culture of regulatory organization were proposed and survey questionnaire for employees of regulatory expert organization, KINS, was developed based on the elements proposed. The survey result was presented and its implications were discussed. Based on the result, elements of safety culture in regulatory organization were proposed. The result of this survey can be used in developing safety culture model of regulatory organization, measurement method and also promotion of safety culture in regulatory organization

  15. Undergraduate Organic Chemistry Laboratory Safety

    Science.gov (United States)

    Luckenbaugh, Raymond W.

    1996-11-01

    Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.

  16. Characterization strategy report for the organic safety issues

    International Nuclear Information System (INIS)

    Goheen, S.C.; Campbell, J.A.; Fryxell, G.E.

    1997-08-01

    This report describes a logical approach to resolving potential safety issues resulting from the presence of organic components in hanford tank wastes. The approach uses a structured logic diagram (SLD) to provide a pathway for quantifying organic safety issue risk. The scope of the report is limited to selected organics (i.e., solvents and complexants) that were added to the tanks and their degradation products. The greatest concern is the potential exothermic reactions that can occur between these components and oxidants, such as sodium nitrate, that are present in the waste tanks. The organic safety issue is described in a conceptual model that depicts key modes of failure-event reaction processes in tank systems and phase domains (domains are regions of the tank that have similar contents) that are depicted with the SLD. Applying this approach to quantify risk requires knowing the composition and distribution of the organic and inorganic components to determine (1) how much energy the waste would release in the various domains, (2) the toxicity of the region associated with a disruptive event, and (3) the probability of an initiating reaction. Five different characterization options are described, each providing a different level of quality in calculating the risks involved with organic safety issues. Recommendations include processing existing data through the SLD to estimate risk, developing models needed to link more complex characterization information for the purpose of estimating risk, and examining correlations between the characterization approaches for optimizing information quality while minimizing cost in estimating risk

  17. 77 FR 38294 - Patient Safety Organizations: Delisting for Cause for Medical Informatics

    Science.gov (United States)

    2012-06-27

    ... Organizations: Delisting for Cause for Medical Informatics AGENCY: Agency for Healthcare Research and Quality... Safety Organization (PSO) due to its failure to correct a deficiency. The Patient Safety and Quality... organizations whose mission and primary activity is to conduct activities to improve patient safety and the...

  18. Testing of Metal Cask and Concrete Cask

    International Nuclear Information System (INIS)

    Shirai, K.; Wataru, M.; Takeda, H.; Tani, J.; Arai, T.; Saegusa, T.

    2015-01-01

    In Japan, the first interim spent fuel storage facility (ISF) outside of nuclear power plant site in use of dual-purpose metal cask is being planned to start its commercial operation in 2012 in Mutsu city, Aomori prefecture. The CRIEPI (Central Research Institute of Electric Power Industry) has executed several study programs on demonstrative testing for interim storage of spent fuel, mainly related to metal cask and concrete cask storage technology to reflect in Japanese safety requirements for dry casks issued by NISA/METI (Nuclear and Industrial Safety Agency, Ministry of Economy and Trade Industry). On top of that, the Japan Nuclear Energy Safety Organization (JNES) has executed study programs on spent fuel integrity, etc. This paper introduces the summary of these research programs. (author)

  19. A study on reactor core failure thresholds to safety operation of LMFBR

    International Nuclear Information System (INIS)

    Kazuo, Haga; Hiroshi, Endo; Tomoko, Ishizu; Yoshihisa, Shindo

    2006-01-01

    Japan Nuclear Safety Organization (JNES) has been developing the methodology and computer codes for applying level-1 PSA to LMFBR. Many of our efforts have been directed to the judging conditions of reactor core damage and the time allowed to initiate the accident management. Several candidates of the reactor core failure threshold were examined to a typical proto-type LMFBR with MOX fuel based on the plant thermal-hydraulic analyses to the actual progressions leading to the core damage. The results of the present study showed that the judging condition of coolant-boundary integrity failure, 750 degree-C of the boundary temperature, is enough as the threshold of core damage to PLOHS (protected loss-of-heat sink). High-temperature fuel cladding creep failure will not take place before the coolant-boundary reaches the judging temperature and sodium boiling will not occur due to the system pressure rise. In cases of ATWS (anticipated transient without scrum) the accident progression is so fast and the reactor core damage will be inevitable even a realistic negative reactivity insertion due to the temperature rise is considered. Only in the case of ULOHS (unprotected loss-of-heat sink) a relatively long time of 11 min will be allowed till the shut-down of the reactor before the core damage. (authors)

  20. Safety organization and leadership. A scientific approach to human skills

    International Nuclear Information System (INIS)

    Yoshida, Michio

    2005-01-01

    Effects of leadership on safety of organization have been studied based on results of theoretical and demonstrative research. Analysis and considerations were focused on several aspects such as 1) leadership is understood better as behavior rather than as character, 2) leadership has an effect on follower's motivation, satisfaction and safety consciousness and 3) improvement of safety of organization shall be attained with training to improve and advance leadership. (T. Tanaka)

  1. Special characteristics of safety organizations. Work psychological perspective

    Energy Technology Data Exchange (ETDEWEB)

    Oedewald, P.; Reiman, T.

    2007-03-15

    This book deals with organizations that operate in high hazard industries, such as the nuclear power, aviation, oil and chemical industry organizations. The society puts a great strain on these organizations to rigorously manage the risks inherent in the technology they use and the products they produce. In this book, an organizational psychology view is taken to analyse what are the typical challenges of daily work in these environments. The analysis is based on a literature review about human and organizational factors in safety critical industries, and on the interviews of Finnish safety experts and safety managers from four different companies. In addition to this, personnel interviews conducted in the Finnish nuclear power plants are utilised. The authors come up with eight themes that seem to be common organizational challenges cross the industries. These include e.g. how does the personnel understand the risks and what is the right level for rules and procedures to guide the work activities. The primary aim of this book is to contribute to the nuclear safety research and safety management discussion. However, the book is equally suitable for risk management, organizational development and human resources management specialists in different industries. The purpose is to encourage readers to consider how the human and organizational factors are seen in the field they work in. (orig.)

  2. Special characteristics of safety organizations. Work psychological perspective

    International Nuclear Information System (INIS)

    Oedewald, P.; Reiman, T.

    2007-03-01

    This book deals with organizations that operate in high hazard industries, such as the nuclear power, aviation, oil and chemical industry organizations. The society puts a great strain on these organizations to rigorously manage the risks inherent in the technology they use and the products they produce. In this book, an organizational psychology view is taken to analyse what are the typical challenges of daily work in these environments. The analysis is based on a literature review about human and organizational factors in safety critical industries, and on the interviews of Finnish safety experts and safety managers from four different companies. In addition to this, personnel interviews conducted in the Finnish nuclear power plants are utilised. The authors come up with eight themes that seem to be common organizational challenges cross the industries. These include e.g. how does the personnel understand the risks and what is the right level for rules and procedures to guide the work activities. The primary aim of this book is to contribute to the nuclear safety research and safety management discussion. However, the book is equally suitable for risk management, organizational development and human resources management specialists in different industries. The purpose is to encourage readers to consider how the human and organizational factors are seen in the field they work in. (orig.)

  3. Improving safety culture through the health and safety organization: a case study.

    Science.gov (United States)

    Nielsen, Kent J

    2014-02-01

    International research indicates that internal health and safety organizations (HSO) and health and safety committees (HSC) do not have the intended impact on companies' safety performance. The aim of this case study at an industrial plant was to test whether the HSO can improve company safety culture by creating more and better safety-related interactions both within the HSO and between HSO members and the shop-floor. A quasi-experimental single case study design based on action research with both quantitative and qualitative measures was used. Based on baseline mapping of safety culture and the efficiency of the HSO three developmental processes were started aimed at the HSC, the whole HSO, and the safety representatives, respectively. Results at follow-up indicated a marked improvement in HSO performance, interaction patterns concerning safety, safety culture indicators, and a changed trend in injury rates. These improvements are interpreted as cultural change because an organizational double-loop learning process leading to modification of the basic assumptions could be identified. The study provides evidence that the HSO can improve company safety culture by focusing on safety-related interactions. © 2013. Published by Elsevier Ltd and National Safety Council.

  4. Preparation of safety regulatory requirements for new technology like digital system

    International Nuclear Information System (INIS)

    2012-01-01

    The current regulatory requirements on digital instrumentation and control system have been reviewed by JNES, considering international trend discussed in DICWG of MDEP. MDEP DICWG held in OECD/NEA gives the opportunity to identify the convergence of applicable standards. The working group's activities include: identifying and prioritising the member countries' challenges, practices, and needs regarding standards and regulatory guidance on digital instrumentation and control; identifying areas of importance and needs for convergence of existing standards and guidance or development of new standards; sharing of information; and identifying common positions among the member countries for areas of particular importance and need. The DICWG drafted common positions on specific issues which are based on the existing standards, national regulatory guidance, best practices, and group inputs using an agreed process and framework. The following two general common positions are discussed and to be issued in this fiscal year. Verification and Validation throughout the life cycle of safety systems using digital computers. The Impact of Cyber Security Features on Digital I and C Safety Systems. (author)

  5. 75 FR 63498 - Patient Safety Organizations: Voluntary Delisting

    Science.gov (United States)

    2010-10-15

    ... Healthcare Technology Foundation of its status as a Patient Safety Organization (PSO). The Patient Safety and... notification from the ACCE Healthcare Technology Foundation, PSO number P0017, to voluntarily relinquish its status as a PSO. Accordingly, the ACCE Healthcare Technology Foundation was delisted effective at 12:00...

  6. 76 FR 7854 - Patient Safety Organizations: Voluntary Delisting From Lumetra PSO

    Science.gov (United States)

    2011-02-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... Safety Organization (PSO). The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act... delivery. The Patient Safety and Quality Improvement Final Rule (Patient Safety Rule), 42 CFR part 3...

  7. Surgical Safety Training of World Health Organization Initiatives.

    Science.gov (United States)

    Davis, Christopher R; Bates, Anthony S; Toll, Edward C; Cole, Matthew; Smith, Frank C T; Stark, Michael

    2014-01-01

    Undergraduate training in surgical safety is essential to maximize patient safety. This national review quantified undergraduate surgical safety training. Training of 2 international safety initiatives was quantified: (1) World Health Organization (WHO) "Guidelines for Safe Surgery" and (2) Department of Health (DoH) "Principles of the Productive Operating Theatre." Also, 13 additional safety skills were quantified. Data were analyzed using Mann-Whitney U tests. In all, 23 universities entered the study (71.9% response). Safety skills from WHO and DoH documents were formally taught in 4 UK medical schools (17.4%). Individual components of the documents were taught more frequently (47.6%). Half (50.9%) of the additional safety skills identified were taught. Surgical societies supplemented safety training, although the total amount of training provided was less than that in university curricula (P < .0001). Surgical safety training is inadequate in UK medical schools. To protect patients and maximize safety, a national undergraduate safety curriculum is recommended. © 2013 by the American College of Medical Quality.

  8. Nuclear Criticality Safety Organization qualification program. Revision 4

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-01-01

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSO technical and managerial qualification as required by the Y-12 Training Implementation Matrix (TIM). It is implemented through a combination of LMES plant-wide training courses and professional nuclear criticality safety training provided within the organization. This Qualification Program is applicable to technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who perform the NCS tasks or serve NCS-related positions as defined in sections 5 and 6 of this program

  9. Keeping patients safe in healthcare organizations: a structuration theory of safety culture.

    Science.gov (United States)

    Groves, Patricia S; Meisenbach, Rebecca J; Scott-Cawiezell, Jill

    2011-08-01

    This paper presents a discussion of the use of structuration theory to facilitate understanding and improvement of safety culture in healthcare organizations. Patient safety in healthcare organizations is an important problem worldwide. Safety culture has been proposed as a means to keep patients safe. However, lack of appropriate theory limits understanding and improvement of safety culture. The proposed structuration theory of safety culture was based on a critique of available English-language literature, resulting in literature published from 1983 to mid-2009. CINAHL, Communication and Mass Media Complete, ABI/Inform and Google Scholar databases were searched using the following terms: nursing, safety, organizational culture and safety culture. When viewed through the lens of structuration theory, safety culture is a system involving both individual actions and organizational structures. Healthcare organization members, particularly nurses, share these values through communication and enact them in practice, (re)producing an organizational safety culture system that reciprocally constrains and enables the actions of the members in terms of patient safety. This structurational viewpoint illuminates multiple opportunities for safety culture improvement. Nurse leaders should be cognizant of competing value-based culture systems in the organization and attend to nursing agency and all forms of communication when attempting to create or strengthen a safety culture. Applying structuration theory to the concept of safety culture reveals a dynamic system of individual action and organizational structure constraining and enabling safety practice. Nurses are central to the (re)production of this safety culture system. © 2011 Blackwell Publishing Ltd.

  10. Waste Tank Organic Safety Project organic concentration mechanisms task. FY 1994 progress report

    International Nuclear Information System (INIS)

    Gerber, M.A.

    1994-09-01

    The Pacific Northwest Laboratory (PNL), Waste Tank Organic Safety Project is conducting research to support Westinghouse Hanford Company's (WHC) Waste Tank Safety Program, sponsored by the U.S. Department of Energy's Tank Farm Project Office. The goal of PNL's program is to provide a scientific basis for analyzing organics in Hanford's underground storage tanks (USTs) and for determining whether they are at concentrations that pose a potentially unsafe condition. Part of this research is directed toward determining what organic concentrations are safe by conducting research on organic aging mechanisms and waste energetics to assess the conditions necessary to produce an uncontrolled energy release in tanks due to reactions between the organics and the nitrate and nitrate salts in the tank wastes. The objective of the Organic Concentration Mechanisms Task is to assess the degree of localized enrichment of organics to be expected in the USTs due to concentration mechanisms. This report describes the progress of research conducted in FY 1994 on two concentration mechanisms of interest to the tank safety project: (1) permeation of a separate organic liquid phase into the interstitial spaces of the tank solids during the draining of free liquid from the tanks; and (2) concentration of organics on the surfaces of the solids due to adsorption. Three experiments were conducted to investigate permeation of air and solvent into a sludge simulant that is representative of single-shell tank sludge. The permeation behavior of air and solvent into the sludge simulant can be explained by the properties of the fluid pairs (air/supernate and solvent supernate) and the sludge. One important fluid property is the interfacial tension between the supernate and either the solvent or air. In general, the greater the interfacial tension between two fluids, the more difficult it will be for the air or solvent to displace the supernate during dewatering of the sludge

  11. 77 FR 65892 - Patient Safety Organizations: Voluntary Relinquishment From PDR Secure, LLC

    Science.gov (United States)

    2012-10-31

    ... Organizations: Voluntary Relinquishment From PDR Secure, LLC AGENCY: Agency for Healthcare Research and Quality... Patient Safety Organizations (PSOs), which collect, aggregate, and analyze confidential information... Safety Act authorizes the listing of PSOs, which are entities or component organizations whose mission...

  12. 76 FR 60494 - Patient Safety Organizations: Voluntary Relinquishment From HPI-PSO

    Science.gov (United States)

    2011-09-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... a Patient Safety Organization (PSO). The Patient Safety and Quality Improvement Act of 2005 (Patient... delivery. The Patient Safety and Quality Improvement Final Rule (Patient Safety Rule), 42 CFR Part 3...

  13. Safety study of fire protection for nuclear fuel cycle facility

    International Nuclear Information System (INIS)

    2013-01-01

    Insufficiencies in the fire protection system of the nuclear reactor facilities were pointed out when the fire occurred due to the Niigata prefecture-Chuetsu-oki Earthquake in July, 2007. This prompted the revision of the fire protection safety examination guideline for nuclear reactors as well as commercial guidelines. The commercial guidelines have been endorsed by the regulatory body. Now commercial fire protection standards for nuclear facilities such as the design guideline and the management guideline for protecting fire in the Light Water Reactors (LWRs) are available, however, those to apply to the nuclear fuel cycle facilities such as mixed oxide fuel fabrication facility (MFFF) have not been established. For the improvement of fire protection system of the nuclear fuel cycle facilities, the development of a standard for the fire protection, corresponding to the commercial standard for LWRs were required. Thus, Japan Nuclear Energy Safety Organization (JNES) formulated a fire protection guidelines for nuclear fuel cycle facilities as a standard relevant to the fire protection of the nuclear fuel cycle facilities considering functions specific to the nuclear fuel cycle facilities. In formulating the guidelines, investigation has been conduced on the commercial guidelines for nuclear reactors in Japan and the standards relevant to the fire protection of nuclear facilities in USA and other countries as well as non-nuclear industrial fire protection standards. The guideline consists of two parts; Equipments and Management, as the commercial guidances of the nuclear reactor. In addition, the acquisition of fire evaluation data for a components (an electric cabinet, cable, oil etc.) targeted for spread of fire and the evaluation model of fire source were continued for the fire hazard analysis (FHA). (author)

  14. Basic concept of fuel safety design and assessment for sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nakae, Nobuo; Baba, Toshikazu; Kamimura, Katsuichiro

    2013-03-01

    'Philosophy in Safety Evaluation of Fast Breeder Reactors' was published as a guideline for safety design and safety evaluation of Sodium-Cooled Fast Reactor in Japan. This guideline points out that cladding creep and swelling due to internal pressure should be taken into account since the fuel is used under high temperature and high burnup, and that fuel assembly deformation and the prevention from coolant channel blockage should be taken into account in viewpoints of nuclear and thermal hydraulic design. However, the requirements including their criteria and evaluation items are not described. Two other domestic guidelines related to core design are applied for fuel design of fast reactor, but the description is considered to not be enough to practically use. In addition, technical standard for nuclear fuel used in power reactors is also applied for fuel inspection. Therefore, the technical standard and guideline for fuel design and safety evaluation are considered to be very important issue for nuclear safety regulation. This document has been developed according to the following steps: The guidelines and the technical standards, which are prepared in foreign countries and international organization, were reviewed. The technical background concerning fuel design and safety evaluation for fast reactor was collected and summarized in the world wide scale. The basic concept of fuel safety design and assessment for sodium-cooled fast reactor was developed by considering a wide range of views of the specialists in Japan. In order to discuss the content with foreign specialists IAEA Consultancy Meetings have been held on January, 2011 and January, 2012. The participants of the meeting came from USA, UK, EC, India, China and South Korea. The specialists of IAEA and JNES were also joined. Although this document is prepared for application to 'Monju'(prototype LMFR), it may be applied to experimental, demonstration and commercial types of LMFR after revising it by taking

  15. A study on items necessary to develop the requirements for the management of serious accidents postulated in fuel fabrication, enrichment and reprocessing facilities

    International Nuclear Information System (INIS)

    Takanashi, Mitsuhiro; Yamate, Kazuki; Asada, Kazuo; Yamada, Takashi; Endo, Shigeki

    2013-05-01

    The purpose of this study is to supply the points to discuss on new rules of fuel fabrication, enrichment and reprocessing facilities (hereinafter referred to as 'fuel cycle facilities') conducted by Nuclear Regulation Authority. Requirements for management of serious accidents in the fuel cycle facilities were summarized in this study. Taking into account the lessons learned from the accident of TEPCO Fukushima Daiichi Nuclear Power Plant in Mar. 2011, Act for the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors was amended in June 2012. The main items of the amendment were as follows: Preparation for the management of serious accidents, Introduction of evaluation system for safety improvement, Application of new standards to existing nuclear facilities (back-fitting). Japan Nuclear Energy Safety organization (JNES) conducted a fundamental study on serious accidents and their management in the fuel cycle facilities and made a report. In the report, the concept of Defense in Depth and the definition of serious accidents for the fuel cycle facilities were discussed. Those discussions were conducted by reference to new regulation rules (draft) for power reactors and from the view of features of the fuel cycle facilities. However, further detailed studies are necessary in order to clarify some issues in it. It was also reflected opinions from experts in JNES technical meetings on accident management of the fuel cycle facilities to brush up this report. (author)

  16. Safety culture in the nuclear versus non-nuclear organization

    International Nuclear Information System (INIS)

    Haber, S.B.; Shurberg, D.A.

    1996-01-01

    The importance of safety culture in the safe and reliable operation of nuclear organizations is not a new concept. The greatest barriers to this area of research are twofold: (1) the definition and criteria of safety culture for a nuclear organization and (2) the measurement of those attributes in an objective and systematic fashion. This paper will discuss a proposed resolution of those barriers as demonstrated by the collection of data across nuclear and non-nuclear facilities over a two year period

  17. Special characteristics of safety critical organizations. Work psychological perspective

    Energy Technology Data Exchange (ETDEWEB)

    Oedewald, P.; Reiman, T.

    2007-03-15

    This book deals with organizations that operate in high hazard industries, such as the nuclear power, aviation, oil and chemical industry organizations. The society puts a great strain on these organizations to rigorously manage the risks inherent in the technology they use and the products they produce. In this book, an organizational psychology view is taken to analyse what are the typical challenges of daily work in these environments. The analysis is based on a literature review about human and organizational factors in safety critical industries, and on the interviews of Finnish safety experts and safety managers from four different companies. In addition to this, personnel interviews conducted in the Finnish nuclear power plants are utilised. The authors come up with eight themes that seem to be common organizational challenges cross the industries. These include e.g. how does the personnel understand the risks and what is the right level for rules and procedures to guide the work activities. The primary aim of this book is to contribute to the nuclear safety research and safety management discussion. However, the book is equally suitable for risk management, organizational development and human resources management specialists in different industries. The purpose is to encourage readers to consider how the human and organizational factors are seen in the field they work in. (orig.)

  18. The organization of research reactor safety in the UKAEA

    International Nuclear Information System (INIS)

    Redpath, W.

    1983-01-01

    The present state of organization and development of research reactor safety in the UKAEA are outlined by addressing the fundamental safety principles which have been adopted in keeping with national health and safety requirement. The organisation, assessment and monitoring of research reactor safety on complex multi-discipline and multi-activity nuclear research and development site are discussed. Methods of safety assessment, such as probabilistic risk assessment and risk acceptance criteria, which have been developed and applied in practice are explained, and some indication of the directions in which some of the current developments in the safety of UKAEA research reactors is also included. (A.J.)

  19. Organization and safety in nuclear power plants

    International Nuclear Information System (INIS)

    Marcus, A.A.; Nichols, M.L.; Bromiley, P.; Olson, J.; Osborn, R.N.; Scott, W.; Pelto, P.; Thurber, J.

    1990-05-01

    Perspectives from industry, academe, and the NRC are brought together in this report and used to develop a logical framework that links management and organization factors and safety in nuclear power plant performance. The framework focuses on intermediate outcomes which can be predicted by organizational and management factors, and which are subsequently linked to safety. The intermediate outcomes are efficiency, compliance, quality, and innovation. The organization and management factors can be classified in terms of environment, context, organizational governance, organizational design, and emergent processes. Initial empirical analyses were conducted on a limited set of hypotheses derived from the framework. One set of hypotheses concerned the relationships between one of the intermediate outcome variables, efficiency, as measured by critical hours and outage rate, and safety, as measured by 5 NRC indicators. Results of the analysis suggest that critical hours and outage rates and safety, as measured in this study, are not related to each other. Hypotheses were tested concerning the effects on safety and efficiency of utility financial resources and the lagged recognition and correction of problems that accompanies the reporting of major violations and licensee event reports. The analytical technique employed was regression using polynomial distributed lags. Results suggest that both financial resources and organizational problem solving/learning have significant effects on the outcome variables when time is properly taken into account. Conclusions are drawn which point to this being a promising direction to proceed, though with some care, due to the current limitations of the study. 138 refs., 36 figs., 9 tabs

  20. Selection of safety officers in an indian construction organization by using grey relational analysis

    Directory of Open Access Journals (Sweden)

    Sunku Venkata Siva Rajaprasad

    2018-03-01

    Full Text Available Stakeholders are responsible for implementing the occupational health and safety provisions in an organization. Irrespective of organization, the role of safety department is purely advisory as it coordinates with all the departments, and this is crucial to improve the performance. Selection of safety officer is vital job for any organization; it should not only be based on qualifications of the applicant, the incumbent should also have sufficient exposure in implementing proactive measures. The process of selection is complex and choosing the right safety professional is a vital decision. The safety performance of an organization relies on the systems being implemented by the safety officer. Application of multi criteria decision-making tools is helpful as a selection process. The present study proposes the grey relational analysis(GRA for selection of the safety officers in an Indian construction organization. This selection method considers fourteen criteria appropriate to the organization and has ranked the results. The data was also analyzed by using technique for order Preference by Similarity to an Ideal solution (TOPSIS and results of both the methods are strongly correlated

  1. 77 FR 25179 - Patient Safety Organizations: Expired Listing for Medkinetics, LLC

    Science.gov (United States)

    2012-04-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... Medkinetics, LLC of its status as a Patient Safety Organization (PSO). The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act) authorizes the listing of PSOs, which are entities or component...

  2. Management and organization in nuclear power plant safety

    International Nuclear Information System (INIS)

    Osborn, R.N.

    1983-08-01

    In the immediate aftermath of the Three Mile Island accident, the Nuclear Regulatory Commission-sponsored investigations of the relation between human issues and safety tended to focus on individual and, at most, group level phenomena. This initial bottom up view of organizational safety has continued to be investigated by the Nuclear Regulatory Commission, as evidence by the four previous papers. Recently, however, work has begun which adopts a top down management/organization approach to nuclear power plant safety. This paper reports on the research, to date, on this focus

  3. 76 FR 79192 - Patient Safety Organizations: Voluntary Relinquishment From the Georgia Hospital Association...

    Science.gov (United States)

    2011-12-21

    ... Organizations: Voluntary Relinquishment From the Georgia Hospital Association Research and Education Foundation Patient Safety Organization (GHA-PSO) AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS... The Georgia Hospital Association Research and Education Foundation Patient Safety Organization (GHA...

  4. Environment Health & Safety Research Program. Organization and 1979-1980 Publications

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    This document was prepared to assist readers in understanding the organization of Pacific Northwest Laboratory, and the organization and functions of the Environment, Health and Safety Research Program Office. Telephone numbers of the principal management staff are provided. Also included is a list of 1979 and 1980 publications reporting on work performed in the Environment, Health and Safety Research Program, as well as a list of papers submitted for publication.

  5. Transportation of Organs by Air: Safety, Quality, and Sustainability Criteria.

    Science.gov (United States)

    Mantecchini, L; Paganelli, F; Morabito, V; Ricci, A; Peritore, D; Trapani, S; Montemurro, A; Rizzo, A; Del Sordo, E; Gaeta, A; Rizzato, L; Nanni Costa, A

    2016-03-01

    The outcomes of organ transplantation activities are greatly affected by the ability to haul organs and medical teams quickly and safely. Organ allocation and usage criteria have greatly improved over time, whereas the same result has not been achieved so far from the transport point of view. Safety and the highest level of service and efficiency must be reached to grant transplant recipients the healthiest outcome. The Italian National Transplant Centre (CNT), in partnership with the regions and the University of Bologna, has promoted a thorough analysis of all stages of organ transportation logistics chains to produce homogeneous and shared guidelines throughout the national territory, capable of ensuring safety, reliability, and sustainability at the highest levels. The mapping of all 44 transplant centers and the pertaining airport network has been implemented. An analysis of technical requirements among organ shipping agents at both national and international level has been promoted. A national campaign of real-time monitoring of organ transport activities at all stages of the supply chain has been implemented. Parameters investigated have been hospital and region of both origin and destination, number and type of organs involved, transport type (with or without medical team), stations of arrival and departure, and shipping agents, as well as actual times of activities involved. National guidelines have been issued to select organ storage units and shipping agents on the basis of evaluation of efficiency, reliability, and equipment with reference to organ type and ischemia time. Guidelines provide EU-level standards on technical equipment of aircrafts, professional requirements of shipping agencies and cabin crew, and requirements on service provision, including pricing criteria. The introduction in the Italian legislation of guidelines issuing minimum requirements on topics such as the medical team, packaging, labeling, safety and integrity, identification

  6. Continuous using of the scaling factors for radionuclide evaluation in the packaged solid wastes originated from the Japanese Nuclear Power Plants since 2003

    International Nuclear Information System (INIS)

    2005-03-01

    The amounts and concentration of the nuclides in the waste packages are estimated by measuring some key nuclides, mostly gamma emitters, from outside of the packages and by applying the scaling factor method (using the relationship between some easy to measure key nuclides and the other difficult to measure nuclides). The solid wastes are classified into two kinds of packages: homogeneous solid wastes made from concentrated liquid wastes and spent fuels solidified with cement asphalt, or plastics and heterogeneous solid wastes made of cutting metals, compacted or fused filters solidified with mortars. Japan Nuclear Energy Safety Organization (JNES) established in 2005 is in charge of the confirmation of the inside contents with radionuclide information and compliance with formalities for safety maintenance and control. (S. Ohno)

  7. 76 FR 7855 - Patient Safety Organizations: Voluntary Delisting From Community Medical Foundation for Patient...

    Science.gov (United States)

    2011-02-11

    ... Organizations: Voluntary Delisting From Community Medical Foundation for Patient Safety AGENCY: Agency for... Medical Foundation for Patient Safety, of its status as a Patient Safety Organization (PSO). The Patient... notification from Community Medical Foundation for Patient Safety, PSO number P0029, to voluntarily relinquish...

  8. Preparation of safety regulatory requirements for new technology like digital system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The current regulatory requirements on digital instrumentation and control system have been reviewed by JNES, considering international trend discussed in DICWG of MDEP. MDEP DICWG held in OECD/NEA gives the opportunity to identify the convergence of applicable standards. The working group's activities include: identifying and prioritising the member countries' challenges, practices, and needs regarding standards and regulatory guidance on digital instrumentation and control; identifying areas of importance and needs for convergence of existing standards and guidance or development of new standards; sharing of information; and identifying common positions among the member countries for areas of particular importance and need. The DICWG drafted common positions on specific issues which are based on the existing standards, national regulatory guidance, best practices, and group inputs using an agreed process and framework. The following four general common positions have been discussed in this fiscal year. The Treatment of Common Cause Failure Resulting from Software within Digital Safety Systems, The Treatment of Hardware Description Language(HDL) Programmed Devices for Use in Nuclear Safety System, Factory Acceptance Test and Site Acceptance Test, The Use of Automatic Tests to Perform Surveilance for Digital Systems. (author)

  9. Accumulation and preparation of nondestructive inspection data for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In recent years, flaws due to stress corrosion cracking (SCC) in stainless steel piping and nickel based alloy welds were detected at nuclear power plants in Japan. Weld Overlay (WOL) has been developed as a repairing method for piping items without removing flaws. Since the inspection techniques for WOL pipes and nickel based alloy welds are not verified enough in Japan, Japan Nuclear Energy Safety Organization (JNES) has been carrying out a six year research project entitled 'Accumulation and Preparation of Nondestructive Inspection Data for Nuclear Power Plants' regarding nondestructive inspection since FY2007. In this research project, detection and sizing capability of SCC by Ultrasonic Testing (UT) are evaluated using mockup tests. In addition, the results of this project and past nondestructive inspection data performed by JNES projects are gathered, and inputted into the database of NDT information. In FY2012, followings were conducted. 1) Analysis for UT measurement results of nickel based alloy weld simulating safe end of reactor vessel outlet nozzle. 2) Analysis for UT measurement results of cast stainless steel piping. 3) Development of interface of UT simulation. 4) Development of nondestructive testing guideline. (author)

  10. 76 FR 60495 - Patient Safety Organizations: Voluntary Relinquishment From Illinois PSO

    Science.gov (United States)

    2011-09-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... voluntary relinquishment from the Illinois PSO of its status as a Patient Safety Organization (PSO). The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act), Public Law 109-41, 42 U.S.C. 299b...

  11. 78 FR 6819 - Patient Safety Organizations: Voluntary Relinquishment From The Connecticut Hospital Association...

    Science.gov (United States)

    2013-01-31

    ... Organizations: Voluntary Relinquishment From The Connecticut Hospital Association Federal Patient Safety Organization AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION: Notice of delisting..., 42 U.S.C. 299b-21--b-26, provides for the formation of Patient Safety Organizations (PSOs), which...

  12. Classification analysis of organization factors related to system safety

    International Nuclear Information System (INIS)

    Liu Huizhen; Zhang Li; Zhang Yuling; Guan Shihua

    2009-01-01

    This paper analyzes the different types of organization factors which influence the system safety. The organization factor can be divided into the interior organization factor and exterior organization factor. The latter includes the factors of political, economical, technical, law, social culture and geographical, and the relationships among different interest groups. The former includes organization culture, communication, decision, training, process, supervision and management and organization structure. This paper focuses on the description of the organization factors. The classification analysis of the organization factors is the early work of quantitative analysis. (authors)

  13. The patient safety climate in healthcare organizations (PSCHO) survey: Short-form development.

    Science.gov (United States)

    Benzer, Justin K; Meterko, Mark; Singer, Sara J

    2017-08-01

    Measures of safety climate are increasingly used to guide safety improvement initiatives. However, cost and respondent burden may limit the use of safety climate surveys. The purpose of this study was to develop a 15- to 20-item safety climate survey based on the Patient Safety Climate in Healthcare Organizations survey, a well-validated 38-item measure of safety climate. The Patient Safety Climate in Healthcare Organizations was administered to all senior managers, all physicians, and a 10% random sample of all other hospital personnel in 69 private sector hospitals and 30 Veterans Health Administration hospitals. Both samples were randomly divided into a derivation sample to identify a short-form subset and a confirmation sample to assess the psychometric properties of the proposed short form. The short form consists of 15 items represented 3 overarching domains in the long-form scale-organization, work unit, and interpersonal. The proposed short form efficiently captures 3 important sources of variance in safety climate: organizational, work-unit, and interpersonal. The short-form development process was a practical method that can be applied to other safety climate surveys. This safety climate short form may increase response rates in studies that involve busy clinicians or repeated measures. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  14. Safety assessment and detection methods of genetically modified organisms.

    Science.gov (United States)

    Xu, Rong; Zheng, Zhe; Jiao, Guanglian

    2014-01-01

    Genetically modified organisms (GMOs), are gaining importance in agriculture as well as the production of food and feed. Along with the development of GMOs, health and food safety concerns have been raised. These concerns for these new GMOs make it necessary to set up strict system on food safety assessment of GMOs. The food safety assessment of GMOs, current development status of safety and precise transgenic technologies and GMOs detection have been discussed in this review. The recent patents about GMOs and their detection methods are also reviewed. This review can provide elementary introduction on how to assess and detect GMOs.

  15. Organizing seniors to protect the health safety net: the way forward.

    Science.gov (United States)

    Sharma, Leena; Regan, Carol; Villers, Katherine S

    2018-04-12

    Over the past century, the organized voice of seniors has been critical in building the U.S. health safety net. Since the 2016 election, that safety net, particularly the Medicaid program, is in jeopardy. As we have seen with the rise of the Tea Party, senior support for health care programs-even programs that they use in large numbers-cannot and should not be taken for granted. This article provides a brief history of senior advocacy and an overview of the current senior organizing landscape. It also identifies opportunities for building the transformational organizing of low-income seniors needed to defend against sustained attacks on critical programs. Several suggestions are made, drawn from years of work in philanthropy, advocacy, and campaigns, for strengthening the ability to organize seniors-particularly low-income seniors-into an effective political force advocating for Medicaid and other safety net programs.

  16. An investigation of safety climate in OHSAS 18001-certified and non-certified organizations.

    Science.gov (United States)

    Ghahramani, Abolfazl

    2016-09-01

    Many organizations worldwide have implemented Occupational Health and Safety Assessment Series (OHSAS) 18001 in their premises because of the assumed positive effects of this standard on safety. Few studies have analyzed the effect of the safety climate in OHSAS 18001-certified organizations. This case-control study used a new safety climate questionnaire to evaluate three OHSAS 18001-certified and three non-certified manufacturing companies in Iran. Hierarchical regression indicated that the safety climate was influenced by OHSAS implementation and by safety training. Employees who received safety training had better perceptions of the safety climate and its dimensions than other respondents within the certified companies. This study found that the implementation of OHSAS 18001 does not guarantee improvement of the safety climate. This study also emphasizes the need for high-quality safety training for employees of the certified companies to improve the safety climate.

  17. Input of Lithuanian science into nuclear safety improvement, coordination of technical support organizations

    International Nuclear Information System (INIS)

    Maksimovas, G.

    1999-01-01

    VATESI in its activities is very much supported by Lithuanian scientific and technical organizations which are doing expertise of safety analyses of Ignalina NPP. Description of these organizations is presented. Broad international cooperation and assistance programs is underway helping Lithuanians scientific organizations to build own capacity in making nuclear safety research

  18. Preparation of safety regulatory requirements for new technology like digital system

    International Nuclear Information System (INIS)

    Ito, Juichiro; Takita, Masami

    2011-01-01

    The current regulatory requirements on digital instrumentation and control system have been reviewed by JNES, considering international trend discussed in DICWG (Digital Instrumentation and Control Working Group) of MDEP (Multinational Design Evaluation Program). MDEP DICWG held in OECD/NEA (Organisation for Economic Co-operation and Development/Nuclear Energy Agency) gives the opportunity to identify the convergence of applicable standards. The working group's activities include: identifying and prioritising the member countries' challenges, practices, and needs regarding standards and regulatory guidance regarding digital instrumentation and control; identifying areas of importance and needs for convergence of existing standards and guidance or development of new standards; sharing of information; and identifying common positions among the member countries for areas of particular importance and need. The DICWG drafted common positions on specific issues which are based on the existing standards, national regulatory guidance, best practices, and group inputs using an agreed upon process and framework. Five general common positions are under discussion in this fiscal year. Simplicity in Design, Software Common Cause Failures, Software Tools, Data communication, Verification and Validation throughout the life cycle of safety systems using digital computers. In addition, the technical evaluation of standards of the Japan Electric Association about digital system for safety was made to support NISA (Nuclear and Industrial Safety Agency). (author)

  19. [Genetically modified organisms: a new threat to food safety].

    Science.gov (United States)

    Spendeler, Liliane

    2005-01-01

    This article analyzes all of the food safety-related aspects related to the use of genetically modified organisms into agriculture and food. A discussion is provided as to the uncertainties related to the insertion of foreign genes into organisms, providing examples of unforeseen, undesirable effects and of instabilities of the organisms thus artificially fabricated. Data is then provided from both official agencies as well as existing literature questioning the accuracy and reliability of the risk analyses as to these organisms being harmless to health and discusses the almost total lack of scientific studies analyzing the health safety/dangerousness of transgenic foods. Given all these unknowns, other factors must be taken into account, particularly genetic contamination of the non-genetically modified crops, which is now starting to become widespread in some parts of the world. Not being able of reversing the situation in the even of problems is irresponsible. Other major aspects are the impacts on the environment (such as insects building up resistances, the loss of biodiversity, the increase in chemical products employed) with indirect repercussions on health and/or future food production. Lastly, thoughts for discussion are added concerning food safety in terms of food availability and food sovereignty, given that the transgenic seed and related agrochemicals market is currently cornered by five large-scale transnational companies. The conclusion entails an analysis of biotechnological agriculture's contribution to sustainability.

  20. Toward an integrated system concept for monitoring and evaluation of safety culture

    International Nuclear Information System (INIS)

    Makino, Maomi; Sakaue, Takeharu

    2004-01-01

    The concept of ''nuclear safety culture'' has been advocated and has been much discussed internationally by INSAG (The International Nuclear Safety Advisory Group) under IAEA (the International Atomic Energy Agency) and other institutions since Chernobyl accident. On the safety front, Japan had maintained an excellent track record in nuclear power operations throughout the 1990s. However, there have been a series of new type of problems strongly implying degradation of safety culture, e.g., Monju accident, fire and explosion accident at an Asphalt Solidification Process Facility at Tokai, falsification of annealing data at nuclear power plants (NPP), another data falsification for transport cask of spent fuel and JCO criticality accident. Then the TEPCO (Tokyo Electric Power Company) issue was revealed in 2002. Triggered by this issue, the Nuclear and Industrial Safety Agency (NISA) has been implementing a variety of improvements, one of which was the establishment of a study group in 2003, which invited experts from other fields as well as from nuclear-related industries, to study on how to implement safety culture sufficiently and possible recommendations. Subjects such as the followings piled in the study report will indicate leading keys in case it is going to realize such efforts: ''Foundation of safety culture is a quality management'' and ''Realistic and scientific technique is necessary for the evaluation of safety culture''. In order to respond to these requests, JNES have been advancing the development toward an Integrated System Concept for Monitoring and Evaluation of Safety Culture. This paper describes the outline of the study results reported by the study group and then introduces one of subsystems, SCEST, structuring the integrated system concept for Monitoring and Evaluation of Safety Culture. (author)

  1. 77 FR 58420 - Advisory Committee On Reactor Safeguards; Notice of Meeting

    Science.gov (United States)

    2012-09-20

    ... Pike, Rockville, Maryland. Thursday, October 4, 2012, Conference Room T2-B1, 11545 Rockville Pike....: Safety Evaluation Report (SER) Associated with WCAP-16793-NP, Revision 2, ``Evaluation of Long-Term..., ``Evaluation of JNES Equipment Fragility Tests for Use in Seismic Probabilistic Risk Assessments for U.S...

  2. Resolution of Hanford tanks organic complexant safety issue

    International Nuclear Information System (INIS)

    Kirch, N.W.

    1998-01-01

    The Hanford Site tanks have been assessed for organic complexant reaction hazards. The results have shown that most tanks contain insufficient concentrations of TOC to support a propagating reaction. It has also been shown that those tanks where the TOC concentration approaches levels of concern, degradation of the organic complexants to less energetic compounds has occurred. The results of the investigations have been documented. The residual organic complexants in the Hanford Site waste tanks do not present a safety concern for long-term storage

  3. ASCOT guidelines revised 1996 edition. Guidelines for organizational self-assessment of safety culture and for reviews by the assessment of safety culture in organizations team

    International Nuclear Information System (INIS)

    1996-01-01

    In order to properly assess safety culture, it is necessary to consider the contribution of all organizations which have an impact on it. Therefore, while assessing the safety culture in an operating organization it is necessary to address at least its interfaces with the local regulatory agency, utility corporate headquarters and supporting organizations. These guidelines are primarily intended for use by any organization wishing to conduct a self-assessment of safety culture. They should also serve as a basis for conducting an international peer review of the organization's self-assessment carried out by an ASCOT (Assessment of Safety Culture in Organizations Team) mission

  4. Safety Audit of Band Saw in Manufacturing Organization

    Directory of Open Access Journals (Sweden)

    Martin Kotus

    2016-01-01

    Full Text Available This paper deals with the verifying of safety status for a selected device in the manufacturing organization. The safety audit of band saw was realized in the manufacturing process. Safety requirements of the machinery for cutting material are given in the standard STN 20 0723. This standard from the point of view of the work safety defines selected requirements for sawing, cutting compounds and the using of prevention to work with cutting compounds. Among the basic requirements belong material clamping and security services for cut, band saws and jaws wear, as well as the required protective cover. The efficiency of audit in percentage was evaluated by the level of fulfilment as follows: fulfilled (A mostly fulfilled (AB, conditionally fulfilled (B or unfulfilled (C. Through safety audit, were defined the weaknesses that increase the degree of employee health hazard. There were proposed corrective actions to eliminate weaknesses and retraining employees. It is still needed to perform the safety audit due to reduction of the probability of occupational injury.

  5. 77 FR 26280 - Patient Safety Organizations: Voluntary Relinquishment From CareRise LLC

    Science.gov (United States)

    2012-05-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... relinquishment from CareRise LLC of its status as a Patient Safety Organization (PSO). The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act) authorizes the listing of PSOs, which are entities or...

  6. Changing the internal health and safety organization through organizational learning and change management

    DEFF Research Database (Denmark)

    Hasle, Peter; Jensen, P.L.

    2006-01-01

    Research from several countries indicates that the internal health and safety organization is marginalized in most companies, and it is difficult for the professionals to secure a proper role in health and safety on the companies' present agenda. The goal of a Danish project involving a network...... of I I companies was to search for a solution to this problem. The health and safety managers and safety representatives played the role of "change agents" for local projects aiming to develop the health and safety organization. The study showed that 3 of the 11 companies proved to be able to implement...

  7. Trade associations and labor organizations as intermediaries for disseminating workplace safety and health information.

    Science.gov (United States)

    Okun, Andrea H; Watkins, Janice P; Schulte, Paul A

    2017-09-01

    There has not been a systematic study of the nature and extent to which business and professional trade associations and labor organizations obtain and communicate workplace safety and health information to their members. These organizations can serve as important intermediaries and play a central role in transferring this information to their members. A sample of 2294 business and professional trade associations and labor organizations in eight industrial sectors identified by the National Occupational Research Agenda was surveyed via telephone. A small percent of these organizations (40.9% of labor organizations, 15.6% of business associations, and 9.6% of professional associations) were shown to distribute workplace safety and health information to their members. Large differences were also observed between industrial sectors with construction having the highest total percent of organizations disseminating workplace safety and health information. There appears to be significant potential to utilize trade and labor organizations as intermediaries for transferring workplace safety and health information to their members. Government agencies have a unique opportunity to partner with these organizations and to utilize their existing communication channels to address high risk workplace safety and health concerns. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  8. ERC Safety and Hygiene Programs functional organization structure and mission statement

    International Nuclear Information System (INIS)

    Coleman, S.R.

    2000-01-01

    This document provides a description of the functions, structure, commitments, and goals of the Environmental Restoration Contractor Safety and Hygiene Program. The current structure of the ERC Safety and Hygiene organization is described herein

  9. : Principles of safety measures of sports events organizers without the involvement of police

    OpenAIRE

    Buchalová, Kateřina

    2013-01-01

    Title: Principles of safety measures of sports events organizers without the involvement of police Objectives: The aim of this thesis is a description of security measures at sporting events organizers. Methods: The thesis theoretical style is focused on searching for available sources of study and research, and writing their summary comparing safety measures of the organizers. Results: This work describes the activities of the organizers of sports events and precautions that must be provided...

  10. 76 FR 74788 - Patient Safety Organizations: Voluntary Relinquishment From HealthWatch, Inc.

    Science.gov (United States)

    2011-12-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... relinquishment from HealthWatch, Inc. of its status as a Patient Safety Organization (PSO). The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act), Public Law 109-41, 42 U.S.C. 299b-21--b-26...

  11. 76 FR 7853 - Patient Safety Organizations: Voluntary Delisting From HealthDataPSO

    Science.gov (United States)

    2011-02-11

    ... Medical Error Management, LLC, of its status as a Patient Safety Organization (PSO). The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act), Public Law 109-41, 42 U.S.C. 299b-21--b-26... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety...

  12. Lessons learnt from the capacity building activities for Asian countries

    International Nuclear Information System (INIS)

    Nakagawa, Masaki

    2010-01-01

    Japan Nuclear Energy Safety Organization (JNES) has being providing much of cooperative activities for establishing the nuclear regulatory infrastructure to the several Asian countries like China, Indonesia, Thailand and particularly Vietnam which either started extended construction of nuclear power stations or are launching on new nuclear power programs. Our cooperation to these countries covers several different types like long-term training course, issue-specific training course and periodic safety seminar etc. Through these activities what we have learnt is that to help other countries is not an easy business. To fully recognize what are actually requested by the recipients' countries is not at all an easy business either. This paper will illustrate our experiences to have worked on the cooperative activities putting the emphasis on the lessons learnt through these experiences. (author)

  13. Organization and staffing of the regulatory body for nuclear facilities. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this safety guide is to provide recommendations for national authorities on the appropriate management system, organization and staffing for the regulatory body responsible for the regulation of nuclear facilities in order to achieve compliance with the applicable safety requirements. This safety guide covers the organization and staffing in relation to nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And radioactive waste management facilities such as treatment, storage and disposal facilities. This safety guide also covers issues related to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation

  14. Edible safety requirements and assessment standards for agricultural genetically modified organisms.

    Science.gov (United States)

    Deng, Pingjian; Zhou, Xiangyang; Zhou, Peng; Du, Zhong; Hou, Hongli; Yang, Dongyan; Tan, Jianjun; Wu, Xiaojin; Zhang, Jinzhou; Yang, Yongcun; Liu, Jin; Liu, Guihua; Li, Yonghong; Liu, Jianjun; Yu, Lei; Fang, Shisong; Yang, Xiaoke

    2008-05-01

    This paper describes the background, principles, concepts and methods of framing the technical regulation for edible safety requirement and assessment of agricultural genetically modified organisms (agri-GMOs) for Shenzhen Special Economic Zone in the People's Republic of China. It provides a set of systematic criteria for edible safety requirements and the assessment process for agri-GMOs. First, focusing on the degree of risk and impact of different agri-GMOs, we developed hazard grades for toxicity, allergenicity, anti-nutrition effects, and unintended effects and standards for the impact type of genetic manipulation. Second, for assessing edible safety, we developed indexes and standards for different hazard grades of recipient organisms, for the influence of types of genetic manipulation and hazard grades of agri-GMOs. To evaluate the applicability of these criteria and their congruency with other safety assessment systems for GMOs applied by related organizations all over the world, we selected some agri-GMOs (soybean, maize, potato, capsicum and yeast) as cases to put through our new assessment system, and compared our results with the previous assessments. It turned out that the result of each of the cases was congruent with the original assessment.

  15. 77 FR 51580 - Advisory Committee on Reactor Safeguards; Notice of Meeting

    Science.gov (United States)

    2012-08-24

    ... Pike, Rockville, Maryland. Thursday, September 6, 2012, Conference Room T2-B1, 11545 Rockville Pike... p.m.-3:15 p.m.: Selected Chapters of the Safety Evaluation Reports (SERs) with Open Items Associated... and Peach Bottom,'' and (2) NUREG/CR-7040, ``Evaluation of JNES Equipment Fragility Tests for Use in...

  16. Survey and analysis of radiation safety management systems at medical institutions. Initial report. Radiation protection supervisor, radiation safety organization, and education and training

    International Nuclear Information System (INIS)

    Ohba, Hisateru; Ogasawara, Katsuhiko; Aburano, Tamio

    2005-01-01

    In this study, a questionnaire survey was carried out to determine the actual situation of radiation safety management systems in Japanese medical institutions with nuclear medicine facilities. The questionnaire consisted of questions concerning the Radiation Protection Supervisor license, safety management organizations, and problems related to education and training in safety management. Analysis was conducted according to region, type of establishment, and number of beds. The overall response rate was 60%, and no significant difference in response rate was found among regions. Medical institutions that performed nuclear medicine practices without a radiologist participating accounted for 10% of the total. Medical institutions where nurses gave patients intravenous injections of radiopharmaceuticals as part of the nuclear medicine practices accounted for 28% of the total. Of these medical institutions, 59% provided education and training in safety management for nurses. The rate of acquisition of Radiation Protection Supervisor licenses was approximately 70% for radiological technologists and approximately 20% for physicians (regional difference, p=0.02). The rate of medical institutions with safety management organizations was 71% of the total. Among the medical institutions (n=208) without safety management organizations, approximately 56% had 300 beds or fewer. In addition, it became clear that 35% of quasi-public organizations and 44% of private organizations did not provide education and training in safety management (p<0.001, according to establishment). (author)

  17. Development of ISA procedure for uranium fuel fabrication and enrichment facilities: overview of ISA procedure and its application

    International Nuclear Information System (INIS)

    Yamate, Kazuki; Yamada, Takashi; Takanashi, Mitsuhiro; Sasaki, Noriaki

    2013-01-01

    Integrated Safety Analysis (ISA) procedure for uranium fuel fabrication and enrichment facilities has been developed for aiming at applying risk-informed regulation to these uranium facilities. The development has carried out referring to the ISA (NUREG-1520) by the Nuclear Regulatory Commission (NRC). The paper presents purpose, principles and activities for the development of the ISA procedure, including Risk Level (RL) matrix and grading evaluation method of IROFS (Items Relied on for Safety), as well as general description and features of the procedure. Also described in the paper is current status in application of risk information from the ISA. Japanese four licensees of the uranium facilities have been conducting ISA for their representative processes using the developed procedure as their voluntary safety activities. They have been accumulating experiences and knowledge on the ISA procedure and risk information through the field activities. NISA (Nuclear and Industrial Safety Agency) and JNES (Japan Nuclear Energy Safety Organization) are studying how to use such risk information for the safety regulation of the uranium facilities, taking into account the licensees' experiences and knowledge. (authors)

  18. Human and organization factors: engineering operating safety into offshore structures

    International Nuclear Information System (INIS)

    Bea, Robert G.

    1998-01-01

    History indicates clearly that the safety of offshore structures is determined primarily by the humans and organizations responsible for these structures during their design, construction, operation, maintenance, and decommissioning. If the safety of offshore structures is to be preserved and improved, then attention of engineers should focus on to how to improve the reliability of the offshore structure 'system,' including the people that come into contact with the structure during its life-cycle. This article reviews and discusss concepts and engineering approaches that can be used in such efforts. Two specific human factor issues are addressed: (1) real-time management of safety during operations, and (2) development of a Safety Management Assessment System to help improve the safety of offshore structures

  19. Institutions involved in food Safety: World Health Organization (WHO)

    DEFF Research Database (Denmark)

    Schlundt, Jørgen

    2014-01-01

    The World Health Organization (WHO) has been a leading intergovernmental organization in the effort to prevent diseases related to food and improve global food safety and security. These efforts have been focused on the provision of independent scientific advice on foodborne risks, the development...... the focus on simple and efficient messaging toward preventing food risks through a better understanding of good food preparation practices in all sectors....

  20. Research items regarding seismic residual risk evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    After learning the Fukushima Dai-ichi NPP severe accidents in 2011, the government investigation committee proposed the effective use of probabilistic safety assessment (PSA), and now it is required to establish new safety rules reflecting the results of probabilistic risk assessment (PRA) and proposed severe accident measures. Since the Seismic Design Guide has been revised on September 19, 2006, JNES has been discussing seismic PRA (Levels 1-3) methods to review licensees' residual risk assessment while preparing seismic PRA models. Meanwhile, new safety standards for light water reactors are to be issued and enforced on July 2013, which require the residual risk of tsunami, in addition to earthquakes, should be lowered as much as possible. The Fukushima accidents raised the problems related to risk assessment, e.g. approaches based on multi-hazard (earthquake and tsunami), multi-unit, multi-site, and equipment's common cause failure. This fiscal year, while performing seismic and/or tsunami PRA to work on these problems, JNES picked up the equipment whose failure greatly contribute to core damage, surveyed accident management measures on those equipment as well as effectiveness to reduce core damage probability. (author)

  1. 76 FR 7854 - Patient Safety Organizations: Voluntary Delisting From Quality Excellence, Inc./PSO

    Science.gov (United States)

    2011-02-11

    ... Arkansas Foundation for Medical Care, of its status as a Patient Safety Organization (PSO). The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act), Public Law 109-41, 42 U.S.C. 299b-21--b... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety...

  2. Positioning radiation safety in occupational safety and health programme in an organization

    International Nuclear Information System (INIS)

    Abed Bin Onn

    2000-01-01

    The Atomic Energy Licensing Act 1984, which is under purview of the Ministry of Science, Technology and Environment, and Occupational Safety and Health Act, OSHA 1994, under Ministry of Human Resources were discussed. RPO responsibilities were discussed in detailed. As the conclusion, organization which complies with the provisions of the AELA 1984 are well on the way to complying the requirements of OSHA 1994

  3. Investigation of exposure dose of residents and standards for the interim storage of wastes from the restricted area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Remediation in the restricted area around the Fukushima Daiichi Nuclear Power Plant is being planned. JNES conducted the investigation to support controlling the exposure pathway for exposure of residents. Prototype dose evaluation tool for the residents in the restricted area was developed. Residents would be externally and internally exposed. Monitoring data of concentration of radioactive material in the air, soil, water, agricultural products and fish, and exposure scenario were compiled to be used in the dose evaluation tool. Upon requests from the Local Nuclear Emergency Response Headquarters (LNERH), JNES has conducted investigations of the exposure dose for local residents, car mechanics, drivers, fire fighters, workers of incineration plant, seawage plant and final disposal of waste in their activities. Preliminary investigation of the safety of interim storage for wastes from decontamination was also conducted. (author)

  4. The impact of safety organizing, trusted leadership, and care pathways on reported medication errors in hospital nursing units.

    Science.gov (United States)

    Vogus, Timothy J; Sutcliffe, Kathleen M

    2011-01-01

    Prior research has found that safety organizing behaviors of registered nurses (RNs) positively impact patient safety. However, little research exists on the joint benefits of safety organizing and other contextual factors that help foster safety. Although we know that organizational practices often have more powerful effects when combined with other mutually reinforcing practices, little research exists on the joint benefits of safety organizing and other contextual factors believed to foster safety. Specifically, we examined the benefits of bundling safety organizing with leadership (trust in manager) and design (use of care pathways) factors on reported medication errors. A total of 1033 RNs and 78 nurse managers in 78 emergency, internal medicine, intensive care, and surgery nursing units in 10 acute-care hospitals in Indiana, Iowa, Maryland, Michigan, and Ohio who completed questionnaires between December 2003 and June 2004. Cross-sectional analysis of medication errors reported to the hospital incident reporting system for the 6 months after the administration of the survey linked to survey data on safety organizing, trust in manager, use of care pathways, and RN characteristics and staffing. Multilevel Poisson regression analyses indicated that the benefits of safety organizing on reported medication errors were amplified when paired with high levels of trust in manager or the use of care pathways. Safety organizing plays a key role in improving patient safety on hospital nursing units especially when bundled with other organizational components of a safety supportive system.

  5. Benchmarking of World Health Organization surgical safety checklist

    International Nuclear Information System (INIS)

    Messahel, Farouk M.; AlQahtani, Ali S.

    2009-01-01

    To compare the quality of our services with the World Health Organization (WHO) surgical safety recommendations as a reference, to improve our services if they fall short of that of the WHO, and to publish our additional standards, so that they may be included in future revision of WHO checklist. We conducted this study on 15th July 2008 at the Armed Forces Hospital, Wadi Al-Dawasir, Kingdom of Saudi Arabia. We compared each WHO safety standard item with its corresponding standard in our checklist. There were 4 possibilities for the comparison: that our performance meet, was less than or exceeded the quality-of-care measures in the WHO checklist, or that there are additional safety measures in either checklist that need to be considered by each party. Since its introduction in 1997, our checklist was applied to 11828 patients and resulted in error-free outcomes. Benchmarking proved that our surgical safety performance does not only match the standards of the WHO surgical safety checklist, but also exceeds it in other safety areas (for example measures to prevent perioperative hypothermia and venous thromboembolism). Benchmarking is a continuous quality improvement process aimed at providing the best available at the time in healthcare, and we recommend its adoption by healthcare providers. The WHO surgical safety checklist is a bold step in the right direction towards safer surgical outcomes. Feedback from other medical establishments should be encouraged. (author)

  6. Working material. IAEA seismic safety of nuclear power plants. International workshop on lessons learned from strong earthquake

    International Nuclear Information System (INIS)

    2008-08-01

    The International Workshop on Lessons Learned from Strong Earthquake was held at Kashiwazaki civic plaza, Kashiwazaki, Niigata-prefecture, Japan, for three days in June 2008. Kashiwazaki-Kariwa NPP (KK-NPP) is located in the city of Kashiwazaki and the village of Kariwa, and owned and operated by Tokyo Electric Power Company Ltd. (TEPCO). After it experienced the Niigata-ken Chuetsu-oki earthquake in July 2007, IAEA dispatched experts' missions twice and held technical discussions with TEPCO. Through such activities, the IAEA secretariat and experts obtained up-dated information of plant integrity, geological and seismological evaluation and developments of the consultation in the regulatory framework of Japan. Some of the information has been shared with the member states through the reports on findings and lessons learned from the missions to Japan. The international workshop was held to discuss and share the information of lessons learned from strong earthquakes in member states' nuclear installations. It provided the opportunity for participants from abroad to share the information of the recent earthquake and experience in Japan and to visit KK-NPP. And for experts in Japan, the workshop provided the opportunity to share the international approach on seismic-safety-related measures and experiences. The workshop was organised by the IAEA as a part of an extra budgetary project, in cooperation with OECD/NEA, hosted by Japanese organisations including Nuclear and Industrial Safety Agency (NISA), Nuclear Safety Commission (NSC), and Japan Nuclear Energy Safety Organization (JNES). The number of the workshop participants was 70 experts from outside Japan, 27 countries and 2 international organisations, 154 Japanese experts and 81 audience and media personnel, totalling to 305 participants. The three-day workshop was open to the media including the site visit, and covered by NHK (the nation's public broadcasting corporation) and nation-wide and local television

  7. Organizing safety: conditions for successful information assurance programs.

    Science.gov (United States)

    Collmann, Jeff; Coleman, Johnathan; Sostrom, Kristen; Wright, Willie

    2004-01-01

    Organizations must continuously seek safety. When considering computerized health information systems, "safety" includes protecting the integrity, confidentiality, and availability of information assets such as patient information, key components of the technical information system, and critical personnel. "High Reliability Theory" (HRT) argues that organizations with strong leadership support, continuous training, redundant safety mechanisms, and "cultures of high reliability" can deploy and safely manage complex, risky technologies such as nuclear weapons systems or computerized health information systems. In preparation for the Health Insurance Portability and Accountability Act (HIPAA) of 1996, the Office of the Assistant Secretary of Defense (Health Affairs), the Offices of the Surgeons General of the United States Army, Navy and Air Force, and the Telemedicine and Advanced Technology Research Center (TATRC), US Army Medical Research and Materiel Command sponsored organizational, doctrinal, and technical projects that individually and collectively promote conditions for a "culture of information assurance." These efforts include sponsoring the "P3 Working Group" (P3WG), an interdisciplinary, tri-service taskforce that reviewed all relevant Department of Defense (DoD), Miliary Health System (MHS), Army, Navy and Air Force policies for compliance with the HIPAA medical privacy and data security regulations; supporting development, training, and deployment of OCTAVE(sm), a self-directed information security risk assessment process; and sponsoring development of the Risk Information Management Resource (RIMR), a Web-enabled enterprise portal about health information assurance.

  8. Using the Job Demands-Resources model to investigate risk perception, safety climate and job satisfaction in safety critical organizations.

    Science.gov (United States)

    Nielsen, Morten Birkeland; Mearns, Kathryn; Matthiesen, Stig Berge; Eid, Jarle

    2011-10-01

    Using the Job Demands-Resources model (JD-R) as a theoretical framework, this study investigated the relationship between risk perception as a job demand and psychological safety climate as a job resource with regard to job satisfaction in safety critical organizations. In line with the JD-R model, it was hypothesized that high levels of risk perception is related to low job satisfaction and that a positive perception of safety climate is related to high job satisfaction. In addition, it was hypothesized that safety climate moderates the relationship between risk perception and job satisfaction. Using a sample of Norwegian offshore workers (N = 986), all three hypotheses were supported. In summary, workers who perceived high levels of risk reported lower levels of job satisfaction, whereas this effect diminished when workers perceived their safety climate as positive. Follow-up analyses revealed that this interaction was dependent on the type of risks in question. The results of this study supports the JD-R model, and provides further evidence for relationships between safety-related concepts and work-related outcomes indicating that organizations should not only develop and implement sound safety procedures to reduce the effects of risks and hazards on workers, but can also enhance other areas of organizational life through a focus on safety. © 2011 The Authors. Scandinavian Journal of Psychology © 2011 The Scandinavian Psychological Associations.

  9. Nuclear Criticality Safety Organization training implementation. Revision 4

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-01-01

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document provides a listing of the roles and responsibilities of NCSO personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This Training Implementation document is applicable to all technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who are in a qualification program

  10. Nuclear Criticality Safety Organization training implementation. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-05-19

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document provides a listing of the roles and responsibilities of NCSO personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This Training Implementation document is applicable to all technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who are in a qualification program.

  11. The improvement of the fire protections system for nuclear cycle facilities. Formulation of a fire protection guideline for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2012-04-01

    The private side Fire Protection Guideline was investigated with respect to the fire having taken place at the nuclear reactor site followed by the Chuetsu-Oki earthquake in Niigata Prefecture in 2007. To improve the fire protection system especially applicable to MOX fuel fabrication facilities, JNES (Japan Nuclear Energy Safety Organization) investigated private guidelines adopted in Japanese Light Water cooled Reactors, the standardized guidelines used in Nuclear Facilities in other countries including USA, and the standards in the chemical plants. The content of the guideline concerns the prevention of the fire breakout, the prevention of fire extension, the reduction of the fire effects, as well as the facility-characteristic protection countermeasures and the fire effect evaluations. (S. Ohno)

  12. 76 FR 7853 - Patient Safety Organizations: Voluntary Delisting From Apollo Publishing, Inc.

    Science.gov (United States)

    2011-02-11

    ... notification of voluntary relinquishment from Apollo Publishing, Inc., of its status as a Patient Safety... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety Organizations: Voluntary Delisting From Apollo Publishing, Inc. AGENCY: Agency for Healthcare Research and...

  13. Role of management in the development of safety culture at the operating organization

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, W [International Atomic Energy Agency, Vienna (Austria)

    1997-09-01

    Role of management in the development of safety culture at the operating organization to offer practical suggestions to assist in the development or improvement of a progressive safety culture. 2 figs.

  14. Role of management in the development of safety culture at the operating organization

    International Nuclear Information System (INIS)

    Zhong, W.

    1997-01-01

    Role of management in the development of safety culture at the operating organization to offer practical suggestions to assist in the development or improvement of a progressive safety culture. 2 figs

  15. Causal model of safety-checking action of the staff of nuclear power plants and the organization climate

    International Nuclear Information System (INIS)

    Fukui, Hirokazu; Yoshida, Michio; Yamaura, Kazuho

    2000-01-01

    For those who run an organization, it is critical to identify the causal relationship between the organization's characteristics and the safety-checking action of its staff, in order to effectively implement activities for promoting safety. In this research. a causal model of the safety-checking action was developed and factors affecting it were studied. A questionnaire survey, which includes safety awareness, attitude toward safety, safety culture and others, was conducted at three nuclear power plants and eight factors were extracted by means of factor analysis of the questionnaire items. The extracted eight interrelated factors were as follows: work norm, supervisory action, interest in training, recognition of importance, safety-checking action, the subject of safety, knowledge/skills, and the attitude of an organization. Among them, seven factors except the recognition of importance were defined as latent variables and a causal model of safety-checking action was constructed. By means of covariance structure analysis, it was found that the three factors: the attitude of an organization, supervisory action and the subject of safety, have a significant effect on the safety-checking action. Moreover, it was also studied that workplaces in which these three factors are highly regarded form social environment where safety-checking action is fully supported by the workplace as a whole, while workplaces in which these three factors are poorly regarded do not fully form social environment where safety-checking action is supported. Therefore, the workplaces form an organizational environment where safety-checking action tends to depend strongly upon the knowledge or skills of individuals. On top of these, it was noted that the attitude of an organization and supervisory action are important factors that serve as the first trigger affecting the formation of the organizational climate for safety. (author)

  16. Causal model of safety-checking action of the staff of nuclear power plants and the organization climate

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Hirokazu [Institute of Nuclear Safety System Inc., Seika, Kyoto (Japan); Yoshida, Michio; Yamaura, Kazuho [Japan Institute for Group Dynamics, Fukuoka (Japan)

    2000-09-01

    For those who run an organization, it is critical to identify the causal relationship between the organization's characteristics and the safety-checking action of its staff, in order to effectively implement activities for promoting safety. In this research. a causal model of the safety-checking action was developed and factors affecting it were studied. A questionnaire survey, which includes safety awareness, attitude toward safety, safety culture and others, was conducted at three nuclear power plants and eight factors were extracted by means of factor analysis of the questionnaire items. The extracted eight interrelated factors were as follows: work norm, supervisory action, interest in training, recognition of importance, safety-checking action, the subject of safety, knowledge/skills, and the attitude of an organization. Among them, seven factors except the recognition of importance were defined as latent variables and a causal model of safety-checking action was constructed. By means of covariance structure analysis, it was found that the three factors: the attitude of an organization, supervisory action and the subject of safety, have a significant effect on the safety-checking action. Moreover, it was also studied that workplaces in which these three factors are highly regarded form social environment where safety-checking action is fully supported by the workplace as a whole, while workplaces in which these three factors are poorly regarded do not fully form social environment where safety-checking action is supported. Therefore, the workplaces form an organizational environment where safety-checking action tends to depend strongly upon the knowledge or skills of individuals. On top of these, it was noted that the attitude of an organization and supervisory action are important factors that serve as the first trigger affecting the formation of the organizational climate for safety. (author)

  17. Organizing of public movement for radiation safety of the population

    International Nuclear Information System (INIS)

    Mustafaev, I.

    2003-01-01

    Full text: The possibilities of organizing of public anti nuclear movement in the Caspian region are discussed. The potential of public organizations in the regional countries and international programs and projects supporting this movement is considered. The activity of the following organizations is mentioned: Public movement Semipalatinsk-Nevada (Kazakhstan); Antinuclear movement 'Narin'(Kazakhstan); 'Social - ecological union'(Russia); Association 'Fovgal', scientific-ecological society 'Ekoil'; 'Radioecological society (Azerbaijan); 'Anti-Radiation Movement'(Georgia); 'Radioecology-21'(Georgia). International organizations - Caspian Program ISAR, Scientific Program NATO, IAEA and others play an important role in maintenance of radiation safety of the region. Especially it is necessary to mention the project on Export control of the nuclear materials of double destination (USA). The necessity of support of this movement from public of region is mentioned and an important role in this plays public organizations. The contribution of 'Ruzgar'in organizing of public anti-nuclear movement during the implementation of joint projects 'Along the Caspian', creation of the movement 'For clean Caspian', 'The impact of Gabala radiolocation station on the environment'and others. The following issues are stressed: 1.Lobbying the adoption of legislative and normative acts and their harmonization in a scale of the Caspian region; 2.Creating the cooperation between regional countries for joint solution of regional problems of radiation safety; 3.Increasing of a level of public awareness about this issue and providing public participation in decision-making; 4.Organizing a struggle against 'radiophobia'

  18. Factors in the Growth and Decline of System Safety within Organizations

    Energy Technology Data Exchange (ETDEWEB)

    GANTER, JOHN H.; STORAGE, WILLIAM K.

    1999-08-16

    System safety as a technical field faces numerous opportunities, and some challenges, in the high technology, low cost future. As a relatively small field best known in high consequence domains (defense, aviation, space) it may have to tailor its messages and approaches to influence organizations (both private and public) pressured by incessant competition and ''Internet time.'' We present a model of organizations as cultures that carefully ration attention and reward personnel who successfully pursue goals. These evolving goals result from a fusing of both external influences (market share: regulation) and internal influences (dominant group identities such as marketers or engineers). In the context of organizational goals, these same influences cause people to search narrowly and quickly for technologies and ideas that can fit through ''influence gates'' in the organization and that will likely grow there. System safety must thus compete with all manner of cost-cutting and quality management approaches, in an environment currently obsessed with short-term value and return on investment. From this model we develop some ideas for the communication and promotion of system safety that could increase the net impact and effectiveness of the field.

  19. Organized labor and the origins of the Occupational Safety and Health Act.

    Science.gov (United States)

    Asher, Robert

    2014-11-01

    New Solutions is republishing this 1991 article by Robert Asher, which reviews the history of organized labor's efforts in the United States to secure health and safety protections for workers. The 1877 passage of the Massachusetts factory inspection law and the implementation of primitive industrial safety inspection systems in many states paralleled labor action for improved measures to protect workers' health and safety. In the early 1900s labor was focusing on workers' compensation laws. The New Deal expanded the federal government's role in worker protection, supported at least by the Congress of Industrial Organizations (CIO), but challenged by industry and many members of the U.S. Congress. The American Federation of Labor (AFL) and the CIO backed opposing legal and inspection strategies in the late 1940s and through the 1950s. Still, by the late 1960s, several unions were able to help craft the Occupational Safety and Health Act of 1970 and secure new federal protections for U.S. workers.

  20. Characteristics of safety critical organizations . work psychological perspective

    International Nuclear Information System (INIS)

    Oedewald, P.; Reiman, T.

    2006-02-01

    This book deals with organizations that operate in high hazard industries, such as the nuclear power, aviation, oil and chemical industry organisations. The society puts a great strain on these organisations to rigorously manage the risks inherent in the technology they use and the products they produce. In this book, an organisational psychology view is taken to analyse what are the typical challenges of daily work in these environments. The analysis is based on a literature review about human and organisational factors in safety critical industries, and on the interviews of Finnish safety experts and safety managers from four different companies. In addition to this, personnel interviews conducted in the Finnish nuclear power plants are utilised. The authors come up with eight themes that seem to be common organizational challenges cross the industries. These include e.g. how does the personnel understand the risks and what is the right level for rules and procedures to guide the work activities. The primary aim of this book is to contribute to the Finnish nuclear safety research and safety management discussion. However, the book is equally suitable for risk management, organizational development and human resources management specialists in different industries. The purpose is to encourage readers to consider how the human and organizational factors are seen in the field they work in. (orig.)

  1. Construction of System for Seismic Observation in Deep Borehole (SODB) - Overview and Achievement Status of the Project

    International Nuclear Information System (INIS)

    Kobayashi, Genyu

    2014-01-01

    The seismic responses of each unit at the Kashiwazaki-Kariwa NPP differed greatly during the 2007 Niigata-ken Chuetsu-oki Earthquake; the deep sedimentary structure around the site greatly affected these differences. To clarify underground structure and to evaluate ground motion amplification and attenuation effects more accurately in accordance with deep sedimentary structure, JNES initiated the SODB project. Deployment of a vertical seismometer array in a 3000-meter deep borehole was completed in June 2012 on the premises of NIIT. Horizontal arrays were also placed on the ground surface. Experiences and achievements in the JNES project were introduced, including development of seismic observation technology in deep boreholes, site amplification measurements from logging data, application of borehole observation data to maintenance of nuclear power plant safety, and so on. Afterwards, the relationships of other presentations in this WS, were explained. (authors)

  2. 76 FR 71346 - Patient Safety Organizations: Voluntary Relinquishment From Peminic Inc. dba The Peminic-Greeley PSO

    Science.gov (United States)

    2011-11-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... Patient Safety Organization (PSO). The Patient Safety and Quality Improvement Act of 2005 (Patient Safety.... The Patient Safety and Quality Improvement Final Rule (Patient Safety Rule), 42 CFR part 3, authorizes...

  3. Application of the risk-based strategy to the Hanford tank waste organic-nitrate safety issue

    International Nuclear Information System (INIS)

    Hunter, V.L.; Colson, S.D.; Ferryman, T.; Gephart, R.E.; Heasler, P.; Scheele, R.D.

    1997-12-01

    This report describes the results from application of the Risk-Based Decision Management Approach for Justifying Characterization of Hanford Tank Waste to the organic-nitrate safety issue in Hanford single-shell tanks (SSTs). Existing chemical and physical models were used, taking advantage of the most current (mid-1997) sampling and analysis data. The purpose of this study is to make specific recommendations for planning characterization to help ensure the safety of each SST as it relates to the organic-nitrate safety issue. An additional objective is to demonstrate the viability of the Risk-Based Strategy for addressing Hanford tank waste safety issues

  4. Application of the risk-based strategy to the Hanford tank waste organic-nitrate safety issue

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, V.L.; Colson, S.D.; Ferryman, T.; Gephart, R.E.; Heasler, P.; Scheele, R.D.

    1997-12-01

    This report describes the results from application of the Risk-Based Decision Management Approach for Justifying Characterization of Hanford Tank Waste to the organic-nitrate safety issue in Hanford single-shell tanks (SSTs). Existing chemical and physical models were used, taking advantage of the most current (mid-1997) sampling and analysis data. The purpose of this study is to make specific recommendations for planning characterization to help ensure the safety of each SST as it relates to the organic-nitrate safety issue. An additional objective is to demonstrate the viability of the Risk-Based Strategy for addressing Hanford tank waste safety issues.

  5. 77 FR 42738 - Patient Safety Organizations: Voluntary Relinquishment From the Coalition for Quality and Patient...

    Science.gov (United States)

    2012-07-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety Organizations: Voluntary Relinquishment From the Coalition for Quality and Patient Safety of Chicagoland (CQPS.... SUMMARY: The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act), Public Law 109-41,42...

  6. IAEA Expert Team Completes Mission to Review Japan's Nuclear Power Plant Safety Assessment Process, 31 January 2012, Tokyo, Japan

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: A team of international nuclear safety experts today completed a review of Japan's two-stage process for assessing nuclear safety at the nation's nuclear power plants. The team began its work on 23 January and delivered a Preliminary Summary Report to Japanese officials today and plans to finish the final report by the end of February. National safety assessments and their peer review by the IAEA are a key component of the IAEA's Action Plan on Nuclear Safety, which was approved by the Agency's 152 Member States following last year's nuclear accident at Fukushima Daiichi Nuclear Power Station. At the request of the Government of Japan, the International Atomic Energy Agency (IAEA) organized a 10-person team to review the Japanese Nuclear and Industrial Safety Agency's (NISA) approach to the Comprehensive Assessments for the Safety of Existing Power Reactor Facilities and how NISA examines the results submitted by nuclear operators. The IAEA safety review mission consisted of five IAEA and three international nuclear safety experts. To help its review, the team held meetings in Tokyo with officials from NISA, the Japanese Nuclear Energy Safety (JNES) Organization, and the Kansai Electric Power Company (KEPCO), and the team visited the Ohi Nuclear Power Station to see an example of how Japan's Comprehensive Safety Assessment is being implemented by nuclear operators. 'We concluded that NISA's instructions to power plants and its review process for the Comprehensive Safety Assessments are generally consistent with IAEA Safety Standards', said team leader James Lyons, director of the IAEA's Nuclear Installation Safety Division. In its Preliminary Summary Report delivered today, the team highlighted a number of good practices and identified some improvements that would enhance the overall effectiveness of the Comprehensive Safety Assessment process. Good practices identified by the mission team include: Based on NISA instructions and commitments of the

  7. Study on information dissemination for effective nuclear risk communication

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The aim of this study are to develop an information system and guideline for nuclear risk communication between expert and citizens as well as between both experts in terms of lessons learned from serious disaster such as Fukushima Dai-ich NPP accident. Technical standards for disseminating a result and process of seismic/tsunami PRA (Probabilistic Risk Assessment) of nuclear facility as well as nuclear risk information in an emergency, and risk communication in normal times are needed. Tins study examines the framework, contents, and technical basis for developing an information system for nuclear risk communication. In addition, this study identifies the communication issues of nuclear risk communication concerning the seismic/tsunami PRA through the testing information systems in areas around nuclear facilities and by providing effective implementation guidelines. JNES has developed the information system specified as Protection of Nuclear Power Plants against Tsunamis and Post Earthquake considerations in the External Zone (TiPEEZ) as part of IAEA International Seismic Safety Centre (ISSC) Extra Budgetary Programme (EBP). The EBP is currently preparing technical documents (TECDOC) regarding the implementation of the TiPEEZ. After the Fukushima accident, there has been increasing demand for disaster mitigation systems to share risk information between nuclear organizations and local municipalities. JNES and Niigata Institute of Technology conduct implementation of TiPEEZ for the practical use based on the corroborative works with Kashiwazaki city and citizens. (author)

  8. Study on information dissemination for effective nuclear risk communication

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of this study are to develop an information system and guideline for nuclear risk communication between expert and citizens as well as between both experts in terms of lessons learned from serious disaster such as Fukushima Dai-ich NPP accident. Technical standards for disseminating a result and process of seismic/tsunami PRA (Probabilistic Risk Assessment) of nuclear facility as well as nuclear risk information in an emergency, and risk communication in normal times are needed. Tins study examines the framework, contents, and technical basis for developing an information system for nuclear risk communication. In addition, this study identifies the communication issues of nuclear risk communication concerning the seismic/tsunami PRA through the testing information systems in areas around nuclear facilities and by providing effective implementation guidelines. JNES has developed the information system specified as Protection of Nuclear Power Plants against Tsunamis and Post Earthquake considerations in the External Zone (TiPEEZ) as part of IAEA International Seismic Safety Centre (ISSC) Extra Budgetary Programme (EBP). The EBP is currently preparing technical documents (TECDOC) regarding the implementation of the TiPEEZ. After the Fukushima accident, there has been increasing demand for disaster mitigation systems to share risk information between nuclear organizations and local municipalities. JNES and Niigata Institute of Technology conduct implementation of TiPEEZ for the practical use based on the corroborative works with Kashiwazaki city and citizens. (author)

  9. Development of infrastructure for the regulatory authority to implement risk-informed regulation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    It is important to assure the technical adequacy of probabilistic risk assessment (PRA) to implement risk-informed regulation of nuclear power plants (NPPs). JNES has been conducting various activities, such as development of PRA model, method, and data base, in order to assure the technical adequacy of PRA as development of the infrastructure for the regulatory authority to implement risk-informed regulation. In 2012, JNES updated the reliability data base used in PRA and improved PRA models to enhance the technical bases of PRA. In addition, JNES has been establishing the PRA model for fuel damage in the spent fuel storage pool in NPPs. As for improvement of PRA model for core damage in reactor, JNES conducted the study including feasibility of a simplified reliability model for digital I and C system developed by the digital I and C task group of OECD/NEA CSNI WGRISK by reproducing the sample calculation, and improvement of PRA models of individual NPPs in Japan. JNES is making effort to develop the procedures of internal fire PRA and internal flooding PRA. To improve the internal fire PRA, JNES is participating in OECD/NEA FIRE project to obtain the latest information and to validate and improve the fire propagation analysis codes and the parameters. JNES is establishing a method for analyzing internal influence due to flooding in NPPs, and this method is the base to develop the procedure of internal flooding PRA. (author)

  10. Experience with nuclear safety standards development in non-governmental international organizations

    International Nuclear Information System (INIS)

    Becker, K.

    1985-01-01

    Besides the IAEA as a 'governmental' organization dealing with basic safety recommendations addressed primarily to the national regulatory bodies in developing countries, two closely related non-governmental international standards organizations have gained extensive experience in the field of nuclear standardization. Over more than 25 years since their formation, both (a) the International Organization for Standardization's (ISO) Technical Committee 85 'Nuclear Energy', in particular in its Sub-Committee 3 'Reactor Technology and Safety' and (b) the International Electrotechnical Commission's (IEC) Technical Committee 45 'Nuclear Instrumentation' have published numerous standards. A brief review is given of these, draft standards, and other documents planned to become international standards. Many of them deal with rather specialized topics typical for 'industrial' standards such as standardized procedures, instruments, methods, materials, test methods, terminology, and signs and symbols, but others are directly related to more basic safety issues. In some areas such as quality assurance, seismic aspects of siting and terminology, there has been in the past occasional overlap in the activities of the NUSS programme, IEC and ISO. Letters of Understanding have since 1981 contributed to clarifying the borderlines and to avoiding redundant efforts. Also, some experiences and problems are described arising, for example, from the harmonization of different national safety philosophies and traditions into universally accepted international standards, and the transfer of international standards into national standards systems. Finally, based on a recent comprehensive compilation of some 3300 nuclear standards and standards projects, an attempt is made to present a cost/benefit analysis and an outlook on future developments. (author)

  11. Key Element Performance In Occupational Safety And Health Management System In Organization (A Literature

    Directory of Open Access Journals (Sweden)

    Agus Salim Nuzaihan Aras

    2016-01-01

    Full Text Available Setting an effective safety and health management system is crucial in order to reduce problem relating to accident and ill in management organizational. It is involve with multiple level of management and stakeholders who empower the organization to the management in handling the safety and health cases and issues in organizational. It is necessary to prepare a well knowledge about safety and health management systems and preparing the framework for setting a certain scale in measuring its performance in this area. The successful or failure of management does showing the capability of the organization in delivering the responsible to management levels [1]. The problem in safe work issues and practices cause by the management commitment and involvement that create improper safety program and procedures, and this crisis keep continuing till present [2]. This paper describes about key element of safety and health management system and measuring the performance in order to get an effective management system in organization that describes the process in achieving effectiveness in management. The literature review will be conducted through the data collection from research findings and defined the strong character of key element in which focusing on measuring performance. A guide on key element performance in occupational safety and health management system is specifically drawn to prepare for a future research.

  12. Waste Tank Organic Safety Project: Analysis of liquid samples from Hanford waste tank 241-C-103

    International Nuclear Information System (INIS)

    Pool, K.H.; Bean, R.M.

    1994-03-01

    A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unreviewed Safety Question concerning the potential for a floating organic layer in Hanford waste tank 241-C-103 to sustain a pool fire. The analysis program was the result of a Data Quality Objectives exercise conducted jointly with staff from Westinghouse Hanford Company and Pacific Northwest Laboratory (PNL). The organic layer has been analyzed for flash point, organic composition including volatile organics, inorganic anions and cations, radionuclides, and other physical and chemical parameters needed for a safety assessment leading to the resolution of the Unreviewed Safety Question. The aqueous layer underlying the floating organic material was also analyzed for inorganic, organic, and radionuclide composition, as well as other physical and chemical properties. This work was conducted to PNL Quality Assurance impact level III standards (Good Laboratory Practices)

  13. ESRS guidelines for software safety reviews. Reference document for the organization and conduct of Engineering Safety Review Services (ESRS) on software important to safety in nuclear power plants

    International Nuclear Information System (INIS)

    2000-01-01

    The IAEA provides safety review services to assist Member States in the application of safety standards and, in particular, to evaluate and facilitate improvements in nuclear power plant safety performance. Complementary to the Operational Safety Review Team (OSART) and the International Regulatory Review Team (IRRT) services are the Engineering Safety Review Services (ESRS), which include reviews of siting, external events and structural safety, design safety, fire safety, ageing management and software safety. Software is of increasing importance to safety in nuclear power plants as the use of computer based equipment and systems, controlled by software, is increasing in new and older plants. Computer based devices are used in both safety related applications (such as process control and monitoring) and safety critical applications (such as reactor protection). Their dependability can only be ensured if a systematic, fully documented and reviewable engineering process is used. The ESRS on software safety are designed to assist a nuclear power plant or a regulatory body of a Member State in the review of documentation relating to the development, application and safety assessment of software embedded in computer based systems important to safety in nuclear power plants. The software safety reviews can be tailored to the specific needs of the requesting organization. Examples of such reviews are: project planning reviews, reviews of specific issues and reviews prior final acceptance. This report gives information on the possible scope of ESRS software safety reviews and guidance on the organization and conduct of the reviews. It is aimed at Member States considering these reviews and IAEA staff and external experts performing the reviews. The ESRS software safety reviews evaluate the degree to which software documents show that the development process and the final product conform to international standards, guidelines and current practices. Recommendations are

  14. A study on development strategy of atomic safety organization for atomic environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Bok; Jeong, Ji Hun; Kim Tae Hee; Lee, Seung Hyuk; Woo, Eun Jung [Konkuk Univ., Seoul (Korea, Republic of)

    2005-02-15

    The objective of this research is to suggest some strategies which can make the safety of atomic power possible and reinforce the nuclear regulatory system. It will contribute to the expansion and settlement of nuclear safety culture by making the public understand well about the safety of nuclear energy, and searching public relations and incentive strategies. In addition, since the nuclear environment is changing rapidly, the necessity of cooperation between the public and the private has veen mostly required. So we need to develop the effective administrative system based on their cooperation. Therefore, it will examine the function of organization established, operation system, and also social network closely connected with the nuclear safety. Moreover, by analyzing the change of regulatory environment and present safety confirmation of nuclear energy, it will devise the new safety confirmation system of nuclear energy.

  15. Individual employee's perceptions of " Group-level Safety Climate" (supervisor referenced) versus " Organization-level Safety Climate" (top management referenced): Associations with safety outcomes for lone workers.

    Science.gov (United States)

    Huang, Yueng-Hsiang; Lee, Jin; McFadden, Anna C; Rineer, Jennifer; Robertson, Michelle M

    2017-01-01

    Research has shown that safety climate is among the strongest predictors of safety behavior and safety outcomes in a variety of settings. Previous studies have established that safety climate is a multi-faceted construct referencing multiple levels of management within a company, most generally: the organization level (employee perceptions of top management's commitment to and prioritization of safety) and group level (employee perceptions of direct supervisor's commitment to and prioritization of safety). Yet, no research to date has examined the potential interaction between employees' organization-level safety climate (OSC) and group-level safety climate (GSC) perceptions. Furthermore, prior research has mainly focused on traditional work environments in which supervisors and workers interact in the same location throughout the day. Little research has been done to examine safety climate with regard to lone workers. The present study aims to address these gaps by examining the relationships between truck drivers' (as an example of lone workers) perceptions of OSC and GSC, both potential linear and non-linear relationships, and how these predict important safety outcomes. Participants were 8095 truck drivers from eight trucking companies in the United States with an average response rate of 44.8%. Results showed that employees' OSC and GSC perceptions are highly correlated (r= 0.78), but notable gaps between the two were observed for some truck drivers. Uniquely, both OSC and GSC scores were found to have curvilinear relationships with safe driving behavior, and both scores were equally predictive of safe driving behavior. Results also showed the two levels of climate significantly interacted with one another to predict safety behavior such that if either the OSC or GSC scores were low, the other's contribution to safety behavior became stronger. These findings suggest that OSC and GSC may function in a compensatory manner and promote safe driving behavior even

  16. Rules and routines in organizations and the management of safety rules

    Energy Technology Data Exchange (ETDEWEB)

    Weichbrodt, J. Ch.

    2013-07-01

    This thesis is concerned with the relationship between rules and routines in organizations and how the former can be used to steer the latter. Rules are understood as formal organizational artifacts, whereas organizational routines are collective patterns of action. While research on routines has been thriving, a clear understanding of how rules can be used to influence or control organizational routines (and vice-versa) is still lacking. This question is of particular relevance to safety rules in high-risk organizations, where the way in which organizational routines unfold can ultimately be a matter of life and death. In these organizations, an important and related issue is the balancing of standardization and flexibility – which, in the case of rules, takes the form of finding the right degree of formalization. In high-risk organizations, the question is how to adequately regulate actors’ routines in order to facilitate safe behavior, while at the same time leaving enough leeway for actors to make good decisions in abnormal situations. The railroads are regarded as high-risk industries and also rely heavily on formal rules. In this thesis, the Swiss Federal Railways (SBB) were therefore selected for a field study on rules and routines. The issues outlined so far are being tackled theoretically (paper 1), empirically (paper 2), and from a practitioner’s (i.e., rule maker’s) point of view (paper 3). In paper 1, the relationship between rules and routines is theoretically conceptualized, based on a literature review. Literature on organizational control and coordination, on rules in human factors and safety, and on organizational routines is combined. Three distinct roles (rule maker, rule supervisor, and rule follower) are outlined. Six propositions are developed regarding the necessary characteristics of both routines and rules, the respective influence of the three roles on the rule-routine relationship, and regarding organizational aspects such as

  17. Rules and routines in organizations and the management of safety rules

    International Nuclear Information System (INIS)

    Weichbrodt, J. Ch.

    2013-01-01

    This thesis is concerned with the relationship between rules and routines in organizations and how the former can be used to steer the latter. Rules are understood as formal organizational artifacts, whereas organizational routines are collective patterns of action. While research on routines has been thriving, a clear understanding of how rules can be used to influence or control organizational routines (and vice-versa) is still lacking. This question is of particular relevance to safety rules in high-risk organizations, where the way in which organizational routines unfold can ultimately be a matter of life and death. In these organizations, an important and related issue is the balancing of standardization and flexibility – which, in the case of rules, takes the form of finding the right degree of formalization. In high-risk organizations, the question is how to adequately regulate actors’ routines in order to facilitate safe behavior, while at the same time leaving enough leeway for actors to make good decisions in abnormal situations. The railroads are regarded as high-risk industries and also rely heavily on formal rules. In this thesis, the Swiss Federal Railways (SBB) were therefore selected for a field study on rules and routines. The issues outlined so far are being tackled theoretically (paper 1), empirically (paper 2), and from a practitioner’s (i.e., rule maker’s) point of view (paper 3). In paper 1, the relationship between rules and routines is theoretically conceptualized, based on a literature review. Literature on organizational control and coordination, on rules in human factors and safety, and on organizational routines is combined. Three distinct roles (rule maker, rule supervisor, and rule follower) are outlined. Six propositions are developed regarding the necessary characteristics of both routines and rules, the respective influence of the three roles on the rule-routine relationship, and regarding organizational aspects such as

  18. Improving Employees' Safety Awareness in Healthcare Organizations Using the DMAIC Quality Improvement Approach.

    Science.gov (United States)

    Momani, Amer; Hirzallah, Muʼath; Mumani, Ahmad

    Occupational injuries and illnesses in healthcare can cause great human suffering, incur high cost, and have an adverse impact on the quality of patient care. One of the most effective solutions for addressing health and safety issues and improving decisions at the point of care rests in raising employees' safety awareness to recognize, avoid, or respond to potential problems before they arise. In this article, the DMAIC Six Sigma model (Define, Measure, Analyze, Improve, Control) is used as a systematic program to measure, improve, and sustain employees' safety awareness in healthcare organizations. We report on a case study using the model, which was implemented and validated at a local hospital. First, the occupational health and safety knowledge that each job requires was identified. Next, the degree of competence of jobholders to meet these requirements was assessed. Based on the assessment, different awareness-raising efforts were proposed and implemented. The results showed significant improvement in the overall safety awareness compliance assessed: from 74.2% to 84.4% (p < .001) after the intervention. The proposed model ensures that the organization's awareness-raising efforts serve its actual needs and produce optimized and sustained results that eventually lead to safer healthcare service.

  19. Organic Tanks Safety Program: Waste aging studies

    International Nuclear Information System (INIS)

    Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

    1994-11-01

    The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year's findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to γ radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H 2 . Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs

  20. Nuclear Criticality Safety Organization guidance for the development of continuing technical training. Revision 1

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-01-01

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in nuclear criticality safety at the Oak Ridge Y-12 Plant and throughout the DOE complex. Continuing technical training is training outside of the initial qualification program to address identified organization-wide needs. Typically, this training is used to improve organization performance in the conduct of business. This document provides guidelines for the development of the technical portions of the Continuing Training Program. It is not a step-by-step procedure, but a collection of considerations to be used during the development process

  1. The impact of a modified World Health Organization surgical safety ...

    African Journals Online (AJOL)

    The impact of a modified World Health Organization surgical safety checklist on maternal ... have shown an alarming increase in deaths during or after caesarean delivery. ... Methods. The study was a stratified cluster-randomised controlled trial ... Training of healthcare personnel took place over 1 month, after which the ...

  2. Safety analysis of exothermic reaction hazards associated with the organic liquid layer in tank 241-C-103

    International Nuclear Information System (INIS)

    Postma, A.K.; Bechtold, D.B.; Borsheim, G.L.; Grisby, J.M.; Guthrie, R.L.; Kummerer, M.; Turner, D.A.; Plys, M.G.

    1994-03-01

    Safety hazards associated with the interim storage of a potentially flammable organic liquid in waste Tank C-103 are identified and evaluated. The technical basis for closing the unreviewed safety question (USQ) associated with the floating liquid organic layer in this tank is presented

  3. Safety analysis of exothermic reaction hazards associated with the organic liquid layer in tank 241-C-103

    Energy Technology Data Exchange (ETDEWEB)

    Postma, A.K.; Bechtold, D.B.; Borsheim, G.L.; Grisby, J.M.; Guthrie, R.L.; Kummerer, M.; Turner, D.A. [Westinghouse Hanford Co., Richland, WA (United States); Plys, M.G. [Fauske and Associates, Inc., Burr Ridge, IL (United States)

    1994-03-01

    Safety hazards associated with the interim storage of a potentially flammable organic liquid in waste Tank C-103 are identified and evaluated. The technical basis for closing the unreviewed safety question (USQ) associated with the floating liquid organic layer in this tank is presented.

  4. Development of PSA procedure for a criticality in reprocessing facilities

    International Nuclear Information System (INIS)

    Endo, Shigeki; Takanashi, Mitsuhiro; Ueda, Yoshinori

    2012-08-01

    Utilization of risk information for the nuclear safety regulation is being discussed in Japan. The development of probabilistic safety assessment (PSA) procedure is indispensable for the utilization of risk information. The Japan Nuclear Energy Safety Organization (JNES) has been conducting trial PSA to a model plant for major events, i.e. hydrogen explosion, solution boiling, rapid decomposition of TBP complexes, criticality, solvent fire, leakage of molten glass, leakage of high active concentrated liquid waste, loss of all AC electricity, drop of a fuel assembly, for the purpose of developing the PSA procedure for reprocessing facilities. For criticality events results of trial PSA were summarized as a report in which how to evaluate an amount of radioactive materials released from a facility and a health effect on the public were emphasized. Therefore, for criticality events the results of trial PSA were summarized in this report to emphasize procedures from making event progression scenarios to quantifying event sequences, which were not handled in the previous report, in a style of a document describing PSA procedures. (author)

  5. The Use of Radiation to Develop Organic Farming for Food Safety

    International Nuclear Information System (INIS)

    Office of Atoms fo Peace

    2006-09-01

    The conference of the use of radiation to develop organic farming for food safety was held on 28-29 September 2006 in Bangkok. This conference contain paper on non-power applications of nuclear technology in farming, agriculture and industry.

  6. Animal-assisted interventions: A national survey of health and safety policies in hospitals, eldercare facilities, and therapy animal organizations.

    Science.gov (United States)

    Linder, Deborah E; Siebens, Hannah C; Mueller, Megan K; Gibbs, Debra M; Freeman, Lisa M

    2017-08-01

    Animal-assisted intervention (AAI) programs are increasing in popularity, but it is unknown to what extent therapy animal organizations that provide AAI and the hospitals and eldercare facilities they work with implement effective animal health and safety policies to ensure safety of both animals and humans. Our study objective was to survey hospitals, eldercare facilities, and therapy animal organizations on their AAI policies and procedures. A survey of United States hospitals, eldercare facilities, and therapy animal organizations was administered to assess existing health and safety policies related to AAI programs. Forty-five eldercare facilities, 45 hospitals, and 27 therapy animal organizations were surveyed. Health and safety policies varied widely and potentially compromised human and animal safety. For example, 70% of therapy animal organizations potentially put patients at risk by allowing therapy animals eating raw meat diets to visit facilities. In general, hospitals had stricter requirements than eldercare facilities. This information suggests that there are gaps between the policies of facilities and therapy animal organizations compared with recent guidelines for animal visitation in hospitals. Facilities with AAI programs need to review their policies to address recent AAI guidelines to ensure the safety of animals and humans involved. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  7. Organization and conduct of IAEA fire safety reviews at nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    The importance of fire safety in the safe and productive operation of nuclear power plants is recognized worldwide. Lessons learned from experience in nuclear power plants indicate that fire poses a real threat to nuclear safety and that its significance extends far beyond the scope of a conventional fire hazard. With a growing understanding of the close correlation between the fire hazard in nuclear power plants and nuclear safety, backfitting for fire safety has become necessary for a number of operating plants. However, it has been recognized that the expertise necessary for a systematic independent assessment of fire safety of a NPP may not always be available to a number of Member States. In order to assist in enhancing fire safety, the IAEA has already started to offer various services to Member States in the area of fire safety. At the request of a Member State, the IAEA may provide a team of experts to conduct fire safety reviews of varying scope to evaluate the adequacy of fire safety at a specific nuclear power plant during various phases such as construction, operation and decommissioning. The IAEA nuclear safety publications related to fire protection and fire safety form a common basis for these reviews. This report provides guidance for the experts involved in the organization and conduct of fire safety review services to ensure consistency and comprehensiveness of the reviews

  8. A Guidebook for Evaluating Organizations in the Nuclear Industry - an example of safety culture evaluation

    International Nuclear Information System (INIS)

    Oedewald, Pia; Pietikaeinen, Elina; Reiman, Teemu

    2011-06-01

    Organizations in the nuclear industry need to maintain an overview on their vulnerabilities and strengths with respect to safety. Systematic periodical self assessments are necessary to achieve this overview. This guidebook provides suggestions and examples to assist power companies but also external evaluators and regulators in carrying out organizational evaluations. Organizational evaluation process is divided into five main steps. These are: 1) planning the evaluation framework and the practicalities of the evaluation process, 2) selecting data collection methods and conducting the data acquisition, 3) structuring and analysing the data, 4) interpreting the findings and 5) reporting the evaluation results with possible recommendations. The guidebook emphasises the importance of a solid background framework when dealing with multifaceted phenomena like organisational activities and system safety. The validity and credibility of the evaluation stem largely from the evaluation team's ability to crystallize what they mean by organization and safety when they conduct organisational safety evaluations - and thus, what are the criteria for the evaluation. Another important and often under-considered phase in organizational evaluation is interpretation of the findings. In this guidebook a safety culture evaluation in a Nordic nuclear power plant is presented as an example of organizational evaluation. With the help of the example, challenges of each step in the organizational evaluation process are described. Suggestions for dealing with them are presented. In the case example, the DISC (Design for Integrated Safety culture) model is used as the evaluation framework. The DISC model describes the criteria for a good safety culture and the organizational functions necessary to develop a good safety culture in the organization

  9. Management of health and safety in the organization of worktime at the local level.

    Science.gov (United States)

    Jeppesen, H J; Bøggild, H

    1998-01-01

    This study examined the consideration of health and safety issues in the local process of organizing worktime within the framework of regulations. The study encompassed all 7 hospitals in one region of Denmark. Twenty-three semi-structured interviews were carried out with 2 representatives from the different parties involved (management, cooperation committees, health and safety committees from each hospital, and 2 local unions). Furthermore, a questionnaire was sent to all 114 wards with day and night duty. The response rate was 84%. Data were collected on alterations in worktime schedules, responsibilities, reasons for the present design of schedules, and use of inspection reports. The organization of worktime takes place in single wards without external interference and without guidelines other than the minimum standards set in regulations. At the ward level, management and employees were united in a mutual desire for flexibility, despite the fact that regulations were not always followed. No interaction was found in the management of health and safety factors between the parties concerned at different levels. The demands for flexibility in combination with the absence of guidelines and the missing dynamics between the parties involved imply that the handling of health and safety issues in the organization of worktime may be accidental and unsystematic. In order to consider the health and safety of night and shift workers within the framework of regulations, a clarification of responsibilities, operational levels, and cooperation is required between the parties concerned.

  10. 77 FR 32975 - Patient Safety Organizations: Expired Listing for The American Cancer Biorepository, Inc. d/b/a...

    Science.gov (United States)

    2012-06-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... Biorepository or ``ACB'' as a Patient Safety Organization (PSO) due to its failure to seek continued listing. The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act) authorizes the listing of...

  11. Aviation Risk and Safety Management : Methods and Applications in Aviation Organizations

    OpenAIRE

    2014-01-01

    The International Civil Aviation Organization's (ICAO) decision to require aviation organizations to adopt Safety Management Systems poses a major problem especially for small and medium sized aviation companies. The complexity of regulations overstrains the aviation stakeholders who seek to fully advantage from them but have no clear guidance. The aim of the book is to show the implementation of such a new system with pragmatic effort in order to gain a gradation for smaller operators. This ...

  12. The operating organization and the recruitment, training and qualification of personnel for research reactors. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    This Safety Guide provides recommendations on meeting the requirements on the operating organization and on personnel for research reactors. It covers the typical operating organization for research reactor facilities; the recruitment process and qualification in terms of education, training and experience; programmes for initial and continuing training; the authorization process for those individuals having an immediate bearing on safety; and the processes for their requalification and reauthorization

  13. Patient safety in anesthesia: learning from the culture of high-reliability organizations.

    Science.gov (United States)

    Wright, Suzanne M

    2015-03-01

    There has been an increased awareness of and interest in patient safety and improved outcomes, as well as a growing body of evidence substantiating medical error as a leading cause of death and injury in the United States. According to The Joint Commission, US hospitals demonstrate improvements in health care quality and patient safety. Although this progress is encouraging, much room for improvement remains. High-reliability organizations, industries that deliver reliable performances in the face of complex working environments, can serve as models of safety for our health care system until plausible explanations for patient harm are better understood. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Is eating organic a healthy or safer option? Health claims for organic food consumption, food quality and safety – A systematic review

    Directory of Open Access Journals (Sweden)

    Sneha Ghai

    2017-12-01

    Full Text Available Universally, there has been an increased awareness about the harmful effects of chemical inputs used for production of food on soil composition, environment and human health. This has triggered the consumption level of organic food products. India has witnessed a tremendous growth in domestic as well as export market. The demand is mainly driven by consumer perceptions that organic farming is more sustainable, produces healthy food, pesticide-free and safeguards the environment & biodiversity. Organic food producers also manifests the quality and safety of food. These claims which are perceived and professed as beneficial can only be accepted if they are tested and validated. Therefore, the foremost objective of this review paper is to provide an update on set of studies related to scientific evidence for nutritional composition marking the quality of organic foods vis-à-vis conventional foods and its impact on human health. Secondly, the paper examines the comparison of the sensory quality of the organic food, and thirdly the food safety aspect of organically as compared with conventionally grown foods. Past few controlled studies have proved that there is no such evidence of differences in concentration of various nutrients amongst organic and conventional foods. Furthermore, there are certain issues related to the impact and assessment of these nutrients in organic food which requires some future directives. Owing to the heterogeneity in results observed related to nutritional quality and safety of organic foods, technological aspects together with sensory parameters are the best for future comparative studies. To safeguard the public health and to avoid the difference in sampling and sample results, testing laboratories should also be adhering to uniform standards. Organic food business in India lack standard guidelines for quality, policy framework for domestic and export market. Also, traceability is another factor which should be given

  15. Safety Climate of Ab-Initio Flying Training Organizations: The Case of an Australian Tertiary (Collegiate) Aviation Program

    OpenAIRE

    Gao, Yi; Rajendran, Natalia

    2017-01-01

    A healthy safety culture is essential to the safe operation of any aviation organization, including flight schools. This study aimed to assess the safety climate of an Australian tertiary (collegiate) aviation program using a self-constructed instrument. Factor analysis of the instrument identified four safety themes, which are Safety Reporting Culture, Safety Reporting Procedure, Organizational Culture and Practice, and General Safety Knowledge. The responses of student pilots suggested that...

  16. Technical organization of safety authorities in case of accident in a nuclear installation

    International Nuclear Information System (INIS)

    Scherrer, J.; Evrard, J.M.; Ney, J.

    1985-11-01

    The Central safety Service of Nuclear Facilities of the French industry Department and the CEA Protection and Nuclear Safety Institut (IPSN) are organized to estimate in real time, the evolution of an accidental situation with a sufficient margin in time to allow the local government representative to develop, in case of necessity, efficient procedures for the protection of the population. This paper presents the principles of this organization and the precautions taken to cope as well with problems of mobilization of experts as the full occupation of current telecommunication lines. The example of the organization concerning the installations of Electricite de France is detailed. The CEA IPSN has developed means widely advanced, concerning the atmospheric transfer of radioactivity. For PWRs, a method allowing to forecast releases in case of accidental situation is presented. Finally, the knowledge acquired with the accident simulations realized during the last years is described [fr

  17. Defining safety culture and the nexus between safety goals and safety culture. 1. An Investigation Study on Practical Points of Safety Management

    International Nuclear Information System (INIS)

    Hasegawa, Naoko; Takano, Kenichi; Hirose, Ayako

    2001-01-01

    In a report after the Chernobyl accident, the International Atomic Energy Agency indicated the definition and the importance of safety culture and the ideal organizational state where safety culture pervades. However, the report did not mention practical approaches to enhance safety culture. In Japan, although there had been investigations that clarified the consciousness of employees and the organizational climate in the nuclear power and railway industries, organizational factors that clarified the level of organization safety and practical methods that spread safety culture in an organization had not been studied. The Central Research Institute of the Electric Power Industry conducted surveys of organizational culture for the construction, chemical, and manufacturing industries. The aim of our study was to clarify the organizational factors that influence safety in an organization expressed in employee safety consciousness, commitment to safety activities, rate of accidents, etc. If these areas were clarified, the level of organization safety might be evaluated, and practical ways could be suggested to enhance the safety culture. Consequently, a series of investigations was conducted to clarify relationships among organizational climate, employee consciousness, safety management and activities, and rate of accidents. The questionnaire surveys were conducted in 1998-1999. The subjects were (a) managers of the safety management sections in the head offices of the construction, chemical, and manufacturing industries; (b) responsible persons in factories of the chemical and manufacturing industries; and (c) general workers in factories of the chemical and manufacturing industries. The number of collected data was (a) managers in the head office: 48 from the construction industry and 58 from the chemical and manufacturing industries, (b) responsible persons in factories: 567, and (c) general workers: from 29 factories. Items in the questionnaires were selected from

  18. AN ANALYSIS OF ACCIDENT TRENDS AND MODELING OF SAFETY INDICES IN AN INDIAN CONSTRUCTION ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Sunku Venkata Siva Rajaprasad

    2016-09-01

    Full Text Available Construction industry has been recognized as a hazardous industry in many countries due to distinct nature of execution of works.The accident rate in construction sector is high all over the world due to dynamic nature of work activities. Occurrence of accidents and its severity in construction industry is several times higher than the manufacturing industries. The study was limited to a major construction organization in India to examine the trends in construction accidents for the period 2008-2014. In India, safety performance is gauged basing on safety indices; frequency, severity and incidence rates. It is not practicable to take decisions or to implement safety strategies on the basis of indices. The data used for this study was collected from a leading construction organization involved in execution of major construction activities all over India and abroad. The multiple regression method was adopted to model the pattern of safety indices wise .The pattern showed that significant relationships exist between the three safety indices and the related independent variables.

  19. Investigation and evaluation for environmental impact at Fukushima Daiichi NPP accident

    International Nuclear Information System (INIS)

    2012-01-01

    In 2012, JNES investigated the weather data and the environmental monitoring data and constructed the method to specify contribution of the environmental impact from each plant based on the dose analysis result at Unit 1-3 of Fukushima Daiichi NPP accident. JNES calculated the dose rate in an accident early stage based on analysis of a monitoring data. Moreover, JNES evaluated the dose by additional release of the radioactive material in case of assuming the loss of coolant injection to a nuclear reactor by the request of NISA. (author)

  20. Positioning radiation safety in occupational safety and health programme in an organization[RPO - radiation protection officer

    Energy Technology Data Exchange (ETDEWEB)

    Onn, Abed Bin [National Inst. of Occupational Safety and Health, Bangi (Malaysia)

    2000-07-01

    The Atomic Energy Licensing Act 1984, which is under purview of the Ministry of Science, Technology and Environment, and Occupational Safety and Health Act, OSHA 1994, under Ministry of Human Resources were discussed. RPO responsibilities were discussed in detailed. As the conclusion, organization which complies with the provisions of the AELA 1984 are well on the way to complying the requirements of OSHA 1994.

  1. Organization and management of the plant safety evaluation of the VVER-440/230 units at Novovoronezh

    International Nuclear Information System (INIS)

    Afshar, C. M.; Pizzica, P.; Puglia, W. J.; Rozin, V.

    1999-01-01

    As part of the Soviet-Designed Reactor Safety (SDRS) element of the International Nuclear Safety Program (INSP), the US Department of Energy (US DOE) is funding a plant safety evaluation (PSE) project for the Novovoronezh Nuclear Power Plant (NvNPP). The Novovoronezh PSE Project is a multi-faceted project with participants from sixteen different international organizations from five different countries scattered across eleven time zones. The purpose of this project is to provide a thorough Probabilistic Risk Analysis (PRA) and Deterministic Safety Analysis (DSA) for Units 3 and 4 of the NvNPP. In addition, this project provides assistance to the operation organizations in meeting their international commitments in support of safety upgrades, and their regulatory requirements for the conduct of safety analyses. Managing this project is a complex process requiring numerous management tools, constant monitoring, and effective communication skills. Employing management tools to resolve unanticipated problems one of the keys to project success. The overall scope, programmatic context, objectives, project interactions, communications, practical hindrances, and lessons learned from the challenging performance of the PSE project are summarized in this paper

  2. Advanced organic analysis and analytical methods development: FY 1995 progress report. Waste Tank Organic Safety Program

    International Nuclear Information System (INIS)

    Wahl, K.L.; Campbell, J.A.; Clauss, S.A.

    1995-09-01

    This report describes the work performed during FY 1995 by Pacific Northwest Laboratory in developing and optimizing analysis techniques for identifying organics present in Hanford waste tanks. The main focus was to provide a means for rapidly obtaining the most useful information concerning the organics present in tank waste, with minimal sample handling and with minimal waste generation. One major focus has been to optimize analytical methods for organic speciation. Select methods, such as atmospheric pressure chemical ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry, were developed to increase the speciation capabilities, while minimizing sample handling. A capillary electrophoresis method was developed to improve separation capabilities while minimizing additional waste generation. In addition, considerable emphasis has been placed on developing a rapid screening tool, based on Raman and infrared spectroscopy, for determining organic functional group content when complete organic speciation is not required. This capability would allow for a cost-effective means to screen the waste tanks to identify tanks that require more specialized and complete organic speciation to determine tank safety

  3. Knowledge management as an approach to strengthen safety culture in nuclear organizations

    International Nuclear Information System (INIS)

    Karseka, T.S.; Yanev, Y.L.

    2013-01-01

    In the last 10 years knowledge management (KM) in nuclear organizations has emerged as a powerful strategy to deal with important and frequently critical issues of attrition, generation change and knowledge transfer. Applying KM practices in operating organizations, in technical support organizations and regulatory bodies has proven to be efficient and necessary for maintaining competence and skills for achieving high level of safety and operational performance. The IAEA defines KM as an integrated, systematic approach to identifying, acquiring, transforming, developing, disseminating, using, sharing, and preserving knowledge, relevant to achieving specified objectives. KM focuses on people and organizational culture to stimulate and nurture the sharing and use of knowledge; on processes or methods to find, create, capture and share knowledge; and on technology to store and assimilate knowledge and to make it readily accessible in a manner which will allow people to work together even if they are not located together. A main objective of this paper is to describe constructive actions which can sponsor knowledge sharing and solidarity in safety conscious attitude among all employees. All principles and approaches refer primarily to Nuclear Power Plant (NPP) operating organizations but are also applicable to other institutions involved into nuclear sector. (orig.)

  4. Knowledge management as an approach to strengthen safety culture in nuclear organizations

    Energy Technology Data Exchange (ETDEWEB)

    Karseka, T.S.; Yanev, Y.L. [International Atomic Energy Agency, Vienna (Austria). Nuclear Energy Dept.

    2013-04-15

    In the last 10 years knowledge management (KM) in nuclear organizations has emerged as a powerful strategy to deal with important and frequently critical issues of attrition, generation change and knowledge transfer. Applying KM practices in operating organizations, in technical support organizations and regulatory bodies has proven to be efficient and necessary for maintaining competence and skills for achieving high level of safety and operational performance. The IAEA defines KM as an integrated, systematic approach to identifying, acquiring, transforming, developing, disseminating, using, sharing, and preserving knowledge, relevant to achieving specified objectives. KM focuses on people and organizational culture to stimulate and nurture the sharing and use of knowledge; on processes or methods to find, create, capture and share knowledge; and on technology to store and assimilate knowledge and to make it readily accessible in a manner which will allow people to work together even if they are not located together. A main objective of this paper is to describe constructive actions which can sponsor knowledge sharing and solidarity in safety conscious attitude among all employees. All principles and approaches refer primarily to Nuclear Power Plant (NPP) operating organizations but are also applicable to other institutions involved into nuclear sector. (orig.)

  5. Nordic perspectives on safety management in high reliability organizations: Theory and applications

    International Nuclear Information System (INIS)

    Svenson, Ola; Salo, I.; Sjerve, A.B.; Reiman, T.; Oedewald, P.

    2006-04-01

    The chapters in this volume are written on a stand-alone basis meaning that the chapters can be read in any order. The first 4 chapters focus on theory and method in general with some applied examples illustrating the methods and theories. Chapters 5 and 6 are about safety management in the aviation industry with some additional information about incident reporting in the aviation industry and the health care sector. Chapters 7 through 9 cover safety management with applied examples from the nuclear power industry and with considerable validity for safety management in any industry. Chapters 10 through 12 cover generic safety issues with examples from the oil industry and chapter 13 presents issues related to organizations with different internal organizational structures. Although the many of the chapters use a specific industry to illustrate safety management, the messages in all the chapters are of importance for safety management in any high reliability industry or risky activity. The interested reader is also referred to, e.g., a document by an international NEA group (SEGHOF), who is about to publish a state of the art report on Systematic Approaches to Safety Management (cf., CSNI/NEA/SEGHOF, home page: www.nea.fr). (au)

  6. Nordic perspectives on safety management in high reliability organizations: Theory and applications

    Energy Technology Data Exchange (ETDEWEB)

    Svenson, Ola; Salo, I; Sjerve, A B; Reiman, T; Oedewald, P [Stockholm Univ. (Sweden)

    2006-04-15

    The chapters in this volume are written on a stand-alone basis meaning that the chapters can be read in any order. The first 4 chapters focus on theory and method in general with some applied examples illustrating the methods and theories. Chapters 5 and 6 are about safety management in the aviation industry with some additional information about incident reporting in the aviation industry and the health care sector. Chapters 7 through 9 cover safety management with applied examples from the nuclear power industry and with considerable validity for safety management in any industry. Chapters 10 through 12 cover generic safety issues with examples from the oil industry and chapter 13 presents issues related to organizations with different internal organizational structures. Although the many of the chapters use a specific industry to illustrate safety management, the messages in all the chapters are of importance for safety management in any high reliability industry or risky activity. The interested reader is also referred to, e.g., a document by an international NEA group (SEGHOF), who is about to publish a state of the art report on Systematic Approaches to Safety Management (cf., CSNI/NEA/SEGHOF, home page: www.nea.fr). (au)

  7. Assessment guide for tornado effect on Nuclear Power Plants (draft) with its commentaries

    International Nuclear Information System (INIS)

    Inoue, Hiroto; Fukunishi, Shiro; Suzuki, Tetsuo

    2013-10-01

    In the context of a severe accident at the Fukushima Daiichi Nuclear Power Station (NPS) operated by the Tokyo Electric Power Company (TEPCO) due to the 2011 off the Pacific coast of Tohoku Earthquake and Tsunami, Nuclear Regulation Authority (NRA) was established on September 19, 2012 under the relevant law. After that NRA organized a task force for studying new regulatory standards for nuclear power plants (NPPs) in consideration of lessons learned from the severe accident at Fukushima. In the task force open meeting, through discussing about design basis external natural events which should be considered in the new regulatory standards, tornado was newly introduced into new regulatory standards as an external natural event. Based on the decision that tornado was newly introduced into new regulatory standards, the Secretariat of the Nuclear Regulation Authority (SNRA) commissioned the Japan Nuclear Energy Safety Organization (JNES) to study an assessment guide for tornado effect on NPPs intended to be used for an official safety review for a NPP construction. JNES organized Sectional Committee for Tornado Effect Assessment Guide consisting of experts in meteorology and wind engineering fields, discussing about assessment methods for tornado effect on NPPs, draft version of the assessment guide for tornado effect on NPPs was completed on April 4, 2013, and JNES submitted the draft guide to SNRA on the same date. After that NRA called for public comments for the draft version of the assessment guide, the draft version of the assessment guide was partly amended taking posted public comments account, and tornado effect assessment guide was officially released on June 19, 2013. Contents in this paper are as follows, assessment guide for tornado effect on NPPs (Draft version on April 4, 2013), supplementary documents, calculation examples, and future tasks for further improved reliability of tornado effect assessment on NPPs. This draft guide consists of six chapters

  8. Assessment guide for tornado effect on Nuclear Power Plants (draft) with its commentaries

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Hiroto; Fukunishi, Shiro; Suzuki, Tetsuo [Japan Nuclear Energy Safety Organization, Seismic Safety Department, Tokyo (Japan)

    2013-10-15

    In the context of a severe accident at the Fukushima Daiichi Nuclear Power Station (NPS) operated by the Tokyo Electric Power Company (TEPCO) due to the 2011 off the Pacific coast of Tohoku Earthquake and Tsunami, Nuclear Regulation Authority (NRA) was established on September 19, 2012 under the relevant law. After that NRA organized a task force for studying new regulatory standards for nuclear power plants (NPPs) in consideration of lessons learned from the severe accident at Fukushima. In the task force open meeting, through discussing about design basis external natural events which should be considered in the new regulatory standards, tornado was newly introduced into new regulatory standards as an external natural event. Based on the decision that tornado was newly introduced into new regulatory standards, the Secretariat of the Nuclear Regulation Authority (SNRA) commissioned the Japan Nuclear Energy Safety Organization (JNES) to study an assessment guide for tornado effect on NPPs intended to be used for an official safety review for a NPP construction. JNES organized Sectional Committee for Tornado Effect Assessment Guide consisting of experts in meteorology and wind engineering fields, discussing about assessment methods for tornado effect on NPPs, draft version of the assessment guide for tornado effect on NPPs was completed on April 4, 2013, and JNES submitted the draft guide to SNRA on the same date. After that NRA called for public comments for the draft version of the assessment guide, the draft version of the assessment guide was partly amended taking posted public comments account, and tornado effect assessment guide was officially released on June 19, 2013. Contents in this paper are as follows, assessment guide for tornado effect on NPPs (Draft version on April 4, 2013), supplementary documents, calculation examples, and future tasks for further improved reliability of tornado effect assessment on NPPs. This draft guide consists of six chapters

  9. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  10. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  11. The SAFER guides: empowering organizations to improve the safety and effectiveness of electronic health records.

    Science.gov (United States)

    Sittig, Dean F; Ash, Joan S; Singh, Hardeep

    2014-05-01

    Electronic health records (EHRs) have potential to improve quality and safety of healthcare. However, EHR users have experienced safety concerns from EHR design and usability features that are not optimally adapted for the complex work flow of real-world practice. Few strategies exist to address unintended consequences from implementation of EHRs and other health information technologies. We propose that organizations equipped with EHRs should consider the strategy of "proactive risk assessment" of their EHR-enabled healthcare system to identify and address EHR-related safety concerns. In this paper, we describe the conceptual underpinning of an EHR-related self-assessment strategy to provide institutions a foundation upon which they could build their safety efforts. With support from the Office of the National Coordinator for Health Information Technology (ONC), we used a rigorous, iterative process to develop a set of 9 self-assessment tools to optimize the safety and safe use of EHRs. These tools, referred to as the Safety Assurance Factors for EHR Resilience (SAFER) guides, could be used to self-assess safety and effectiveness of EHR implementations, identify specific areas of vulnerability, and create solutions and culture change to mitigate risks. A variety of audiences could conduct these assessments, including frontline clinicians or care teams in different practices, or clinical, quality, or administrative leaders within larger institutions. The guides use a multifaceted systems-based approach to assess risk and empower organizations to work with internal or external stakeholders (eg, EHR developers) on optimizing EHR functionality and using EHRs to drive improvements in the quality and safety of healthcare.

  12. The Science of Nuclear Safety and Security. IAEA Backs the Work of Technical and Scientific Support Organizations in Safety and Security

    International Nuclear Information System (INIS)

    Verlini, Giovanni

    2011-01-01

    Expertise in physical protection and accounting of nuclear and other radioactive material in use, storage and transport, and the associated facilities, as well as experience in the maintenance of systems, equipment and associated software used for effective border monitoring and for radiological threat assessment, are the fundaments of safety and security. This knowledge is developed through technical and scientific support organizations (TSOs), neutral and official organizations that provide the basis for decisions and activities regarding nuclear and radiation safety. The quality of the technical and scientific expertise provided by TSOs to the nuclear industry and their contribution to effective regulatory systems are of fundamental importance. For many years, the IAEA has been supporting the work of TSOs, by helping the TSOs promote their technical competence, transparency and observance of ethical principles.

  13. Workforce perceptions of hospital safety culture: development and validation of the patient safety climate in healthcare organizations survey.

    Science.gov (United States)

    Singer, Sara; Meterko, Mark; Baker, Laurence; Gaba, David; Falwell, Alyson; Rosen, Amy

    2007-10-01

    To describe the development of an instrument for assessing workforce perceptions of hospital safety culture and to assess its reliability and validity. Primary data collected between March 2004 and May 2005. Personnel from 105 U.S. hospitals completed a 38-item paper and pencil survey. We received 21,496 completed questionnaires, representing a 51 percent response rate. Based on review of existing safety climate surveys, we developed a list of key topics pertinent to maintaining a culture of safety in high-reliability organizations. We developed a draft questionnaire to address these topics and pilot tested it in four preliminary studies of hospital personnel. We modified the questionnaire based on experience and respondent feedback, and distributed the revised version to 42,249 hospital workers. We randomly divided respondents into derivation and validation samples. We applied exploratory factor analysis to responses in the derivation sample. We used those results to create scales in the validation sample, which we subjected to multitrait analysis (MTA). We identified nine constructs, three organizational factors, two unit factors, three individual factors, and one additional factor. Constructs demonstrated substantial convergent and discriminant validity in the MTA. Cronbach's alpha coefficients ranged from 0.50 to 0.89. It is possible to measure key salient features of hospital safety climate using a valid and reliable 38-item survey and appropriate hospital sample sizes. This instrument may be used in further studies to better understand the impact of safety climate on patient safety outcomes.

  14. ENSURING RADIATION SAFETY AT THE XXVII WORLD SUMMER UNIVERSIADE IN KAZAN BY ROSPOTREBNADZOR BODIES AND ORGANIZATIONS Communication 1. Ensuring radiation safety at the preparatory phase

    Directory of Open Access Journals (Sweden)

    G. G. Onischenko

    2013-01-01

    Full Text Available After the terrorist attack at theBostonMarathon, Federal and Republican executive bodies took increased security measures during the XXVII World Summer Universiade inKazan. Bodies and Organizations of the Federal Service for Surveillance on Consumer Rights Protection and Human Well-being (Rospotrebnadzor were participants of all preparatory activities and directly provided security of the Student Games inKazan. This report analyzes the experience of providing radiation safety by Rospotrebnadzor experts at the stage of preparation for the Universiade. So far, Rospotrebnadzor organizations had no experience of providing radiation safety of such large-scale events. Analysis of the performed work with account for both positive and negative experiences is especially important in the context of preparations for the safety providing of the Olympic Winter Games inSochiin 2014. 

  15. [Managment system in safety and health at work organization. An Italian example in public sector: Inps].

    Science.gov (United States)

    Di Loreto, G; Felicioli, G

    2010-01-01

    The Istituto Nazionale della Previdenza Sociale (Inps) is one of the biggest Public Sector organizations in Italy; about 30.000 people work in his structures. Fifteen years ago, Inps launched a long term project with the objective to create a complex and efficient safety and health at work organization. Italian law contemplates a specific kind of physician working on safety and health at work, called "Medico competente", and 85 Inps's physicians work also as "Medico competente". This work describes how IT improved coordination and efficiency in this occupational health's management system.

  16. The activity at the state organs of Russia in the field for providing radiation safety

    International Nuclear Information System (INIS)

    Panfilov, A.P.

    1994-01-01

    The principles of reliable, efficient radiation safety of enterprises, research institute and organizations of Minatom of Russian Federation, environmental protection and some other problems have been discussed in this report. It consists of three parts. The first contents the information of the governmental and industrial safety systems on the territory of Russian Federation. The second part comprises the findings distinguishing the safety of the NPPs and the enterprises of nuclear industry. Some problems of the actual researches and application developments including the development of new international nuclear safety standards based on recommendations of International Committee of Radiation Protection have been written in third part. (author)

  17. Current Activities on Nuclear Safety Culture in Korea. How to meet the challenges for Safety and Safety Culture?

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Chaewoon [International Policy Department Policy and Standard Division, Korea Institute of Nuclear Safety, 19 Gusung-Dong Yuseong-Ku, 305-338 DAEJEON (Korea, Republic of)

    2008-07-01

    'Statement of Nuclear Safety Policy' declared by the Korean Government elucidates adherence to the principle of 'priority to safety'. The 3. Comprehensive Nuclear Energy Promotion Plan (2007-2011) more specifically addressed the necessity to develop and apply 'safety culture evaluation criteria' and to strengthen safety management of concerned organizations in an autonomous way. Putting these policies as a backdrop, Korean Government has taken diverse safety culture initiatives and has encouraged the relevant organizations to develop safety culture practices of their own accord. Accordingly, KHNP, the operating organization in Korea, developed a 'safety culture performance indicator', which has been used to evaluate safety mind of employees and the evaluation results have been continuously reflected in operational management and training programs. Furthermore, KHNP inserted 'nuclear safety culture subject' into every course of more than two week length, and provided employees with special lectures on safety culture. KINS, the regulatory organization, developed indicators for the safety culture evaluation based on the IAEA Guidelines. Also, KINS has hosted an annual Nuclear Safety Technology Information Meeting to share information between regulatory organizations and industries. Furthermore, KINS provided a nuclear safety culture class to the new employees and they are given a chance to participate in performance of a role-reversal socio-drama. Additionally, KINS developed a safety culture training program, published training materials and conducted a 'Nuclear Safety Culture Basic Course' in October 2007, 4 times of which are planed this year. In conclusion, from Government to relevant organizations, 'nuclear safety culture' concept is embraced as important and has been put into practice on a variety of forms. Specifically, 'education and training' is a starting line and sharing

  18. Priming patient safety: A middle-range theory of safety goal priming via safety culture communication.

    Science.gov (United States)

    Groves, Patricia S; Bunch, Jacinda L

    2018-05-18

    The aim of this paper is discussion of a new middle-range theory of patient safety goal priming via safety culture communication. Bedside nurses are key to safe care, but there is little theory about how organizations can influence nursing behavior through safety culture to improve patient safety outcomes. We theorize patient safety goal priming via safety culture communication may support organizations in this endeavor. According to this theory, hospital safety culture communication activates a previously held patient safety goal and increases the perceived value of actions nurses can take to achieve that goal. Nurses subsequently prioritize and are motivated to perform tasks and risk assessment related to achieving patient safety. These efforts continue until nurses mitigate or ameliorate identified risks and hazards during the patient care encounter. Critically, this process requires nurses to have a previously held safety goal associated with a repertoire of appropriate actions. This theory suggests undergraduate educators should foster an outcomes focus emphasizing the connections between nursing interventions and safety outcomes, hospitals should strategically structure patient safety primes into communicative activities, and organizations should support professional development including new skills and the latest evidence supporting nursing practice for patient safety. © 2018 John Wiley & Sons Ltd.

  19. Organization and safety culture in Asco and Vandellos II nuclear power plants

    International Nuclear Information System (INIS)

    2004-01-01

    Unified management of ANA and CNV has resulted in an organizational and functional change in both Plant managements that has affected the structure of the original organizations and the interrelations with the other Corporate Managements. In this process, as indicated in the ANAV Strategic Plan, improving the safety culture is one of the primary objectives of the company, and to this end internal actions have been taken that have basically affected: the structure of the Organization, the Management's commitment, the learning capability, enhanced internal communication and development of human factors-related issues. (Author)

  20. International conference on challenges faced by technical and scientific support organizations in enhancing nuclear safety. Contributed papers and presentations

    International Nuclear Information System (INIS)

    2007-01-01

    Over the past two decades, the IAEA has conducted a series of major conferences that have addressed topical issues and strategies critical to nuclear safety for consideration by the world's nuclear regulators. More recently, the IAEA organized the International Conference on Effective Nuclear Regulatory Systems - Facing Safety and Security Challenges, held in Moscow in 2006. The Moscow conference was the first of its kind, because it brought together senior regulators of nuclear safety, radiation safety and security from around the world to discuss how to improve regulatory effectiveness with the objective of improving the protection of the public and the users of nuclear and radioactive material. The International Conference on Challenges Faced by Technical and Scientific Support Organizations in Enhancing Nuclear Safety was held in Aix-en-Provence, France, from 23 to 27 April 2007. This conference, again, was the first of its kind, because it was the first to address technical and scientific support organizations (TSOs), the role they play in supporting either the national regulatory bodies or the industry in making optimum safety decisions and the challenges they face in providing this support. This conference provided a forum for the TSOs to discuss these and other issues with the organizations to which they provide this support - that is, the regulators and the operators/industry - as well as with other stakeholders such as research organizations and public authorities. This conference can also be considered to have a link to the Moscow conference. The Moscow conference concluded that effective regulation of nuclear safety is vital for the safe use of nuclear energy and associated technologies, both now and in the future, and is an essential prerequisite for establishing an effective Global Nuclear Safety Regime. The Moscow conference also highlighted the importance of continued and improved international cooperation in the area of nuclear safety. These

  1. Technical organization of safety authorities for the event of an accident at a nuclear installation

    International Nuclear Information System (INIS)

    Scherrer, J.; Evrard, J.M.; Ney, J.

    1986-01-01

    Within the general context of nuclear safety, the Central Nuclear Installation Safety Service of the French Ministry for Industry and its technical backup, the Institute for Radiation Protection and Nuclear Safety of the CEA (Atomic Energy Commission), have established a special organization designed to provide real-time forecasts of the evolution of a nuclear accident situation with sufficient forewarning for the local representative of the Government (the Commissaire de la Republique in the Departement affected) to implement, as required, effective countermeasures to protect the population - for example, confinement indoors or evacuation. Descriptions are given of the principles of this organization and the particular precautions taken to confront the problems of mobilizing experts and of dealing with the saturation of normal telecommunications channels to be expected in the event of a nuclear accident. The organization set up for the installations belonging to Electricite de France is given as a detailed example. Particular stress is placed on the organizational arrangements of the Institute for Radiation Protection and Nuclear Safety designed to provide the emergency teams with the evaluation and forecasting tools they require to carry out their tasks. The procedures are on the whole well developed for atmospheric radioactivity transport, for which operational models already exist. Computer-backed methods with improved performance are at present being developed. A method of forecasting the behaviour of the releases resulting from nuclear accidents is set out for pressurized water reactors, based on evaluating the physical state of the installation, confinement integrity, availability of safety and backup systems, support systems and feed sources and on forecasting how this state will develop on the basis of measured and inferred physical values transmitted from the affected power station through a national network. The experience acquired during accident

  2. 76 FR 44592 - Cooperative Agreement With the World Health Organization Department of Food Safety and Zoonoses...

    Science.gov (United States)

    2011-07-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0010] Cooperative Agreement With the World Health Organization Department of Food Safety and Zoonoses in Support of... agreement with the World Health Organization. The document published stating that the total funding...

  3. Data quality objective to support resolution of the organic complexant safety issue

    International Nuclear Information System (INIS)

    Turner, D.A.; Babad, H.; Buckley, L.L.; Meacham, J.E.

    1995-01-01

    This document records the data quality objectives (DQO) process applied to the organic complexant safety issue at the Hanford Site. Two important outputs of this particular DQO application were the following: (1) decision rules for categorizing organic tanks; and (2) analytical requirements that feed into the tank-specific characterization plans. The decision rules developed in this DQO allow the organic tanks to be categorized as safe, conditionally safe, or unsafe based on fuel and moisture concentrations. Then analytical requirements from this DQO process fall into two groups, primary and secondary. The primary data requirements are always applied, while the secondary requirements are only necessary on those half segment samples that violate the fuel and moisture decision rules or that propagate during adiabatic calorimetry testing

  4. Waste Tank Organic Safety Program: Analytical methods development. Progress report, FY 1994

    International Nuclear Information System (INIS)

    Campbell, J.A.; Clauss, S.A.; Grant, K.E.

    1994-09-01

    The objectives of this task are to develop and document extraction and analysis methods for organics in waste tanks, and to extend these methods to the analysis of actual core samples to support the Waste Tank organic Safety Program. This report documents progress at Pacific Northwest Laboratory (a) during FY 1994 on methods development, the analysis of waste from Tank 241-C-103 (Tank C-103) and T-111, and the transfer of documented, developed analytical methods to personnel in the Analytical Chemistry Laboratory (ACL) and 222-S laboratory. This report is intended as an annual report, not a completed work

  5. Preliminary safety criteria for organic watch list tanks at the Hanford site

    International Nuclear Information System (INIS)

    Webb, A.B.; Stewart, J.L.; Turner, O.A.; Plys, M.G.; Malinovic, B.; Grigsby, J.M.; Camaioni, D.M.; Heasler, P.G.; Samuels, W.O.; Toth, J.J.

    1995-11-01

    Condensed-phase, rapid reactions of organic salts with nitrates/nitrites in Hanford High Level Radioactive Waste single-shell tanks could lead to structural failure of the tanks resulting in significant releases of radionuclides and toxic materials. This report establishes appropriate preliminary safety criteria to ensure that tank wastes will be maintained safe. These criteria show that if actual dry wastes contain less than 1.2 MJ/kg of reactants reaction energy or less 4.5 wt % of total organic carbon, then the waste will be safe and will not propagate if ignited. Waste moisture helps to retard reactions; when waste moisture exceeds 20 wt %, rapid reactions are prevented, regardless of organic carbon concentrations. Aging and degradation of waste materials has been considered to predict the types and amounts to organic compounds present in the waste. Using measurements of 3 waste phases (liquid, salt cake, and sludge) obtained from tank waste samples analyzed in the laboratory, analysis of variance (ANOVA) models were used to estimate waste states for unmeasured tanks. The preliminary safety criteria are based upon calorimetry and propagation testing of likely organic compounds which represent actual tank wastes. These included sodium salts of citrate, formate, acetate and hydroxyethylethylenediaminetricetate (HEDTA). Hot cell tests of actual tank wastes are planned for the future to confirm propagation tests performed in the laboratory. The effects of draining liquids from the tanks which would remove liquids and moisture were considered because reactive waste which is too dry may propagate. Evaporation effects which could remove moisture from the tanks were also calculated. The various ways that the waste could be heated or ignited by equipment failures or tank operations activities were considered and appropriate monitoring and controls were recommended

  6. Preliminary safety criteria for organic watch list tanks at the Hanford site

    Energy Technology Data Exchange (ETDEWEB)

    Webb, A.B.; Stewart, J.L.; Turner, O.A. [Westinghouse Hanford Co., Richland, WA (United States); Plys, M.G.; Malinovic, B. [Fauske and Associates, Inc., Burr Ridge, IL (United States); Grigsby, J.M. [G & P Consulting, Inc. (United States); Camaioni, D.M.; Heasler, P.G.; Samuels, W.O.; Toth, J.J. [Pacific Northwest Lab., Portland, OR (United States)

    1995-11-01

    Condensed-phase, rapid reactions of organic salts with nitrates/nitrites in Hanford High Level Radioactive Waste single-shell tanks could lead to structural failure of the tanks resulting in significant releases of radionuclides and toxic materials. This report establishes appropriate preliminary safety criteria to ensure that tank wastes will be maintained safe. These criteria show that if actual dry wastes contain less than 1.2 MJ/kg of reactants reaction energy or less 4.5 wt % of total organic carbon, then the waste will be safe and will not propagate if ignited. Waste moisture helps to retard reactions; when waste moisture exceeds 20 wt %, rapid reactions are prevented, regardless of organic carbon concentrations. Aging and degradation of waste materials has been considered to predict the types and amounts to organic compounds present in the waste. Using measurements of 3 waste phases (liquid, salt cake, and sludge) obtained from tank waste samples analyzed in the laboratory, analysis of variance (ANOVA) models were used to estimate waste states for unmeasured tanks. The preliminary safety criteria are based upon calorimetry and propagation testing of likely organic compounds which represent actual tank wastes. These included sodium salts of citrate, formate, acetate and hydroxyethylethylenediaminetricetate (HEDTA). Hot cell tests of actual tank wastes are planned for the future to confirm propagation tests performed in the laboratory. The effects of draining liquids from the tanks which would remove liquids and moisture were considered because reactive waste which is too dry may propagate. Evaporation effects which could remove moisture from the tanks were also calculated. The various ways that the waste could be heated or ignited by equipment failures or tank operations activities were considered and appropriate monitoring and controls were recommended.

  7. An empirical analysis of nuclear power plant organization and its effect on safety performance

    International Nuclear Information System (INIS)

    Thurber, J.A.

    1985-01-01

    The paper documents work performed on three tasks. The first task concerned the creation of measures of organizational structure. An earlier review of the literature supported the position that organizational structure (e.g., the way the work of the organization is divided, administered, and coordinated) is a likely determinant of plant safety performance. While data were not available on some salient dimensions of organizational structure, Final Safety Analysis Reports (FSARs), Technical Specifications, and a survey of plant technical resources allowed for measurement on three primary dimensions. These are the vertical structure of the plant (e.g., the number of ranks and the ratio of supervisors to subordinates), the horizontal structure of the plant (e.g., the way the organization is divided into administrative and work units), and the coordinative structure of the plant (e.g., the ways that work units are linked)

  8. Safety, training focus of combined organization

    Energy Technology Data Exchange (ETDEWEB)

    Toop, L.

    2006-03-15

    This article presented details of Enform, a company that coordinates safety programs and training for new employees in the oil and gas industry. Enform was created when the Petroleum Industry Training Services merged with the Canadian Petroleum Safety Council. The aim of Enform is to ensure continuous improvements in health and safety within the industry by reducing working injuries and promoting health and safety practices. The companies merged to eliminate duplication of services and allow associates further opportunities for advanced training. In 2005, Enform trained an estimated 155,000 students, and a number of new courses were introduced and updated. A franchise program was extended and a training council was formed to offer direction and guidance to the oil industry. Enform focuses on sharing information among companies, as well as working to harmonize safety regulations across provincial borders. A task force was recently created by the company with a specific focus on drug and alcohol abuse. Other concerns include driver safety and driver interactions with wildlife. Enform is mainly focused on the traditional oil industry, and has had little entry into the oil sands industry. It was concluded that increased activity in the oil and gas industry will remain Enform's biggest challenge in the next few years. Plans for Enform's increased involvement in the offshore oil and gas industry were also discussed. 4 figs.

  9. Ageing management and knowledge base for safe long-term operation of japanese light water reactors

    International Nuclear Information System (INIS)

    Sekimura, N.

    2008-01-01

    There are 55 operating commercial light water reactor plants (32 BWRs and 23 PWRs) in Japan. Twelve (12) plants have been operating for more than 30 years. Utility companies are required to perform an 'Ageing Management Technical Assessment' be-fore the end of 30 years operation of each plant. The assessments for each plant have been evaluated by the Nuclear and Industry Safety Agency (NISA) of the Ministry of Economy Trade and Industry (WTI) for these 12 plants. The Japan Nuclear Energy Safety Organisation (JNES) has compiled Technical Review Manuals for six major degradation phenomena for the evaluation of Ageing Management Technical Assessment. A 'Road-map for Ageing and Plant Life Management' was established in 2005 by the Special Committee in the Atomic Energy Society of Japan under the commission from the JNES. Within the framework of the road-map, the major research and development fields are divided into the following four categories: 1) engineering information systems; 2) research and development of technologies for inspection, evaluation and repair of the components and materials; 3) development of codes and standards; 4) synthesised maintenance engineering. Continuous revision of the 'Strategy Maps for Ageing Management and Safe Long-term Operation' has been performed under the Coordinating Committee of Ageing Management to promote research and development activities by industries, government and academia, effectively and efficiently. Systematic development of the information basis for database and knowledge-base has been undertaken in addition to the development of codes and standards by academic societies through intensive domestic safety research collaborations and international collaboration. (author)

  10. System Safety in an IT Service Organization

    Science.gov (United States)

    Parsons, Mike; Scutt, Simon

    Within Logica UK, over 30 IT service projects are considered safetyrelated. These include operational IT services for airports, railway infrastructure asset management, nationwide radiation monitoring and hospital medical records services. A recent internal audit examined the processes and documents used to manage system safety on these services and made a series of recommendations for improvement. This paper looks at the changes and the challenges to introducing them, especially where the service is provided by multiple units supporting both safety and non-safety related services from multiple locations around the world. The recommendations include improvements to service agreements, improved process definitions, routine safety assessment of changes, enhanced call logging, improved staff competency and training, and increased safety awareness. Progress is reported as of today, together with a road map for implementation of the improvements to the service safety management system. A proposal for service assurance levels (SALs) is discussed as a way forward to cover the wide variety of services and associated safety risks.

  11. Increasing compliance with the World Health Organization Surgical Safety Checklist-A regional health system's experience.

    Science.gov (United States)

    Gitelis, Matthew E; Kaczynski, Adelaide; Shear, Torin; Deshur, Mark; Beig, Mohammad; Sefa, Meredith; Silverstein, Jonathan; Ujiki, Michael

    2017-07-01

    In 2009, NorthShore University HealthSystem adapted the World Health Organization Surgical Safety Checklist (SSC) at each of its 4 hospitals. Despite evidence that SSC reduces intraoperative mistakes and increase patient safety, compliance was found to be low with the paper form. In November 2013, NorthShore integrated the SSC into the electronic health record (EHR). The aim was to increase communication between operating room (OR) personnel and to encourage best practices during the natural workflow of surgeons, anesthesiologists, and nurses. The purpose of this study was to examine the impact of an electronic SSC on compliance and patient safety. An anonymous OR observer selected cases at random and evaluated the compliance rate before the rollout of the electronic SSC. In June 2014, an electronic audit was performed to assess the compliance rate. Random OR observations were also performed throughout the summer in 2014. Perioperative risk events, such as consent issues, incorrect counts, wrong site, and wrong procedure were compared before and after the electronic SSC rollout. A perception survey was also administered to NorthShore OR personnel. Compliance increased from 48% (n = 167) to 92% (n = 1,037; P World Health Organization SSC is a validated tool to increase patient safety and reduce intraoperative complications. The electronic SSC has demonstrated an increased compliance rate, a reduced number of risk events, and most OR personnel believe it will have a positive impact on patient safety. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Nuclear safety regulations

    International Nuclear Information System (INIS)

    1998-01-01

    The Departmental Rules and The Safety Guides were issued by the NNSA in 1998. The NNSA performed the activities of propagation and implementation of nuclear safety regulations at QTNPP in order to improve the nuclear safety culture of operating organization and construct and contract organizations

  13. Safety limits of half-mask cartridge respirators for organic solvent vapors

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Recent studies of the effective service life (safety limits) for typical half-mask cartridge respirators have shown these devices to be unsuitable for certain organic vapors, e.g., methanol, methylamine, vinyl chloride, and dichloromethane, because the effective service life is too short. For these vapors other forms of protection such as air-supplied respirators are recommended. The experimentally determined service life for many vapors is shorter--sometimes significantly shorter--than predicted by adsorption theory

  14. Characteristics of safety critical organizations . work psychological perspective; Turvallisuuskriittisten organisaatioiden toiminnan erityispiirteet

    Energy Technology Data Exchange (ETDEWEB)

    Oedewald, P.; Reiman, T. [VTT, Espoo (Finland)

    2006-02-15

    This book deals with organizations that operate in high hazard industries, such as the nuclear power, aviation, oil and chemical industry organisations. The society puts a great strain on these organisations to rigorously manage the risks inherent in the technology they use and the products they produce. In this book, an organisational psychology view is taken to analyse what are the typical challenges of daily work in these environments. The analysis is based on a literature review about human and organisational factors in safety critical industries, and on the interviews of Finnish safety experts and safety managers from four different companies. In addition to this, personnel interviews conducted in the Finnish nuclear power plants are utilised. The authors come up with eight themes that seem to be common organizational challenges cross the industries. These include e.g. how does the personnel understand the risks and what is the right level for rules and procedures to guide the work activities. The primary aim of this book is to contribute to the Finnish nuclear safety research and safety management discussion. However, the book is equally suitable for risk management, organizational development and human resources management specialists in different industries. The purpose is to encourage readers to consider how the human and organizational factors are seen in the field they work in. (orig.)

  15. Barriers and limitations during implementation of the surgical safety checklist of the World Health Organization

    OpenAIRE

    Rosa Amalia Arboleda; Andrés Felipe Ausenón; Jairo Alberto Ayala; Diana Carolina Cabezas; Lina Gissella Calvache; Juan Pablo Caicedo; Jose Andres Calvache

    2014-01-01

    Introduction: The surgical safety checklist of the World Health Organization (WHO) is a tool that checks and evaluates each procedure in the operating room. Despite its demonstrated effectiveness, it has many limitations and barriers to its implementation. The aim of this article was to present the current evidence regarding limitations and barriers to achieve a successful implementation of the surgical safety WHO checklist. Methods: A narrative review was designed. We performed a systematic ...

  16. A Study on the Construct Validity of Safety Culture Oversight Model for Nuclear Power Operating Organization

    International Nuclear Information System (INIS)

    Jung, Su Jin; Choi, Young Sung; Oh, Jang Jin

    2015-01-01

    In Korea, the safety policy statement declared in 1994 by government stressed the importance of safety culture and licensees were encouraged to manage and conduct their self-assessments. A change in regulatory position about safety culture oversight was made after the event of SBO cover-up in Kori unit 1 and several subsequent falsification events. Since then KINS has been developing licensee's safety culture oversight system including conceptual framework of oversight, prime focus area for oversight, and specific details on regulatory expectations, all of which are based on defence-in-depth (DiD) safety enhancement approach. Development and gathering of performance data which is related to actual 'safety' of nuclear power plant are needed to identify the relationship between safety culture and safety performance. Authors consider this study as pilot which has a contribution on verifying the construct validity of the model and the effectiveness of survey based research. This is the first attempt that the validity of safety culture oversight model has been investigated with empirical data obtained from Korean nuclear power operating organization

  17. A Study on the Construct Validity of Safety Culture Oversight Model for Nuclear Power Operating Organization

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Su Jin; Choi, Young Sung; Oh, Jang Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    In Korea, the safety policy statement declared in 1994 by government stressed the importance of safety culture and licensees were encouraged to manage and conduct their self-assessments. A change in regulatory position about safety culture oversight was made after the event of SBO cover-up in Kori unit 1 and several subsequent falsification events. Since then KINS has been developing licensee's safety culture oversight system including conceptual framework of oversight, prime focus area for oversight, and specific details on regulatory expectations, all of which are based on defence-in-depth (DiD) safety enhancement approach. Development and gathering of performance data which is related to actual 'safety' of nuclear power plant are needed to identify the relationship between safety culture and safety performance. Authors consider this study as pilot which has a contribution on verifying the construct validity of the model and the effectiveness of survey based research. This is the first attempt that the validity of safety culture oversight model has been investigated with empirical data obtained from Korean nuclear power operating organization.

  18. Leadership and Management for Safety. General Safety Requirements

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factor, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations (registrants and licensees) and other organizations concerned with facilities and activities that give rise to radiation risks

  19. Total safety management: An approach to improving safety culture

    International Nuclear Information System (INIS)

    Blush, S.M.

    1993-01-01

    A little over 4 yr ago, Admiral James D. Watkins became Secretary of Energy. President Bush, who had appointed him, informed Watkins that his principal task would be to clean up the nuclear weapons complex and put the US Department of Energy (DOE) back in the business of producing tritium for the nation's nuclear deterrent. Watkins recognized that in order to achieve these objectives, he would have to substantially improve the DOE's safety culture. Safety culture is a relatively new term. The International Atomic Energy Agency (IAEA) used it in a 1986 report on the root causes of the Chernobyl nuclear accident. In 1990, the IAEA's International Nuclear Safety Advisory Group issued a document focusing directly on safety culture. It provides guidelines to the international nuclear community for measuring the effectiveness of safety culture in nuclear organizations. Safety culture has two principal aspects: an organizational framework conducive to safety and the necessary organizational and individual attitudes that promote safety. These obviously go hand in hand. An organization must create the right framework to foster the right attitudes, but individuals must have the right attitudes to create the organizational framework that will support a good safety culture. The difficulty in developing such a synergistic relationship suggests that achieving and sustaining a strong safety culture is not easy, particularly in an organization whose safety culture is in serious disrepair

  20. Safety culture : a significant influence on safety in transportation

    Science.gov (United States)

    2017-08-01

    An organizations safety culture can influence safety outcomes. Research and experience show that when safety culture is strong, accidents are less frequent and less severe. As a result, building and maintaining strong safety cultures should be a t...

  1. Industry example of how Safety and Security are applied within the Organizations: The Transnubel example

    International Nuclear Information System (INIS)

    Bairiot, X.

    2016-01-01

    During more than 40 years of transport of radioactive materials, Transnubel noticed the evolution regarding Safety and Security requirements. These requirements have to be met within the frame of commercial activities, with constraints as planning, cost control, availabilities, .... In addition, other requirements issued by customers, eventually linked with Safety and Security, have also to be taken in account. Since many years, the company is therefore organized for all daily activities on basis of a Quality System: this Quality System, based on the ISO 9000, aims to give an answer to the ISO 9000 requirements, but also to the safety requirements, which are integrated at different levels in the Quality System. The trend of the last years concerning Security has an impact on the organization and documentation in the company. Due to the legal requirements, the implementation has not been possible within the same ISO 9000 structure. As a result, a Security system as been created on a similar basis as the ISO 9000: security manual, security procedures and security working instructions. Two systems therefore are existing within our company: a Quality System including Safety, and a Security System. In the frame of our international transports, we need to rely on the flexibility of our Quality System and Security System to allow us to take in account national regulations: the regulations dealing with Security and Safety (and their interpretations) are national competences, and differ once borders are crossed. The presentation will give an overview of the implementation of the Safety and Security aspects in the company: the structure and the implementation. And will try to answer the question: is the increase of the structure / documents always a benefit to the execution of the transports? (author)

  2. Safety Training: Basic Safety and Access Courses

    CERN Multimedia

    Antonella Vignes

    2005-01-01

    Objective The purpose of the basic safety courses is to increase awareness for everyone working on the CERN site (CERN staff, associates, outside companies, students and apprentices) of the various existing on-site hazards, and how to recognize and avoid them. Safety course changes The current organization for basic safety courses is changing. There will be two main modifications: the organization of the courses and the implementation of a specific new training course for the LHC machine during the LHC tests and hardware commissioning phase. Organizational changes This concerns the existing basic safety training, currently called level1, level2 and level3. Under the new procedure, a video will be projected in registration building 55 and will run every day at 14.00 and 15.00 in English. The duration of the video will be 50 minutes. The course contents will be the same as the slides currently used, plus a video showing real situations. With this new organization, attendees will systematically follow the...

  3. Closure of the condensed-phase organic-nitrate reaction unreviewed safety question at Hanford site

    International Nuclear Information System (INIS)

    COWLEY, W.L.

    1999-01-01

    A discovery Unreviewed Safety Question (USQ) was declared on the underground waste storage tanks at the Hanford Site in May 1996. The USQ was for condensed-phase organic-nitrate reactions (sometimes called organic complexant reactions) in the tanks. This paper outlines the steps taken to close the USQ, and resolve the related safety issue. Several processes were used at the Hanford Site to extract and/or process plutonium. These processes resulted in organic complexants (for chelating multivalent cations) and organic extraction solvents being sent to the underground waste storage tanks. This paper addresses the organic complexant hazard. The organic complexants are in waste matrices that include inert material, diluents, and potential oxidizers. In the presence of oxidizing material, the complexant salts can be made to react exothermically by heating to high temperatures or by applying an external ignition source of sufficient energy. The first organic complexant hazard assessments focused on determining whether a hulk runaway reaction could occur, similar to the 1957 accident at Kyshtm (a reprocessing plant in the former U.S.S.R.). Early analyses (1977 through 1994) examined organic-nitrate reaction onset temperatures and concluded that a bulk runaway reaction could not occur at the Hanford Site because tank temperatures were well below that necessary for bulk runaway. Therefore, it was believed that organic-nitrate reactions were adequately described in the then current Authorization Basis (AB). Subsequent studies examined a different accident scenario, propagation resulting from an external ignition source (e.g., lightning or welding slag) that initiates a combustion front that propagates through the organic waste. A USQ evaluation determined that localized high energy ignition sources were credible, and that point source ignition of organic complexant waste was not adequately addressed i n the then existing AB. Consequently, the USQ was declared on the

  4. Emergency preparedness and its enhancement in Japan: From perspectives of infrastructure preparation, and exercise enhancement

    International Nuclear Information System (INIS)

    Funahashi, T.

    2010-01-01

    The organizational structure, procedures and infrastructures for the nuclear emergency response were established in Japan in the aftermath of the JCO accident and have been improved through exercises, drills and training. This paper overviews the infrastructure for the emergency response prepared by JNES and exercises implemented or supported by JNES for nuclear emergency preparedness. Approaches to feeding back exercise results are also addressed. (author)

  5. Indicators of safety culture - selection and utilization of leading safety performance indicators

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Teemu; Pietikaeinen, Elina (VTT, Technical Research Centre of Finland (Finland))

    2010-03-15

    Safety indicators play a role in providing information on organizational performance, motivating people to work on safety and increasing organizational potential for safety. The aim of this report is to provide an overview on leading safety indicators in the domain of nuclear safety. The report explains the distinction between lead and lag indicators and proposes a framework of three types of safety performance indicators - feedback, monitor and drive indicators. Finally the report provides guidance for nuclear energy organizations for selecting and interpreting safety indicators. It proposes the use of safety culture as a leading safety performance indicator and offers an example list of potential indicators in all three categories. The report concludes that monitor and drive indicators are so called lead indicators. Drive indicators are chosen priority areas of organizational safety activity. They are based on the underlying safety model and potential safety activities and safety policy derived from it. Drive indicators influence control measures that manage the socio technical system; change, maintain, reinforce, or reduce something. Monitor indicators provide a view on the dynamics of the system in question; the activities taking place, abilities, skills and motivation of the personnel, routines and practices - the organizational potential for safety. They also monitor the efficacy of the control measures that are used to manage the socio technical system. Typically the safety performance indicators that are used are lagging (feedback) indicators that measure the outcomes of the socio technical system. Besides feedback indicators, organizations should also acknowledge the important role of monitor and drive indicators in managing safety. The selection and use of safety performance indicators is always based on an understanding (a model) of the socio technical system and safety. The safety model defines what risks are perceived. It is important that the safety

  6. Indicators of safety culture - selection and utilization of leading safety performance indicators

    International Nuclear Information System (INIS)

    Reiman, Teemu; Pietikaeinen, Elina

    2010-03-01

    Safety indicators play a role in providing information on organizational performance, motivating people to work on safety and increasing organizational potential for safety. The aim of this report is to provide an overview on leading safety indicators in the domain of nuclear safety. The report explains the distinction between lead and lag indicators and proposes a framework of three types of safety performance indicators - feedback, monitor and drive indicators. Finally the report provides guidance for nuclear energy organizations for selecting and interpreting safety indicators. It proposes the use of safety culture as a leading safety performance indicator and offers an example list of potential indicators in all three categories. The report concludes that monitor and drive indicators are so called lead indicators. Drive indicators are chosen priority areas of organizational safety activity. They are based on the underlying safety model and potential safety activities and safety policy derived from it. Drive indicators influence control measures that manage the socio technical system; change, maintain, reinforce, or reduce something. Monitor indicators provide a view on the dynamics of the system in question; the activities taking place, abilities, skills and motivation of the personnel, routines and practices - the organizational potential for safety. They also monitor the efficacy of the control measures that are used to manage the socio technical system. Typically the safety performance indicators that are used are lagging (feedback) indicators that measure the outcomes of the socio technical system. Besides feedback indicators, organizations should also acknowledge the important role of monitor and drive indicators in managing safety. The selection and use of safety performance indicators is always based on an understanding (a model) of the socio technical system and safety. The safety model defines what risks are perceived. It is important that the safety

  7. Development of ecologically safety technology for steam-thermal treatment of organic wastes

    International Nuclear Information System (INIS)

    Juravskij, J.

    1997-01-01

    The experience on mitigation of the consequences of the Chernobyl's nuclear power station accident proves that the treatment of large amounts of organic and mixed wastes containing radionuclides is a very urgent scientific and technical problem. In this connection a search for new ideas and development of highly efficient and ecologically safety technologies for treatment of organic radioactive wastes has been undertaken. This study is based on use of physico-mechanical properties of various organic materials (wood, rubber-containing composites, plastics, biomass) subjected to thermal decomposition in the overheated water steam medium. Under such conditions, there is a possibility, under relatively low temperatures (400 - 500 deg. C), to realize thermal decomposition and considerably (in 8 - 50 times) to reduce the amount of wastes, to obtain the main concentration of radionuclides in the solid residue and to prevent releases of gaseous products containing radionuclides to the environment. (author). 5 figs, 1 tab

  8. Safety of Research Reactors. Safety Requirements

    International Nuclear Information System (INIS)

    2010-01-01

    The main objective of this Safety Requirements publication is to provide a basis for safety and a basis for safety assessment for all stages in the lifetime of a research reactor. Another objective is to establish requirements on aspects relating to regulatory control, the management of safety, site evaluation, design, operation and decommissioning. Technical and administrative requirements for the safety of research reactors are established in accordance with these objectives. This Safety Requirements publication is intended for use by organizations engaged in the site evaluation, design, manufacturing, construction, operation and decommissioning of research reactors as well as by regulatory bodies

  9. Disentangling the roles of safety climate and safety culture: Multi-level effects on the relationship between supervisor enforcement and safety compliance.

    Science.gov (United States)

    Petitta, Laura; Probst, Tahira M; Barbaranelli, Claudio; Ghezzi, Valerio

    2017-02-01

    Despite increasing attention to contextual effects on the relationship between supervisor enforcement and employee safety compliance, no study has yet explored the conjoint influence exerted simultaneously by organizational safety climate and safety culture. The present study seeks to address this literature shortcoming. We first begin by briefly discussing the theoretical distinctions between safety climate and culture and the rationale for examining these together. Next, using survey data collected from 1342 employees in 32 Italian organizations, we found that employee-level supervisor enforcement, organizational-level safety climate, and autocratic, bureaucratic, and technocratic safety culture dimensions all predicted individual-level safety compliance behaviors. However, the cross-level moderating effect of safety climate was bounded by certain safety culture dimensions, such that safety climate moderated the supervisor enforcement-compliance relationship only under the clan-patronage culture dimension. Additionally, the autocratic and bureaucratic culture dimensions attenuated the relationship between supervisor enforcement and compliance. Finally, when testing the effects of technocratic safety culture and cooperative safety culture, neither safety culture nor climate moderated the relationship between supervisor enforcement and safety compliance. The results suggest a complex relationship between organizational safety culture and safety climate, indicating that organizations with particular safety cultures may be more likely to develop more (or less) positive safety climates. Moreover, employee safety compliance is a function of supervisor safety leadership, as well as the safety climate and safety culture dimensions prevalent within the organization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Transforming communication and safety culture in intrapartum care: a multi-organization blueprint.

    Science.gov (United States)

    Lyndon, Audrey; Johnson, M Christina; Bingham, Debra; Napolitano, Peter G; Joseph, Gerald; Maxfield, David G; OʼKeeffe, Daniel F

    2015-05-01

    Effective, patient-centered communication facilitates interception and correction of potentially harmful conditions and errors. All team members, including women, their families, physicians, midwives, nurses, and support staff, have a role in identifying the potential for harm during labor and birth. However, the results of collaborative research studies conducted by organizations that represent professionals who care for women during labor and birth indicate that health care providers may frequently witness, but may not always report, problems with safety or clinical performance. Some of these health care providers felt resigned to the continuation of such problems and fearful of retribution if they tried to address them. Speaking up to address safety and quality concerns is a dynamic social process. Every team member must feel empowered to speak up about concerns without fear of put-downs, retribution, or receiving poor-quality care. Patient safety requires mutual accountability: individuals, teams, health care facilities, and professional associations have a shared responsibility for creating and sustaining environments of mutual respect and engaging in highly reliable perinatal care. Defects in human factors, communication, and leadership have been the leading contributors to sentinel events in perinatal care for more than a decade. Organizational commitment and executive leadership are essential to creating an environment that proactively supports safety and quality. The problem is well-known; the time for action is now.

  11. Safety culture in nuclear installations. Guidance for the use in enhancement of safety culture

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    This guidance has been developed for use in the IAEA Safety Culture Services, which provides support to Member States in their efforts to develop a sound safety culture of their organizations. It will be of particular use in seminars and training workshops that are part of these services. Much of the information in this publication reflects the approach the IAEA has adopted to assist nuclear organizations in Member States in improving their safety culture. This guidance covers topics such as: what is culture, and in particular what is safety culture; what are the stages of development of safety culture, and how you can assess its development using employee surveys; what practices can be used to develop safety culture, and what indicators will help monitor progress. The symptoms of a weakening safety culture are described, as well as the lessons learned from organizations who have experienced safety culture problems. This guide also contains information on how to undertake the process of transforming the existing safety culture, and develop a learning culture in an organization that is based on continuous improvement. The relationship between quality and safety is discussed. The safety culture services offered by the IAEA are also described. The IAEA perspective of safety culture has expanded with time as its understanding of the complexities of the concept developed. The concept of safety culture was first introduced by the International Nuclear Safety Advisory Group formed by the IAEA. In their report (INSAG-4, 1991) they maintained that the establishment of a safety culture within an organization is one of the fundamental management principles necessary for the safe operation of a nuclear facility. The definition recognized that safety culture is both structural and attitudinal in nature and relates to the organization and its style, as well as to attitudes, approaches and the commitment of individuals at all levels in the organization. In the framework of the

  12. Safety culture in nuclear installations. Guidance for the use in enhancement of safety culture

    International Nuclear Information System (INIS)

    2002-12-01

    This guidance has been developed for use in the IAEA Safety Culture Services, which provides support to Member States in their efforts to develop a sound safety culture of their organizations. It will be of particular use in seminars and training workshops that are part of these services. Much of the information in this publication reflects the approach the IAEA has adopted to assist nuclear organizations in Member States in improving their safety culture. This guidance covers topics such as: what is culture, and in particular what is safety culture; what are the stages of development of safety culture, and how you can assess its development using employee surveys; what practices can be used to develop safety culture, and what indicators will help monitor progress. The symptoms of a weakening safety culture are described, as well as the lessons learned from organizations who have experienced safety culture problems. This guide also contains information on how to undertake the process of transforming the existing safety culture, and develop a learning culture in an organization that is based on continuous improvement. The relationship between quality and safety is discussed. The safety culture services offered by the IAEA are also described. The IAEA perspective of safety culture has expanded with time as its understanding of the complexities of the concept developed. The concept of safety culture was first introduced by the International Nuclear Safety Advisory Group formed by the IAEA. In their report (INSAG-4, 1991) they maintained that the establishment of a safety culture within an organization is one of the fundamental management principles necessary for the safe operation of a nuclear facility. The definition recognized that safety culture is both structural and attitudinal in nature and relates to the organization and its style, as well as to attitudes, approaches and the commitment of individuals at all levels in the organization. In the framework of the

  13. The FORO Project on Safety Culture in Organizations, Facilities and Activities With Sources of Ionizing Radiation

    International Nuclear Information System (INIS)

    Bomben, A. M.; Ferro Fernández, R.; Arciniega Torres, J.; Ordoñez Gutiérrez, E.; Blanes Tabernero, A.; Cruz Suárez, R.; Da Silva Silveira, C.; Perera Meas, J.; Ramírez Quijada, R.; Videla Valdebenito, R.

    2016-01-01

    The aim of this paper is to present the Ibero-American Forum of Nuclear and Radiological Regulatory Authorities’ (FORO) Project on Safety Culture in organizations, facilities and activities with sources of ionizing radiation developed by experts from the Regulatory Authorities of Argentina, Brazil, Chile, Cuba, Spain, Mexico, Peru and Uruguay, under the scientific coordination of the International Atomic Energy Agency (IAEA). Taking into account that Safety Culture problems have been widely recognised as one of the major contributors to many radiological events, several international and regional initiatives are being carried out to foster and develop a strong Safety Culture. One of these initiatives is the two-year project sponsored by the FORO with the purpose to prepare a document to allow its member states understanding, promoting and achieving a higher level of Safety Culture.

  14. Railway safety climate: a study on organizational development.

    Science.gov (United States)

    Cheng, Yung-Hsiang

    2017-09-07

    The safety climate of an organization is considered a leading indicator of potential risk for railway organizations. This study adopts the perceptual measurement-individual attribute approach to investigate the safety climate of a railway organization. The railway safety climate attributes are evaluated from the perspective of railway system staff. We identify four safety climate dimensions from exploratory factor analysis, namely safety communication, safety training, safety management and subjectively evaluated safety performance. Analytical results indicate that the safety climate differs at vertical and horizontal organizational levels. This study contributes to the literature by providing empirical evidence of the multilevel safety climate in a railway organization, presents possible causes of the differences under various cultural contexts and differentiates between safety climate scales for diverse workgroups within the railway organization. This information can be used to improve the safety sustainability of railway organizations and to conduct safety supervisions for the government.

  15. GSFC Safety and Mission Assurance Organization

    Science.gov (United States)

    Kelly, Michael P.

    2010-01-01

    This viewgraph presentation reviews NASA Goddard Space Flight Center's approach to safety and mission assurance. The contents include: 1) NASA GSFC Background; 2) Safety and Mission Assurance Directorate; 3) The Role of SMA-D and the Technical Authority; 4) GSFC Mission assurance Requirements; 5) GSFC Systems Review Office (SRO); 6) GSFC Supply Chain Management Program; and 7) GSFC ISO9001/AS9100 Status Brief.

  16. Managing for safety and safety culture within the UK nuclear industry. A regulator's perspective

    International Nuclear Information System (INIS)

    Tyrer, M.J.

    2002-01-01

    This paper outlines the basis of the legal system for the regulation of health and safety at work within the United Kingdom (UK), and in particular, the regulation of the nuclear industry. The framework, formulated by the regulator, which has been published as a practical guide for directors, managers, health and safety professionals and employee representatives for the successful management of health and safety is explained. This guidance, however, concentrates, to a large extent, on management systems and only addresses in part the types of issues, such as behaviours, values, attitudes and beliefs which contribute to the safety culture of an organization. The regulator of the UK nuclear industry has considered research, and other work, carried out by several organizations in this area, notably the Advisory Committee on the Safety of Nuclear Installations (ACSNI) and the International Atomic Energy Agency (IAEA), and produced its own framework for managing for safety at nuclear installations. As a regulator, the Health and Safety Executive (HSE), and its inspectorate responsible for regulation of the nuclear industry, HM Nuclear Installations Inspectorate (HMNII), are not the appropriate organization to assess the safety culture of an organization, but positively encourage organizations to both carry out this assessment themselves and to monitor their performance. To this end, HSE has developed, and made available, the Health and Safety Climate Tool which is aimed at providing organizations with information which can be used as part of a continuous improvement process. (author)

  17. Management of safety and safety culture at the NPPs of Ukraine

    International Nuclear Information System (INIS)

    Koltakov, Vladimir

    2002-01-01

    The report contains general aspects of safety and safety culture. The brief description of operational characteristics and basic indexes of atomic power plants at the Ukraine are represented. The information referring to structure of NPPs of Operation organization license-holder, safety responsibility of both Regulatory and Utility Bodies also is given. The main part of the report include seven sections: 1. Practical application of safety management models; 2. erspective on the relationship between safety management and safety culture; 3. The role of leadership in achieving high standards of safety; 4. Current and future challengers that impact on safety culture and safety management (e.g. the impact of competition, changing, economic and political circumstances, workforce demographics, etc.); 5. Key lessons learned from major events; 6. Practical applications of safety culture concepts (e.g. learning organizations, training staff communications, etc.); 7. dvance in human performance. Some of the main pending safety and safety culture problems that are necessary to achieve in the near future are mentioned

  18. Guidance for implementing an environmental, safety, and health-assurance program. Volume 15. A model plan for line organization environmental, safety, and health-assurance programs

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, A.C.; Trauth, C.A. Jr.

    1982-01-01

    This is 1 of 15 documents designed to illustrate how an Environmental, Safety and Health (ES and H) Assurance Program may be implemented. The generic definition of ES and H Assurance Programs is given in a companion document entitled An Environmental, Safety and Health Assurance Program Standard. This particular document presents a model operational-level ES and H Assurance Program that may be used as a guide by an operational-level organization in developing its own plan. The model presented here reflects the guidance given in the total series of 15 documents.

  19. Analysis of LWR Full MOX Core Physics Experiments with Major Nuclear Data Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Toru [Japan Nuclear Energy Safety Organization, Tokyo (Japan)

    2007-07-01

    Nuclear Power Engineering Corporation (NUPEC) studied high moderation full MOX cores as a part of advanced LWR core concept studies from 1994 to 2003 supported by the Ministry of Economy, Trade and Industry. In order to obtain the major physics characteristics of such advanced MOX cores, NUPEC carried out core physics experimental programs called MISTRAL and BASALA from 1996 to 2002 in the EOLE critical facility of the Cadarache Center in collaboration with CEA. NUPEC also obtained a part of experimental data of the EPICURE program that CEA had conducted for 30 % Pu recycling in French PWRs. Japan Nuclear Energy Safety Organization(JNES) established in 2003 as an incorporated administrative agency took over the NUPEC's projects for nuclear regulation and has been implementing FUBILA program that is for high burn up BWR full MOX cores. This paper presents an outline of the programs and a summary of the analysis results of the criticality of those experimental cores with major nuclear data libraries.

  20. Pursuit of new methodology on risk communication - Research assistance program by open application

    International Nuclear Information System (INIS)

    Konoa, N.; Takeshima, K.

    2004-01-01

    In the latter half of 1990s a series of incidents occurred in Japan such as MOX fuel inspection data falsification, Monju fast breeder reactor sodium leakage accident, Tokai nuclear fuel plant (JCO) criticality accident and so on. It is thought that existing measures based on nuclear technology are not well cope with those incidents and another countermeasure utilizing new methodology of cultural and social sciences was keenly felt by both administration agencies and nuclear industries. Above all, the technique such as risk communication to inform the influence of trouble correctly and convincingly to the residents and mass media and to prevent the harm due to rumor is obviously inevitable. Based on these circumstances, Japanese NISA (The Nuclear and Industrial Safety Agency) initiated in 2002FY new project by open application in the field of cultural and social sciences, and risk communication was one of the principal subject of study. Up to now, 6 risk communication studies are currently in progress. The project was taken over from NISA to JNES (Incorporated Administrative Agency Japan Nuclear Energy Safety Organization) since 2004FY. This paper shows the overall structure of the project and the outline of the running studies. (author)

  1. Leadership and Management for Safety. General Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  2. Leadership and Management for Safety. General Safety Requirements (Chinese Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  3. Leadership and Management for Safety. General Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  4. Leadership and Management for Safety. General Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    his Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  5. Safety for all: bringing together patient and employee safety.

    Science.gov (United States)

    Stevenson, R Lynn; Moss, Lesley; Newlands, Tracey; Archer, Jana

    2013-01-01

    The safety of patients and of employees in healthcare have historically been separately managed and regulated. Despite efforts to reduce injury rates for employees and adverse events for patients, healthcare organizations continue to see less-than-optimal outcomes in both domains. This article challenges readers to consider how the traditional siloed approach to patient and employee safety can lead to duplication of effort, confusion, missed opportunities and unintended consequences. The authors propose that only through integrating patient and employee safety activities and challenging the paradigms that juxtapose the two will healthcare organizations experience sustained and improved safety practice and outcomes. Copyright © 2013 Longwoods Publishing.

  6. Patient participation in patient safety still missing: Patient safety experts' views.

    Science.gov (United States)

    Sahlström, Merja; Partanen, Pirjo; Rathert, Cheryl; Turunen, Hannele

    2016-10-01

    The aim of this study was to elicit patient safety experts' views of patient participation in promoting patient safety. Data were collected between September and December in 2014 via an electronic semi-structured questionnaire and interviews with Finnish patient safety experts (n = 21), then analysed using inductive content analysis. Patient safety experts regarded patients as having a crucial role in promoting patient safety. They generally deemed the level of patient safety as 'acceptable' in their organizations, but reported that patient participation in their own safety varied, and did not always meet national standards. Management of patient safety incidents differed between organizations. Experts also suggested that patient safety training should be increased in both basic and continuing education programmes for healthcare professionals. Patient participation in patient safety is still lacking in clinical practice and systematic actions are needed to create a safety culture in which patients are seen as equal partners in the promotion of high-quality and safe care. © 2016 John Wiley & Sons Australia, Ltd.

  7. Development of ecologically safety technology for steam-thermal treatment of organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Juravskij, J [Centre for Science, Technology and Industrial Applications, ` ` Tokema` ` , Minsk (Belarus)

    1997-02-01

    The experience on mitigation of the consequences of the Chernobyl`s nuclear power station accident proves that the treatment of large amounts of organic and mixed wastes containing radionuclides is a very urgent scientific and technical problem. In this connection a search for new ideas and development of highly efficient and ecologically safety technologies for treatment of organic radioactive wastes has been undertaken. This study is based on use of physico-mechanical properties of various organic materials (wood, rubber-containing composites, plastics, biomass) subjected to thermal decomposition in the overheated water steam medium. Under such conditions, there is a possibility, under relatively low temperatures (400 - 500 deg. C), to realize thermal decomposition and considerably (in 8 - 50 times) to reduce the amount of wastes, to obtain the main concentration of radionuclides in the solid residue and to prevent releases of gaseous products containing radionuclides to the environment. (author). 5 figs, 1 tab.

  8. Cryogenic safety organisation at CERN

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    With Safety being a top priority of CERN’s general policy, the Organisation defines and implements a Policy that sets out the general principles governing Safety at CERN. To the end of the attainment of said Safety objectives, the organic units (owners/users of the equipment) are assigned the responsibility for the implementation of the CERN Safety Policy at all levels of the organization, whereas the Health and Safety and Environmental Protection Unit (HSE) has the role of providing assistance for the implementation of the Safety Policy, and a monitoring role related to the implementation of continuous improvement of Safety, compliance with the Safety Rules and the handling of emergency situations. This talk will elaborate on the roles, responsibilities and organisational structure of the different stakeholders within the Organization with regards to Safety, and in particular to cryogenic safety. The roles of actors of particular importance such as the Cryogenic Safety Officers (CSOs) and the Cryogenic Sa...

  9. Promotion of nuclear safety culture in Korea

    International Nuclear Information System (INIS)

    Eun, Youngsoo

    1996-01-01

    The term 'nuclear safety culture' was first introduced by the IAEA after the Chernobyl accident in the former USSR and subsequently defined in the IAEA's Safety Series No. 75-IMSAG-4 'Safety Culture' as follows : 'Safety culture is that assembly of characteristics and attitudes in organizations and individuals which establish that establish that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance.' INSAG-4 deals with the concept of 'Safety Culture' as it relates to organizations and individuals engaged in nuclear power activities, and is intended for use by governmental authorities and by the nuclear industry and its supporting organizations. The IAEA's Assessment of Safety Culture in Organizations Team (ASCOT) developed ASCOT Guidelines that can be used in the assessment of the safety culture level of the organizations and their individual workers concerned, with a view to the tangible manifestations of safety culture that has intangible characteristics in nature. The IAEA provides the nuclear safety culture assessment service on the request of the Member States. Safety culture can not be achieved by the effort of the nuclear industry and its involved individuals alone. Rather, it requires a well concerted effort among various organizations engaged in nuclear activities including regulatory organizations

  10. Evaluation of the Quality of Occupational Health and Safety Management Systems Based on Key Performance Indicators in Certified Organizations

    OpenAIRE

    Iraj Mohammadfam; Mojtaba Kamalinia; Mansour Momeni; Rostam Golmohammadi; Yadollah Hamidi; Alireza Soltanian

    2017-01-01

    Background: Occupational Health and Safety Management Systems are becoming more widespread in organizations. Consequently, their effectiveness has become a core topic for researchers. This paper evaluates the performance of the Occupational Health and Safety Assessment Series 18001 specification in certified companies in Iran. Methods: The evaluation is based on a comparison of specific criteria and indictors related to occupational health and safety management practices in three certified...

  11. 78 FR 17212 - Patient Safety Organizations: Voluntary Relinquishment From Universal Safety Solution PSO

    Science.gov (United States)

    2013-03-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... Research and Quality (AHRQ), HHS. ACTION: Notice of delisting. SUMMARY: The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act), Public Law 109-41, 42 U.S.C. 299b-21--b-26, provides for the...

  12. Transforming communication and safety culture in intrapartum care: a multi-organization blueprint.

    Science.gov (United States)

    Lyndon, Audrey; Johnson, M Christina; Bingham, Debra; Napolitano, Peter G; Joseph, Gerald; Maxfield, David G; O'Keeffe, Daniel F

    2015-01-01

    Effective, patient-centered communication facilitates interception and correction of potentially harmful conditions and errors. All team members, including women, their families, physicians, midwives, nurses, and support staff, have roles in identifying the potential for harm during labor and birth. However, the results of collaborative research studies conducted by organizations that represent professionals who care for women during labor and birth indicate that health care providers may frequently witness, but may not always report, problems with safety or clinical performance. Some of these health care providers felt resigned to the continuation of such problems and fearful of retribution if they tried to address them. Speaking up to address safety and quality concerns is a dynamic social process. Every team member must feel empowered to speak up about concerns without fear of put-downs, retribution, or receiving poor-quality care. Patient safety requires mutual accountability: individuals, teams, health care facilities, and professional associations have a shared responsibility for creating and sustaining environments of mutual respect and engaging in highly reliable perinatal care. Defects in human factors, communication, and leadership have been the leading contributors to sentinel events in perinatal care for more than a decade. Organizational commitment and executive leadership are essential to creating an environment that proactively supports safety and quality. The problem is well-known; the time for action is now. © 2015 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.

  13. IAEA Safety Standards on Management Systems and Safety Culture

    International Nuclear Information System (INIS)

    Persson, Kerstin Dahlgren

    2007-01-01

    The IAEA has developed a new set of Safety Standard for applying an integrated Management System for facilities and activities. The objective of the new Safety Standards is to define requirements and provide guidance for establishing, implementing, assessing and continually improving a Management System that integrates safety, health, environmental, security, quality and economic related elements to ensure that safety is properly taken into account in all the activities of an organization. With an integrated approach to management system it is also necessary to include the aspect of culture, where the organizational culture and safety culture is seen as crucial elements of the successful implementation of this management system and the attainment of all the goals and particularly the safety goals of the organization. The IAEA has developed a set of service aimed at assisting it's Member States in establishing. Implementing, assessing and continually improving an integrated management system. (author)

  14. Radiation safety: New international standards

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    This article highlights an important result of this work for the international harmonization of radiation safety: specifically, it present an overview of the forthcoming International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources - the so-called BSS. They have been jointly developed by six organizations - the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the Nuclear Energy Agency of the Organization for Economic Co-operation and Development (NEA/OECD), the Pan American Health Organization (PAHO), and the World Health Organization (WHO)

  15. Draft Law on the creation, attribution, organization and functioning of a ''Regulatory Authority and Nuclear Safety'' (ARSN)

    International Nuclear Information System (INIS)

    Issoufou, Mahamadou

    2016-08-01

    This Draft Law deals with the establishment, responsibilities, organization and functioning of an Autority Control and Nuclear Safety. Through this law, the Regulatory and Nuclear Safety Autority is responsible for regulation of nuclear and radiological activities to ensure the safety, security and protection of persons and the environment against the effects of radiation throughout the national territory. [fr

  16. Circumstances in a nuclear power plant. Organization of risk and institutionalization of safety

    International Nuclear Information System (INIS)

    Wessblad, H.

    1999-01-01

    Risk societies are made of risk organisations. This dissertation is an ethnographic study of a risk organisation, of a nuclear power plant. Risk organizations have larger demands on their organization than traditional companies have. Risk societies, to come or already present, have new political agendas. Within a risk society the major task is to reduce and distribute the negative side effects of industrial production, not to increase and distribute well-fare in society, as it has been in an industrial society. This is a study of a risk organisation claimed to produce these negative side effects. The title of this thesis relates to specific occasions in the organisation. The branch concept, circumstances, defines 'situations beyond normal performance', which are to be reported to the nuclear authorities. These circumstances are rarely endangering man or material, but given the nature of nuclear power production, they have a potential to escalate to something larger. This dissertation focuses on how the organisation deals with these issues and reproduces safety as something taken-for-granted. The material is gathered using participant observation of different functions in the plant. The work is based on narration of situations, meetings, interviews, and small talk etc, in every-day-interaction. The dissertation describes how business-as-usual produce safety. It is a description of how values, norms, attitudes, ideas, knowledge are produced and reproduced. These issues are discussed mainly in an institutional theory perspective. What has become apparent is that functions governed by routines and instructions tend to be more flexible and reflecting than those dealing with new tasks, such as problem solving projects. Thus, these new projects tend to reproduce earlier established procedures. Through the narration of the various functions of the plant joined with theoretical discussions, different themes have been found describing how the organisation deals with

  17. The Use of Questionnaires in Safety Culture Studies in High Reliability Organizations. Literature Review and an Application in the Spanish Nuclear Sector

    International Nuclear Information System (INIS)

    German, S.; Navajas, J.; Silla, I.

    2014-01-01

    This report examines two aspects related to the use of questionnaires in safety culture research conducted in high reliability organizations. First, a literature review of recent studies that address safety culture through questionnaires is presented. Literature review showed that most studies used only questionnaires as a research technique, were cross-sectional, applied paper-based questionnaires, and were conducted in one type of high reliability organization. Second, a research project on safety culture that used electronic surveys in a sample of experts on safety culture is discussed. This project, developed by CISOT-CIEMAT research institute, was carry out in the Spanish nuclear sector and illustrates relevant aspects of the methodological design and administration processes that must be considered to encourage participation in the study.. (Author)

  18. Exploring the state of health and safety management system performance measurement in mining organizations.

    Science.gov (United States)

    Haas, Emily Joy; Yorio, Patrick

    2016-03-01

    Complex arguments continue to be articulated regarding the theoretical foundation of health and safety management system (HSMS) performance measurement. The culmination of these efforts has begun to enhance a collective understanding. Despite this enhanced theoretical understanding, however, there are still continuing debates and little consensus. The goal of the current research effort was to empirically explore common methods to HSMS performance measurement in mining organizations. The purpose was to determine if value and insight could be added into the ongoing approaches of the best ways to engage in health and safety performance measurement. Nine site-level health and safety management professionals were provided with 133 practices corresponding to 20 HSMS elements, each fitting into the plan, do, check, act phases common to most HSMS. Participants were asked to supply detailed information as to how they (1) assess the performance of each practice in their organization, or (2) would assess each practice if it were an identified strategic imperative. Qualitative content analysis indicated that the approximately 1200 responses provided could be described and categorized into interventions , organizational performance , and worker performance . A discussion of how these categories relate to existing indicator frameworks is provided. The analysis also revealed divergence in two important measurement issues; (1) quantitative vs qualitative measurement and reporting; and (2) the primary use of objective or subjective metrics. In lieu of these findings we ultimately recommend a balanced measurement and reporting approach within the three metric categories and conclude with suggestions for future research.

  19. Near-misses are an opportunity to improve patient safety: adapting strategies of high reliability organizations to healthcare.

    Science.gov (United States)

    Van Spall, Harriette; Kassam, Alisha; Tollefson, Travis T

    2015-08-01

    Near-miss investigations in high reliability organizations (HROs) aim to mitigate risk and improve system safety. Healthcare settings have a higher rate of near-misses and subsequent adverse events than most high-risk industries, but near-misses are not systematically reported or analyzed. In this review, we will describe the strategies for near-miss analysis that have facilitated a culture of safety and continuous quality improvement in HROs. Near-miss analysis is routine and systematic in HROs such as aviation. Strategies implemented in aviation include the Commercial Aviation Safety Team, which undertakes systematic analyses of near-misses, so that findings can be incorporated into Standard Operating Procedures (SOPs). Other strategies resulting from incident analyses include Crew Resource Management (CRM) for enhanced communication, situational awareness training, adoption of checklists during operations, and built-in redundancy within systems. Health care organizations should consider near-misses as opportunities for quality improvement. The systematic reporting and analysis of near-misses, commonplace in HROs, can be adapted to health care settings to prevent adverse events and improve clinical outcomes.

  20. [Safety culture: definition, models and design].

    Science.gov (United States)

    Pfaff, Holger; Hammer, Antje; Ernstmann, Nicole; Kowalski, Christoph; Ommen, Oliver

    2009-01-01

    Safety culture is a multi-dimensional phenomenon. Safety culture of a healthcare organization is high if it has a common stock in knowledge, values and symbols in regard to patients' safety. The article intends to define safety culture in the first step and, in the second step, demonstrate the effects of safety culture. We present the model of safety behaviour and show how safety culture can affect behaviour and produce safe behaviour. In the third step we will look at the causes of safety culture and present the safety-culture-model. The main hypothesis of this model is that the safety culture of a healthcare organization strongly depends on its communication culture and its social capital. Finally, we will investigate how the safety culture of a healthcare organization can be improved. Based on the safety culture model six measures to improve safety culture will be presented.

  1. [The Results of Self-Assessment by Medical Organizations Their Correspondence to Proposals (Practical Recommendations) of the Roszdravnadzor Concerning Organization of Internal Control of Quality and Safety of Medical Activity].

    Science.gov (United States)

    Ivanov, I V; Shvabsky, O R; Minulin, I B

    2017-11-01

    The article presents the analysis of the results of internal audits (self-rating) in medical organizations implemented on the basis of Proposals (practical guidelines) of the Roszdravnadzor concerning organization of inner control of quality and safety of medical activities in medical organization (hospital). The self-rating was implemented by the medical organizations themselves according the common criteria of the Proposals as provided the following plan: planning of self-rating, collection and processing of data, application of self-rating, analysis of obtained results, preparation of report. The article uses the results of self-rating of medical organizations corresponding to following criteria: profile of activity-multi-field hospital-number of beds more than 350-state property. The self-rating was implemented according to 11 basic parts of the Proposals. The criteria were developed for every part. The evaluation lists developed on the basis of the given Proposals permitted to medical organizations to independently establish problems in their activities. Within the framework of implemented self-rating medical organizations mentioned the directions of activity related to personnel management, identification of personality of patient, support of epidemiological and surgical safety as having significant discrepancies with the Proposals and requiring implementation of improvement measures.

  2. Archetypes for Organisational Safety

    Science.gov (United States)

    Marais, Karen; Leveson, Nancy G.

    2003-01-01

    We propose a framework using system dynamics to model the dynamic behavior of organizations in accident analysis. Most current accident analysis techniques are event-based and do not adequately capture the dynamic complexity and non-linear interactions that characterize accidents in complex systems. In this paper we propose a set of system safety archetypes that model common safety culture flaws in organizations, i.e., the dynamic behaviour of organizations that often leads to accidents. As accident analysis and investigation tools, the archetypes can be used to develop dynamic models that describe the systemic and organizational factors contributing to the accident. The archetypes help clarify why safety-related decisions do not always result in the desired behavior, and how independent decisions in different parts of the organization can combine to impact safety.

  3. Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste

    International Nuclear Information System (INIS)

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1996-09-01

    Some of Hanford's underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford's organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes' future storage. This work focused on the equilibrium water content and did not investigate the various factors such as at sign ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures

  4. Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1996-09-01

    Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

  5. Defining safety culture and the nexus between safety goals and safety culture. 2. Decreasing Ambiguity of the Safety Culture Concept

    International Nuclear Information System (INIS)

    Inoue, Shiichiro; Hosoda, Satoshi; Suganuma, Takashi; Monta, Kazuo; Kameda, Akiyuki

    2001-01-01

    The concept of safety culture was first advocated for the industrial world by INSAG reports that discussed the Chernobyl accident [INSAG-3 1988 (Ref. 1); INSAG-4, 1991 (Ref. 2)]. Since then, the term 'safety culture' has been discussed on various occasions when the causes of accidents were analyzed, and it has created interest among people-not only safety managers but also engineers and top management-and it has become inevitable as an influential factor of disasters. The JCO's 1999 criticality accident in Japan underscored the need for the safety culture concept. There had been a sort of myth in the past, at least among the people of this industry in Japan, that the nuclear industry had high technology and maintained a high level of safety. Therefore, the people related with the accident said in the first instance, 'Unbelievable') Some of them even insisted that the fuel processing and the power generation were two different systems. As the causes of JCO's criticality accident were revealed, they started to recognize that safety in the nuclear industry could not be secured without safety culture. We review the situation of the past 13 yr after the safety culture concept was introduced. To our regret, the culture has not yet taken root in the organization. What causes have delayed the realization of the culture? The first cause is the ambiguity of the concept. The expression 'safety culture' is too abstract to define something that the plant employees should do. People who are supposed to create the culture concept are held responsible for this point. The second cause is the enthusiasm and strong intentions of the related people. Although the importance of the concept is well recognized, the basic attitude of the people is like 'agreeing in generalities, but disagreeing in specifics'. The authorities for regulation seem somewhat suspicious about its effectiveness even if they set the rules and regulations based on the safety culture concept. Power companies are

  6. Evaluation of the Quality of Occupational Health and Safety Management Systems Based on Key Performance Indicators in Certified Organizations.

    Science.gov (United States)

    Mohammadfam, Iraj; Kamalinia, Mojtaba; Momeni, Mansour; Golmohammadi, Rostam; Hamidi, Yadollah; Soltanian, Alireza

    2017-06-01

    Occupational Health and Safety Management Systems are becoming more widespread in organizations. Consequently, their effectiveness has become a core topic for researchers. This paper evaluates the performance of the Occupational Health and Safety Assessment Series 18001 specification in certified companies in Iran. The evaluation is based on a comparison of specific criteria and indictors related to occupational health and safety management practices in three certified and three noncertified companies. Findings indicate that the performance of certified companies with respect to occupational health and safety management practices is significantly better than that of noncertified companies. Occupational Health and Safety Assessment Series 18001-certified companies have a better level of occupational health and safety; this supports the argument that Occupational Health and Safety Management Systems play an important strategic role in health and safety in the workplace.

  7. Tsunami hazard

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Tohoku Earthquake Tsunami on 11 March, 2011 has led the Fukushima Daiichi nuclear power plant to a serious accident, which highlighted a variety of technical issues such as a very low design tsunami height and insufficient preparations in case a tsunami exceeding the design tsunami height. Lessons such as to take measures to be able to maintain the important safety features of the facility for tsunamis exceeding design height and to implement risk management utilizing Probabilistic Safety Assessment are shown. In order to implement the safety assessment on nuclear power plants across Japan accordingly to the back-fit rule, Nuclear Regulatory Commission will promulgate/execute the New Safety Design Criteria in July 2013. JNES has positioned the 'enhancement of probabilistic tsunami hazard assessment' as highest priority issue and implemented in order to support technically the Nuclear Regulatory Authority in formulating the new Safety Design Criteria. Findings of the research had reflected in the 'Technical Review Guidelines for Assessing Design Tsunami Height based on tsunami hazards'. (author)

  8. Barriers and limitations during implementation of the surgical safety checklist of the World Health Organization

    Directory of Open Access Journals (Sweden)

    Rosa Amalia Arboleda

    2014-04-01

    Full Text Available Introduction: The surgical safety checklist of the World Health Organization (WHO is a tool that checks and evaluates each procedure in the operating room. Despite its demonstrated effectiveness, it has many limitations and barriers to its implementation. The aim of this article was to present the current evidence regarding limitations and barriers to achieve a successful implementation of the surgical safety WHO checklist. Methods: A narrative review was designed. We performed a systematic literature search in PubMed/MEDLINE. Articles that describe or present as primary or secondary endpoints barriers or limitations during the implementation of the checklist WHO were selected. Observational or experimental articles were included from the date of the official launch of the WHO list. To describe the data a summary table was designed. Detailed results were organized qualitatively extracting the most prevalent limitations. Results: 17 studies were included in the final review process. The main findings were: 1 a large number of constraints reported in the literature that hinder the implementation process, 2 limitations were grouped into 9 categories according to their similarities and 3 the most frequently reported category was “knowledge”. Discussion: There are several factors that limit the proper implementation of the surgical safety checklist WHO. Among these, cultural factors, knowledge, indifference and / or relevance, communication, filling completeness, among others. Effective implementation strategies would reach its successful implementation.

  9. Managing Safety and Operations: The Effect of Joint Management System Practices on Safety and Operational Outcomes.

    Science.gov (United States)

    Tompa, Emile; Robson, Lynda; Sarnocinska-Hart, Anna; Klassen, Robert; Shevchenko, Anton; Sharma, Sharvani; Hogg-Johnson, Sheilah; Amick, Benjamin C; Johnston, David A; Veltri, Anthony; Pagell, Mark

    2016-03-01

    The aim of this study was to determine whether management system practices directed at both occupational health and safety (OHS) and operations (joint management system [JMS] practices) result in better outcomes in both areas than in alternative practices. Separate regressions were estimated for OHS and operational outcomes using data from a survey along with administrative records on injuries and illnesses. Organizations with JMS practices had better operational and safety outcomes than organizations without these practices. They had similar OHS outcomes as those with operations-weak practices, and in some cases, better outcomes than organizations with safety-weak practices. They had similar operational outcomes as those with safety-weak practices, and better outcomes than those with operations-weak practices. Safety and operations appear complementary in organizations with JMS practices in that there is no penalty for either safety or operational outcomes.

  10. First evidence on the validity and reliability of the Safety Organizing Scale-Nursing Home version (SOS-NH).

    Science.gov (United States)

    Ausserhofer, Dietmar; Anderson, Ruth A; Colón-Emeric, Cathleen; Schwendimann, René

    2013-08-01

    The Safety Organizing Scale is a valid and reliable measure on safety behaviors and practices in hospitals. This study aimed to explore the psychometric properties of the Safety Organizing Scale-Nursing Home version (SOS-NH). In a cross-sectional analysis of staff survey data, we examined validity and reliability of the 9-item Safety SOS-NH using American Educational Research Association guidelines. This substudy of a larger trial used baseline survey data collected from staff members (n = 627) in a variety of work roles in 13 nursing homes (NHs) in North Carolina and Virginia. Psychometric evaluation of the SOS-NH revealed good response patterns with low average of missing values across all items (3.05%). Analyses of the SOS-NH's internal structure (eg, comparative fit indices = 0.929, standardized root mean square error of approximation = 0.045) and consistency (composite reliability = 0.94) suggested its 1-dimensionality. Significant between-facility variability, intraclass correlations, within-group agreement, and design effect confirmed appropriateness of the SOS-NH for measurement at the NH level, justifying data aggregation. The SOS-NH showed discriminate validity from one related concept: communication openness. Initial evidence regarding validity and reliability of the SOS-NH supports its utility in measuring safety behaviors and practices among a wide range of NH staff members, including those with low literacy. Further psychometric evaluation should focus on testing concurrent and criterion validity, using resident outcome measures (eg, patient fall rates). Copyright © 2013 American Medical Directors Association, Inc. All rights reserved.

  11. Calculation of pellet radial power distributions with a Monte Carlo burnup code

    International Nuclear Information System (INIS)

    Suzuki, Motomu; Yamamoto, Toru; Nakata, Tetsuo

    2010-01-01

    The Japan Nuclear Energy Safety Organization (JNES) has been working on an irradiation test program of high-burnup MOX fuel at Halden Boiling Water Reactor (HBWR). MOX and UO 2 fuel rods had been irradiated up to about 64 GWd/t (rod avg.) as a Japanese utilities research program (1st phase), and using those fuel rods, in-situ measurement of fuel pellet centerline temperature was done during the 2nd phase of irradiation as the JNES test program. As part of analysis of the temperature data, power distributions in a pellet radial direction were analyzed by using a Monte Carlo burnup code MVP-BURN. In addition, the calculated results of deterministic burnup codes SRAC and PLUTON for the same problem were compared with those of MVP-BURN to evaluate their accuracy. Burnup calculations with an assembly model were performed by using MVP-BURN and those with a pin cell model by using SRAC and PLUTON. The cell pitch and, therefore, fuel to moderator ratio in the pin cell calculation was determined from the comparison of neutron energy spectra with those of MVP-BURN. The fuel pellet radial distributions of burnup and fission reaction rates at the end of the 1st phase irradiation were compared between the three codes. The MVP-BURN calculation results show a large peaking in the burnup and fission rates in the pellet outer region for the UO 2 and MOX pellets. The SRAC calculations give very close results to those of the MVP-BURN. On the other hand, the PLUTON calculations show larger burnup for the UO 2 and lower burnup for the MOX pellets in the pellet outer region than those of MVP-BURN, which lead to larger fission rates for the UO 2 and lower fission rates for the MOX pellets, respectively. (author)

  12. Supplement to safety analysis report. 306-W building operations safety requirement

    International Nuclear Information System (INIS)

    Richey, C.R.

    1979-08-01

    The operations safety requirements (OSRs) presented in this report define the conditions, safe boundaries, and management control needed for safely conducting operations with radioactive materials in the Pacific Northwest Laboratory (PNL) 306-W building. The safety requirements are organized in five sections. Safety limits are safety-related process variables that are observable and measurable. Limiting conditions cover: equipment and technical conditions and characteristics of the facility and operations necessary for continued safe operation. Surveillance requirements prescribe the requirements for checking systems and components that are essential to safety. Equipment design controls require that changes to process equipment and systems be independently checked and approved to assure that the changes will have no adverse effect on safety. Administrative controls describe and discuss the organization and administrative systems and procedures to be used for safe operation of the facility. Details of the implementation of the operations safety requirements are prescribed by internal PNL documents such as criticality safety specifications and radiation work procedures

  13. Guidance for implementing an environmental, safety, and health assurance program. Volume 10. Model guidlines for line organization environmental, safety and health audits and appraisals

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1981-10-01

    This is 1 of 15 documents designed to illustrate how an Environmental, Safety and Health (ES and H) Assurance Program may be implemented. The generic definition of ES and H Assurance Programs is given in a companion document entitled An Environmental, Safety and Health Assurance Program Standard. The Standard specifies that the operational level of an institution must have an internal assurance function, and this document provides guidance for the audit/appraisal portion of the operational level's ES and H program. The appendixes include an ES and H audit checklist, a sample element rating guide, and a sample audit plan for working level line organization internal audits

  14. 78 FR 12065 - Patient Safety Organizations: Delisting for Cause for Independent Data Safety Monitoring, Inc.

    Science.gov (United States)

    2013-02-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... Safety Monitoring, Inc. due to its failure to correct a deficiency. The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act) authorizes the listing of PSOs, which are entities or component...

  15. Review of Occupational Health and Safety Organization in Expanding Economies: The Case of Southern Africa.

    Science.gov (United States)

    Moyo, Dingani; Zungu, Muzimkhulu; Kgalamono, Spoponki; Mwila, Chimba D

    2015-01-01

    Globally, access to occupational health and safety (OHS) by workers has remained at very low levels. The organization and implementation of OHS in South Africa, Zimbabwe, Zambia, and Botswana has remained at suboptimal levels. Inadequacy of human resource capital, training, and education in the field of OHS has had a major negative impact on the improvement of worker access to such services in expanding economies. South Africa, Zimbabwe, Zambia, and Botswana have expanding economies with active mining and agricultural activities that pose health and safety risks to the working population. A literature review and country systems inquiry on the organization of OHS services in the 4 countries was carried out. Because of the infancy and underdevelopment of OHS in southern Africa, literature on the status of this topic is limited. In the 4 countries under review, OHS services are a function shared either wholly or partially by 3 ministries, namely Health, Labor, and Mining. Other ministries, such as Environment and Agriculture, carry small fragments of OHS function. The 4 countries are at different stages of OHS legislative frameworks that guide the practice of health and safety in the workplace. Inadequacies in human resource capital and expertise in occupational health and safety are noted major constraints in the implementation and compliance to health and safety initiatives in the work place. South Africa has a more mature system than Zimbabwe, Zambia, and Botswana. Lack of specialized training in occupational health services, such as occupational medicine specialization for physicians, has been a major drawback in Zimbabwe, Zambia, and Botswana. The full adoption and success of OHS systems in Southern Africa remains constrained. Training and education in OHS, especially in occupational medicine, will enhance the development and maturation of occupational health in southern Africa. Capacitating primary health services with basic occupational health knowledge would

  16. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  17. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  18. Managing risk in healthcare: understanding your safety culture using the Manchester Patient Safety Framework (MaPSaF).

    Science.gov (United States)

    Parker, Dianne

    2009-03-01

    To provide sufficient information about the Manchester Patient Safety Framework (MaPSaF) to allow healthcare professionals to assess its potential usefulness. The assessment of safety culture is an important aspect of risk management, and one in which there is increasing interest among healthcare organizations. Manchester Patient Safety Framework offers a theory-based framework for assessing safety culture, designed specifically for use in the NHS. The framework covers multiple dimensions of safety culture, and five levels of safety culture development. This allows the generation of a profile of an organization's safety culture in terms of areas of relative strength and challenge, which can be used to identify focus issues for change and improvement. Manchester Patient Safety Framework provides a useful method for engaging healthcare professionals in assessing and improving the safety culture in their organization, as part of a programme of risk management.

  19. Practical Child Safety Education in England: A National Survey of the Child Safety Education Coalition

    Science.gov (United States)

    Mulvaney, Caroline A.; Watson, Michael C.; Walsh, Patrick

    2013-01-01

    Objective: To examine the provision of practical safety education by Child Safety Education Coalition (CSEC) organizations in England. Design: A postal survey. Setting: Providers of child practical safety education who were also part of CSEC. Methods: In February 2010 all CSEC organizations were sent a self-completion postal questionnaire which…

  20. Study on disaster waste around Fukushima Daiichi NPS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Extreme difficulties exists in Fukushima Prefecture in disposing of waste generated from the tsunami disaster (hereinafter referred to as disaster waste) and contaminated with radioactive material released from the crippled Fukushima Daiichi Nuclear Power Station. Although the waste should be treated according to the level of radioactivity, there were only air dose rates and radionuclide analyses of soil due to monitoring around the Fukushima Daiichi Nuclear Power Station and there had been no information on the radioactivity concentration of the disaster waste. The radioactivity concentration of the disaster waste was investigated by sampling measurement and in-situ Ge measurement at 20 temporary disaster waste storages in Fukushima Prefecture excluding the evacuation zone and 'deliberate evacuation zone.' JNES carried out tins investigation upon a request from die Nuclear and Industrial Safety Agency. The investigation revealed that the measured radioactivity concentrations of the disaster waste lumps were enveloped within the soil monitoring readings in Fukushima Prefecture and also within a correlated curve between the air dose rates obtained from air dose rate readings around the disaster waste and the radioactivity concentrations of it. Based on the results of this study, JNES compiled a manual on measurement technique for contaminated disaster waste. (author)

  1. Study on disaster waste around Fukushima Daiichi NPS

    International Nuclear Information System (INIS)

    2012-01-01

    Extreme difficulties exists in Fukushima Prefecture in disposing of waste generated from the tsunami disaster (hereinafter referred to as disaster waste) and contaminated with radioactive material released from the crippled Fukushima Daiichi Nuclear Power Station. Although the waste should be treated according to the level of radioactivity, there were only air dose rates and radionuclide analyses of soil due to monitoring around the Fukushima Daiichi Nuclear Power Station and there had been no information on the radioactivity concentration of the disaster waste. The radioactivity concentration of the disaster waste was investigated by sampling measurement and in-situ Ge measurement at 20 temporary disaster waste storages in Fukushima Prefecture excluding the evacuation zone and 'deliberate evacuation zone.' JNES carried out tins investigation upon a request from die Nuclear and Industrial Safety Agency. The investigation revealed that the measured radioactivity concentrations of the disaster waste lumps were enveloped within the soil monitoring readings in Fukushima Prefecture and also within a correlated curve between the air dose rates obtained from air dose rate readings around the disaster waste and the radioactivity concentrations of it. Based on the results of this study, JNES compiled a manual on measurement technique for contaminated disaster waste. (author)

  2. The role of the safety analysis organization in steam generators replacement and reactor vessel head replacement evaluations

    International Nuclear Information System (INIS)

    Choe, Whee G.; Boatwright, W.J.

    2004-01-01

    When a major component in a nuclear power plant is replaced, especially the steam generators, the plant operator is presented a rare opportunity to learn from operating experience and significantly improve the performance, reliability and robustness of the plant. In addition to the use of improved materials, improved design margins can be built into the component specification that can later be used to provide meaningful operating margins. A Safety Analysis organization that is well-integrated with other plant organizations and possesses a detailed knowledge of the plant design and licensing bases can effectively balance the wants and needs of each organization to optimize the benefits realized by the plant as a whole. Knowledge of the assumptions, limitations, and available margins, both analytical and operating, can be used to specify a replacement steam generator design that optimizes costs and operating improvements. The work scope required to support the new design can be controlled through carefully selected and evaluated restrictions in operations, development of alternate operating strategies, and imposition of appropriate limitations. The important point is that the effective Safety Analysis organization must possess both the breadth and depth of knowledge of the plant design and operations and proactively use this information to support the replacement steam generator project. (author)

  3. Safety Teams: An Approach to Engage Students in Laboratory Safety

    Science.gov (United States)

    Alaimo, Peter J.; Langenhan, Joseph M.; Tanner, Martha J.; Ferrenberg, Scott M.

    2010-01-01

    We developed and implemented a yearlong safety program into our organic chemistry lab courses that aims to enhance student attitudes toward safety and to ensure students learn to recognize, demonstrate, and assess safe laboratory practices. This active, collaborative program involves the use of student "safety teams" and includes…

  4. Elevate Anterior/Apical: 12-Month Data Showing Safety and Efficacy in Surgical Treatment of Pelvic Organ Prolapse

    NARCIS (Netherlands)

    Stanford, Edward J.; Moore, Robert D.; Roovers, Jan-Paul W. R.; Courtieu, Christophe; Lukban, James C.; Bataller, Eduardo; Liedl, Bernhard; Sutherland, Suzette E.

    2013-01-01

    Objective: This study aimed to assess the safety and efficacy of the Elevate Anterior/Apical transvaginal mesh procedure in pelvic organ prolapse (POP) repair at 12-months follow-up. Methods: This prospective, multicenter, multinational study enrolled 142 patients experiencing anterior vaginal

  5. Safety Management System in Croatia Control Ltd.

    OpenAIRE

    Pavlin, Stanislav; Sorić, Vedran; Bilać, Dragan; Dimnik, Igor; Galić, Daniel

    2009-01-01

    International Civil Aviation Organization and other international aviation organizations regulate the safety in civil aviation. In the recent years the International Civil Aviation Organization has introduced the concept of the safety management system through several documents among which the most important is the 2006 Safety Management Manual. It treats the safety management system in all the segments of civil aviation, from carriers, aerodromes and air traffic control to design, constructi...

  6. History of safe use as applied to the safety assessment of novel foods and foods derived from genetically modified organisms.

    Science.gov (United States)

    Constable, A; Jonas, D; Cockburn, A; Davi, A; Edwards, G; Hepburn, P; Herouet-Guicheney, C; Knowles, M; Moseley, B; Oberdörfer, R; Samuels, F

    2007-12-01

    Very few traditional foods that are consumed have been subjected to systematic toxicological and nutritional assessment, yet because of their long history and customary preparation and use and absence of evidence of harm, they are generally regarded as safe to eat. This 'history of safe use' of traditional foods forms the benchmark for the comparative safety assessment of novel foods, and of foods derived from genetically modified organisms. However, the concept is hard to define, since it relates to an existing body of information which describes the safety profile of a food, rather than a precise checklist of criteria. The term should be regarded as a working concept used to assist the safety assessment of a food product. Important factors in establishing a history of safe use include: the period over which the traditional food has been consumed; the way in which it has been prepared and used and at what intake levels; its composition and the results of animal studies and observations from human exposure. This paper is aimed to assist food safety professionals in the safety evaluation and regulation of novel foods and foods derived from genetically modified organisms, by describing the practical application and use of the concept of 'history of safe use'.

  7. Organizational safety climate and supervisor safety enforcement: Multilevel explorations of the causes of accident underreporting.

    Science.gov (United States)

    Probst, Tahira M

    2015-11-01

    According to national surveillance statistics, over 3 million employees are injured each year; yet, research indicates that these may be substantial underestimates of the true prevalence. The purpose of the current project was to empirically test the hypothesis that organizational safety climate and transactional supervisor safety leadership would predict the extent to which accidents go unreported by employees. Using hierarchical linear modeling and survey data collected from 1,238 employees in 33 organizations, employee-level supervisor safety enforcement behaviors (and to a less consistent extent, organizational-level safety climate) predicted employee accident underreporting. There was also a significant cross-level interaction, such that the effect of supervisor enforcement on underreporting was attenuated in organizations with a positive safety climate. These results may benefit human resources and safety professionals by pinpointing methods of increasing the accuracy of accident reporting, reducing actual safety incidents, and reducing the costs to individuals and organizations that result from underreporting. (c) 2015 APA, all rights reserved).

  8. The public image and image shaping of the nuclear and radiation safety regulatory organization

    International Nuclear Information System (INIS)

    Li Zhiguo

    2013-01-01

    Good image is the basis of trust. It is imminent to build good public image as our society and the public pay close attention to the negative information of relevant government departments which directly or indirectly affects the public image of the government departments in recent years. In order to promote the public image of the government regulatory department, it is required for all staff to figure out how to conscientiously fulfill social responsibility, how to respond to and properly handle emergencies, and how to establish and improve a full-time public relations team. Based on nuclear and radiation safety regulatory task, this paper discussed the necessity of government departments to set up the public image, and how to shape the public image of the nuclear and radiation safety regulatory organization. (author)

  9. Commissioning of research reactors. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    The objective of this Safety Guide is to provide recommendations on meeting the requirements for the commissioning of research reactors on the basis of international best practices. Specifically, it provides recommendations on fulfilling the requirements established in paras 6.44 and 7.42-7.50 of International Atomic Energy Agency, Safety of Research Reactors, IAEA Safety Standards Series No. NS-R-4, IAEA, Vienna (2005) and guidance and specific and consequential recommendations relating to the recommendations presented in paras 615-621 of International Atomic Energy Agency, Safety in the Utilization and Modification of Research Reactors, Safety Series No. 35-G2, IAEA, Vienna (1994) and paras 228-229 of International Atomic Energy Agency, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, Safety Series No. 35-G1, IAEA, Vienna (1994). This Safety Guide is intended for use by all organizations involved in commissioning for a research reactor, including the operating organization, the regulatory body and other organizations involved in the research reactor project

  10. SAFETY

    CERN Multimedia

    Niels Dupont

    2013-01-01

    CERN Safety rules and Radiation Protection at CMS The CERN Safety rules are defined by the Occupational Health & Safety and Environmental Protection Unit (HSE Unit), CERN’s institutional authority and central Safety organ attached to the Director General. In particular the Radiation Protection group (DGS-RP1) ensures that personnel on the CERN sites and the public are protected from potentially harmful effects of ionising radiation linked to CERN activities. The RP Group fulfils its mandate in collaboration with the CERN departments owning or operating sources of ionising radiation and having the responsibility for Radiation Safety of these sources. The specific responsibilities concerning "Radiation Safety" and "Radiation Protection" are delegated as follows: Radiation Safety is the responsibility of every CERN Department owning radiation sources or using radiation sources put at its disposition. These Departments are in charge of implementing the requi...

  11. Product Safety Culture: A New Variant of Safety Culture?

    International Nuclear Information System (INIS)

    Suhanyiova, L.; Flin, R.; Irwin, A.

    2016-01-01

    Product safety culture is a new research area which concerns user safety rather than worker or process safety. The concept appears to have emerged after the investigation into the Nimrod aircraft accident (Haddon-Cave, 2009) which echoed aspects of NASA’s Challenger and Columbia crashes. In these cases, through a blend of human and organizational failures, the culture deteriorated to the extent of damaging product integrity, resulting in user fatalities. Haddon-Cave noted that it was due to a failure in leadership and organizational safety culture that accidents such as the Nimrod happened, where the aircraft exploded due to several serious technical failures, preceded by deficiencies in the safety case. Now some organizations are starting to measure product safety culture. This is important in day-to-day life as well, where a product failure as a result of poor organizational safety culture, can cause user harm or death, as in the case of Takata airbags scandal in 2015. Eight people have lost their lives and many were injured. According to investigation reports this was due to the company’s safety malpractices of fixing faulty airbags and proceeding to install them in vehicles, as well as secretly conducting tests to assess the integrity of their product and then deleting the data and denying safety issues as a result of the company’s cost-cutting policies. As such, organizational culture, specifically the applications of safety culture, can have far-reaching consequences beyond the workplace of an organization.

  12. Hazardous organic compounds in biogas plant end products-Soil burden and risk to food safety

    International Nuclear Information System (INIS)

    Suominen, K.; Verta, M.; Marttinen, S.

    2014-01-01

    The end products (digestate, solid fraction of the digestate, liquid fraction of the digestate) of ten biogas production lines in Finland were analyzed for ten hazardous organic compounds or compound groups: polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCB(7)), polyaromatic hydrocarbons (PAH(16)), bis-(2-ethylhexyl) phthalate (DEHP), perfluorinated alkyl compounds (PFCs), linear alkylbenzene sulfonates (LASs), nonylphenols and nonylphenol ethoxylates (NP + NPEOs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA). Biogas plant feedstocks were divided into six groups: municipal sewage sludge, municipal biowaste, fat, food industry by-products, animal manure and others (consisting of milling by-products (husk) and raw former foodstuffs of animal origin from the retail trade). There was no clear connection between the origin of the feedstocks of a plant and the concentrations of hazardous organic compounds in the digestate. For PCDD/Fs and for DEHP, the median soil burden of the compound after a single addition of digestate was similar to the annual atmospheric deposition of the compound or compound group in Finland or other Nordic countries. For PFCs, the median soil burden was somewhat lower than the atmospheric deposition in Finland or Sweden. For NP + NPEOs, the soil burden was somewhat higher than the atmospheric deposition in Denmark. The median soil burden of PBDEs was 400 to 1000 times higher than the PBDE air deposition in Finland or in Sweden. With PBDEs, PFCs and HBCD, the impact of the use of end products should be a focus of further research. Highly persistent compounds, such as PBDE- and PFC-compounds may accumulate in agricultural soil after repeated use of organic fertilizers containing these compounds. For other compounds included in this study, agricultural use of biogas plant end products is unlikely to cause risk to food safety in Finland. - Highlights:

  13. Hazardous organic compounds in biogas plant end products-Soil burden and risk to food safety

    Energy Technology Data Exchange (ETDEWEB)

    Suominen, K., E-mail: kimmo.suominen@evira.fi [Finnish Food Safety Authority Evira, Risk Assessment Research Unit, Mustialankatu 3, 00790 Helsinki (Finland); Verta, M. [Finnish Environmental Institute (SYKE), Mechelininkatu 34a, P.O. Box 140, 00251 Helsinki (Finland); Marttinen, S. [MTT Agrifood Research Finland, 31600 Jokioinen (Finland)

    2014-09-01

    The end products (digestate, solid fraction of the digestate, liquid fraction of the digestate) of ten biogas production lines in Finland were analyzed for ten hazardous organic compounds or compound groups: polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCB(7)), polyaromatic hydrocarbons (PAH(16)), bis-(2-ethylhexyl) phthalate (DEHP), perfluorinated alkyl compounds (PFCs), linear alkylbenzene sulfonates (LASs), nonylphenols and nonylphenol ethoxylates (NP + NPEOs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA). Biogas plant feedstocks were divided into six groups: municipal sewage sludge, municipal biowaste, fat, food industry by-products, animal manure and others (consisting of milling by-products (husk) and raw former foodstuffs of animal origin from the retail trade). There was no clear connection between the origin of the feedstocks of a plant and the concentrations of hazardous organic compounds in the digestate. For PCDD/Fs and for DEHP, the median soil burden of the compound after a single addition of digestate was similar to the annual atmospheric deposition of the compound or compound group in Finland or other Nordic countries. For PFCs, the median soil burden was somewhat lower than the atmospheric deposition in Finland or Sweden. For NP + NPEOs, the soil burden was somewhat higher than the atmospheric deposition in Denmark. The median soil burden of PBDEs was 400 to 1000 times higher than the PBDE air deposition in Finland or in Sweden. With PBDEs, PFCs and HBCD, the impact of the use of end products should be a focus of further research. Highly persistent compounds, such as PBDE- and PFC-compounds may accumulate in agricultural soil after repeated use of organic fertilizers containing these compounds. For other compounds included in this study, agricultural use of biogas plant end products is unlikely to cause risk to food safety in Finland. - Highlights:

  14. 76 FR 9351 - Patient Safety Organizations: Voluntary Delisting From West Virginia Center for Patient Safety

    Science.gov (United States)

    2011-02-17

    ... Patient Safety, a component entity of West Virginia Hospital Association, West Virginia Medical Institute (WVMI), and West Virginia State Medical. Association (WVSMA), of its status as a Patient Safety... Patient Safety, a component entity of West Virginia Hospital Association, West Virginia Medical Institute...

  15. Regulatory control of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The basic requirements for the protection of persons against exposure to ionizing radiation and for the safety of radiation sources were established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards), jointly sponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/ NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO) (the Sponsoring Organizations). The application of the Basic Safety Standards is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities for radiation protection and safety. Requirements relating to the legal and governmental infrastructure for the safety of nuclear facilities and sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material are established in the Safety Requirements on Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, Safety Standards Series No. GS-R-1. This Safety Guide, which is jointly sponsored by the FAO, the IAEA, the International Labour Office, the PAHO and the WHO, gives detailed guidance on the key elements for the organization and operation of a national regulatory infrastructure for radiation safety, with particular reference to the functions of the national regulatory body that are necessary to ensure the implementation of the Basic Safety Standards. The Safety Guide is based technically on material first published in IAEA-TECDOC-10671, which was jointly sponsored by the FAO, the IAEA, the OECD/NEA, the PAHO and the WHO. The requirements established in GS-R-1 have been taken into account. The Safety Guide is oriented towards national

  16. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    International Nuclear Information System (INIS)

    Rao, Suman

    2007-01-01

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly

  17. Preliminary study on improving safety culture in Malaysian nuclear industries

    International Nuclear Information System (INIS)

    Ibrahim, Sabariah Kader; Lee, Y. E.

    2012-01-01

    This paper presents preliminary study on safety culture and its implementation in Malaysian nuclear industries by realizing the importance of safety culture; identification of important safety culture attributes; safety culture assessment and the practices to incorporate the identified safety culture attributes in organization. The first section of this paper explains the terms and definitions related to safety culture. Second, for the realization of importance of safety culture in organization, the international operational experiences emphasizing the importance of safety culture are described. Third, important safety culture attributes which are frequently cited in literature are provided. Fourth, methods to assess safety culture in operating organization are described. Finally, the practices to enhance the safety culture in an organization are discussed

  18. Preliminary study on improving safety culture in Malaysian nuclear industries

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Sabariah Kader [KAIST, Daejeon (Korea, Republic of); Lee, Y. E. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    This paper presents preliminary study on safety culture and its implementation in Malaysian nuclear industries by realizing the importance of safety culture; identification of important safety culture attributes; safety culture assessment and the practices to incorporate the identified safety culture attributes in organization. The first section of this paper explains the terms and definitions related to safety culture. Second, for the realization of importance of safety culture in organization, the international operational experiences emphasizing the importance of safety culture are described. Third, important safety culture attributes which are frequently cited in literature are provided. Fourth, methods to assess safety culture in operating organization are described. Finally, the practices to enhance the safety culture in an organization are discussed.

  19. Beyond safety accountability

    CERN Document Server

    Geller, E Scott

    2001-01-01

    Written in an easy-to-read conversational tone, Beyond Safety Accountability explains how to develop an organizational culture that encourages people to be accountable for their work practices and to embrace a higher sense of personal responsibility. The author begins by thoroughly explaining the difference between safety accountability and safety responsibility. He then examines the need of organizations to improve safety performance, discusses why such performance improvement can be achieved through a continuous safety process, as distinguished from a safety program, and provides the practic

  20. Safety Culture Assessment at Regulatory Body - PNRA Experience of Implementing IAEA Methodology for Safety Culture Self Assessment

    International Nuclear Information System (INIS)

    Bhatti, S.A.N.; Arshad, N.

    2016-01-01

    The prevalence of a good safety culture is equally important for all kind of organizations involved in nuclear business including operating organizations, designers, regulator, etc., and this should be reflected through all the processes and activities of these organizations. The need for inculcating safety culture into regulatory processes and practices is gradually increasing since the major accident at Fukushima. Accordingly, several international fora in last few years repeatedly highlighted the importance of prevalence of safety culture in regulatory bodies as well. The utilisation of concept of safety culture always remained applicable in regulatory activities of PNRA in the form of core values. After the Fukushima accident, PNRA considered it important to check the extent of utilisation of safety culture concept in organizational activities and decided to conduct its “Safety Culture Self-Assessment (SCSA)” for presenting itself as a role model in-order to endorse the fact that safety culture at regulatory authority plays an important role to influence safety culture at licenced facilities.

  1. Carbon Monoxide Safety

    Science.gov (United States)

    ... with the Media Fire Protection Technology Carbon monoxide safety outreach materials Keep your community informed about the ... KB | Spanish PDF 592 KB Handout: carbon monoxide safety Download this handout and add your organization's logo ...

  2. Nuclear Safety Culture

    International Nuclear Information System (INIS)

    2017-01-01

    Ethics is caring about people and Safety is caring that no physical harm comes to people.Therefore Safety is a type of Ethical Behavior. Culture: is The Way We Do Things Here.Safety Culture is mixture of organization traditions, values, attitudes and behaviors modeled by Its leaders and internalized by its members that serve to make nuclear safety the overriding priority. Safety Culture is that assembly of characteristics and attitudes in Organisations and individuals which established that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance

  3. Exploiting data from safety investigations and processes to assess performance of safety management aspects

    NARCIS (Netherlands)

    Karanikas, Nektarios

    2016-01-01

    This paper presents an alternative way to use records from safety investigations as a means to support the evaluation of safety management (SM) aspects. Datasets from safety investigation reports and progress records of an aviation organization were analyzed with the scope of assessing safety

  4. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Suman [Risk Analyst (India)]. E-mail: sumanashokrao@yahoo.co.in

    2007-04-11

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly.

  5. A literature review of safety culture.

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Kerstan Suzanne; Stevens-Adams, Susan Marie; Wenner, Caren A.

    2013-03-01

    Workplace safety has been historically neglected by organizations in order to enhance profitability. Over the past 30 years, safety concerns and attention to safety have increased due to a series of disastrous events occurring across many different industries (e.g., Chernobyl, Upper Big-Branch Mine, Davis-Besse etc.). Many organizations have focused on promoting a healthy safety culture as a way to understand past incidents, and to prevent future disasters. There is an extensive academic literature devoted to safety culture, and the Department of Energy has also published a significant number of documents related to safety culture. The purpose of the current endeavor was to conduct a review of the safety culture literature in order to understand definitions, methodologies, models, and successful interventions for improving safety culture. After reviewing the literature, we observed four emerging themes. First, it was apparent that although safety culture is a valuable construct, it has some inherent weaknesses. For example, there is no common definition of safety culture and no standard way for assessing the construct. Second, it is apparent that researchers know how to measure particular components of safety culture, with specific focus on individual and organizational factors. Such existing methodologies can be leveraged for future assessments. Third, based on the published literature, the relationship between safety culture and performance is tenuous at best. There are few empirical studies that examine the relationship between safety culture and safety performance metrics. Further, most of these studies do not include a description of the implementation of interventions to improve safety culture, or do not measure the effect of these interventions on safety culture or performance. Fourth, safety culture is best viewed as a dynamic, multi-faceted overall system composed of individual, engineered and organizational models. By addressing all three components of

  6. Organization and methodology approach for the safety assessment of the present situation and the future works on Chernobyl-4 and the site

    International Nuclear Information System (INIS)

    Bachner, D.; Benoist, E.; Duco, J.; Jahns, A.

    1995-01-01

    This work deals with the organization and methodology approach for the safety assessment of the present situation and the future works on Chernobyl 4 and the site. It presents the results of a common preliminary discussion in order to formulate advices on the basic management of the Chernobyl safety assessment process. (O.L.)

  7. Safety handbook

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of the Australian Nuclear Science and Technology Organization's Safety Handbook is to outline simply the fundamental procedures and safety precautions which provide an appropriate framework for safe working with any potential hazards, such as fire and explosion, welding, cutting, brazing and soldering, compressed gases, cryogenic liquids, chemicals, ionizing radiations, non-ionising radiations, sound and vibration, as well as safety in the office. It also specifies the organisation for safety at the Lucas Heights Research Laboratories and the responsibilities of individuals and committees. It also defines the procedures for the scrutiny and review of all operations and the resultant setting of safety rules for them. ills

  8. Communication's Role in Safety Management and Performance for the Road Safety Practices

    OpenAIRE

    Salim Keffane (s)

    2014-01-01

    Communication among organizations could play an important role in increasing road safety. To get in-depth knowledge of its role, this study measured managers' and employees' perceptions of the communication's role on six safety management and performance criteria for road safety practices by conducting a survey using a questionnaire among 165 employees and 135 managers. Path analysis using AMOS-19 software shows that some of the safety management road safety practices have high correlation wi...

  9. Relationship of safety culture and process safety

    International Nuclear Information System (INIS)

    Olive, Claire; O'Connor, T. Michael; Mannan, M. Sam

    2006-01-01

    Throughout history, humans have gathered in groups for social, religious, and industrial purposes. As the conglomeration of people interact, a set of underlying values, beliefs, and principles begins to develop that serve to guide behavior within the group. These 'guidelines' are commonly referred to as the group culture. Modern-day organizations, including corporations, have developed their own unique cultures derived from the diversity of the organizational interests and the background of the employees. Safety culture, a sub-set of organizational culture, has been a major focus in recent years. This is especially true in the chemical industry due to the series of preventable, safety-related disasters that occurred in the late seventies and eighties. Some of the most notable disasters, during this time period, occurred at Bhopal, Flixborough, and Seveso. However, current events, like the September 11th terrorist attacks and the disintegration of the Columbia shuttle, have caused an assessment of safety culture in a variety of other organizations

  10. Development and applications of a safety assessment system for promoting safety culture in nuclear power plants

    International Nuclear Information System (INIS)

    Takano, Ken-ichi; Hasegawa, Naoko; Hirose, Ayako; Hayase, Ken-ichi

    2004-01-01

    For past five years, CRIEPI has been continuing efforts to develop and make applications of a 'safety assessment system' which enable to measure the safety level of organization. This report describe about frame of the system, assessment results and its reliability, and relation between labor accident rate in the site and total safety index (TSI), which can be obtained by the principal factors analysis. The safety assessment in this report is based on questionnaire survey of employee. The format and concrete questionnaires were developed using existing literatures including organizational assessment tools. The tailored questionnaire format involved 124 questionnaire items. The assessment results could be considered as a well indicator of the safety level of organization, safety management, and safety awareness of employee. (author)

  11. Safety management in research and development organisation

    International Nuclear Information System (INIS)

    Nivedha, T.

    2016-01-01

    Health and safety is one of the most important aspects of an organizations smooth and effective functioning. It depends on the safety management, health management, motivation, leadership and training, welfare facilities, accident statistics, policy, organization and administration, hazard control and risk analysis, monitoring, statistics and reporting. Workplace accidents are increasingly common, main causes are untidiness, noise, too hot or cold environments, old or poorly maintained machines, and lack of training or carelessness of employees. One of the biggest issues facing employers today is the safety of their employees. This study aims at analyzing the occupational health and safety of Research organization in Indira Gandhi Centre for Atomic Research by gathering information on health management, safety management, motivation, leadership and training, welfare facilities, accident statistics, organization and administration, hazard control and risk analysis, monitoring, statistics and reporting. Data were collected by using questionnaires which were developed on health and safety management system. (author)

  12. Regulatory Oversight of Safety Culture in Finland: A Systemic Approach to Safety

    International Nuclear Information System (INIS)

    Oedewald, P.; Väisäsvaara, J.

    2016-01-01

    In Finland the Radiation and Nuclear Safety Authority STUK specifies detailed regulatory requirements for good safety culture. Both the requirements and the practical safety culture oversight activities reflect a systemic approach to safety: the interconnections between the technical, human and organizational factors receive special attention. The conference paper aims to show how the oversight of safety culture can be integrated into everyday oversight activities. The paper also emphasises that the scope of the safety culture oversight is not specific safety culture activities of the licencees, but rather the overall functioning of the licence holder or the new build project organization from safety point of view. The regulatory approach towards human and organizational factors and safety culture has evolved throughout the years of nuclear energy production in Finland. Especially the recent new build projects have highlighted the need to systematically pay attention to the non-technical aspects of safety as it has become obvious how the HOF issues can affect the design processes and quality of construction work. Current regulatory guides include a set of safety culture related requirements. The requirements are binding to the licence holders and they set both generic and specific demands on the licencee to understand, monitor and to develop safety culture of their own organization but also that of their supplier network. The requirements set for the licence holders has facilitated the need to develop the regulator’s safety culture oversight practices towards a proactive and systemic approach.

  13. Tsunami hazard

    International Nuclear Information System (INIS)

    2013-01-01

    Tohoku Earthquake Tsunami on 11 March, 2011 has led the Fukushima Daiichi nuclear power plant to a serious accident, which highlighted a variety of technical issues such as a very low design tsunami height and insufficient preparations in case a tsunami exceeding the design tsunami height. Lessons such as to take measures to be able to maintain the important safety features of the facility for tsunamis exceeding design height and to implement risk management utilizing Probabilistic Safety Assessment are shown. In order to implement the safety assessment on nuclear power plants across Japan accordingly to the back-fit rule, Nuclear Regulatory Commission will promulgate/execute the New Safety Design Criteria in July 2013. JNES has positioned the 'enhancement of probabilistic tsunami hazard assessment' as highest priority issue and implemented in order to support technically the Nuclear Regulatory Authority in formulating the new Safety Design Criteria. Findings of the research had reflected in the 'Technical Review Guidelines for Assessing Design Tsunami Height based on tsunami hazards'. (author)

  14. Leadership and Safety Culture: Leadership for Safety

    International Nuclear Information System (INIS)

    Fischer, E.

    2016-01-01

    Following the challenge to operate Nuclear Power Plants towards operational excellence, a highly skilled and motivated organization is needed. Therefore, leadership is a valuable success factor. On the other hand a well-engineered safety orientated design of NPP’s is necessary. Once built, an NPP constantly requires maintenance, ageing management and lifetime modifications. E.ON tries to keep the nuclear units as close as possible to the state of the art of science and technology. Not at least a requirement followed by our German regulation. As a consequence of this we are continuously challenged to improve our units and the working processes using national and international operational experiences too. A lot of modifications are driven by our self and by regulators. That why these institutions — authorities and independent examiners—contribute significantly to the safety success. Not that it is easy all the day. The relationship between the regulatory body, examiners and the utilities should be challenging but also cooperative and trustful within a permanent dialog. To reach the common goal of highest standards regarding nuclear safety all parties have to secure a living safety culture. Without this attitude there is a higher risk that safety relevant aspects may stay undetected and room for improvement is not used. Nuclear operators should always be sensitized and follow each single deviation. Leaders in an NPP-organization are challenged to create a safety-, working-, and performance culture based on clear common values and behaviours, repeated and lived along all of our days to create a least a strong identity in the staffs mind to the value of safety, common culture and overall performance. (author)

  15. Global nuclear safety culture

    International Nuclear Information System (INIS)

    1997-01-01

    As stated in the Nuclear Safety Review 1996, three components characterize the global nuclear safety culture infrastructure: (i) legally binding international agreements; (ii) non-binding common safety standards; and (iii) the application of safety standards. The IAEA has continued to foster the global nuclear safety culture by supporting intergovernmental collaborative efforts; it has facilitated extensive information exchange, promoted the drafting of international legal agreements and the development of common safety standards, and provided for the application of safety standards by organizing a wide variety of expert services

  16. U.S. Nuclear Regulatory Commission Safety Culture Oversight

    International Nuclear Information System (INIS)

    Sieracki, D. J.

    2016-01-01

    The NRC recognises that it is important for all organizations performing or overseeing regulated activities to establish and maintain a positive safety culture commensurate with the safety and security significance of their activities and the nature and complexity of their organizations and functions. The NRC’s approach to safety culture is based on the premise that licencees bear the primary responsibility for safety. The NRC provides oversight of safety culture through expectations detailed in policy statements, safety culture assessor training for NRC inspectors, the oversight process, and the Allegations and Enforcement Programs. The NRC’s Safety Culture Policy Statement (SCPS) sets forth the Commission’s expectation that individuals and organizations establish and maintain a positive safety culture commensurate with the safety and security significance of their activities and the nature and complexity of their organizations and functions. The SCPS is not a regulation. It applies to all licencees, certificate holders, permit holders, authorisation holders, holders of quality assurance program approvals, vendors and suppliers of safety-related components, and applicants for a licence, certificate, permit, authorisation, or quality assurance program approval, subject to NRC authority.

  17. The relationship between organizational leadership for safety and learning from patient safety events.

    Science.gov (United States)

    Ginsburg, Liane R; Chuang, You-Ta; Berta, Whitney Blair; Norton, Peter G; Ng, Peggy; Tregunno, Deborah; Richardson, Julia

    2010-06-01

    To examine the relationship between organizational leadership for patient safety and five types of learning from patient safety events (PSEs). Forty-nine general acute care hospitals in Ontario, Canada. A nonexperimental design using cross-sectional surveys of hospital patient safety officers (PSOs) and patient care managers (PCMs). PSOs provided data on organization-level learning from (a) minor events, (b) moderate events, (c) major near misses, (d) major event analysis, and (e) major event dissemination/communication. PCMs provided data on organizational leadership (formal and informal) for patient safety. Hospitals were the unit of analysis. Seemingly unrelated regression was used to examine the influence of formal and informal leadership for safety on the five types of learning from PSEs. The interaction between leadership and hospital size was also examined. Formal organizational leadership for patient safety is an important predictor of learning from minor, moderate, and major near-miss events, and major event dissemination. This relationship is significantly stronger for small hospitals (learning from safety events. Formal leadership support for safety is of particular importance in small organizations where the economic burden of safety programs is disproportionately large and formal leadership is closer to the front lines.

  18. Dryout modeling in support of the organic tank safety project

    International Nuclear Information System (INIS)

    Simmons, C.S.

    1998-08-01

    This work was performed for the Organic Tank Safety Project to evaluate the moisture condition of the waste surface organic-nitrate bearing tanks that are classified as being conditionally safe because sufficient water is present. This report describes the predictive modeling procedure used to predict the moisture content of waste in the future, after it has been subjected to dryout caused by water vapor loss through passive ventilation. This report describes a simplified procedure for modeling the drying out of tank waste. Dryout occurs as moisture evaporates from the waste into the headspace and then exits the tank through ventilation. The water vapor concentration within the waste of the headspace is determined by the vapor-liquid equilibrium, which depends on the waste's moisture content and temperature. This equilibrium has been measured experimentally for a variety of waste samples and is described by a curve called the water vapor partial pressure isotherm. This curve describes the lowering of the partial pressure of water vapor in equilibrium with the waste relative to pure water due to the waste's chemical composition and hygroscopic nature. Saltcake and sludge are described by two distinct calculations that emphasize the particular physical behavior or each. A simple, steady-state model is devised for each type to obtain the approximate drying behavior. The report shows the application of the model to Tanks AX-102, C-104, and U-105

  19. Environment, safety and health, management and organization compliance assessment, West Valley Demonstration Program, West Valley, New York

    International Nuclear Information System (INIS)

    1989-08-01

    An Environment, Safety and Health ''Tiger Team'' Assessment was conducted at the West Valley Demonstration Project. The Tiger Team was chartered to conduct an onsite, independent assessment of WVDP's environment, safety and health (ES ampersand H) programs to assure compliance with applicable Federal and State laws, regulations, and standards, and Department of Energy Orders. The objective is to provide to the Secretary of Energy the following information: current ES ampersand H compliance status of each facility; specific noncompliance items; ''root causes'' for noncompliance items; evaluation of the adequacy of ES ampersand H organization and resources (DOE and contractor) and needed modifications; and where warranted, recommendations for addressing identified problem areas

  20. Strengthening the Global Nuclear Safety Regime. INSAG-21. A report by the International Nuclear Safety Group

    International Nuclear Information System (INIS)

    2014-01-01

    The Global Nuclear Safety Regime is the framework for achieving the worldwide implementation of a high level of safety at nuclear installations. Its core is the activities undertaken by each country to ensure the safety and security of the nuclear installations within its jurisdiction. But national efforts are and should be augmented by the activities of a variety of international enterprises that facilitate nuclear safety - intergovernmental organizations, multinational networks among operators, multinational networks among regulators, the international nuclear industry, multinational networks among scientists, international standards setting organizations and other stakeholders such as the public, news media and non-governmental organizations (NGOs) that are engaged in nuclear safety. All of these efforts should be harnessed to enhance the achievement of safety. The existing Global Nuclear Safety Regime is functioning at an effective level today. But its impact on improving safety could be enhanced by pursuing some measured change. This report recommends action in the following areas: - Enhanced use of the review meetings of the Convention on Nuclear Safety as a vehicle for open and critical peer review and a source for learning about the best safety practices of others; - Enhanced utilization of IAEA Safety Standards for the harmonization of national safety regulations, to the extent feasible; - Enhanced exchange of operating experience for improving operating and regulatory practices; and - Multinational cooperation in the safety review of new nuclear power plant designs. These actions, which are described more fully in this report, should serve to enhance the effectiveness of the Global Nuclear Safety Regime

  1. Safety objectives for 2014

    CERN Multimedia

    HSE Unit

    2014-01-01

    This is the third year in which the CERN Management has presented annual safety objectives for the Organization, the “HSE Objectives”.   The HSE objectives for 2014, which were announced by the Director-General at his traditional New Year’s address to the staff and were presented at the first Enlarged Directorate meeting of the year, have been drawn up and agreed in close collaboration between the DSOs, the HSE Unit and the DG himself. From safety in the workplace to radiation and environmental protection, the document emphasises that “Safety is a priority for CERN” and that safety policy is a key element in how the Organization is run. And, like all policies, it generates objectives that “serve as a general framework for action”. The HSE objectives are broken down into the following fields: occupational health and safety on sites and in the workplace, radiation protection, radiation safety, environmental protection, emerge...

  2. Identification and evaluation of priorities in the business process of a risk or safety organization

    International Nuclear Information System (INIS)

    Teng, Kuei-Yung; Thekdi, Shital A.; Lambert, James H.

    2012-01-01

    Agencies are increasingly following principles and guidelines for the coordination of risk assessment, risk management, and risk communication in large-scale programs. In particular, there is a challenge to comply with the U.S. Office of Management and Budget (OMB) memorandum “Updated Principles for Risk Analysis” among other guidelines. This paper demonstrates a systemic approach to achieve compliance of a risk program with administrative and organizational principles and guidelines for risk analysis. The paper suggests three canonical questions as the mission of such a program: (i) what sources of risks are to be managed by the program, (ii) how should multiple risk assessment, risk management, and risk communication activities be administered and coordinated, and what should be the basis for resource allocation to these activities, and (iii) how will the performance of the program be monitored and evaluated. The paper demonstrates a re-prioritization of policy initiatives of the program based on emergent and future conditions. The approach is useful to agencies implementing risk or safety organizational guidelines such as those of the OMB, the US Government Accountability Office, the US Department of Homeland Security, the US Department of Defense, and others. This paper will be of interest to risk managers; agencies; and risk and safety analysts engaged in the conception, implementation, and evaluation of risk or safety programs. - Highlights: ► We develop a systemic approach for management of a risk or safety program. ► The approach includes business process models and policy prioritization. ► The results support organizations to implement risk and safety programs.

  3. Defining safety culture and the nexus between safety goals and safety culture. 4. Enhancing Safety Culture Through the Establishment of Safety Goals

    International Nuclear Information System (INIS)

    Tateiwa, Kenji; Miyata, Koichi; Yahagi, Kimitoshi

    2001-01-01

    Safety culture is the perception of each individual and organization of a nuclear power plant that safety is the first priority, and at Tokyo Electric Power Company (TEPCO), we have been practicing it in everyday activities. On the other hand, with the demand for competitiveness of nuclear power becoming even more intense these days, we need to pursue efficient management while maintaining the safety level at the same time. Below, we discuss how to achieve compatibility between safety culture and efficient management as well as enhance safety culture. Discussion at Tepco: safety culture-nurturing activities such as the following are being implemented: 1. informing the employees of the 'Declaration of Safety Promotion' by handing out brochures and posting it on the intranet home page; 2. publishing safety culture reports covering stories on safety culture of other industry sectors, recent movements on safety culture, etc.; 3. conducting periodic questionnaires to employees to grasp how deeply safety culture is being established; 4. carrying out educational programs to learn from past cases inside and outside the nuclear industry; 5. committing to common ownership of information with the public. The current status of safety culture in Japan sometimes seems to be biased to the quest of ultimate safety; rephrasing it, there have been few discussions regarding the sufficiency of the quantitative safety level in conjunction with the safety culture. Safety culture is one of the most crucial foundations guaranteeing the plant's safety, and for example, the plant safety level evaluated by probabilistic safety assessment (PSA) could be said to be valid only on the ground that a sound and sufficient safety culture exists. Although there is no doubt that the safety culture is a fundamental and important attitude of an individual and organization that keeps safety the first priority, the safety culture in itself should not be considered an obstruction to efforts to implement

  4. Procedures for self-assessment of operational safety

    International Nuclear Information System (INIS)

    1997-08-01

    Self-assessment processes have been continuously developed by nuclear organizations, including nuclear power plants. Currently, the nuclear industry and governmental organizations are showing an increasing interest in the implementation of this process as an effective way for improving safety performance. Self-assessment involves the use of different types of tools and mechanisms to assist the organizations in assessing their own safety performance against given standards. This helps to enhance the understanding of the need for improvements, the feeling of ownership in achieving them and and the safety culture as a whole. The concepts developed in this report present the basic approach to self-assessment taking into consideration experience gained during Operational Safety Review Team (OSART) missions, from organizations and utilities which have successfully implemented parts of a self-assessment programme and from meetings organized to discuss the subject

  5. Health and safety education for joint occupational health and safety committees

    Directory of Open Access Journals (Sweden)

    Myriam Mahecha Angulo

    2015-09-01

    Full Text Available Objective: To build a proposal to develop the educational process in health and safety joint committees aimed at safety and health at work (copasst. Methodology: Qualitative, descriptive study in which an in-depth interview to 32 copasst assets was made. Each interview was transcribed and interpreted by applying check with participants, finding meaningful statements, organizing groups of subjects, exhaustive description and validation with participants. The information was placed in the categories planning, organization, development, evaluation and feedback, emerging the following categories: responsible for processes management; planning, place and frequency of educational sessions; topics; format of sessions; involving/ development of sessions; understanding of the issues; applicability to daily life and work environment; applicability to personal/professional life and to the organization. Results: From emerging categories and according to the conceptual framework on adult health education and health and safety for workers, a participatory methodology for the development of educational processes with copasst was built. Conclusions: According to the statement by the members of the copasst, educational processes in health and safety, as they are developed at present, preclude them from achieving necessary competences to perform its functions, thus they are irrelevant.

  6. Objective and character of safety culture

    International Nuclear Information System (INIS)

    Aastrand, K.

    2005-01-01

    The main topics of the lecture include: (1) concepts of safety culture introduced in INSAG-4, (2) stages of development of safety culture, (3) general practises to develop organizational effectiveness as a means of implementing and improving safety culture, (4) specific practises to develop safety culture applying to all stages of a nuclear installation's life cycle, (5) suggestions on assessing the progress of development of safety culture in an organization and on evaluating the influence of major environmental and internal organizational factors on that culture, and (6) guidance on the detection of incipient weaknesses in safety culture that may be of particular interest to regulators and those responsible for self-assessment in organization

  7. How trust in institutions and organizations builds general consumer confidence in the safety of food: A decomposition of effects

    NARCIS (Netherlands)

    Jonge, de J.; Trijp, van J.C.M.; Lans, van der I.A.; Renes, R.J.; Frewer, L.J.

    2008-01-01

    This paper investigates the relationship between general consumer confidence in the safety of food and consumer trust in institutions and organizations. More specifically, using a decompositional regression analysis approach, the extent to which the strength of the relationship between trust and

  8. Safety of Research Reactors. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Requirements publication establishes requirements for all main areas of safety for research reactors, with particular emphasis on requirements for design and operation. It explains the safety objectives and concepts that form the basis for safety and safety assessment for all stages in the lifetime of a research reactor. Technical and administrative requirements for the safety of new research reactors are established in accordance with these objectives and concepts, and they are to be applied to the extent practicable for existing research reactors. The safety requirements established in this publication for the management of safety and regulatory supervision apply to site evaluation, design, manufacturing, construction, commissioning, operation (including utilization and modification), and planning for decommissioning of research reactors (including critical assemblies and subcritical assemblies). The publication is intended for use by regulatory bodies and other organizations with responsibilities in these areas and in safety analysis, verification and review, and the provision of technical support.

  9. Exploring relationships between hospital patient safety culture and Consumer Reports safety scores.

    Science.gov (United States)

    Smith, Scott Alan; Yount, Naomi; Sorra, Joann

    2017-02-16

    A number of private and public companies calculate and publish proprietary hospital patient safety scores based on publicly available quality measures initially reported by the U.S. federal government. This study examines whether patient safety culture perceptions of U.S. hospital staff in a large national survey are related to publicly reported patient safety ratings of hospitals. The Agency for Healthcare Research and Quality Hospital Survey on Patient Safety Culture (Hospital SOPS) assesses provider and staff perceptions of hospital patient safety culture. Consumer Reports (CR), a U.S. based non-profit organization, calculates and shares with its subscribers a Hospital Safety Score calculated annually from patient experience survey data and outcomes data gathered from federal databases. Linking data collected during similar time periods, we analyzed relationships between staff perceptions of patient safety culture composites and the CR Hospital Safety Score and its five components using multiple multivariate linear regressions. We analyzed data from 164 hospitals, with patient safety culture survey responses from 140,316 providers and staff, with an average of 856 completed surveys per hospital and an average response rate per hospital of 56%. Higher overall Hospital SOPS composite average scores were significantly associated with higher overall CR Hospital Safety Scores (β = 0.24, p Consumer Reports Hospital Safety Score, which is a composite of patient experience and outcomes data from federal databases. As hospital managers allocate resources to improve patient safety culture within their organizations, their efforts may also indirectly improve consumer-focused, publicly reported hospital rating scores like the Consumer Reports Hospital Safety Score.

  10. China's nuclear safety regulatory body: The national nuclear safety administration

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1991-04-01

    The establishment of an independent nuclear safety regulatory body is necessary for ensuring the safety of nuclear installations and nuclear fuel. Therefore the National Nuclear Safety Administration was established by the state. The aim, purpose, organization structure and main tasks of the Administration are presented. At the same time the practical examples, such as nuclear safety regulation on the Qinshan Nuclear Power Plant, safety review and inspections for the Daya Bay Nuclear Power Plant during the construction, and nuclear material accounting and management system in the nuclear fuel fabrication plant in China, are given in order to demonstrate the important roles having been played on nuclear safety by the Administration after its founding

  11. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  12. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  13. International cooperation for operating safety

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    1989-03-01

    The international-cooperation organization in nuclear safety domain is discussed. The nuclear energy Direction Committee is helped by the Security Committee for Nuclear Power Plants in the cooperation between security organizations of member countries and in the safety and nuclear activity regulations. The importance of the cooperation between experts in human being and engine problems is underlined. The applied methods, exchange activities and activity analysis, and the cooperation of the Nuclear Energy Agency and international organizations is analysed [fr

  14. Organization and liability of British regulating authorities involved in nuclear safety and radiation protection

    International Nuclear Information System (INIS)

    Harbison, S.

    1995-01-01

    In Great Britain, nuclear safety juridic basis is made of two law: HSWA (1974) for hygiene and security in working environment, and NIA (1965) specific to nuclear sites. The HSWA law created an HSC (Hygiene and Security Commission) in charge of workers and public security. HSC executive organ is HSE, whose nuclear office is NSD. Nevertheless, the general philosophy remains the one of HSWA, which results in the liability of operators in nuclear matters, as well as for any other industrial matter. (D.L.). 1 fig., 1 map

  15. Radiation safety

    International Nuclear Information System (INIS)

    1996-04-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. The health effects of radiation - both natural and artificial - are relatively well understood and can be effectively minimized through careful safety measures and practices. The IAEA, together with other international and expert organizations, is helping to promote and institute Basic Safety Standards on an international basis to ensure that radiation sources and radioactive materials are managed for both maximum safety and human benefit

  16. Self assessment of safety culture in HANARO using the code of conduct on the safety of research reactor by IAEA

    International Nuclear Information System (INIS)

    Lim, I.C.; Hwang, S.Y.; Woo, J.S.; Lee, M.; Jun, B.J.

    2003-01-01

    Full text: The safety culture in HANARO was self-assessed in accordance with the Code of Conduct on the Safety of Research Reactor drafted by IAEA. From 2002, IAEA has worked on the development of the Code of Conduct to achieve and maintain high level of nuclear safety in research reactors worldwide through the enhancement of national measures and international co-operation including, where appropriate, safety related technical cooperation. It defines the role of the state, the role of the regulatory body, the role of the operating organization and the role of the IAEA. As for the role of operating organization, the code specifies general requirements in assessment and verification of safety, financial and human resources, quality assurance, human factors, radiation protection and emergency preparedness. It also defines the role of operating organization for safety of research reactor in siting, design, operation, maintenance, modification and utilization as well. All of these items are the subjects for safety culture implementation, which means the Code could be a guideline for an operating organization to assess its safety culture. The self-assessment of safety culture in HANARO was made by using the sections of the Code describing the role of the operating organization for safety of research reactor. The major assessment items and the practices in HANARO for each items are as follow: The SAR of HANARO was reviewed by the regulatory body before the construction and the fuel loading of HANARO. Major design modifications and new installation of utilization facility needs the approval from regulatory body and safety assessment is a requirement for the approval. The Tech. Spec. for HANARO Operation specifies the analysis, surveillance, testing and inspection for HANARO operation. The reactor operation is mainly supported by the government and partly by nuclear R and D fund. The education and training of operation staff are one of major tasks of operating organization

  17. Safety campaigns. TIS Launches New Safety Information Campaign

    CERN Multimedia

    2001-01-01

    Need to start a new installation and worried about safety aspects? Or are you newly responsible for safety matters in a CERN building? Perhaps you're simply interested in how to make the working environment safer for yourself and your colleagues. Whatever the case, a new information campaign launched by TIS this week can help. The most visible aspects of the new campaign will be posters distributed around the Laboratory treating a different subject each month. The Web site - http://safety.cern.ch/ - which provides all safety related information. But these are not the only aspects of the new campaign. Members of the TIS/GS group, whose contact details can be found on the safety web site, are available to give information and advice on a one-to-one basis at any time. The campaign's launch has been timed to coincide with European Safety Week, organized by the European Agency for Safety and Health at Work and the subject treated in the first posters is safety inspection. This particular topic only concerns thos...

  18. Plant assessment system and safety culture

    International Nuclear Information System (INIS)

    Chun, Chuyoung

    1996-01-01

    The government, upon these events, keenly felt the necessity for developing the safety culture which was already forwarded in nuclear industries and started taking actions to propagate it to all parts of society. The government established a social safety director position under the Prime Minister's jurisdiction and also established a Safety Culture Promotion Headquarters in which 7 ministries and other organizations, such as Korea Economic Council, Federation of Korea Trade Union and Women's Federation Council were participating. In accordance with the government's strong will to enhance the safety consciousness of people, safety campaigns are being developed voluntarily in the private sector. The formation of non-governmental organizations, such as People's Central Council of Safety Culture Promotion, shows a good example of such movement

  19. Making Safety Culture a Corporate Culture

    International Nuclear Information System (INIS)

    Svenningsson, J.

    2016-01-01

    Safety Culture is something that we have actively worked with in the nuclear industry for a long time. Formally, it has been on the agenda since the Chernobyl accident. However, the work with creating a safe organizational culture can of course be traced back even further in time. Over the years a lot has happened in how we are approaching the concept of safety culture and especially how we look upon the human being as a part of the system and how we as humans interact with the organization and technology. For an organization to have a culture that promotes safety it is essential to create an ownership of safety with all workers within the site. To create this ownership it is vital to have the undivided commitment of the management. It all starts with the fundamental values of the organization. These values must then be concluded in firm expectations of behaviors that apply to all workers and management. This could be referred to as expectation of a Professional Behavior that allows us to live up to the company values. At OKG nuclear power plant, a successful Business Improvement Program was recently carried out with intention to develop and contribute to the maturity of the organization in terms of safety. One of the sub-programs of the program was called Professional Behavior - With purpose of making safety into a corporate culture. At OKG, Safety culture is something that systematically been addressed and worked with since 2004. Even though the Safety Culture program could be considered to already have reached a certain level of maturity the Business Improvement program helped the organization to lay the foundation for further development by clarify expected behaviors that was firmly cemented in to the corporate values.

  20. Nuclear Safety Charter

    International Nuclear Information System (INIS)

    2008-01-01

    The AREVA 'Values Charter' reaffirmed the priority that must be given to the requirement for a very high level of safety, which applies in particular to the nuclear field. The purpose of this Nuclear Safety Charter is to set forth the group's commitments in the field of nuclear safety and radiation protection so as to ensure that this requirement is met throughout the life cycle of the facilities. It should enable each of us, in carrying out our duties, to commit to this requirement personally, for the company, and for all stakeholders. These commitments are anchored in organizational and action principles and in complete transparency. They build on a safety culture shared by all personnel and maintained by periodic refresher training. They are implemented through Safety, Health, and Environmental management systems. The purpose of these commitments, beyond strict compliance with the laws and regulations in force in countries in which we operate as a group, is to foster a continuous improvement initiative aimed at continually enhancing our overall performance as a group. Content: 1 - Organization: responsibility of the group's executive management and subsidiaries, prime responsibility of the operator, a system of clearly defined responsibilities that draws on skilled support and on independent control of operating personnel, the general inspectorate: a shared expertise and an independent control of the operating organization, an organization that can be adapted for emergency management. 2 - Action principles: nuclear safety applies to every stage in the plant life cycle, lessons learned are analyzed and capitalized through the continuous improvement initiative, analyzing risks in advance is the basis of Areva's safety culture, employees are empowered to improve nuclear Safety, the group is committed to a voluntary radiation protection initiative And a sustained effort in reducing waste and effluent from facility Operations, employees and subcontractors are treated

  1. Enhancement of safety for reprocessing facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    After the accident in Fukushima Daiichi Nuclear Power Station, eight emergency projects taking into account the accident were newly launched in JNES. This project for a reprocessing facility was one of them. Major items conducted in the project were as follows. (1) Researches, studies and evaluations etc. on various events under a total AC (alternating current) power loss condition Under this condition following subjects of the events were performed. a) An equipment with a removing function of decay heat and a time to reach a certain critical condition, e.g. a solution boiling, b) An equipment with a preventing function of accumulation of hydrogen gas and a time to reach a concentration of hydrogen gas to that of the lowest limit of combustion, c) Specifications of an alternative electric source and how to supply power. (2) Researches, studies and evaluations etc. on beyond design basis events. Following subjects on these events were performed. a) An event progression scenario, a consequence, a time period between an initiating event and a resultant accident or a certain critical condition, and draft inspection criteria, b) Draft inspection criteria for a stress test. (author)

  2. Progress of nuclear safety research, (1)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successively in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also, the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts, and in this Part 1, the reactor safety research is described. The safety of nuclear fuel, the integrity and safety of pressure boundary components, the engineered safety in LOCA, fuel behavior in accident and others are reported. (Kako, I.)

  3. Safety climate and culture: Integrating psychological and systems perspectives.

    Science.gov (United States)

    Casey, Tristan; Griffin, Mark A; Flatau Harrison, Huw; Neal, Andrew

    2017-07-01

    Safety climate research has reached a mature stage of development, with a number of meta-analyses demonstrating the link between safety climate and safety outcomes. More recently, there has been interest from systems theorists in integrating the concept of safety culture and to a lesser extent, safety climate into systems-based models of organizational safety. Such models represent a theoretical and practical development of the safety climate concept by positioning climate as part of a dynamic work system in which perceptions of safety act to constrain and shape employee behavior. We propose safety climate and safety culture constitute part of the enabling capitals through which organizations build safety capability. We discuss how organizations can deploy different configurations of enabling capital to exert control over work systems and maintain safe and productive performance. We outline 4 key strategies through which organizations to reconcile the system control problems of promotion versus prevention, and stability versus flexibility. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review

    Directory of Open Access Journals (Sweden)

    Zhao Chen

    2014-01-01

    Full Text Available Chicken litter or chicken litter-based organic fertilizers are usually recycled into the soil to improve the structure and fertility of agricultural land. As an important source of nutrients for crop production, chicken litter may also contain a variety of human pathogens that can threaten humans who consume the contaminated food or water. Composting can inactivate pathogens while creating a soil amendment beneficial for application to arable agricultural land. Some foodborne pathogens may have the potential to survive for long periods of time in raw chicken litter or its composted products after land application, and a small population of pathogenic cells may even regrow to high levels when the conditions are favorable for growth. Thermal processing is a good choice for inactivating pathogens in chicken litter or chicken litter-based organic fertilizers prior to land application. However, some populations may become acclimatized to a hostile environment during build-up or composting and develop heat resistance through cross-protection during subsequent high temperature treatment. Therefore, this paper reviews currently available information on the microbiological safety of chicken litter or chicken litter-based organic fertilizers, and discusses about further research on developing novel and effective disinfection techniques, including physical, chemical, and biological treatments, as an alternative to current methods.

  5. Safety program of the Oak Ridge National Laboratory: a different approach

    International Nuclear Information System (INIS)

    Burger, G.H.

    1981-01-01

    The uniqueness and therefore different approach to Oak Ridge National Laboratory's safety program is not a result of elimination of the usual industrial safety organization, but results from the three organizations which supplement it and the areas of safety concerns that they cover. While industrial safety is primarily concerned with day-to-day routine worker activities (wearing of safety glasses and hard hats, adherence to electrical safety work procedures, proper safety lockout and tagout of equipment for maintenance activities, etc.), the other organizations, the Office of Operational Safety, Division Safety Officers and Radiation Control Officers, and the Laboratory director's Review Committees, are concerned with themuch broader spectrum of the total work environment. These organizations are concerned not only with the day-to-day worker activities but the design and conduction of all operations from a process viewpoint. The emphasis of these groups is assuring first that operations, experiments, facilities, etc., are designed properly and then secondly operated properly to assure safety of the operators, Laboratory population, and the public. Responsibilities of the three safety organizations constituting operational or process safety are described and discussed

  6. 40 CFR 1600.2 - Organization.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Organization. 1600.2 Section 1600.2 Protection of Environment CHEMICAL SAFETY AND HAZARD INVESTIGATION BOARD ORGANIZATION AND FUNCTIONS OF THE CHEMICAL SAFETY AND HAZARD INVESTIGATION BOARD § 1600.2 Organization. (a) The CSB's Board consists of five...

  7. Risk and safety requirements for diagnostic and therapeutic procedures in allergology: World Allergy Organization Statement

    Directory of Open Access Journals (Sweden)

    Marek L. Kowalski

    2016-10-01

    Full Text Available Abstract One of the major concerns in the practice of allergy is related to the safety of procedures for the diagnosis and treatment of allergic disease. Management (diagnosis and treatment of hypersensitivity disorders involves often intentional exposure to potentially allergenic substances (during skin testing, deliberate induction in the office of allergic symptoms to offending compounds (provocation tests or intentional application of potentially dangerous substances (allergy vaccine to sensitized patients. These situations may be associated with a significant risk of unwanted, excessive or even dangerous reactions, which in many instances cannot be completely avoided. However, adverse reactions can be minimized or even avoided if a physician is fully aware of potential risk and is prepared to appropriately handle the situation. Information on the risk of diagnostic and therapeutic procedures in allergic diseases has been accumulated in the medical literature for decades; however, except for allergen specific immunotherapy, it has never been presented in a systematic fashion. Up to now no single document addressed the risk of the most commonly used medical procedures in the allergy office nor attempted to present general requirements necessary to assure the safety of these procedures. Following review of available literature a group of allergy experts within the World Allergy Organization (WAO, representing various continents and areas of allergy expertise, presents this report on risk associated with diagnostic and therapeutic procedures in allergology and proposes a consensus on safety requirements for performing procedures in allergy offices. Optimal safety measures including appropriate location, type and required time of supervision, availability of safety equipment, access to specialized emergency services, etc. for various procedures have been recommended. This document should be useful for allergists with already established

  8. Idaho Safety Manual.

    Science.gov (United States)

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This manual is intended to help teachers, administrators, and local school boards develop and institute effective safety education as a part of all vocational instruction in the public schools of Idaho. This guide is organized in 13 sections that cover the following topics: introduction to safety education, legislation, levels of responsibility,…

  9. Nuclear safety in France

    International Nuclear Information System (INIS)

    Queniart, D.

    1989-12-01

    This paper outlines the organizational and technical aspects of nuclear safety in France. From the organization point of view, the roles of the operator, of the safety authority and of the Institute for Protection and Nuclear Safety are developed. From the technical viewpoint, the evolution of safety since the beginning of the French nuclear programme, the roles of deterministic and probabilistic methods and the severe accident policy (prevention and mitigation, venting containment) in France are explained

  10. The awareness of employees in safety culture through the improved nuclear safety culture evaluation method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ga; Sung, Chan Ho; Jung, Yeon Sub [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    After the Chernobyl nuclear accident in 1986, nuclear safety culture terminology was at first introduced emphasizing the importance of employees' attitude and organizational safety. The concept of safety culture was spread by INSAG 4 published in 1991. From that time, IAEA had provided the service of ASCOT for the safety culture assessment. However, many people still are thinking that safety culture is abstract and is not clear. It is why the systematic and reliable assessment methodology was not developed. Assessing safety culture is to identify what is the basic assumption for any organization to accept unconsciously. Therefore, it is very difficult to reach a meaningful conclusion by a superficial investigation alone. KHNP had been doing the safety culture assessment which was based on ASCOT methodology every 2 years. And this result had contributed to improving safety culture. But this result could not represent the level of organization's safety culture due to the limitation of method. So, KHNP has improved the safety culture method by benchmarking the over sea assessment techniques in 2011. The effectiveness of this improved methodology was validated through a pilot assessment. In this paper, the level of employees' safety culture awareness was analyzed by the improved method and reviewed what is necessary for the completeness and objectivity of the nuclear safety culture assessment methodology.

  11. The awareness of employees in safety culture through the improved nuclear safety culture evaluation method

    International Nuclear Information System (INIS)

    Kim, Young Ga; Sung, Chan Ho; Jung, Yeon Sub

    2012-01-01

    After the Chernobyl nuclear accident in 1986, nuclear safety culture terminology was at first introduced emphasizing the importance of employees' attitude and organizational safety. The concept of safety culture was spread by INSAG 4 published in 1991. From that time, IAEA had provided the service of ASCOT for the safety culture assessment. However, many people still are thinking that safety culture is abstract and is not clear. It is why the systematic and reliable assessment methodology was not developed. Assessing safety culture is to identify what is the basic assumption for any organization to accept unconsciously. Therefore, it is very difficult to reach a meaningful conclusion by a superficial investigation alone. KHNP had been doing the safety culture assessment which was based on ASCOT methodology every 2 years. And this result had contributed to improving safety culture. But this result could not represent the level of organization's safety culture due to the limitation of method. So, KHNP has improved the safety culture method by benchmarking the over sea assessment techniques in 2011. The effectiveness of this improved methodology was validated through a pilot assessment. In this paper, the level of employees' safety culture awareness was analyzed by the improved method and reviewed what is necessary for the completeness and objectivity of the nuclear safety culture assessment methodology

  12. The Safety Case and Safety Assessment for the Disposal of Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    This Safety Guide provides guidance and recommendations on meeting the safety requirements in respect of the safety case and supporting safety assessment for the disposal of radioactive waste. The safety case and supporting safety assessment provide the basis for demonstration of safety and for licensing of radioactive waste disposal facilities and assist and guide decisions on siting, design and operations. The safety case is also the main basis on which dialogue with interested parties is conducted and on which confidence in the safety of the disposal facility is developed. This Safety Guide is relevant for operating organizations preparing the safety case as well as for the regulatory body responsible for developing the regulations and regulatory guidance that determine the basis and scope of the safety case. Contents: 1. Introduction; 2. Demonstrating the safety of radioactive waste disposal; 3. Safety principles and safety requirements; 4. The safety case for disposal of radioactive waste; 5. Radiological impact assessment for the period after closure; 6. Specific issues; 7. Documentation and use of the safety case; 8. Regulatory review process.

  13. Developing safety culture in nuclear power engineering

    International Nuclear Information System (INIS)

    Tevlin, S.A.

    2000-01-01

    The new issue (no. 11) of the IAEA publications series Safety Reports, devoted to the safety culture in nuclear engineering Safety culture development in the nuclear activities. Practical recommendations to achieve success, is analyzed. A number of recommendations of international experts is presented and basic general indicators of satisfactory and insufficient safety culture in the nuclear engineering are indicated. It is shown that the safety culture has two foundations: human behavior and high quality of the control system. The necessity of creating the confidence by the management at all levels of the enterprise, development of individual initiative and responsibility of the workers, which make it possible to realize the structural hierarchic system, including technical, human and organizational constituents, is noted. Three stages are traced in the process of introducing the safety culture. At the first stage the require,emts of scientific-technical documentation and provisions of the governmental, regional and control organs are fulfilled. At the second stage the management of the organization accepts the safety as an important direction in its activities. At the third stage the organization accomplishes its work, proceeding from the position of constant safety improvement. The general model of the safety culture development is considered [ru

  14. Proceedings of the seminar on nuclear safety research and the workshop on reactor safety research

    International Nuclear Information System (INIS)

    2001-07-01

    The seminar on the nuclear safety research was held on November 20, 2000 according to the start of new five year safety research plan (FY2001-2005: established by Nuclear Safety Commission) with 79 participants. In the seminar, Commissioner Dr. Kanagawa gave the outline of the next five year safety research plan. Following this presentation, progresses and future scopes of safety researches in the fields of reactor facility, fuel cycle facility, radioactive waste and environmental impact on radiation at Japan Atomic Energy Research Institute (JAERI) were reported. After the seminar, the workshop on reactor safety research was held on November 21-22, 2000 with 141 participants. In the workshop, four sessions titled safety of efficient and economic utilization of nuclear fuel, safety related to long-term utilization of power reactors, research on common safety-related issues and toward further improvement of nuclear safety were organized and, outcomes and future perspectives in these wide research R and D in the related area at other organizations including NUPEC, JAPEIC and Kansai Electric Power Co. was presented in each session. This report compiles outlines of the presentations and used materials in the seminar and the workshop to form the proceedings for the both meetings. (author)

  15. Progress of nuclear safety research, (2)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successevely in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts and in this Part 2, the environmental safety research is described. The evaluation and analysis of environmental radioactivity, the study on radioactive waste management and the studies on various subjects related to environmental safety are reported. (Kako, I.)

  16. On Safety Management. A Frame of Reference for Studies of Safety Management with Examples From Non-Nuclear Contexts of Relevance for Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Ola; Salo, Ilkka; Allwin, Pernilla (Risk Analysis, Social and Decision Research Unit, Dept. of Psychology, Stockholm Univ., Stockholm (Sweden))

    2004-11-15

    technologies. System theories could be developed to grasp both technological non-living systems and human living-systems. It is considered a strength to be able to describe both technological and human elements and their mutual relations within a common theoretical framework. In the ongoing project we have introduced a systems perspective in which both living systems and non-living systems can be described in terms of processes and structures. In the framework it is exemplified how system concepts may be related to concepts related to organizational theory. Three different areas of operations are examined in the case studies: civil aviation, petroleum production, and car manufacturing. Two of the areas are represented by authorities: the Swedish Civil Aviation Safety Authority; and the Norwegian Petroleum Directorate. The third study is represented by a car manufacturer, Volvo. In order to study the interaction between authority and company, a Swedish airline company was investigated. In each case study, a thorough description of the organizational structure, the activities and operations, and the safety management specific for each organization, is given. In the descriptions, safety management within each area is studied in relation to concepts central to the system theoretical framework. Structural aspects of the system studied, system regulation, information feedback, and detection and identification of threats to safety, are some examples of concepts that are related to keep the system stable, concepts that also are related to activities that are often labeled as central to safety management. Thus, the case studies generate both illustrative descriptions about the unique in the specific areas studied, both from an organizational and a safety perspective, and, furthermore, put this in relation to general system theoretical concepts that are possible to transfer across areas. Each of the case studies generated detailed descriptions of the organization studied, activities and

  17. Examining the Relationship between Safety Management System Implementation and Safety Culture in Collegiate Flight Schools

    Science.gov (United States)

    Robertson, Mike Fuller

    2017-01-01

    Safety Management Systems (SMS) are becoming the industry standard for safety management throughout the aviation industry. As the Federal Aviation Administration (FAA) continues to mandate SMS for different segments, the assessment of an organization's safety culture becomes more important. An SMS can facilitate the development of a strong…

  18. Safety culture

    International Nuclear Information System (INIS)

    Drukraroff, C.

    2010-01-01

    The concept of Safety Culture was defined after Chernobyl's nuclear accident in 1986. It has not been exempt from discussion interpretations, adding riders, etc..., over the last 24 years because it has to do with human behavior and performance in the organizations. Safety Culture is not an easy task to define, assess and monitor. The proof of it is that today we still discussing and writing about it. How has been the evolution of Safety Culture at the Juzbado Factory since 1985 to today?. What is the strategy that we will be following in the future. (Author)

  19. Applying importance-performance analysis to patient safety culture.

    Science.gov (United States)

    Lee, Yii-Ching; Wu, Hsin-Hung; Hsieh, Wan-Lin; Weng, Shao-Jen; Hsieh, Liang-Po; Huang, Chih-Hsuan

    2015-01-01

    The Sexton et al.'s (2006) safety attitudes questionnaire (SAQ) has been widely used to assess staff's attitudes towards patient safety in healthcare organizations. However, to date there have been few studies that discuss the perceptions of patient safety both from hospital staff and upper management. The purpose of this paper is to improve and to develop better strategies regarding patient safety in healthcare organizations. The Chinese version of SAQ based on the Taiwan Joint Commission on Hospital Accreditation is used to evaluate the perceptions of hospital staff. The current study then lies in applying importance-performance analysis technique to identify the major strengths and weaknesses of the safety culture. The results show that teamwork climate, safety climate, job satisfaction, stress recognition and working conditions are major strengths and should be maintained in order to provide a better patient safety culture. On the contrary, perceptions of management and hospital handoffs and transitions are important weaknesses and should be improved immediately. Research limitations/implications - The research is restricted in generalizability. The assessment of hospital staff in patient safety culture is physicians and registered nurses. It would be interesting to further evaluate other staff's (e.g. technicians, pharmacists and others) opinions regarding patient safety culture in the hospital. Few studies have clearly evaluated the perceptions of healthcare organization management regarding patient safety culture. Healthcare managers enable to take more effective actions to improve the level of patient safety by investigating key characteristics (either strengths or weaknesses) that healthcare organizations should focus on.

  20. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  1. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  2. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  3. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  4. Safeprops: A Software for Fast and Reliable Estimation of Safety and Environmental Properties for Organic Compounds

    DEFF Research Database (Denmark)

    Jones, Mark Nicholas; Frutiger, Jerome; Abildskov, Jens

    We present a new software tool called SAFEPROPS which is able to estimate major safety-related and environmental properties for organic compounds. SAFEPROPS provides accurate, reliable and fast predictions using the Marrero-Gani group contribution (MG-GC) method. It is implemented using Python...... as the main programming language, while the necessary parameters together with their correlation matrix are obtained from a SQLite database which has been populated using off-line parameter and error estimation routines (Eq. 3-8)....

  5. Safety outcomes for engineering asset management organizations: Old problem with new solutions?

    International Nuclear Information System (INIS)

    Novak, Jeremy; Farr-Wharton, Ben; Brunetto, Yvonne; Shacklock, Kate; Brown, Kerry

    2017-01-01

    The issue of safety and longevity of engineering assets is of increasing importance because of their impact when disasters happen. This paper addresses a literature gap by examining the role of workplace relationships in employees' safety behaviour, and builds on the Resilience Engineering (RE) framework by examining some organisational culture factors affecting how employees behave. A Social Exchange framework is used to examine the impact of supervisor-employee relationships, employee commitment to safety practices, and the type of maintenance culture upon employees’ commitment to safety and safety outcomes. Survey data from 284 technical and engineering employees in engineering asset management organisations within Australia were analyzed using Structural Equation Modelling (SEM). Effective employee relationships with management and a proactive maintenance culture were associated with employee commitment to safety culture and safety outcomes. The findings provide empirical support for embedding an effective organisational culture focused on a proactive maintenance approach, along with ensuring employees are committed to safety processes, to ensure safety outcomes and also asset longevity. One study contribution is that good safety outcomes do not develop in a vacuum; instead they are built on effective workplace relationships. Therefore, SET helps to explain the forming of effective safety culture. - Highlights: • Effective workplace relationships with management positively affect organisational safety outcomes. • Supported maintenance cultures positively affect organisational safety outcomes. • Asset longevity requires strong focus on maintenance and safety embedded in the work cultures and everyday practices of employees.

  6. Safety first!

    CERN Multimedia

    2016-01-01

    Among the many duties I assumed at the beginning of the year was the ultimate responsibility for Safety at CERN: the responsibility for the physical safety of the personnel, the responsibility for the safe operation of the facilities, and the responsibility to ensure that CERN acts in accordance with the highest standards of radiation and environmental protection.   The Safety Policy document drawn up in September 2014 is an excellent basis for the implementation of Safety in all areas of CERN’s work. I am happy to commit during my mandate to help meet its objectives, not least by ensuring the Organization makes available the necessary means to achieve its Safety objectives. One of the main objectives of the HSE (Occupational Health and Safety and Environmental Protection) unit in the coming months is to enhance the measures to minimise CERN’s impact on the environment. I believe CERN should become a role model for an environmentally-aware scientific research laboratory. Risk ...

  7. Behaving safely under pressure: The effects of job demands, resources, and safety climate on employee physical and psychosocial safety behavior.

    Science.gov (United States)

    Bronkhorst, Babette

    2015-12-01

    Previous research has shown that employees who experience high job demands are more inclined to show unsafe behaviors in the workplace. In this paper, we examine why some employees behave safely when faced with these demands while others do not. We add to the literature by incorporating both physical and psychosocial safety climate in the job demands and resources (JD-R) model and extending it to include physical and psychosocial variants of safety behavior. Using a sample of 6230 health care employees nested within 52 organizations, we examined the relationship between job demands and (a) resources, (b) safety climate, and (c) safety behavior. We conducted multilevel analyses to test our hypotheses. Job demands (i.e., work pressure), job resources (i.e., job autonomy, supervisor support, and co-worker support) and safety climate (both physical and psychosocial safety climate) are directly associated with, respectively, lower and higher physical and psychosocial safety behavior. We also found some evidence that safety climate buffers the negative impact of job demands (i.e., work-family conflict and job insecurity) on safety behavior and strengthens the positive impact of job resources (i.e., co-worker support) on safety behavior. Regardless of whether the focus is physical or psychological safety, our results show that strengthening the safety climate within an organization can increase employees' safety behavior. Practical implication: An organization's safety climate is an optimal target of intervention to prevent and ameliorate negative physical and psychological health and safety outcomes, especially in times of uncertainty and change. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.

  8. Safety Climate of Commercial Vehicle Operation

    Science.gov (United States)

    2010-03-01

    Enhancing the safety culture within trucking and motor coach industries has become a key area of concern given the potential impact it has on crashes and overall safety. Many organizations recognize that safety is compromised if the culture within th...

  9. On Safety Management. A Frame of Reference for Studies of Safety Management with Examples From Non-Nuclear Contexts of Relevance for Nuclear Safety

    International Nuclear Information System (INIS)

    Svensson, Ola; Salo, Ilkka; Allwin, Pernilla

    2004-11-01

    technologies. System theories could be developed to grasp both technological non-living systems and human living-systems. It is considered a strength to be able to describe both technological and human elements and their mutual relations within a common theoretical framework. In the ongoing project we have introduced a systems perspective in which both living systems and non-living systems can be described in terms of processes and structures. In the framework it is exemplified how system concepts may be related to concepts related to organizational theory. Three different areas of operations are examined in the case studies: civil aviation, petroleum production, and car manufacturing. Two of the areas are represented by authorities: the Swedish Civil Aviation Safety Authority; and the Norwegian Petroleum Directorate. The third study is represented by a car manufacturer, Volvo. In order to study the interaction between authority and company, a Swedish airline company was investigated. In each case study, a thorough description of the organizational structure, the activities and operations, and the safety management specific for each organization, is given. In the descriptions, safety management within each area is studied in relation to concepts central to the system theoretical framework. Structural aspects of the system studied, system regulation, information feedback, and detection and identification of threats to safety, are some examples of concepts that are related to keep the system stable, concepts that also are related to activities that are often labeled as central to safety management. Thus, the case studies generate both illustrative descriptions about the unique in the specific areas studied, both from an organizational and a safety perspective, and, furthermore, put this in relation to general system theoretical concepts that are possible to transfer across areas. Each of the case studies generated detailed descriptions of the organization studied, activities and

  10. ITER Safety and Licensing

    International Nuclear Information System (INIS)

    Girard, J-.P; Taylor, N.; Garin, P.; Uzan-Elbez, J.; GULDEN, W.; Rodriguez-Rodrigo, L.

    2006-01-01

    The site for the construction of ITER has been chosen in June 2005. The facility will be implemented in Europe, south of France close to Marseille. The generic safety scheme is now under revision to adapt the design to the host country regulation. Even though ITER will be an international organization, it will have to comply with the French requirements in the fields of public and occupational health and safety, nuclear safety, radiation protection, licensing, nuclear substances and environmental protection. The organization of the central team together with its partners organized in domestic agencies for the in-kind procurement of components is a key issue for the success of the experimentation. ITER is the first facility that will achieve sustained nuclear fusion. It is both important for the experimental one-of-a-kind device, ITER itself, and for the future of fusion power plants to well understand the key safety issues of this potential new source of energy production. The main safety concern is confinement of the tritium, activated dust in the vacuum vessel and activated corrosion products in the coolant of the plasma-facing components. This is achieved in the design through multiple confinement barriers to implement the defence in depth approach. It will be demonstrated in documents submitted to the French regulator that these barriers maintain their function in all postulated incident and accident conditions. The licensing process started by examination of the safety options. This step has been performed by Europe during the candidature phase in 2002. In parallel to the final design, and taking into account the local regulations, the Preliminary Safety Report (RPrS) will be drafted with support of the European partner and others in the framework of ITER Task Agreements. Together with the license application, the RPrS will be forwarded to the regulatory bodies, which will launch public hearings and a safety review. Both processes must succeed in order to

  11. Identifying organizational cultures that promote patient safety.

    Science.gov (United States)

    Singer, Sara J; Falwell, Alyson; Gaba, David M; Meterko, Mark; Rosen, Amy; Hartmann, Christine W; Baker, Laurence

    2009-01-01

    Safety climate refers to shared perceptions of what an organization is like with regard to safety, whereas safety culture refers to employees' fundamental ideology and orientation and explains why safety is pursued in the manner exhibited within a particular organization. Although research has sought to identify opportunities for improving safety outcomes by studying patterns of variation in safety climate, few empirical studies have examined the impact of organizational characteristics such as culture on hospital safety climate. This study explored how aspects of general organizational culture relate to hospital patient safety climate. In a stratified sample of 92 U.S. hospitals, we sampled 100% of senior managers and physicians and 10% of other hospital workers. The Patient Safety Climate in Healthcare Organizations and the Zammuto and Krakower organizational culture surveys measured safety climate and group, entrepreneurial, hierarchical, and production orientation of hospitals' culture, respectively. We administered safety climate surveys to 18,361 personnel and organizational culture surveys to a 5,894 random subsample between March 2004 and May 2005. Secondary data came from the 2004 American Hospital Association Annual Hospital Survey and Dun & Bradstreet. Hierarchical linear regressions assessed relationships between organizational culture and safety climate measures. Aspects of general organizational culture were strongly related to safety climate. A higher level of group culture correlated with a higher level of safety climate, but more hierarchical culture was associated with lower safety climate. Aspects of organizational culture accounted for more than threefold improvement in measures of model fit compared with models with controls alone. A mix of culture types, emphasizing group culture, seemed optimal for safety climate. Safety climate and organizational culture are positively related. Results support strategies that promote group orientation and

  12. Safety culture in industrial radiography facility

    International Nuclear Information System (INIS)

    Vincent-Furo, Evelyn

    2015-02-01

    This project reviewed published IAEA materials and other documents on safety culture with specific references to industrial radiography. Safety culture requires all duties important to safety to be carried out correctly, with alertness, due thought and full knowledge, sound judgment and a proper sense of accountability. The development and maintenance of safety culture in an operating organization has to cover management systems, policies, responsibilities, procedures and organizational arrangements. The essence is to control radiation hazard, optimize radiation protection to prevent or reduce exposures and mitigate the consequences of accidents and incidents. To achieve a high degree of safety culture appropriate national and international infrastructure should exist to ensure effective training of workers and management system that supports commitment to safety culture at all level of the organization; management, managers and workforce. The result of the review revealed that all accidents in industrial radiography facilities were due to poor safety culture practices including inadequate regulatory control oversight. Some recommendations are provided and if implemented could improve safety culture leading to good safety performance which will significantly reduce accidents and their consequences in industrial radiography. These examples call for a review of safety culture in Industrial radiography. (au)

  13. Guide for understanding and evaluation of safety culture

    International Nuclear Information System (INIS)

    2008-01-01

    This report was the guide of understanding and evaluation of safety culture. Operator's activities for enhancement of safety culture in nuclear installations became an object of safety regulation in the management system. Evaluation of operator's activities (including top management's involvement) to prevent degradation of safety culture and organization climate in daily works needed understanding of safety culture and diversity of operator's activities. This guide was prepared to check indications of degradation of safety culture and organization climate in operator's activities in daily works and encourage operator's activities to enhance safety culture improvement and good practice. Comprehensive evaluation of operator's activities to prevent degradation of safety culture and organization climate would be performed from the standpoints of 14 safety culture elements such as top management commitment, clear plan and implementation of upper manager, measures to avoid wrong decision making, questioning attitude, reporting culture, good communications, accountability and openness, compliance, learning system, activities to prevent accidents or incidents beforehand, self-assessment or third party evaluation, work management, change management and attitudes/motivation. Element-wise examples and targets for evaluation were attached with evaluation check tables. (T. Tanaka)

  14. To improve the safety of treatments in radiotherapy by developing a safety culture

    International Nuclear Information System (INIS)

    2008-01-01

    Following the radiotherapy accidents between 2004 and 2006, the I.R.S.N. deemed necessary to lead a study on the safety of treatments in radiotherapy and on the use and the adaptation to the medical domain of safety analysis approach developed for the nuclear installations. Of this study, six mains lines of investigation appear: Endow the radiotherapy services with real referential of safety, reinforce the robustness of the organization of radiotherapy services, improve the safety of the equipment and software at the design and operating stages, improve the management of the expertise and reinforce the operating feed back on incidents and accidents. The main learning from this study is the benefit that could be gained by fitting the safety analysis concepts and methods to the specificities of radiotherapy considering the organization of it collective work, the cooperation between actors stemming from different jobs as well as the interactions between actors and technical systems in the process of the treatments, when they are put into service and during their periodic checks. (author)

  15. Key practical issues in strengthening safety culture. INSAG-15. A report by the International Safety Advisory Group

    International Nuclear Information System (INIS)

    2002-01-01

    This report describes the essential practical issues to be considered by organizations aiming to strengthen safety culture. It is intended for senior executives, managers and first line supervisors in operating organizations. Although safety culture cannot be directly regulated, it is important that members of regulatory bodies understand how their actions affect the development of attempts to strengthen safety culture and are sympathetic to the need to improve the less formal human related aspects of safety. The report is therefore of relevance to regulators, although not intended primarily for them. The International Nuclear Safety Advisory Group (INSAG) introduced the concept of safety culture in its INSAG-4 report in 1991. Since then, many papers have been written on safety culture, as it relates to organizations and individuals, its improvement and its underpinning prerequisites. Variations in national cultures mean that what constitutes a good approach to enhancing safety culture in one country may not be the best approach in another. However, INSAG seeks to provide pragmatic and practical advice of wide applicability in the principles and issues presented in this report. Nuclear and radiological safety are the prime concerns of this report, but the topics discussed are so general that successful application of the principles should lead to improvements in other important areas, such as industrial safety, environmental performance and, in some respects, wider business performance. This is because many of the attitudes and practices necessary to achieve good performance in nuclear safety, including visible commitment by management, openness, care and thoroughness in completing tasks, good communication and clarity in recognizing major issues and dealing with them as a priority, have wide applicability

  16. PNRA: Practically Improving Safety Culture within the Regulatory Body

    International Nuclear Information System (INIS)

    Bhatti, S.A.N.; Habib, M.A.

    2016-01-01

    The prevalence of a good safety culture is equally important for all kind of organizations involved in nuclear business including operating organizations, designers, regulator, etc., and this should be reflected through the processes and activities of these organizations. The need for inculcating safety culture into regulatory processes and practices is gradually increasing since the major nuclear accident of Fukushima, Japan. Accordingly, several international fora in last few years repeatedly highlighted the importance of prevalence of safety culture in regulatory bodies as well. The utilisation of concept of safety culture remained applicable in regulatory activities of PNRA in the form of core values. After the Fukushima accident, PNRA considered it important to check the extent of utilisation of safety culture concept in organizational activities and decided to conduct its “Safety Culture Self-Assessment (SCSA)” for presenting itself as role model in-order to endorse the fact that safety culture at regulatory authority plays an important role to influence safety culture at licenced facilities. Considering the complexity of cultural assessment starting from visual manifestations to the basic assumptions at the deeper level, PNRA decided to utilise IAEA emerging methodology for assessment of culture and then used modified IAEA normative framework (made it applicable for regulatory body) for assessing safety culture at a regulatory body. PNRA SCSA team utilised safety culture assessment tools (observations, focus groups, surveys, interviews and document analysis) for collecting cultural facts by including all level of personnel involved in different activities and functions in the organization. Different challenges were encountered during implementation of these tools which were tackled with the background of training on SCSA and with the help of experts during support missions arranged by IAEA. Before formally starting the SCSA process, pre-launch activities

  17. Assessing progress in the development of safety culture

    International Nuclear Information System (INIS)

    Rotaru, I.; Ghita, S.; Biro, L.

    2002-01-01

    This paper is focussed on the organizational culture and learning processes required for the implementation of all aspects of safety culture. There is no prescriptive formula for improving safety culture. However, some common characteristics and practices are emerging that can be adopted by organizations in order to make progress. The paper refers to some approaches that have been successful in a number of countries. The experience of the international nuclear industry in the development and improvement of safety culture could be extended and found useful in other nuclear activities, irrespective of scale. The examples given of specific practice cover a wide range of activities including analysis of events, the regulatory approach on safety culture, employee participation and safety performance measures. Many of these practices may be relevant to smaller organizations and could contribute to improving safety culture, whatever the size of the organization. The most effective approach is to pursue a range of practices that can be mutually supportive in the development of a progressive safety culture, supported by professional standards, organizational and management commitment. Some guidance is also given on the assessment of safety culture and on the detection of a weakening safety culture. Few suggestions for accelerating the safety culture development and improvement process are also provided. (author)

  18. A Safety Management Model for FAR 141 Approved Flight Schools

    OpenAIRE

    Mendonca, Flavio A. C.; Carney, Thomas Q

    2017-01-01

    The Safety Management Annex (Annex 19), which became applicable in November 2013, consolidates safety management provisions previously contained in six other International Civil Aviation Organization (ICAO) Annexes, and will serve as a resource for overarching state safety management responsibilities. Through Annex 19, ICAO has required that its member states develop and implement safety management systems (SMS) to improve safety. This mandate includes an approved training organization that i...

  19. Management commitment to safety as organizational support: relationships with non-safety outcomes in wood manufacturing employees

    Science.gov (United States)

    Judd H. Michael; Demetrice D. Evans; Karen J. Jansen; Joel M. Haight

    2005-01-01

    Employee perceptions of management commitment to safety are known to influence important safety-related outcomes. However, little work has been conducted to explore nonsafety-related outcomes resulting from a commitment to safety. Method: Employee-level outcomes critical to the effective functioning of an organization, including attitudes such as job...

  20. Multi-scale analysis of deformation behavior at SCC crack tip (3) (Contract research)

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Miwa, Yukio; Tsukada, Takashi; Hayakawa, Masao; Nagashima, Nobuo

    2008-08-01

    In recent years, incidents of the stress corrosion cracking (SCC) were frequently reported that occurred to the various components of domestic boiling water reactors (BWR), and the cause investigation and measure become the present important issue. By the Japan nuclear energy safety organization (JNES), a research project on the intergranular SCC (IGSCC) in nuclear grade stainless steels (henceforth, IGSCC project) is under enforcement from a point of view to secure safety and reliability of BWR, and SCC growth data of low carbon stainless steels are being accumulated for the weld part or the work-hardened region adjacent to the weld metal. In the project, it has been an important subject to guarantee the validity of accumulated SCC data. At a crack tip of SCC in compact tension (CT) type specimen used for the SCC propagation test, a macroscopic plastic region is formed where heterogeneity of microstructure developed by microscopic sliding and dislocations is observed. However, there is little quantitative information on the plastic region, and therefore, to assess the data of macroscopic SCC growth rate and the validity of propagation test method, it is essentially required to investigate the plastic region at the crack tip in detail from a microscopic viewpoint. This report describes a result of the research conducted by the Japan Atomic Energy Agency and the National Institute for Materials Science under contract with JNES that was concerned with a multi-scale analysis of plastic deformation behavior at the crack tip of SCC. The research was carried out to evaluate the validity of the SCC growth data acquired in the IGSCC project based on a mechanistic understanding of SCC. For the purpose, in this research, analyses of the plastic deformation behavior and microstructure around the crack tip were performed in a nano-order scale. The hardness measured in nano, meso and macro scales was employed as a common index of the strength, and the essential data necessary

  1. CERN safety reaches out to medicine

    CERN Document Server

    2001-01-01

    What do CERN and other scientific organizations like ESA and ESO have in common with neurosurgery and airlines? At first sight, not much. But all require sound safety management. CERN's expertise in this field was recently highlighted when two CERN engineers were invited to talk at an international conference on Quality Management and Risk Control in Neurosurgery.CERN has long been recognised as a centre of excellence in physics, and its spin-offs in fields such as medicine have been widely hailed. But increasingly, the Laboratory's expertise in the management of large international collaborations is also being recognised. Contacts between CERN and organizations like ESA and ESO, as well as with industry, bear witness to this fact. One recent example comes from Airbus Industrie, which organized a meeting in 1998 with CERN to compare notes on project management, safety, and quality assurance. Safety management is a recognised speciality in the field of project management and at CERN, TIS and the safety offici...

  2. The IAEA radioactive waste safety standards programme

    International Nuclear Information System (INIS)

    Tourtellotte, James R.

    1995-01-01

    The IAEA is currently reviewing more than thirty publications in its Safety Series with a view toward consolidating and organizing information pertaining to radioactive waste. the effort is entitled Radioactive Waste Safety Standards programme (RADWASS). RADWASS is a significant undertaking and may have far reaching effects on radioactive waste management both in the international nuclear community and in individual nuclear States. This is because IAEA envisions the development of a consensus on the final document. In this circumstance, the product of RADWASS may ultimately be regarded as an international norm against which future actions of Member States may be measured. This program is organized in five subjects: planning, pre-disposal, disposal, uranium and thorium waste management and decommissioning, which has four levels: safety fundamentals, safety standards, safety guides and safety practices. (author)

  3. Pursuing for the case of safety

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, H; Salaber, A [Geco-Prakla, Paris (France); Myers, S [Sedco Forex, Montrouge (France); Redd, E [Sedco Forex, Aberdeen (United Kingdom); Shannon, R [Anadrill HSE, London (United Kingdom)

    1993-01-01

    Ever since the Piper Alpha disaster, safety has become one of the industry's hottest issues. Attention to safety leads to improved communication within organizations as well as between operators and contractors, and ultimately to more efficient operations. In this article descriptions are given of safety management systems, the safety-case philosophy and legislative changes hat are helping promote these new safety tools. 6 figs., 4 ills., 3 refs.

  4. Pursuing for the case of safety

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, H.; Salaber, A. (Geco-Prakla, Paris (France)); Myers, S. (Sedco Forex, Montrouge (France)); Redd, E. (Sedco Forex, Aberdeen (United Kingdom)); Shannon, R. (Anadrill HSE, London (United Kingdom))

    1993-01-01

    Ever since the Piper Alpha disaster, safety has become one of the industry's hottest issues. Attention to safety leads to improved communication within organizations as well as between operators and contractors, and ultimately to more efficient operations. In this article descriptions are given of safety management systems, the safety-case philosophy and legislative changes hat are helping promote these new safety tools. 6 figs., 4 ills., 3 refs.

  5. Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.

    2008-01-01

    Beside new Ordinance on the control of nuclear material and special equipment ('Official Gazette' No. 15/08), from 2006 State Office for Nuclear Safety (SONS) adopted Ordinance on performing nuclear activities ('Official Gazette' No. 74/06) and Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety ('Official Gazette' No. 74/06), based on Nuclear Safety Act ('Official Gazette' No. 173/03). The Ordinance on performing nuclear activities regulates the procedure of notification of the intent to perform nuclear activities, submitting the application for the issue of a licence to perform nuclear activities, and the procedure for issuing decisions on granting a licence to perform a nuclear activity. The Ordinance also regulates the content of the forms for notification of the intent to perform nuclear activities, as well as of the application for the issue of a licence to perform the nuclear activity and the method of keeping the register of nuclear activities. According to the Nuclear Safety Act, nuclear activities are the production, processing, use, storage, disposal, transport, import, export, possession or other handling of nuclear material or specified equipment. The Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety regulates these mentioned conditions, whereas compliance is established by a decision passed by the SONS. Special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety are organizational, technical, technological conditions and established system of quality assurance. In 2007, State Office for Nuclear Safety finalized the text of new Ordinance on conditions for nuclear safety and protection with regard to the siting, design, construction, use and decommissioning of a facility in which a nuclear activity is

  6. Safety in surgery: is selection the missing link?

    Science.gov (United States)

    Paice, Alistair G; Aggarwal, Rajesh; Darzi, Ara

    2010-09-01

    Health care providers comprise an example of a "high risk organization." Safety failings within these organizations have the potential to cause significant public harm. Significant safety improvements in other high risk organizations such as the aviation industry have led to the concept of a high reliability organization (HRO)--a high risk organization that has enjoyed a prolonged safety record. A strong organizational culture is common to all successful HROs, encompassing powerful systems of selection and training. Aircrew selection processes provide a good example of this and are examined in detail in this article using the Royal Air Force process as an example. If the lessons of successful HROs are to be applied to health care organizations, candidate selection to specialties such as surgery must become more objective and robust. Other HROs can provide valuable lessons in how this may be approached.

  7. Nuclear power safety

    International Nuclear Information System (INIS)

    1988-01-01

    The International Atomic Energy Agency, the organization concerned with worldwide nuclear safety has produced two international conventions to provide (1) prompt notification of nuclear accidents and (2) procedures to facilitate mutual assistance during an emergency. IAEA has also expanded operational safety review team missions, enhanced information exchange on operational safety events at nuclear power plants, and planned a review of its nuclear safety standards to ensure that they include the lessons learned from the Chernobyl nuclear plant accident. However, there appears to be a nearly unanimous belief among IAEA members that may attempt to impose international safety standards verified by an international inspection program would infringe on national sovereignty. Although several Western European countries have proposed establishing binding safety standards and inspections, no specific plant have been made; IAEA's member states are unlikely to adopt such standards and an inspection program

  8. Organization of public authorities in France for the event of an incident or accident involving nuclear safety: Simulation of a nuclear crisis

    International Nuclear Information System (INIS)

    Cartigny, J.; Majorel, Y.

    1986-01-01

    The French nuclear safety regulations lay down the action to be taken in the event of an incident or accident involving the types of radiological hazard that could arise in a nuclear installation or during the transport of radioactive material. The organization established for this purpose is designed to ensure that the technical measures taken by the authorities responsible for nuclear safety, radiation protection, public order and public safety are fully effective. The Interministerial Nuclear Safety Committee (Comite interministeriel de la securite nucleaire), which reports to the Prime Minister, co-ordinates the measures taken by the public authorities. The public authorities and the operators together organize exercises designed to verify the whole complex of measures foreseen in the event of an incident or accident. These exercises, which have been carried out in a systematic manner in France for some years, are based on scenarios which are as realistic as possible and enable the following objectives to be achieved: (1) analysis of the crisis apparatus (ORSECRAD plans, individual intervention plans, information conventions); (2) uncovering gaps or inadequacies; (3) arrangements for interchange of information between the various participants whose responsibilities involve them in the emergency; and (4) allowance for the information requirements of the media and the population. The information drawn from these exercises enables the various procedures to be improved step by step. (author)

  9. Nuclear power performance and safety. V.3. Safety and international co-operation

    International Nuclear Information System (INIS)

    1988-01-01

    The International Conference on Nuclear Power Performance and Safety, organized by the International Atomic Energy Agency, was held at the Austria Centre Vienna (ACV) in Vienna, Austria, from 28 September to 2 October 1987. The objective of the Conference was to promote an exchange of worldwide information on the current trends in the performance and safety of nuclear power and its fuel cycle, and to take a forward look at the expectations and objectives for the 1990s. This objective was accomplished through presentation and discussion of about 200 papers at the Conference. Almost 500 participants and observers from 40 countries and 12 organizations discussed three major questions which were posed as the focus of this Conference: (1) What are the current trends and major issues with regard to performance and safety of nuclear power, the nuclear fuel cycle and radioactive waste management? (2) What steps are being taken or need to be taken to resolve outstanding issues in order to improve the performance of nuclear power with assured safety? (3) What performance objectives and achievements can be anticipated for the 1990s? All presentations of this Conference were divided into six volumes. This is Volume 3 which is devoted to the problems of safety and international cooperation. All presentations of Volume 3 were divided into four sessions as follows: the need for safety in nuclear power programmes (4 papers); international cooperation in nuclear safety (6 papers); technical aspects in plant safety (7 papers); approaches to safety (3 papers). A separate abstract was prepared for each of these 20 papers. Refs, figs and tabs

  10. Guidelines for Self-assessment of Research Reactor Safety

    International Nuclear Information System (INIS)

    2018-01-01

    Self-assessment is an organization’s internal process to review its current status, processes and performance against predefined criteria and thereby to provide key elements for the organization’s continual development and improvement. Self-assessment helps the organization to think through what it is expected to do, how it is performing in relation to these expectations, and what it needs to do to improve performance, fulfil the expectations and achieve better compliance with the predefined criteria. This publication provides guidelines for a research reactor operating organization to perform a self-assessment of the safety management and the safety of the facility and to identify gaps between the current situation and the IAEA safety requirements for research reactors. These guidelines also provide a methodology for Member States, regulatory bodies and operating organizations to perform a self-assessment of their application of the provisions of the Code of Conduct on the Safety of Research Reactors. This publication also addresses planning, implementation and follow-up of actions to enhance safety and strengthen application of the Code. The guidelines are applicable to all types of research reactor and critical and subcritical assemblies, at all stages in their lifetimes, and to States, regulatory bodies and operating organizations throughout all phases of research reactor programmes. Research reactor operating organizations can use these guidelines at any time to support self-assessments conducted in accordance with the organization’s integrated management system. These guidelines also serve as a tool for an organization to prepare to receive an IAEA Integrated Safety Assessment of Research Reactors (INSARR) mission. An important result of this is the opportunity for an operating organization to identify focus areas and make safety improvements in advance of an INSARR mission, thereby increasing the effectiveness of the mission and efficiency of the

  11. Systemic Approach to Safety from a Regulatory Perspective

    International Nuclear Information System (INIS)

    Edland, A.

    2016-01-01

    In Sweden and especially in the Swedish oversight of nuclear power plants there has been a strong commitment to the interactions between Man-Technology-Organization (MTO) for many years. Safety issues and the importance of working with these issues have often been highlighted in specific oversight actions. Since 30 years there has been a tradition and a development of experience in Sweden taking a systemic MTO approach to safety. Inspection teams have been created with both psychologists and technical expertise in order to cover the whole MTO perspective during oversight inspections at the nuclear power plants. Safety is based on preventive actions where both technology and human behaviour are taken into account. To do this, it is important to have knowledge about the different factors that influence the performance of individuals, groups and organizations. However, it is also important to remember to not only discuss humans, management and organizations in terms of their limitations, errors and shortcomings but also in terms of their strengths in stopping a chain of events, in learning, inventing and improving. Having an integrated view of safety, focussing on the relations between human, technology and organization (MTO) refers to a systemic perspective on how radiation safety are affected by the relationship between: Human’s abilities and limitations; Technical equipment and the surrounding environment; The organization and the opportunities this provides. The Section of Man-Technology-Organization in the Swedish authority consist today of 12 Human factors specialists with behaviour science education. The section is responsible for the oversight at nuclear power plants in many areas; safety management, leadership and organization, safety culture, competence assurance, fitness for duty, suitability, education and staffing, knowledge management, working conditions, MTO perspective/ergonomics of control room work and plant modification, incident analysis and risk

  12. 78 FR 17212 - Patient Safety Organizations: Voluntary Relinquishment From QAISys, Inc.

    Science.gov (United States)

    2013-03-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... (AHRQ), HHS. ACTION: Notice of delisting. SUMMARY: The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act), Public Law 109-41, 42 U.S.C. 299b-21-- b-26, provides for the formation of...

  13. 78 FR 70560 - Patient Safety Organizations: Voluntary Relinquishment From GE-PSO

    Science.gov (United States)

    2013-11-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety...), HHS. ACTION: Notice of delisting. SUMMARY: The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act), Public Law 109-41, 42 U.S.C. 299b-21-b-26, provides for the formation of Patient...

  14. History and Organizations for Radiological Protection.

    Science.gov (United States)

    Kang, Keon Wook

    2016-02-01

    International Commission on Radiological Protection (ICRP), an independent international organization established in 1925, develops, maintains, and elaborates radiological protection standards, legislation, and guidelines. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) provides scientific evidence. World Health Organization (WHO) and International Atomic Energy Agency (IAEA) utilise the ICRP recommendations to implement radiation protection in practice. Finally, radiation protection agencies in each country adopt the policies, and adapt them to each situation. In Korea, Nuclear Safety and Security Commission is the governmental body for nuclear safety regulation and Korea Institute of Nuclear Safety is a public organization for technical support and R&D in nuclear safety and radiation protection.

  15. Self-assessment of operational safety for nuclear power plants

    International Nuclear Information System (INIS)

    1999-12-01

    Self-assessment processes have been continuously developed by nuclear organizations, including nuclear power plants. Currently, the nuclear industry and governmental organizations are showing an increasing interest in the implementation of this process as an effective way for improving safety performance. Self-assessment involves the use of different types of tools and mechanisms to assist the organizations in assessing their own safety performance against given standards. This helps to enhance the understanding of the need for improvements, the feeling of ownership in achieving them and the safety culture as a whole. Although the primary beneficiaries of the self-assessment process are the plant and operating organization, the results of the self-assessments are also used, for example, to increase the confidence of the regulator in the safe operation of an installation, and could be used to assist in meeting obligations under the Convention on Nuclear Safety. Such considerations influence the form of assessment, as well as the type and detail of the results. The concepts developed in this report present the basic approach to self-assessment, taking into consideration experience gained during Operational Safety Review Team (OSART) missions, from organizations and utilities which have successfully implemented parts of a self-assessment programme and from meetings organized to discuss the subject. This report will be used in IAEA sponsored workshops and seminars on operational safety that include the topic of self-assessment

  16. Nuclear safety in France in 2001

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    This article presents the milestones of 2001 concerning nuclear safety in France: 1) the new organization of nuclear safety in France, IPSN (institute of protection and nuclear safety) and OPRI (office for protection against ionizing radiation) have merged into an independent organization: IRSN (institute of radiation protection and nuclear safety); 2) a draft bill has been proposed by the government to impose to nuclear operators new obligations concerning the transfer of information to the public; 3) nuclear safety authorities have drafted a new procedure in order to cope with the demand concerning modification of nuclear fuel management particularly the increase of the burn-up; 4) new evolutions concerning the management of a major nuclear crisis as a consequence of the terrorist attack on New-york and the accident at the AZF plant in Toulouse; 5) a point is made concerning the work of the WENRA association about the harmonization of the nuclear safety policies of its different members. (A.C.)

  17. Safety Training: basic safety and access courses

    CERN Multimedia

    2005-01-01

    Objective The purpose of the basic safety courses is to increase awareness for everyone working on the CERN site (CERN staff, associates, outside companies, students and apprentices) of the various hazards existing on site, and how to recognise and avoid them. Safety course changes The current organisation of basic safety courses is changing. There will be two main modifications: the organisation of the courses and the implementation of a specific new training course for the LHC machine during the LHC tests and hardware commissioning phase. Organisational changes This concerns the existing basic safety training, currently called level 1, level 2 and level 3. Under the new procedure, a video will be projected in registration building 55 and will run every day at 14.00 and 15.00 in English. The duration of the video will be 50 minutes. The course contents will be the same as the slides currently used, plus a video showing real situations. With this new organization, participants will systematically follow...

  18. 2011 Annual Meeting of the Safety Pharmacology Society: an overview.

    Science.gov (United States)

    Cavero, Icilio

    2012-03-01

    The keynote address of 2011 Annual Meeting of the Safety Pharmacology Society examined the known and the still to be known on drug-induced nephrotoxicity. The nominee of the Distinguished Service Award Lecture gave an account of his career achievements particularly on the domain of chronically instrumented animals for assessing cardiovascular safety. The value of Safety Pharmacology resides in the benefits delivered to Pharma organizations, regulators, payers and patients. Meticulous due diligence concerning compliance of Safety Pharmacology studies to best practices is an effective means to ensure that equally stringent safety criteria are applied to both in-licensed and in-house compounds. Innovative technologies of great potential for Safety Pharmacology presented at the meeting are organs on chips (lung, heart, intestine) displaying mechanical and biochemical features of native organs, electrical field potential (MEA) or impedance (xCELLigence Cardio) measurements in human induced pluripotent stem cell-derived cardiomyocytes for unveiling cardiac electrophysiological and mechanical liabilities, functional human airway epithelium (MucilAir™) preparations with unique 1-year shelf-life for acute and chronic in vitro evaluation of drug efficacy and toxicity. Custom-designed in silico and in vitro assay platforms defining the receptorome space occupied by chemical entities facilitate, throughout the drug discovery phase, the selection of candidates with optimized safety profile on organ function. These approaches can now be complemented by advanced computational analysis allowing the identification of compounds with receptorome, or clinically adverse effect profiles, similar to those of the drug candidate under scrutiny for extending the safety assessment to potential liability targets not captured by classical approaches. Nonclinical data supporting safety can be quite reassuring for drugs with a discovered signal of risk. However, for marketing authorization

  19. Annual report on occupational safety 1985

    International Nuclear Information System (INIS)

    1986-09-01

    This report presents information on occupational safety relating to the Company's employees for the year 1985, and compares data with figures for the previous year. The following headings are listed: principle activities of BNFL, general policy and organisation, radiological safety, including whole body, skin and extremity, and internal organ doses, non-radiological safety, incidents reportable to the health and safety executive. (U.K.)

  20. The safety of available treatments of male hypogonadism in organic and functional hypogonadism.

    Science.gov (United States)

    Corona, G; Rastrelli, G; Reisman, Y; Sforza, A; Maggi, M

    2018-03-01

    In the case of primary male hypogonadism (HG), only testosterone (T) replacement therapy (TRT) is possible whereas when the problem is secondary to a pituitary or hypothalamus alteration both T production and fertility can be, theoretically, restored. We here systematically reviewed and discussed the advantages and limits of medications formally approved for the treatment of HG. Areas covered: Data derived from available meta-analyses of placebo controlled randomized trials (RCTs) were considered and analyzed. Gonadotropins are well-toleratedand their use is mainly limited by higher costs and a more cumbersome treatment schedule than TRT. Available RCTs on TRT suggest that cardiovascular (CV) and venous thromboembolism risk is not a major issue and that prostate safety is guaranteed. The risk of increased hematocrit is mainly limited to the use of short terminjectable preparations. Expert opinion: In the last few years the concept of 'organic' irreversible HG and 'functional' or age- and comorbidity-related HG has been introduced. This definition is not evidence-based. The majority of RCTs enrolled patients with 'functional' HG. Considering the significant improvement in body composition, glucose metabolism and sexual activity, TRT should not be limited to 'organic' HG, but also offered for 'functional'.

  1. Restrictive mechanism for safety behaviors and safety attitudes. An analysis focusing on confidence in skills and knowledge

    International Nuclear Information System (INIS)

    Fujita, Tomohiro

    2017-01-01

    This paper investigates the relationship between confidence in skills and knowledge, and safety behaviors and safety attitudes in industrial organizations. According to previous studies, the influence of individual factors such as confidence in skills and knowledge about safety behaviors and attitudes is not as large as that of organizational factors such as leadership and open communication. However, it is possible that having more skills and knowledge contributes to giving workers a better ability to identify perceived hidden risks leading to injuries and accidents in industrial organizations than among those who have fewer skills and less knowledge. Therefore, this study carried out surveys in 2015 and 2016 targeting workers in the energy industry, and reconsidered the relationship between them by adding unexplored factors such as age and work motivations to the existing model. Multivariate analysis revealed that confidence in skills and knowledge have a negative impact on safety behaviors and attitudes, and aging and work motivations have a positive impact on confidence in skills and knowledge. Then, these results suggest that confidence in skills and knowledge which increases along with aging has a restrictive mechanism for safety behaviors and attitudes. Future studies should cover multidimensional aspects of skills and knowledge and focus on the complex relationship between an organization and groups and individuals in the organization. (author)

  2. Applying Systems Thinking to Law Enforcement Safety: Recommendation for a Comprehensive Safety Management Framework

    Science.gov (United States)

    2015-12-01

    injuries can also lead to other significant health concerns such as depression and absenteeism , which impact organizational productivity and safety...injuries is important: (1) to determine the impact of costs such as lost wages, medical expenses and insurance claims, as well as productivity ... production and operational safety; and a sustaining institutional culture.53 Safety is often not the primary goal of organizations, as other business or

  3. Nuclear safety in France

    International Nuclear Information System (INIS)

    Tanguy, P.

    1979-01-01

    A brief description of the main safety aspects of the French nuclear energy programme and of the general safety organization is followed by a discussion on the current thinking in CEA on some important safety issues. As far as methodology is concerned, the use of probabilistic analysis in the licensing procedure is being extensively developed. Reactor safety research is aimed at a better knowledge of the safety margins involved in the present designs of both PWRs and LMFBRs. A greater emphasis should be put during the next years in the safety of the nuclear fuel cycle installations, including waste disposals. Finally, it is suggested that further international cooperation in the field of nuclear safety should be developed in order to insure for all countries the very high safety level which has been achieved up till now. (author)

  4. Automating Safety for a More Efficient Organization

    Science.gov (United States)

    Folkman, John; Strasburger, Tom

    2009-01-01

    Despite the challenges of understaffing, unfunded legislative mandates, and tight budgets, district support services departments are still expected to meet school systems' myriad noncurriculum-related needs. But the very nature of these services, even when they are focused on school safety and security, is so diverse and labor-intensive that…

  5. A study on safety concept and criteria of site release of nuclear installation proposed by international organizations and adopted in decommissioning practices

    International Nuclear Information System (INIS)

    Enokido, Yuji; Miyasaka, Yasuhiko; Ishikawa, Hironori

    2008-01-01

    Regulatory systems and safety criteria of site release of nuclear installation proposed by international organizations such as IAEA and applied in decommissioning in domestic and foreign countries have been studied, in order to avail them to deliberate the relevant domestic regulation and guides. In addition, the applicability of the proposal and practices to domestic legislation have been discussed. Regarding the national safety criteria, the annual individual dose constraint is optimized between 10 μSv and 300 μSv after recommendation and/or guides of IAEA etc. Unconditional release should be achieved, but the conditional and/or partial site release are possible under the same safety criteria to make the selection flexible for licensees. (author)

  6. 29 CFR 1960.89 - Organization.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Organization. 1960.89 Section 1960.89 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Field Federal Safety and Health Councils § 1960.89 Organization. (a) Field council officers shall...

  7. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This publication supports the Safety Requirements on the Safety of Nuclear Power Plants: Design. This Safety Guide was prepared on the basis of a systematic review of all the relevant publications including the Safety Fundamentals, Safety of Nuclear Power Plants: Design, current and ongoing revisions of other Safety Guides, INSAG reports and other publications that have addressed the safety of nuclear power plants. This Safety Guide also provides guidance for Contracting Parties to the Convention on Nuclear Safety in meeting their obligations under Article 14 on Assessment and Verification of Safety. The Safety Requirements publication entitled Safety of Nuclear Power Plants: Design states that a comprehensive safety assessment and an independent verification of the safety assessment shall be carried out before the design is submitted to the regulatory body. This publication provides guidance on how this requirement should be met. This Safety Guide provides recommendations to designers for carrying out a safety assessment during the initial design process and design modifications, as well as to the operating organization in carrying out independent verification of the safety assessment of new nuclear power plants with a new or already existing design. The recommendations for performing a safety assessment are suitable also as guidance for the safety review of an existing plant. The objective of reviewing existing plants against current standards and practices is to determine whether there are any deviations which would have an impact on plant safety. The methods and the recommendations of this Safety Guide can also be used by regulatory bodies for the conduct of the regulatory review and assessment. Although most recommendations of this Safety Guide are general and applicable to all types of nuclear reactors, some specific recommendations and examples apply mostly to water cooled reactors. Terms such as 'safety assessment', 'safety analysis' and 'independent

  8. The Anesthesia Patient Safety Foundation at 25: a pioneering success in safety, 25th anniversary provokes reflection, anticipation.

    Science.gov (United States)

    Eichhorn, John H

    2012-04-01

    The Anesthesia Patient Safety Foundation (APSF) was created in 1985. Its founders coined the term "patient safety" in its modern public usage and created the very first patient safety organization, igniting a movement that is now universal in all of health care. Driven by the vision "that no patient shall be harmed by anesthesia," the APSF has worked tirelessly for more than a quarter century to promote safety education and communication through its widely read Newsletter, its programs, and its presentations. The APSF's extensive research grant program has supported a great many projects leading to key safety improvements and, in particular, was central in the development of high-fidelity mannequin simulation as a research and teaching tool. With its pioneering collaboration, the APSF is unique in incorporating the talents and resources of anesthesia professionals of all types, safety scientists, pharmaceutical and equipment manufacturers, regulators, liability insurance companies, and also surgeons. Specific alerts, campaigns, discussions, and projects have targeted a host of safety issues and dangers over the years, starting with minimal intraoperative monitoring in 1986 and all the way up to beach-chair position cerebral perfusion pressure, operating room medication errors, and the extremely popular DVD on operating room fire safety in 2010; the list is long and expansive. The APSF has served as a model and inspiration for subsequent patient safety organizations and has been recognized nationally as having a dramatic positive impact on the safety of anesthesia care. Recognizing that the work is not over, that systems, organizations, and equipment still at times fail, that basic preventable human errors still do sometimes occur, and that "production pressure" in anesthesia practice threatens past safety gains, the APSF is firmly committed and continues to work hard both on established tenets and new patient safety principles.

  9. Impact of biomarker development on drug safety assessment

    International Nuclear Information System (INIS)

    Marrer, Estelle; Dieterle, Frank

    2010-01-01

    Drug safety has always been a key aspect of drug development. Recently, the Vioxx case and several cases of serious adverse events being linked to high-profile products have increased the importance of drug safety, especially in the eyes of drug development companies and global regulatory agencies. Safety biomarkers are increasingly being seen as helping to provide the clarity, predictability, and certainty needed to gain confidence in decision making: early-stage projects can be stopped quicker, late-stage projects become less risky. Public and private organizations are investing heavily in terms of time, money and manpower on safety biomarker development. An illustrative and 'door opening' safety biomarker success story is the recent recognition of kidney safety biomarkers for pre-clinical and limited translational contexts by FDA and EMEA. This milestone achieved for kidney biomarkers and the 'know how' acquired is being transferred to other organ toxicities, namely liver, heart, vascular system. New technologies and molecular-based approaches, i.e., molecular pathology as a complement to the classical toolbox, allow promising discoveries in the safety biomarker field. This review will focus on the utility and use of safety biomarkers all along drug development, highlighting the present gaps and opportunities identified in organ toxicity monitoring. A last part will be dedicated to safety biomarker development in general, from identification to diagnostic tests, using the kidney safety biomarkers success as an illustrative example.

  10. Occupational safety in multicultural teams and organizations: A research agenda

    NARCIS (Netherlands)

    Starren, A.; Hornikx, J.; Luijters, K.

    2013-01-01

    Safety is an important issue in the workplace, in particular at the lower end of the labor market where the workforce often consists of people with different cultural backgrounds. Studies have underlined the potential threats to occupational safety of this workforce. Surprisingly, however, very

  11. Proceedings of second JAERI-JNC joint conference on nuclear safety research

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Anoda, Yoshinari; Araya, Fumimasa; Yamaguchi, Toshio

    2004-08-01

    The second JAERI-JNC Joint Conference on Nuclear Safety Research was held on February 6, 2004 in Tokyo for those who are relevant to nuclear industries and regulatory organizations, and general public. The nuclear safety research has been conducted in both institutes according to the Five-Year Program for Nuclear Safety Research established periodically by the Nuclear Safety Commission (NSC) and needs from the regulatory organizations. The objectives of the conference are to present its recent results and to collect views and opinions from the participants for its future program through the discussion after each presentation and panel discussion on how to conduct efficiently the nuclear safety in the New Organization. A total of 259 people participated in the conference mainly from the nuclear industries and regulatory organizations and the number was much larger than that in the last conference of 188. The conference consisted of presentations on the safety research results, a special lecture and a panel discussion. First, the overview of safety research results was presented from each institute. Then, the results in the field of nuclear installations, environmental radioactivity and radioactive waste were presented from each institute. Then, Dr. Higashi, the Nuclear Safety Commissioner, made a special lecture on the radiation protection from the high-level radioactive waste disposal. Finally, a panel discussion was conducted with the title of ''how to conduct efficiently the nuclear safety research in the New Organization'' chaired by Prof. Kimura, the chairperson of Standing Committee on Nuclear Safety Research under the NSC. The panelists from the regulatory organizations, nuclear industry, JAERI and JNC discussed the subject together with the participants on the floor. The panelists not from JAERI and JNC expressed their views and opinions on how to conduct efficiently the nuclear safety research in the New Organization that were valuable inputs for developing

  12. Measuring patient safety culture in Taiwan using the Hospital Survey on Patient Safety Culture (HSOPSC).

    Science.gov (United States)

    Chen, I-Chi; Li, Hung-Hui

    2010-06-07

    Patient safety is a critical component to the quality of health care. As health care organizations endeavour to improve their quality of care, there is a growing recognition of the importance of establishing a culture of patient safety. In this research, the authors use the Hospital Survey on Patient Safety Culture (HSOPSC) questionnaire to assess the culture of patient safety in Taiwan and attempt to provide an explanation for some of the phenomena that are unique in Taiwan. The authors used HSOPSC to measure the 12 dimensions of the patient safety culture from 42 hospitals in Taiwan. The survey received 788 respondents including physicians, nurses, and non-clinical staff. This study used SPSS 15.0 for Windows and Amos 7 software tools to perform the statistical analysis on the survey data, including descriptive statistics and confirmatory factor analysis of the structural equation model. The overall average positive response rate for the 12 patient safety culture dimensions of the HSOPSC survey was 64%, slightly higher than the average positive response rate for the AHRQ data (61%). The results showed that hospital staff in Taiwan feel positively toward patient safety culture in their organization. The dimension that received the highest positive response rate was "Teamwork within units", similar to the results reported in the US. The dimension with the lowest percentage of positive responses was "Staffing". Statistical analysis showed discrepancies between Taiwan and the US in three dimensions, including "Feedback and communication about error", "Communication openness", and "Frequency of event reporting". The HSOPSC measurement provides evidence for assessing patient safety culture in Taiwan. The results show that in general, hospital staffs in Taiwan feel positively toward patient safety culture within their organization. The existence of discrepancies between the US data and the Taiwanese data suggest that cultural uniqueness should be taken into

  13. Safety culture in nuclear installations: Summary of an international topical meeting

    International Nuclear Information System (INIS)

    Carnino, A.; Derrough, M.; Weimann, G.

    1996-01-01

    An international topical meeting, Safety Culture in Nuclear Installations, was organized by the American Nuclear Society (ANS) Austria Local Section, cosponsored by the ANS Nuclear Reactor Safety and Human Factors Divisions in cooperation with the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (NEA/OECD) and held in Vienna April 24-28, 1995. Some 250 experts from 30 different countries and organizations took part in the 85 paper presentations and two workshops. The concept of safety culture was initially used in the first International Nuclear Safety Advisory Group (INSAG) report on the Chernobyl accident analysis report in 1986. Although some elements of safety culture have been used over the years in nuclear safety activities, the new phrase safety culture and the concept were found interesting as highlighting the 'soft' aspects of safety and as encompassing more than human errors. Unfortunately, for many years it was used more in the way of identifying lack of safety culture. Conscious of this application, INSAG further developed the safety culture concept in the INSAG 4 report: The report contains a definition, the universal aspects of safety culture, the two main components of safety culture management and individual behaviour, and performance indicators of a good safety culture. This report is now quite famous and adopted with some additions or complementary definitions by many institutes and organizations for their daily activities

  14. Code on the safety of nuclear power plants: Governmental organization

    International Nuclear Information System (INIS)

    1988-01-01

    This Code recommends requirements for a regulatory body responsible for regulating the siting, design, construction, commissioning, operation and decommissioning of nuclear power plants for safety. It forms part of the Agency's programme for establishing Codes and Safety Guides relating to land based stationary thermal neutron power plants

  15. A framework for the organizational assumptions underlying safety culture

    International Nuclear Information System (INIS)

    Packer, Charles

    2002-01-01

    The safety culture of the nuclear organization can be addressed at the three levels of culture proposed by Edgar Schein. The industry literature provides a great deal of insight at the artefact and espoused value levels, although as yet it remains somewhat disorganized. There is, however, an overall lack of understanding of the assumption level of safety culture. This paper describes a possible framework for conceptualizing the assumption level, suggesting that safety culture is grounded in unconscious beliefs about the nature of the safety problem, its solution and how to organize to achieve the solution. Using this framework, the organization can begin to uncover the assumptions at play in its normal operation, decisions and events and, if necessary, engage in a process to shift them towards assumptions more supportive of a strong safety culture. (author)

  16. Fire Safety Trianing in Health Care Institutions.

    Science.gov (United States)

    American Hospital Association, Chicago, IL.

    The manual details the procedures to be followed in developing and implementing a fire safety plan. The three main steps are first, to organize; second, to set up a procedure and put it in writing; and third, to train and drill employees and staff. Step 1 involves organizing a safety committee, appointing a fire marshall, and seeking help from…

  17. Decreasing Ambiguity of the Safety Culture Concept

    International Nuclear Information System (INIS)

    Inoue, Shiichiro; Hosoda, Satoshi; Suganuma, Takashi; Monta, Kazuo; Kameda, Akiyuki

    2001-01-01

    The status of the concept of ''safety culture'' is reviewed. It has not sufficiently taken root. One cause for this is the abstract nature of the concept. Organizations must become aware of the necessity of improving safety and have sufficient power to promote this. The culture of safety must be instilled in each employee, so that each of them will feel responsible for identifying weak points in plant safety. The authors devised a tool for a self-assessment of the safety culture. The tool will bring to light information divides, communication gaps, etc. Recognizing the vulnerabilities of the organization by themselves and discussing these weak points among them is the first step to decrease the ambiguity of the safety culture. The next step is to make these gaps known along with agreed-upon countermeasures. The concept of safety culture will be greatly clarified in this way and lead to safer nuclear power plants

  18. Safety evaluation of advance street name signs

    Science.gov (United States)

    2009-06-01

    The Federal Highway Administration (FHWA) organized a pooled fund study of 26 States to evaluate low-cost safety strategies as part of its strategic highway safety effort. The objective of the pooled fund study was to estimate the safety effectivenes...

  19. ISP-50 Specifications for a Direct Vessel Injection Line Break Test with the ATLAS

    International Nuclear Information System (INIS)

    Choi, Ki Yong; Baek, Won Pil; Kim, Yeon Sik; Park, Hyun Sik; Cho, Seok; Kang, Kyoung Ho; Choi, Nam Hyun; Min, Kyoung Ho

    2009-06-01

    An OECD/NEA International Standard Problem Exercise (ISP) focussing on a DVI line break simulation result with the ATLAS was approved by the NEA Committee on the Safety of Nuclear Installation (CSNI) meeting in December 2008 and was numbered by ISP-50. The ISP-50 program will be operated by an operating agency, KAERI for three years starting from the physical year 2009. Fourteen international organizations confirmed their participation in the ISP-50, including NRC (USA), JAEA, JNES (Japan), GRS (Germany), KFKI-AEKI (Hungary), EDO Gidropress (Russia), VTT, Fortum (Finland), NRI (Czech Republic), Univ. of Pisa (Italy), KINS, KNF, KOPEC, and KAERI (Korea). In addition, KTH in Sweden and HSE in UK are considering late participation. Recently, NPIC and CIAE in China hope to join the ISP-50. As for the safety analysis codes, nine codes are expected to be used for the ISP-50: MARS-3D, RELAP5- 3D, RELAP5, TRACE, CATHARE, APROS, ATHELET, TRAP, and KORSAR. It is the first ISP exercise in Korea in which a domestic test facility is utilized by international nuclear society and this exercise will contribute to extending our physical understanding on thermal hydraulic phenomena during the DVI line break accidents and to verifying the best-estimate thermal-hydraulic safety analysis codes. This report was prepared to define technical specifications of the ISP-50 exercise according the guideline provided by OECD/CSNI. It includes general objectives, phases, deliverables to participants, parameters required for comparison and the time table

  20. The Patient's Voice in Pharmacovigilance: Pragmatic Approaches to Building a Patient-Centric Drug Safety Organization.

    Science.gov (United States)

    Smith, Meredith Y; Benattia, Isma

    2016-09-01

    Patient-centeredness has become an acknowledged hallmark of not only high-quality health care but also high-quality drug development. Biopharmaceutical companies are actively seeking to be more patient-centric in drug research and development by involving patients in identifying target disease conditions, participating in the design of, and recruitment for, clinical trials, and disseminating study results. Drug safety departments within the biopharmaceutical industry are at a similar inflection point. Rising rates of per capita prescription drug use underscore the importance of having robust pharmacovigilance systems in place to detect and assess adverse drug reactions (ADRs). At the same time, the practice of pharmacovigilance is being transformed by a host of recent regulatory guidances and related initiatives which emphasize the importance of the patient's perspective in drug safety. Collectively, these initiatives impact the full range of activities that fall within the remit of pharmacovigilance, including ADR reporting, signal detection and evaluation, risk management, medication error assessment, benefit-risk assessment and risk communication. Examples include the fact that manufacturing authorization holders are now expected to monitor all digital sources under their control for potential reports of ADRs, and the emergence of new methods for collecting, analysing and reporting patient-generated ADR reports for signal detection and evaluation purposes. A drug safety department's ability to transition successfully into a more patient-centric organization will depend on three defining attributes: (1) a patient-centered culture; (2) deployment of a framework to guide patient engagement activities; and (3) demonstrated proficiency in patient-centered competencies, including patient engagement, risk communication and patient preference assessment. Whether, and to what extent, drug safety departments embrace the new patient-centric imperative, and the methods and

  1. Safety behavior: Job demands, job resources, and perceived management commitment to safety.

    Science.gov (United States)

    Hansez, Isabelle; Chmiel, Nik

    2010-07-01

    The job demands-resources model posits that job demands and resources influence outcomes through job strain and work engagement processes. We test whether the model can be extended to effort-related "routine" safety violations and "situational" safety violations provoked by the organization. In addition we test more directly the involvement of job strain than previous studies which have used burnout measures. Structural equation modeling provided, for the first time, evidence of predicted relationships between job strain and "routine" violations and work engagement with "routine" and "situational" violations, thereby supporting the extension of the job demands-resources model to safety behaviors. In addition our results showed that a key safety-specific construct 'perceived management commitment to safety' added to the explanatory power of the job demands-resources model. A predicted path from job resources to perceived management commitment to safety was highly significant, supporting the view that job resources can influence safety behavior through both general motivational involvement in work (work engagement) and through safety-specific processes.

  2. Safety culture. Keys for sustaining progress

    International Nuclear Information System (INIS)

    Barraclough, I.; Carnino, A.

    1998-01-01

    Principles of nuclear safety are now well known and being put into practice around the world, leading to a degree of international harmonization in safety standards. Continued improvement in levels of safety requires the development of a comprehensive 'safety culture' at all levels of an organization, with visible and consistent leadership from senior management. This article reviews the main elements required for establishing and sustaining a good safety culture at nuclear installations that involves staff at all levels

  3. Comparison of the Microbiological Quality and Safety between Conventional and Organic Vegetables Sold in Malaysia

    Directory of Open Access Journals (Sweden)

    Chee-Hao Kuan

    2017-07-01

    Full Text Available Given the remarkable increase of public interest in organic food products, it is indeed critical to evaluate the microbiological risk associated with consumption of fresh organic produce. Organic farming practices including the use of animal manures may increase the risk of microbiological contamination as manure can act as a vehicle for transmission of foodborne pathogens. This study aimed to determine and compare the microbiological status between organic and conventional fresh produce at the retail level in Malaysia. A total of 152 organic and conventional vegetables were purchased at retail markets in Malaysia. Samples were analyzed for mesophilic aerobic bacteria, yeasts and molds, and total coliforms using conventional microbiological methods. Combination methods of most probable number-multiplex polymerase chain reaction (MPN-mPCR were used to detect and quantify foodborne pathogens, including Escherichia coli O157:H7, Shiga toxin-producing E. coli (STEC, Listeria monocytogenes, Salmonella Typhimurium, and Salmonella Enteritidis. Results indicated that most types of organic and conventional vegetables possessed similar microbial count (P > 0.05 of mesophilic aerobic bacteria, yeasts and molds, and total coliforms. E. coli O157:H7 and S. Typhimurium were not detected in any sample analyzed in this study. Among the 152 samples tested, only the conventional lettuce and organic carrot were tested positive for STEC and S. Enteritidis, respectively. L. monocytogenes were more frequently detected in both organic (9.1% and conventional vegetables (2.7% as compared to E. coli O157:H7, S. Typhimurium, and S. Enteritidis. Overall, no trend was shown that either organically or conventionally grown vegetables have posed greater microbiological risks. These findings indicated that one particular type of farming practices would not affect the microbiological profiles of fresh produce. Therefore, regardless of farming methods, all vegetables should be

  4. Comparison of the Microbiological Quality and Safety between Conventional and Organic Vegetables Sold in Malaysia.

    Science.gov (United States)

    Kuan, Chee-Hao; Rukayadi, Yaya; Ahmad, Siti H; Wan Mohamed Radzi, Che W J; Thung, Tze-Young; Premarathne, Jayasekara M K J K; Chang, Wei-San; Loo, Yuet-Ying; Tan, Chia-Wanq; Ramzi, Othman B; Mohd Fadzil, Siti N; Kuan, Chee-Sian; Yeo, Siok-Koon; Nishibuchi, Mitsuaki; Radu, Son

    2017-01-01

    Given the remarkable increase of public interest in organic food products, it is indeed critical to evaluate the microbiological risk associated with consumption of fresh organic produce. Organic farming practices including the use of animal manures may increase the risk of microbiological contamination as manure can act as a vehicle for transmission of foodborne pathogens. This study aimed to determine and compare the microbiological status between organic and conventional fresh produce at the retail level in Malaysia. A total of 152 organic and conventional vegetables were purchased at retail markets in Malaysia. Samples were analyzed for mesophilic aerobic bacteria, yeasts and molds, and total coliforms using conventional microbiological methods. Combination methods of most probable number-multiplex polymerase chain reaction (MPN-mPCR) were used to detect and quantify foodborne pathogens, including Escherichia coli O157:H7, Shiga toxin-producing E. coli (STEC), Listeria monocytogenes, Salmonella Typhimurium, and Salmonella Enteritidis. Results indicated that most types of organic and conventional vegetables possessed similar microbial count ( P > 0.05) of mesophilic aerobic bacteria, yeasts and molds, and total coliforms. E. coli O157:H7 and S . Typhimurium were not detected in any sample analyzed in this study. Among the 152 samples tested, only the conventional lettuce and organic carrot were tested positive for STEC and S . Enteritidis, respectively. L. monocytogenes were more frequently detected in both organic (9.1%) and conventional vegetables (2.7%) as compared to E. coli O157:H7, S . Typhimurium, and S . Enteritidis. Overall, no trend was shown that either organically or conventionally grown vegetables have posed greater microbiological risks. These findings indicated that one particular type of farming practices would not affect the microbiological profiles of fresh produce. Therefore, regardless of farming methods, all vegetables should be subjected to

  5. Comparison of the Microbiological Quality and Safety between Conventional and Organic Vegetables Sold in Malaysia

    Science.gov (United States)

    Kuan, Chee-Hao; Rukayadi, Yaya; Ahmad, Siti H.; Wan Mohamed Radzi, Che W. J.; Thung, Tze-Young; Premarathne, Jayasekara M. K. J. K.; Chang, Wei-San; Loo, Yuet-Ying; Tan, Chia-Wanq; Ramzi, Othman B.; Mohd Fadzil, Siti N.; Kuan, Chee-Sian; Yeo, Siok-Koon; Nishibuchi, Mitsuaki; Radu, Son

    2017-01-01

    Given the remarkable increase of public interest in organic food products, it is indeed critical to evaluate the microbiological risk associated with consumption of fresh organic produce. Organic farming practices including the use of animal manures may increase the risk of microbiological contamination as manure can act as a vehicle for transmission of foodborne pathogens. This study aimed to determine and compare the microbiological status between organic and conventional fresh produce at the retail level in Malaysia. A total of 152 organic and conventional vegetables were purchased at retail markets in Malaysia. Samples were analyzed for mesophilic aerobic bacteria, yeasts and molds, and total coliforms using conventional microbiological methods. Combination methods of most probable number-multiplex polymerase chain reaction (MPN-mPCR) were used to detect and quantify foodborne pathogens, including Escherichia coli O157:H7, Shiga toxin-producing E. coli (STEC), Listeria monocytogenes, Salmonella Typhimurium, and Salmonella Enteritidis. Results indicated that most types of organic and conventional vegetables possessed similar microbial count (P > 0.05) of mesophilic aerobic bacteria, yeasts and molds, and total coliforms. E. coli O157:H7 and S. Typhimurium were not detected in any sample analyzed in this study. Among the 152 samples tested, only the conventional lettuce and organic carrot were tested positive for STEC and S. Enteritidis, respectively. L. monocytogenes were more frequently detected in both organic (9.1%) and conventional vegetables (2.7%) as compared to E. coli O157:H7, S. Typhimurium, and S. Enteritidis. Overall, no trend was shown that either organically or conventionally grown vegetables have posed greater microbiological risks. These findings indicated that one particular type of farming practices would not affect the microbiological profiles of fresh produce. Therefore, regardless of farming methods, all vegetables should be subjected to

  6. Nuclear installations safety in France. Compilation of regulatory guides

    International Nuclear Information System (INIS)

    1988-01-01

    General plan: 1. General organization of public officials. Procedures 1.1. Texts defining the general organization and the procedures 1.2. Interventing organisms; 2. Texts presenting a technical aspect other than basic safety rules and associated organization texts; 2.1. Dispositions relating to safety of nuclear installations 2.2. Dispositions relating to pressure vessels 2.3. Dispositions relating to quality 2.4. Dispositions relating to radioactive wastes release 2.5. Dispositions relating to activities depending of classified installations; 3. Basic Safety Rules (BSR) 3.1. BSR relating to PWR 3.2. BSR relating to nuclear installations other than PWR 3.3. Other BSR [fr

  7. Implementation of a patient safety program at a tertiary health system: A longitudinal analysis of interventions and serious safety events.

    Science.gov (United States)

    Cropper, Douglas P; Harb, Nidal H; Said, Patricia A; Lemke, Jon H; Shammas, Nicolas W

    2018-04-01

    We hypothesize that implementation of a safety program based on high reliability organization principles will reduce serious safety events (SSE). The safety program focused on 7 essential elements: (a) safety rounding, (b) safety oversight teams, (c) safety huddles, (d) safety coaches, (e) good catches/safety heroes, (f) safety education, and (g) red rule. An educational curriculum was implemented focusing on changing high-risk behaviors and implementing critical safety policies. All unusual occurrences were captured in the Midas system and investigated by risk specialists, the safety officer, and the chief medical officer. A multidepartmental committee evaluated these events, and a root cause analysis (RCA) was performed. Events were tabulated and serious safety event (SSE) recorded and plotted over time. Safety success stories (SSSs) were also evaluated over time. A steady drop in SSEs was seen over 9 years. Also a rise in SSSs was evident, reflecting on staff engagement in the program. The parallel change in SSEs, SSSs, and the implementation of various safety interventions highly suggest that the program was successful in achieving its goals. A safety program based on high-reliability organization principles and made a core value of the institution can have a significant positive impact on reducing SSEs. © 2018 American Society for Healthcare Risk Management of the American Hospital Association.

  8. A total safety management model

    International Nuclear Information System (INIS)

    Obadia, I.J.; Vidal, M.C.R.; Melo, P.F.F.F.

    2002-01-01

    In nuclear organizations, quality and safety are inextricably linked. Therefore, the search for excellence means reaching excellence in nuclear safety. The International Atomic Energy Agency, IAEA, developed, after the Chernobyl accident, the organizational approach for improving nuclear safety based on the safety culture, which requires a framework necessary to provide modifications in personnel attitudes and behaviors in situations related to safety. This work presents a Total Safety Management Model, based on the Model of Excellence of the Brazilian Quality Award and on the safety culture approach, which represents an alternative to this framework. The Model is currently under validation at the Nuclear Engineering Institute, in Rio de Janeiro, Brazil, and the results of its initial safety culture self assessment are also presented and discussed. (author)

  9. Proceedings of third JAERI-JNC joint conference on nuclear safety research

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Oikawa, Tetsukuni; Araya, Fumimasa; Suzuki, Tsugio

    2006-03-01

    The present report is the proceedings of the third JAERI-JNC joint conference on nuclear safety research held on July 29, 2005 in Tokyo before integration of JAERI and JNC to JAEA. The conference was held for those who are relevant to nuclear industries and regulatory organizations, and general public. The nuclear safety research has been conducted in both institutes according to the Five-Year Program for Nuclear Safety Research established periodically by the Nuclear Safety Commission (NSC) and needs from the regulatory organizations. The objectives of the conference are to present its recent results and to collect views and opinions from the participants for its future program through the discussion after each presentation and panel discussion on how to conduct efficiently the nuclear safety research in the new organization. A total of 234 people participated in the conference mainly from the nuclear industries and regulatory organizations. The conference consisted of presentations on the safety research results, a special lecture and a panel discussion. First, the overview of safety research results was presented from each institute. Then, the results in the field of nuclear installations, environmental radioactivity and radioactive waste were presented from each institute. Then, Dr. Suzuki, deputy chairperson of NSC, made a special lecture on recent trends in nuclear safety regulation and expectation for the new organization. Finally, a panel discussion was conducted with the title of 'how to conduct efficiently the nuclear safety research in the new organization' chaired by Prof. Kimura, the chairperson of Standing Committee on Nuclear Safety Research under the NSC. The panelists from JAERI and JNC presented and discussed the subject together with the participants on the floor. Through vigorous exchange of views in the panel discussion and descriptions on the questionnaires, it was obviously expressed that expectation to the safety research of the new

  10. Key practical issues in strengthening safety culture. INSAG-15. A report by the International Safety Advisory Group [Russian Edition

    International Nuclear Information System (INIS)

    2015-01-01

    This report describes the essential practical issues to be considered by organizations aiming to strengthen safety culture. It is intended for senior executives, managers and first line supervisors in operating organizations. Although safety culture cannot be directly regulated, it is important that members of regulatory bodies understand how their actions affect the development of attempts to strengthen safety culture and are sympathetic to the need to improve the less formal human related aspects of safety. The report is therefore of relevance to regulators, although not intended primarily for them. The International Nuclear Safety Advisory Group (INSAG) introduced the concept of safety culture in its INSAG-4 report in 1991. Since then, many papers have been written on safety culture, as it relates to organizations and individuals, its improvement and its underpinning prerequisites. Variations in national cultures mean that what constitutes a good approach to enhancing safety culture in one country may not be the best approach in another. However, INSAG seeks to provide pragmatic and practical advice of wide applicability in the principles and issues presented in this report. Nuclear and radiological safety are the prime concerns of this report, but the topics discussed are so general that successful application of the principles should lead to improvements in other important areas, such as industrial safety, environmental performance and, in some respects, wider business performance. This is because many of the attitudes and practices necessary to achieve good performance in nuclear safety, including visible commitment by management, openness, care and thoroughness in completing tasks, good communication and clarity in recognizing major issues and dealing with them as a priority, have wide applicability

  11. External exposure dose of car mechanics during the maintenance of the cars from the risk cautionary area

    International Nuclear Information System (INIS)

    Kawakami, Hiroto; Yamada, Norikazu; Sasaki, Satoru; Kawasaki, Satoru

    2011-12-01

    At the request of the Local Nuclear Emergency Response Headquarters, JNES has estimated the effective external exposure dose of car mechanics during the maintenance of the cars from the risk cautionary area. JNES investigated the contamination of the cars from the risk cautionary area and of the average cars at Fukushima city cooperated by the Japan Automobile Dealers Association. Data of screed cars by the Local Nuclear Emergency Response Headquarters is also considered in. Effective external exposure dose of car mechanics treating the cars screened with the emergency situation screening level is estimated to be less than 1 mSv/y under the conservative conditions. This result shows that particular health concern isn't necessary for them. (author)

  12. The association between EMS workplace safety culture and safety outcomes.

    Science.gov (United States)

    Weaver, Matthew D; Wang, Henry E; Fairbanks, Rollin J; Patterson, Daniel

    2012-01-01

    Prior studies have highlighted wide variation in emergency medical services (EMS) workplace safety culture across agencies. To determine the association between EMS workplace safety culture scores and patient or provider safety outcomes. We administered a cross-sectional survey to EMS workers affiliated with a convenience sample of agencies. We recruited these agencies from a national EMS management organization. We used the EMS Safety Attitudes Questionnaire (EMS-SAQ) to measure workplace safety culture and the EMS Safety Inventory (EMS-SI), a tool developed to capture self-reported safety outcomes from EMS workers. The EMS-SAQ provides reliable and valid measures of six domains: safety climate, teamwork climate, perceptions of management, working conditions, stress recognition, and job satisfaction. A panel of medical directors, emergency medical technicians and paramedics, and occupational epidemiologists developed the EMS-SI to measure self-reported injury, medical errors and adverse events, and safety-compromising behaviors. We used hierarchical linear models to evaluate the association between EMS-SAQ scores and EMS-SI safety outcome measures. Sixteen percent of all respondents reported experiencing an injury in the past three months, four of every 10 respondents reported an error or adverse event (AE), and 89% reported safety-compromising behaviors. Respondents reporting injury scored lower on five of the six domains of safety culture. Respondents reporting an error or AE scored lower for four of the six domains, while respondents reporting safety-compromising behavior had lower safety culture scores for five of the six domains. Individual EMS worker perceptions of workplace safety culture are associated with composite measures of patient and provider safety outcomes. This study is preliminary evidence of the association between safety culture and patient or provider safety outcomes.

  13. Safety and reliability in Europe

    International Nuclear Information System (INIS)

    Colombo, A.G.

    1985-01-01

    This volume contains the papers presented at the ESRA Pre-Launching Meeting. The meeting was attended by about eighty European reliability and safety experts from industry, research organizations and universities. This meeting was dealing with the following subjects: the historical perspective of safety and reliability in Europe and to the aims of ESRA. Status and Trends in Research and Development; Codes, Standards and Regulations; Academic and Technical Training. National and international Organizations. Twenty six papers have been analyzed and abstracted for inclusion in the data base

  14. NASA's Software Safety Standard

    Science.gov (United States)

    Ramsay, Christopher M.

    2007-01-01

    NASA relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft launched that does not have a computer on board that will provide command and control services. There have been recent incidents where software has played a role in high-profile mission failures and hazardous incidents. For example, the Mars Orbiter, Mars Polar Lander, the DART (Demonstration of Autonomous Rendezvous Technology), and MER (Mars Exploration Rover) Spirit anomalies were all caused or contributed to by software. The Mission Control Centers for the Shuttle, ISS, and unmanned programs are highly dependant on software for data displays, analysis, and mission planning. Despite this growing dependence on software control and monitoring, there has been little to no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Meanwhile, academia and private industry have been stepping forward with procedures and standards for safety critical systems and software, for example Dr. Nancy Leveson's book Safeware: System Safety and Computers. The NASA Software Safety Standard, originally published in 1997, was widely ignored due to its complexity and poor organization. It also focused on concepts rather than definite procedural requirements organized around a software project lifecycle. Led by NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard has recently undergone a significant update. This new standard provides the procedures and guidelines for evaluating a project for safety criticality and then lays out the minimum project lifecycle requirements to assure the software is created, operated, and maintained in the safest possible manner. This update of the standard clearly delineates the minimum set of software safety requirements for a project without detailing the implementation for those

  15. New Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.; Cizmek, A.

    2008-01-01

    Beside new Ordinance on the control of nuclear material and special equipment (Official Gazette No. 15/08), from 2006 State Office for Nuclear Safety (SONS) adopted Ordinance on performing nuclear activities (Official Gazette No. 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (Official Gazette No. 74/06), based on Nuclear Safety Act (Official Gazette No. 173/03). The Ordinance on performing nuclear activities regulates the procedure of announcing the intention to perform nuclear activity, submitting an application for the issue of a license to perform nuclear activity, and the procedure for adoption a decision on issuing a nuclear activity license. The Ordinance also regulates the contents of the application form for the announcement of the intention to perform nuclear activity, as well as of the application for the issue of a nuclear activity license and the method of keeping a nuclear activity register. The Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety regulates these mentioned conditions, whereas compliance is established by a decision passed by the SONS. Special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety are organizational, technical, technological conditions and established system of quality assurance. In 2007, SONS finalized the text of new Ordinance on nuclear safety and protection conditions for location, design, construction, operation and decommissioning of facility in which nuclear activity is performed. This Ordinance regulates nuclear safety and protection conditions for location, design, construction, operation and decommissioning of facility in which nuclear activity is performed. This Ordinance defines facilities in which nuclear activity is

  16. Assessment of safety and efficiency of nitrogen organic fertilizers from animal-based protein hydrolysates--a laboratory multidisciplinary approach.

    Science.gov (United States)

    Corte, Laura; Dell'abate, Maria Teresa; Magini, Alessandro; Migliore, Melania; Felici, Barbara; Roscini, Luca; Sardella, Roccaldo; Tancini, Brunella; Emiliani, Carla; Cardinali, Gianluigi; Benedetti, Anna

    2014-01-30

    Protein hydrolysates or hydrolysed proteins (HPs) are high-N organic fertilizers allowing the recovery of by-products (leather meal and fluid hydrolysed proteins) otherwise disposed of as polluting wastes, thus enhancing matter and energy conservation in agricultural systems while decreasing potential pollution. Chemical and biological characteristics of HPs of animal origin were analysed in this work to assess their safety, environmental sustainability and agricultural efficacy as fertilizers. Different HPs obtained by thermal, chemical and enzymatic hydrolytic processes were characterized by Fourier transform infrared spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis, and their safety and efficacy were assessed through bioassays, ecotoxicological tests and soil biochemistry analyses. HPs can be discriminated according to their origin and hydrolysis system by proteomic and metabolomic methods. Three experimental systems, soil microbiota, yeast and plants, were employed to detect possible negative effects exerted by HPs. The results showed that these compounds do not significantly interfere with metabolomic activity or the reproductive system. The absence of toxic and genotoxic effects of the hydrolysates prepared by the three hydrolytic processes suggests that they do not negatively affect eukaryotic cells and soil ecosystems and that they can be used in conventional and organic farming as an important nitrogen source derived from otherwise highly polluting by-products. © 2013 Society of Chemical Industry.

  17. The function of specialized organization in work safety engineering for nuclear installations

    International Nuclear Information System (INIS)

    Salvatore, J.E.L.

    1989-01-01

    The attributions of Brazilian CNEN in the licensing procedures of any nuclear installation are discussed. It is shown that the work safety engineering and industrial safety constitute important functions for nuclear safety. (M.C.K.) [pt

  18. IAEA safety standards for research reactors

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    The general structure of the IAEA Safety Standards and the process for their development and revision are briefly presented and discussed together with the progress achieved in the development of Safety Standards for research reactor. These documents provide the safety requirements and the key technical recommendations to achieve enhanced safety. They are intended for use by all organizations involved in safety of research reactors and developed in a way that allows them to be incorporated into national laws and regulations. The author reviews the safety standards for research reactors and details their specificities. There are 4 published safety standards: 1) Safety assessment of research reactors and preparation of the safety analysis report (35-G1), 2) Safety in the utilization and modification of research reactors (35-G2), 3) Commissioning of research reactors (NS-G-4.1), and 4) Maintenance, periodic testing and inspection of research reactors (NS-G-4.2). There 5 draft safety standards: 1) Operational limits and conditions and operating procedures for research reactors (DS261), 2) The operating organization and the recruitment, training and qualification of personnel for research reactors (DS325), 3) Radiation protection and radioactive waste management in the design and operation of research reactors (DS340), 4) Core management and fuel handling at research reactors (DS350), and 5) Grading the application of safety requirements for research reactors (DS351). There are 2 planned safety standards, one concerning the ageing management for research reactor and the second deals with the control and instrumentation of research reactors

  19. Culture of safety. Indicators of culture of safety. Stage of culture of safety. Optimization of radiating protection. Principle of precaution. Principle ALARA. Procedure ALARA

    International Nuclear Information System (INIS)

    Mursa, E.

    2006-01-01

    Object of research: is the theory and practice of optimization of radiating protection according to recommendations of the international organizations, realization of principle ALARA and maintenance of culture of safety (SC) on the nuclear power plant. The purpose of work - to consider the general aspects of realization of principle ALARA, conceptual bases of culture of safety, as principle of management, and practice of their introduction on the nuclear power plant. The work has the experts' report character in which the following questions are presented: The recommendations materials of the IAEA and other international organizations have been assembled, systematized and analyzed. The definitions, characteristics and universal SC features, and also indicators as a problem of parameters and quantitative SC measurements are described in details advanced. The ALARA principles - principle of precaution; not acceptance of zero risk; choice of a principle ALARA; model of acceptable radiation risk are described. The methodology of an estimation of culture of safety level and practical realization of the ALARA principle in separate organization is shown on a practical example. The SC general estimation at a national level in Republic of Moldova have been done. Taking into consideration that now Safety Culture politics are introduced only in relation to APS, in this paper the attempt of application of Safety Culture methodology to Radiological Objects have been made (Oncological Institute of the Republic of Moldova and Special Objects No.5101 and 5102 for a long time Storage of the Radioactive Waste). (authors)

  20. OSART Independent Safety Culture Assessment (ISCA) Guidelines

    International Nuclear Information System (INIS)

    2016-01-01

    Safety culture is understood as an important part of nuclear safety performance. This has been demonstrated by the analysis of significant events such as Chernobyl, Davis Besse, Vandellos II, Asco, Paks, Mihamma and Forsmark, among others. In order to enhance safety culture, one essential activity is to perform assessments. IAEA Safety Standard Series No. GS-R-3, The Management System for Facilitites and Activities, states requirements for continuous improvement of safety culture, of which self, peer and independent safety culture assessments constitute an essential part. In line with this requirement, the Independent Safety Culture Assessment (ISCA) module is offered as an add-on module to the IAEA Operational Safety Review Team (OSART) programme. The OSART programme provides advice and assistance to Member States to enhance the safety of nuclear power plants during commissioning and operation. By including the ISCA module in an OSART mission, the receiving organization benefits from the synergy between the technical and the safety culture aspects of the safety review. The joint operational safety and safety culture assessment provides the organization with the opportunity to better understand the interactions between technical, human, organizational and cultural aspects, helping the organization to take a systemic approach to safety through identifying actions that fully address the root causes of any identified issue. Safety culture assessments provide insight into the fundamental drivers that shape organizational patterns of behaviour, safety consciousness and safety performance. The complex nature of safety culture means that the analysis of the results of such assessments is not as straightforward as for other types of assessment. The benefits of the results of nuclear safety culture assessments are maximized only if appropriate tools and guidance for these assessments is used; hence, this comprehensive guideline has been developed. The methodology explained

  1. Internal safety review team at Comanche Peak SES

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D [Comanche Peak Steam Electric Staion, Texas Utilities, TX (United States)

    1997-09-01

    The presentations describes the following issues: levels of defense in depth; internal safety review organizations; methods used to perform safety assessment; safety committee review; quality verification; root cause analysis; human performance program; industry operating experience.

  2. The predictive validity of safety climate.

    Science.gov (United States)

    Johnson, Stephen E

    2007-01-01

    Safety professionals have increasingly turned their attention to social science for insight into the causation of industrial accidents. One social construct, safety climate, has been examined by several researchers [Cooper, M. D., & Phillips, R. A. (2004). Exploratory analysis of the safety climate and safety behavior relationship. Journal of Safety Research, 35(5), 497-512; Gillen, M., Baltz, D., Gassel, M., Kirsch, L., & Vacarro, D. (2002). Perceived safety climate, job Demands, and coworker support among union and nonunion injured construction workers. Journal of Safety Research, 33(1), 33-51; Neal, A., & Griffin, M. A. (2002). Safety climate and safety behaviour. Australian Journal of Management, 27, 66-76; Zohar, D. (2000). A group-level model of safety climate: Testing the effect of group climate on microaccidents in manufacturing jobs. Journal of Applied Psychology, 85(4), 587-596; Zohar, D., & Luria, G. (2005). A multilevel model of safety climate: Cross-level relationships between organization and group-level climates. Journal of Applied Psychology, 90(4), 616-628] who have documented its importance as a factor explaining the variation of safety-related outcomes (e.g., behavior, accidents). Researchers have developed instruments for measuring safety climate and have established some degree of psychometric reliability and validity. The problem, however, is that predictive validity has not been firmly established, which reduces the credibility of safety climate as a meaningful social construct. The research described in this article addresses this problem and provides additional support for safety climate as a viable construct and as a predictive indicator of safety-related outcomes. This study used 292 employees at three locations of a heavy manufacturing organization to complete the 16 item Zohar Safety Climate Questionnaire (ZSCQ) [Zohar, D., & Luria, G. (2005). A multilevel model of safety climate: Cross-level relationships between organization and group

  3. Potential effects of organizational uncertainty on safety

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, N.E. [MPD Consulting Group, Kirkland, WA (United States); Lekberg, A. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Melber, B.D. [Melber Consulting, Seattle WA (United States)

    2001-12-01

    When organizations face significant change - reorganization, mergers, acquisitions, down sizing, plant closures or decommissioning - both the organizations and the workers in those organizations experience significant uncertainty about the future. This uncertainty affects the organization and the people working in the organization - adversely affecting morale, reducing concentration on safe operations, and resulting in the loss of key staff. Hence, organizations, particularly those using high risk technologies, which are facing significant change need to consider and plan for the effects of organizational uncertainty on safety - as well as planning for other consequences of change - technical, economic, emotional, and productivity related. This paper reviews some of what is known about the effects of uncertainty on organizations and individuals, discusses the potential consequences of uncertainty on organizational and individual behavior, and presents some of the implications for safety professionals.

  4. Potential effects of organizational uncertainty on safety

    International Nuclear Information System (INIS)

    Durbin, N.E.; Lekberg, A.; Melber, B.D.

    2001-12-01

    When organizations face significant change - reorganization, mergers, acquisitions, down sizing, plant closures or decommissioning - both the organizations and the workers in those organizations experience significant uncertainty about the future. This uncertainty affects the organization and the people working in the organization - adversely affecting morale, reducing concentration on safe operations, and resulting in the loss of key staff. Hence, organizations, particularly those using high risk technologies, which are facing significant change need to consider and plan for the effects of organizational uncertainty on safety - as well as planning for other consequences of change - technical, economic, emotional, and productivity related. This paper reviews some of what is known about the effects of uncertainty on organizations and individuals, discusses the potential consequences of uncertainty on organizational and individual behavior, and presents some of the implications for safety professionals

  5. Regulatory activities in reactor safety

    International Nuclear Information System (INIS)

    Salvatore, J.E.L.

    1987-01-01

    The safety phylosophy in designs and operation of nuclear power plants and, the steps for evaluating the safety and quality assurance, in the licensing procedure are described. The CNEN organization structure and the licensing procedure for nuclear power plants in Brazil are presented. (M.C.K.) [pt

  6. Normal people working in normal organizations with normal equipment: system safety and cognition in a mid-air collision.

    Science.gov (United States)

    de Carvalho, Paulo Victor Rodrigues; Gomes, José Orlando; Huber, Gilbert Jacob; Vidal, Mario Cesar

    2009-05-01

    A fundamental challenge in improving the safety of complex systems is to understand how accidents emerge in normal working situations, with equipment functioning normally in normally structured organizations. We present a field study of the en route mid-air collision between a commercial carrier and an executive jet, in the clear afternoon Amazon sky in which 154 people lost their lives, that illustrates one response to this challenge. Our focus was on how and why the several safety barriers of a well structured air traffic system melted down enabling the occurrence of this tragedy, without any catastrophic component failure, and in a situation where everything was functioning normally. We identify strong consistencies and feedbacks regarding factors of system day-to-day functioning that made monitoring and awareness difficult, and the cognitive strategies that operators have developed to deal with overall system behavior. These findings emphasize the active problem-solving behavior needed in air traffic control work, and highlight how the day-to-day functioning of the system can jeopardize such behavior. An immediate consequence is that safety managers and engineers should review their traditional safety approach and accident models based on equipment failure probability, linear combinations of failures, rules and procedures, and human errors, to deal with complex patterns of coincidence possibilities, unexpected links, resonance among system functions and activities, and system cognition.

  7. 49 CFR 501.3 - Organization and general responsibilities.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Organization and general responsibilities. 501.3... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ORGANIZATION AND DELEGATION OF POWERS AND DUTIES § 501.3 Organization and general responsibilities. The National Highway Traffic Safety...

  8. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  9. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  10. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  11. Evaluation of Patient Safety Culture and Organizational Culture as a Step in Patient Safety Improvement in a Hospital in Jakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Afrisya Iriviranty

    2016-07-01

    Full Text Available Introduction: Establishment of patient safety culture is the first step in the improvement of patient safety. As such, assessment of patient safety culture in hospitals is of paramount importance. Patient safety culture is an inherent component of organizational culture, so that the study of organizational culture is required in developing patient safety. This study aimed to evaluate patient safety culture among the clinical staff of a hospital in Jakarta, Indonesia and identify organizational culture profile. Materials and Methods: This cross-sectional, descriptive, qualitative study was conducted in a hospital in Jakarta, Indonesia in 2014. Sample population consisted of nurses, midwives, physicians, pediatricians, obstetrics and gynecology specialists, laboratory personnel, and pharmacy staff (n=152. Data were collected using the Hospital Survey on Patient Safety Culture developed by the Agency for Healthcare Research and Quality (AHRQ and Organizational Culture Assessment Instrument (OCAI. Results: Teamwork within units” was the strongest dimension of patient safety culture (91.7%, while “staffing” and “non-punitive response to error” were the weakest dimensions (22.7%. Moreover, clan culture was the most dominant type of organizational culture in the studied hospital. This culture serves as a guide for the changes in the healthcare organization, especially in the development of patient safety culture. Conclusion: According to the results of this study, healthcare providers were positively inclined toward the patient safety culture within the organization. As such, the action plan was designed through consensus decision-making and deemed effective in articulating patient safety in the vision and mission of the organization.

  12. Safety climate and self-reported injury: assessing the mediating role of employee safety control.

    Science.gov (United States)

    Huang, Yueng-Hsiang; Ho, Michael; Smith, Gordon S; Chen, Peter Y

    2006-05-01

    To further reduce injuries in the workplace, companies have begun focusing on organizational factors which may contribute to workplace safety. Safety climate is an organizational factor commonly cited as a predictor of injury occurrence. Characterized by the shared perceptions of employees, safety climate can be viewed as a snapshot of the prevailing state of safety in the organization at a discrete point in time. However, few studies have elaborated plausible mechanisms through which safety climate likely influences injury occurrence. A mediating model is proposed to link safety climate (i.e., management commitment to safety, return-to-work policies, post-injury administration, and safety training) with self-reported injury through employees' perceived control on safety. Factorial evidence substantiated that management commitment to safety, return-to-work policies, post-injury administration, and safety training are important dimensions of safety climate. In addition, the data support that safety climate is a critical factor predicting the history of a self-reported occupational injury, and that employee safety control mediates the relationship between safety climate and occupational injury. These findings highlight the importance of incorporating organizational factors and workers' characteristics in efforts to improve organizational safety performance.

  13. Safety culture in transport

    International Nuclear Information System (INIS)

    Decobert, V.

    1998-01-01

    'Safety culture' is a wording that appeared first in 1986, during the evaluation of what happened during the Tchernobyl accident. Safety culture is defined in the IAEA 75-INSAG-4 document as the characteristics and attitude which, in organizations and in men behaviours, make that questions related to safety of nuclear power plants benefits, in priority, of the attention that they need in function of their importance. The INSAG-4 document identifies three different elements necessary to the development of the safety culture: commitment of the policy makers, commitment of the managers of the industry, and commitment of individuals. This paper gives examples to show how safety culture is existing in the way Transnucleaire performs the activities in the field of transport of nuclear materials. (author)

  14. The value of safety indicators

    NARCIS (Netherlands)

    Kampen, J. van; Beek, D. van der; Groeneweg, J.

    2014-01-01

    Organizations are searching for ways to gain insight into the level of safety in their company so that additional measures can be taken when necessary, and so the effectiveness of interventions can be measured. That said, measuring safety, health, and the environment is not easy. A survey among

  15. Knowledge data base for severe accident management of nuclear power plants

    International Nuclear Information System (INIS)

    2013-01-01

    For the safety enhancement of Nuclear Power Plants (NPPs), continuous efforts are very important to take in the up-to-date scientific and technical knowledge positively and to reflect them into the safety regulation. The purpose of the present study is to gather effectively the scientific and technical knowledge about the severe accident (SA) phenomena and the accident management (AM) for prevention and mitigation of SA, and to take in the experimental data by participating in the international cooperative experiments regarding the important SA phenomena and the effectiveness of AM. Based on those data and knowledge, JNES is developing and improving severe accident analysis models to maintain the SA analysis codes and the AM knowledge base for assessment of the NPPs in Japan. The activities in fiscal year 2012 are as follows; Analytical study on OECD/NEA projects such as MCCI, SERENA and SFP projects, and support in making regulation for SA. (author)

  16. Knowledge data base for severe accident management of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    For the safety enhancement of Nuclear Power Plants (NPPs), continuous efforts are very important to take in the up-to-date scientific and technical knowledge positively and to reflect them into the safety regulation. The purpose of the present study is to gather effectively the scientific and technical knowledge about the severe accident (SA) phenomena and the accident management (AM) for prevention and mitigation of SA, and to take in the experimental data by participating in the international cooperative experiments regarding the important SA phenomena and the effectiveness of AM. Based on those data and knowledge, JNES is developing and improving severe accident analysis models to maintain the SA analysis codes and the AM knowledge base for assessment of the NPPs in Japan. The activities in fiscal year 2012 are as follows; Analytical study on OECD/NEA projects such as MCCI, SERENA and SFP projects, and support in making regulation for SA. (author)

  17. Overview of Fukushima accident and regulatory issues for FCFS after the accident

    International Nuclear Information System (INIS)

    Ueda, Y.

    2013-01-01

    In the first part of his presentation Yoshinori Ueda (JNES, Japan) gave an overview of the Fukushima accident and an outline of the emergency safety measures and response at the NPP site. The second part was focused on the regulatory issues for FCFs after the accident. The first issue was the emergency safety measures in case of total loss of AC power (loss capabilities of decay heat removal and hydrogen accumulation prevention) and tsunami in the reprocessing facilities and associated spent fuel storages at Tokai and Rokkasho plants. The second issue was the directions to the licensees of these facilities to secure the work environment in the main control rooms in case of complete loss of AC power, to secure communication within the facility in case of such emergency, and to secure material and equipment for radiation protection, and to deploy heavy tools for rubble removal. No paper has been made available for this presentation

  18. Empirical Analysis of Construction Safety Climate - A Study

    OpenAIRE

    S.V.S.RAJA PRASAD; K.P.REGHUNATH

    2010-01-01

    Safety in the construction industry has always been a major issue. Though much improvement in construction safety has been achieved, the industry still continues to lag behind most other industries with regard to safety. The safety climate of any organization consists of employee’s attitudes towards and perceptions of, health and safety behavior. Construction workers attitudes towards safety are influenced by their perceptions of risk, management, safety rulesand procedures. A measure of safe...

  19. NPP Krsko periodic safety review. Safety assessment and analyses

    International Nuclear Information System (INIS)

    Basic, I.; Spiler, J.; Thaulez, F.

    2002-01-01

    Definition of a PSR (Periodic Safety Review) project is a comprehensive safety review of a plant after ten years of operation. The objective is a verification by means of a comprehensive review using current methods that the plant remains safe when judged against current safety objectives and practices and that adequate arrangements are in place to maintain plant safety. The overall goals of the NEK PSR Program are defined in compliance with the basic role of a PSR and the current practice typical for most of the countries in EU. This practice is described in the related guides and good practice documents issued by international organizations. The overall goals of the NEK PSR are formulated as follows: to demonstrate that the plant is as safe as originally intended; to evaluate the actual plant status with respect to aging and wear-out identifying any structures, systems or components that could limit the life of the plant in the foreseeable future, and to identify appropriate corrective actions, where needed; to compare current level of safety in the light of modern standards and knowledge, and to identify where improvements would be beneficial for minimizing deviations at justifiable costs. The Krsko PSR will address the following safety factors: Operational Experience, Safety Assessment, EQ and Aging Management, Safety Culture, Emergency Planning, Environmental Impact and Radioactive Waste.(author)

  20. Role of nuclear safety research and future plan

    International Nuclear Information System (INIS)

    Kim, W. S.; Lee, J. I.; Kang, S. C.; Park, Y. W.; Lee, J. H.; Kim, M. W.; Lee, C. J.; Park, Y. I.

    2000-01-01

    For promoting and improving nuclear safety research activities, this report gives an insight on the scope of safety research and its role in the safety management of nuclear installations, and suggests measures to adequately utilize the research results through taking an optimized role share among research organizations. Several measures such as cooperative planning of common research areas and proper role assignment, improvement of the interfaces among researchers, and reflection of end-users' opinion in the course of planning and conducting research to promote application of research results are identified. It is expected that the identified measures will contribute to enhancing the efficiency and effectiveness of nuclear safety research, if they are implemented after deliberating with the government and safety research organizations

  1. Safety culture development at Daya Bay NPP

    International Nuclear Information System (INIS)

    Zhang Shanming

    2001-01-01

    From view on Organization Behavior theory, the concept, development and affecting factors of safety culture are introduced. The focuses are on the establishment, development and management practice for safety culture at Daya Bay NPP. A strong safety culture, also demonstrated, has contributed greatly to improving performance at Daya Bay

  2. Health and research organization to meet complex needs of developing energy technologies

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1980-01-01

    At the Lawrence Livermore Laboratory, a unique safety technology organization has been established that is especially geared to respond to interdisciplinary health and safety questions in response to rapidly growing energy technology problems. This concept can be adopted by smaller organizations at a more modest cost, and still maintains the efficiency, flexibility, and technical rigor that are needed more and more in support of any industry health and safety problem. The separation of the technology development role from the operation safety organization allows the operational safety specialists to spend more time upgrading the occupational health and safety program but yet provides the opportunity for interchange with health and safety technology development specialists. In fact, a personnel assignment flow between an operational health and safety organization and a special technology development organization provides a mechanism for upgrading the overall safety capability and program provided by a given industrial or major laboratory

  3. Safety culture activities in HANARO

    International Nuclear Information System (INIS)

    Lim, I. C.; Park, C.; Hwang, S. R.; Choi, H. Y.; Jeon, B. J.

    2002-01-01

    The yearly operation time and the number of users in HANARO are increasing since its initial criticality has been achieved in 1995. This achievement is partly in debt to the spread of safety culture to operators and reactor users. In this paper, the activities done by the reactor operation organization on safety culture are described, and their further efforts identified to be necessary for the improvement and dissemination of safety culture and are presented

  4. Nuclear safety guide TID-7016 Revision 2

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1980-01-01

    The present revision of TID-7016 Nuclear Safety Guide is discussed. This Guide differs significantly from its predecessor in that the latter was intentionally conservative in its recommendations. Firmly based on experimental evidence of criticality, the original Guide and the first revision were considered to be of most value to organizations whose activities with fissionable materials were not extensive and, secondarily, that it would serve as a point of departure for members of established nuclear safety teams, experienced in the field. The reader will find a significant change in the character of information presented in this version. Nuclear Criticality Safety has matured in the past twelve years. The advance of calculational capability has permitted validated calculations to extend and substitute for experimental data. The broadened data base has enabled better interpolation, extension, and understanding of available, information, especially in areas previously addressed by undefined but adequate factors of safety. The content has been thereby enriched in qualitative guidance. The information inherently contains, and the user can recapture, the quantitative guidance characteristic of the former Guides by employing appropriate safety factors. In fact, it becomes incumbent on the Criticality Safety Specialist to necessarily impose safety factors consistent with the possible normal and abnormal credible contingencies of an operation as revealed by his evaluation. In its present form the Guide easily becomes a suitable module in any compendium or handbook tailored for internal use by organizations. It is hoped the Guide will continue to serve immediate needs and will encourage continuing and more comprehensive efforts toward organizing nuclear criticality safety information

  5. 78 FR 23158 - Organization and Delegation of Duties

    Science.gov (United States)

    2013-04-18

    ... [Docket No. NHTSA-2013-0048] RIN 2127-AL44 Organization and Delegation of Duties AGENCY: National Highway... regulations. These regulations govern the organization of the National Highway Traffic Safety Administration... forth the organization of the National Highway Traffic Safety Administration (NHTSA) and delegations of...

  6. The Role of Leadership in Fostering Employee Safety Behaviors

    International Nuclear Information System (INIS)

    Mattson, M.; Von Thiele Schwarz, U.; Hasson, H.; Hellgren, J.; Tafvelin, S.

    2016-01-01

    During the last decades significant improvements have been achieved when it comes to raising the level of safety in high-risk organizations. However, many organizations are still suffering from safety related problems such as lacking employee safety behaviors and high injury rates. Research has indicated that leadership can have a vital role in promoting safety. Most of the studies investigating the relationships between leadership styles and organizational safety have tended to focus on the role of a single leadership style, such as transformational leadership or transactional leadership. A few studies have also examined the association between safety-specific leadership, that is, a leadership style that specifically emphasises the promotion and enhancement of safety, and workplace safety outcomes. Still, no study up to date has investigated the relative importance of these three leadership styles. In addition, previous research on leadership and safety have provided ambiguous or only weak support for leadership styles being related to accident and injury frequencies. Based on this background, the first aim of the present study was to investigate the relative importance of three different leadership styles for employee safety behaviors and injury rates in a high-risk organization. The three investigated leadership styles were transformational leadership, transactional leadership, and safety-specific leadership. The second aim of the study was to examine whether a relationship between leadership style and injury frequency could be found when the occurrence of minor injuries was measured in addition to that of major injuries.

  7. Nuclear safety research

    International Nuclear Information System (INIS)

    1996-01-01

    The topics 'Large-sized PWR-NPP Safety Techniques Research',and 'The Key Techniques Research on the Safety Supervision and Control for Operation of Nuclear Installations' have been adopted as an apart of 'the National 9th five Year Programs for Tacking the Key Scientific and Technical Topics' which are organized by the State Planning Commission (SPC) and State Science and Technology Commission (SSTC) respectively, and have obtained a financial support from them. To play a better role with the limited fund, the NNSA laid special stress on selecting key sub-topics on nuclear safety, and carefully choosing units which would undertake sub-topics and signing technical contracts with them

  8. Electronics and data processing for safety

    International Nuclear Information System (INIS)

    1995-01-01

    Industrial installations, and in particular installations involving risk, are more and more monitored and controlled by computerized systems. The use of such systems raises questions about their contribution to the installation safety and about the qualities required in these systems to avoid additional risk. The February 1995 Electronics Days were organized by the CEA-LETI Department of Electronics and Nuclear Instrumentation to try to answer these questions. Four sessions were organized on the following topics: computerized systems and functioning safety, components and architectures, softwares and norms, and tools and methods. Only the communications dealing with the safety of computerized systems and components involved in nuclear applications have been retained (17 over 36). (J.S.)

  9. Safety assessment for facilities and activities. General safety requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF 6 ; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  10. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  11. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2010-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  12. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation.? read more The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are

  13. Space station pressurized laboratory safety guidelines

    Science.gov (United States)

    Mcgonigal, Les

    1990-01-01

    Before technical safety guidelines and requirements are established, a common understanding of their origin and importance must be shared between Space Station Program Management, the User Community, and the Safety organizations involved. Safety guidelines and requirements are driven by the nature of the experiments, and the degree of crew interaction. Hazard identification; development of technical safety requirements; operating procedures and constraints; provision of training and education; conduct of reviews and evaluations; and emergency preplanning are briefly discussed.

  14. 78 FR 6819 - Patient Safety Organizations: Voluntary Relinquishment From the BREF PSO

    Science.gov (United States)

    2013-01-31

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... (AHRQ), HHS. ACTION: Notice of delisting. SUMMARY: The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act), Public Law 109-41, 42 U.S.C. 299b-21--b-26, provides for the formation of...

  15. 78 FR 6820 - Patient Safety Organizations: Voluntary Relinquishment From Ryder Trauma Center

    Science.gov (United States)

    2013-01-31

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... Quality (AHRQ), HHS. ACTION: Notice of delisting. SUMMARY: The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act), Public Law 109-41, 42 U.S.C. 299b-21--b-26, provides for the formation...

  16. Management concepts and safety applications for nuclear fuel facilities

    International Nuclear Information System (INIS)

    Eisner, H.; Scotti, R.S.

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities

  17. Management concepts and safety applications for nuclear fuel facilities

    Energy Technology Data Exchange (ETDEWEB)

    Eisner, H.; Scotti, R.S. [George Washington Univ., Washington, DC (United States). School of Engineering and Applied Science; Delicate, W.S. [KEVRIC Co., Inc., Silver Spring, MD (United States)

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities.

  18. Development of methodology for evaluation of long-term safety aspects of organic cement paste components

    International Nuclear Information System (INIS)

    Andersson, M.; Holgersson, S.; Ervanne, H.

    2008-12-01

    Long-term safety aspects of superplasticizers (SP) and other cement paste components were studied in this joint Nagra - NUMO - SKB - Posiva project with aim to develop a methodology for the evaluation of the long-term safety aspects of superplasticizers (SP) and other organic components of cement pastes. The study also evaluated the effects of SPs and other cement paste components that have already been used or that are most likely to be used in the construction of the high-level nuclear waste repositories in Sweden, Switzerland, Finland and Japan. The main long-term safety issue of concern is whether the superplasticizers and/or other organic components of cement pastes might affect the transport properties of radionuclides. A full evaluation of whether the superplasticizers can be used in a high-level nuclear waste repository cannot be answered based on the studies but a classification of the superplasticizers based on their impact on sorption of radionuclides has been done. The basic methodology for testing, leaching and analyzing of leachants and solid samples of different types was developed at CRIEPI. Two different methodologies for studying the impact of SPs on the sorption of Eu on crushed rock were tested and developed by Helsinki University (HU) and Chalmers University of Technology (CTH). Methods for analyzing organics leaching from grouts were successfully tested by CRIEPI and CTH (Chalmers University of Technology). At CRIEPI the total organic content (TOC) of the leachants was analyzed by Infrared absorption spectrometry (IR) followed by Gel Permeation Chromatography (GPC) for the identification of the organic compounds. At CTH several different analytical methods were tested (e.g. IR, UV spectroscopy, NMR, MALDI-TOF), but these methods still require improvement. In addition to SPs, organics are present in several components of cement pastes, for example in cement grinding aid (CGA) and micro silica slurry. The results suggests that the main high

  19. SCART guidelines. Reference report for IAEA Safety Culture Assessment Review Team (SCART)

    International Nuclear Information System (INIS)

    2008-01-01

    The IAEA Director General stressed the role of safety culture in his concluding remarks at the Meeting of the Contracting Parties to the Convention on Nuclear Safety in 2002: 'As we have learned in other areas, it is not enough simply to have a structure; it is not enough to say that we have the necessary laws and the appropriate regulatory bodies. All these are important, but equally important is that we have in place a safety culture that gives effect to the structure that we have developed. To me, effectiveness and transparency are keys. So, it is an issue which I am pleased to see, you are giving the attention it deserves and we will continue to work with you in clarifying, developing and applying safety culture through our programmes and through our technical cooperation activities.' The concept of safety culture was initially developed by the International Nuclear Safety Advisory Group (INSAG) after the Chernobyl accident in 1986. Since then the IAEA's perspective of safety culture has expanded with time as its recognition of the complexities of the concept developed. Safety culture is considered to be specific organizational culture in all types of organizations with activities that give rise to radiation risks. The aim is to make safety culture strong and sustainable, so that safety becomes a primary focus for all activities in such organizations, even for those, which might not look safety-related at first. SCART (Safety Culture Assessment Review Team) is a safety review service, which reflects the expressed interest of Members States for methods and tools for safety culture assessment. It is a replacement for the earlier service ASCOT (Assessment of Safety Culture in Organizations Team). The IAEA Safety Fundamentals, Requirements and Guides (Safety Standards) are the basis for the SCART Safety Review Service. The reports of INSAG, identifying important current nuclear safety issues, serve also as references during a SCART mission. SCART missions are based

  20. Psychometric model for safety culture assessment in nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, C.S. do, E-mail: claudio.souza@ctmsp.mar.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), Av. Professor Lineu Prestes 2468, 05508-000 São Paulo, SP (Brazil); Andrade, D.A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil)

    2017-04-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha