WorldWideScience

Sample records for safety operation procedure

  1. Operating procedures and safety culture

    International Nuclear Information System (INIS)

    Carnino, A.

    1993-01-01

    The development of new technologies in recent years has led to a tremendous increase in the information to be mastered by operators in industrial processes. The information at operators disposal both in routine situations and accidental ones needs to be well prepared and organized to ensure reliability and safety. The man-machine interface should give operators all the necessary and clear indications on the process status and evolution so that the operators can operate the installation through adequate procedures. Procedures represent the real interface and mode of action of the operators on the machine, and they are of prime importance. Although they are by essence quite different, the routine, accident, and emergency procedures have in common one attribute: They all require a good safety culture both in their development and their implementation. From the definition given by the members of the International Nuclear Safety Advisory Group (INSAG), open-quotes Safety culture is that assembly of characteristics and attitudes in organizations and individuals which establishes that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance,close quotes one can see that two aspects are embedded, a collective attitude that in fact is reflected in the managerial framework and an individual one that is linked to personnel behavior and work practices

  2. Operational limits and conditions and operating procedures for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared as part of the Agency's programme for establishing safety standards relating to nuclear power plants. The present Safety Guide supersedes the IAEA Safety Guide on Operational Limits and Conditions for Nuclear Power Plants which was issued in 1979 as Safety Series No. 50-SG-O3. For a nuclear power plant to be operated in a safe manner, the provisions made in the final design and subsequent modifications shall be reflected in limitations on plant operating parameters and in the requirements on plant equipment and personnel. Under the responsibility of the operating organization, these shall be developed during the design safety evaluation as a set of operational limits and conditions (OLCs). A major contribution to compliance with the OLCs is made by the development and utilization of operating procedures (OPs) that are consistent with and fully implement the OLCs. The requirements for the OLCs and OPs are established in Section 5 of the IAEA Safety Requirements publication Safety of Nuclear Power Plants: Operation, which this Safety Guide supplements. The purpose of this Safety Guide is to provide guidance on the development, content and implementation of OLCs and OPs. The Safety Guide is directed at both regulators and owners/operators. This Safety Guide covers the concept of OLCs, their content as applicable to land based stationary power plants with thermal neutron reactors, and the responsibilities of the operating organization regarding their establishment, modification, compliance and documentation. The OPs to support the implementation of the OLCs and to ensure their observance are also within the scope of this Safety Guide. The particular aspects of the procedures for maintenance, surveillance, in-service inspection and other safety related activities in connection with the safe operation of nuclear power plants are outside the scope of this Safety Guide but can be found in other IAEA Safety Guides. Section 2 indicates the

  3. Operational limits and conditions and operating procedures for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    This Safety Guide was prepared as part of the Agency's programme for establishing safety standards relating to nuclear power plants. The present Safety Guide supersedes the IAEA Safety Guide on Operational Limits and Conditions for Nuclear Power Plants which was issued in 1979 as Safety Series No. 50-SG-O3. For a nuclear power plant to be operated in a safe manner, the provisions made in the final design and subsequent modifications shall be reflected in limitations on plant operating parameters and in the requirements on plant equipment and personnel. Under the responsibility of the operating organization, these shall be developed during the design safety evaluation as a set of operational limits and conditions (OLCs). A major contribution to compliance with the OLCs is made by the development and utilization of operating procedures (OPs) that are consistent with and fully implement the OLCs. The requirements for the OLCs and OPs are established in Section 5 of the IAEA Safety Requirements publication Safety of Nuclear Power Plants: Operation, which this Safety Guide supplements. The purpose of this Safety Guide is to provide guidance on the development, content and implementation of OLCs and OPs. The Safety Guide is directed at both regulators and owners/operators. This Safety Guide covers the concept of OLCs, their content as applicable to land based stationary power plants with thermal neutron reactors, and the responsibilities of the operating organization regarding their establishment, modification, compliance and documentation. The OPs to support the implementation of the OLCs and to ensure their observance are also within the scope of this Safety Guide. The particular aspects of the procedures for maintenance, surveillance, in-service inspection and other safety related activities in connection with the safe operation of nuclear power plants are outside the scope of this Safety Guide but can be found in other IAEA Safety Guides. Section 2 indicates the

  4. Evaluating North Carolina Food Pantry Food Safety-Related Operating Procedures.

    Science.gov (United States)

    Chaifetz, Ashley; Chapman, Benjamin

    2015-11-01

    Almost one in seven American households were food insecure in 2012, experiencing difficulty in providing enough food for all family members due to a lack of resources. Food pantries assist a food-insecure population through emergency food provision, but there is a paucity of information on the food safety-related operating procedures used in the pantries. Food pantries operate in a variable regulatory landscape; in some jurisdictions, they are treated equivalent to restaurants, while in others, they operate outside of inspection regimes. By using a mixed methods approach to catalog the standard operating procedures related to food in 105 food pantries from 12 North Carolina counties, we evaluated their potential impact on food safety. Data collected through interviews with pantry managers were supplemented with observed food safety practices scored against a modified version of the North Carolina Food Establishment Inspection Report. Pantries partnered with organized food bank networks were compared with those that operated independently. In this exploratory research, additional comparisons were examined for pantries in metropolitan areas versus nonmetropolitan areas and pantries with managers who had received food safety training versus managers who had not. The results provide a snapshot of how North Carolina food pantries operate and document risk mitigation strategies for foodborne illness for the vulnerable populations they serve. Data analysis reveals gaps in food safety knowledge and practice, indicating that pantries would benefit from more effective food safety training, especially focusing on formalizing risk management strategies. In addition, new tools, procedures, or policy interventions might improve information actualization by food pantry personnel.

  5. Operating procedure automation to enhance safety of nuclear power plants

    International Nuclear Information System (INIS)

    Husseiny, A.A.; Sabri, Z.A.; Adams, S.K.; Rodriguez, R.J.; Packer, D.; Holmes, J.W.

    1989-01-01

    Use of logic statements and computer assist are explored as means for automation and improvement on design of operating procedures including those employed in abnormal and emergency situations. Operating procedures for downpower and loss of forced circulation are used for demonstration. Human-factors analysis is performed on generic emergency operating procedures for three strategies of control; manual, semi-automatic and automatic, using standard emergency operating procedures. Such preliminary analysis shows that automation of procedures is feasible provided that fault-tolerant software and hardware become available for design of the controllers. Recommendations are provided for tests to substantiate the promise of enhancement of plant safety. Adequate design of operating procedures through automation may alleviate several major operational problems of nuclear power plants. Also, automation of procedures is necessary for partial or overall automatic control of plants. Fully automatic operations are needed for space applications while supervised automation of land-based and offshore plants may become the thrust of new generation of nulcear power plants. (orig.)

  6. Safety evaluation by living probabilistic safety assessment. Procedures and applications for planning of operational activities and analysis of operating experience

    International Nuclear Information System (INIS)

    Johanson, Gunnar; Holmberg, J.

    1994-01-01

    Living Probabilistic Safety Assessment (PSA) is a daily safety management system and it is based on a plant-specific PSA and supporting information systems. In the living use of PSA, plant status knowledge is used to represent actual plant safety status in monitoring or follow-up perspective. The PSA model must be able to express the risk at a given time and plant configuration. The process, to update the PSA model to represent the current or planned configuration and to use the model to evaluate and direct the changes in the configuration, is called living PSA programme. The main purposes to develop and increase the usefulness of living PSA are: Long term safety planning: To continue the risk assessment process started with the basic PSA by extending and improving the basic models and data to provide a general risk evaluation tool for analyzing the safety effects of changes in plant design and procedures. Risk planning of operational activities: To support the operational management by providing means for searching optimal operational maintenance and testing strategies from the safety point of view. The results provide support for risk decision making in the short term or in a planning mode. The operational limits and conditions given by technical specifications can be analyzed by evaluating the risk effects of alternative requirements in order to balance the requirements with respect to operational flexibility and plant economy. Risk analysis of operating experience: To provide a general risk evaluation tool for analyzing the safety effects of incidents and plant status changes. The analyses are used to: identify possible high risk situations, rank the occurred events from safety point of view, and get feedback from operational events for the identification of risk contributors. This report describes the methods, models and applications required to continue the process towards a living use of PSA. 19 tabs, 20 figs

  7. Improving the safety and quality of nursing care through standardized operating procedures in Bosnia and Herzegovina.

    Science.gov (United States)

    Ausserhofer, Dietmar; Rakic, Severin; Novo, Ahmed; Dropic, Emira; Fisekovic, Eldin; Sredic, Ana; Van Malderen, Greet

    2016-06-01

    We explored how selected 'positive deviant' healthcare facilities in Bosnia and Herzegovina approach the continuous development, adaptation, implementation, monitoring and evaluation of nursing-related standard operating procedures. Standardized nursing care is internationally recognized as a critical element of safe, high-quality health care; yet very little research has examined one of its key instruments: nursing-related standard operating procedures. Despite variability in Bosnia and Herzegovina's healthcare and nursing care quality, we assumed that some healthcare facilities would have developed effective strategies to elevate nursing quality and safety through the use of standard operating procedures. Guided by the 'positive deviance' approach, we used a multiple-case study design to examine a criterion sample of four facilities (two primary healthcare centres and two hospitals), collecting data via focus groups and individual interviews. In each studied facility, certification/accreditation processes were crucial to the initiation of continuous development, adaptation, implementation, monitoring and evaluation of nursing-related SOPs. In one hospital and one primary healthcare centre, nurses working in advanced roles (i.e. quality coordinators) were responsible for developing and implementing nursing-related standard operating procedures. Across the four studied institutions, we identified a consistent approach to standard operating procedures-related processes. The certification/accreditation process is enabling necessary changes in institutions' organizational cultures, empowering nurses to take on advanced roles in improving the safety and quality of nursing care. Standardizing nursing procedures is key to improve the safety and quality of nursing care. Nursing and Health Policy are needed in Bosnia and Herzegovina to establish a functioning institutional framework, including regulatory bodies, educational systems for developing nurses' capacities or the

  8. Safety procedures in operation of inspection and maintenance of pressure reduction and metering stations

    International Nuclear Information System (INIS)

    Villas Boas, Ademar Jose; Biesemeyer, Marco Aurelio R.

    2000-01-01

    Each local Natural Gas Distribution Company in Brazil has its own working procedures for operations of inspection and maintenance on equipment and accessories connected to the gas network. Some of these Companies developed a better elaborated and documented way of working routines, while others only work based on their operators experience. The objective of this work is to create a standard procedure for operations of inspection and maintenance of Pressure Reducing Stations and Metering Stations, mainly the ones concerned to safety aspects. This work has no intention of exhausting all aspects related to this subject but to become the first step to standardize these types of operations among Natural Gas Distribution Companies. (author)

  9. Supplement to safety analysis report. 306-W building operations safety requirement

    International Nuclear Information System (INIS)

    Richey, C.R.

    1979-08-01

    The operations safety requirements (OSRs) presented in this report define the conditions, safe boundaries, and management control needed for safely conducting operations with radioactive materials in the Pacific Northwest Laboratory (PNL) 306-W building. The safety requirements are organized in five sections. Safety limits are safety-related process variables that are observable and measurable. Limiting conditions cover: equipment and technical conditions and characteristics of the facility and operations necessary for continued safe operation. Surveillance requirements prescribe the requirements for checking systems and components that are essential to safety. Equipment design controls require that changes to process equipment and systems be independently checked and approved to assure that the changes will have no adverse effect on safety. Administrative controls describe and discuss the organization and administrative systems and procedures to be used for safe operation of the facility. Details of the implementation of the operations safety requirements are prescribed by internal PNL documents such as criticality safety specifications and radiation work procedures

  10. 40 CFR 68.52 - Operating procedures.

    Science.gov (United States)

    2010-07-01

    ...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 2 Prevention Program § 68.52 Operating procedures. (a) The... for safely conducting activities associated with each covered process consistent with the safety information for that process. Operating procedures or instructions provided by equipment manufacturers or...

  11. Operation safety at Ignalina NPP

    International Nuclear Information System (INIS)

    Zheltobriukh, G.

    1999-01-01

    An improvement of operational safety at Ignalina NPP covers: improvement of management structure and safety culture; symptom-based emergency operating procedures; staff training and full scope simulator; program of components ageing; metal inspection; improvement of fire safety. The first plan of Ignalina NPP Safety culture development for 1997 purposed to the SAR recommendation implementation was prepared and approved by the General Director

  12. Improvement of Safety Features in Standard Operation Procedure of Tc-99m Generator

    International Nuclear Information System (INIS)

    Manisah Saedon; Mohd Khairul Hakimi; Shyen, A.K.S.

    2011-01-01

    This paper describes the improvements proposed to the original production procedures for Tc-99m generators. Improvements are intended to add safety and health features for workers into the existing procedures. The difference between the new safe work procedures from the original work procedures; is the concern about the safety and health of employees other than the product safety. One of the suggested safety characteristics is by using the visual aid so that the workers can easily see and read the procedures when they perform their duties, whereas the previous procedures are kept in the manual and difficult to access. The purpose of this paper is to share information about the importance of safety and health features for the workers in the procedures established in addition to provide awareness to all parties involved. (author)

  13. Operational limits and conditions and operating procedures for research reactors. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    This publication provides practical guidance on all important aspects of developing, formulating and presenting the operational limits and conditions as well as the operating procedures for research reactors. It covers the concept of operational limits and conditions, their content, and the responsibilities of the operating organization with respect to their establishment, modification, documentation and compliance. The guidance also covers the training of operating personnel on performing periodic testing, established by the operational limits and conditions, and operating procedures

  14. Operational safety of nuclear power plants

    International Nuclear Information System (INIS)

    Tanguy, P.

    1987-01-01

    The operational safety of nuclear power plants has become an important safety issue since the Chernobyl accident. A description is given of the various aspects of operational safety, including the importance of human factors, responsibility, the role and training of the operator, the operator-machine interface, commissioning and operating procedures, experience feedback, and maintenance. The lessons to be learnt from Chernobyl are considered with respect to operator errors and the management of severe accidents. Training of personnel, operating experience feedback, actions to be taken in case of severe accidents, and international cooperation in the field of operational safety, are also discussed. (U.K.)

  15. Developing, adopting and adapting operating procedures

    International Nuclear Information System (INIS)

    Rabouhams, J.

    1986-01-01

    This lecture specifies all the dispositions which have been taken by EDF Nuclear and Fossil Generation Department - according to the fact that availability and safety largely depend on the quality of the procedures and their easy handling - in order to develop, adopt and adapt the operating procedures. The following points are treated: General organization of procedures for plant operation during normal and abnormal conditions; Personnel and extend of responsibility involved into the development of procedures (research center, training center, specialized services, nuclear station, etc.); Validation of the procedures by means of full-scope simulators; Modifications of the procedures taking into account operation experience in material and human fields; Development of simulation softs in order to perform the procedures in abnormal situations; Evolution of operating technics and future skills. (orig.)

  16. Procedures for self-assessment of operational safety

    International Nuclear Information System (INIS)

    1997-08-01

    Self-assessment processes have been continuously developed by nuclear organizations, including nuclear power plants. Currently, the nuclear industry and governmental organizations are showing an increasing interest in the implementation of this process as an effective way for improving safety performance. Self-assessment involves the use of different types of tools and mechanisms to assist the organizations in assessing their own safety performance against given standards. This helps to enhance the understanding of the need for improvements, the feeling of ownership in achieving them and and the safety culture as a whole. The concepts developed in this report present the basic approach to self-assessment taking into consideration experience gained during Operational Safety Review Team (OSART) missions, from organizations and utilities which have successfully implemented parts of a self-assessment programme and from meetings organized to discuss the subject

  17. Operational and environmental safety

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The responsibility of the DOE Office of Operational and Environmental Safety is to assure that DOE-controlled activities are conducted in a manner that will minimize risks to the public and employees and will provide protection for property and the environment. The program supports the various energy technologies by identifying and resolving safety problems; developing and issuing safety policies, standards, and criteria; assuring compliance with DOE, Federal, and state safety regulations; and establishing procedures for reporting and investigating accidents in DOE operations. Guidelines for the radiation protection of personnel; radiation monitoring at nuclear facilities; an assessment of criticality accidents by fault tree analysis; and the preparation of environmental, safety, and health standards applicable to geothermal energy development are discussed

  18. An approach toward estimating the safety significance of normal and abnormal operating procedures in nuclear power plants

    International Nuclear Information System (INIS)

    Grant, T.F.; Harris, M.S.

    1989-01-01

    The Nuclear Regulatory Commission's TMI Action Plan calls for a long-term plan to upgrade operating procedures in nuclear power plants. The scope of Generic Issue Human Factors 4.4, which stems from this requirement, includes the recommendation of improvements in nuclear power plant normal and abnormal operating procedures (NOPs and AOPs) and the implementation of appropriate regulatory action. This paper will describe the objectives, methodologies, and results of a Battelle-conducted value impact assessment to determine the costs and benefits of having the NRC implement regulatory action that would specify requirements for the preparation of acceptable NOPs and AOPs by the Commission's nuclear power plant licensees. The results of this value impact assessment are expressed in terms of ten cost/benefit attributes that can be affected by the NRC regulatory action. Five of these attributes require the calculation of change in public risk that could be expected to result from the action which, in this case, required determining the safety significance of NOPs and AOPs. In order to estimate this safety significance, a multi-step methodology was created that relies on an existing Probabilistic Risk Assessment (PRA) to provide a quantitative framework for modeling the role of operating procedures. The purpose of this methodology is to determine what impact the improvement of NOPs and AOPs would have on public health and safety

  19. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  20. Safety training and safe operating procedures written for PBFA [Particle Beam Fusion Accelerator] II and applicable to other pulsed power facilities

    International Nuclear Information System (INIS)

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards

  1. Operating experience: safety perspective

    International Nuclear Information System (INIS)

    Piplani, Vivek; Krishnamurthy, P.R.; Kumar, Neeraj; Upadhyay, Devendra

    2015-01-01

    Operating Experience (OE) provides valuable information for improving NPP safety. This may include events, precursors, deviations, deficiencies, problems, new insights to safety, good practices, lessons and corrective actions. As per INSAG-10, an OE program caters as a fundamental means for enhancing the defence-in-depth at NPPs and hence should be viewed as ‘Continuous Safety Performance Improvement Tool’. The ‘Convention on Nuclear Safety’ also recognizes the OE as a tool of high importance for enhancing the NPP safety and its Article 19 mandates each contracting party to establish an effective OE program at operating NPPs. The lessons drawn from major accidents at Three Mile Island, Chernobyl and Fukushima Daiichi NPPs had prompted nuclear stalwarts to change their safety perspective towards NPPs and to frame sound policies on issues like safety culture, severe accident prevention and mitigation. An effective OE program, besides correcting current/potential problems, help in proactively improving the NPP design, operating and maintenance procedures, practices, training, etc., and thus plays vital role in ensuring safe and efficient operation of NPPs. Further it enhances knowledge with regard to equipment operating characteristics, system performance trends and provides data for quantitative and qualitative safety analysis. Besides all above, an OE program inculcates a learning culture in the organisation and thus helps in continuously enhancing the expertise, technical competency and knowledge base of its staff. Nuclear and Radiation Facilities in India are regulated by Atomic Energy Regulatory Board (AERB). Operating Plants Safety Division (OPSD) of AERB is involved in managing operating experience activities. This paper provides insights about the operating experience program of OPSD, AERB (including its on-line data base namely OPSD STAR) and its utilisation in improving the regulations and safety at Indian NPPs/projects. (author)

  2. Human Factors Evaluation of Procedures for Periodic Safety Review of Yonggwang Unit no. 1, 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Lee, Jung Woon; Park, Jae Chang (and others)

    2006-01-15

    This report describes the results of human factors assessment on the plant operating procedures as part of Periodic Safety Review(PSR) of Yonggwang Nuclear Power Plant Unit no. 1, 2. The suitability of item and appropriateness of format and structure in the key operating procedures of nuclear power plants were investigated by the review of plant operating experiences and procedure documents, field survey, and experimental assessment on some part of procedures. A checklist was used to perform this assessment and record the review results. The reviewed procedures include EOP(Emergency Operating Procedures), GOP(General Operating Procedures), AOP(Abnormal Operating Procedures), and management procedures of some technical departments. As results of the assessments, any significant problem challenging the safety was not found on the human factors in the operating procedures. However, several small items to be changed and improved were discovered. An action plan is recommended to accommodate the suggestions and review comments. It will enhance the plant safety on the operating procedure.

  3. MITS Feed and Withdrawal Subsystem: operating procedures

    International Nuclear Information System (INIS)

    Brown, W.S.

    1980-01-01

    This procedure details the steps required to provide continuous feed flow and withdrawal of process product and waste flows in support of thruput operation in the cascade or its elements. It particularly requires operator attention to safety considerations

  4. Computer managed emergency operating procedures

    International Nuclear Information System (INIS)

    Salamun, I.; Mavko, B.; Stritar, A.

    1994-01-01

    New computer technology is a very effective tool for developing a new design of nuclear power plant control room. It allows designer possibility to create a tool for managing with large database of power plant parameters and displaying them in different graphic forms and possibility of automated execution of well known task. The structure of Emergency Operating Procedures (EOP) is very suitable for programming and for creating expert system. The Computerized Emergency Operating Procedures (CEOP) described in this paper can be considered as an upgrading of standard EOP approach. EmDiSY (Emergency Display System - computer code name for CEOP) main purpose is to supply the operator with necessary information, to document all operator actions and to execute well known tasks. It is a function oriented CEOP that gives operator guidance on how to verify the critical safety functions and how to restore and maintain these functions where they are degraded. All knowledge is coded and stored in database files. The knowledge base consists from stepping order for verifying plant parameters, desired values of parameters, conditions for comparison and links between procedures and actions. Graphical shell allows users to read database, to follow instruction and to find out correct task. The desired information is concentrated in one screen and allows users to focus on a task. User is supported in two ways: desired parameter values are displayed on the process picture and automated monitoring critical safety function status trees are all time in progress and available to the user. (author). 4 refs, 4 figs

  5. Modifications of Probabilistic Safety Assessment-1 Nuclear Power Plant Dukovany based upon new version of Emergency Operating Procedures

    International Nuclear Information System (INIS)

    Aldorf, R.

    1997-01-01

    In the frame of 'living Probabilistic Safety Assessment-1 Nuclear Power Plant Dukovany Project' being performed by Nuclear Research Institute Rez during 1997 is planned to reflect on Probabilistic Safety Assessment-1 basis on impact of Emergency Response Guidelines (as one particular event from the list of other modifications) on Plant Safety. Following highlights help to orient the reader in main general aspects, findings and issues of the work that currently continues on. Older results of Probabilistic Safety Assessment-1 Nuclear Power Plant Dukovany have revealed that human behaviour during accident progression scenarios represent one of the most important aspects in plant safety. Current effort of Nuclear Power Plants Dukovany (Czech Republic) and Bohunice (Slovak Republic) is focussed on development of qualitatively new symptom-based Emergency Operating Procedures called Emergency Response Guidelines Supplier - Westinghouse Energy Systems Europe, Brussels works in cooperation with teams of specialist from both Nuclear Power Plants. In the frame of 'living Probabilistic Safety Assessment-1 Nuclear Power Plant Dukovany Project' being performed by Nuclear Research Institute Rez during 1997 is planned to prove on Probabilistic Safety Assessment -1 basis an expected - positive impact of Emergency Response Guidelines on Plant Safety, Since this contract is currently still in progress, it is possible to release only preliminary conclusions and observations. Emergency Response Guidelines compare to original Emergency Operating Procedures substantially reduce uncertainty of general human behaviour during plant response to an accident process. It is possible to conclude that from the current scope Probabilistic Safety Assessment Dukovany point of view (until core damage), Emergency Response Guidelines represent adequately wide basis for mitigating any initiating event

  6. Operational procedures - industry observations and opportunities for improvement

    International Nuclear Information System (INIS)

    Davey, E.

    2003-01-01

    The purpose of this paper is to relate some of the commonly encountered problems with operational procedures in the nuclear industry and offer practical suggestions for their elimination. The paper is based on recent consultant experience in assisting industry clients with human performance related design and assessment initiatives. Operational procedures are a key part of an integrated system design. Procedures provide the specified instructions for actions people are to undertake in operating a facility to achieve production and safety goals. While organizations continue to make substantial investments in procedure development and maintenance, problems with procedures continue to occur, as evidenced through operating inefficiencies, errors, and events. The paper reviews the role procedures play in facility operations, comments on current development and maintenance practices, discusses the extent of human performance related problems attributed to procedure deficiencies, reviews commonly encountered problems with design and implementation of procedures, and offers suggestions on how some of these issues might be addressed in the future. (author)

  7. Safety analysis procedures for PHWR

    International Nuclear Information System (INIS)

    Min, Byung Joo; Kim, Hyoung Tae; Yoo, Kun Joong

    2004-03-01

    The methodology of safety analyses for CANDU reactors in Canada, a vendor country, uses a combination of best-estimate physical models and conservative input parameters so as to minimize the uncertainty of the plant behavior predictions. As using the conservative input parameters, the results of the safety analyses are assured the regulatory requirements such as the public dose, the integrity of fuel and fuel channel, the integrity of containment and reactor structures, etc. However, there is not the comprehensive and systematic procedures for safety analyses for CANDU reactors in Korea. In this regard, the development of the safety analyses procedures for CANDU reactors is being conducted not only to establish the safety analyses system, but also to enhance the quality assurance of the safety assessment. In the first phase of this study, the general procedures of the deterministic safety analyses are developed. The general safety procedures are covered the specification of the initial event, selection of the methodology and accident sequences, computer codes, safety analysis procedures, verification of errors and uncertainties, etc. Finally, These general procedures of the safety analyses are applied to the Large Break Loss Of Coolant Accident (LBLOCA) in Final Safety Analysis Report (FSAR) for Wolsong units 2, 3, 4

  8. Operating procedures for the Pajarito Site Critical Assembly Facility

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1983-03-01

    Operating procedures consistent with DOE Order 5480.2, Chapter VI, and the American National Standard Safety Guide for the Performance of Critical Experiments are defined for the Pajarito Site Critical Assembly Facility of the Los Alamos National Laboratory. These operating procedures supersede and update those previously published in 1973 and apply to any criticality experiment performed at the facility

  9. Improvement of safety approach for accident during operation of LILW disposal facility: Application for operational safety assessment of the near-surface LILW disposal facility in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Kim, Min Seong; Park, Jin Beak [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2017-06-15

    To evaluate radiological impact from the operation of a low- and intermediate-level radioactive waste disposal facility, a logical presentation and explanation of expected accidental scenarios is essential to the stakeholders of the disposal facility. The logical assessment platform and procedure, including analysis of the safety function of disposal components, operational hazard analysis, operational risk analysis, and preparedness of remedial measures for operational safety, are improved in this study. In the operational risk analysis, both design measures and management measures are suggested to make it possible to connect among design, operation, and safety assessment within the same assessment platform. For the preparedness of logical assessment procedure, classifcation logic of an operational accident is suggested based on the probability of occurrence and consequences of assessment results. The improved assessment platform and procedure are applied to an operational accident analysis of the Korean low- and intermediate-level radioactive waste disposal facility and partly presented in this paper.

  10. Improvement of safety approach for accident during operation of LILW disposal facility: Application for operational safety assessment of the near-surface LILW disposal facility in Korea

    International Nuclear Information System (INIS)

    Kim, Hyun Joo; Kim, Min Seong; Park, Jin Beak

    2017-01-01

    To evaluate radiological impact from the operation of a low- and intermediate-level radioactive waste disposal facility, a logical presentation and explanation of expected accidental scenarios is essential to the stakeholders of the disposal facility. The logical assessment platform and procedure, including analysis of the safety function of disposal components, operational hazard analysis, operational risk analysis, and preparedness of remedial measures for operational safety, are improved in this study. In the operational risk analysis, both design measures and management measures are suggested to make it possible to connect among design, operation, and safety assessment within the same assessment platform. For the preparedness of logical assessment procedure, classifcation logic of an operational accident is suggested based on the probability of occurrence and consequences of assessment results. The improved assessment platform and procedure are applied to an operational accident analysis of the Korean low- and intermediate-level radioactive waste disposal facility and partly presented in this paper

  11. Operator behaviors observed in following emergency operating procedure under a simulated emergency

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Park, Jin Kyun

    2012-01-01

    A symptom-based procedure with a critical safety function monitoring system has been established to reduce the operator's diagnosis and cognitive burden since the Three-Mile Island (TMI) accident. However, it has been reported that a symptom-based procedure also requires an operator's cognitive efforts to cope with off-normal events. This can be caused by mismatches between a static model, an emergency operating procedure (EOP), and a dynamic process, the nature of an ongoing situation. The purpose of this study is to share the evidence of mismatches that may result in an excessive cognitive burden in conducting EOPs. For this purpose, we analyzed simulated emergency operation records and observed some operator behaviors during the EOP operation: continuous steps, improper description, parameter check at a fixed time, decision by information previously obtained, execution complexity, operation by the operator's knowledge, notes and cautions, and a foldout page. Since observations in this study are comparable to the results of an existing study, it is expected that the operational behaviors observed in this study are generic features of operators who have to cope with a dynamic situation using a static procedure.

  12. [Operating Room Nurses' Experiences of Securing for Patient Safety].

    Science.gov (United States)

    Park, Kwang Ok; Kim, Jong Kyung; Kim, Myoung Sook

    2015-10-01

    This study was done to evaluate the experience of securing patient safety in hospital operating rooms. Experiential data were collected from 15 operating room nurses through in-depth interviews. The main question was "Could you describe your experience with patient safety in the operating room?". Qualitative data from the field and transcribed notes were analyzed using Strauss and Corbin's grounded theory methodology. The core category of experience with patient safety in the operating room was 'trying to maintain principles of patient safety during high-risk surgical procedures'. The participants used two interactional strategies: 'attempt continuous improvement', 'immersion in operation with sharing issues of patient safety'. The results indicate that the important factors for ensuring the safety of patients in the operating room are manpower, education, and a system for patient safety. Successful and safe surgery requires communication, teamwork and recognition of the importance of patient safety by the surgical team.

  13. Uncodified safety norms and procedural compliance in nuclear power plants

    International Nuclear Information System (INIS)

    Ignatov, M.

    2000-01-01

    The mechanism of procedural compliance in operational teams is analysed. It is investigated the interrelationship between codified (institutional or officials) rules and uncodified safety norm and their influence on the job performance, social behaviour and social interaction of the operational personnel

  14. Upgraded safety analysis document including operations policies, operational safety limits and policy changes. Revision 2

    International Nuclear Information System (INIS)

    Batchelor, K.

    1996-03-01

    The National Synchrotron Light Source Safety Analysis Reports (1), (2), (3), BNL reports number-sign 51584, number-sign 52205 and number-sign 52205 (addendum) describe the basic Environmental Safety and Health issues associated with the department's operations. They include the operating envelope for the Storage Rings and also the rest of the facility. These documents contain the operational limits as perceived prior or during construction of the facility, much of which still are appropriate for current operations. However, as the machine has matured, the experimental program has grown in size, requiring more supervision in that area. Also, machine studies have either verified or modified knowledge of beam loss modes and/or radiation loss patterns around the facility. This document is written to allow for these changes in procedure or standards resulting from their current mode of operation and shall be used in conjunction with the above reports. These changes have been reviewed by NSLS and BNL ES and H committee and approved by BNL management

  15. How to develop a Standard Operating Procedure for sorting unfixed cells

    Science.gov (United States)

    Schmid, Ingrid

    2012-01-01

    Written Standard Operating Procedures (SOPs) are an important tool to assure that recurring tasks in a laboratory are performed in a consistent manner. When the procedure covered in the SOP involves a high-risk activity such as sorting unfixed cells using a jet-in-air sorter, safety elements are critical components of the document. The details on sort sample handling, sorter set-up, validation, operation, troubleshooting, and maintenance, personal protective equipment (PPE), and operator training, outlined in the SOP are to be based on careful risk assessment of the procedure. This review provides background information on the hazards associated with sorting of unfixed cells and the process used to arrive at the appropriate combination of facility design, instrument placement, safety equipment, and practices to be followed. PMID:22381383

  16. How to develop a standard operating procedure for sorting unfixed cells.

    Science.gov (United States)

    Schmid, Ingrid

    2012-07-01

    Written standard operating procedures (SOPs) are an important tool to assure that recurring tasks in a laboratory are performed in a consistent manner. When the procedure covered in the SOP involves a high-risk activity such as sorting unfixed cells using a jet-in-air sorter, safety elements are critical components of the document. The details on sort sample handling, sorter set-up, validation, operation, troubleshooting, and maintenance, personal protective equipment (PPE), and operator training, outlined in the SOP are to be based on careful risk assessment of the procedure. This review provides background information on the hazards associated with sorting of unfixed cells and the process used to arrive at the appropriate combination of facility design, instrument placement, safety equipment, and practices to be followed. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. The enhancement of Ignalina NPP in design and operational safety

    International Nuclear Information System (INIS)

    Negrivoda, G.

    1999-01-01

    Enhancement of Ignalina NPP design include: core design improvements; fuel channel integrity (multiple pressure tube rupture); improvements of shutdown systems; improvements of instrumentation and control devices; containment strength and tightness; design basis accident analysis; improvements of safety and support systems; seismic safety enhancement; Year 2000 project; cracks in pipes. Enhancement of operational safety includes: quality assurance; configuration management; safety management and safety culture; emergency operating procedures; training and full scope simulator; in-service inspection; fire protection and ageing monitoring and management

  18. In-Office Endoscopic Laryngeal Laser Procedures: A Patient Safety Initiative.

    Science.gov (United States)

    Anderson, Jennifer; Bensoussan, Yael; Townsley, Richard; Kell, Erika

    2018-05-01

    Objective To review complications of in-office endoscopic laryngeal laser procedures after implementation of standardized safety protocol. Methods A retrospective review was conducted of the first 2 years of in-office laser procedures at St Michaels Hospital after the introduction of a standardized safety protocol. The protocol included patient screening, procedure checklist with standardized reporting of processes, medications, and complications. Primary outcomes measured were complication rates of in-office laryngeal laser procedures. Secondary outcomes included hemodynamic changes, local anesthetic dose, laser settings, total laser/procedure time, and incidence of sedation. Results A total of 145 in-office KTP procedures performed on 65 patients were reviewed. In 98% of cases, the safety protocol was fully implemented. The overall complication rate was 4.8%. No major complications were encountered. Minor complications included vasovagal episodes and patient intolerance. The rate of patient intolerance resulting early termination of anticipated procedure was 13.1%. Total local anesthetic dose averaged 172.9 mg lidocaine per procedure. The mean amount of laser energy dispersed was 261.2 J, with mean total procedure time of 48.3 minutes. Sixteen percent of patients had preprocedure sedation. Vital signs were found to vary modestly. Systolic blood pressure was lower postprocedure in 13.8% and symptomatic in 4.1%. Discussion The review of our standardized safety protocol has revealed that in-office laser treatment for laryngeal pathology has extremely low complication rates with safe patient outcomes. Implications for Practice The trend of shifting procedures out of the operating room into the office/clinic setting requires new processes designed to promote patient safety.

  19. Safety management procedures and practices at Indira Gandhi Centre for Atomic Research

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, P.; Lee, S.M.; Kapoor, R.P.; Raghunath, V.M.; Karthikeyan, S.V. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: kapoor@igcar.ernet.in

    2004-07-01

    The Indira Gandhi Centre for Atomic Research (IGCAR) operates FBTR (Fast Breeder Test Reactor), KAMINI (neutron source reactor), radiometallurgical laboratory, radiochemical laboratory, reprocessing plant, industrial scale sodium loops, advanced research laboratories, workshops, etc. Codified safety management procedures with systematic surveillance are essential for safe and reliable operations and these are described under the classifications of radiation safety, industrial safety and reactor operations with special emphasis on the human factor. Health physics teams, independent of the plant facility, supervise the radioactive facilities of the centre. Industrial safety standards are maintained by another independent section. Safety management for the reactors include a clear organisational structure, adequate documentation, compulsory training and licencing, safe working methods taking into account human factors and review by independent safety authorities. (author)

  20. Safety management procedures and practices at Indira Gandhi Centre for Atomic Research

    International Nuclear Information System (INIS)

    Rodriguez, P.; Lee, S.M.; Kapoor, R.P.; Raghunath, V.M.; Karthikeyan, S.V.

    2004-01-01

    The Indira Gandhi Centre for Atomic Research (IGCAR) operates FBTR (Fast Breeder Test Reactor), KAMINI (neutron source reactor), radiometallurgical laboratory, radiochemical laboratory, reprocessing plant, industrial scale sodium loops, advanced research laboratories, workshops, etc. Codified safety management procedures with systematic surveillance are essential for safe and reliable operations and these are described under the classifications of radiation safety, industrial safety and reactor operations with special emphasis on the human factor. Health physics teams, independent of the plant facility, supervise the radioactive facilities of the centre. Industrial safety standards are maintained by another independent section. Safety management for the reactors include a clear organisational structure, adequate documentation, compulsory training and licencing, safe working methods taking into account human factors and review by independent safety authorities. (author)

  1. 49 CFR 195.402 - Procedural manual for operations, maintenance, and emergencies.

    Science.gov (United States)

    2010-10-01

    ... operating conditions by monitoring pressure, temperature, flow or other appropriate operational data and...) Minimization of public exposure to injury and probability of accidental ignition by assisting with evacuation... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.402 Procedural...

  2. Procedure for following external nuclear power plant operating experience

    International Nuclear Information System (INIS)

    Kostadinov, V.

    2003-01-01

    Slovenian Nuclear Safety Administration (SNSA) has developed computer database and the procedure for following-up and investigating external nuclear operating experience and administrative requirements. The SNSA's primary goal is to investigate safety significant events in due time, to analyze them from the regulatory point of view and to ensure that meaningful lessons be learned and used for improvement of the safe operation of Slovenian Nuclear Power Plant Krsko. Moreover, we intend to make uniform format and method for reporting broader spectrum of events analyzed including low level event reporting. (author)

  3. Operation of TRR-1/M1 for 25 years and lessons learned in management of safety and safety culture

    International Nuclear Information System (INIS)

    Keinmeesuke, Sirichai

    2002-01-01

    The first Thai Research Reactor, TRR-1, was installed and put into operation in 1962. In 1975 the reactor was converted to a 2 MW TRIGA Mark III by replacing of the reactor core and the control system. The renamed TRR-1/M1 research reactor went critical again in November 1977. TRR-1/M1 has been operated safely for 25 years with its main utilization in research, isotope production and training. Safety management and safety culture have been implemented for 25 years both in the legislation level and the operation level. There was no nuclear incident and there were a few radiological incidents during the 25 years of operation of TRR-1/M1. The lessons learned from the incident events such as the release of N-16 and Ar-41, the release of radioactive Bromine gave valued opportunities to improve our operation procedure, safety procedure and safety culture. All type of activities with respect to safety culture such as individual awareness, commitment, motivation, supervision and responsibility have been seriously reviewed and being set as normal practices. (author)

  4. Safety analysis of the post-operational phase

    International Nuclear Information System (INIS)

    Berg, H.P.; Ehrlich, D.

    1991-01-01

    The safety analysis of normal operation covers an analytical study of the system parts ultimate repository - waste forms of the ultimate repository system under normal and accidental operation. On that basis a requirement concept has been developed which entails reactions on planning and design of the repository, and requirements of waste products, packagings and permissible activities. The procedure for the operational phase is explained giving the Konrad repository project as an example. (DG) [de

  5. Development and application of emergency operating procedures for nuclear power plants

    International Nuclear Information System (INIS)

    Lin Chengge

    1990-01-01

    The development and application of emergency operating procedures (EOPs) is an important measure to assure the operational safety for nuclear power plants. Event-oriented, symptom-, function- and state-oriented EOPs with their structures, interfaces, development procedures and practical application are described. The ideas and approach can be available for the preparation of EOPs for nuclear power plants which are going to be in service

  6. Integration of emergency action levels with Combustion Engineering Emergency Operating Procedures

    International Nuclear Information System (INIS)

    Faletti, D.W.; Jamison, J.D.

    1985-09-01

    This report documents the development of a method for integrating Emergency Action Levels (EALs) with plant-specific Emergency Operating Procedures (EOPs) using the Combustion Engineering Owners' Group Emergency Operating Procedure Technical Guidelines (CEOG EOPTFs). EALs are discrete conditions or values of plant operating parameters which, if exceeded, require declaration of an appropriate level of emergency. At most operating plants, the EALs and event classification procedures are totally separate from the Emergency Operating Procedures used by the plant staff to control the plant during abnormal conditions. Control room personnel using the EOPs to deal with abnormal plant conditions must recognize when plant safety is sufficiently degraded that an emergency declaration may be warranted, and then enter a separate classification procedure containing EALs for a number of plant conditions and parameters. The operator then compares the existing plant conditions to the EALs and makes an emergency declaration accordingly. Using the Combustion Engineering Owners' Group Technical Guidelines document, a set of emergency class definitions and criteria were developed based on the status of the three main fission product barriers (fuel cladding, primary coolant system and containment). The EOPTGs were then annotated with suggested guidance to a procedure writer. The proposed method was tested by applying it to the reactor accident sequences that were shown in the reactor safety study to dominate accident risk. The object of the test was to determine if an EAL set linked to the EOP annotations would produce timely and accurate classification of the risk-dominant sequences. 6 refs., 13 figs., 31 tabs

  7. Joint road safety operations in tunnels and open roads

    Science.gov (United States)

    Adesiyun, Adewole; Avenoso, Antonio; Dionelis, Kallistratos; Cela, Liljana; Nicodème, Christophe; Goger, Thierry; Polidori, Carlo

    2017-09-01

    The objective of the ECOROADS project is to overcome the barrier established by the formal interpretation of the two Directives 2008/96/EC and 2004/54/EC, which in practice do not allow the same Road Safety Audits/Inspections to be performed inside tunnels. The projects aims at the establishment of a common enhanced approach to road infrastructure and tunnel safety management by using the concepts and criteria of the Directive 2008/96/CE on road infrastructure safety management and the results of related European Commission (EC) funded projects. ECOROADS has already implemented an analysis of national practices regarding Road Safety Inspections (RSI), two Workshops with the stakeholders, and an exchange of best practices between European tunnel experts and road safety professionals, which led to the definition of common agreed safety procedures. In the second phase of the project, different groups of experts and observers applied the above common procedures by inspecting five European road sections featuring both open roads and tunnels in Belgium, Albania, Germany, Serbia and Former Yugoslav Republic of Macedonia. This paper shows the feedback of the 5 joint safety operations and how they are being used for a set of - recommendations and guidelines for the application of the RSA and RSI concepts within the tunnel safety operations.

  8. 77 FR 51943 - Procedures for Safety Investigations

    Science.gov (United States)

    2012-08-28

    ... rule, Procedures for Safety Investigations, which published July 27, 2012 in the Federal Register, 77... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1708 Procedures for Safety Investigations AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Proposed rule; extension of comment period...

  9. Rules and procedures for the design and operation of hazardous research equipment

    International Nuclear Information System (INIS)

    1978-12-01

    The manual has been prepared for use by research personnel involved in experiments at the Lawrence Berkeley Laboratory. It contains rules and procedures for the design, test, installation, and operation of hazardous research equipment. Sect. I contains such information as responsibility of experimenters for safety, descriptions of the various Laboratory safety organizations, and enumeration of various services available to experimenters at the Laboratory. Sect. II describes specific rules for the setup and operation of experimental equipment at the Laboratory. Sect. III gives detailed design criteria and procedures for equipment frequently encountered in the high energy physics laboratory

  10. Ensuring the operational safety of finnish nuclear power plants

    International Nuclear Information System (INIS)

    Vuorinen, A.

    1991-01-01

    The Finnish nuclear energy programme has been successful both from the safety and economical point of view. These achievements are based on different factors which are discussed in the paper. Finnish Centre for Radiation and Nuclear Safety (STUK) has specified the technical requirements and procedures to be followed in the design, construction, commissioning and operation of NPPs in a series of guides. The guides are quite demanding and latest results of safety research and technical development are taken into account. Regulatory supervision of Finnish NPPs is comprehensive. As an example of this the regulatory inspection program for operational phase is presented. An important way to ensure operational safety of a NPP is to define a set of limits and conditions to identify limiting safety envelope for plant operation. Practices in Finland are reviewed in the paper. The strategy of Defence in Depth is amongst the fundamental principles of nuclear safety. Two corollary principles of defence of depth are accident prevention and accident mitigation. Means used in following these principles are discussed. (author)

  11. The Pajarito Site operating procedures for the Los Alamos Critical Experiments Facility

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1991-12-01

    Operating procedures consistent with DOE Order 5480.6, and the American National Standard Safety Guide for the Performance of Critical Experiments are defined for the Los Alamos Critical Experiments Facility (LACEF) of the Los Alamos National Laboratory. These operating procedures supersede and update those previously published in 1983 and apply to any criticality experiment performed at the facility. 11 refs

  12. Safety and application of procedures or: how do ''they'' have to use operating procedures in nuclear power plants

    International Nuclear Information System (INIS)

    Dien, Y.

    1993-03-01

    Emergency procedures are inescapable aspects of safety. They can be seen as the laws to be respected in an accident situation. But as for all laws, there remains the problem of their application: should strict adherence to the procedure be imposed under all circumstances. Is this possible. Are there any potential risks with such a requirement. Or, on the contrary, should application be more ''open'', more flexible, allowing for adaptation to the actual situation. But what are the potential risks involved in this approach. Are these two approaches to the application of procedures mutually exclusive, or are they complementary. This paper analyzes the nature of the problem of application of procedures and proposes orientations for further thought on the matter. (author). 11 refs

  13. Safety upgrades for NSRRC beamlines in the upcoming top-up operation

    International Nuclear Information System (INIS)

    Liu, Joseph C.; Sheu, R.-J.; Wang, J.-P.; Chen, C.-R.; Chang, F.-D.; Kao, S.-P.

    2006-01-01

    The original beamline shielding of NSRRC was designed for the decay mode operation that safety shutter was closed during injection. The proposed top-up operation that opens safety shutter during top-up injection will introduce additional beam loss scenarios and radiation sources, especially when the injection efficiency needs to be improved. Careful comparison was made to differentiate the radiation doses into beamlines for both operation modes. Detailed evaluation was made to identify the possible inadequacies of the old beamline shielding and safety control procedures. Remedy actions and safety upgrades for each individual beamline were issued to ensure that dose limit of 2 mSv/yr for users can be fulfilled when running top-up operation

  14. Safety review of experiments at Albuquerque Operations Office

    International Nuclear Information System (INIS)

    Elliott, K.

    1984-01-01

    The Department of Energy (DOE) Albuquerque Operations Office is responsible for the safety overview of nuclear reactor and critical assembly facilities at Sandia National Laboratories, Los Alamos National Laboratory, and the Rocky Flats Plant. The important safety concerns with these facilities involve the complex experiments that are performed, and that is the area emphasized. A determination is made by the Albuquerque Office (AL) with assistance from DOE/OMA whether or not a proposed experiment is an unreviewed safety question. Meetings are held with the contractor to resolve and clarify questions that are generated during the review of the proposed experiment. The AL safety evaluation report is completed and any recommendations are discussed. Prior to the experiment a preoperational appraisal is performed to assure that personnel, procedures, and equipment are in readiness for operations. During the experiment, any abnormal condition is reviewed in detail to determine any safety concerns

  15. A Study of Time Response for Safety-Related Operator Actions in Non-LOCA Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Seok; Lee, Sang Seob; Park, Min Soo; Lee, Gyu Cheon; Kim, Shin Whan [KEPCO E and C Company, Daejeon (Korea, Republic of)

    2014-10-15

    The classification of initiating events for safety analysis report (SAR) chapter 15 is categorized into moderate frequency events (MF), infrequent events (IF), and limiting faults (LF) depending on the frequency of its occurrence. For the non-LOCA safety analysis with the purpose to get construction or operation license, however, it is assumed that the operator response action to mitigate the events starts at 30 minutes after the initiation of the transient regardless of the event categorization. Such an assumption of corresponding operator response time may have over conservatism with the MF and IF events and results in a decrease in the safety margin compared to its acceptance criteria. In this paper, the plant conditions (PC) are categorized with the definitions in SAR 15 and ANS 51.1. Then, the consequence of response for safety-related operator action time is determined based on the PC in ANSI 58.8. The operator response time for safety analysis regarding PC are reviewed and suggested. The clarifying alarm response procedure would be required for the guideline to reduce the operator response time when the alarms indicate the occurrence of the transient.

  16. Pre-surgery briefings and safety climate in the operating theatre.

    Science.gov (United States)

    Allard, Jon; Bleakley, Alan; Hobbs, Adrian; Coombes, Lee

    2011-08-01

    In 2008, the WHO produced a surgical safety checklist against a background of a poor patient safety record in operating theatres. Formal team briefings are now standard practice in high-risk settings such as the aviation industry and improve safety, but are resisted in surgery. Research evidence is needed to persuade the surgical workforce to adopt safety procedures such as briefings. To investigate whether exposure to pre-surgery briefings is related to perception of safety climate. Three Safety Attitude Questionnaires, completed by operating theatre staff in 2003, 2004 and 2006, were used to evaluate the effects of an educational intervention introducing pre-surgery briefings. Individual practitioners who agree with the statement 'briefings are common in the operating theatre' also report a better 'safety climate' in operating theatres. The study reports a powerful link between briefing practices and attitudes towards safety. Findings build on previous work by reporting on the relationship between briefings and safety climate within a 4-year period. Briefings, however, remain difficult to establish in local contexts without appropriate team-based patient safety education. Success in establishing a safety culture, with associated practices, may depend on first establishing unidirectional, positive change in attitudes to create a safety climate.

  17. The Safety Prevention in the Theater Management and Operation

    Institute of Scientific and Technical Information of China (English)

    WU Sheng

    2015-01-01

    Take the operation and management experience as examples, the author discussed how to formulate a set of complete and effective equipment management system, operating rules, procedures and standards, as well as the safety prevention and control measures, according to the national or trade related laws and regulations and combining the operation and performance characteristics of theatre management, in order to ensure the safe operation of theatre and stage equipment.

  18. Towards Verification of Operational Procedures Using Auto-Generated Diagnostic Trees

    Science.gov (United States)

    Kurtoglu, Tolga; Lutz, Robyn; Patterson-Hine, Ann

    2009-01-01

    The design, development, and operation of complex space, lunar and planetary exploration systems require the development of general procedures that describe a detailed set of instructions capturing how mission tasks are performed. For both crewed and uncrewed NASA systems, mission safety and the accomplishment of the scientific mission objectives are highly dependent on the correctness of procedures. In this paper, we describe how to use the auto-generated diagnostic trees from existing diagnostic models to improve the verification of standard operating procedures. Specifically, we introduce a systematic method, namely the Diagnostic Tree for Verification (DTV), developed with the goal of leveraging the information contained within auto-generated diagnostic trees in order to check the correctness of procedures, to streamline the procedures in terms of reducing the number of steps or use of resources in them, and to propose alternative procedural steps adaptive to changing operational conditions. The application of the DTV method to a spacecraft electrical power system shows the feasibility of the approach and its range of capabilities

  19. State Token Petri Net modeling method for formal verification of computerized procedure including operator's interruptions of procedure execution flow

    International Nuclear Information System (INIS)

    Kim, Yun Goo; Seong, Poong Hyun

    2012-01-01

    The Computerized Procedure System (CPS) is one of the primary operating support systems in the digital Main Control Room. The CPS displays procedure on the computer screen in the form of a flow chart, and displays plant operating information along with procedure instructions. It also supports operator decision making by providing a system decision. A procedure flow should be correct and reliable, as an error would lead to operator misjudgement and inadequate control. In this paper we present a modeling for the CPS that enables formal verification based on Petri nets. The proposed State Token Petri Nets (STPN) also support modeling of a procedure flow that has various interruptions by the operator, according to the plant condition. STPN modeling is compared with Coloured Petri net when they are applied to Emergency Operating Computerized Procedure. A converting program for Computerized Procedure (CP) to STPN has been also developed. The formal verification and validation methods of CP with STPN increase the safety of a nuclear power plant and provide digital quality assurance means that are needed when the role and function of the CPS is increasing.

  20. Safety and emergency preparedness considerations for geotechnical field operations

    Energy Technology Data Exchange (ETDEWEB)

    Wemple, R.P.

    1989-04-01

    The GEO Energy Technology Department at Sandia National Laboratories is involved in several remote-site drilling and/or experimental operations each year. In 1987, the Geothermal Research Division of the Department developed a general set of Safe Operating Procedures (SOPs) that could be applied to a variety of projects. This general set is supplemented by site-specific SOPs as needed. Effective field operations require: integration of safety and emergency preparedness planning with overall project planning, training of field personnel and inventorying of local emergency support resources, and, developing a clear line of responsibility and authority to enforce the safety requirements. Copies of SOPs used in recent operations are included as examples of working documents for the reader.

  1. Operating procedures for emergency situations in EDF PWR plants

    International Nuclear Information System (INIS)

    Depond, G.; Resse, L.

    1992-01-01

    Analysis of incidents and accidents occurring at French and foreign power plants - particularly the TMI accident - and the commissioning of many units in France, as well as tests on simulators, have all demonstrated that an improvement of safety in nuclear power units depends largely on the improvement of the man-machine interface and particularly of emergency operating procedures (EOP). EDF has taken numerous actions in this direction, especially since 1979. First of all, in improving the classical approach based on event-oriented procedures: Rewriting of initial accident operating procedures with regard to their technical contents their form, and the organization of the operating team (procedures I and A); Extension of initial procedures into areas at the limits of design basis and beyond the design basis limits (procedures H). Nevertheless, this approach is subject to several weaknesses. Dependence on a precise initial diagnosis, impossibility to take into account all the conceivable accidental situations, discrepancies between the predicted pattern and the reality. These drawbacks of the event approach have led us to revise the technical conception of the EOPs, and to develop a new approach based on a continuous monitoring of the physical states of the plant and the ability to define a relationship between the physical state of the plant and the operator actions. (author). 4 figs

  2. Improving operating room safety

    Directory of Open Access Journals (Sweden)

    Garrett Jill

    2009-11-01

    Full Text Available Abstract Despite the introduction of the Universal Protocol, patient safety in surgery remains a daily challenge in the operating room. This present study describes one community health system's efforts to improve operating room safety through human factors training and ultimately the development of a surgical checklist. Using a combination of formal training, local studies documenting operating room safety issues and peer to peer mentoring we were able to substantially change the culture of our operating room. Our efforts have prepared us for successfully implementing a standardized checklist to improve operating room safety throughout our entire system. Based on these findings we recommend a multimodal approach to improving operating room safety.

  3. Operating environment threats influence on the maritime ferry technical system safety – the numerical approach

    Directory of Open Access Journals (Sweden)

    Kuligowska Ewa

    2017-06-01

    Full Text Available The material given in this paper delivers the procedure for numerical approach that allows finding the main practically important safety characteristics of the complex technical systems at the variable operation conditions including operating environment threats. The obtained results are applied to the safety evaluation of the maritime ferry technical system. It is assumed that the conditional safety functions are different at various operation states and have the exponential forms. Using the procedure and the program written in Mathematica, the considered maritime ferry technical system main characteristics including: the conditional and the unconditional expected values and standard deviations of the system lifetimes, the unconditional safety function and the risk function are determined.

  4. Procedure for hazards analysis of plutonium gloveboxes used in analytical chemistry operations

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1977-06-01

    A procedure is presented to identify and assess hazards associated with gloveboxes used for analytical chemistry operations involving plutonium. This procedure is based upon analytic tree methodology and it has been adapted from the US Energy Research and Development Administration's safety program, the Management Oversight and Risk Tree

  5. Bechtel Hanford, Inc./ERC team health and safety plan Environmental Restoration Disposal Facility operations

    International Nuclear Information System (INIS)

    Turney, S.R.

    1996-02-01

    A comprehensive safety and health program is essential for reducing work-related injuries and illnesses while maintaining a safe and health work environment. This document establishes Bechtel Hanford, Inc. (BHI)/Environmental Restoration Contractor (ERC) team requirements, policies, and procedures and provides preliminary guidance to the Environmental Restoration Disposal Facility (ERDF) subcontractor for use in preparing essential safety and health documents. This health and safety plan (HASP) defines potential safety and health issues associated with operating and maintaining the ERDF. A site-specific HASP shall be developed by the ERDF subcontractor and shall be implemented before operations and maintenance work can proceed. An activity hazard analysis (AHA) shall also be developed to provide procedures to identify, assess, and control hazards or potential incidents associated with specific operations and maintenance activities

  6. Dam safety operating guidelines

    International Nuclear Information System (INIS)

    Elsayed, E.; Leung, T.; Kirkham, A.; Lum, D.

    1990-01-01

    As part of Ontario Hydro's dam structure assessment program, the hydraulic design review of several river systems has revealed that many existing dam sites, under current operating procedures, would not have sufficient discharge capacity to pass the Inflow Design Flood (IDF) without compromising the integrity of the associated structures. Typical mitigative measures usually considered in dealing with these dam sites include structural alterations, emergency action plans and/or special operating procedures designed for extreme floods. A pilot study was carried out for the Madawaska River system in eastern Ontario, which has seven Ontario Hydro dam sites in series, to develop and evaluate the effectiveness of the Dam Safety Operating Guidelines (DSOG). The DSOG consist of two components: the flood routing schedules and the minimum discharge schedules, the former of which would apply in the case of severe spring flood conditions when the maximum observed snowpack water content and the forecast rainfall depth exceed threshold values. The flood routing schedules would identify to the operator the optimal timing and/or extent of utilizing the discharge facilities at each dam site to minimize the potential for dam failures cased by overtopping anywhere in the system. It was found that the DSOG reduced the number of structures overtopped during probable maximum flood from thirteen to four, while the number of structures that could fail would be reduced from seven to two. 8 refs., 4 figs., 3 tabs

  7. Safety procedures for the MFTF sustaining-neutral-beam power supply

    International Nuclear Information System (INIS)

    Wilson, J.H.

    1981-01-01

    The MFTF SNBPSS comprises a number of sources of potentially hazardous electrical energy in a small physical area. Power is handled at 80 kV dc, 80 A; 70 V dc, 4000 A; 25 V dc, 5500 A; 3 kV dc, 10 A; and 2 kV dc, 10 A. Power for these systems is furnished from two separate 480 V distribution systems and a 13.8 kV distribution system. A defense in depth approach is used; interlocks are provided in the hardware to make it difficult to gain access to an energized circuit, and the operating procedure includes precautions which would protect personnel even if no interlocks were working. The complexity of the system implies a complex operating procedure, and this potential complexity is controlled by presenting the procedure in a modular form using 37 separate checklists for specific operations. The checklists are presented in flowchart form, so contingencies can be handled at the lowest possible level without compromising safety

  8. OPERATIONAL RESTRICTIONS FOR REDUCING NOISE AND THE SAFETY OF AIR OPERATIONS

    Directory of Open Access Journals (Sweden)

    Anna KWASIBORSKA

    2017-03-01

    Full Text Available Many European airports are located in close proximity to residential or protected areas. Aircraft noise emissions caused by the landing and taking off of aircraft are a big problem in these areas. From an operational point of view, the method for reducing noise is to reduce traffic volume or change its organization, especially during the night. Some procedures and tools have been developed to support air traffic management in the implementation of operational constraints necessary to maintain noise at an acceptable level. The objective of this paper is to analyse the effectiveness of these tools. For this purpose, we have analysed existing methods of operational noise reduction, taking into account their influence on the structure, smoothness, punctuality and, especially, the safety of air traffic. As a result, existing risks have been identified, while methods have been proposed to combine two important air traffic service tasks: ensuring safety, while taking into account the environmental constraints, especially in relation to the acoustic climate.

  9. National Waste Repository Novi Han operational safety analysis report. Safety assessment methodology

    International Nuclear Information System (INIS)

    2003-01-01

    The scope of the safety assessment (SA), presented includes: waste management functions (acceptance, conditioning, storage, disposal), inventory (current and expected in the future), hazards (radiological and non-radiological) and normal and accidental modes. The stages in the development of the SA are: criteria selection, information collection, safety analysis and safety assessment documentation. After the review the facilities functions and the national and international requirements, the criteria for safety level assessment are set. As a result from the 2nd stage actual parameters of the facility, necessary for safety analysis are obtained.The methodology is selected on the base of the comparability of the results with the results of previous safety assessments and existing standards and requirements. The procedure and requirements for scenarios selection are described. A radiological hazard categorisation of the facilities is presented. Qualitative hazards and operability analysis is applied. The resulting list of events are subjected to procedure for prioritization by method of 'criticality analysis', so the estimation of the risk is given for each event. The events that fall into category of risk on the boundary of acceptability or are unacceptable are subjected to the next steps of the analysis. As a result the lists with scenarios for PSA and possible design scenarios are established. PSA logical modeling and quantitative calculations of accident sequences are presented

  10. Radiation safety in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun

    2017-01-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed

  11. Radiation safety in nuclear medicine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun [Dept. of Nuclear Medicine, Medical Radiation Safety Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2017-03-15

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  12. Operational safety at the FFTF

    International Nuclear Information System (INIS)

    Baird, Q.L.; Hagan, J.W.; Seeman, S.E.; Baker, S.M.

    1981-02-01

    An extensive operational nuclear safety program has been an integral part of the design, startup, and initial operating phases of the Fast Flux Test Facility (FFTF). During the design and construction of the facility, a program of independent safety overviews and analyses assured the provision of responsible safety margins within the plant, protective systems, and engineered safety features for protection of the public, operating staff, and the facility. The program is continuing through surveillance of operations to verify continued adherence to the established operating envelope and for timely identification of any trends potentially adverse to those margins. Experience from operation of FFTF is being utilized in the development of enhanced operational nuclear safety aids for application in follow-on breeder reactor power systems. The commendable plant and personnel safety experiences of FFTF through its startup and ascension to full power demonstrate the overall effectiveness of the FFTF operational nuclear safety program

  13. A reliability program approach to operational safety

    International Nuclear Information System (INIS)

    Mueller, C.J.; Bezella, W.A.

    1985-01-01

    A Reliability Program (RP) model based on proven reliability techniques is being formulated for potential application in the nuclear power industry. Methods employed under NASA and military direction, commercial airline and related FAA programs were surveyed and a review of current nuclear risk-dominant issues conducted. The need for a reliability approach to address dependent system failures, operating and emergency procedures and human performance, and develop a plant-specific performance data base for safety decision making is demonstrated. Current research has concentrated on developing a Reliability Program approach for the operating phase of a nuclear plant's lifecycle. The approach incorporates performance monitoring and evaluation activities with dedicated tasks that integrate these activities with operation, surveillance, and maintenance of the plant. The detection, root-cause evaluation and before-the-fact correction of incipient or actual systems failures as a mechanism for maintaining plant safety is a major objective of the Reliability Program. (orig./HP)

  14. Operations report 1985 of the Department of Safety and Radiation Protection

    International Nuclear Information System (INIS)

    Hille, R.; Frenkler, K.L.

    1986-04-01

    Under the heading 'Licensing' the report deals with licensing procedures and the handling of nuclear-fuels and radioactive materials. Operational radiation protection is concerned with operational and personnel monitoring, mathematical methods and safety analyses. Environmental protection deals with emission control, immission monitoring and meteorological measurements, and safety technology with α/β-analysis, dosimetry, equipment servicing and mechanics, nuclear material safeguards. Other subdepartments take care of industrial safety, physical protection, emergency protection and training. Subjects dealt with, too, are dispersion pollutants in atmosphere and environment, further development of radiation protection methods, and the bibliography of radiation protection in KFA. (HK) [de

  15. INERT Atmosphere confinement operability test procedure

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    1999-01-01

    This Operability Test Procedure (OTP) provides instructions for testing operability of the Inert Atmosphere Confinement (IAC). The Inert Atmosphere Confinement was designed and built for opening cans of metal items that might have hydrided surfaces. Unreviewed Safety Question (USQ) PFP-97-005 addresses the discovery of suspected plutonium hydride forming on plutonium metal currently stored in the Plutonium Finishing Plant vaults. Plutonium hydride reacts quickly with air, liberating energy. The Inert Atmosphere Confinement was designed to prevent this sudden liberation of energy by opening the material in an inert argon atmosphere instead of the normal glovebox atmosphere. The IAC is located in glovebox HC-21A, room 230B of the 234-5Z Building at the Plutonium Finishing Plant (PFP) in the 200-West Area of the Hanford Site

  16. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  17. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  18. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations; to be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; and to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  19. International comparison of safety criteria applied to radwaste repositories. Safety aspects of the post-operational phase

    International Nuclear Information System (INIS)

    Baltes, B.

    1994-01-01

    There is a generally accepted system of framework safety conditions governing the construction, operation, and post-operational monitoring of radwaste repositories. Although the development of these framework conditions may vary from country to country, the resulting criteria are based on the commonly accepted system of priciples and purposes established for ultimate radioactive waste disposal. The experience accumulated by GRS in the course of the plan approval procedure for the Konrad mine site and the safety-relevant studies performed for the planned Morsleben repository clearly show demand for further development of the safety criteria. In Germany, it is especially the safety criteria and detailed requirements filling the framework safety conditions that need revision and in-depth definition, as well as comparison and harmonisation with internationally applied criteria. These activities will particularly consider the international convention on radioactive waste management currently in preparation under the auspieces of the IAEA. (orig.) [de

  20. Identifying cognitive complexity factors affecting the complexity of procedural steps in emergency operating procedures of a nuclear power plant

    International Nuclear Information System (INIS)

    Park, Jinkyun; Jeong, Kwangsup; Jung, Wondea

    2005-01-01

    In complex systems such as a nuclear and chemical plant, it is well known that the provision of understandable procedures that allow operators to clarify what needs to be done and how to do it is one of the requisites to secure their safety. As a previous study in providing understandable procedures, the step complexity (SC) measure that can quantify the complexity of procedural steps in emergency operating procedures (EOPs) of a nuclear power plant (NPP) was suggested. However, the necessity of additional complexity factors that can consider a cognitive aspect in evaluating the complexity of procedural steps is raised. To this end, the comparisons between operators' performance data measured by the form of a step performance time with their behavior in carrying out the prescribed activities of procedural steps are conducted in this study. As a result, two kinds of complexity factors (the abstraction level of knowledge and the level of engineering decision) that could affect an operator's cognitive burden are identified. Although a well-designed experiment is indispensable for confirming the appropriateness of the additional complexity factors, it is strongly believed that the change of operators' performance data can be more authentically explained if the additional complexity factors are taken into consideration

  1. Identifying cognitive complexity factors affecting the complexity of procedural steps in emergency operating procedures of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinkyun [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, P.O. Box 105, Duckjin-Dong, Yusong-Ku, Taejon 305-600 (Korea, Republic of)]. E-mail: kshpjk@kaeri.re.kr; Jeong, Kwangsup [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, P.O. Box 105, Duckjin-Dong, Yusong-Ku, Taejon 305-600 (Korea, Republic of); Jung, Wondea [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, P.O. Box 105, Duckjin-Dong, Yusong-Ku, Taejon 305-600 (Korea, Republic of)

    2005-08-01

    In complex systems such as a nuclear and chemical plant, it is well known that the provision of understandable procedures that allow operators to clarify what needs to be done and how to do it is one of the requisites to secure their safety. As a previous study in providing understandable procedures, the step complexity (SC) measure that can quantify the complexity of procedural steps in emergency operating procedures (EOPs) of a nuclear power plant (NPP) was suggested. However, the necessity of additional complexity factors that can consider a cognitive aspect in evaluating the complexity of procedural steps is raised. To this end, the comparisons between operators' performance data measured by the form of a step performance time with their behavior in carrying out the prescribed activities of procedural steps are conducted in this study. As a result, two kinds of complexity factors (the abstraction level of knowledge and the level of engineering decision) that could affect an operator's cognitive burden are identified. Although a well-designed experiment is indispensable for confirming the appropriateness of the additional complexity factors, it is strongly believed that the change of operators' performance data can be more authentically explained if the additional complexity factors are taken into consideration.

  2. Identifying cognitive complexity factors affecting the complexity of procedural steps in emergency operating procedures of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Jinkyun Park; Kwangsup Jeong; Wondea Jung [Korea Atomic Energy Research Institute, Taejon (Korea). Integrated Safety Assessment Division

    2005-08-15

    In complex systems such as a nuclear and chemical plant, it is well known that the provision of understandable procedures that allow operators to clarify what needs to be done and how to do it is one of the requisites to secure their safety. As a previous study in providing understandable procedures, the step complexity (SC) measure that can quantify the complexity of procedural steps in emergency operating procedures (EOPs) of a nuclear power plant (NPP) was suggested. However, the necessity of additional complexity factors that can consider a cognitive aspect in evaluating the complexity of procedural steps is raised. To this end, the comparisons between operator' performance data measured by the form of a step performance time with their behavior in carrying out the prescribed activities of procedural steps are conducted in this study. As a result, two kinds of complexity factors (the abstraction level of knowledge and the level of engineering decision) that could affect an operator's cognitive burden are identified. Although a well-designed experiment is indispensable for confirming the appropriateness of the additional complexity factors, it is strongly believed that the change of operators' performance data can be more authentically explained if the additional complexity factors are taken into consideration. (author)

  3. Impact of operator experience and training strategy on procedural outcomes with leadless pacing: Insights from the Micra Transcatheter Pacing Study.

    Science.gov (United States)

    El-Chami, Mikhael; Kowal, Robert C; Soejima, Kyoko; Ritter, Philippe; Duray, Gabor Z; Neuzil, Petr; Mont, Lluis; Kypta, Alexander; Sagi, Venkata; Hudnall, John Harrison; Stromberg, Kurt; Reynolds, Dwight

    2017-07-01

    Leadless pacemaker systems have been designed to avoid the need for a pocket and transvenous lead. However, delivery of this therapy requires a new catheter-based procedure. This study evaluates the role of operator experience and different training strategies on procedural outcomes. A total of 726 patients underwent implant attempt with the Micra transcatheter pacing system (TPS; Medtronic, Minneapolis, MN, USA) by 94 operators trained in a teaching laboratory using a simulator, cadaver, and large animal models (lab training) or locally at the hospital with simulator/demo model and proctorship (hospital training). Procedure success, procedure duration, fluoroscopy time, and safety outcomes were compared between training methods and experience (implant case number). The Micra TPS procedure was successful in 99.2% of attempts and did not differ between the 55 operators trained in the lab setting and the 39 operators trained locally at the hospital (P = 0.189). Implant case number was also not a determinant of procedural success (P = 0.456). Each operator performed between one and 55 procedures. Procedure time and fluoroscopy duration decreased by 2.0% (P = 0.002) and 3.2% (P safety outcomes by training method. Among a large group of operators, implantation success was high regardless of experience. While procedure duration and fluoroscopy times decreased with implant number, complications were low and not associated with case number. Procedure and safety outcomes were similar between distinct training methodologies. © 2017 Wiley Periodicals, Inc.

  4. Attitudes to teamwork and safety among Italian surgeons and operating room nurses.

    Science.gov (United States)

    Prati, Gabriele; Pietrantoni, Luca

    2014-01-01

    Previous studies have shown that surgical team members' attitudes about safety and teamwork in the operating theatre may play a role in patient safety. The aim of this study was to assess attitudes about teamwork and safety among Italian surgeons and operating room nurses. Fifty-five surgeons and 48 operating room nurses working in operating theatres at one hospital in Italy completed the Operating Room Management Attitudes Questionnaire (ORMAQ). Results showed several discrepancies in attitudes about teamwork and safety between surgeons and operating room nurses. Surgeons had more positive views on the quality of surgical leadership, communication, teamwork, and organizational climate in the theatre than operating room nurses. Operating room nurses reported that safety rules and procedures were more frequently disregarded than the surgeons. The results are only partially aligned with previous ORMAQ surveys of surgical teams in other countries. The differences emphasize the influence of national culture, as well as the particular healthcare system. This study shows discrepancies on many aspects in attitudes to teamwork and safety between surgeons and operating room nurses. The findings support implementation and use of team interventions and human factor training. Finally, attitude surveys provide a method for assessing safety culture in surgery, for evaluating the effectiveness of training initiatives, and for collecting data for a hospital's quality assurance programme.

  5. Regulatory safety aspects of nuclear waste management operations in India

    International Nuclear Information System (INIS)

    Sundararajan, A.R.

    2000-01-01

    The Department of Atomic Energy in India as part of its programme to harness the nuclear energy for generation of nuclear power has been operating a whole range of nuclear fuel cycle facilities including waste management plants for more than four decades. The waste management plants include three high level waste immobilisation plants, one in operation, one under commissioning and one more under construction. Atomic Energy Regulatory Board is mandated to review and authorise from the safety angle the siting, the design, the construction and the operation of the waste management plants. The regulatory procedures, which involve multi-tier review adopted for ensuring the safety of these facilities, are described in this paper. (author)

  6. Development of Small UAS Beyond-Visual-Line-of-Sight (BVLOS Flight Operations: System Requirements and Procedures

    Directory of Open Access Journals (Sweden)

    Scott Xiang Fang

    2018-04-01

    Full Text Available Due to safety concerns of integrating small unmanned aircraft systems (UAS into non-segregated airspace, aviation authorities have required a set of detect and avoid (DAA systems to be equipped on small UAS for beyond-visual-line-of-sight (BVLOS flight operations in civil airspace. However, the development of small UAS DAA systems also requires BVLOS flights for testing and validation. To mitigate operational risks for small UAS BVLOS flight operations, this paper proposes to initially test small UAS DAA systems in BVLOS flights in a restricted airspace with additional safety features. Later, this paper further discusses the operating procedures and emergency action plans for small UAS BVLOS flight operations. The testing results show that these safety systems developed can help improve operational safety for small UAS BVLOS flight operations.

  7. Preparedness of fire safety in underground train station: Comparison between train operators in Malaysia with other operators from the developed countries

    Science.gov (United States)

    Tajedi, Noor Aqilah A.; Sukor, Nur Sabahiah A.; Ismail, Mohd Ashraf M.; Shamsudin, Shahrul A.

    2017-10-01

    The purpose of this paper is to compare the fire evacuation plan and preparation at the underground train stations in the different countries. The methodology for this study was using the extended questionnaire survey to investigate the Rapid Rail Sdn Bhd, Malaysia's fire safety plan and preparation at the underground train stations. There were four sections in the questionnaire which included (i) background of the respondents, (ii) the details on the train stations, safety instruction and fire evacuation exercises (iii) technical systems, installation and equipment at the underground stations and (iv) procedures and technical changes related to fire safety that had been applied by the operators. Previously, the respondents from the different train operator services in the developed countries had completed the questionnaires. This paper extends the response from the Rapid Rail Sdn Bhd to compare the emergency procedures and preparation for fire event with the developed countries. As a result, this study found that the equipment and facilities that provided at the underground train stations that operated by Rapid Rail are relevant for fire safety procedures and needs. The main advantage for Rapid Rail is the underground stations were designed with two or more entrances/exits that may perform better evacuation compare to one main entrance/exit train stations in the other developed countries.

  8. Operation and safety decision-making support expert system in NPP

    International Nuclear Information System (INIS)

    Wei Yanhui; Su Desong; Chen Weihua; Zhang Jianbo

    2014-01-01

    The article first reviewed three operation support systems currently used in NPP: real-time information surveillance system, important equipment surveillance system and plant process control and monitoring system, then presents the structure and function of three expert support sub-systems (intelligent alarm monitoring system, computer-based operating procedure support system, safety information expert decision support system). Finally the article discussed the meaning of a kind of operation decision making support system. (authors)

  9. Comparing the operators' behavior in conducting emergency operating procedures with the complexity of procedural steps

    International Nuclear Information System (INIS)

    Park, Jin Kyun; Jung, Won Dea

    2003-01-01

    Many kinds of procedures have been used to reduce the operators' workload throughout various industries. However, significant portion of accidents or incidents was caused by procedure related human errors that are originated from non-compliance of procedures. According to related studies, several important factors for non-compliance behavior have been identified, and one if them is the complexity of procedures. This means that comparing the change of the operators' behavior with the complexity of procedures may be meaningful for investigating plausible reasons for the operators' non-compliance behavior. In this study, emergency training records were collected using a full scope simulator in order to obtain data related to the operators' non-compliance behavior. And then, collected data are compared with the complexity of procedural steps. As the result, two remarkable relationships are found, which indicate that the operators' behavior could be reasonably characterized by the complexity of procedural steps. Thus, these relationships can be used as meaningful clues not only to scrutinize the reason of non-compliance behavior but also to suggest appropriate remedies for the reduction of non-compliance behavior that can result in procedure related human errors

  10. Risk and safety of pediatric sedation/anesthesia for procedures outside the operating room.

    Science.gov (United States)

    Cravero, Joseph P

    2009-08-01

    Sedation and anesthesia outside the operating room represents a rapidly growing field of practice that involves a number of different specialty providers including anesthesiology. The literature surrounding this work is found in a variety of journals - many outside anesthesiology. This review is intended to inform readers about the current status of risk and safety involving sedation/anesthesia for tests and minor procedures utilizing a wide range of sources. Two large database studies have helped to define the frequency and nature of adverse events in pediatric sedation/anesthesia practice from a multispecialty perspective. A number of papers describing respiratory and hemodynamic aspects of dexmedetomidine sedation have also been published. Finally, a number of studies relating to training sedation providers, reporting of sedation adverse events, sedation for vulnerable populations, and (in particular) ketamine sedation adverse respiratory events have also come to light. The latest publications continue to document a relatively low risk to pediatric sedation yet also warn us about the potential adverse events in this field. The results help to define competencies required to deliver pediatric sedation and make this practice even safer. Particularly interesting are new jargon and methodologies for defining adverse events and the use of new methods for training sedation providers.

  11. ITER safety and operational scenario

    International Nuclear Information System (INIS)

    Shimomura, Y.; Saji, G.

    1998-01-01

    The safety and environmental characteristics of ITER and its operational scenario are described. Fusion has built-in safety characteristics without depending on layers of safety protection systems. Safety considerations are integrated in the design by making use of the intrinsic safety characteristics of fusion adequate to the moderate hazard inventories. In addition to this, a systematic nuclear safety approach has been applied to the design of ITER. The safety assessment of the design shows how ITER will safely accommodate uncertainties, flexibility of plasma operations, and experimental components, which is fundamental in ITER, the first experimental fusion reactor. The operation of ITER will progress step by step from hydrogen plasma operation with low plasma current, low magnetic field, short pulse and low duty factor without fusion power to deuterium-tritium plasma operation with full plasma current, full magnetic field, long pulse and high duty factor with full fusion power. In each step, characteristics of plasma and optimization of plasma operation will be studied which will significantly reduce uncertainties and frequency/severity of plasma transient events in the next step. This approach enhances reliability of ITER operation. (orig.)

  12. Nuclear criticality safety evaluation of Spray Booth Operations in X-705, Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Sheaffer, M.K.; Keeton, S.C.

    1993-01-01

    This report evaluates nuclear criticality safety for Spray Booth Operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current procedures and related hardware/equipment is presented. Control parameters relevant to nuclear criticality safety are explained, and a consolidated listing of administrative controls and safety systems is developed. Based on compliance with DOE Orders and MMES practices, the overall operation is evaluated, and recommendations for enhanced safety are suggested

  13. Operation safety of complex industrial systems

    International Nuclear Information System (INIS)

    Zwingelstein, G.

    1999-01-01

    Zero fault or zero risk is an unreachable goal in industrial activities like nuclear activities. However, methods and techniques exist to reduce the risks to the lowest possible and acceptable level. The operation safety consists in the recognition, evaluation, prediction, measurement and mastery of technological and human faults. This paper analyses each of these points successively: 1 - evolution of operation safety; 2 - definitions and basic concepts: failure, missions and functions of a system and of its components, basic concepts and operation safety; 3 - forecasting analysis of operation safety: reliability data, data-banks, precautions for the use of experience feedback data; realization of an operation safety study: management of operation safety, quality assurance, critical review and audit of operation safety studies; 6 - conclusions. (J.S.)

  14. Managing Safety and Operations: The Effect of Joint Management System Practices on Safety and Operational Outcomes.

    Science.gov (United States)

    Tompa, Emile; Robson, Lynda; Sarnocinska-Hart, Anna; Klassen, Robert; Shevchenko, Anton; Sharma, Sharvani; Hogg-Johnson, Sheilah; Amick, Benjamin C; Johnston, David A; Veltri, Anthony; Pagell, Mark

    2016-03-01

    The aim of this study was to determine whether management system practices directed at both occupational health and safety (OHS) and operations (joint management system [JMS] practices) result in better outcomes in both areas than in alternative practices. Separate regressions were estimated for OHS and operational outcomes using data from a survey along with administrative records on injuries and illnesses. Organizations with JMS practices had better operational and safety outcomes than organizations without these practices. They had similar OHS outcomes as those with operations-weak practices, and in some cases, better outcomes than organizations with safety-weak practices. They had similar operational outcomes as those with safety-weak practices, and better outcomes than those with operations-weak practices. Safety and operations appear complementary in organizations with JMS practices in that there is no penalty for either safety or operational outcomes.

  15. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 1. Biosafety Level 4 Suit Laboratory Suite Entry and Exit Procedures.

    Science.gov (United States)

    Janosko, Krisztina; Holbrook, Michael R; Adams, Ricky; Barr, Jason; Bollinger, Laura; Newton, Je T'aime; Ntiforo, Corrie; Coe, Linda; Wada, Jiro; Pusl, Daniela; Jahrling, Peter B; Kuhn, Jens H; Lackemeyer, Matthew G

    2016-10-03

    Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure ("space") suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits.

  16. Standards for radiation protection instrumentation: design of safety standards and testing procedures

    International Nuclear Information System (INIS)

    Meissner, Frank

    2008-01-01

    This paper describes by means of examples the role of safety standards for radiation protection and the testing and qualification procedures. The development and qualification of radiation protection instrumentation is a significant part of the work of TUV NORD SysTec, an independent expert organisation in Germany. The German Nuclear Safety Standards Commission (KTA) establishes regulations in the field of nuclear safety. The examples presented may be of importance for governments and nuclear safety authorities, for nuclear operators and for manufacturers worldwide. They demonstrate the advantage of standards in the design of radiation protection instrumentation for new power plants, in the upgrade of existing instrumentation to nuclear safety standards or in the application of safety standards to newly developed equipment. Furthermore, they show how authorities may proceed when safety standards for radiation protection instrumentation are not yet established or require actualization. (author)

  17. An expert system-based aid for analysis of Emergency Operating Procedures in NPPs

    International Nuclear Information System (INIS)

    Jakubowski, Z.; Beraha, D.

    1996-01-01

    Emergency Operating Procedures (EOPs) generally and an accident management (AM) particularly play a significant part in the safety philosophy on NPPs since many years. A better methodology for development and validation of EOPs is desired. A prototype of an Emergency Operating Procedures Analysis System (EOPAS), which has been developed at GRS, is presented in the paper. The hardware configuration and software organisation of the system is briefly reviewed. The main components of the system such as the knowledge base of an expert system and the engineering simulator are described. (author)

  18. IAEA Leads Operational Safety Mission to Armenian Nuclear Power Plant

    International Nuclear Information System (INIS)

    2011-01-01

    . The conclusions of the review are based on the IAEA's Safety Standards and proven good international practices. The review covered the areas of Management, Organization and Administration; Training, Operations; Maintenance; Technical Support; Operating Experience; Radiation Protection; and Transition from Operations to Decommissioning. The OSART team has identified good plant practices which will be shared with the rest of the nuclear industry for consideration of their application. Examples include: During the last number of years, several important safety systems have been updated using resources of the plant's staff. This unique approach resulted in staff acquiring deep knowledge and skills to successfully operate and maintain new equipment; A plant simulator utilizing instrumentation and control panels and components from the turbine systems of shutdown Unit 1 has been introduced for training plant staff. The simulator, which is located within the turbine hall, fully replicates the plant conditions that both operations and maintenance staff will be exposed to; and The plant has developed a specific, comprehensive system supported by procedure to mitigate the consequences of a station black-out by providing power to systems and components necessary for cooling the reactor in emergency conditions. Operation personnel are regularly trained to use this system in order to reinforce their capability to put it in operation during an accident. The team has made recommendations and suggestions related to areas where operational safety of the ANPP could be improved. Examples include: Management should comprehensively establish, communicate and reinforce expectations for eliminating or signposting industrial safety risks and using personal protective equipment; The operator's rounds within the plant should be improved in order to better identify equipment deficiencies; and The plant maintenance work practices including adherence to procedures and use of proper tools should

  19. Tritium operating safety seminar, Los Alamos, New Mexico, July 30, 1975

    International Nuclear Information System (INIS)

    1976-03-01

    A seminar for the exchange of information on tritium operating and safety problems was held at the Los Alamos Scientific Laboratory. The topics discussed are: (1) material use (tubing, lubricants, valves, seals, etc.); (2) hardware selection (valves, fittings, pumps, etc.); (3) biological effects; (4) high pressure; (5) operating procedures (high pressure tritium experiment at LLL); (6) incidents; and (7) emergency planning

  20. Operational procedure standard for occurrences involving radioactive materials

    International Nuclear Information System (INIS)

    Piekarz, Leonardo; Rezende, Talita C.; Pinheiro, Christiano J.G.

    2017-01-01

    This study has as objective to analyze more deeply the actions of response to emergencies involving radioactive materials, in the intent to establish a pattern to the actions performed by the military fire fighters of the Military Fire Brigade of Minas Gerais. To met these goals, it has been attempted to analyze the procedures utilized and recommended, nowadays, for the military fire fighters of CBMMG, and through directed studies, to suggest new actions possible to be executed in the local of the emergency in a way that will not expose the garrison to doses of ionizing radiation that may prejudice them. It is a study of bibliographic, exploratory, and also descriptive nature, realized through a qualitative approach. The techniques used for the research were the analysis of institutional documents, norms and other literature produced by renamed entities in the radiologic and biosafety areas. It was then concluded that CBMMG, through simple actions of response, can provide higher quality and safety in the operations involving radiologic accidents, standing out that the implemented actions nowadays are very beneath the capacity of the corporation, due to the lack of knowledge of the matter by the fire fighters. It was proposed, then, that new actions be implemented and instituted as operational procedures to be used on those emergencies, with the objective of provide a higher safety and professionalism in the attendance to emergencies involving radioactive materials. (author)

  1. Operational procedure standard for occurrences involving radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Piekarz, Leonardo, E-mail: leonardopbm@yahoo.com.br [Academia de Bombeiros Militar de Minas Gerais, Belo Horizonte, MG (Brazil); Rezende, Talita C.; Pinheiro, Christiano J.G., E-mail: talitacolombi@yahoo.com, E-mail: christrieste@yahoo.it [Universidade Federal do Espirito Santo (CCA/UFES), Alegre, ES (Brazil). Programa de Pós-Graduação em Engenharia Química

    2017-07-01

    This study has as objective to analyze more deeply the actions of response to emergencies involving radioactive materials, in the intent to establish a pattern to the actions performed by the military fire fighters of the Military Fire Brigade of Minas Gerais. To met these goals, it has been attempted to analyze the procedures utilized and recommended, nowadays, for the military fire fighters of CBMMG, and through directed studies, to suggest new actions possible to be executed in the local of the emergency in a way that will not expose the garrison to doses of ionizing radiation that may prejudice them. It is a study of bibliographic, exploratory, and also descriptive nature, realized through a qualitative approach. The techniques used for the research were the analysis of institutional documents, norms and other literature produced by renamed entities in the radiologic and biosafety areas. It was then concluded that CBMMG, through simple actions of response, can provide higher quality and safety in the operations involving radiologic accidents, standing out that the implemented actions nowadays are very beneath the capacity of the corporation, due to the lack of knowledge of the matter by the fire fighters. It was proposed, then, that new actions be implemented and instituted as operational procedures to be used on those emergencies, with the objective of provide a higher safety and professionalism in the attendance to emergencies involving radioactive materials. (author)

  2. Safety in the Operating Theatre | a Multi Factor Approach for Patients and Teams

    NARCIS (Netherlands)

    Wauben, L.S.G.L.

    2010-01-01

    Due to the advances in high-tech technology in the operating theatre, the increased number of persons involved, and the increased complexity of surgical procedures, medical errors are inflicted. To answer the main question: How to improve patient safety in the operating theatre during surgery? this

  3. Mobile Phone Network Operators' Actions on RF Safety (invited paper)

    International Nuclear Information System (INIS)

    Causebrook, J.H.

    1999-01-01

    The current and possible future global penetration of mobile phone usage is given. Health and safety aspects relate to both the statutory requirements for the operation of their networks and the public perception of risks in using services provided by the operators. The coordination of this work nationally through trade associations is mentioned. GSM is the predominant standard used for the provision of global mobile phone services. The GSM MoU Association is introduced as the operators' coordination body worldwide for dealing with radio frequency (RF) health and safety issues through its sub-group, EBRC. The scope of the EBRC group is presented with the considerations used to determine if external research should be supported by the GSM MoU Association. A personal view is provided on the present quality of worldwide research on RF health and safety and some consideration is given as to what constitutes 'good' research. The mobile phone network operators' involvement in the science and application of epidemiological research is considered. Consideration is given to introducing risk/benefit analysis into the debate on the health and safety of mobile phone usage. The media presentation of the results of scientific work on this topic often leads to a falsely negative public perception of the perceived risks. This is made worse when such perceptions are used for the purposes of objecting to the deployment of network infrastructure. The operators' approach to RF health and safety procedures is outlined, with a clarification of the distinctions between near-field and far-field methodologies for the calculation of physical exclusion zones. It is concluded that the mobile phone operators are part of an industry which is safe and who work to ensure that their operations are seen to be safe in the context of the best available worldwide scientific knowledge and safety guidelines. (author)

  4. Safety Evakuation Of Triga-2000 Reactor Operation Viewed From Safety Culture

    International Nuclear Information System (INIS)

    Karliana, Itjeu

    2001-01-01

    The safety evaluation activities of TRIGA-2000 operation viewed from safety culture performed by questioners data collected from the operators and supervisor site of TRIGA-2000 P3TN, Bandung. There are 9 activity aspects surveyed, for instant to avail the policy of safety from their chairman, safety management, education and training, emergency aids planning, safety consultancy, accident information, safety analysis, safety devices, safety and occupational health. The surveying undertaken by filling the questioner that containing of 9 activity aspects and 20 samples of employees. The safety evaluation results' of the operation personnel in TRIGA-2000 P3TN are good implemented by both the operators and supervisors should be improve and attention need to provide the equipment's. The education and training especially for safety refreshment must be performing

  5. Operational safety reliability research

    International Nuclear Information System (INIS)

    Hall, R.E.; Boccio, J.L.

    1986-01-01

    Operating reactor events such as the TMI accident and the Salem automatic-trip failures raised the concern that during a plant's operating lifetime the reliability of systems could degrade from the design level that was considered in the licensing process. To address this concern, NRC is sponsoring the Operational Safety Reliability Research project. The objectives of this project are to identify the essential tasks of a reliability program and to evaluate the effectiveness and attributes of such a reliability program applicable to maintaining an acceptable level of safety during the operating lifetime at the plant

  6. Non-safety piping operability review case study -- Today and tomorrow

    International Nuclear Information System (INIS)

    Flensburg, W.C.; Adams, T.M.

    1995-01-01

    During a 1993 Outage at the Perry Nuclear Power Station, a condition report was issued which identified potential intersystem loss of water between the Emergency Closed Cooling Water System and the Nuclear Closed Cooling Water System during a design basis event. The review of this condition report indicated that if a SSE (safe shutdown earthquake) event were to occur during a design basis event components important to plant safety could potentially be adversely affected if non-seismic/non-safety portions of the Nuclear Closed Cooling Water System could not maintain pressure boundary integrity as a result of the seismic loadings. Presented in this paper are steps, criteria, and methodology used to demonstrate the seismic acceptability of the affected portion of the Nuclear Closed Cooling Water System Piping. Also discussed are the potential benefits and applicability of a recently developed EPRI non-safety, non-seismic operability procedure. This discussion includes the potential cost savings which could have arisen from application of this recently developed procedure

  7. Licensing procedures and safety criteria for core conversion in Japan

    International Nuclear Information System (INIS)

    Kanda, K.; Nakagome, Y.; Hayashi, M.

    1983-01-01

    Procedures relating to the construction and operation of reactor facilities are discussed. Specifically, the Safety Analysis Report on the Kyoto University Critical Assembly (KUCA) core conversion (93% to 45% enrichment) is noted. The results of critical experiments in the KUCA and of burnup tests in the Oak Ridge Research (ORR) Reactor will be used in the final determination of the feasibility of the conversion of the Kyoto University High Flux Reactor (KUHFR) to the use of 45% enrichment

  8. Writer`s guide for technical procedures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    A primary objective of operations conducted in the US Department of Energy (DOE) complex is safety. Procedures are a critical element of maintaining a safety envelope to ensure safe facility operation. This DOE Writer`s Guide for Technical Procedures addresses the content, format, and style of technical procedures that prescribe production, operation of equipment and facilities, and maintenance activities. The DOE Writer`s Guide for Management Control Procedures and DOE Writer`s Guide for Emergency and Alarm Response Procedures are being developed to assist writers in developing nontechnical procedures. DOE is providing this guide to assist writers across the DOE complex in producing accurate, complete, and usable procedures that promote safe and efficient operations that comply with DOE orders, including DOE Order 5480.19, Conduct of Operations for DOE Facilities, and 5480.6, Safety of Department of Energy-Owned Nuclear Reactors.

  9. The impact of a medical procedure service on patient safety, procedure quality and resident training opportunities.

    Science.gov (United States)

    Tukey, Melissa H; Wiener, Renda Soylemez

    2014-03-01

    At some academic hospitals, medical procedure services are being developed to provide supervision for residents performing bedside procedures in hopes of improving patient safety and resident education. There is limited knowledge of the impact of such services on procedural complication rates and resident procedural training opportunities. To determine the impact of a medical procedure service (MPS) on patient safety and resident procedural training opportunities. Retrospective cohort analysis comparing characteristics and outcomes of procedures performed by the MPS versus the primary medical service. Consecutive adults admitted to internal medicine services at a large academic hospital who underwent a bedside medical procedure (central venous catheterization, thoracentesis, paracentesis, lumbar puncture) between 1 July 2010 and 31 December 2011. The primary outcome was a composite rate of major complications. Secondary outcomes included resident participation in bedside procedures and use of "best practice" safety process measures. We evaluated 1,707 bedside procedures (548 by the MPS, 1,159 by the primary services). There were no differences in the composite rate of major complications (1.6 % vs. 1.9 %, p = 0.71) or resident participation in bedside procedures (57.0 % vs. 54.3 %, p = 0.31) between the MPS and the primary services. Procedures performed by the MPS were more likely to be successfully completed (95.8 % vs. 92.8 %, p = 0.02) and to use best practice safety process measures, including use of ultrasound guidance when appropriate (96.8 % vs. 90.0 %, p = 0.0004), avoidance of femoral venous catheterization (89.5 vs. 82.7 %, p = 0.02) and involvement of attending physicians (99.3 % vs. 57.0 %, p < 0.0001). Although use of a MPS did not significantly affect the rate of major complications or resident opportunities for training in bedside procedures, it was associated with increased use of best practice safety process measures.

  10. 77 FR 44174 - Procedures for Safety Investigations

    Science.gov (United States)

    2012-07-27

    ... of safety investigations. The rule is intended to state clearly the Board's policy and procedures for... statutory authority, when appropriate, following standard safety investigation policies, practices, and... has adhered to the regulatory philosophy and the applicable principles of regulation as set forth in...

  11. Current trends in codal requirements for safety in operation of nuclear power plants

    International Nuclear Information System (INIS)

    Srivasista, K.; Shah, Y.K.; Gupta, S.K.

    2006-01-01

    The Code of practice on safety in nuclear power plant operation states the requirements to be met during operation of a nuclear power plant for assuring safety. Among various stages of authorization, regulatory body issues authorization for operation of a nuclear power plant, monitors and enforces regulatory requirements. The responsible organization shall have overall responsibility and the plant management shall have the primary responsibility for ensuring safe and efficient operation of its nuclear power plants. A set of codal requirements covering technical and administrative aspects are mandatory for the plant management to implement to ensure that the nuclear power plant is operated in accordance with the design intent. Requirements on operating procedures and instructions establish operation and maintenance, inspection and testing of the plant in a planned and systematic way. The requirements on emergency preparedness programme establish with a reasonable assurance that, in the event of an emergency situation, appropriate measures can be taken to mitigate the consequences. Commissioning requirements verify performance criteria during commissioning to ensure that the design intent and QA requirements are met. Several modifications in systems important to safety required during operation of a nuclear power plant are regulated. However new operational codal requirements arising out of periodic safety review, operational experience feedback, life management, probabilistic safety assessment, physical security, safety convention and obligations and decommissioning are not covered in the present code of practice for safety in nuclear power plant operation. Codal provisions on 'Review by operating organization on aspects of design having implications on operability' are also required to be addressed. The merits in developing such a methodology include acceptance of the design by operating organization, ensuring maintainability, proper layout etc. in the new designs

  12. Enhancing operational nuclear safety

    International Nuclear Information System (INIS)

    Sengoku, Katsuhisa

    2008-01-01

    's safety standards and program which provides the safety objective following the 10 fundamental safety principles. The safety requirements defines the functional conditions required for safety and the safety guides provides user-friendly and up-to-date practical guidance representing good/best practices to fulfill the requirements. The IAEA provides safety review services and fields safety review teams upon request of member states for the regulatory, the International Regulatory Review Team (IRRT) and Operational Safety Review Team (OSART) and Peer Review of the Operational and Safety Performance Experience Review (PROSPER). The OSART programme's purpose is to assist member states in enhancing the operational safety of individual nuclear power plants and to promote the continuous development of operational safety within all member states by the dissemination of information on good practice. The OSART Mission Results (OSMIR) database contains the results from 73 OSART missions and 54 follow up visits from 1991 and its continually updated. The Asian Nuclear Safety Network (ANSN) was established to pool and share existing and new technical knowledge and practical experience to further improve the safety of nuclear installation in Asia. In summary, the enhancement of the GNSR is anchored in the recognition that all the states are in the same boat and the increasing importance of sharing and mutual learning, sharing knowledge and experience through regional and global networking. It requires joint and coordinated strategy by all states. The IAEA is willing and ready to support the GNSR through the establishment and application of safety standards, and safety review and advisory services and international instruments. (Author)

  13. Safety procedures for radiography works

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    The following subjects are discussed - Work preparation: before exposure, during exposure, after work completion. Radiographic work at the open site: types of open sites, establishment of radiographic boundary, storage of radiographic equipment at sites. Safety procedures for radiography works; radiographic works in exposure room

  14. Aviation Safety Reporting System: Process and Procedures

    Science.gov (United States)

    Connell, Linda J.

    1997-01-01

    The Aviation Safety Reporting System (ASRS) was established in 1976 under an agreement between the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). This cooperative safety program invites pilots, air traffic controllers, flight attendants, maintenance personnel, and others to voluntarily report to NASA any aviation incident or safety hazard. The FAA provides most of the program funding. NASA administers the program, sets its policies in consultation with the FAA and aviation community, and receives the reports submitted to the program. The FAA offers those who use the ASRS program two important reporting guarantees: confidentiality and limited immunity. Reports sent to ASRS are held in strict confidence. More than 350,000 reports have been submitted since the program's beginning without a single reporter's identity being revealed. ASRS removes all personal names and other potentially identifying information before entering reports into its database. This system is a very successful, proof-of-concept for gathering safety data in order to provide timely information about safety issues. The ASRS information is crucial to aviation safety efforts both nationally and internationally. It can be utilized as the first step in safety by providing the direction and content to informed policies, procedures, and research, especially human factors. The ASRS process and procedures will be presented as one model of safety reporting feedback systems.

  15. Safety margins of operating reactors. Analysis of uncertainties and implications for decision making

    International Nuclear Information System (INIS)

    2003-01-01

    Maintaining safety in the design and operation of nuclear power plants (NPPs) is a very important task under the conditions of a challenging environment, affected by the deregulated electricity market and implementation of risk informed regulations. In Member States, advanced computer codes are widely used as safety analysis tools in the framework of licensing of new NPP projects, safety upgrading programmes of existing NPPs, periodic safety reviews, renewal of operating licences, use of the safety margins for reactor power uprating, better utilization of nuclear fuel and higher operational flexibility, for justification of lifetime extensions, development of new emergency operating procedures, analysis of operational events, and development of accident management programmes. The issue of inadequate quality of safety analysis is becoming important due to a general tendency to use advanced tools for better establishment and utilization of safety margins, while the existence of such margins assure that NPPs operate safely in all modes of operation and at all times. The most important safety margins relate to physical barriers against release of radioactive material, such as fuel matrix and fuel cladding, reactor coolant system boundary, and the containment. Typically, safety margins are determined with use of computational tools for safety analysis. Advanced best estimate computer codes are suggested e.g. in the IAEA Safety Guide on Safety Assessment and Verification for Nuclear Power Plants to be used for current safety analysis. Such computer codes require their careful application to avoid unjustified reduction in robustness of the reactor safety. The issue of uncertainties in safety analyses and their impact on evaluation of safety margins is addressed in a number of IAEA guidance documents, in particular in the Safety Report on Accident Analysis for Nuclear Power Plants. It is also discussed in various technical meetings and workshops devoted to this area. The

  16. Bilateral effects of hospital patient-safety procedures on nurses' job satisfaction.

    Science.gov (United States)

    Inoue, T; Karima, R; Harada, K

    2017-09-01

    The aim of this study was to examine how hospital patient-safety procedures affect the job satisfaction of hospital nurses. Additionally, we investigated the association between perceived autonomy and hospital patient-safety procedures and job satisfaction. Recently, measures for patient safety have been recognized as an essential requirement in hospitals. Hospital patient-safety procedures may enhance the job satisfaction of nurses by improving the quality of their work. However, such procedures may also decrease their job satisfaction by imposing excessive stress on nurses because they cannot make mistakes. The participants included 537 nurses at 10 private hospitals in Japan (The surveys were collected from March to July 2012). Factors related to hospital patient-safety procedures were demonstrated using factor analysis, and the associations between these factors and nurses' self-perceived autonomy and job satisfaction were examined using structural equation modelling. Five factors regarding hospital patient-safety procedures were extracted. Additionally, structural equation modelling revealed statistically significant associations between these factors and the nurses' self-perceived autonomy and job satisfaction. The findings showed that nurses' perceived autonomy of the workplace enhanced their job satisfaction and that their perceptions of hospital patient-safety procedures promoted their job satisfaction. However, some styles of chief nurses' leadership regarding patient safety restrict nurses' independent and autonomous decision-making and actions, resulting in a lowering of job satisfaction. This study demonstrated that hospital patient-safety procedures have ambiguous effects on nurses' job satisfaction. In particular, chief nurses' leadership relating to patient safety can have a positive or negative effect on nurses' job satisfaction. The findings indicated that hospital managers should demonstrate positive attitudes to improve patient safety for

  17. Trapping safety into rules how desirable or avoidable is proceduralization?

    CERN Document Server

    Bourrier, Mathilde

    2013-01-01

    Rules and procedures are key features for a modern organization to function. It is no surprise to see them to be paramount in safety management. As some sociologists argue, routine and rule following is not always socially resented. It can bring people comfort and reduce anxieties of newness and uncertainty. Facing constant unexpected events entails fatigue and exhaustion. There is also no doubt that proceduralization and documented activities have brought progress, avoided recurrent mistakes and allowed for 'best practices' to be adopted. However, it seems that the exclusive and intensive use of procedures today is in fact a threat to new progress in safety. There is an urgent need to consider this issue because there is doubt that the path chosen by many hazardous industries and activities is the most effective, safety wise, considering the safety level achieved today. As soon as safety is involved, there seems to be an irresistible push towards a wider scope of norms, procedures and processes, whatever the...

  18. NASA Spinoff Article: Automated Procedures To Improve Safety on Oil Rigs

    Science.gov (United States)

    Garud, Sumedha

    2013-01-01

    On May 11th, 2013, two astronauts emerged from the interior of the International Space Station (ISS) and worked their way toward the far end of spacecraft. Over the next 51/2 hours, the two replaced an ammonia pump that had developed a significant leak a few days before. On the ISS, ammonia serves the vital role of cooling components-in this case, one of the station's eight solar arrays. Throughout the extravehicular activity (EVA), the astronauts stayed in constant contact with mission control: every movement, every action strictly followed a carefully planned set of procedures to maximize crew safety and the chances of success. Though the leak had come as a surprise, NASA was prepared to handle it swiftly thanks in part to the thousands of procedures that have been written to cover every aspect of the ISS's operations. The ISS is not unique in this regard: Every NASA mission requires well-written procedures-or detailed lists of step-by-step instructions-that cover how to operate equipment in any scenario, from normal operations to the challenges created by malfunctioning hardware or software. Astronauts and mission control train and drill extensively in procedures to ensure they know what the proper procedures are and when they should be used. These procedures used to be exclusively written on paper, but over the past decade, NASA has transitioned to digital formats. Electronic-based documentation simplifies storage and use, allowing astronauts and flight controllers to find instructions more quickly and display them through a variety of media. Electronic procedures are also a crucial step toward automation: once instructions are digital, procedure display software can be designed to assist in authoring, reviewing, and even executing them.

  19. Operator Actions Within a Safety Instrumented Function

    International Nuclear Information System (INIS)

    Suttinger, L.T.

    2002-01-01

    This paper presents an overview of the factors that should be considered when crediting operator action for performing a safety function or being a part of the process of enabling a safety function. Criteria for evaluating operator action, such as required time response and operator training among others, are discussed. The paper will address these and other factors that should be considered when determining the reliability of the operator to respond and perform his/her part of the safety function. The entire safety function includes the operator and the reliability of the instrumented system that provides the alarm or indication, the final control element, and support systems. The integration of the operator performance with the hardware safety availability, including the effects of the supporting systems is discussed. The analysis of these factors will provide the justification for the amount of risk reduction or safety integrity level that can be credited for the Safety Instrumented Function (SIF), including operator action

  20. Risk and safety requirements for diagnostic and therapeutic procedures in allergology

    DEFF Research Database (Denmark)

    Kowalski, Marek L; Ansotegui, Ignacio; Aberer, Werner

    2016-01-01

    One of the major concerns in the practice of allergy is related to the safety of procedures for the diagnosis and treatment of allergic disease. Management (diagnosis and treatment) of hypersensitivity disorders involves often intentional exposure to potentially allergenic substances (during skin...... attempted to present general requirements necessary to assure the safety of these procedures. Following review of available literature a group of allergy experts within the World Allergy Organization (WAO), representing various continents and areas of allergy expertise, presents this report on risk...... associated with diagnostic and therapeutic procedures in allergology and proposes a consensus on safety requirements for performing procedures in allergy offices. Optimal safety measures including appropriate location, type and required time of supervision, availability of safety equipment, access...

  1. Electronic Procedures for Medical Operations

    Science.gov (United States)

    2015-01-01

    Electronic procedures are replacing text-based documents for recording the steps in performing medical operations aboard the International Space Station. S&K Aerospace, LLC, has developed a content-based electronic system-based on the Extensible Markup Language (XML) standard-that separates text from formatting standards and tags items contained in procedures so they can be recognized by other electronic systems. For example, to change a standard format, electronic procedures are changed in a single batch process, and the entire body of procedures will have the new format. Procedures can be quickly searched to determine which are affected by software and hardware changes. Similarly, procedures are easily shared with other electronic systems. The system also enables real-time data capture and automatic bookmarking of current procedure steps. In Phase II of the project, S&K Aerospace developed a Procedure Representation Language (PRL) and tools to support the creation and maintenance of electronic procedures for medical operations. The goal is to develop these tools in such a way that new advances can be inserted easily, leading to an eventual medical decision support system.

  2. International co-operation in the field of operational safety

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    1988-10-01

    Operational safety in nuclear power plants is without doubt a field where international co-operation is in constant progress. Accounting for over 80 per cent of the 400 reactors in service throughout the world, the menber countries of the OECD Nuclear Energy Agency (NEA) are constantly striving to improve the exchange and use of the wealth of information to be gained not just from power plant accidents and incidents but from the routine operation of these facilities. The Committee on the Safety of Nuclear Installations (CSNI) helps the Steering Committee for Nuclear Energy to meet the NEA's objectives in the safety field, namely: - to promote co-operation between the safety bodies of member countries - to contribute to the safety and regulation of nuclear activities. The CSNI relies on the technical back-up of several different working groups made up of experts appointed by the member countries. For the past three years I have had the honour of chairing Principal Working Group 1 (PWG 1), which deals with operating experience and human factor. It is in this capacity that I will attempt to outline the group's various activities and its findings illustrated by a few examples

  3. Nuclear Reactor RA Safety Report, Vol. 14, Safety protection measures

    International Nuclear Information System (INIS)

    1986-11-01

    Nuclear reactor accidents can be caused by three type of errors: failure of reactor components including (1) control and measuring instrumentation, (2) errors in operation procedure, (3) natural disasters. Safety during reactor operation are secured during its design and construction and later during operation. Both construction and administrative procedures are applied to attain safe operation. Technical safety features include fission product barriers, fuel elements cladding, primary reactor components (reactor vessel, primary cooling pipes, heat exchanger in the pump), reactor building. Safety system is the system for safe reactor shutdown and auxiliary safety system. RA reactor operating regulations and instructions are administrative acts applied to avoid possible human error caused accidents [sr

  4. Recommendations to improve radiation safety during invasive cardiovascular procedures

    International Nuclear Information System (INIS)

    Miranda, Patricia; Ubeda, Carlos; Vano, Eliseo; Nocetti, Diego

    2014-01-01

    In this paper we present guidelines aimed to improve radiation safety during invasive cardiovascular procedures. Unwanted effects upon patients and medical personnel are conventionally classified. A program of Quality Assurance is proposed, an aspect of which is a program for radiologic protection, including operator protection, radiation monitoring, shielding and personnel training. Permanent and specific actions should be taken at every cardiovascular lab, before, during and after interventions. In order to implement these guidelines and actions, a fundamental step is a review of current legislation. Specific programs for quality control and radiologic protection along with a definition of acceptable radiation exposure doses are required

  5. Determination of Initial Conditions for the Safety Analysis by Random Sampling of Operating Parameters

    International Nuclear Information System (INIS)

    Jeong, Hae-Yong; Park, Moon-Ghu

    2015-01-01

    In most existing evaluation methodologies, which follow a conservative approach, the most conservative initial conditions are searched for each transient scenario through tremendous assessment for wide operating windows or limiting conditions for operation (LCO) allowed by the operating guidelines. In this procedure, a user effect could be involved and a remarkable time and human resources are consumed. In the present study, we investigated a more effective statistical method for the selection of the most conservative initial condition by the use of random sampling of operating parameters affecting the initial conditions. A method for the determination of initial conditions based on random sampling of plant design parameters is proposed. This method is expected to be applied for the selection of the most conservative initial plant conditions in the safety analysis using a conservative evaluation methodology. In the method, it is suggested that the initial conditions of reactor coolant flow rate, pressurizer level, pressurizer pressure, and SG level are adjusted by controlling the pump rated flow, setpoints of PLCS, PPCS, and FWCS, respectively. The proposed technique is expected to contribute to eliminate the human factors introduced in the conventional safety analysis procedure and also to reduce the human resources invested in the safety evaluation of nuclear power plants

  6. Criteria for safety-related operator actions

    International Nuclear Information System (INIS)

    Gray, L.H.; Haas, P.M.

    1983-01-01

    The Safety-Related Operator Actions (SROA) Program was designed to provide information and data for use by NRC in assessing the performance of nuclear power plant (NPP) control room operators in responding to abnormal/emergency events. The primary effort involved collection and assessment of data from simulator training exercises and from historical records of abnormal/emergency events that have occurred in operating plants (field data). These data can be used to develop criteria for acceptability of the use of manual operator action for safety-related functions. Development of criteria for safety-related operator actions are considered

  7. Licensing procedures and safety criteria for core conversion in Japan

    International Nuclear Information System (INIS)

    Kanda, K.; Nakagome, Y.; Hayashi, M.

    1983-01-01

    In Japan, the establishment and operation of nuclear installations are governed mainly by the Law for Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors. This law lays down the regulations and conditions for licensing of the various installations involved in the nuclear fuel cycle, namely licensing of installations for refining, fabricating and reprocessing; and reactors, as well as licensing of the use of nuclear fuels in research facilities. Although procedures for the installations listed above vary depending on the installation concerned, only those relating to construction and operation of reactor facilities will be analysed in this study, as the conditions and principles applying to licensing and control of other installations are, to a large extent, similar to those concerning reactor facilities. The second part of this presentation describes the safety review of the KUCA reactor core conversion form HEU to MEU. For the safety review of the core conversion, the Committee on Examination of Reactor Safety of Japanese Government examined mainly the the nuclear characteristics and the integrity of aluminide fuel plates, which was very severe because we had no experience to use aluminide fuel plates in Japan. The integrity of fuel plates and the results of the worst accident analysis for the MEU core are shown with the comparison between the HEU and MEU cores. The significant difference was not observed between them. All the regulatory procedures were completed in September 1980. Fabrication of MEU fuel elements for the KUCA experiments by CERCA in France was started in September 1980, and will be completed in March 1981. The critical experiments in the KUCA with MEU fuel will be started on a single-core in May 1981 as a first step. Those on a coupled-core will follow

  8. Review of cause-based decision tree approach for the development of domestic standard human reliability analysis procedure in low power/shutdown operation probabilistic safety assessment

    International Nuclear Information System (INIS)

    Kang, D. I.; Jung, W. D.

    2003-01-01

    We review the Cause-Based Decision Tree (CBDT) approach to decide whether we incorporate it or not for the development of domestic standard Human Reliability Analysis (HRA) procedure in low power/shutdown operation Probabilistic Safety Assessment (PSA). In this paper, we introduce the cause based decision tree approach, quantify human errors using it, and identify merits and demerits of it in comparision with previously used THERP. The review results show that it is difficult to incorporate the CBDT method for the development of domestic standard HRA procedure in low power/shutdown PSA because the CBDT method need for the subjective judgment of HRA analyst like as THERP. However, it is expected that the incorporation of the CBDT method into the development of domestic standard HRA procedure only for the comparision of quantitative HRA results will relieve the burden of development of detailed HRA procedure and will help maintain consistent quantitative HRA results

  9. Experience relevant to safety obtained from reactor decommissioning operations in the French Atomic Energy Commission

    International Nuclear Information System (INIS)

    Giraudel, B.; Langlois, G.

    1979-01-01

    From among the nuclear facilities constructed in France the authors cite eight large reactors, ranging from critical assemblies to power reactors, that have been finally shut-down since 1965. A brief account is given of the way in which the various operations were carried out after the final control rod drop, a distinction being drawn between the shut-down proper and the containment and dismantling work. A description is also given, from the technical and regulatory standpoint, of the final stage attained, and mention is made of French safety arrangements and of the part played by the safety services during decommissioning operations. Among the lessons derived from French experience, the authors mention the completion of operations without any serious safety problems, and with guarantees for the protection of personnel and the population as a whole, by conventional techniques; the advantage of planning decommissioning operations from the very beginning of construction of the facilities; and the importance of filing descriptive documents. In view of the experience gained, the French Atomic Energy Commission has devised internal procedures for facilitating the application of regulations governing the shut-down and decommissioning phases, which are aimed at preserving surveillance procedures similar to those in force during normal operation. (author)

  10. Risk monitor - a tool for operational safety assessment risk monitor - user's manual

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Vinod, Gopika; Saraf, R.K.; Ghosh, A.K.

    2006-06-01

    Probabilistic Safety Assessment has become a key tool as on today to identify and understand Nuclear Power Plant vulnerabilities. As a result of the availability of these PSA studies, there is a desire to use them to enhance plant safety and to operate the nuclear stations in the most efficient manner. Risk Monitor is a PC based tool, which computes the real time safety level and assists plant personnel to manage day-to-day activities. Risk Monitor is a PC based user friendly software tool used for modification and re-analysis of a nuclear Power plant. Operation of Risk Monitor is based on PSA methods for assisting in day to day applications. Risk Monitoring programs can assess the risk profile and are used to optimize the operation of Nuclear Power Plants with respect to a minimum risk level over the operating time. This report presents the background activities of Risk Monitor, its application areas and the step by step procedure for the user.to interact with the software. This software can be used with the PSA model of any Nuclear Power Plant. (author)

  11. Safety of Nuclear Power Plants: Commissioning and Operation

    International Nuclear Information System (INIS)

    2011-01-01

    This publication is a revision of Safety Requirements No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe operation of nuclear power plants. Over recent years there have been developments in areas such as long term operation, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. It became necessary to revise the IAEA's safety requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the Fundamental Safety Principles. Contents: 1. Introduction; 2. Safety objectives and principles; 3. The management and organizational structure of the operating organization; 4. Management of operational safety; 5. Operational safety programmes; 6. Plant commissioning; 7. Plant operations; 8. Maintenance, testing, surveillance and inspection; 9. Preparation for decommissioning.

  12. The critical safety functions and plant operation

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Church, J.F.; Porter, N.J.; Cross, M.T.; Guinn, W.M.

    1981-01-01

    The paper outlines the operator's role in nuclear safety and introduces the concept of ''safety functions''. Safety functions are a group of actions that prevent core melt or minimize radiation releases to the general public. They can be used to provide a hierarchy of practical plant protection that an operator should use. ''An accident identical to that at Three Mile Island is not going to happen again'', said the Rogovin investigators. The concepts put forward in this paper are intended to help the operator avoid serious consequence from the next unexpected threat. On the basis of the safety evaluation, the operator has three roles in assuring that the consequences of an event will be no worse than the predicted acceptable results. These three operator roles are: first, maintain plant setup in readiness to properly respond; second, operate the plant in a manner such that fewer, milder events minimize the frequency and the severity of adverse events; third, the operator needs to monitor the plant to verify that the safety functions are accomplished. The operator needs a systematic approach to mitigating the consequences of an event. The concept of ''safety function'' introduces that systematic approach and prevents a hierarchy of protection. If the operator has difficulty in identifying an event for any reason, the systematic safety function approach allows ones to accomplish the overall path of mitigating consequences. There are ten identified functions designed to protect against core melt, preserve containment integrity, prevent indirect release of radioactivity, and maintain vital auxiliaries needed to support the other safety functions. The paper describes in detail the operator's role and the safety functions, and provides many examples of the use of alternative success paths to accomplish the safety function

  13. CloudSat Safety Operations at Vandenberg AFB

    Science.gov (United States)

    Greenberg, Steve

    2006-01-01

    CloudSat safety operations at Vendenberg AFB is given. The topics include: 1) CloudSat Project Overview; 2) Vandenberg Ground Operations; 3) Delta II Launch Vehicle; 4) The A-Train; 5) System Safety Management; 6) CALIPSO Hazards Assessment; 7) CALIPSO Supplemental Safeguards; 8) Joint System Safety Operations; 9) Extended Stand-down; 10) Launch Delay Safety Concerns; and 11) Lessons Learned.

  14. Operating-procedure system at Savannah River Plant

    International Nuclear Information System (INIS)

    Tope, C.W.

    1981-05-01

    Three types of procedures are widely used at SRP: Du Pont Savannah Operating Logsheet, Du Pont Savannah Operating Procedure, and Plant Manual. This document briefly reviews originating of the procedures, their preparation, control, and indexing

  15. Nuclear criticality safety evaluation of large cylinder cleaning operations in X-705, Portsmouth Gaseous diffusion Plant

    International Nuclear Information System (INIS)

    Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

    1995-06-01

    This report evaluates nuclear criticality safety for large cylinder cleaning operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current cleaning procedures and required hardware/equipment is presented, and documentation for large cylinder cleaning operations is identified and described. Control parameters, design features, administrative controls, and safety systems relevant to nuclear criticality are discussed individually, followed by an overall assessment based on the Double Contingency Principle. Recommendations for enhanced safety are suggested, and issues for increased efficiency are presented

  16. Enhancing operational safety

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, J S

    1997-09-01

    The presentation briefly considers the following aspects concerning enhancing operational safety of NPP: licensed control room supervision, reactivity changes, personnel access to control room, simulator training.

  17. 40 CFR 240.209-3 - Recommended procedures: Operations.

    Science.gov (United States)

    2010-07-01

    ... Occupational Respiratory Disease, National Institute for Occupational Safety and Health, Morgantown, W. Va. (c) Training in first aid practices and emergency procedures should be given all personnel. (d) Personal safety devices such as hard hats, gloves, safety glasses, and footwear should be provided for facility employees...

  18. Plant Operation Station for HTR-PM Low Power and Shutdown operation Probabilistic safety analysis

    International Nuclear Information System (INIS)

    Liu Tao; Tong Jiejuan

    2014-01-01

    Full range Probabilistic safety analysis (PSA) is one of key conditions for nuclear power plant (NPP) licensing according to the requirement of nuclear safety regulatory authority. High Temperature Gas Cooled Reactor Pebble-bed Module (HTR-PM) has developed construction design and prepared for the charging license application. So after the normal power operation PSA submitted for review, the Low power and Shutdown operation Probabilistic safety analysis (LSPSA) also begin. The results of LSPSA will together with prior normal power PSA results to demonstrate the safety level of HTR-PM NPP Plant Operation Station (POS) is one of important terms in LSPSA. The definition of POS lays the foundation for LSPSA modeling. POS provides initial and boundary conditions for the following event tree and fault tree model development. The aim of this paper is to describe the state-of-the-art of POS definition for HTR-PM LSPSA. As for the first attempt to the high temperature gas cooled reactor module plant, the methodology and procedure of POS definition refers to the LWR LSPSA guidance, and adds to plant initial status analysis due to the HTR-PM characteristics. A specific set of POS grouping vectors is investigate and suggested for HTR-PM NPP, which reflects the characteristics of plant modularization and on-line refueling. As a result, seven POSs are given according to the grouping vectors at the end of the paper. They will be used to the LSPSA modelling and adjusted if necessary. The papers ’work may provide reference to the analogous NPP LSPSA. (author)

  19. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2017-01-01

    This publication is a revision of IAEA Safety Standards Series No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe commissioning, operation, and transition from operation to decommissioning of nuclear power plants. Over recent years there have been developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis review and risk informed decision making processes. It became necessary to revise the IAEA’s Safety Requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications, initiated in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan, revealed no significant areas of weakness but resulted in a small set of amendments to strengthen the requirements and facilitate their implementation. These are contained in the present publication.

  20. The operator's role and safety functions

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Finnicum, D.J.; Hubbard, F.R.; Musick, C.R.; Walzer, R.F.

    1980-01-01

    A nuclear power plant can be thought of as a single system with two major subsystems: equipment and people. Both play important roles in nuclear safety. Whereas, in the past, the role of equipment had been emphasized in nuclear safety, the accident at Three Mile Island and its subsequent investigations point out the vital role of the operator. This paper outlines the operator's roles in nuclear safety and suggests how the concept of safety functions can be used to reduce economic losses and increase safety margins. (auth)

  1. OSART Guidelines. 2015 Edition. Reference Report for IAEA Operational Safety Review Teams (OSARTs)

    International Nuclear Information System (INIS)

    2016-01-01

    The IAEA works to provide a global nuclear safety and security framework for the protection of people and the environment from the effects of ionizing radiation, the minimization of the likelihood of accidents that could endanger life and property, and effective mitigation of the effects of any such events, should they occur. The strategic approach to achieving such a framework involves continual improvement in four areas: national and international safety infrastructures; the establishment and global acceptance of IAEA safety standards; an integrated approach to the provision for the application of the safety standards; and a global network of knowledge and experience. The IAEA Operational Safety Review Team (OSART) programme provides advice and assistance to Member States to enhance the safety of nuclear power plants during commissioning and operation. The OSART programme, initiated in 1982, is available to all Member States with nuclear power plants under commissioning or in operation. Conservative design, careful manufacture and sound construction are all prerequisites for the safe operation of nuclear power plants. However, the safety of the plant also depends ultimately on: sound management, policies, procedures, processes and practices; the capability and reliability of commissioning and operating personnel; comprehensive instructions; sound accident management and emergency preparedness; and adequate resources. Finally, a positive attitude and conscientiousness on the part of all staff in discharging their responsibilities is important to safety. The OSART programme is based on the safety standards applicable to nuclear power plants. IAEA safety standards reflect the consensus of Member States on nuclear safety matters. The reports of the International Nuclear Safety Group identify important current nuclear safety issues and also serve as references during an OSART review. The publication OSART Guidelines provides overall guidance on the conduct of OSART

  2. Developments in safety and operations culture in BNFL's thorp reprocessing plant, Sellafield, Cumbria

    International Nuclear Information System (INIS)

    Kett, P.J.

    2000-01-01

    One of the best descriptions of Culture is 'how we do things around here'. In a stable organisation it is extremely difficult to change any type of culture, whether it is an operations, customer service or safety culture. To change culture one of two elements are essential. There must be either a significant external pressure felt by all in the organisation or a change in senior management, with authority to set a new direction for the organisation. BNFL had a unique opportunity through the commissioning and operation of the Thorp Reprocessing Plant at Sellafield to shape a new Safety and Operations Culture. Both the key elements for change were present. Thorp was a high profile flagship plant that had attracted multinational investment. It incorporated new technology. The workforce had volunteered to operate the plant. A strong senior management team was specially selected. The plant was being commissioned in an environment where there was significant opposition by 'anti nuclear' groups. It was essential to both BNFL and the wider international nuclear community that Thorp was commissioned and operated safely. A strong operating culture was developed with safety as the corner stone. The culture comprises three key components. Rigorous plant safety case and risk assessments before work commences and modifications to the plant occur; A high level of involvement by all levels of the workforce in both operations and safety matters; Strong supportive leadership which does not allow safety standards to be compromised and encourages open debate on how to improve. During commissioning and early operation of Thorp the robustness of the Safety and Operations Culture was demonstrated. On several occasions, despite intense commercial pressure, operations were halted until the situation was resolved both technically and procedurally. This paper describes how the Safety and Operations Culture was developed. The key factors for success include recruitment, team selection

  3. Improving the review of standard operating procedures: a novel electronic system for compounding pharmacies.

    Science.gov (United States)

    Brensel, Robert; Brensel, Scott; Ng, Amy

    2013-01-01

    Since the New England Compounding Center disaster in 2012, the importance of following correct procedures during every phase of customized pharmacy has been a focus of governmental interest and action as well as public scrutiny. Many pharmacies rely on the rote review of standard operating procedures to ensure that staff members understand and follow protocols that ensure the safety and potency of all compounds prepared, but that approach to continuing education can be cumbersome and needlessly time-consuming. In addition, documenting and retrieving evidence of employee competence can be difficult. In this article, we describe our use of online technology to improve our methods of educating staff about the full range of standard operating procedures that must be followed in our pharmacy. The system we devised and implemented has proven to be effective, easy to update and maintain, very inexpensive, and user friendly. Its use has reduced the time previously required for a read-over review of standard operating procedures from 30 or 40 minutes to 5 or 10 minutes in weekly staff meetings, and we can now easily document and access proof of employees' comprehension of that content. It is our hope that other small compounding pharmacies will also find this system of online standard operating procedure review helpful.

  4. Predicting safety culture: the roles of employer, operations manager and safety professional.

    Science.gov (United States)

    Wu, Tsung-Chih; Lin, Chia-Hung; Shiau, Sen-Yu

    2010-10-01

    This study explores predictive factors in safety culture. In 2008, a sample 939 employees was drawn from 22 departments of a telecoms firm in five regions in central Taiwan. The sample completed a questionnaire containing four scales: the employer safety leadership scale, the operations manager safety leadership scale, the safety professional safety leadership scale, and the safety culture scale. The sample was then randomly split into two subsamples. One subsample was used for measures development, one for the empirical study. A stepwise regression analysis found four factors with a significant impact on safety culture (R²=0.337): safety informing by operations managers; safety caring by employers; and safety coordination and safety regulation by safety professionals. Safety informing by operations managers (ß=0.213) was by far the most significant predictive factor. The findings of this study provide a framework for promoting a positive safety culture at the group level. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  5. Operational safety improvement in OPR 1000

    International Nuclear Information System (INIS)

    Jung, Y.-E.

    2005-01-01

    Nuclear power operating experience management might be an important factor for the operational safety improvement. KHNP's nuclear information management system, called KONIS receives, distributes and manages all nuclear information from domestic and foreign, especially operating experience. Ulchin 3 and 4, the first units of OPR 1000 series operates several organizations regarding management of operating experience e.g. specialist group program, various task forces, equipment specialist system for operator, etc. Peer review is another contribution for nuclear safety. (author)

  6. A simple intervention to improve patient safety, save time and improve staff experience in the AMU procedure room.

    Science.gov (United States)

    Misselbrook, Gary Peter; Kause, Juliane; Yeoh, Su-Ann

    2016-01-01

    Over the last decade, operating theatres and Intensive Care Units (ICUs) have established systematic methods for performing procedures on patients that have been shown to reduce complications and improve patient safety. Whilst the use of procedure rooms on Acute Medicine Units (AMUs) is highly recommended by patient safety groups and Royal College publications, they are not universally available or appropriately utilised. In this article we discuss a quality improvement project that was undertaken on an AMU at a large university teaching hospital in the United Kingdom, highlighting its successes and challenges.

  7. A combined deterministic and probabilistic procedure for safety assessment of components with cracks - Handbook.

    Energy Technology Data Exchange (ETDEWEB)

    Dillstroem, Peter; Bergman, Mats; Brickstad, Bjoern; Weilin Zang; Sattari-Far, Iradj; Andersson, Peder; Sund, Goeran; Dahlberg, Lars; Nilsson, Fred (Inspecta Technology AB, Stockholm (Sweden))

    2008-07-01

    SSM has supported research work for the further development of a previously developed procedure/handbook (SKI Report 99:49) for assessment of detected cracks and tolerance for defect analysis. During the operative use of the handbook it was identified needs to update the deterministic part of the procedure and to introduce a new probabilistic flaw evaluation procedure. Another identified need was a better description of the theoretical basis to the computer program. The principal aim of the project has been to update the deterministic part of the recently developed procedure and to introduce a new probabilistic flaw evaluation procedure. Other objectives of the project have been to validate the conservatism of the procedure, make the procedure well defined and easy to use and make the handbook that documents the procedure as complete as possible. The procedure/handbook and computer program ProSACC, Probabilistic Safety Assessment of Components with Cracks, has been extensively revised within this project. The major differences compared to the last revision are within the following areas: It is now possible to deal with a combination of deterministic and probabilistic data. It is possible to include J-controlled stable crack growth. The appendices on material data to be used for nuclear applications and on residual stresses are revised. A new deterministic safety evaluation system is included. The conservatism in the method for evaluation of the secondary stresses for ductile materials is reduced. A new geometry, a circular bar with a circumferential surface crack has been introduced. The results of this project will be of use to SSM in safety assessments of components with cracks and in assessments of the interval between the inspections of components in nuclear power plants

  8. Safety code 19: recommended safety procedures for the selection, installation and use of x-ray diffraction equipment

    International Nuclear Information System (INIS)

    1984-01-01

    This document is one of a series of Safety Codes prepared by the Radiation Protection Bureau to set out requirements for the safe use of radiation emitting devices. The equipment and installation guidelines and safety procedures detailed in this Code are primarily for the instruction and guidance of persons employed in Federal Public Service Departments and Agencies, as well as those coming under the jurisdiction of the Canada Labour Code. This Safety Code is also intended to assist other users of X-ray diffraction equipment to select safe equipment and to install and use it so that the radiation hazard to the operator and other persons in its vicinity is negligible. It should be noted that facilities under provincial jurisdiction may be subject to requirements specified under provincial statutes. This Code supersedes Safety Code RPD-SC-7, entitled 'Requirements For Non-Medical X-Ray Equipment, Use and Installation', insofar as X-ray diffraction equipment is concerned, and it is intended to complement X-ray equipment design, construction and performance standards promulgated under the Radiation Emitting Devices Act

  9. Safety of Nuclear Power Plants: Commissioning and Operation

    International Nuclear Information System (INIS)

    2011-01-01

    The safety of a nuclear power plant is ensured by means of proper site selection, design, construction and commissioning, and the evaluation of these, followed by proper management, operation and maintenance of the plant. In a later phase, a proper transition to decommissioning is required. The organization and management of plant operations ensures that a high level of safety is achieved through the effective management and control of operational activities. This publication is a revision of the Safety Requirements publication Safety of Nuclear Power Plants: Operation, which was issued in 2000 as IAEA Safety Standards Series No. NS-R-2. The purpose of this revision was to restructure Safety Standards Series No. NS-R-2 in the light of new operating experience and new trends in the nuclear industry; to introduce new requirements that were not included in Safety Standards Series No. NS-R-2 on the operation of nuclear power plants; and to reflect current practices, new concepts and technical developments. This update also reflects feedback on the use of the standards, both from Member States and from the IAEA's safety related activities. The publication is presented in the new format for Safety Requirements publications. The present publication reflects the safety principles of the Fundamental Safety Principles. It has been harmonized with IAEA Safety Standards Series No. GS-R-3 on The Management System for Facilities and Activities. Guidance on the fulfilment of the safety requirements is provided in supporting Safety Guides. The terminology used in this publication is defined and explained in the IAEA Safety Glossary. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the safety objective and safety principles that are established in the Fundamental Safety Principles. This

  10. Nuclear Safety Co-Ordination within Oak Ridge Operations Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W. A.; Pryor, W. A. [Research and Development Division, United States Atomic Energy Commission, Oak Ridge, TN (United States)

    1966-05-15

    The Oak Ridge Operations Office of the USAEC has within its jurisdiction multiple contractors and facilities for research and for the production of fissile materials for the atomic energy programme. Among these facilities are gaseous diffusion plants for the production of {sup 235}U-enriched uranium hexafluoride, plants for the fabrication of special components and fuel for research and production reactors, and laboratories for pilot plant studies and basic research in nuclear technology. One research laboratory is also actively engaged in criticality experimental programmes and has been a major contributor of criticality data for safety applications. These diversified programmes include the processing, fabrication and transport of practically all forms and isotopic enrichments of uranium in quantities commensurate with both laboratory and volume production requirements. Consequently, adequate nuclear safety control with reasonable economy for operations of this magnitude demands not only co-ordination and liaison between contractor and USAEC staffs, but a continuing reappraisal of safety applications in light of the most advanced information. This report outlines the role of the Oak Ridge Operations Office in these pursuits and describes as examples some specific problems in which this office co-ordinated actions necessary for their resolution. Other examples are given of parametric and procedural applications in plant processes and fissile shipments emphasizing the use of recent experimental or calculated data. These examples involve the use of mass and geometric variables, neutron absorbers and moderation control. Departures from limits specified in existing nuclear safety guides are made to advantage in light of new data, special equipment design, contingencies and acceptable risks. (author)

  11. The critical safety functions and plant operation

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Church, J.F.; Cross, M.T.; Guinn, W.M.; Porter, N.J.

    1981-01-01

    The operator's role in nuclear safety is outlined and the concept of ''safety functions'' introduced. Safety functions are a group of actions that prevent core melt or minimize radiation releases to the general public. They can be used to provide a hierarchy of practical plant protection that an operator should use. The plant safety evaluation uses four inputs in predicting the results of an event: the event initiator, the plant design, the initial plant conditions and setup, and the operator actions. If any of these inputs are not as assumed in the evaluation, confidence that the consequences will be as predicted is reduced. Based on the safety evaluation, the operator has three roles in assuring that the consequences of an event will be no worse than the predicted acceptable results: Maintain plant setup in readiness to properly respond. Operate the plant in a manner such that fewer, milder events minimize the frequency and the severity of adverse events. Monitor the plant to verify that the safety functions are accomplished. The operator needs a systematic approach to mitigating the consequences of an event. The concept of safety functions introduces this systematic approach and presents a hierarchy of protection. If the operator has difficulty identifying an event for any reason, the systematic safety function approach allows accomplishing the overall path of mitigating consequences. Ten functions designed to protect against core melt, preserve containment integrity, prevent indirect release of radioactivity, and maintain vital auxiliaries needed to support the other safety functions are identified

  12. The Role Of Quality Assurance Program For Safety Operation Of Nuclear Installations

    International Nuclear Information System (INIS)

    Harjanto, N.T.; Purwadi, K.P.; Boru, D.S.; Farida; Suharni

    2000-01-01

    Nuclear installations expose potential hazard of radiation, therefore in their construction, operation and maintenance, it is necessary to consider safety aspect, in which the safety requirements which has been determined must be met. One of the requirements that is absolutely needed is quality assurance, which covers arrangement of quality assurance program, organization and administration of the implementation of quality assurance, and supervision. Quality Assurance program is a guideline containing quality policies and basic determination on the realization of activities that effect the quality of equipment's and items used in the operation of nuclear installations in order that the operation of nuclear installation can run safety and in accordance with their design aims and operation limits. Quality Assurance Program includes document control, design control, supply control, control of equipment s and items, operation/process control, inspection and control of equipment test, and control of nonconformance and corrections. General system of nuclear installation operation is equipped with safety and supporting systems. These systems must apply the quality assurance program that cover control of activities in the systems. In the implementation of the quality assurance program, it is necessary to establish procedures, work guidelines/instructions, and quality recording that constitutes documents of quality system 2 nd , 3 th , and 4 th level after the quality assurance program. To ensure the effectivity and to prove whether the realization of the program has been pursuant to the determined requirements, an internal audit must be conducted accordingly

  13. Customs and regulations in the learning process of operational safety. Lernprozesse zur Arbeitssicherheit

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, F [Frankfurt Univ. (Germany, F.R.)

    1991-06-01

    In recent years, the human factor in accidents has come into prominence in consideration. Today, effective psychological concepts are replacing traditional ones. The learning psychology stems from the fact that only a procedure which has been successful is repeated and eventually becomes a normal standard, whilst procedures which bring with them disadvantages are eliminated. From the point of view of operational safety, strategies are being derived for the development of procedures and are being introduced as methods for application. Controls on actions are described by means of field studies. (orig.).

  14. Critical Drivers for Safety Culture: Examining Department of Energy and U.S. Army Operational Experiences - 12382

    Energy Technology Data Exchange (ETDEWEB)

    Lowes, Elizabeth A. [The S.M. Stoller Corporation, Broomfield, Colorado (United States)

    2012-07-01

    Evaluating operational incidents can provide a window into the drivers most critical to establishing and maintaining a strong safety culture, thereby minimizing the potential project risk associated with safety incidents. By examining U.S. Department of Energy (DOE) versus U.S. Army drivers in terms of regulatory and contract requirements, programs implemented to address the requirements, and example case studies of operational events, a view of the elements most critical to making a positive influence on safety culture is presented. Four case studies are used in this evaluation; two from DOE and two from U.S. Army experiences. Although the standards guiding operations at these facilities are different, there are many similarities in the level of hazards, as well as the causes and the potential consequences of the events presented. Two of the incidents examined, one from a DOE operation and the other from a U.S. Army facility, resulted in workers receiving chemical burns. The remaining two incidents are similar in that significant conduct of operations failures occurred resulting in high-level radioactive waste (in the case of the DOE facility) or chemical agent (in the case of the Army facility) being transferred outside of engineering controls. A review of the investigation reports for all four events indicates the primary causes to be failures in work planning leading to ineffective hazard evaluation and control, lack of procedure adherence, and most importantly, lack of management oversight to effectively reinforce expectations for safe work planning and execution. DOE and Army safety programs are similar, and although there are some differences in contractual requirements, the expectations for safe performance are essentially the same. This analysis concludes that instilling a positive safety culture comes down to management leadership and engagement to (1) cultivate an environment that values a questioning attitude and (2) continually reinforce expectations

  15. Operational safety - the IAEA response

    International Nuclear Information System (INIS)

    Rosen, M.

    1984-01-01

    Nuclear safety is an international issue. The role of the International Atomic Energy Agency is growing because it offers a centre for contact and exchange between East and West, North and South. New initiatives are under way to intensify international co-operative safety efforts through exchange of information on abnormal events at nuclear power plants, and through greater sharing of safety research results. Emergency preparedness also lends itself to international co-operation. A report has been prepared on the need for establishing mutual emergency assistance. By analysing possible constraints to bilateral or multinational efforts in advance, a basis for agreement at the time of an emergency is being worked out. Safety standards have been developed in several areas. The NUSS Codes and Guides, now almost complete, make available to countries starting a nuclear power programme a coherent set of nuclear safety standards. A revised set of Basic Safety Standards for Radiation Protection has been issued in 1982. (author)

  16. The Alternative Design Features for Safety Enhancement in Shutdown Operation

    International Nuclear Information System (INIS)

    Oh, Hae Cheol; Kim, Myung Ki; Chung, Bag Soon; Seo, Mi Ro

    2009-01-01

    PSA can be used to confirm that the new plant design is complied with the applicable safety goals, and to select among the alternate design options. A shutdown PSA provides insight for outage planning schedule, outage management practices, and design modifications. Considering the results of both LPSD PSA studies and operating experiences for low power and shutdown, the improvements can be proposed to reduce the high risk contribution. The improvements/enhancements during shutdown operation may be divided into categories such as hardware, administrative management, and operational procedure. This paper presents on an example how the risk related to an accidental situation can be reduced, focusing the hardware design changes for the newly designed NPPs

  17. Time Based Workload Analysis Method for Safety-Related Operator Actions in Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eung Se [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-05-15

    During the design basis event, the safety system performs safety functions to mitigate the event. The most of safety system is actuated by automatic system however, there are operator manual actions that are needed for the plant safety. These operator actions are classified as important human actions in human factors engineering design. The human factors engineering analysis and evaluation is needed for these important human actions to assure that operator successfully perform their tasks for plant safety and operational goals. The work load analysis is one of the required analysis for the important human actions.

  18. Time Based Workload Analysis Method for Safety-Related Operator Actions in Safety Analysis

    International Nuclear Information System (INIS)

    Kim, Yun Goo; Oh, Eung Se

    2016-01-01

    During the design basis event, the safety system performs safety functions to mitigate the event. The most of safety system is actuated by automatic system however, there are operator manual actions that are needed for the plant safety. These operator actions are classified as important human actions in human factors engineering design. The human factors engineering analysis and evaluation is needed for these important human actions to assure that operator successfully perform their tasks for plant safety and operational goals. The work load analysis is one of the required analysis for the important human actions.

  19. Indicators to monitor NPP operational safety performance

    International Nuclear Information System (INIS)

    Gomez-Cobo, Ana

    2002-01-01

    Since December 1995 the IAEA activities on safety performance indicators focused on the elaboration of a framework for the establishment of an operational safety performance indicator programme. The development of this framework began with the consideration of the concept of NPP operational safety performance and the identification of operational safety attributes. For each operational safety attribute, overall indicators, envisioned as providing an overall evaluation of relevant aspects of safety performance, were established. Associated with each overall indicator is a level of strategic indicators intended to provide a bridge from overall to specific indicators. Finally each strategic indicator was supported by a set of specific indicators, which represent quantifiable measures of performance. The programme development was enhanced by pilot plant studies, conducted over a 15 month period from January 1998 to March 1999. The result of all this work is compiled in the IAEA-TECDOC-1141, to be published shortly. This paper presents a summary of this IAEA TECDOC. It describes the operational safety performance indicator framework proposed and discusses the results of and lessons learned from the pilot studies. Despite the efforts described, it is clear that additional research is still necessary in areas such as plant-specific adaptation of proposed frameworks in order to suit individual data collection systems and plant characteristics, indicator selection, indicator definition, goal setting, action thresholds, analysis of trends, indicator display systems, analysis of overall safety performance (i.e., aggregation or combination of indicators), safety culture indicators, qualitative indicators, and use of additional indicators to address issues such as industrial safety attitude and performance, staff welfare, and environmental compliance. This is the rationale for a new IAEA Coordinated Research Project on 'Development and application of indicators to monitor NPP

  20. 21 CFR 120.6 - Sanitation standard operating procedures.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Sanitation standard operating procedures. 120.6... Provisions § 120.6 Sanitation standard operating procedures. (a) Sanitation controls. Each processor shall have and implement a sanitation standard operating procedure (SSOP) that addresses sanitation...

  1. OPAD: An expert system for research reactor operations and fault diagnosis using probabilistic safety assessment tools

    International Nuclear Information System (INIS)

    Verma, A.K.; Varde, P.V.; Sankar, S.; Prakash, P.

    1996-01-01

    A prototype Knowledge Based (KB) operator Adviser (OPAD) system has been developed for 100 MW(th) Heavy Water moderated, cooled and Natural Uranium fueled research reactor. The development objective of this system is to improve reliability of operator action and hence the reactor safety at the time of crises as well as normal operation. The jobs performed by this system include alarm analysis, transient identification, reactor safety status monitoring, qualitative fault diagnosis and procedure generation in reactor operation. In order to address safety objectives at various stages of the Operator Adviser (OPAD) system development the Knowledge has been structured using PSA tools/information in an shell environment. To demonstrate the feasibility of using a combination of KB approach with PSA for operator adviser system, salient features of some of the important modules (viz. FUELEX, LOOPEX and LOCAEX) have been discussed. It has been found that this system can serve as an efficient operator support system

  2. OSART guidelines - 2005 edition. Reference report for IAEA Operational Safety Review Teams (OSARTs)

    International Nuclear Information System (INIS)

    2005-01-01

    The International Atomic Energy Agency (IAEA) has put forward the vision of a global nuclear safety regime that provides for the protection of people and the environment from the effects of ionizing radiation from nuclear facilities, the minimization of the likelihood of accidents that could endanger life and property and effective mitigation of the effects of any such events should they occur. The strategic approach for achieving the vision of enhancing this regime involves four elements and aims at ensuring that the overall nuclear safety level in Member States continues to improve: - Improvement of national and international safety infrastructures: - Establishment and global acceptance of IAEA safety standards; - Integrated approach to the provision for the application of safety standards; and - Global network of knowledge and experience. The IAEA Operational Safety Review Team (OSART) programme provides advice and assistance to Member States to enhance the safety of nuclear power plants during commissioning and operation. The OSART programme, initiated in 1982, is available to all Member States with nuclear power plants under commissioning or in operation. The OSART methodology and its safety services may also be applied to other nuclear installations (e.g. fuel cycle facilities, research reactors). Conservative design, careful manufacture and sound construction are all prerequisites for safe operation of nuclear power plants. However, the safety of the plant depends ultimately on sound policies, procedures, processes and practices; on the capability and reliability of the commissioning and operating personnel; on comprehensive instructions; and on adequate resources. A positive attitude and conscientiousness on the part of the management and staff in discharging their responsibilities is important to safety. OSART missions consider these aspects in assessing a facility's operational practices in comparison with those used successfully in other countries and

  3. OSART guidelines - 2005 edition. Reference report for IAEA Operational Safety Review Teams (OSARTs)

    International Nuclear Information System (INIS)

    2007-01-01

    The International Atomic Energy Agency (IAEA) has put forward the vision of a global nuclear safety regime that provides for the protection of people and the environment from the effects of ionizing radiation from nuclear facilities, the minimization of the likelihood of accidents that could endanger life and property and effective mitigation of the effects of any such events should they occur. The strategic approach for achieving the vision of enhancing this regime involves four elements and aims at ensuring that the overall nuclear safety level in Member States continues to improve: - Improvement of national and international safety infrastructures: - Establishment and global acceptance of IAEA safety standards. - Integrated approach to the provision for the application of safety standards. And - Global network of knowledge and experience. The IAEA Operational Safety Review Team (OSART) programme provides advice and assistance to Member States to enhance the safety of nuclear power plants during commissioning and operation. The OSART programme, initiated in 1982, is available to all Member States with nuclear power plants under commissioning or in operation. The OSART methodology and its safety services may also be applied to other nuclear installations (e.g. fuel cycle facilities, research reactors). Conservative design, careful manufacture and sound construction are all prerequisites for safe operation of nuclear power plants. However, the safety of the plant depends ultimately on sound policies, procedures, processes and practices. On the capability and reliability of the commissioning and operating personnel. On comprehensive instructions. And on adequate resources. A positive attitude and conscientiousness on the part of the management and staff in discharging their responsibilities is important to safety. OSART missions consider these aspects in assessing a facility's operational practices in comparison with those used successfully in other countries and

  4. OSART guidelines - 2005 edition. Reference report for IAEA Operational Safety Review Teams (OSARTs)

    International Nuclear Information System (INIS)

    2008-01-01

    The International Atomic Energy Agency (IAEA) has put forward the vision of a global nuclear safety regime that provides for the protection of people and the environment from the effects of ionizing radiation from nuclear facilities, the minimization of the likelihood of accidents that could endanger life and property and effective mitigation of the effects of any such events should they occur. The strategic approach for achieving the vision of enhancing this regime involves four elements and aims at ensuring that the overall nuclear safety level in Member States continues to improve: - Improvement of national and international safety infrastructures: - Establishment and global acceptance of IAEA safety standards. - Integrated approach to the provision for the application of safety standards. And - Global network of knowledge and experience. The IAEA Operational Safety Review Team (OSART) programme provides advice and assistance to Member States to enhance the safety of nuclear power plants during commissioning and operation. The OSART programme, initiated in 1982, is available to all Member States with nuclear power plants under commissioning or in operation. The OSART methodology and its safety services may also be applied to other nuclear installations (e.g. fuel cycle facilities, research reactors). Conservative design, careful manufacture and sound construction are all prerequisites for safe operation of nuclear power plants. However, the safety of the plant depends ultimately on sound policies, procedures, processes and practices. On the capability and reliability of the commissioning and operating personnel. On comprehensive instructions. And on adequate resources. A positive attitude and conscientiousness on the part of the management and staff in discharging their responsibilities is important to safety. OSART missions consider these aspects in assessing a facility's operational practices in comparison with those used successfully in other countries and

  5. TYPICAL SAFETY MANAGEMENT SYSTEM OF AN OPERATOR IN THE RUSSIAN FEDERATION

    Directory of Open Access Journals (Sweden)

    Alexander Michaylovich Lushkin

    2017-01-01

    Full Text Available In order to implement the concept of acceptable risk all airlines should have the Safety Management System (SMS from 01.01.2009 - at the request of ICAO and from 01.01.2010 - at the request of the Federal Air Transport Agen- cy. State requirements for SMS have not been formulated clearly. Leading airlines, in an effort to meet international stand- ards, develop and implement SMS on their own. So the implemented SMS differ in control settings (level of safety, proce- dures and methodological support of the processes of safety management. The summary of the best experience in develop- ment, implementation and improvement of SMS in leading airlines, allows to create a standard SMS to the airline, where the basic procedures required by the standards are systematized. The standard SMS is formed on experience in design, implementation and development of corporate SMS in three leading Russian airlines, in which the author worked in 2006-2015, and can be the basis of an SMS of the airlines operat- ing the planes and helicopters. Taken into account in a typical SMS requirements of international and national standards, research results, developed and implemented methodical maintenance of management procedures level of safety, contribut- ed to the successful passage of IATA periodic audits on developing standards of operational safety IOSA by the airline members and achieve the best level of safety not only in Russia but also in the world.

  6. 23 CFR 630.1106 - Policy and procedures for work zone safety management.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Policy and procedures for work zone safety management... Policy and procedures for work zone safety management. (a) Each agency's policy and processes, procedures, and/or guidance for the systematic consideration and management of work zone impacts, to be...

  7. Hazard and operability study (Haz Op) of the 2 MW IEA-R1 reactor startup procedures

    International Nuclear Information System (INIS)

    Sauer, Maria E.L.J.; Correa, Francisco; Sara Neto, Antonio J.; Costa, Carlos A.R. da; Santos, Cilas C. dos; Cardenas, Jose P.N.; Berretta, Jose R.; Neves Conti, Thadeu das

    1997-01-01

    This work presents the Hazard and Operability Study (Haz Op) applied to startup procedures of the 2 MW IEA-R1 research reactor, at IPEN/CNEN-S P. The Haz Op was developed by reviewing the procedures of the installation startup, in order to identify hazards and/or operational problems caused by deviations in the execution of these routines. This paper summarizes this study. describing some potential problems of relevant importance to safety as well as preventives and/or correctives measures to avoid their occurrence. Besides, an benefits evaluation and the technique limitations is made. (author). 5 refs., 1 tab

  8. Safety valve opening and closing operation monitor

    International Nuclear Information System (INIS)

    Kodama, Kunio; Takeshima, Ikuo; Takahashi, Kiyokazu.

    1981-01-01

    Purpose: To enable the detection of the closing of a safety valve when the internal pressure in a BWR type reactor is a value which will close the safety valve, by inputting signals from a pressure detecting device mounted directly at a reactor vessel and a safety valve discharge pressure detecting device to an AND logic circuit. Constitution: A safety valve monitor is formed of a pressure switch mounted at a reactor pressure vessel, a pressure switch mounted at the exhaust pipe of the escape safety valve and a logic circuit and the lide. When the input pressure of the safety valve is raised so that the valve and the pressure switch mounted at the exhaust pipe are operated, an alarm is indicated, and the operation of the pressure switch mounted at a pressure vessel is eliminated. If the safety valve is not reclosed when the vessel pressure is decreased lower than the pressure at which it is to be reclosed after the safety valve is operated, an alarm is generated by the logic circuit since both the pressure switches are operated. (Sekiya, K.)

  9. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  10. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  11. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  12. The 'PROCESO' index: a new methodology for the evaluation of operational safety in the chemical industry

    International Nuclear Information System (INIS)

    Marono, M.; Pena, J.A.; Santamaria, J.

    2006-01-01

    The acknowledgement of industrial installations as complex systems in the early 1980s outstands as a milestone in the path to operational safety. Process plants are social-technical complex systems of a dynamic nature, whose properties depend not only on their components, but also on the inter-relations among them. A comprehensive assessment of operational safety requires a systemic approach, i.e. an integrated framework that includes all the relevant factors influencing safety. Risk analysis methodologies and safety management systems head the list of methods that point in this direction, but they normally require important plant resources. As a consequence, their use is frequently restricted to especially dangerous processes often driven by compliance with legal requirements. In this work a new safety index for the chemical industry, termed the 'Proceso' Index (standing for the Spanish terms for PROCedure for the Evaluation of Operational Safety), has been developed. PROCESO is based on the principles of systems theory, has a tree-like structure and considers 25 areas to guide the review of plant safety. The method uses indicators whose respective weight values have been obtained via an expert judgement technique. This paper describes the steps followed to develop this new Operational Safety Index, explains its structure and illustrates its application to process plants

  13. Design, operation, and safety of single-room interventional MRI suites: practical experience from two centers.

    Science.gov (United States)

    White, Mark J; Thornton, John S; Hawkes, David J; Hill, Derek L G; Kitchen, Neil; Mancini, Laura; McEvoy, Andrew W; Razavi, Reza; Wilson, Sally; Yousry, Tarek; Keevil, Stephen F

    2015-01-01

    The design and operation of a facility in which a magnetic resonance imaging (MRI) scanner is incorporated into a room used for surgical or endovascular cardiac interventions presents several challenges. MR safety must be maintained in the presence of a much wider variety of equipment than is found in a diagnostic unit, and of staff unfamiliar with the MRI environment, without compromising the safety and practicality of the interventional procedure. Both the MR-guided cardiac interventional unit at Kings College London and the intraoperative imaging suite at the National Hospital for Neurology and Neurosurgery are single-room interventional facilities incorporating 1.5 T cylindrical-bore MRI scanners. The two units employ similar strategies to maintain MR safety, both in original design and day-to-day operational workflows, and between them over a decade of incident-free practice has been accumulated. This article outlines these strategies, highlighting both similarities and differences between the units, as well as some lessons learned and resulting procedural changes made in both units since installation. © 2014 Wiley Periodicals, Inc.

  14. Nuclear safety and radiation protection report of the Tricastin operational hot base nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  15. The operators' non-compliance behavior to conduct emergency operating procedures--comparing with the work experience and the complexity of procedural steps

    International Nuclear Information System (INIS)

    Park, Jinkyun; Jung, Wondea

    2003-01-01

    Many kinds of procedures have been used to reduce the operators' workload throughout various industries, such as in the aviation, the chemical and the nuclear industry. It is remarkable that, however, significant portion of accidents or incidents was caused by procedure related human error due to non-compliance of procedures. In this study, to investigate the operators' non-compliance behavior, emergency-training records were collected using a full scope simulator. And three types of the operators' behavior (such as strict adherence, skipping redundant actions and modifying action sequences) observed from collected emergency training records were compared with both their work experience and the complexity of procedural steps. As the results, three remarkable relationships are obtained. They are: (1) the operators who have an intermediate work experience seem to frequently adopt non-compliance behavior to conduct the procedural steps, (2) the operators seem to frequently adopt non-compliance behavior to conduct the procedural steps that have an intermediate procedural complexity, and (3) the senior reactor operators seem to accommodate their non-compliance behavior based on the complexity of procedural steps. Therefore, it is expected that these relationships can be used as meaningful clues not only to scrutinize the reason for non-compliance behavior but also to suggest appropriate remedies for the reduction of non-compliance behavior that can result in procedure related human error

  16. Reactor operation safety information document

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  17. The Patient Safety Attitudes among the Operating Room Personnel

    Directory of Open Access Journals (Sweden)

    Cherdsak Iramaneerat

    2016-07-01

    Full Text Available Background: The first step in cultivating the culture of safety in the operating room is the assessment of safety culture among operating room personnel. Objective: To assess the patient safety culture of operating room personnel at the Department of Surgery, Faculty of Medicine Siriraj Hospital, and compare attitudes among different groups of personnel, and compare them with the international standards. Methods: We conducted a cross-sectional survey of safety attitudes among 396 operating room personnel, using a short form of the Safety Attitudes Questionnaire (SAQ. The SAQ employed 30 items to assess safety culture in six dimensions: teamwork climate, safety climate, stress recognition, perception of hospital management, working conditions, and job satisfaction. The subscore of each dimension was calculated and converted to a scale score with a full score of 100, where higher scores indicated better safety attitudes. Results: The response rate was 66.4%. The overall safety culture score of the operating room personnel was 65.02, higher than an international average (61.80. Operating room personnel at Siriraj Hospital had safety attitudes in teamwork climate, safety climate, and stress recognition lower than the international average, but had safety attitudes in the perception of hospital management, working conditions, and job satisfaction higher than the international average. Conclusion: The safety culture attitudes of operating room personnel at the Department of Surgery, Siriraj Hospital were comparable to international standards. The safety dimensions that Siriraj Hospital operating room should try to improve were teamwork climate, safety climate, and stress recognition.

  18. 49 CFR 385.337 - What happens if a new entrant refuses to permit a safety audit to be performed on its operations?

    Science.gov (United States)

    2010-10-01

    ... safety audit to be performed on its operations? 385.337 Section 385.337 Transportation Other Regulations... TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS SAFETY FITNESS PROCEDURES New Entrant Safety Assurance Program § 385.337 What happens if a new entrant refuses to permit a safety audit to be performed on its...

  19. Emergency operation procedure navigation to avoid commission errors

    International Nuclear Information System (INIS)

    Gofuku, Akio; Ito, Koji

    2004-01-01

    New types of operation control system equipped with a large screen and CRT-based operation panels have been installed in newly constructed nuclear power plants. The operators can share important information of plant conditions by the large screen. The operation control system can know the operations by operators through the computers connected to the operation panels. The software switches placed in the CRT-based operation panels have a problem such that operators may make an error to manipulate an irrelevant software switch with their current operation. This study develops an operation procedure navigation technique to avoid this kind of commission errors. The system lies between CRT-based operation panels and plant control systems and checks an operation by operators if it follows the operation procedure of operation manuals. When the operation is a right one, the operation is executed as if the operation command is directly transmitted to control systems. If the operation does not follow the operation procedure, the system warns the commission error to operators. This paper describes the operation navigation technique, format of base operation model, and a proto-type operation navigation system for a three loop pressurized water reactor plant. The validity of the proto-type system is demonstrated by the operation procedure navigation for a steam generator tube rupture accident. (author)

  20. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2016-01-01

    This publication describes the requirements to be met to ensure the safe operation of nuclear power plants. It takes into account developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication

  1. Principal trends in ensuring safety in nuclear power plant operation in the CSSR

    International Nuclear Information System (INIS)

    Beranek, J.; Kriz, Z.; Kovar, P.; Macoun, J.

    1984-01-01

    At present two reactor units of the VVER-440 type industrial nuclear power plant are in operation in Czechoslovakia and another ten units are planned to be commissioned and put in operation by 1990. The operation of these units is carried out in compliance with licences and regulations issued by the State Regulatory Body for Nuclear Safety, a body established within the framework of the Czechoslovak Atomic Energy Commission. Operational nuclear safety assurance is based primarily on compliance with the basic safety concept as conceived in the plant design and on compliance with the requirements and terms stipulated in the course of the licensing process. On this basis, the State supervisory activity concentrates on the quality assurance of components and installations important for nuclear safety, on the quality of operating personnel and on compliance with limits and conditions for safe operation. The paper presents the main requirements stipulated in Regulation No.5 on quality assurance issued by the Czechoslovak Atomic Energy Commission and shows how the regulation is being applied. The conditions and modes of proving compliance with quality assurance programmes during plant implementation (design, fabrication, assembly, commissioning) and plant operation are described. The qualification prerequisites and capability requirements for selected categories of operating personnel as stipulated in the existing regulations are outlined. The experience accumulated by the regulatory body in preparing, examining and supervising the activity of the personnel is described. Consideration is given to the question of operational management, with the emphasis on compliance with the limits and conditions for safe operation and on the procedures for their alteration and for reporting infringements. (author)

  2. Operating room data management: improving efficiency and safety in a surgical block.

    Science.gov (United States)

    Agnoletti, Vanni; Buccioli, Matteo; Padovani, Emanuele; Corso, Ruggero M; Perger, Peter; Piraccini, Emanuele; Orelli, Rebecca Levy; Maitan, Stefano; Dell'amore, Davide; Garcea, Domenico; Vicini, Claudio; Montella, Teresa Maria; Gambale, Giorgio

    2013-03-11

    European Healthcare Systems are facing a difficult period characterized by increasing costs and spending cuts due to economic problems. There is the urgent need for new tools which sustain Hospitals decision makers work. This project aimed to develop a data recording system of the surgical process of every patient within the operating theatre. The primary goal was to create a practical and easy data processing tool to give hospital managers, anesthesiologists and surgeons the information basis to increase operating theaters efficiency and patient safety. The developed data analysis tool is embedded in an Oracle Business Intelligence Environment, which processes data to simple and understandable performance tachometers and tables. The underlying data analysis is based on scientific literature and the projects teams experience with tracked data. The system login is layered and different users have access to different data outputs depending on their professional needs. The system is divided in the tree profile types Manager, Anesthesiologist and Surgeon. Every profile includes subcategories where operators can access more detailed data analyses. The first data output screen shows general information and guides the user towards more detailed data analysis. The data recording system enabled the registration of 14.675 surgical operations performed from 2009 to 2011. Raw utilization increased from 44% in 2009 to 52% in 2011. The number of high complexity surgical procedures (≥120 minutes) has increased in certain units while decreased in others. The number of unscheduled procedures performed has been reduced (from 25% in 2009 to 14% in 2011) while maintaining the same percentage of surgical procedures. The number of overtime events decreased in 2010 (23%) and in 2011 (21%) compared to 2009 (28%) and the delays expressed in minutes are almost the same (mean 78 min). The direct link found between the complexity of surgical procedures, the number of unscheduled procedures

  3. Transportation Safety Excellence in Operations Through Improved Transportation Safety Document

    International Nuclear Information System (INIS)

    Dr. Michael A. Lehto; MAL

    2007-01-01

    A recent accomplishment of the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Nuclear Safety analysis group was to obtain DOE-ID approval for the inter-facility transfer of greater-than-Hazard-Category-3 quantity radioactive/fissionable waste in Department of Transportation (DOT) Type A drums at MFC. This accomplishment supported excellence in operations through safety analysis by better integrating nuclear safety requirements with waste requirements in the Transportation Safety Document (TSD); reducing container and transport costs; and making facility operations more efficient. The MFC TSD governs and controls the inter-facility transfer of greater-than-Hazard-Category-3 radioactive and/or fissionable materials in non-DOT approved containers. Previously, the TSD did not include the capability to transfer payloads of greater-than-Hazard-Category-3 radioactive and/or fissionable materials using DOT Type A drums. Previous practice was to package the waste materials to less-than-Hazard-Category-3 quantities when loading DOT Type A drums for transfer out of facilities to reduce facility waste accumulations. This practice allowed operations to proceed, but resulted in drums being loaded to less than the Waste Isolation Pilot Plant (WIPP) waste acceptance criteria (WAC) waste limits, which was not cost effective or operations friendly. An improved and revised safety analysis was used to gain DOE-ID approval for adding this container configuration to the MFC TSD safety basis. In the process of obtaining approval of the revised safety basis, safety analysis practices were used effectively to directly support excellence in operations. Several factors contributed to the success of MFC's effort to obtain approval for the use of DOT Type A drums, including two practices that could help in future safety basis changes at other facilities. (1) The process of incorporating the DOT Type A drums into the TSD at MFC helped to better integrate nuclear safety

  4. The Expert System For Safety Assesment Of Kartini Reactor Operation And Maintenance

    International Nuclear Information System (INIS)

    Syarip

    2000-01-01

    An expert system for safety assessment of Kartini reactor operation and maintenance based on fuzzy logic method has been made. The expert system is developed from the Fuzzy Expert System Tools (FEST), i.e. by developing the knowledge base and data base files of Kartini research reactor system and operations with an inference engine based on FEST. The knowledge base is represented in the procedural knowledge as heuristic rules or generally known as rule-base in the from of If-then rule. The fuzzy inference process and the conclusion of the rule is done by FEST based on direct chaining method with interactive as well as non-interactive modes. The safety assessment of Kartini reactor based on this method gives more realistic value than the conventional method or binary logic

  5. PSA methodology including new design, operational and safety factors, 'Level of recognition of phenomena with a presumed dominant influence upon operational safety' (failures of conventional as well as non-conventional passive components, dependent failures, influence of operator, fires and external threats, digital control, organizational factors)

    International Nuclear Information System (INIS)

    Jirsa, P.

    2001-10-01

    The document represents a specific type of discussion of existing methodologies for the creation and application of probabilistic safety assessment (PSA) in light of the EUR document summarizing requirements placed by Western European NPP operators on the future design of nuclear power plants. A partial goal of this discussion consists in mapping, from the PSA point of view, those selected design, operational and/or safety factors of future NPPs that may be entirely new or, at least, newly addressed. Therefore, the terms of reference for this stage were formulated as follows: Assess current level of knowledge and procedures in the analysis of factors and phenomena with a dominant influence upon operational safety of new generation reactors, especially in the following areas: (1) Phenomenology of failure types and mechanisms and reliability of conventional passive safety system components; (2) Phenomenology of failure types and mechanisms and reliability of non-conventional passive components of newly designed safety systems; (3) Phenomenology of types and mechanisms of dependent failures; (4) Human factor role in new generation reactors and its effect upon safety; (5) Fire safety and other external threats to new nuclear installations; (6) Reliability of the digital systems of the I and C system and their effect upon safety; and (7) Organizational factors in new nuclear installations. (P.A.)

  6. Operation safety of complex industrial systems. Main concepts

    International Nuclear Information System (INIS)

    Zwingelstein, G.

    2009-01-01

    Operation safety consists in knowing, evaluating, foreseeing, measuring and mastering the technological system and human failures in order to avoid their impacts on health and people's safety, on productivity, and on the environment, and to preserve the Earth's resources. This article recalls the main concepts of operation safety: 1 - evolutions in the domain; 2 - failures, missions and functions of a system and of its components: functional failure, missions and functions, industrial processes, notions of probability; 3 - basic concepts and operation safety: reliability, unreliability, failure density, failure rate, relations between them, availability, maintainability, safety. (J.S.)

  7. Body Mass Index and Operating Times in Vascular Procedures

    Directory of Open Access Journals (Sweden)

    M. Durup-Dickenson

    Full Text Available : Introduction: The influence of body mass index (BMI on operating times in central and peripheral vascular surgical procedures was investigated. Report: A national cohort of Danish patients who underwent a vascular procedure between 1983 and 2012 was used for analysis. Data were analysed with pairwise comparisons of BMI groups for operating times using the independent samples Kruskall–Wallis test. Discussion: A total of 3,255 carotid endarterectomies; 6,885 central vascular procedures; and 4,488 peripheral bypasses were included for the analysis. Median operating times for carotid endarterectomy and central vascular procedures were, respectively, 5 and 15 minutes longer in obese patients than in normal weight patients. This represents a 7% and 10% increase in median operating times, respectively. Linear and multi-adjusted linear regressions were conducted adjusting for confounders, showing a significant correlation between BMI and operating time. Obesity significantly increased the operating times in carotid endarterectomy and central vascular procedures. These may have ramifications for the individual operative stress but not necessarily on logistical operation planning. Keywords: Body mass index (BMI, Obesity, Operating time, Surgery, Vascular surgical procedures

  8. An independent safety assessment of Department of Energy nuclear reactor facilities: Procedures, operations and maintenance

    International Nuclear Information System (INIS)

    Toto, G.; Lindgren, A.J.

    1981-02-01

    The 1979 accident at the Three Mile Island commercial nuclear power plant has led to a number of studies of nuclear reactors, in both the public and private sectors. One of these is that of the Department of Energy's (DOE) Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee, which has outlined tasks for assessment of 13 reactors owned by DOE and operated by contractors. This report covers one of the tasks, the assessment of procedures, operations, and maintenance at the DOE reactor facilities, based on a review of actual documents used at the reactor sites

  9. Safety in design and operation of low energy particle accelerators

    International Nuclear Information System (INIS)

    Badawy, I.

    1991-01-01

    This paper studies the safety in design and operation of low energy accelerators which produce beams of accelerated charged particles and radiations. As radiation sources, the accelerators are widely used in scientific research, industry, food and medical applications. The risks to human and environment are considered. The safety in accelerators is discussed-particularly-the shielding against ionizing radiations, overexposure to RF radiation fire hazards and power failures. Also the paper studies the emergency response at incidents. Emergency procedures are recommended for each type of emergency. Reporting to the competent Authority is also recommended to be prepared for each incident. The basic principles of regulatory control, licensing and inspections for accelerator facilities are discussed. The relation with the competent authority is pointed out. 4 fig

  10. A procedure for safety assessment of components with cracks - Handbook

    International Nuclear Information System (INIS)

    Andersson, P.; Bergman, M.; Brickstad, B.; Dahlberg, L.; Nilsson, F.; Sattari-Far, I.

    1996-01-01

    In this handbook a procedure is described which can be used both for assessment of detected cracks or crack like defects or for defect tolerance analysis. The procedure can be used to calculate possible crack growth due to fatigue or stress corrosion and to calculate the reserve margin for failure due to fracture and plastic collapse. For ductile materials, the procedure gives the reserve margin for initiation of stable crack growth. Thus, an extra reserve margin, unknown to size, exists for failure in components made of ductile materials. The procedure was developed for operative use with the following objectives in mind: The procedure should be able to handle both linear and non-linear problems without any a priori division; The procedure shall ensure uniqueness of the safety assessment; The procedure should be well defined and easy to use; The conservatism of the procedure should be well validated; The handbook that documents the procedure should be so complete that for most assessments access to any other fracture mechanics literature should not be necessary. The method utilized is based on the R6-method developed at Nuclear Electric plc. This method can in principle be used for all metallic materials. It is, however, more extensively verified for steel alloys only. The method is not intended for use in temperatures where creep deformation is of importance. The first edition of the handbook was released in 1990 and the second in 1991. This third edition has been extensively revised. A Windows-based program (SACC) has been developed which can perform the assessments described in the book including calculation of crack growth due to stress corrosion and fatigue. 52 refs., 27 figs., 35 tabs

  11. Can proceduralization support coping with the unexpected?

    International Nuclear Information System (INIS)

    Norros, Leena; Savioja, Paula; Liinasuo, Marja; Wahlstrom, Mikael

    2014-01-01

    Operations of safety critical industries unquestionably require a diversity of technical and organizational control measures to increase stability and predictability of the complex sociotechnical systems. Nevertheless, experiences from recent severe accidents and results of safety research have questioned the effectiveness of the prevailing safety management strategy that mainly relies on standardization and designed-in defenses. This paper discusses the identified need to balance between stability and flexibility in a concrete safety issue, i.e., proceduralization. The main research problem of our study is whether procedure guided practice can offer sufficient support for flexibility of operating activity. We shall frame our study with the help of a model that explains different aspects of procedures. We then elaborate how these different aspects were considered empirically in our 3-phase study. In the first study we interviewed 62 main control room operators and asked how they consider procedures to support balancing. In the second study we observed in detail 12 NPP operator crews' activity in a simulated loss-of-coolant accident. In a third study we inquired 5 procedure designers about their conceptions concerning procedure guidance in operator work. Drawing on either interview or behavioral data we analyzed the personnel's stance to the flexibility and stability balancing, and how the conceptions portray in the practices of procedure usage. Our results demonstrate that the operators are aware of the need for balancing flexibility and stability and consider successful balancing to represent 'good' professional action. In actual action many operators, however, tend towards more straightforward following of procedures. Designers also see the capability for balancing stability and flexibility as a key operator competence but describe actual acting simply as procedure-following. According to the documents of the nuclear community, procedure

  12. Can proceduralization support coping with the unexpected?

    Energy Technology Data Exchange (ETDEWEB)

    Norros, Leena; Savioja, Paula; Liinasuo, Marja; Wahlstrom, Mikael [VTT Technical Research Centre of Finland, Vuorimiehentie (Finland)

    2014-08-15

    Operations of safety critical industries unquestionably require a diversity of technical and organizational control measures to increase stability and predictability of the complex sociotechnical systems. Nevertheless, experiences from recent severe accidents and results of safety research have questioned the effectiveness of the prevailing safety management strategy that mainly relies on standardization and designed-in defenses. This paper discusses the identified need to balance between stability and flexibility in a concrete safety issue, i.e., proceduralization. The main research problem of our study is whether procedure guided practice can offer sufficient support for flexibility of operating activity. We shall frame our study with the help of a model that explains different aspects of procedures. We then elaborate how these different aspects were considered empirically in our 3-phase study. In the first study we interviewed 62 main control room operators and asked how they consider procedures to support balancing. In the second study we observed in detail 12 NPP operator crews' activity in a simulated loss-of-coolant accident. In a third study we inquired 5 procedure designers about their conceptions concerning procedure guidance in operator work. Drawing on either interview or behavioral data we analyzed the personnel's stance to the flexibility and stability balancing, and how the conceptions portray in the practices of procedure usage. Our results demonstrate that the operators are aware of the need for balancing flexibility and stability and consider successful balancing to represent 'good' professional action. In actual action many operators, however, tend towards more straightforward following of procedures. Designers also see the capability for balancing stability and flexibility as a key operator competence but describe actual acting simply as procedure-following. According to the documents of the nuclear community, procedure

  13. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication is a revision of IAEA Safety Standards Series No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe commissioning, operation, and transition from operation to decommissioning of nuclear power plants. Over recent years there have been developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis review and risk informed decision making processes. It became necessary to revise the IAEA’s Safety Requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications, initiated in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan, revealed no significant areas of weakness but resulted in a small set of amendments to strengthen the requirements and facilitate their implementation. These are contained in the present publication.

  14. Lessons learned from operating experience, maintenance procedures and training measures

    International Nuclear Information System (INIS)

    Guttner, K.; Gronau, D.

    2003-01-01

    Training programmes for nuclear facility personnel as a result of the developing phase of SAT have to be approved in the subsequent implementation and evaluation phases with the consequence of several feedback activities in the whole training process. The effectiveness of this procedure has to be evaluated especially with respect to an improvement of safety culture, shorter outage times or better plant performance, resulting in a smaller number of incidents due to human failures. The first two arguments are directly connected with all types of maintenance work in a nuclear power plant and the related preparatory training measures. The reduction of incidents due to human failures is the result of different influences, i.e. training of the operational as well as of the maintenance personnel together with changes of the operating procedures or system design. Though an evaluation of the training process should always be based on a clear definition of criteria by which the fulfilment of the learning objectives can be measured directly, the real effectiveness of training is proven by the behaviour and attitude of the personnel which can only be taken from indirect indicators. This is discussed in more detail for some examples being partly related to the above mentioned arguments. An excellent plant performance, representing a general objective of all activities, can be analysed by the changed number and reasons of incidents in a plant during its operation time. Two further examples are taken from the reactor service field where there is a tendency to reduce the individual dose rates by changed devices and/or procedures as an output from training experience with mockups. Finally the rationalisation of refresher training for operational personnel by the use of interactive teaching programs (Computer Based Training - CBT) is presented which integrate learning objectives together with a test module. (author)

  15. Radiation exposure of operator during various interventional procedures

    International Nuclear Information System (INIS)

    Yu, In Kyu; Chung, Jin Wook; Han, Joon Koo; Park, Jae Hyung; Kang, Wee Saing

    1994-01-01

    To investigate the levels of radiation exposure of an operator which may be influenced by the wearing an apron, type of procedure, duration of fluoroscopy and operator's skill during various interventional procedures. Radiation doses were measured both inside and outside the apron(0.5 mm lead equivalent) of the operator by a film badge monitoring method and the duration of fluoroscopy was measured in 96 procedures prospectively. The procedures were 30 transcatheter arterial embolization (TAE), 25 percutaneous transhepatic biliary drainages (PTBD), 16 stone removals (SR), 15 percutaneous needle aspirations (PNCA) and 10 percutaneous nephrostomies(PCN). To assess the difference of exposure by the operator's skill, the procedures of TAE and PTBD were done separately by groups of staffs and residents. Average protective effect of the apron was 72.8%. Average radiation exposure(unit: μ Sv/procedure was 23.3 in PTBD by residents, 10.0 in PTBD by staffs, 10.0 in SR, 8.7 in TAE by residents, 7.3 in TAE by staffs, 9.0 in PCN and 6.0 in PCNA. Average radiation exposure of residents were 1.9 times greater than those of staffs. Radiation exposure was not proportionally related to the duration of fluoroscopy, but influenced by wearing an apron, various types of procedure and operator's skills

  16. Research on station management in subway operation safety

    Science.gov (United States)

    Li, Yiman

    2017-10-01

    The management of subway station is an important part of the safe operation of urban subway. In order to ensure the safety of subway operation, it is necessary to study the relevant factors that affect station management. In the protection of subway safety operations on the basis of improving the quality of service, to promote the sustained and healthy development of subway stations. This paper discusses the influencing factors of subway operation accident and station management, and analyzes the specific contents of station management security for subway operation, and develops effective suppression measures. It is desirable to improve the operational quality and safety factor for subway operations.

  17. Operational Safety Performance Indicators and Balanced Scorecard in HANARO

    International Nuclear Information System (INIS)

    Wu, Jong-Sup; Jung, Hoan-Sung; Ahn, Guk-Hoon; Lee, Kye-Hong; Lim, In-Cheol; Kim, Hark-Rho

    2007-01-01

    Research reactors need an extensive basis for ensuring their safety. The importance of a safety management in nuclear facilities and activities has been emphasized. The safety activities in HANARO have been continuously conducted to enhance its safe operation. Last year, HANARO prepared two indicator sets to measure and assess the safety status of the reactor's operation and utilization. One is Safety Performance Indicators (SPI) and the other is Balanced Scorecard (BSC). Through reviewing these indicators, we can obtain the following information; - Plant safety status - Safety parameter trends - Safety information, for example, reactor operation status and radiation safety HANARO will continuously pursue the trends of SPI and BSC

  18. US Department of Energy, Richland Operations Office Integrated Safety Management System Program Description

    International Nuclear Information System (INIS)

    SHOOP, D.S.

    2000-01-01

    The purpose of this Integrated Safety Management System (ISMS) Program Description (PD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This PD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this PD contains some information on contractor processes and procedures which then require RL approval or oversight

  19. Test report - caustic addition system operability test procedure

    International Nuclear Information System (INIS)

    Parazin, R.E.

    1995-01-01

    This Operability Test Report documents the test results of test procedure WHC-SD-WM-OTP-167 ''Caustic Addition System Operability Test Procedure''. The Objective of the test was to verify the operability of the 241-AN-107 Caustic Addition System. The objective of the test was met

  20. Operational characteristics of nuclear power plants - modelling of operational safety

    International Nuclear Information System (INIS)

    Studovic, M.

    1984-01-01

    By operational experience of nuclear power plants and realize dlevel of availability of plant, systems and componenst reliabiliuty, operational safety and public protection, as a source on nature of distrurbances in power plant systems and lessons drawn by the TMI-2, in th epaper are discussed: examination of design safety for ultimate ensuring of safe operational conditions of the nuclear power plant; significance of the adequate action for keeping proess parameters in prescribed limits and reactor cooling rquirements; developed systems for measurements detection and monitoring all critical parameters in the nuclear steam supply system; contents of theoretical investigation and mathematical modeling of the physical phenomena and process in nuclear power plant system and components as software, supporting for ensuring of operational safety and new access in staff education process; program and progress of the investigation of some physical phenomena and mathematical modeling of nuclear plant transients, prepared at faculty of mechanical Engineering in Belgrade. (author)

  1. Safety of Nuclear Power Plants: Commissioning and Operation (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe operation of nuclear power plants. Over recent years there have been developments in areas such as long term operation, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. It became necessary to revise the IAEA's safety requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the Fundamental Safety Principles. Contents: 1. Introduction; 2. Safety objectives and principles; 3. The management and organizational structure of the operating organization; 4. Management of operational safety; 5. Operational safety programmes; 6. Plant commissioning; 7. Plant operations; 8. Maintenance, testing, surveillance and inspection; 9. Preparation for decommissioning.

  2. Safety of Nuclear Power Plants: Commissioning and Operation (French Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe operation of nuclear power plants. Over recent years there have been developments in areas such as long term operation, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. It became necessary to revise the IAEA's safety requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the Fundamental Safety Principles. Contents: 1. Introduction; 2. Safety objectives and principles; 3. The management and organizational structure of the operating organization; 4. Management of operational safety; 5. Operational safety programmes; 6. Plant commissioning; 7. Plant operations; 8. Maintenance, testing, surveillance and inspection; 9. Preparation for decommissioning.

  3. Safety of Nuclear Power Plants: Commissioning and Operation. Arabic Edition

    International Nuclear Information System (INIS)

    2011-01-01

    This publication is a revision of Safety Requirements No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe operation of nuclear power plants. Over recent years there have been developments in areas such as long term operation, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. It became necessary to revise the IAEA's safety requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the Fundamental Safety Principles. Contents: 1. Introduction; 2. Safety objectives and principles; 3. The management and organizational structure of the operating organization; 4. Management of operational safety; 5. Operational safety programmes; 6. Plant commissioning; 7. Plant operations; 8. Maintenance, testing, surveillance and inspection; 9. Preparation for decommissioning.

  4. Preliminary Assessment of Operational Hazards and Safety Requirements for Airborne Trajectory Management (ABTM) Roadmap Applications

    Science.gov (United States)

    Cotton, William B.; Hilb, Robert; Koczo, Stefan, Jr.; Wing, David J.

    2016-01-01

    A set of five developmental steps building from the NASA TASAR (Traffic Aware Strategic Aircrew Requests) concept are described, each providing incrementally more efficiency and capacity benefits to airspace system users and service providers, culminating in a Full Airborne Trajectory Management capability. For each of these steps, the incremental Operational Hazards and Safety Requirements are identified for later use in future formal safety assessments intended to lead to certification and operational approval of the equipment and the associated procedures. Two established safety assessment methodologies that are compliant with the FAA's Safety Management System were used leading to Failure Effects Classifications (FEC) for each of the steps. The most likely FEC for the first three steps, Basic TASAR, Digital TASAR, and 4D TASAR, is "No effect". For step four, Strategic Airborne Trajectory Management, the likely FEC is "Minor". For Full Airborne Trajectory Management (Step 5), the most likely FEC is "Major".

  5. Probabilistic safety analysis procedures guide

    International Nuclear Information System (INIS)

    Papazoglou, I.A.; Bari, R.A.; Buslik, A.J.

    1984-01-01

    A procedures guide for the performance of probabilistic safety assessment has been prepared for interim use in the Nuclear Regulatory Commission programs. The probabilistic safety assessment studies performed are intended to produce probabilistic predictive models that can be used and extended by the utilities and by NRC to sharpen the focus of inquiries into a range of tissues affecting reactor safety. This guide addresses the determination of the probability (per year) of core damage resulting from accident initiators internal to the plant and from loss of offsite electric power. The scope includes analyses of problem-solving (cognitive) human errors, a determination of importance of the various core damage accident sequences, and an explicit treatment and display of uncertainties for the key accident sequences. Ultimately, the guide will be augmented to include the plant-specific analysis of in-plant processes (i.e., containment performance) and the risk associated with external accident initiators, as consensus is developed regarding suitable methodologies in these areas. This guide provides the structure of a probabilistic safety study to be performed, and indicates what products of the study are essential for regulatory decision making. Methodology is treated in the guide only to the extent necessary to indicate the range of methods which is acceptable; ample reference is given to alternative methodologies which may be utilized in the performance of the study

  6. LMFBR operational safety: the EBR-II experience

    International Nuclear Information System (INIS)

    Sackett, J.I.; Allen, N.L.; Dean, E.M.; Fryer, R.M.; Larson, H.A.; Lehto, W.K.

    1978-01-01

    The mission of the Experimental Breeder Reactor II (EBR-II) has evolved from that of a small LMFBR demonstration plant to a major irradiation-test facility. Because of that evolution, many operational-safety issues have been encountered. The paper describes the EBR-II operational-safety experience in four areas: protection-system design, safety-document preparation, tests of off-normal reactor conditions, and tests of elements with breached cladding

  7. A BWR Safety and Operability Improvements

    International Nuclear Information System (INIS)

    Sawyer, Craig D.

    1993-01-01

    The A BWR is the culmination of 30 years of design, development and operating experience of BWRs around the world. It represents across the board improvements is safety, operation and maintenance practices (O and M), economics, radiation exposure and rad waste generation. More than ten years and $20m5 went into the design and development of its new features, and it is now under construction in Japan. This paper concentrates on the safety and operability improvements. In the safety area, more than a decade improvement in core damage frequency (CDFR) has been assessed by formal PIRA techniques, with CDFR less than 10 -6 /year. Severe accident mitigation has also been formally addressed in the design. Plant operations were simplified by incorporation of better materials, optimum use of redundancy in mechanical and electrical equipment so that on-line maintenance can be performed, by better arrangements which account for required maintenance practices, and by an advanced control room

  8. IAEA Operational Safety Team Review Bohunice Nuclear Power Plant, Slovak Republic

    International Nuclear Information System (INIS)

    2010-01-01

    that enables both Bohunice and Mochovce sites to learn of workers doses in real time; and a strong independent nuclear safety oversight organization has been set up at the utility level to support the plants in term of safety analysis and assessment. The team has made recommendations and suggestions related to areas where operational safety of Bohunice NPP could be improved. Examples include: Work clearances orders and communication procedures are not always implemented in a safe manner; identification and reporting of field deficiencies are not at the optimal level; and contamination control practices could be further improved. BNPP management expressed a determination to address all the areas identified for improvement and requested the IAEA to schedule a follow-up mission in approximately 18 months. The team handed over a draft of their recommendations, suggestions and good practices to the plant management in the form of ''Technical Notes'' for factual comments. The technical notes will be reviewed at IAEA headquarters including any comments from BNPP and the Slovak Regulatory Authority. The final report will be submitted to the Government of Slovak Republic within three months. This was the 159th mission of the OSART programme, which began in 1982. General information about OSART missions can be found on the IAEA website: OSART Missions. (IAEA)

  9. Nuclear safety: an operational constraint or necessity

    International Nuclear Information System (INIS)

    Gauvenet, A.

    1983-01-01

    Different aspects of the nuclear safety in the operation of power stations are analysed. There is always a danger that safety is considered as a constraint at operator level, but it is essential that human factors and working conditions be taken into consideration [fr

  10. FFTF operations procedures preparation guide. Revision 2

    International Nuclear Information System (INIS)

    1976-12-01

    The Guide is intended to provide guidelines for the initial preparation of FFTF Operating Procedures. The Procedures Preparation Guide was developed from the plan presented and approved in the FFTF Reactor Plant Procedures Plan, PC-1, Revision 3

  11. Procedures for initiation, cost-sharing and management of OECD projects in nuclear safety

    International Nuclear Information System (INIS)

    2002-01-01

    The OECD (CSNI) projects aim to produce results relevant for the safe operation of nuclear power plants through international collaborative projects. In general, the projects consist of advanced experimental programmes that are conducted at specialized facilities. At present, the following OECD (CSNI) projects are in operation: - The Halden Project, covering fuel/materials and I and C/Human Factors issues; - The Cabri Project, addressing reactivity transients on high burnup fuels; - The MASCA Project, which deals with in-vessel corium phenomena; - The OLHF Project, dealing with lower head failure mechanisms; - The SETH Project addressing thermal-hydraulics issues, started in 2001; - The MCCI Project on ex-vessel coolability and melt-concrete interaction. There are significant differences among these projects in terms of their motivation, size and scope. The Halden Project and the Cabri Water Loop Project are large undertakings where the host organisations assume full and direct responsibility for the project establishment and administration - as well as for the negotiation with relevant parties on the terms of participation. In the other cases, instead, the NEA secretariat has a more direct responsibility, conferred by the CSNI, in establishing the project technical and financial basis, as well as for its implementation and administration. The objective of this procedure is to provide a common basis for the establishment and management of the OECD projects in the area of nuclear safety. It is a follow-up of a recommendation expressed by the CSNI Bureau during its meeting in October 2001, where the procedures for the establishment and management of the OECD (CSNI) projects in nuclear safety were addressed. While this procedure attempts at defining general guidelines for project initiation, financing and management, one should bear in mind that each project has its own motivation, background and framework. Thus, some degree of flexibility in project structure

  12. Guideline for the preparation of safe operating procedures

    International Nuclear Information System (INIS)

    Stinnett, L.; Carroll, M.M.; Crooks, D.L.; Doyle, J.R.; Jeblick, H.G.; Kessel, D.S.; Tippy, M.W.; Stuckey, J.M.

    1981-03-01

    These procedures are written for activities that involve the use of explosives, dangerous chemicals, radioactive materials, hazardous sytems, and for certain types of operational facilities which present hazards. This guideline presents a suggested Safe Operating Procedures format

  13. Operational safety evaluation for minor reactor accidents

    International Nuclear Information System (INIS)

    Wang, O.S.

    1981-01-01

    The purpose of this paper is to address a concern of applying conservatism in analysing minor reactor incidents. A so-called ''conservative'' safety analysis may exaggerate the system responses and result in a reactor scram tripped by the reactor protective system (RPS). In reality, a minor incident may lead the reactor to a new thermal hydraulic steady-state without scram, and the mitigation or termination of the incident may entirely depend on operator actions. An example on a small steamline break evaluation for a pressurized water reactor recently investigated by the staff at the Washington Public Power Supply System is presented to illustrate this point. A safety evaluation using mainly the safety-related systems to be consistent with the conservative assumptions used in the Safety Analysis Report was conducted. For comparison, a realistic analysis was also performed using both the safety- and control-related systems. The analyses were performed using the RETRAN plant simulation computer code. The ''conservative'' safety analysis predicts that the incident can be turned over by the RPS scram trips without operator intervention. However, the realistic analysis concludes that the reactor will reach a new steady-state at a different plant thermal hydraulic condition. As a result, the termination of the incident at this stage depends entirely on proper operator action. On the basis of this investigation it is concluded that, for minor incidents, ''conservative'' assumptions are not necessary, sometimes not justifiable. A realistic investigation from the operational safety point of view is more appropriate. It is essential to highlight the key transient indications for specific incident recognition in the operator training program

  14. Radiation dose to the operator during fluoroscopically guided spine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Roccatagliata, Luca; Pravata, Emanuele; Cianfoni, Alessandro [Department of Neuroradiology, Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano, Lugano (Switzerland); Presilla, Stefano [Unita di Fisica Medica, Ente Ospedaliero Cantonale (EOC), Bellinzona (Switzerland)

    2017-09-15

    Fluoroscopy is widely used to guide diagnostic and therapeutic spine procedures. The purpose of this study was to quantify radiation incident on the operator (operator Air Kerma) during a wide range of fluoroscopy-guided spine procedures and its correlation with the amount of radiation incident on the patient (Kerma Area Product - KAP). We retrospectively included 57 consecutive fluoroscopically guided spine procedures. KAP [Gy cm{sup 2}] and total fluoroscopy time were recorded for each procedure. An electronic dosimeter recorded the operator Air Kerma [μGy] for each procedure. Operator Air Kerma for each procedure, correlation between KAP and operator Air Kerma, and between KAP and fluoroscopy time was obtained. Operator Air Kerma was widely variable across procedures, with median value of 6.4 μGy per procedure. Median fluoroscopy time and median KAP per procedure were 2.6 min and 4.7 Gy cm{sup 2}, respectively. There was correlation between operator Air Kerma and KAP (r{sup 2} = 0.60), with a slope of 1.6 μGy Air Kerma per unit Gy cm{sup 2} KAP incident on the patient and between fluoroscopy time and KAP (r{sup 2} = 0.63). Operator Air Kerma during individual fluoroscopy-guided spine procedures can be approximated from the commonly and readily available information of the total amount of radiation incident on the patient, measured as KAP. (orig.)

  15. Mochovce NPP safety measures evaluation from point of view of operational safety enhancement

    International Nuclear Information System (INIS)

    Cillik, I.; Vrtik, L.

    2000-01-01

    Mochovce NPP consists of four reactor units of WWER 440/V213 type and it is located in the south-middle part of Slovakia. At present first unit operated and the second one under the construction finishing. As these units represent second generation of WWER reactor design, the additional safety measures (SM) were implemented to enhance operational and nuclear safety according to the recommendations of performed international audits and operational experience based on exploitation of other similar units (as Dukovany and J. Bohunice NPPs). These requirements result into a number of SMs grouped according to their purpose to reach recent international requirements on nuclear and operational safety. The paper presents the bases used for safety measures establishing including their grouping into the comprehensive tasks covering different areas of safety goals as well as structural organization of a project management of including participating companies and work performance. More, results are given regarding contribution of selected SMs to the total core damage frequency decreasing. (author)

  16. Operation Praetorian onsite radiological safety report, October 1981-September 1982

    International Nuclear Information System (INIS)

    Mullen, O.W.; Eubank, B.F.

    1983-09-01

    PRAETORIAN was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site from October 1, 1981 through September 30, 1982. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Monitors with portable radiation detection instruments surveyed reentry routes into ground zeros before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined

  17. Operation CRESSET: onsite radiological safety report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Mullen, O.W.; Eubank, B.F.

    1979-06-01

    CRESSET was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site from October 1, 1977 to September 30, 1978. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Monitors with portable radiation detection instruments surveyed reentry routes into ground zeroes before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined

  18. Operation FULCRUM: onsite radiological safety report, October 1976--September 1977

    International Nuclear Information System (INIS)

    Mullen, O.W.; Eubank, B.F.

    1978-03-01

    FULCRUM was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site from October 1, 1976 to September 30, 1977. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Monitors with portable radiation detection instruments surveyed reentry routes into ground zeroes before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined

  19. Operation GUARDIAN onsite radiological safety report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Mullen, O.W.; Eubank, B.F.

    1983-02-01

    GUARDIAN was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site from October 1, 1980 to September 30, 1981. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Monitors with portable radiation detection intruments surveyed reentry routes into ground zeroes before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined

  20. Safety parameter display system: an operator support system for enhancement of safety in Indian PHWRs

    International Nuclear Information System (INIS)

    Subramaniam, K.; Biswas, T.

    1994-01-01

    Ensuring operational safety in nuclear power plants is important as operator errors are observed to contribute significantly to the occurrence of accidents. Computerized operator support systems, which process and structure information, can help operators during both normal and transient conditions, and thereby enhance safety and aid effective response to emergency conditions. An important operator aid being developed and described in this paper, is the safety parameter display system (SPDS). The SPDS is an event-independent, symptom-based operator aid for safety monitoring. Knowledge-based systems can provide operators with an improved quality of information. An information processing model of a knowledge based operator support system (KBOSS) developed for emergency conditions using an expert system shell is also presented. The paper concludes with a discussion of the design issues involved in the use of a knowledge based systems for real time safety monitoring and fault diagnosis. (author). 8 refs., 4 figs., 1 tab

  1. Research on Operating Procedure Development in View of RCM Theory

    International Nuclear Information System (INIS)

    Shi, J.

    2015-01-01

    The operation of NPPs (nuclear power plants) is closely related to SSCs (Structure, System and Component) function implementations and failure recoveries, and strictly follows operating procedure. The philosophy of RCM (Reliability Centered Maintenance) which is a widely-used systematic engineering approach in industry focusing on likewise facility functions and effectiveness of maintenance is accepted in relative analysis of NPPs operation in this paper. Based on the theory of RCM, the paper will discuss general logic of operating procedure development and framework optimization as well combining NPPs engineering design. Since the quality of operating procedures has a significant impact on the safe and reliable operation of NPPs, the paper provides a proposed operating procedure development logic diagramme for reference for the procedure optimization task ahead. (author)

  2. Recent developments in the IAEA safety standards: design and operation of nuclear power plants

    International Nuclear Information System (INIS)

    Saito, Takehiko

    2004-01-01

    The IAEA has been publishing a wide variety of safety standards for nuclear and radiation related facilities and activities since 1978. In 1996, a more rigorously structured approach for the preparation and review of its safety standards was introduced. Currently, based on the approach, revision of most of the standards is in completion or near completion. The latest versions of the Safety Requirements for ''Design'' and ''Operation'' of nuclear power plants were respectively published in 2000. Currently, along with this revision of the Safety Requirements, many Safety Guides have been revised. In order to clarify the complicated revision procedure, an example of the entire revision process for a Safety Guide is provided. Through actual example of the revision process, enormous amount of work involved in the revision work is clearly indicated. The current status of all of the Safety Standards for Design and that for Operation of nuclear power plants are summarized. Summary of other IAEA safety standards currently revised and available related IAEA publications, together with information on the IAEA Web Site from where these documents can be downloaded, is also provided. The standards are reviewed to determine whether revision (or new issue) is necessary in five years following publication. The IAEA safety standards will continue to be updated through comprehensive and structured approach, collaboration of many experts of the world, and reflecting good practices of the world. The IAEA safety standards will serve to provide high level of safety assurance. (author)

  3. Aviation safety and operation problems research and technology

    Science.gov (United States)

    Enders, J. H.; Strickle, J. W.

    1977-01-01

    Aircraft operating problems are described for aviation safety. It is shown that as aircraft technology improves, the knowledge and understanding of operating problems must also improve for economics, reliability and safety.

  4. Committee on the safety of nuclear installations - Operating plan (2006 - 2009)

    International Nuclear Information System (INIS)

    2007-01-01

    In 2004, NEA issued its Strategic Plan covering the period 2005-2009, addressing the NEA activities associated with nuclear safety and regulation. Committee on the Safety of Nuclear Installations (CSNI) and Committee on Nuclear Regulatory Activities (CNRA), which have the primary responsibility for activities in this area, have developed and issued a joint strategic plan covering this same time period. As requested in the Joint Strategic Plan, each committee is to prepare an operating plan which describes in more detail the committee's organisation, planned activities, priorities and operating procedures to be used to implement the Joint Strategic Plan. In effect, the Joint Strategic Plan defines what type of work CSNI should do, whereas the Operating Plan describes the overall work scope and how to accomplish it to meet the joint CSNI/CNRA Strategic Plan objectives and mission. The present Operating Plan follows and takes into account the outcome of a CSNI assessment group, which has evaluated the CSNI activities. The assessment group expressed appreciation for the CSNI role and activity, while making recommendations with regards to scope of work and way to operate in order to further improve efficiency. The main objectives of CSNI are to: - Keep all member countries involved in and abreast of developments in safety technology. - Review operating experience with the objective to identify safety issues that need to be addressed by new research. - Review the state-of-knowledge on selected topics of nuclear safety technology and safety assessment. - Promote training and research projects that serve to maintain competence in nuclear safety matters. - Promote research as needed to reach consensus on nuclear safety issues of common interest. - Consider the safety implications of scientific and technical developments. To accomplish these objectives, CSNI is organised into six permanent working groups (as described in Section II), each covering a different set of

  5. Nuclear safety and radiation protection report of EdF's Tricastin operational hot base nuclear facilities (BCOT) - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. Procedures for conducting probabilistic safety assessment for non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    2002-01-01

    A well performed and adequately documented safety assessment of a nuclear facility will serve as a basis to determine whether the facility complies with the safety objectives, principles and criteria as stipulated by the national regulatory body of the country where the facility is in operation. International experience shows that the practices and methodologies used to perform safety assessments and periodic safety re-assessment for non-reactor nuclear facilities differ significantly from county to country. Most developing countries do not have methods and guidance for safety assessment that are prescribed by the regulatory body. Typically the safety evaluation for the facility is based on a case by case assessment. Whilst conservative deterministic analyses are predominantly used as a licensing basis in many countries, recently probabilistic safety assessment (PSA) techniques have been applied as a useful complementary tool to support safety decision making. The main benefit of PSA is to provide insights into the safety aspects of facility design and operation. PSA points up the potential environmental impacts of postulated accidents, including the dominant risk contributors, and enables safety analysts to compare options for reducing risk. In order to advise on how to apply PSA methodology for the safety assessment of non-reactor nuclear facilities, the IAEA organized several consultants meetings, which led to the preparation of this TECDOC. This document is intended as guidance for the conduct of PSA in non-nuclear facilities. The main emphasis here is on the general procedural steps of a PSA that is specific for a non-reactor nuclear facility, rather than the details of the specific methods. The report is directed at technical staff managing or performing such probabilistic assessments and to promote a standardized framework, terminology and form of documentation for these PSAs. It is understood that the level of detail implied in the tasks presented in this

  7. YKAe - Research programme on nuclear power plant systems behaviour and operational aspects of safety

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1992-01-01

    The major part of nuclear energy research in Finland has been organised as five-year nationally coordinated research programs. The research programme on Systems Behaviour and Operational Aspects of Safety is under way during 1990-1994. Its annual volume has been about 35 person-years and its annual expenditure about FIM 18 million. Studies in the field on safe operational margins of nuclear fuel and reactor core concentrate on fuel high burn-up behaviour, VVER fuel experiments, and reactor core behaviour in complex reactivity transients such as 3-D phenomena and ATWS events. The PACTEL facility is used for the thermal hydraulic studies of the Loviisa type reactors (scaled 1:305). Validation of accident analysis codes is carried out by participation in international standard problems. Advanced foreign computer codes for severe reactor accidents are implemented, modified as needed and applied to level-2 PSAs and the improvement of accident management procedures. Fire simulation methods are tested using data from experiments in the German HDR facility. A nuclear plant analyzer for efficient safety analyses is being developed using the APROS process simulation environment. Computerized operator support systems are being studied in cooperation with the OECD Halden Project. The basic factors affecting plant operator activities and the development of their competence are being investigated. A comprehensive system for the control of plant operational safety is being developed by combining living PSA and safety indicators

  8. Strengthening safety compliance in nuclear power operations: a role-based approach.

    Science.gov (United States)

    Martínez-Córcoles, Mario; Gracia, Francisco J; Tomás, Inés; Peiró, José M

    2014-07-01

    Safety compliance is of paramount importance in guaranteeing the safe running of nuclear power plants. However, it depends mostly on procedures that do not always involve the safest outcomes. This article introduces an empirical model based on the organizational role theory to analyze the influence of legitimate sources of expectations (procedures formalization and leadership) on workers' compliance behaviors. The sample was composed of 495 employees from two Spanish nuclear power plants. Structural equation analysis showed that, in spite of some problematic effects of proceduralization (such as role conflict and role ambiguity), procedure formalization along with an empowering leadership style lead to safety compliance by clarifying a worker's role in safety. Implications of these findings for safety research are outlined, as well as their practical implications. © 2014 Society for Risk Analysis.

  9. RTNS-II operations guidebook

    International Nuclear Information System (INIS)

    Heikkinen, D.W.

    1985-01-01

    This guidebook is intended to provide training criteria, procedures and guidelines for operation of the RTNS-II neutron sources and ancilliary equipment. Use of this document requires full knowledge of the RTNS-II Facility Safety Procedure (FSP) and any Operational Safety Procedures (OSP) in effect. The RTNS-II FSP defines the hazards which may be encountered at RTNS-II and defines the procedures which must be followed in performing any task including operations. The purpose of this document is to provide a central source of detailed information concerning systems and equipment used in operating the RTNS-II neutron sources on a day-to-day basis. All members of the Operations Group are expected to be familiar with its contents. It is also intended to be used in training new members of the Operations Group

  10. Reactor safety

    International Nuclear Information System (INIS)

    Butz, H.P.; Heuser, F.W.; May, H.

    1985-01-01

    The paper comprises an introduction into nuclear physics bases, the safety concept generally speaking, safety devices of pwr type reactors, accident analysis, external influences, probabilistic safety assessment and risk studies. It further describes operational experience, licensing procedures under the Atomic Energy Law, research in reactor safety and the nuclear fuel cycle. (DG) [de

  11. Safety indicators as a tool for operational safety evaluation of nuclear power plants

    International Nuclear Information System (INIS)

    Araujo, Jefferson Borges; Melo, Paulo Fernando Ferreira Frutuoso e; Schirru, Roberto

    2009-01-01

    Performance indicators have found a wide use in the conventional and nuclear industries. For the conventional industry, the goal is to optimize production, reducing loss of time with accidents, human error and equipment downtimes. In the nuclear industry, nuclear safety is an additional goal. This paper presents a general methodology to the establishment, selection and use of safety indicators for a two loop PWR plant, as Angra 1. The use of performance indicators is not new. The NRC has its own methodology and the IAEA presents methodology suggestions, but there is no detailed documentation about indicators selection, criteria and bases used. Additionally, only the NRC methodology performs a limited integrated evaluation. The study performed identifies areas considered critical for the plant operational safety. For each of these areas, strategic sub-areas are defined. For each strategic sub-area, specific safety indicators are defined. These proposed Safety Indicators are based on the contribution to risk considering a quantitative risk analysis. For each safety indicator, a goal, a bounded interval and proper bases are developed, to allow for a clear and comprehensive individual behavior evaluation. On the establishment of the intervals and boundaries, a probabilistic safety study, operational experience, international and national standards and technical specifications were used. Additionally, an integrated evaluation of the indicators, using expert systems, was done to obtain an overview of the plant general safety. This evaluation uses well-defined and clear rules and weights for each indicator to be considered. These rules were implemented by means of a computational language, on a friendly interface, so that it is possible to obtain a quick response about operational safety. This methodology can be used to identify situations where the plant safety is challenged, by giving a general overview of the plant operational condition. Additionally, this study can

  12. Radiological and the other safety aspects in the operation of electron beam facility

    International Nuclear Information System (INIS)

    Loterina, Roel Alamares

    2003-01-01

    The radiological safety aspects of the operation of an electron beam facility in general and the 3 MeV ALURTRON electron beam facility of the Malaysian Institute of Nuclear Technology Research (MINT) in particular were reviewed and evaluated. Evaluation was made based on existing records as well as actual monitoring around facility. Area monitoring results using TLDs are within permissible levels. The maximum reading of 7.29 mSv measured in year 2000 is very low as compared to the annual dose limit of 50 mSv/year. In general, the shielding for the installation is adequate and no significant radiation leakage were detected based on radiation survey results. However, measured radiation levels with a maximum of 1.9 mSv/h at the sampling ports easily exceed the limit of 25μSv/h. The facility is equipped with safety features, such as interlocked system, adequate shielding, engineered safety design of irradiation and accelerator rooms, and accessories such as conveyor system and product handling system. Warning lights and signals are adequately installed around the facility. Other identified hazards that may affect the operator, workers, and personnel were also evaluated based on previous records of monitoring. The ozone concentration levels with a maximum reading of 0.05 ppm measured in the environment of the facility are within the threshold limit value of 0.1 ppm. The measured noise levels at all locations around facility are generally below the maximum permissible level of 80dB. The ALURTRON has achieved a minimum safety requirement to warrant its full operation without relying on administrative controls and procedures to ensure safety in operation. (Auth.)

  13. Safety indicators: an efficient tool for a better safety

    International Nuclear Information System (INIS)

    Aufort, P.; Lars, R.

    1993-01-01

    Safety indicators based on the examination of the Operating Technical Specifications have been defined with the aim of following the in-operation safety level of French nuclear power plants. These safety indicators are operation feedback tools which permit the a posteriori justification and the adjustment of actual procedures. They would allow detection of an abnormal unavailability occurrence rate or a situation revealing a potential safety problem. So, data acquisition, processing, analysis and display software allowing trend analysis of these indicators has been developed so far as: a reflexion tool for the power plant operators about the safety instructions and the adjustment of preventive maintenance, and a help for decision making at a national level for the examination and the improvement of Operating Technical Specifications. This paper presents the objectives of these safety indicators, the processing tool associated, the preliminary results obtained and more elaborate processing of these indicators. These safety indicators may be very useful in framing probabilistic safety assessments. (author)

  14. Safety analysis report 231-Z Building

    Energy Technology Data Exchange (ETDEWEB)

    Powers, C.S.

    1989-03-01

    This report provides an intensive review of the nuclear safety of the operation of the 231-Z Building. For background information complete descriptions of the floor plan, building services, alarm systems, and glove box systems are included in this report. In addition, references are included to The Plutonium Laboratory Radiation Work Procedures, Safety Guides, 231-Z Operating Procedures Manual and Nuclear Materials accountability Procedures. Engineered and administrative features contribute to the overall safety of personnel, the building, and environs. The consequences of credible incidents were considered and are discussed.

  15. Ensuring the operational safety of nuclear power plants with WWER reactors

    International Nuclear Information System (INIS)

    Shasharin, G.A.; Veretennikov, G.A.; Abagyan, A.A.; Lesnoj, S.A.

    1984-01-01

    At the start of 1983, 27 nuclear power producing units with reactor facilities of the WWER type were in operation in the Soviet Union and other countries. In 1982 the average load factor for nuclear power plants with WWER reactors was 73 per cent. There was not a single nuclear accident or even damage with any significant radiation consequences in the WWER reactors during the entire period of their operation. The most modern nuclear power plants with WWER-440 and WWER-1000 reactors meet all present-day international requirements. Safe operation of the plants is achieved by a variety of measures, the most important of which include: procedures for increasing the reliability of plant equipment and systems; ensuring exact compliance with plant operating instructions; ensuring reliable operation of plant safety systems; action directed towards maintaining the skills of plant personnel at a level adequate to ensure the taking of proper action during transient processes and accident situations. The paper discusses concrete steps for ensuring safe nuclear power plant operation along these lines. In particular, measures such as the following are described: the use of a system for collecting and processing information on equipment failures and defects; the development and introduction of methods of early defect diagnosis; the performance of complex testing of safety systems; the training of highly skilled personnel for nuclear power plants at educational combines and at teaching and training centres making use of simulators; arranging accident-prevention training and special instruction for personnel. (author)

  16. Development of symptoms-oriented operating procedures

    International Nuclear Information System (INIS)

    Colquhoun, R.

    1984-01-01

    Until recently, the formal treatment of control room procedures for upset conditions in nuclear power plants has been event-oriented. This orientation was not so much a reflection of power plant operating practice as it was a reflection of design-oriented thinking - design-basis events, therefore event-oriented procedures. Event orientation is not common in other professions. In the medical profession, for example, the stabilization of vital functions through a symptoms-oriented approach has priority over diagnosis and prognosis. The American nuclear power industry has initiated programs for the development and application of a symptoms-oriented approach for handling upset conditions. Canadian programs have independently paralleled the US programs. This article describes the rationale and current applications of the Canadian programs and identifies the relevance of a generic symptoms-based emergency procedure to current operating practices

  17. Safety aspects of whole-body cryochamber and cryosauna operation

    Science.gov (United States)

    Agnieszka, Piotrowska

    2017-12-01

    Interest in low temperature treatment is constantly increasing. Whole-body cryotherapy (WBC) devices are becoming available not only in medical centers but also in local gyms and spa centers. A new group of users are professional sport clubs where 3-minutes session of whole-body cryotherapy is post-training procedure to improve and speed up the recovery process. There are four different types of WBC devices available on the market and offered to commercial (non-medical) users. The American and European market is dominated by two of them: classic cryochambers and cryosaunas. Both constructions are supplied with liquid nitrogen. Low temperature inside classic cryochamber is produced by evaporating of liquid nitrogen in two or more heat exchangers. There is never a direct contact between user and cryogenic medium in any of system operation mode (closed supply system). Cryosauna is cooled down by filling with cold vapor of liquid nitrogen. Supply system is considered open because it allows for direct contact between user and cryogenic medium. Open supply system of cryosauna is primary and most questionable issue of its operational safety, particularly after tragic accident in October 2015. This paper presents the comparative analysis of classic cryochamber and cryosauna from safety point of view. Both devices have been analyzes and tested on existing systems in operation. Paper gives detailed analysis of constructions, supply systems and working parameters. Special attention has been focused to problem of oxygen deficiency hazard. Different failure or accident scenarios have been analyzed and discussed.

  18. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication describes the requirements to be met to ensure the safe operation of nuclear power plants. It takes into account developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  19. Surgical procedures performed in the neonatal intensive care unit on critically ill neonates: feasibility and safety

    International Nuclear Information System (INIS)

    Mallick, M.S.; Jado, A.M.; Al-Bassam, A.R.

    2008-01-01

    Transferring unstable, ill neonates to and from the operating rooms carries significant risks and can lead to morbidity. We report on our experience in performing certain procedures in critically ill neonates in the neonatal intensive care unit (NICU). We examined the feasibility and safety for such an approach. All surgical procedures performed in the NICU between January 1999 and December 2005 were analyzed in terms of demographic data, diagnosis, preoperative stability of the patient, procedures performed, complications and outcome. Operations were performed at beside in the NICU in critically ill, unstable neonates who needed emergency surgery, in neonates of low birth weight (<1000 gm) and in neonates on special equipments like higher frequency ventilators and nitrous oxide. Thirty-seven surgical procedures were performed including 12 laparotomies, bowel resection and stomies, 7 repairs of congenital diaphragmatic hernias, 4 ligations of patent ductus arteriosus and various others. Birth weights ranged between 850 gm and 3500 gm (mean 2000 gm). Gestational age ranged between 25 to 42 weeks (mean, 33 weeks). Age at surgery was between 1 to 30 days (mean, 30 days). Preoperatively, 19 patients (51.3%) were on inotropic support and all were intubated and mechanically ventilated. There was no mortality related to surgical procedures. Postoperatively, one patient developed wound infection and disruption. Performing major surgical procedures in the NICU is both feasible and safe. It is useful in very low birth weight, critically ill neonates who have definite risk attached to transfer to the operating room. No special area is needed in the NICU to perform complication-free surgery, but designing an operating room within the NICU will be ideal. (author)

  20. Operator use of procedures during simulated emergencies

    International Nuclear Information System (INIS)

    Roth, E.M.; Mumaw, R.J.; Lewis, P.M.

    1995-01-01

    This paper summarizes the results of an empirical study of nuclear power plant operator performance in cognitively demanding simulated emergencies. During emergencies operators follow highly prescriptive written procedures. The objectives of the study were to understand and document what role higher-level cognitive activities such as diagnosis, or more generally ' situation assessment,' play in guiding operator performance, given that operators utilize procedures in responding to the events. The study examined crew performance in variants of two simulated emergencies: (1) an Interfacing System Loss of Coolant Accident and (2) a Loss of Heat Sink scenario. Data on operator performance were collected using training simulators at two plant sites. Up to 11 crews from each plant participated in each of two simulated emergencies for a total of 38 cases analyzed. Crew performance was videotaped and partial transcripts were produced and analyzed. The results revealed a number of instances where higher-level cognitive activities such as situation assessment and response planning enabled operators to handle aspects of the situation that were not fully addressed by the procedures. The paper summarizes these cases and their implications for the development and evaluation of training and control room aids, as well as for human reliability analyses. The full report of the study is published as NUREG/CR-6208

  1. American National Standards Institute ANSI N 43.1 Radiological Safety in the Design and Operation of Particle Accelerators

    International Nuclear Information System (INIS)

    Scott Walker, L.; Liu, J.

    2004-01-01

    The ANSI N43 committee established a writing committee to re-write the ANSI N43.1 accelerator safety standard in 1994. James Liu and Scott Walker were appointed as co-chairman. Compared to the old standard, the new standard is aimed to have a broader application, up-to-date requirements, and recommendations for best practices. The new standard uses a hazard based graded approach to address radiation safety programs for accelerators with various energies, beam currents and applications (excluding medical accelerators which are covered by another standard). Thus, the standard fulfills the goal of the committee to prepare a standard with unlimited application to industrial and research accelerators. The standard is largely complete with chapters as follows: 1) Scope. 2) Definitions. 3) Radiation Safety Program (facility safety program, radiation safety planning, organizational considerations, safety assessment, review and performance evaluation). 4) Radiation Safety System (prompt radiation, safety system features, reliability and fail-safety, tamper resistance, quality control, configuration control, adventitious production of radiation, and induced radioactivity). 5) Personnel Access Control System (including graded approach, postings, barriers, beam inhibiting devices and interlocks). 6) Radiation Control System, (passive shielding, and active systems). 7) Accelerator Operation (including readiness reviews, maintenance and testing, bypasses and deviation from procedure, operating practices, emergencies). 8) Operational Health Physics, and 9) Training. The document also has appendices regarding how to determine the Safety and Operations Envelope, Guidance for Computer Based Access Control Systems, and Radiation Measurements at Accelerators. (Author)

  2. Operating plant safety analysis needs

    International Nuclear Information System (INIS)

    Young, M.Y.; Love, D.S.

    1992-01-01

    The primary objective for nuclear power station owners is to operate and manage their plants safely. However, there is also a need to provide economical electric power, which requires that the unit be operated as efficiently as possible, consistent with the safety requirements. The objectives cited above can be achieved through the identification and use of available margins inherent in the plant design. As a result of conservative licensing and analytical approaches taken in the past, many of these margins may be found in the safety analysis limits within which plants currently operate. Improvements in the accuracy of the safety analysis, and a more realistic treatment of plant initial and boundary conditions, can make this margin available for a variety of uses which enhance plant performance, help to reduce O and M costs, and may help to extend licensed operation. Opportunities for improvement exist in several areas in the accident analysis normally performed for Chapter 15 of the FSAR. For example, recent modifications to the ECCS rule, 10CFR50.46 and Appendix K, allow use of margins previously unavailable in the analysis of the Loss of Coolant Accident (LOCA). To take advantage of this regulatory change, new methods are being developed to analyze both the large and small break loss of coolant accident (LOCA). As this margin is used, enhancements in the analysis of other transients will become necessary. The paper discusses accident analysis methods, future development needs, and analysis margin utilization in specific accident scenarios

  3. Interim safety evaluation report related to operation of Enrico Fermi Atomic Power Plant, Unit 2, Detroit Edison Company

    International Nuclear Information System (INIS)

    1977-09-01

    This interim report summarizes the scope and results of the radiological safety review performed to date by the NRC staff with respect to the operating license phase for the Enrico Fermi Atomic Power Plant, Unit 2. The major effort was the review of the facility design and proposed operating procedures described in applicant's Final Safety Analysis Report. In the course of the review, several meetings were held with representatives of the applicant to discuss plant design, construction and proposed operation. Additional information was requested, which the applicant provided through Amendment 7 to the Final Safety Analysis Report. A chronology of the principal actions relating to the review of the application is attached as Appendix A to the report. The Final Safety Analysis Report and amendments thereto are available for public inspection at the Nuclear Regulatory Commission Public Document Room, 1717 H Street, N. W., Washington, D.C. and at Monroe County Library System, 3700 South Custer Road, Monroe, Michigan 48161

  4. Safety of Running Two Rooms: A Systematic Review and Meta-Analysis of Overlapping Neurosurgical Procedures.

    Science.gov (United States)

    Self, D Mitchell; Ilyas, Adeel; Stetler, William R

    2018-04-27

    Overlapping surgery, a long-standing practice within academic neurosurgery centers nationwide, has recently come under scrutiny from the government and media as potentially harmful to patients. Therefore, the objective of this systematic review and meta-analysis is to determine the safety of overlapping neurosurgical procedures. The authors performed a systematic review and meta-analysis in accordance with PRISMA guidelines. A review of PubMed and Medline databases was undertaken with the search phrase "overlapping surgery AND neurosurgery AND outcomes." Data regarding patient demographics, type of neurosurgical procedure, and outcomes and complications were extracted from each study. The principle summary measure was odds ratio (OR) of the association of overlapping versus non-overlapping surgery with outcomes. The literature search yielded a total of 36 studies, of which 5 studies met inclusion criteria and were included in this study. These studies included a total of 25,764 patients undergoing neurosurgical procedures. Overlapping surgery was associated with an increased likelihood of being discharged home (OR = 1.32; 95% CI 1.20 to 1.44; P < 0.001) and a reduced 30-day unexpected return to the operating room (OR = 0.79; 95% CI 0.72 to 0.87; P < 0.001). Overlapping surgery did not significantly affect OR of length of surgery, 30-day mortality, or 30-day readmission. Overlapping neurosurgical procedures were not associated with worse patient outcomes. Additional, prospective studies are needed to further assess the safety overlapping procedures. Copyright © 2018. Published by Elsevier Inc.

  5. Plant designer's view of the operator's role in nuclear plant safety

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Church, J.F.; Cross, M.T.; Porter, N.J.

    1981-01-01

    The nuclear plant operator's role supports the design assumptions and equipment with four functional tasks. He must set up th plant for predictable response to disturbances, operate the plant so as to minimize the likelihood and severity of event initiators, assist in accomplishing the safety functions, and feed back operating experiences to reinforce or redefine the safety analyses' assumptions. The latter role enhances the operator effectiveness in the former three roles. The Safety Level Concept offers a different perspective that enables the operator to view his roles in nuclear plant safety. This paper outlines the operator's role in nuclear safety and classifies his tasks using the Safety Level Concept

  6. Operational safety performance of Slovak NPPs in 2005

    International Nuclear Information System (INIS)

    Tomek, J.

    2006-01-01

    In this presentation author presents operational safety performance of Slovak NPPs in 2005. Operation of Slovak NPPs in 2005 was safe and reliable, with: - high level of performance low risk; - minimal impact on the personnel, environment and public; - positive attitude to safety.

  7. Safety handbook

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of the Australian Nuclear Science and Technology Organization's Safety Handbook is to outline simply the fundamental procedures and safety precautions which provide an appropriate framework for safe working with any potential hazards, such as fire and explosion, welding, cutting, brazing and soldering, compressed gases, cryogenic liquids, chemicals, ionizing radiations, non-ionising radiations, sound and vibration, as well as safety in the office. It also specifies the organisation for safety at the Lucas Heights Research Laboratories and the responsibilities of individuals and committees. It also defines the procedures for the scrutiny and review of all operations and the resultant setting of safety rules for them. ills

  8. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 2. General Practices.

    Science.gov (United States)

    Mazur, Steven; Holbrook, Michael R; Burdette, Tracey; Joselyn, Nicole; Barr, Jason; Pusl, Daniela; Bollinger, Laura; Coe, Linda; Jahrling, Peter B; Lackemeyer, Matthew G; Wada, Jiro; Kuhn, Jens H; Janosko, Krisztina

    2016-10-03

    Work in a biosafety level 4 (BSL-4) containment laboratory requires time and great attention to detail. The same work that is done in a BSL-2 laboratory with non-high-consequence pathogens will take significantly longer in a BSL-4 setting. This increased time requirement is due to a multitude of factors that are aimed at protecting the researcher from laboratory-acquired infections, the work environment from potential contamination and the local community from possible release of high-consequence pathogens. Inside the laboratory, movement is restricted due to air hoses attached to the mandatory full-body safety suits. In addition, disinfection of every item that is removed from Class II biosafety cabinets (BSCs) is required. Laboratory specialists must be trained in the practices of the BSL-4 laboratory and must show high proficiency in the skills they are performing. The focus of this article is to outline proper procedures and techniques to ensure laboratory biosafety and experimental accuracy using a standard viral plaque assay as an example procedure. In particular, proper techniques to work safely in a BSL-4 environment when performing an experiment will be visually emphasized. These techniques include: setting up a Class II BSC for experiments, proper cleaning of the Class II BSC when finished working, waste management and safe disposal of waste generated inside a BSL-4 laboratory, and the removal of inactivated samples from inside a BSL-4 laboratory to the BSL-2 laboratory.

  9. Acceptance/operational test procedure 101-AW tank camera purge system and 101-AW video camera system

    International Nuclear Information System (INIS)

    Castleberry, J.L.

    1994-01-01

    This procedure will document the satisfactory operation of the 101-AW Tank Camera Purge System (CPS) and the 101-AW Video Camera System. The safety interlock which shuts down all the electronics inside the 101-AW vapor space, during loss of purge pressure, will be in place and tested to ensure reliable performance. This procedure is separated into four sections. Section 6.1 is performed in the 306 building prior to delivery to the 200 East Tank Farms and involves leak checking all fittings on the 101-AW Purge Panel for leakage using a Snoop solution and resolving the leakage. Section 7.1 verifies that PR-1, the regulator which maintains a positive pressure within the volume (cameras and pneumatic lines), is properly set. In addition the green light (PRESSURIZED) (located on the Purge Control Panel) is verified to turn on above 10 in. w.g. and after the time delay (TDR) has timed out. Section 7.2 verifies that the purge cycle functions properly, the red light (PURGE ON) comes on, and that the correct flowrate is obtained to meet the requirements of the National Fire Protection Association. Section 7.3 verifies that the pan and tilt, camera, associated controls and components operate correctly. This section also verifies that the safety interlock system operates correctly during loss of purge pressure. During the loss of purge operation the illumination of the amber light (PURGE FAILED) will be verified

  10. Development of a VR training system of robotic peroral operation procedure for endoscopic surgery of digestive tracts

    International Nuclear Information System (INIS)

    Suzuki, Naoki; Hattori, Asaki; Tanoue, Kazuo; Ieiri, Satoshi; Konishi, Kozo; Tomikawa, Morimasa; Kenmotsu, Hajime; Hashizume, Makoto

    2010-01-01

    This report presents the development of a VR (virtual real) training system of robotic peroral operation procedure for endoscopic resection of gastric mucosa as the training is essential because the procedure differs from usual one hitherto. For VR operation space, used is reporters' sphere-filled organ model (SFM), which is deformed by and repels to, the outside force as a soft tissue rapidly in the real time. The deformation and repellence are computable. The SFM space is reconstructed to 3D of the inner environment of stomach using MRI data. The endoscope has, at the right and left side of its top, 2 arms of inner needle knife-equipped robotic forceps and is inserted perorally for operation. In VR, the forceps can grab the gastric mucosa, cut it with the knife to complete resection and carry the specimen out of the body. For the procedure training, the time required for hemostasis, bleeding volume, trace of the arms, intensity and direction of the outer force given are recorded, with which trainee's safety and degree of skill are evaluable in VR. Hydration step and clipping to close the wound are to be further added in the procedure. (T.T.)

  11. Safety-related operator actions: methodology for developing criteria

    International Nuclear Information System (INIS)

    Kozinsky, E.J.; Gray, L.H.; Beare, A.N.; Barks, D.B.; Gomer, F.E.

    1984-03-01

    This report presents a methodology for developing criteria for design evaluation of safety-related actions by nuclear power plant reactor operators, and identifies a supporting data base. It is the eleventh and final NUREG/CR Report on the Safety-Related Operator Actions Program, conducted by Oak Ridge National Laboratory for the US Nuclear Regulatory Commission. The operator performance data were developed from training simulator experiments involving operator responses to simulated scenarios of plant disturbances; from field data on events with similar scenarios; and from task analytic data. A conceptual model to integrate the data was developed and a computer simulation of the model was run, using the SAINT modeling language. Proposed is a quantitative predictive model of operator performance, the Operator Personnel Performance Simulation (OPPS) Model, driven by task requirements, information presentation, and system dynamics. The model output, a probability distribution of predicted time to correctly complete safety-related operator actions, provides data for objective evaluation of quantitative design criteria

  12. Health and Safety Procedures Manual for hazardous waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Thate, J.E.

    1992-09-01

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  13. Improvement of the safety level of installations with the generalization of procedures

    International Nuclear Information System (INIS)

    Cornille, Y.; Dupraz, B.; Schektman, N.

    1986-06-01

    The generalization of control procedures to the largest possible spectra of accidental situations which is being developed on pressurized water reactor units will allow to increase the safety level of these installations. This improvement has been quantified for some situations pointing out an appreciable mitigation of meltdown risk which could result. A new improvement is aimed with the definition and the utilization of new procedures ''by states'' which will allow an optimized treatment of situations resulting from multiple failures, now treated in the procedures SPI - SPU - U1. The needs related to these procedures and their development led to joint research and development programs between Electricite de France and the Institute of Protection and Nuclear Safety [fr

  14. PGSFR Core Thermal Design Procedure to Evaluate the Safety Margin

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Rock; Kim, Sang-Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The Korea Atomic Energy Research Institute (KAERI) has performed a SFR design with the final goal of constructing a prototype plant by 2028. The main objective of the SFR prototype plant is to verify the TRU metal fuel performance, reactor operation, and transmutation ability of high-level wastes. The core thermal design is to ensure the safe fuel performance during the whole plant operation. Compared to the critical heat flux in typical light water reactors, nuclear fuel damage in SFR subassemblies arises from a creep induced failure. The creep limit is evaluated based on the maximum cladding temperature, power, neutron flux, and uncertainties in the design parameters, as shown in Fig. 1. In this work, the core thermal design procedures are compared to verify the present PGSFR methodology based on the nuclear plant design criteria/guidelines and previous SFR thermal design methods. The PGSFR core thermal design procedure is verified based on the nuclear plant design criteria/guidelines and previous methods in LWRs and SFRs. The present method aims to directly evaluate the fuel cladding failure and to assure more safety margin. The 2 uncertainty is similar to 95% one-side tolerance limit of 1.96 in LWRs. The HCFs, ITDP, and MCM reveal similar uncertainty propagation for cladding midwall temperature for typical SFR conditions. The present HCFs are mainly employed from the CRBR except the fuel-related uncertainty such as an incorrect fuel distribution. Preliminary PGSFR specific HCFs will be developed by the end of 2015.

  15. Operator use of procedures during simulated emergencies

    Energy Technology Data Exchange (ETDEWEB)

    Roth, E.M.; Mumaw, R.J.; Lewis, P.M.

    1995-04-01

    This paper summarizes the results of an empirical study of nuclear power plant operator performance in cognitively demanding simulated emergencies. During emergencies operators follow highly prescriptive written procedures. The objectives of the study were to understand and document what role higher-level cognitive activities such as diagnosis, or more generally {open_quotes}situation assessment,{close_quotes} play in guiding operator performance, given that operators utilize procedures in responding to the events. The study examined crew performance in variants of two simulated emergencies: (1) an Interfacing System Loss of Coolant Accident and (2) a Loss of Heat Sink scenario. Data on operator performance were collected using training simulators at two plant sites. Up to 11 crews from each plant participated in each of two simulated emergencies for a total of 38 cases analyzed. Crew performance was videotaped and partial transcripts were produced and analyzed. The results revealed a number of instances where higher-level cognitive activities such as situation assessment and response planning enabled operators to handle aspects of the situation that were not fully addressed by the procedures. The paper summarizes these cases and their implications for the development and evaluation of training and control room aids, as well as for human reliability analyses. The full report of the study is published as NUREG/CR-6208.

  16. Safety and efficacy of rivaroxaban compared with warfarin in patients undergoing peripheral arterial procedures.

    Science.gov (United States)

    Talukdar, Anjan; Wang, S Keisin; Czosnowski, Lauren; Mokraoui, Nassim; Gupta, Alok; Fajardo, Andres; Dalsing, Michael; Motaganahalli, Raghu

    2017-10-01

    Rivaroxaban is a United States Food and Drug Administration-approved oral anticoagulant for venous thromboembolic disease; however, there is no information regarding the safety and its efficacy to support its use in patients after open or endovascular arterial interventions. We report the safety and efficacy of rivaroxaban vs warfarin in patients undergoing peripheral arterial interventions. This single-institution retrospective study analyzed all sequential patients from December 2012 to August 2014 (21 months) who were prescribed rivaroxaban or warfarin after a peripheral arterial procedure. Our study population was then compared using American College of Chest Physicians guidelines with patients then stratified as low, medium, or high risk for bleeding complications. Statistical analyses were performed using the Student t-test and χ 2 test to compare demographics, readmissions because of bleeding, and the need for secondary interventions. Logistic regression models were used for analysis of variables associated with bleeding complications and secondary interventions. The Fisher exact test was used for power analysis. There were 44 patients in the rivaroxaban group and 50 patients in the warfarin group. Differences between demographics and risk factors for bleeding between groups or reintervention rate were not statistically significant (P = .297). However, subgroup evaluation of the safety profile suggests that patients who were aged ≤65 years and on warfarin had an overall higher incidence of major bleeding (P = .020). Patients who were aged >65 years, undergoing open operation, had a significant risk for reintervention (P = .047) when they received rivaroxaban. Real-world experience using rivaroxaban and warfarin in patients after peripheral arterial procedures suggests a comparable safety and efficacy profile. Subgroup analysis of those requiring an open operation demonstrated a decreased bleeding risk when rivaroxaban was used (in those aged <65

  17. MITS Feed and Withdrawal Subsystem: operating procedures

    International Nuclear Information System (INIS)

    Brown, W.S.

    1980-01-01

    This document details procedures for the operation of the MITS (Machine Interface Test System) Feed and Withdrawal Subsystem (F and W). Included are fill with UF 6 , establishment of recycle and thruput flows, shutdown, UF 6 makeup, dump to supply container, Cascade dump to F and W, and lights cold trap dump, all normal procedures, plus an alternate procedure for trapping light gases

  18. The study on development of emergency operating procedures based on symptom and risk for accident management

    International Nuclear Information System (INIS)

    Kang, K. S.; Jeong, H. J.

    1998-01-01

    The Advanced EOP(AEOP) has been developed by focusing on the importance of the operators role in emergency conditions. In the AEOP, to overcome the complexity of current EOPs and maintain the consistency of operators action according to plant emergency conditions, operator's task were allocated according to their duties. As an alternative, the Computerized Operator Aid System (COAS) has been developed to reduce operator's burden and provide detailed instructions of procedure. Probabilistic Safety Assessment (PSA) results were synthesized in the AEOP using the event tree to give the awareness and the prediction of accident progression in advance. In conclusion, the existing EOP with its inherent complexity should be simplified and consolidated using computerized operator support system and task allocation to prevent more severe accidents and to reduce operator cognitive overload in emergency conditions

  19. Improved Design of Crew Operation in Computerized Procedure System of APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Seong, No Kyu; Jung, Yeon Sub; Sung, Chan Ho [KHNP, Daejeon (Korea, Republic of)

    2016-05-15

    The operators perform the paper-based procedures in analog-based conventional main control room (MCR) depending on only communications between operators except a procedure controller such as a Shift Supervisor (SS), however in digital-based MCR the operators can confirm the procedures simultaneously in own console when the procedure controller of computerized procedure (CP) opens the CP. The synchronization and a synchronization function between procedure controller and other operators has to be considered to support the function of crew operation. This paper suggests the improved design of crew operation in computerized procedure system of APR1400. This paper suggests the improved design of APR1400 CPS. These improvements can help operators perform the crew procedures more efficiently. And they reduce a burden of communication and misunderstanding of computerized procedures. These improvements can be applied to CPS after human factors engineering verification and validation.

  20. Safety assessment for TA-48 radiochemical operations

    International Nuclear Information System (INIS)

    1994-08-01

    The purpose of this report is to document an assessment performed to evaluate the safety of the radiochemical operations conducted at the Los Alamos National Laboratory operations area designated as TA-48. This Safety Assessment for the TA-48 radiochemical operations was prepared to fulfill the requirements of US Department of Energy (DOE) Order 5481.1B, ''Safety Analysis and Review System.'' The area designated as TA-48 is operated by the Chemical Science and Technology (CST) Division and is involved with radiochemical operations associated with nuclear weapons testing, evaluation of samples collected from a variety of environmental sources, and nuclear medicine activities. This report documents a systematic evaluation of the hazards associated with the radiochemical operations that are conducted at TA-48. The accident analyses are limited to evaluation of the expected consequences associated with a few bounding accident scenarios that are selected as part of the hazard analysis. Section 2 of this report presents an executive summary and conclusions, Section 3 presents pertinent information concerning the TA-48 site and surrounding area, Section 4 presents a description of the TA-48 radiochemical operations, and Section 5 presents a description of the individual facilities. Section 6 of the report presents an evaluation of the hazards that are associated with the TA-48 operations and Section 7 presents a detailed analysis of selected accident scenarios

  1. Safety management systems and their role in achieving high standards of operational safety

    International Nuclear Information System (INIS)

    Coulston, D.J.; Baylis, C.C.

    2000-01-01

    Achieving high standards of operational safety requires a robust management framework that is visible to all personnel with responsibility for its implementation. The structure of the management framework must ensure that all processes used to manage safety interlink in a logical and coherent manner, that is, they form a management system that leads to continuous improvement in safety performance. This Paper describes BNFL's safety management system (SMS). The SMS has management processes grouped within 5 main elements: 1. Policy, 2. Organisation, 3. Planning and Implementation, 4. Measuring and Reviewing Performance, 5. Audit. These elements reflect the overall process of setting safety objective (from Policy), measuring success and reviewing the performance. Effective implementation of the SMS requires senior managers to demonstrate leadership through their commitment and accountability. However, the SMS as a whole reflects that every employee at every level within BNFL is responsible for safety of operations under their control. The SMS therefore promotes a proactive safety culture and safe operations. The system is formally documented in the Company's Environmental, Health and Safety (EHS) Manual. Within in BNFL Group, the Company structures enables the Manual to provide overall SMS guidance and co-ordination to its range of nuclear businesses. Each business develops the SMS to be appropriate at all levels of its organisation, but ensuring that each level is consistent with the higher level. The Paper concludes with a summary of BNFL's safety performance. (author)

  2. Industry use of operating experience to achieve improved nuclear plant safety

    International Nuclear Information System (INIS)

    Zebroski, E.L.

    1981-01-01

    A principal lesson drawn from the accident at Three Mile Island was the need for a comprehensive and rigorous system for analysis and feedback of operating experience to reactor operators. Chief executives of US utilities directed in mid-1979 that an intensive and rigorous system of analysis and feedback of operating experience be established. This system is commonly referred to as the ''Significant Events Program''. Since April 1980, the Nuclear Safety Analysis Center (NSAC) has been joined by the Institute for Nuclear Power Operations (INPO) in the field investigation of significant operating events. NSAC has responsibility for analysis of the design and physical events aspects, while INPO has primary responsibility for the operators' aspects, including procedures and training. The process of screening, analysis and feedback of operating experience is now functioning as a seven-step process. A variety of data sources is used, including License Event Reports and outage and major maintenance reports. These are compiled and indexed in convenient form. However, such data bases are used only as incidental tools for the basic investigations and analytical efforts. Rapid dissemination of results is provided by a computer-aided conferencing system, which links 70 operating LWR reactors in the USA, and which has now been extended to four utilities outside the USA, representing several dozen more reactors. Major safety and economic incentives are evident for the rigorous use of such operating experience and for participation in a comprehensive system. Traditional habits of secrecy are recognized as obstacles to timely communication. A principal responsibility of top management of reactor-operating organizations is to overcome such habits where they are counter to the public interest, as well as to the health and survival interest of the utility itself

  3. Magnetic fusion energy. Disaster operation procedures

    International Nuclear Information System (INIS)

    1986-06-01

    In a major disaster such as an earthquake, toxic chemical release, or fire, these Disaster Operations Procedures can be used, in combination with good judgment, to minimize the risk of injury to personnel and of property damage in our laboratory, shop, and office areas. These emergency procedures apply to all personnel working within MFE/Zone-11 area including visitors, program contract personnel, and construction contract personnel

  4. Project W-320, operational test procedure OTP-320-003 test report

    International Nuclear Information System (INIS)

    Bevins, R.R.

    1998-01-01

    This report documents and summarizes the results of OTP-320-003 Project W-320 Operational Testing of the WRSS Supernate Transfer System. Project W-320 Operational Test OTP-320-003 was performed to verify components of the Waste Retrieval Sluicing System (WRSS) supernate transfer system functioned as designed following construction completion and turnover to operations. All equipment operation was performed by Tank Farms Operations personnel following the operational test procedure and referenced operating procedures. Supernate Transfer line Flushing System Testing was completed over the course of approximately 4 weeks as tank farm conditions and configuration, equipment availability, and operations resources allowed. All testing was performed with the 702-AZ ventilation system and the 296-P-16 ventilation systems in operation. Test procedure OTP-320-003 required two revisions during testing to incorporate Procedure Changes Authorizations (PCAs) necessary to facilitate testing. Various sections of testing are documented on each procedure revision. The completed test procedure is included as Attachment A. Exception Reports generated during the course of testing are included as Attachment B

  5. Contribution of operating feedback to probabilistic safety studies

    International Nuclear Information System (INIS)

    Guio, J.M. de; Lannoy, A.

    1992-03-01

    This paper presents the method used for PWR unit operation feedback analysis and its contribution to probabilistic safety studies. The targets were as follows: - use of failure data banks to assess reliability parameters, - use of event data banks to identify and quantify main system initiating events, - determination of a standard operating profile. These studies, performed in the context of nuclear power plant safety programs, prove useful not only to safety engineers but also to equipment experts, designers, operators and maintenance specialists. They constitute basic data for studies in all these areas or the departure point for new investigations. (authors). 3 figs., 3 tabs., 3 refs

  6. The operational procedure of an electron beam accelerator

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Choi, Hwa Lim; Yang, Ki Ho; Han, Young Hwan; Kim, Sung Chan

    2008-12-01

    The KAERI(Korea Atomic Energy of Research Institute) high-power electron beam irradiation facility, operating at the energies between 0.3 MeV and 10 MeV, has provided irradiation services to users in industries, universities, and institute in various fields. This manual is for the operation of an electron beam which is established in KAERI, and describes elementary operation procedures of electron beam between 0.3 Mev and 10 MeV. KAERI Electron Accelerator facility(Daejeon, Korea) consists of two irradiators: one is a low-energy electron beam irradiator operated by normal conducting RF accelerator, the other is medium-energy irradiator operated by superconducting RF accelerator. We explain the check points of prior to operation, operation procedure of this facility and the essential parts of electron beam accelerator

  7. The operational procedure of an electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Choi, Hwa Lim; Yang, Ki Ho; Han, Young Hwan; Kim, Sung Chan

    2008-12-15

    The KAERI(Korea Atomic Energy of Research Institute) high-power electron beam irradiation facility, operating at the energies between 0.3 MeV and 10 MeV, has provided irradiation services to users in industries, universities, and institute in various fields. This manual is for the operation of an electron beam which is established in KAERI, and describes elementary operation procedures of electron beam between 0.3 Mev and 10 MeV. KAERI Electron Accelerator facility(Daejeon, Korea) consists of two irradiators: one is a low-energy electron beam irradiator operated by normal conducting RF accelerator, the other is medium-energy irradiator operated by superconducting RF accelerator. We explain the check points of prior to operation, operation procedure of this facility and the essential parts of electron beam accelerator.

  8. Step Complexity Measure for Emergency Operating Procedures - Determining Weighting Factors

    International Nuclear Information System (INIS)

    Park, Jinkyun; Jung, Wondea; Kim, Jaewhan; Ha, Jaejoo

    2003-01-01

    In complex systems, such as nuclear power plants (NPPs) or airplane control systems, human error has been regarded as the primary cause of many events. Therefore, to ensure system safety, extensive effort has been made to identify the significant factors that can cause human error. According to related studies, written manuals or operating procedures are revealed as one of the important factors, and the understandability is pointed out as one of the major reasons for procedure-related human errors.Many qualitative checklists have been suggested to evaluate emergency operating procedures (EOPs) of NPPs so as to minimize procedure-related human errors. However, since qualitative evaluations using checklists have some drawbacks, a quantitative measure that can quantify the complexity of EOPs is indispensable.From this necessity, Park et al. suggested the step complexity (SC) measure to quantify the complexity of procedural steps included in EOPs. To verify the appropriateness of the SC measure, averaged step performance time data obtained from emergency training records of the loss-of-coolant accident (LOCA) and the excess steam demand event were compared with estimated SC scores. However, although averaged step performance time data and estimated SC scores show meaningful correlation, some important issues such as determining proper weighting factors have to be clarified to ensure the appropriateness of the SC measure. These were not properly dealt with due to a lack of backup data.In this paper, to resolve one of the important issues, emergency training records are additionally collected and analyzed in order to determine proper weighting factors. The total number of collected records is 66, and the training scenarios cover five emergency conditions including the LOCA, the steam generator tube rupture, the loss of all feedwater, the loss of off-site power, and the station blackout. From these records, average step performance time data are retrieved, and new

  9. Study of operating procedures in nuclear power plants: Practices and problems

    International Nuclear Information System (INIS)

    Morgenstern, M.H.; Barnes, V.E.; McGuire, M.V.; Radford, L.R.; Wheeler, W.A.

    1987-02-01

    This report describes the project activities, findings, and recommendations of a project entitled ''Program Plan for Assessing and Upgrading Operating Procedures for Nuclear Power Plants.'' The project was performed by the Pacific Northwest Laboratory and Battelle Human Affairs Research Centers for the Division of Human Factors Technology, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission (NRC). The project team analyzed and evaluated samples of normal and abnormal operating procedures from 31 commercial nuclear power plant sites operating in the United States. The project team also visited nine nuclear power plants in the United States to obtain information on the development, use, and control of operating procedures. A peer review group was convened to advise the project team on the conduct of the project and to review and comment on the project report. The report contains findings on the usability of operating procedures and on practices concerning the development, use, an control of operating procedures in nuclear power plants. The report includes recommendations to the NRC on the need to upgrade the quality of operating procedures. The report also discusses an approach to a program plan to assess and upgrade operating procedures

  10. Operation safety of control systems. Principles and methods

    International Nuclear Information System (INIS)

    Aubry, J.F.; Chatelet, E.

    2008-01-01

    This article presents the main operation safety methods that can be implemented to design safe control systems taking into account the behaviour of the different components with each other (binary 'operation/failure' behaviours, non-consistent behaviours and 'hidden' failures, dynamical behaviours and temporal aspects etc). To take into account these different behaviours, advanced qualitative and quantitative methods have to be used which are described in this article: 1 - qualitative methods of analysis: functional analysis, preliminary risk analysis, failure mode and failure effects analyses; 2 - quantitative study of systems operation safety: binary representation models, state space-based methods, event space-based methods; 3 - application to the design of control systems: safe specifications of a control system, qualitative analysis of operation safety, quantitative analysis, example of application; 4 - conclusion. (J.S.)

  11. The utility experience of implementing the emergency operating procedure tracking system

    International Nuclear Information System (INIS)

    Chang, W.C.; Cheng, J.F.

    1990-01-01

    This report presents the experience of a project sponsored by the Electric Power Research Institute (EPRI), Taiwan Power Company (TPC) and supported by the Nuclear Software Service (NSS), General Electric Company (GE) and Science Applications International Corporation (SAIC) to implement the Emergency Operating Procedure Tracking System (EOPTS) in Kuosheng Nuclear Power Station Simulator. Before implement the EOPTS in Kuosheng Simulator, the Safety Parameter Display System (SPDS) of the Energency Response Facility Technical Data System (ERFTDS) shall be simulated, the hardware and software linkage between the simulator and ERFTDS shall be established, that include installation of a VAX-8200 computer, Gould - Vax computer hardware linkage, ERFTDS software installation, simulator source variables selection and linkage it to the ERFTDS database

  12. Coping with Unanticipated Accidents using Emergency Operating Procedures

    International Nuclear Information System (INIS)

    Kim, Yochan; Jung, Wondea

    2013-01-01

    In, unsafe acts associated with a literal following of a procedure were reported. A report of the Fukushima accident also revealed that a tendency to adhere to procedures and prior practices can impede applying effective countermeasures. To overcome the conflicts between benefit and jeopardy of procedures during unanticipated accidents, we reviewed the literature on the perspectives of cognitive engineering and artificial intelligence. From the insights about human planning of the literatures, we also proposed an approach of how to train operators to effectively use EOPs during unanticipated accidents. There are three key processes required to effectively cope with emergency situations: how correctly the operators are aware of the occurring situations, how properly they develop corresponding plans for the situations, and how accurately they execute the plans. This paper presents a way to develop the plans using EOPs from some literature of human planning. Even if professional operators have implicitly shaped good structures of procedures already, it is expected that this approach will provide a more systematic and concrete training strategy. If the operators are trained with this strategy, a higher level of human reliability would be ensured in unanticipated accidents

  13. Regulatory activities in reactor safety

    International Nuclear Information System (INIS)

    Salvatore, J.E.L.

    1987-01-01

    The safety phylosophy in designs and operation of nuclear power plants and, the steps for evaluating the safety and quality assurance, in the licensing procedure are described. The CNEN organization structure and the licensing procedure for nuclear power plants in Brazil are presented. (M.C.K.) [pt

  14. Factory Acceptance Test Procedure Westinghouse 100 ton Hydraulic Trailer

    International Nuclear Information System (INIS)

    Aftanas, B.L.

    1994-01-01

    This Factory Acceptance Test Procedure (FAT) is for the Westinghouse 100 Ton Hydraulic Trailer. The trailer will be used for the removal of the 101-SY pump. This procedure includes: safety check and safety procedures; pre-operation check out; startup; leveling trailer; functional/proofload test; proofload testing; and rolling load test

  15. Complex intravenous anesthesia in interventional procedures

    International Nuclear Information System (INIS)

    Xie Zonggui; Hu Yuanming; Huang Yunlong; You Yong; Wu Juan; Huang Zengping; Li Jian

    2006-01-01

    Objective: To evaluate the value and safety of Diprivan and Fentany intravenous administration of analgesia in interventional procedures. Methods: Diprivan with Fentany intravenous administration for analgesia was used in eighty interventional procedures of sixty-five patients, without tracheal tube insertion. Vital signs including HR, BP, arterial oxygen saturation (SpO 2 ) and patients' reaction to operating were recorded. Results: Intravenous anesthesia was cared out successfully in eighty interventional procedures, with patients under sleeping condition during the operation, together with no pain and no agony memory of the procedure. The amount of Diprivan was 500±100 mg and Fentany was 0.2±0.025 mg. Mean arterial pressure and SpO 2 were 11.4±2.2 kPa, 10.6±2.1 kPa and 98±1.0, 96±1.5 respectively before and after ten minutes of the operation, with no significant difference. Conclusions: Diprivan with Fentany intravenous administration for interventional procedure analgesia possess good safety, painless and no agony memory of the procedure; therefor ought to be recommended. (authors)

  16. A guide to safe field operations

    Science.gov (United States)

    Yobbi, D.K.; Yorke, T.H.; Mycyk, R.T.

    1996-01-01

    Most functions of the U.S. Geological Survey (USGS), Water Resources Division (WRD) require employees to participate in numerous field activities ranging from routine meetings with cooperators, other federal and public officials, and private citizens to potentially hazardous assignments, such as making flood measurements and scuba diving to service underwater instruments. It is paramount that each employee be aware of safety procedures and operational policies of the WRD to ensure that (1) their activities avoid or minimize personal injury to the employee, coworkers, or anyone in the vicinity of the field activity, and (2) their conduct does not infringe on the personal or property rights of any individual or organization. The purpose of the guide is to familiarize employees with the operational and safety procedures expected to be followed by each employee as a representative of the WRD. It is also intended as a training tool for all new employees and a document to be reviewed by each employee before undertaking a field assignment. It includes general procedures that are standard and applicable to all field operations, such as communication, vehicle operation, and adequate preparation for anticipated weather conditions. It also includes a discussion of specific procedures and safety considerations for most of the routine field assignments undertaken by hydrologists and hydrologic technicians of the WRD. The guide is not intended to be a technical handbook outlining step-by-step procedures for performing specific tasks or a comprehensive discussion of every possible activity that may be undertaken by a USGS employee. Employees are referred to the Techniques for Water-Resources Investigations (TWRI) series for specific technical procedures and to the U.S. Geological Survey Safety and Environmental Health Handbook 445-1-H (USGS, August 1989), USGS Occupational Hazards and Safety Procedures Handbook 445-2-H (December 1993), the WRD notebook on Safety Policy and

  17. Automated emergency operating procedures

    International Nuclear Information System (INIS)

    Perez-Ramirez, G.; Nelson, P.F.

    1990-01-01

    This paper describes the development of a training tool for the symptom oriented emergency operating procedures used at the Laguna Verde Nuclear Power Plant. EOPs and operator training are intended to assist the operator for managing accident situations. A prototype expert system based on the EOPs has been developed for operator training. The demonstration expert system was developed using a commercial shell. The knowledge base consists of two parts. The specific operator actions to be executed for 5 selected accident sequences and the EOPs steps for the reactor pressure vessel control of the water level, pressure, and power. The knowledge is expressed in the form of IF-THEN production rules. A typical training session will display a set of conditions and will prompt the trainee to indicate the appropriate step to perform. This mode will guide the trainee through selected accident sequences. A second mode of the expert system will prompt the trainee for the current plant conditions and the expert system will respond with the EOPs which are required to be performed under these conditions. This allows the trainee to study What if situations

  18. The procedure execution manager and its application to Advanced Photon Source operation

    International Nuclear Information System (INIS)

    Borland, M.

    1997-01-01

    The Procedure Execution Manager (PEM) combines a complete scripting environment for coding accelerator operation procedures with a manager application for executing and monitoring the procedures. PEM is based on Tcl/Tk, a supporting widget library, and the dp-tcl extension for distributed processing. The scripting environment provides support for distributed, parallel execution of procedures along with join and abort operations. Nesting of procedures is supported, permitting the same code to run as a top-level procedure under operator control or as a subroutine under control of another procedure. The manager application allows an operator to execute one or more procedures in automatic, semi-automatic, or manual modes. It also provides a standard way for operators to interact with procedures. A number of successful applications of PEM to accelerator operations have been made to date. These include start-up, shutdown, and other control of the positron accumulator ring (PAR), low-energy transport (LET) lines, and the booster rf systems. The PAR/LET procedures make nested use of PEM's ability to run parallel procedures. There are also a number of procedures to guide and assist tune-up operations, to make accelerator physics measurements, and to diagnose equipment. Because of the success of the existing procedures, expanded use of PEM is planned

  19. The study on development of emergency operating procedures based on symptom and risk for accident management

    Energy Technology Data Exchange (ETDEWEB)

    Kang, K. S.; Jeong, H. J. [KOPEC, Taejon (Korea, Republic of)

    1998-10-01

    The Advanced EOP(AEOP) has been developed by focusing on the importance of the operators role in emergency conditions. In the AEOP, to overcome the complexity of current EOPs and maintain the consistency of operators action according to plant emergency conditions, operator's task were allocated according to their duties. As an alternative, the Computerized Operator Aid System (COAS) has been developed to reduce operator's burden and provide detailed instructions of procedure. Probabilistic Safety Assessment (PSA) results were synthesized in the AEOP using the event tree to give the awareness and the prediction of accident progression in advance. In conclusion, the existing EOP with its inherent complexity should be simplified and consolidated using computerized operator support system and task allocation to prevent more severe accidents and to reduce operator cognitive overload in emergency conditions.

  20. 40 CFR 160.81 - Standard operating procedures.

    Science.gov (United States)

    2010-07-01

    .... (10) Data handling, storage and retrieval. (11) Maintenance and calibration of equipment. (12... GOOD LABORATORY PRACTICE STANDARDS Testing Facilities Operation § 160.81 Standard operating procedures... test, control, and reference substances. (4) Test system observations. (5) Laboratory or other tests...

  1. Summary of NRC LWR safety research programs on fuel behavior, metallurgy/materials and operational safety

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1979-09-01

    The NRC light-water reactor safety-research program is part of the NRC regulatory program for ensuring the safety of nuclear power plants. This paper summarizes the results of NRC-sponsored research into fuel behavior, metallurgy and materials, and operational safety. The fuel behavior research program provides a detailed understanding of the response of nuclear fuel assemblies to postulated off-normal or accident conditions. Fuel behavior research includes studies of basic fuel rod properties, in-reactor tests, computer code development, fission product release and fuel meltdown. The metallurgy and materials research program provides independent confirmation of the safe design of reactor vessels and piping. This program includes studies on fracture mechanics, irradiation embrittlement, stress corrosion, crack growth, and nondestructive examination. The operational safety research provides direct assistance to NRC officials concerned with the operational and operational-safety aspects of nuclear power plants. The topics currently being addressed include qualification testing evaluation, fire protection, human factors, and noise diagnostics

  2. PSA analysis focused on Mochovce NPP safety measures evaluation from operational safety point of view

    International Nuclear Information System (INIS)

    Cillik, I.; Vrtik, L.

    2001-01-01

    Mochovce NPP consists of four reactor units of WWER 440/V213 type and it is located in the south-middle part of Slovakia. At present first unit operated and the second one under the construction finishing. As these units represent second generation of WWER reactor design, the additional safety measures (SM) were implemented to enhance operational and nuclear safety according to the recommendations of performed international audits and operational experience based on exploitation of other similar units (as Dukovany and J. Bohunice NPPs). These requirements result into a number of SMs grouped according to their purpose to reach recent international requirements on nuclear and operational safety. The paper presents the bases used for safety measures establishing including their grouping into the comprehensive tasks covering different areas of safety goals as well as structural organization of a project management of including participating companies and work performance. More, results are given regarding contribution of selected SMs to the total core damage frequency decreasing.(author)

  3. Improving operational safety management through probabilistic safety assessment on personal computers

    International Nuclear Information System (INIS)

    1988-10-01

    The Technical Committee Meeting considered the current effort in the implementation and use of PSA information for day-to-day operational safety management on Personal Computers. Due to the very recent development of the necessary hardware and software for Personal Computers, the application of PSA information for day-to-day operational safety management on PCs is essentially still in a pioneering stage. There is at present only one such system for end users existing, the PRISIM (Plant Risk Status Information Management) program for which a limited practical application experience is available. Others are still in the development stage. The main aim of the Technical Committee Meeting was to discuss the present status of PSA based systems for operational safety management support on small computers, to consider practical aspects when implementing these systems into a nuclear installation and to address problems related to the further work in the area. A separate abstract was prepared for the summary of the Technical Committee Meeting and for the 8 papers presented by the participants. Refs, figs and tabs

  4. RTOD-photo operations and procedures manual

    Energy Technology Data Exchange (ETDEWEB)

    1966-03-15

    This document presents a survey of the EG&G NRDS photographic operation in four major sections and includes the work scope, procedures, some technical backgrounding and operational information. Two sections, Instrumentation and Photo Systems, include the areas of direct responsibilities while a section on Film Handling and Coordination and a section covering special information, pertinent to the project, are included to adequately complete this survey. The photographic group is housed in two trailers within the control point area at NRDS and from these trailers provides photographic support at a number of locations. Four camera bunkers, three camera towers, a kinescope system, a microfilm system and remote camera controls comprise the facilities that the group maintains and operates outside these trailers. The work load includes major items such as: motion picture coverage of the nuclear rocket engine tests, data record microfilming, kinescope recording, and documentary coverage of the company related operational responsibilities. In addition, a number of minor photographic services are extended, when required. The nature of the work, because of its importance within the research and development efforts at NRDS, requires optimum quality and efficiency throughout. The many procedures outlined here have been designed to satisfy these requirements.

  5. A Guide for Developing Standard Operating Job Procedures for the Screening & Grinding Process Wastewater Treatment Facility. SOJP No. 1.

    Science.gov (United States)

    Deal, Gerald A.; Montgomery, James A.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

  6. Quality procedure management for improved nuclear safety

    International Nuclear Information System (INIS)

    Forzano, P.; Castagna, P.

    1995-01-01

    Emergency Operating Procedures and Accident Management Procedures are the next step in the computerization of NPP control rooms. Different improvements are presently conceivable for this operator aid tool, and research activities are in development. Undergoing activities regard especially formal aspects of knowledge representation, Human-Machine interface and procedure life cycle management. These aspects have been investigated deeply by Ansaldo, and partially incorporated in the DIAM prototype. Nuclear Power Plant Procedures can be seen from essentially two viewpoints: the process and the information management. From the first point of view, it is important to supply the knowledge apt to solve problems connected with the control of the process, from the second one the focus of attention is on the knowledge representation, its structure, elicitation and maintenance, and formal quality assurance. These two aspects of procedure representation can be considered and solved separately. In particular, methodological, formal and management issues require long and tedious activities, that in most cases constitute a great barrier for procedures development and upgrade. To solve these problems, Ansaldo is developing DIAM, a wide integrated tool for procedure management to support in procedure writing, updating, usage, and documentation. One of the most challenging features of DIAM is AUTO-LAY, a CASE sub-tool that, in a complete automatical way, structures parts or complete flow diagram. This is the feature that is partial present in some other CASE products, that, anyway, do not allow complex graph handling and isomorphism between video and paper representation. AUTO-LAY has the unique prerogative to draw graphs of any complexity to section them in pages, and to automatically compose a document. This has been recognized in the literature as the most important a second-generation CASE improvement. (Author) 9 Figs., 5 Refs

  7. Safety evaluation of the Dalat research reactor operation

    International Nuclear Information System (INIS)

    Long, V.H.; Lam, P.V.; An, T.K.

    1989-01-01

    After an introduction presenting the essential characteristics of the Dalat Nuclear Research Reactor, the document presents i) The safety assurance condition of the reactor, ii) Its safety behaviour after 5 years of operation, iii) Safety research being realized on the reactor. Following is questionnaire of safety evaluation and a list of attachments, which concern the reactor

  8. Unresolved Safety Issue A-46 - seismic qualification of equipment in operating plants

    International Nuclear Information System (INIS)

    Anderson, N.

    1985-01-01

    Seismic Qualification of Equipment in Operating Plants was designated as an Unresolved Safety Issue (USI) in December, 1980. The USI A-46 program was developed in early 1981 to investigate the adequacy of mechanical and electrical equipment in operating plants to withstand a safe shutdown earthquake. The approach taken was to develop viable, cost effective alternatives to current seismic qualification licensing requirements which could be applied to operating nuclear power plants. The tasks investigated include: (1) identification of seismic sensitive systems and equipment; (2) assessment of adequacy of existing seismic qualification methods; (3) development and assessment of in-situ test procedures to assist in qualification of equipment; (4) seismic qualification of equipment using seismic experience data; and (5) development of methods to generate generic floor response spectra. Progress to date and plans for completion of resolution are reported

  9. The plant operating procedure information modeling system for creation and maintenance of procedures

    International Nuclear Information System (INIS)

    Fanto, S.V.; Petras, D.S.; Reiner, R.T.; Frost, D.R.; Orendi, R.G.

    1990-01-01

    This paper reports that as a result of the accident at Three Mile Island, regulatory requirements were issued to upgrade Emergency Operating Procedures for nuclear power plants. The use of human-factored, function-oriented, EOPs were mandated to improve human reliability and to mitigate the consequences of a broad range of initiating events, subsequent failures and operator errors, without having to first diagnose the specific events. The Westinghouse Owners Group responded by developing the Emergency Response Guidelines in a human-factored, two-column format to aid in the transfer of the improved technical information to the operator during transients and accidents. The ERGs are a network of 43 interrelated guidelines which specify operator actions to be taken during plant emergencies to restore the plant to a safe and stable condition. Each utility then translates these guidelines into plant specific EOPs. The creation and maintenance of this large web of interconnecting ERGs/EOPs is an extremely complex task. This paper reports that in order to aid procedure documentation specialists with this time-consuming and tedious task, the Plant Operating Procedure Information Modeling system was developed to provide a controlled and consistent means to build and maintain the ERGs/EOPs and their supporting documentation

  10. Philosophy, policies, and procedures - The three P's of flight-deck operations

    Science.gov (United States)

    Degani, Asaf; Wiener, Earl L.

    1991-01-01

    Standard operating procedures are drafted and provided to flightcrews to dictate the manner in which tasks are carried out. Failure to conform to Standard Operating Procedures (SOP) is frequently listed as the cause of violations, incidents, and accidents. However, procedures are often designed piecemeal, rather than being based on a sound philosophy of operations and policies that follow from such a philosophy. A framework of philosophy, policies, and procedures is proposed.

  11. Surgical site infections in paediatric otolaryngology operative procedures.

    Science.gov (United States)

    Ifeacho, S N; Bajaj, Y; Jephson, C G; Albert, D M

    2012-07-01

    An assessment of the rate of surgical site infections associated with elective paediatric otolaryngology surgical procedures. Prospective data was collected for a 3-week period for all children undergoing surgery where either mucosa or skin was breached. The parents of the children were requested to complete a questionnaire at 30 days after the operation. Data was collected on 80 consecutive cases. The majority of cases were admitted on the day of the procedure. The procedures included adenotonsillectomy (24), grommets (12), cochlear implantation (6), bone-anchored hearing aid (2), submandibular gland excision (1), branchial sinus excision (1), cystic hygroma excision (3), nasal glioma excision (1), microlaryngobronchoscopy (13), tracheostomy (3) and other procedures (14). Nearly half the cases had more than one operation done at the same time. 26/80 (32.5%) patients had a temporary or permanent implant inserted at the time of operation (grommet, bone-anchored hearing aid, cochlear implant). 25/80 (31%) operative fields were classed as clean and 55/80 (68.7%) as clean contaminated operations. The duration of the operation varied from 6 min to 142 min. Hospital antibiotic protocol was adhered to in 69/80 (86.3%) cases but not in 11/80 cases. In our series, 3/80 (3.7%) patients had an infection in the postoperative period. Surgical site infections do occur at an appreciable rate in paediatric otolaryngology. With the potential for serious consequences, reduction in the risk of surgical site infections is important. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Importance of safety review to the safe operation of a nuclear plant

    International Nuclear Information System (INIS)

    Brinkerhoff, L.C.

    1978-01-01

    Widely differing standards of construction of nuclear reactors are employed in different countries. Although the reactor vendors, including designers and construction contractors, have a vested interest in safety, the ultimate responsibility for safety rests with the reactor facility operator. Even though governmental agencies, either directly or indirectly, must take a strong lead in developing policies and practices of safe operation, the reactor facility operator must recognize and accept the full responsibility for safe operation of the facility. The policies and practices of safe operation imposed by governmental agencies must help assure the prudent operation and the adequate maintenance of those structures, systems, and components of importance to safety. Since each country has a slightly different philosophy for achieving safety and each vendor utilizes different structures, systems, and components to fulfil this philosophy, it is imperative that the facility operator adequately maintain those engineered safety features and those plant protective systems which have been engineered into achieving the desired levels of safety. An additional method of helping to assure that those structures, systems, and components of importance to safety are prudently operated and adequately maintained is to assign the full safety responsibility for the overall operations of the reactor facility to the operating organization, i.e. assigning a 'line of responsibility' within the reactor facility operator. This assurance can be further strengthened by requiring that the facility operator establish a safety review body that overviews the operation and assures that the operating organization complies with those policies and practices of safe operation which have been imposed on the reactor facility. (author)

  13. A procedure for the analysis of errors of commission in a Probabilistic Safety Assessment of a nuclear power plant at full power

    International Nuclear Information System (INIS)

    Julius, J.; Jorgenson, E.; Parry, G.W.; Mosleh, A.M.

    1995-01-01

    This paper describes an analytical procedure that has been developed to facilitate the identification of errors of commission for inclusion in a Probabilistic Safety Assessment (PSA) of a nuclear power plant operating at full power. The procedure first identifies the opportunities for error by determining when operators are required to intervene to bring the plant to a safe condition following a transient, and then identifying under what conditions this is likely to occur using a model of the causes of error. In order to make the analysis practicable, a successive screening approach is used to identify those errors with the highest potential of occurrence. The procedure has been applied as part of a PSA study, and the results of that application are summarized. For the particular plant to which the procedure was applied, the conclusion was that, because of the nature of the procedures, the high degree of redundancy in the instrumentation, the operating practices, and the control board layouts, the potential for significant errors of commission is low

  14. Quality and safety of nuclear installations: the role of administration, and, nuclear safety and regulatory procedures

    International Nuclear Information System (INIS)

    Queniart, D.

    1979-12-01

    In the first paper the author defines the concepts of safety and quality and describes the means of intervention by the Public Authorities in safety matters of nuclear installations. These include individual authorisations, definition and application of technical rules and surveillance of installations. In the second paper he defines the distinction between radiation protection and safety and presents the legislative and regulatory plan for nuclear safety in France. A central safety service for nuclear installations was created in March 1973 within the Ministry of Industrial and Scientific Development, where, amongst other tasks, it draws up regulatory procedures and organizes inspections of the installations. The main American regulations for light water reactors are outlined and the French regulatory system for different types of reactors discussed

  15. Summary of the nuclear safety in operation

    International Nuclear Information System (INIS)

    2004-01-01

    This summary is a collection of general information about nuclear safety of PWR type reactors exploited by EDF. Teaching aid, this work has been conceived by operators for operators, it must not be considered nor used as a doctrine document with a regulatory or prescriptive characteristic. it summarizes the great principles of nuclear safety, places them in a global approach and shows their coherence. It consists in 6 chapters and 6 annexes. The news of this edition are the chapter 2 devoted to the safety management and the annexe 6 devoted to the principal teaching coming from the feedback. At the end a glossary explains the signs and abbreviations and an index allows to find themes in the memento text from keywords. (N.C.)

  16. The step complexity measure for emergency operating procedures: measure verification

    International Nuclear Information System (INIS)

    Park, Jinkyun; Jung, Wondea; Ha, Jaejoo; Park, Changkue

    2002-01-01

    In complex systems, such as nuclear power plants (NPPs) or airplane control systems, human errors play a major role in many accidents. Therefore, to prevent an occurrence of accidents or to ensure system safety, extensive effort has been made to identify significant factors that can cause human errors. According to related studies, written manuals or operating procedures are revealed as one of the most important factors, and the understandability is pointed out as one of the major reasons for procedure-related human errors. Many qualitative checklists are suggested to evaluate emergency operating procedures (EOPs) of NPPs. However, since qualitative evaluations using checklists have some drawbacks, a quantitative measure that can quantify the complexity of EOPs is very necessary to compensate for them. In order to quantify the complexity of steps included in EOPs, Park et al. suggested the step complexity (SC) measure. In addition, to ascertain the appropriateness of the SC measure, averaged step performance time data obtained from emergency training records for the loss of coolant accident and the excess steam dump event were compared with estimated SC scores. Although averaged step performance time data show good correlation with estimated SC scores, conclusions for some important issues that have to be clarified to ensure the appropriateness of the SC measure were not properly drawn because of lack of backup data. In this paper, to clarify remaining issues, additional activities to verify the appropriateness of the SC measure are performed using averaged step performance time data obtained from emergency training records. The total number of available records is 36, and training scenarios are the steam generator tube rupture and the loss of all feedwater. The number of scenarios is 18 each. From these emergency training records, averaged step performance time data for 30 steps are retrieved. As the results, the SC measure shows statistically meaningful

  17. Implementing and measuring safety goals and safety culture. 4. Utility's Activities for Better Safety Culture After the JCO Accident

    International Nuclear Information System (INIS)

    Omoto, Akira

    2001-01-01

    three activities described below. As a part of self-diagnosis of organizational behavior and an individual's factors influencing safety, measurement was carried out by asking questions to every employee at the station, i.e., 21 questions asking if we are appropriately implementing safety culture 'standards' as set forth in INSAG-4 (Ref. 2). The purpose was twofold: to educate about INSAG-4 and to find areas for improvement. The results indicated that employees want to learn more about (a) the background for the specific actions required/prescribed in the procedures/guidelines and (b) how things go wrong if they do not strictly follow the procedures/guidelines. These were important findings, which led to the reconstruction of the on-site education and training. Considering that employees should be well informed on safety culture; management's policy; and lessons learned from incidents, domestic or international, we started the bimonthly magazine Safety Culture. The first publication included articles on 'Lessons Learned from JCO', 'The Results from the Self- Diagnosis', 'Lessons from an Incident at Hunterston NPS (LOOP Followed by Operator Actions for Safe Shutdown)', and others. The on-site training system has two elements: on-the-job training and off-the-job study with classroom and hands-on training. Most of the employees are trained at the On-Site Training Center with equipment and are qualified for specific job categories. Training of operators has its own lengthy program. Given the foregoing findings, we (a) started lectures on JCO lessons learned, (b) modified the educational system at the On-Site Training Center to nurture the employees with well-balanced knowledge and thinking (Fig. 1), and (c) prepared documents that describe the background and reasons for the actions required/prescribed in the procedures/guidelines for use in on-the-job training. The important point to be remembered about the JCO accident is that the criticality safety at this facility

  18. Aircraft Configuration and Flight Crew Compliance with Procedures While Conducting Flight Deck Based Interval Management (FIM) Operations

    Science.gov (United States)

    Shay, Rick; Swieringa, Kurt A.; Baxley, Brian T.

    2012-01-01

    Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.

  19. Substitute safety rods: Physics of operation and irradiation

    International Nuclear Information System (INIS)

    Baumann, N.P.

    1991-01-01

    Under certain assumed accidents, an SRS reactor may lose most of its bulk moderator while maintaining flow to fuel assemblies. If this occurs immediately after operation at power, components normally dependent on convective heat transfer to the moderator will heat up with the possibility of melting that component. One component at risk is the currently used cadmium safety rod. A substitute safety rod consisting solely of sintered B 4 C and stainless steel has been designed which is capable of withstanding much higher temperatures. This memorandum provides the physics basis for the adequacy of the rod for reactor shutdown and provides a set of criteria for acceptance in the NTG tests. This memorandum provides physics data for other aspects of operation. These include: Heat production and helium production, along with related phenomena, resulting from inadvertent irradiation at power. Gamma heat input under drained tank conditions. An equivalent rod design suitable for charge design and safety analyses. Degradation under normal operation. Thermal flux ripple in adjacent fuel due to axial striping of alternate B 4 C and steel pellets. Possible effect on safety analyses. Safety rod withdrawal during reactor startup

  20. Multi-objective demand side scheduling considering the operational safety of appliances

    International Nuclear Information System (INIS)

    Du, Y.F.; Jiang, L.; Li, Y.Z.; Counsell, J.; Smith, J.S.

    2016-01-01

    Highlights: • Operational safety of appliances is introduced in multi-objective scheduling. • Relationships between operational safety and other objectives are investigated. • Adopted Pareto approach is compared with Weigh and Constraint approaches. • Decision making of Pareto approach is proposed for final appliances’ scheduling. - Abstract: The safe operation of appliances is of great concern to users. The safety risk increases when the appliances are in operation during periods when users are not at home or when they are asleep. In this paper, multi-objective demand side scheduling is investigated with consideration to the appliances’ operational safety together with the electricity cost and the operational delay. The formulation of appliances’ operational safety is proposed based on users’ at-home status and awake status. Then the relationships between the operational safety and the other two objectives are investigated through the approach of finding the Pareto-optimal front. Moreover, this approach is compared with the Weigh and Constraint approaches. As the Pareto-optimal front consists of a set of optimal solutions, this paper proposes a method to make the final scheduling decision based on the relationships among the multiple objectives. Simulation results demonstrate that the operational safety is improved with the sacrifice of the electricity cost and the operational delay, and that the approach of finding the Pareto-optimal front is effective in presenting comprehensive optimal solutions of the multi-objective demand side scheduling.

  1. Operation of Browns Ferry, Units 1 and 2 following the March 22, 1975 fire. Safety evaluation report

    International Nuclear Information System (INIS)

    1976-03-01

    The Safety Evaluation Report issued February 23, 1976, presents the NRC evaluation regarding the acceptability of the restoration and modifications at the Browns Ferry Plant Units 1 and 2, following the March 22, 1975 fire, to establish that the facility may be operated in the restored and modified condition without endangering the health and safety of the public. The modifications involved enhancing separation of redundant safeguards equipment by some rerouting of cable and by the application of a fire-retardant coating to the cable; enhancing fire extinguishing capability by the addition of fixed spray and sprinkler systems and expanded smoke and heat detection systems; and enhancing the overall fire protection program by changes in procedures, training, and organization. The NRC staff indicated some items that remained to be resolved prior to operation and concluded that subject to their satisfactory resolution the restoration of Browns Ferry Nuclear Plants Units 1 and 2 including the modifications is acceptable and that there is reasonable assurance that the health and safety of the public will not be endangered by operation of the facility as restored and modified

  2. Regulatory analysis for resolution of Unresolved Safety Issue A-46, seismic qualification of equipment in operating plants

    International Nuclear Information System (INIS)

    Chang, T.Y.; Anderson, N.R.

    1987-02-01

    The margin of safety provided in existing nuclear power plant equipment to resist seismically induced loads and perform required safety functions may vary considerably, because of significant changes in design criteria and methods for the seismic qualification of equipment over the years. Therefore, the seismic qualification of equipment in operating plants must be reassessed to determine whether requalification is necessary. The objective of technical studies performed under Task Action Plan A-46 was to establish an explicit set of guidelines and acceptance criteria to judge the adequacy of equipment under seismic loading at all operating plants, in lieu of requiring these plants to meet the criteria that are applied to new plants. This report presents the regulatory analysis for Unresolved Safety Issue (USI) A-46. It includes: Statement of the Problem; the Objective of USI A-46; a Summary of A-46 Tasks; a Proposed Implementation Procedure; a Value-Impact Analysis; Application of the Backfit Rule; 10 CFR 50.109; Implementation; and Operating Plants To Be Reviewed to USI A-46 Requirements

  3. Caustic addition system operability test procedure

    International Nuclear Information System (INIS)

    Parazin, R.E.

    1994-11-01

    This test procedure provides instructions for performing operational testing of the major components of the 241-AN-107 Caustic Addition System by WHC and Kaiser personnel at the Rotating Equipment Shop run-in pit (Bldg. 272E)

  4. Caustic addition system operability test procedure

    Energy Technology Data Exchange (ETDEWEB)

    Parazin, R.E.

    1994-11-01

    This test procedure provides instructions for performing operational testing of the major components of the 241-AN-107 Caustic Addition System by WHC and Kaiser personnel at the Rotating Equipment Shop run-in pit (Bldg. 272E).

  5. Safety and efficacy of procedural sedation and analgesia (PSA ...

    African Journals Online (AJOL)

    Safety and efficacy of procedural sedation and analgesia (PSA) conducted by medical officers in a level 1 hospital in Cape Town. ... Respiratory complications were treated with simple airway manoeuvres; no patient required intubation or experienced respiratory problems after waking up. There was no significant difference ...

  6. Standard Operating Procedure for Accelerated Corrosion Testing at ARL

    Science.gov (United States)

    2017-11-01

    ARL-TN-0855 ● NOV 2017 US Army Research Laboratory Standard Operating Procedure for Accelerated Corrosion Testing at ARL by... Corrosion Testing at ARL by Thomas A Considine Weapons and Materials Research Directorate, ARL Approved for public...November 2017 2. REPORT TYPE Technical Note 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Standard Operating Procedure for Accelerated

  7. Regulation for the radiological safety in the design and operation of industrial Gamma irradiators in Egypt

    International Nuclear Information System (INIS)

    Abdel-Ghani, A.H.; Hussein, A.Z.

    2000-01-01

    Large gamma irradiators present a high potential irradiation hazard since the amount of radioactivity is of the order of P Bq and a very high dose rate are produced during irradiation. Nevertheless, individuals may accidentally receive a lethal dose within minutes or seconds, due to failure of radiation control and safety systems. The competent authority (NCNSRC) is concerned with the impact of all radiation activities on workers as well as public health and safety. Radiation control of such large irradiation facilities can be achieved by means of strict regulatory procedures during construction, licensing, operation, inspection, maintenance and decommissioning

  8. JET Tokamak, preparation of a safety case for tritium operations

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Helen, E-mail: helen.boyer@ccfe.ac.uk [CCFE, Culham Science Centre (United Kingdom); Plummer, David; Johnston, Jane [CCFE, Culham Science Centre (United Kingdom)

    2016-11-01

    Highlights: • A safety case incorporating technical and ITER related upgrades. • Hazard analysis reworked to include new modelling assessments. • Fitness for purpose assessment of safety controls. - Abstract: A new Safety Case is required to permit tritium operations on JET during the forthcoming DTE2 campaign. The outputs, benefits and lessons learned associated with the production of this Safety Case are presented. The changes that have occurred to the Safety Case methodology since the last JET tritium Safety Case are reviewed. Consideration is given to the effects of modifications, particularly ITER related changes, made to the JET and the impact these have on the hazard assessments as well as normal operations. Several specialized assessments, including recent MELCOR modelling, have been undertaken to support the production of this Safety Case and the impact of these assessments is outlined. Discussion of the preliminary actions being taken to progress implementation of this Safety Case is provided, highlighting new methods to improve the dissemination of the key Safety Case results to the plant operators. Finally, the work required to complete this Safety Case, before the next tritium campaign, is summarized.

  9. Splash Safety During Dermatologic Procedures Among US Dermatology Residents.

    Science.gov (United States)

    Korta, Dorota Z; Chapman, Lance W; Lee, Patrick K; Linden, Kenneth G

    2017-07-01

    Dermatologists are at potential risk of acquiring infections from contamination of the mucous membranes by blood and body fluids. However, there are little data on splash safety during procedural dermatology. To determine dermatology resident perceptions about splash risk during dermatologic procedures and to quantify the rate of protective equipment use. An anonymous on-line survey was sent to 108 United States ACGME-approved dermatology residency programs assessing frequency of facial protection during dermatologic procedures, personal history of splash injury, and, if applicable, reasons for not always wearing facial protection. A total of 153 dermatology residents responded. Rates of facial protection varied by procedure, with the highest rates during surgery and the lowest during local anesthetic injection. Over 54% of respondents reported suffering facial splash while not wearing facial protection during a procedure. In contrast, 88.9% of respondents correctly answered that there is a small risk of acquiring infection from mucosal splash. Residency program recommendations for facial protection seem to vary by procedure. The authors' results demonstrate that although facial splash is a common injury, facial protection rates and protective recommendations vary significantly by procedure. These data support the recommendation for enhanced facial protection guidelines during procedural dermatology.

  10. The development of a quantitative measure for the complexity of emergency tasks stipulated in emergency operating procedures of nuclear power plants

    International Nuclear Information System (INIS)

    Park, Jin Kyun; Jung, Won Dea

    2006-11-01

    Previous studies have continuously pointed out that human performance is a decisive factor affecting the safety of complicated process systems. Subsequently, as the result of extensive efforts, it has been revealed that the provision of procedures is one of the most effective countermeasures, especially if human operators have to carry out their tasks under a very stressful environment. That is, since good procedures are helpful to not only enhance the performance of human operators but also the reduction of the possibility of a human error through stipulating detailed tasks to be done by human operators. Ironically, it has been emphasized that the performance of human operators could be impaired due to complicated procedures, because procedures directly govern the physical as well as cognitive behavior of human operators by institutionalizing detailed actions. Therefore, it is a prerequisite to develop a systematic framework that properly evaluate the complexity of tasks described in procedures. For this reason, a measure called TACOM (Task Complexity) that can quantify the complexity of emergency tasks described in the emergency operating procedures (EOPs) of NPPs has been developed. In this report, a technical background as well as practical steps to quantify the complexity of tasks were presented with a series of studies that were conducted to ensure the validity of the TACOM measure. As a result of validation studies, since it is shown that the TACOM measure seem to properly quantify the complexity of emergency tasks, it is desirable that the TACOM measure plays an important role in improving the performance of human operators

  11. The development of a quantitative measure for the complexity of emergency tasks stipulated in emergency operating procedures of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Kyun; Jung, Won Dea

    2006-11-15

    Previous studies have continuously pointed out that human performance is a decisive factor affecting the safety of complicated process systems. Subsequently, as the result of extensive efforts, it has been revealed that the provision of procedures is one of the most effective countermeasures, especially if human operators have to carry out their tasks under a very stressful environment. That is, since good procedures are helpful to not only enhance the performance of human operators but also the reduction of the possibility of a human error through stipulating detailed tasks to be done by human operators. Ironically, it has been emphasized that the performance of human operators could be impaired due to complicated procedures, because procedures directly govern the physical as well as cognitive behavior of human operators by institutionalizing detailed actions. Therefore, it is a prerequisite to develop a systematic framework that properly evaluate the complexity of tasks described in procedures. For this reason, a measure called TACOM (Task Complexity) that can quantify the complexity of emergency tasks described in the emergency operating procedures (EOPs) of NPPs has been developed. In this report, a technical background as well as practical steps to quantify the complexity of tasks were presented with a series of studies that were conducted to ensure the validity of the TACOM measure. As a result of validation studies, since it is shown that the TACOM measure seem to properly quantify the complexity of emergency tasks, it is desirable that the TACOM measure plays an important role in improving the performance of human operators.

  12. Indicators for monitoring of safety operation and condition of nuclear power stations

    International Nuclear Information System (INIS)

    Manova, D.

    2001-01-01

    A common goal of all employees in the nuclear power field is safety operation of nuclear power stations. The evaluation and control of NPP safety operation are a part of the elements of safety management. The present report is related only to a part of the total assessment and control of the plant safety operation, namely - the indicator system for monitoring of Kozloduy NPP operation and condition. (author)

  13. A Neural Networks Based Operation Guidance System for Procedure Presentation and Validation

    International Nuclear Information System (INIS)

    Seung, Kun Mo; Lee, Seung Jun; Seong, Poong Hyun

    2006-01-01

    In this paper, a neural network based operator support system is proposed to reduce operator's errors in abnormal situations in nuclear power plants (NPPs). There are many complicated situations, in which regular and suitable operations should be done by operators accordingly. In order to regulate and validate operators' operations, it is necessary to develop an operator support system which includes computer based procedures with the functions for operation validation. Many computerized procedures systems (CPS) have been recently developed. Focusing on the human machine interface (HMI) design and procedures' computerization, most of CPSs used various methodologies to enhance system's convenience, reliability and accessibility. Other than only showing procedures, the proposed system integrates a simple CPS and an operation validation system (OVS) by using artificial neural network (ANN) for operational permission and quantitative evaluation

  14. The End-To-End Safety Verification Process Implemented to Ensure Safe Operations of the Columbus Research Module

    Science.gov (United States)

    Arndt, J.; Kreimer, J.

    2010-09-01

    The European Space Laboratory COLUMBUS was launched in February 2008 with NASA Space Shuttle Atlantis. Since successful docking and activation this manned laboratory forms part of the International Space Station(ISS). Depending on the objectives of the Mission Increments the on-orbit configuration of the COLUMBUS Module varies with each increment. This paper describes the end-to-end verification which has been implemented to ensure safe operations under the condition of a changing on-orbit configuration. That verification process has to cover not only the configuration changes as foreseen by the Mission Increment planning but also those configuration changes on short notice which become necessary due to near real-time requests initiated by crew or Flight Control, and changes - most challenging since unpredictable - due to on-orbit anomalies. Subject of the safety verification is on one hand the on orbit configuration itself including the hardware and software products, on the other hand the related Ground facilities needed for commanding of and communication to the on-orbit System. But also the operational products, e.g. the procedures prepared for crew and ground control in accordance to increment planning, are subject of the overall safety verification. In order to analyse the on-orbit configuration for potential hazards and to verify the implementation of the related Safety required hazard controls, a hierarchical approach is applied. The key element of the analytical safety integration of the whole COLUMBUS Payload Complement including hardware owned by International Partners is the Integrated Experiment Hazard Assessment(IEHA). The IEHA especially identifies those hazardous scenarios which could potentially arise through physical and operational interaction of experiments. A major challenge is the implementation of a Safety process which owns quite some rigidity in order to provide reliable verification of on-board Safety and which likewise provides enough

  15. Self-assessment of operational safety for nuclear power plants

    International Nuclear Information System (INIS)

    1999-12-01

    Self-assessment processes have been continuously developed by nuclear organizations, including nuclear power plants. Currently, the nuclear industry and governmental organizations are showing an increasing interest in the implementation of this process as an effective way for improving safety performance. Self-assessment involves the use of different types of tools and mechanisms to assist the organizations in assessing their own safety performance against given standards. This helps to enhance the understanding of the need for improvements, the feeling of ownership in achieving them and the safety culture as a whole. Although the primary beneficiaries of the self-assessment process are the plant and operating organization, the results of the self-assessments are also used, for example, to increase the confidence of the regulator in the safe operation of an installation, and could be used to assist in meeting obligations under the Convention on Nuclear Safety. Such considerations influence the form of assessment, as well as the type and detail of the results. The concepts developed in this report present the basic approach to self-assessment, taking into consideration experience gained during Operational Safety Review Team (OSART) missions, from organizations and utilities which have successfully implemented parts of a self-assessment programme and from meetings organized to discuss the subject. This report will be used in IAEA sponsored workshops and seminars on operational safety that include the topic of self-assessment

  16. The European Stroke Organisation Guidelines: a standard operating procedure

    DEFF Research Database (Denmark)

    Ntaios, George; Bornstein, Natan M; Caso, Valeria

    2015-01-01

    pace with this progress and driven by the strong determination of the European Stroke Organisation to further promote stroke management, education, and research, the European Stroke Organisation decided to delineate a detailed standard operating procedure for its guidelines. There are two important...... cornerstones in this standard operating procedure: The first is the implementation of the Grading of Recommendations Assessment, Development, and Evaluation methodology for the development of its Guideline Documents. The second one is the decision of the European Stroke Organisation to move from the classical...... and significant input from European Stroke Organisation members as well as methodologists and analysts, this document presents the official standard operating procedure for the development of the Guideline Documents of the European Stroke Organisation....

  17. Reactor operation feed-back in France

    International Nuclear Information System (INIS)

    Feltin, C.; Fourest, B.; Libmann, J.

    1982-09-01

    The Nuclear Safety Department (DSN), technical support of French Safety Authorities, is, in particular, in charge of the analysis of reactor operation and of measures taken consequently to incidents. It proposed the criteria used to select significant incidents; it analyzes such incidents. DSN also analyzes the operating experience of each plant, several years after starting. It examines foreign incidents to assess in what extent lessons learned can be applied to french reactors. The examples presented show that to improve the safety of units operation, the experience feed-back leads to make arrangements, or modifications concerning not only circuits or materials but often procedures. Moreover they show the importance of procedures concerning the operations carried out during reactor shutdown

  18. IAEA Operational Safety Team Reviews Cattenom Nuclear Power Plant

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: An international team of nuclear installation safety experts led by the International Atomic Energy Agency (IAEA) has reviewed operational safety at France's Cattenom Nuclear Power Plant (NPP) noting a series of good practices as well as recommendations and suggestions to reinforce them. The IAEA assembled an international team of experts at the request of the Government of France to conduct an Operational Safety Review (OSART) of Cattenom NPP. Under the leadership of the IAEA's Division of Nuclear Installation Safety in Vienna, the OSART team performed an in-depth operational safety review of the plant from 14 November to 1 December 2011. The team was made up of experts from Belgium, the Czech Republic, Finland, Germany, Hungary, Japan, Russia, Slovakia, South Africa, Sweden, Ukraine, the United Kingdom and the IAEA. The team at Cattenom conducted an in-depth review of the aspects essential to the safe operation of the NPP, which is largely under the control of the site management. The conclusions of the review are based on the IAEA's Safety Standards. The review covered the areas of Management, Organization and Administration; Training and Qualification; Operations; Maintenance; Technical Support; Operating Experience; Radiation Protection; Chemistry; Emergency Planning and Preparedness; and Severe Accident Management. Cattenom is the first plant in Europe to voluntarily undertake a Severe Accident Management review during an OSART review. The OSART team has identified good plant practices, which will be shared with the rest of the nuclear industry for consideration of their application. Examples include: Sheets are displayed in storage areas where combustible material is present - these sheets are updated readily and accurately by the area owner to ensure that the fire limits are complied with; A simple container is attached to the neutron source handling device to ensure ease and safety of operations and reduce possible radiation exposure during use

  19. Operating safety requirements for the intermediate level liquid waste system

    International Nuclear Information System (INIS)

    1980-07-01

    The operation of the Intermediate Level Liquid Waste (ILW) System, which is described in the Final Safety Analysis, consists of two types of operations, namely: (1) the operation of a tank farm which involves the storage and transportation through pipelines of various radioactive liquids; and (2) concentration of the radioactive liquids by evaporation including rejection of the decontaminated condensate to the Waste Treatment Plant and retention of the concentrate. The following safety requirements in regard to these operations are presented: safety limits and limiting control settings; limiting conditions for operation; and surveillance requirements. Staffing requirements, reporting requirements, and steps to be taken in the event of an abnormal occurrence are also described

  20. Safety, danger and catastrophe inevitability in operation of safety-critical software algorithms: a possible new look at software safety analysis

    International Nuclear Information System (INIS)

    Povyakalo, A.A.

    2000-01-01

    The paper provides basic definitions and describes the basic procedure of the Formal Qualitative Safety Analysis (FQSA) of critical software algorithms. The procedure is described by C-based pseudo-code. It uses the notion of weakest precondition and representation of a given critical algorithm by a Gurevich's Abstract State Mashine (GASM). For a given GASM and a given Catastrophe Condition the procedure results in a Catastrophe Inevitability Condition (it means that every sequence of algorithm steps lead to a catastrophe early or late), Danger Condition (it means that next step may lead to a catastrophe or make a catastrophe to be inevitable, but a catastrophe may be prevented yet), Safety Condition (it means that a next step can not lead to a catastrophe or make a catastrophe to be inevitable). The using of proposed procedure is illustrated by a simplest test example of algorithm. The FQSA provides a logical basis for PSA of critical algorithm. (author)

  1. The work of the Operational Safety Review Team (OSART)

    International Nuclear Information System (INIS)

    Hide, K.W.

    1996-01-01

    The Operational Safety Review Team (OSART) programme was set up by the IAEA in 1982 to assist Member States to enhance the operational safety of nuclear power plants. Each team is staffed by senior experts in the relevant fields. The review team discusses with plant staff the existing operational programmes for plant which may be under construction, being commissioned or already operating. Following a detailed examination of a safety programme, the OSART team lists strengths and weaknesses and makes recommendations on how to overcome the latter. Since their conclusions are based on the best prevailing international practice, they may be more stringent than those based on national criteria. The results of the 77 missions conducted at 62 plants in 28 countries by the end of 1994 are summarised. (UK)

  2. Waste Encapsulation and Storage Facility interim operational safety requirements

    CERN Document Server

    Covey, L I

    2000-01-01

    The Interim Operational Safety Requirements (IOSRs) for the Waste Encapsulation and Storage Facility (WESF) define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt and inspection of cesium and strontium capsules from private irradiators; decontamination of the capsules and equipment; surveillance of the stored capsules; and maintenance activities. Controls required for public safety, significant defense-in-depth, significant worker safety, and for maintaining radiological consequences below risk evaluation guidelines (EGs) are included.

  3. Safety Culture in Pre-operational Phases of Nuclear Power Plant Projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    An abundance of information exists on safety culture related to the operational phases of nuclear power plants; however, pre-operational phases present unique challenges. This publication focuses on safety culture during pre-operational phases that span the interval from before a decision to launch a nuclear power programme to first fuel load. It provides safety culture insights and focuses on eight generic issues: safety culture understanding; multicultural aspects; leadership; competencies and resource competition; management systems; learning and feedback; cultural assessments; and communication. Each issue is discussed in terms of: specific challenges; desired state; approaches and methods; and examples and resources. This publication will be of interest to newcomers and experienced individuals faced with the opportunities and challenges inherent in safety culture programmes aimed at pre-operational activities.

  4. Safety Culture in Pre-operational Phases of Nuclear Power Plant Projects

    International Nuclear Information System (INIS)

    2012-01-01

    An abundance of information exists on safety culture related to the operational phases of nuclear power plants; however, pre-operational phases present unique challenges. This publication focuses on safety culture during pre-operational phases that span the interval from before a decision to launch a nuclear power programme to first fuel load. It provides safety culture insights and focuses on eight generic issues: safety culture understanding; multicultural aspects; leadership; competencies and resource competition; management systems; learning and feedback; cultural assessments; and communication. Each issue is discussed in terms of: specific challenges; desired state; approaches and methods; and examples and resources. This publication will be of interest to newcomers and experienced individuals faced with the opportunities and challenges inherent in safety culture programmes aimed at pre-operational activities.

  5. Evaluation of operating experience with safety values

    International Nuclear Information System (INIS)

    Bung, W.; Hoemke, P.; Oberender, W.; Paul, H.; Rueter, W.

    1985-01-01

    This report describes statistical investigations of 2076 functional tests carried out on power operated safety valves in conventional power plants in 1972 until 1983 with special regard to Common Mode-Failures. The results clearly show that Common Mode-Failures play an important part of non-availability for the controlled safety valves, especially in the control system. The 'Deutsche Risikostudie' does not consider any Common Mode-Failures of the primary safety valves. However there is no significant increase of the risk resulted by the primary safety valves in the 'Referenzanlage' if the calculated Common Mode-Failures probabilities are considered. (orig.) [de

  6. Emergency operating procedure upgrade program and audit results

    International Nuclear Information System (INIS)

    Graham, P.D.

    1989-01-01

    This paper describes the method and results of upgrading the River Bend station boiling water reactor 6 emergency operating procedures (EOPs). The upgrade program replaced difficult-to-implement narrative procedures with well-developed flowcharts. The flowcharts eliminate a number of human factors problems, are user friendly, provide for easy implementation, and provide technical information in a clear, concise format. Positive results were seen immediately. The operating crews found the flowcharts to be clear, understandable, and usable. Simulator training and EOP implementation became something that the operators no longer dreaded, and their confidence in their ability to control emergency situations was greatly improved. The paper provides a summary of the EOP upgrade program

  7. Surry Power Station, Units 1 and 2. Annual operating report: January--December 1977, volume I--introduction, summary of operating experience; changes, tests, experiments, and safety-related maintenance; effluent releases; data tabulations

    International Nuclear Information System (INIS)

    1978-01-01

    A chronological operating sequence including shutdowns and occurrences during the year which required load reductions or resulted in non-load related incidents is given. Data are presented concerning plant and procedure changes, tests, experiments, safety related maintenance, effluent releases and personnel radiation exposures

  8. DASS: A decision aid integrating the safety parameter display system and emergency functional recovery procedures. Final report

    International Nuclear Information System (INIS)

    Johnson, S.E.

    1984-08-01

    Using a stand-alone developmental test-bed consisting of a minicomputer and a high-resolution color graphics computer, displays and supporting software incorporating advanced on-line decision-aid concepts were developed and evaluated. The advanced concepts embodied in displays designed for the operating crew of a PWR plant include: (1) an integrated display format which supports a top-down approach to problem detection, recovery planning, and control; (2) introduction of nonobservable plant parameters derived from first principles mass and energy balances as part of the displayed information; and (3) systematic processing and display of key success path (plant safety system) attributes. The prototype system, referred to as the PWR-DASS (Disturbance Analysis and Surveillance System), consists of 18 displays targeted for principal use by the control room systems manager. PWR-DASS was conceived to fulfill an operational void not fully supported by safety parameter display systems or reformulated emergency procedure guidelines. The results from the evaluation by licensed operators suggest that organization and display of desired critical safety function and success path information as incorporated in the PWR-DASS prototype can support the systems manager's overview. The results also point to the need for several refinements required for a field grade system, and to the need for a simulator-based evaluation of the prototype or its successor. (author)

  9. Procedures manual for the Oak Ridge Electron Linear Accelerator

    International Nuclear Information System (INIS)

    Todd, H.A.

    1979-01-01

    The Procedures Manual for the Oak Ridge Electron Linear Accelerator contains specific information pertaining to operation and safety of the facility. Items such as the interlock system, radiation monitoring, emergency procedures, night shift and weekend operation, and maintenance are discussed in detail

  10. The procedures used to review safety analysis reports for packagings submitted to the US Department of Energy for certification

    International Nuclear Information System (INIS)

    Popper, G.F.; Raske, D.T.; Turula, P.

    1988-01-01

    This paper presents an overview of the procedures used at the Argonne National Laboratory (ANL) to review Safety Analysis Reports for Packagings (SARPs) submitted to the US Department of Energy (DOE) for issuance of a Certificate of Compliance. Prior to certification and shipment of a packaging for the transport of radioactive materials, a SARP must be prepared describing the design, contents, analyses, testing, and safety features of the packaging. The SARP must be reviewed to ensure that the specific packaging meets all DOE orders and federal regulations for safe transport. The ANL SARP review group provides an independent review and evaluation function for the DOE to ensure that the packaging meets all the prescribed requirements. This review involves many disciplines and includes evaluating the general information, drawings, construction details, operating procedures, maintenance and test programs, and the quality assurance plan for compliance with requirements. 14 refs., 6 figs

  11. The step complexity measure for emergency operating procedures - comparing with simulation data

    International Nuclear Information System (INIS)

    Park, Jinkyun; Jung, Wondea; Kim, Jaewhan; Ha, Jaejoo; Shin, Yunghwa

    2001-01-01

    In complex systems, such as nuclear power plants (NPPs) or airplane control systems, human errors play a major role in many accidents. Therefore, to prevent occurrences of accidents or to ensure system safety, extensive effort has been made to identify significant factors that cause human errors. According to related studies, written manuals or operating procedures are revealed as one of the most important factors, and complexity or understandability of a procedure is pointed out as one of the major reasons that make procedure-related human errors. Many qualitative checklists are suggested to evaluate emergency operating procedures (EOPs) of NPPs. However, since qualitative evaluations using checklists have some drawbacks, a quantitative measure that can quantify the complexity of EOPs is imperative to compensate for them. In order to quantify the complexity of EOPs, Park et al. suggested the step complexity (SC) measure to quantify the complexity of a step included in EOPs. In this paper, to ensure the appropriateness of the SC measure, SC scores are compared with averaged step performance time data obtained from emergency training records. The total number of available records is 36, and training scenarios are the loss of coolant accident and the excess steam dump event. The number of scenario is 18 each. From these emergency training records, step performance time data for 39 steps are retrieved, and they are compared with estimated SC scores of them. In addition, several questions that are needed to clarify the appropriateness of the SC measure are also discussed. As a result, it was observed that estimated SC scores and step performance time data have a statistically meaningful correlation. Thus, it can be concluded that the SC measure can quantify the complexity of steps included in EOPs

  12. Development of a safety parameter supervision system for Angra-1

    International Nuclear Information System (INIS)

    Silva, R.A. da; Thome Filho, Z.D.; Schirru, R.; Martinez, A.S.; Oliveira, L.F.S. de

    1986-01-01

    The Safety Parameter Supervision System (SSPS) which is a computerized system for monitoring essential parameters in real time, determining the safety status and emergency procedures for returning normal reactor operation, in case of an anomaly occurrence, is presented. The SSPS consists of three sub-systems: Integrated parameter monitoring system which gives to operators an integrated vision of values of a parameter set, able to detect any deviation of normal reactor operation; safety critical function system which evaluates safety status in terms of a safety critical function set appointed in advance, and in case of violation of any critical function, it initiates the adequate emergency procedure to return normal operation; and safety parameter computer system which carries out the arquirement of analogic and digital control signals of nuclear power plant. (M.C.K.) [pt

  13. D0 Central Tracking Solenoid Energization, Controls, Interlocks and Quench Protection Operating Procedures

    International Nuclear Information System (INIS)

    Hance, R.

    1998-01-01

    This procedure is used when it is necessary to operate the solenoid energization, controls, interlocks and quench detection system. Note that a separate procedure exists for operating the solenoid 'cryogenic' systems. Only D0 Control Room Operators or the Project Electrical Engineer are qualified to execute these procedures or operate the solenoid system. This procedure assumes that the operator is familiar with using the Distributed Manufacturing Automation and Control Software (DMACS).

  14. Operation QUICKSILVER. Onsite radiological safety report, October 1978-September 1979

    International Nuclear Information System (INIS)

    Mullen, O.W.; Eubank, B.F.

    1980-02-01

    QUICKSILVER was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site from October 1, 1978 to September 30, 1979. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Monitors with portable radiation detection instruments surveyed reentry routes into ground zeroes before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific optional procedures are defined

  15. 40 CFR 68.69 - Operating procedures.

    Science.gov (United States)

    2010-07-01

    ...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.69 Operating procedures. (a) The... presented by, the chemicals used in the process; (ii) Precautions necessary to prevent exposure, including... instructions for safely conducting activities involved in each covered process consistent with the process...

  16. Guideline for the preparation of safe operating procedures

    International Nuclear Information System (INIS)

    Stinnett, L.; Armbrust, E.F.; Christy, V.W.; Doyle, J.R.; Kesinger, J.H.

    1977-03-01

    Sandia Laboratories Safe Operating Procedures (SOP) are written for activities which involve the use of explosives, dangerous chemicals, radioactive materials, hazardous systems, and certain types of operational facilities which present hazards. This guideline presents a suggested SOP format

  17. Oswer integrated health and safety standard operating practices. Directive

    International Nuclear Information System (INIS)

    1993-02-01

    The directive implements the OSWER (Office of Solid Waste and Emergency Response) Integrated Health and Safety Standards Operating Practices in conjunction with the OSHA (Occupational Safety and Health Act) Worker Protection Standards, replacing the OSWER Integrated Health and Safety Policy

  18. Evaluation of BOR-60 operation safety

    International Nuclear Information System (INIS)

    Minakov, A.A.; Antipin, G.K.; Efimov, V.N.; Kuzin, G.G.; Eschenko, L.V.; Eschenko, S.N.

    1987-12-01

    In this communication, BOR-60 reactor operation anomalies capable to produce a dangerous overheating of the core (SDC) is examined. On bases of calculations and reactor operation experience an event tree for SDC is built. Evaluations of probable anomalies entering in the event tree and reactor parameters modifications in case of anomalies are presented. In conclusion BOR-60 agree with the sovietic nuclear safety [fr

  19. Improving plant state information for better operational safety

    International Nuclear Information System (INIS)

    Girard, C.; Olivier, E.; Grimaldi, X.

    1994-01-01

    Nuclear Power Plant (NPP) safety is strongly dependent on components' reliability and particularly on plant state information reliability. This information, used by the plant operators in order to produce appropriate actions, have to be of a high degree of confidence, especially in accidental conditions where safety is threatened. In this perspective, FRAMATOME, EDF and CEA have started a joint research program to prospect different solutions aiming at a better reliability for critical information needed to safety operate the plant. This paper gives the main results of this program and describes the developments that have been made in order to assess reliability of different information systems used in a Nuclear Power Plant. (Author)

  20. Operational safety performance indicators for nuclear power plants

    International Nuclear Information System (INIS)

    2000-05-01

    Since the late 1980s, the IAEA has been actively sponsoring work in the area of indicators to monitor nuclear power plant (NPP) operational safety performance. The early activities were mainly focused on exchanging ideas and good practices in the development and use of these indicators at nuclear power plants. Since 1995 efforts have been directed towards the elaboration of a framework for the establishment of an operational safety performance indicator programme. The result of this work, compiled in this publication, is intended to assist NPPs in developing and implementing a monitoring programme, without overlooking the critical aspects related to operational safety performance. The framework proposed in this report was presented at two IAEA workshops on operational safety performance indicators held in Ljubljana, Slovenia, in September 1998 and at the Daya Bay NPP, Szenzhen, China, in December 1998. During these two workshops, the participants discussed and brainstormed on the indicator framework presented. These working sessions provided very useful insights and ideas which where used for the enhancement of the framework proposed. The IAEA is acknowledging the support and contribution of all the participants in these two activities. The programme development was enhanced by pilot plant studies. Four plants from different countries with different designs participated in this study with the objective of testing the applicability, usefulness and viability of this approach

  1. The mediating role of integration of safety by activity versus operator between organizational culture and safety climate.

    Science.gov (United States)

    Auzoult, Laurent; Gangloff, Bernard

    2018-04-20

    In this study, we analyse the impact of the organizational culture and introduce a new variable, the integration of safety, which relates to the modalities for the implementation and adoption of safety in the work process, either through the activity or by the operator. One hundred and eighty employees replied to a questionnaire measuring the organizational climate, the safety climate and the integration of safety. We expected that implementation centred on the activity or on the operator would mediate the relationship between the organizational culture and the safety climate. The results support our assumptions. A regression analysis highlights the positive impact on the safety climate of organizational values of the 'rule' and 'support' type, as well as of integration by the operator and activity. Moreover, integration mediates the relation between these variables. The results suggest to take into account organizational culture and to introduce different implementation modalities to improve the safety climate.

  2. Probabilistic safety analysis procedures guide, Sections 8-12. Volume 2, Rev. 1

    International Nuclear Information System (INIS)

    McCann, M.; Reed, J.; Ruger, C.; Shiu, K.; Teichmann, T.; Unione, A.; Youngblood, R.

    1985-08-01

    A procedures guide for the performance of probabilistic safety assessment has been prepared for interim use in the Nuclear Regulatory Commission programs. It will be revised as comments are received, and as experience is gained from its use. The probabilistic safety assessment studies performed are intended to produce probabilistic predictive models that can be used and extended by the utilities and by NRC to sharpen the focus of inquiries into a range of issues affecting reactor safety. The first volume of the guide describes the determination of the probability (per year) of core damage resulting from accident initiators internal to the plant (i.e., intrinsic to plant operation) and from loss of off-site electric power. The scope includes human reliability analysis, a determination of the importance of various core damage accident sequences, and an explicit treatment and display of uncertainties for key accident sequences. This second volume deals with the treatment of the so-called external events including seismic disturbances, fires, floods, etc. Ultimately, the guide will be augmented to include the plant-specific analysis of in-plant processes (i.e., containment performance). This guide provides the structure of a probabilistic safety study to be performed, and indicates what products of the study are valuable for regulatory decision making. For internal events, methodology is treated in the guide only to the extent necessary to indicate the range of methods which is acceptable; ample reference is given to alternative methodologies which may be utilized in the performance of the study. For external events, more explicit guidance is given

  3. The development of symptoms-oriented operating procedures

    International Nuclear Information System (INIS)

    Colquhoun, R.

    1983-04-01

    Until recently the formal treatment of control room procedures for nuclear power plant upset conditions has been event-oriented. The demise of Three Mile Island, Unit 2, caused the American industry to recognize the pitfalls inherent in relying totally on event-oriented procedures, and led to the initiation of a program for the development of a symptoms-oriented approach for handling upset conditions. The U.S. program has been independently paralleled by a Canadian program. This paper describes the development of the Canadian symptoms-oriented philosophy and identifies the relevance of a generic symptoms based emergency procedure to current operating practices

  4. Fuel Supply Shutdown Facility Interim Operational Safety Requirements

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2000-01-01

    The Interim Operational Safety Requirements for the Fuel Supply Shutdown (FSS) Facility define acceptable conditions, safe boundaries, bases thereof, and management of administrative controls to ensure safe operation of the facility

  5. Electronic Procedures for Medical Operations, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Electronic procedures are currently being used to document the steps in performing medical operations for the Space Shuttle and/or the International Space Station...

  6. Method of operator safety assessment for underground mobile mining equipment

    Science.gov (United States)

    Działak, Paulina; Karliński, Jacek; Rusiński, Eugeniusz

    2018-01-01

    The paper presents a method of assessing the safety of operators of mobile mining equipment (MME), which is adapted to current and future geological and mining conditions. The authors focused on underground mines, with special consideration of copper mines (KGHM). As extraction reaches into deeper layers of the deposit it can activate natural hazards, which, thus far, have been considered unusual and whose range and intensity are different depending on the field of operation. One of the main hazards that affect work safety and can become the main barrier in the exploitation of deposits at greater depths is climate threat. The authors have analysed the phenomena which may impact the safety of MME operators, with consideration of accidents that have not yet been studied and are not covered by the current safety standards for this group of miners. An attempt was made to develop a method for assessing the safety of MME operators, which takes into account the mentioned natural hazards and which is adapted to current and future environmental conditions in underground mines.

  7. Method of operator safety assessment for underground mobile mining equipment

    Directory of Open Access Journals (Sweden)

    Działak Paulina

    2018-01-01

    Full Text Available The paper presents a method of assessing the safety of operators of mobile mining equipment (MME, which is adapted to current and future geological and mining conditions. The authors focused on underground mines, with special consideration of copper mines (KGHM. As extraction reaches into deeper layers of the deposit it can activate natural hazards, which, thus far, have been considered unusual and whose range and intensity are different depending on the field of operation. One of the main hazards that affect work safety and can become the main barrier in the exploitation of deposits at greater depths is climate threat. The authors have analysed the phenomena which may impact the safety of MME operators, with consideration of accidents that have not yet been studied and are not covered by the current safety standards for this group of miners. An attempt was made to develop a method for assessing the safety of MME operators, which takes into account the mentioned natural hazards and which is adapted to current and future environmental conditions in underground mines.

  8. Fuel supply shutdown facility interim operational safety requirements

    International Nuclear Information System (INIS)

    Besser, R.L.; Brehm, J.R.; Benecke, M.W.; Remaize, J.A.

    1995-01-01

    These Interim Operational Safety Requirements (IOSR) for the Fuel Supply Shutdown (FSS) facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls to ensure safe operation. The IOSRs apply to the fuel material storage buildings in various modes (operation, storage, surveillance)

  9. Operating manual for the Bulk Shielding Reactor

    International Nuclear Information System (INIS)

    1983-04-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxillary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supercedes all previous operating manuals for the BSR

  10. Operating manual for the Bulk Shielding Reactor

    International Nuclear Information System (INIS)

    1987-03-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxiliary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supersedes all previous operating manuals for the BSR

  11. Operating manual for the Bulk Shielding Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxiliary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supersedes all previous operating manuals for the BSR.

  12. Operating manual for the Bulk Shielding Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxillary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supercedes all previous operating manuals for the BSR.

  13. Safety inspections to TRIGA reactors

    International Nuclear Information System (INIS)

    Byszewski, W.

    1988-01-01

    The operational safety advisory programme was created to provide useful assistance and advice from an international perspective to research reactor operators and regulators on how to enhance operational safety and radiation protection on their reactors. Safety missions cover not only the operational safety of reactors themselves, but also the safety of associated experimental loops, isotope laboratories and other experimental facilities. Safety missions are also performed on request in other Member States which are interested in receiving impartial advice and assistance in order to enhance the safety of research reactors. The results of the inspections have shown that in some countries there are problems with radiation protection practices and nuclear safety. Very often the Safety Analysis Report is not updated, regulatory supervision needs clarification and improvement, maintenance procedures should be more formalised and records and reports are not maintained properly. In many cases population density around the facility has increased affecting the validity of the original safety analysis

  14. Guide for training nuclear power plant operators

    International Nuclear Information System (INIS)

    Cox, J.A.; Cagle, C.D.; Corbett, B.L.; Culbert, W.H.; Hamrick, T.P.; Hurt, S.S.; McCord, R.V.; Poteet, K.H.; Bates, A.E.G.; Casto, W.R.

    1977-01-01

    Topics covered include basic preparation, radiation safety and control, principles of reactor operation, general operating characteristics, facility design, safety systems, instrumentation, reactor theory, fuel handling and core parameters, radioactive material handling, and administrative procedures

  15. Convention on nuclear safety. Rules of procedure and financial rules

    International Nuclear Information System (INIS)

    1999-01-01

    The document is the first revision of the Rules of Procedures and Financial Rules that apply mutatis mutandis to any meetings of the Contracting Parties to the Convention on Nuclear Safety (INFCIRC/573), convened in accordance with the Chapter 3 of the Convention

  16. Convention on Nuclear Safety. Rules of procedure and financial rules

    International Nuclear Information System (INIS)

    2002-01-01

    The document is the second revision of the Rules of Procedures and Financial Rules that apply mutatis mutandis to any meetings of the Contracting Parties to the Convention on Nuclear Safety (INFCIRC/573), convened in accordance with the Chapter 3 of the Convention

  17. Procedures to relate the NII safety assessment principles for nuclear reactors to risk

    CERN Document Server

    Kelly, G N; Hemming, C R

    1985-01-01

    Within the framework of the Public Inquiry into the proposed pressurised water reactor (PWR) at Sizewell, estimates were made of the levels of individual and societal risk from a PWR designed in a manner which would conform to the safety assessment principles formulated by the Nuclear Installations Inspectorate (NII). The procedures used to derive these levels of risk are described in this report. The opportunity has also been taken to revise the risk estimates made at the time of the Inquiry by taking account of additional data which were not then available, and to provide further quantification of the likely range of uncertainty in the predictions. This re-analysis has led to small changes in the levels of risk previously evaluated, but these are not sufficient to affect the broad conclusions reached before. For a reactor just conforming to the NII safety assessment principles a maximum individual risk of fatal cancer of about 10 sup - sup 6 per year of reactor operation has been estimated; the societal ris...

  18. Risk and safety requirements for diagnostic and therapeutic procedures in allergology: World Allergy Organization Statement

    Directory of Open Access Journals (Sweden)

    Marek L. Kowalski

    2016-10-01

    Full Text Available Abstract One of the major concerns in the practice of allergy is related to the safety of procedures for the diagnosis and treatment of allergic disease. Management (diagnosis and treatment of hypersensitivity disorders involves often intentional exposure to potentially allergenic substances (during skin testing, deliberate induction in the office of allergic symptoms to offending compounds (provocation tests or intentional application of potentially dangerous substances (allergy vaccine to sensitized patients. These situations may be associated with a significant risk of unwanted, excessive or even dangerous reactions, which in many instances cannot be completely avoided. However, adverse reactions can be minimized or even avoided if a physician is fully aware of potential risk and is prepared to appropriately handle the situation. Information on the risk of diagnostic and therapeutic procedures in allergic diseases has been accumulated in the medical literature for decades; however, except for allergen specific immunotherapy, it has never been presented in a systematic fashion. Up to now no single document addressed the risk of the most commonly used medical procedures in the allergy office nor attempted to present general requirements necessary to assure the safety of these procedures. Following review of available literature a group of allergy experts within the World Allergy Organization (WAO, representing various continents and areas of allergy expertise, presents this report on risk associated with diagnostic and therapeutic procedures in allergology and proposes a consensus on safety requirements for performing procedures in allergy offices. Optimal safety measures including appropriate location, type and required time of supervision, availability of safety equipment, access to specialized emergency services, etc. for various procedures have been recommended. This document should be useful for allergists with already established

  19. Operational safety experience feedback by means of unusual event reports

    International Nuclear Information System (INIS)

    1996-07-01

    Operational experience of nuclear power plants can be used to great advantage to enhance safety performance provided adequate measures are in place to collect and analyse it and to ensure that the conclusions drawn are acted upon. Feedback of operating experience is thus an extremely important tool to ensure high standards of safety in operational nuclear power plants and to improve the capability to prevent serious accidents and to learn from minor deviations and equipment failures - which can serve as early warnings -to prevent even minor events from occurring. Mechanisms also need to be developed to ensure that operating experience is shared both nationally as well as internationally. The operating experience feedback process needs to be fully and effectively established within the nuclear power plant, the utility, the regulatory organization as well as in other institutions such as technical support organizations and designers. The main purpose of this publication is to reflect the international consensus as to the general principles and practices in the operational safety experience feedback process. The examples of national practices for the whole or for particular parts of the process are given in annexes. The publication complements the IAEA Safety Series No.93 ''Systems for Reporting Unusual Events in Nuclear Power Plants'' (1989) and may also give a general guidance for Member States in fulfilling their obligations stipulated in the Nuclear Safety Convention. Figs, tabs

  20. Operational safety experience feedback by means of unusual event reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Operational experience of nuclear power plants can be used to great advantage to enhance safety performance provided adequate measures are in place to collect and analyse it and to ensure that the conclusions drawn are acted upon. Feedback of operating experience is thus an extremely important tool to ensure high standards of safety in operational nuclear power plants and to improve the capability to prevent serious accidents and to learn from minor deviations and equipment failures - which can serve as early warnings -to prevent even minor events from occurring. Mechanisms also need to be developed to ensure that operating experience is shared both nationally as well as internationally. The operating experience feedback process needs to be fully and effectively established within the nuclear power plant, the utility, the regulatory organization as well as in other institutions such as technical support organizations and designers. The main purpose of this publication is to reflect the international consensus as to the general principles and practices in the operational safety experience feedback process. The examples of national practices for the whole or for particular parts of the process are given in annexes. The publication complements the IAEA Safety Series No.93 ``Systems for Reporting Unusual Events in Nuclear Power Plants`` (1989) and may also give a general guidance for Member States in fulfilling their obligations stipulated in the Nuclear Safety Convention. Figs, tabs.

  1. Safety aspects of a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Donoghue, J.K.; Charlesworth, F.R.; Fairbairn, A.

    1977-01-01

    The establishment of the basic process must include the determination of the sensitivity of the process to operational errors or plant failures. The probability, and consequences of escapes of activity must be evaluated and emergency procedures set up to deal with accidents which might lead to such escapes. The administrative arrangements for safety should include a safety evaluation and advisory service independent of line management. A quality assurance strategy for the construction and commissioning stages is important. The design and construction of the plant must include: (i) Attention to plant reliability. Maintenance and inspection procedures to maintain reliability must be adopted and the design should include measures to facilitate in-service inspection of highly-active plant. (ii) Suitable and sufficient means of detection and prevention of malfunction, including criticality, bearing in mind both the timescale of development of the fault and its consequences. (iii) Measures for containment of activity. Penetrations from active into operating areas should be eliminated or minimised and maintenance should be separated from operational areas. Secondary containment beyond that provided for operations of a significant magnitude. A ventilation system with appropriate gas clean-up, monitoring and discharge facilities is required. (iv) Adequate shielding, with particular attention paid to multiple activities in a single operational area which might lead to an operator being exposed to radiation from operations which are beyond his control. (v) Means of accounting for active materials and for their recovery, transfer and disposal in the event of a forced shut down. (vi) Suitable methods for segregation and control of wastes within the plant and for their discharge. Solid or liquid wastes should be subject to delay and monitoring procedures before release. Facilities for storage of waste must be subject to the same safety principles as the plant itself. (vii) Final

  2. Safety culture in the gynecology robotics operating room.

    Science.gov (United States)

    Zullo, Melissa D; McCarroll, Michele L; Mendise, Thomas M; Ferris, Edward F; Roulette, G D; Zolton, Jessica; Andrews, Stephen J; von Gruenigen, Vivian E

    2014-01-01

    To measure the safety culture in the robotics surgery operating room before and after implementation of the Robotic Operating Room Computerized Checklist (RORCC). Prospective study. Gynecology surgical staff (n = 32). An urban community hospital. The Safety Attitudes Questionnaire domains examined were teamwork, safety, job satisfaction, stress recognition, perceptions of management, and working conditions. Questions and domains were described using percent agreement and the Cronbach alpha. Paired t-tests were used to describe differences before and after implementation of the checklist. Mean (SD) staff age was 46.7 (9.5) years, and most were women (78%) and worked full-time (97%). Twenty respondents (83% of nurses, 80% of surgeons, 66% of surgical technicians, and 33% of certified registered nurse anesthetists) completed the Safety Attitudes Questionnaire; 6 were excluded because of non-matching identifiers. Before RORCC implementation, the highest quality of communication and collaboration was reported by surgeons and surgical technicians (100%). Certified registered nurse anesthetists reported only adequate levels of communication and collaboration with other positions. Most staff reported positive responses for teamwork (48%; α = 0.81), safety (47%; α = 0.75), working conditions (37%; α = 0.55), stress recognition (26%; α = 0.71), and perceptions of management (32%; α = 0.52). No differences were observed after RORCC implementation. Quality of communication and collaboration in the gynecology robotics operating room is high between most positions; however, safety attitude responses are low overall. No differences after RORCC implementation and low response rates may highlight lack of staff support. Copyright © 2014. Published by Elsevier Inc.

  3. Developing operating procedures for a low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

    1993-10-01

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures.

  4. Developing operating procedures for a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G.

    1993-10-01

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures

  5. Safety culture in nuclear installations. Management of safety and safety culture in Indian NPPs

    International Nuclear Information System (INIS)

    Rawal, S.C.

    2002-01-01

    Nuclear Power Corporation Of India Ltd. (NPCIL) is a company owned by Government of India and is responsible for Design, Construction, Commissioning, Operation and Decommissioning of Nuclear Power plants in India. Presently, a total of 13 Nuclear power Stations are in operation with an installed capacity of 2620 MWe and 2 VVR type PWR Units of 1000 MWe capacity each, 2 PHWR type units of 500 MWe capacity each and 4 PHWR type 220 MWe capacity each are under construction. NPPs generation capacity has been increased from 70% to 85% in the span Of last 7 years with high level of safety standards. This could be achieved through Management commitment towards building a strong Safety Culture. Safety culture is that assembly of characteristics and attitudes in organisation and individuals which establishes that as an overriding priority nuclear plant safety issues receives the attention warranted by their significance. This definition of safety culture brings out two major components in its manifestation. The framework within which individuals within the organisation works.The attitude and response of individual towards the safety issues over productivity and economics in the organisational work practices. The two attributes of safety culture are built in and upgraded in each individuals through special training at the time of entry in the organisation and later through in built procedures in the work practices, motivation and encouragement for free participation of each individuals. Individuals are encouraged to participate in Quality circle teams at the sectional level and review of safety proposal originated by individuals in Station operation Review Committee at Station level, in addition to this to continuously enhance the safety culture, refresher training courses are being organised at regular intervals. The safety related proposals are categorised in to two namely: Proposals from Operating Plants, and Proposals from projects and Design. The concept of safety

  6. The development of NPP operational safety training courses

    International Nuclear Information System (INIS)

    Lee, Chang Kun; Lee, Duk Sun; Lee, Byung Sun; Lee, Won Koo; Juhn, Heng Run; Moon, Byung Soo; Cho, Min Sik; Lee, Han Young; Moon, Hak Won; Seo, Yeon Ho

    1987-12-01

    The objective of the project is to develop a training course text for the betterment of reactor operation and assurance of its safety in general by providing training materials of the advanced compact nuclear simulator which will become operation in September 1988. Main scope and contents of the project are as follows: - compilation of basic data related to simulator operation and maintenance as well as the comparative analysis with respect to simulator materials in foreign countries - method of training by simulator - review the training status by simulator in foreign countries - development of training course in the field of reactor safety It is expected that the results will be reflected to the actual training and retraining of the reactor operating crew so as to improve and update their capabilities in training fashion. (Author)

  7. Safety related experience in FFTF startup and operation

    International Nuclear Information System (INIS)

    Peterson, R.E.; Halverson, T.G.; Daughtry, J.W.

    1982-06-01

    The Fast Flux Test Facility (FFTF) is a 400 MW(t) sodium cooled fast reactor operating at the Hanford Engineering Development Laboratory, Richland, Washington, to conduct fuels and materials testing in support of the US LMFBR program. Startup and initial power ascension testing of the facility involved a comprehensive series of readiness reviews and acceptance tests, many of which relate to the inherent safety of the plant. Included are physics measurements, natural circulation, integrated containment leakage, shielding effectiveness, fuel failure detection, and plant protection system tests. Described are the measurements taken to confirm the design safety margins upon which the operating authorization of the plant was based. These measurements demonstrate that large margins of safety are available in the FFTF design

  8. Integrated model of port oil piping transportation system safety including operating environment threats

    Directory of Open Access Journals (Sweden)

    Kołowrocki Krzysztof

    2017-06-01

    Full Text Available The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  9. Integrated model of port oil piping transportation system safety including operating environment threats

    OpenAIRE

    Kołowrocki, Krzysztof; Kuligowska, Ewa; Soszyńska-Budny, Joanna

    2017-01-01

    The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  10. UNC Nuclear Industries' human-factored approach to the operating or maintenance procedure

    International Nuclear Information System (INIS)

    Nelson, A.A.; Clark, J.E.

    1982-01-01

    The development of Human Factors Engineering (HFE) and UNC Nuclear Industries' (UNC) commitment to minimizing the potential for human error in the performance of operating or maintenance procedures have lead to a procedure upgrade program. Human-factored procedures were developed using information from many sources including, but not limited to, operators, a human factors specialist, engineers and supervisors. This has resulted in the Job Performance Aid (JPA). This paper presents UNC's approach to providing human-factored operating and maintenance procedures

  11. Safety of research reactors (Design and Operation)

    International Nuclear Information System (INIS)

    Dirar, H. M.

    2012-06-01

    The primary objective of this thesis is to conduct a comprehensive up-to-date literature review on the current status of safety of research reactor both in design and operation providing the future trends in safety of research reactors. Data and technical information of variety selected historical research reactors were thoroughly reviewed and evaluated, furthermore illustrations of the material of fuel, control rods, shielding, moderators and coolants used were discussed. Insight study of some historical research reactors was carried with considering sample cases such as Chicago Pile-1, F-1 reactor, Chalk River Laboratories,. The National Research Experimental Reactor and others. The current status of research reactors and their geographical distribution, reactor category and utilization is also covered. Examples of some recent advanced reactors were studied like safety barriers of HANARO of Korea including safety doors of the hall and building entrance and finger print identification which prevent the reactor from sabotage. On the basis of the results of this research, it is apparent that a high quality of safety of nuclear reactors can be attained by achieving enough robust construction, designing components of high levels of efficiency, replacing the compounds of the reactor in order to avoid corrosion and degradation with age, coupled with experienced scientists and technical staffs to operate nuclear research facilities.(Author)

  12. Enhancing Safety at Airline Operations Control Centre

    Directory of Open Access Journals (Sweden)

    Lukáš Řasa

    2015-04-01

    Full Text Available In recent years a new term of Safety Management System (SMS has been introduced into aviation legislation. This system is being adopted by airline operators. One of the groundbased actors of everyday operations is Operations Control Centre (OCC. The goal of this article has been to identify and assess risks and dangers which occur at OCC and create a template for OCC implementation into SMS.

  13. Joint operating agreements - health and safety and employment issues

    International Nuclear Information System (INIS)

    Molnar, L.F.

    1999-01-01

    The extent of non-operator exposure to health and safety and other employment liability is considered. Under the terms of the Canadian Association of Petroleum Landman agreements, the designated operator is the sole employer for joint operations. By these terms, the placement of responsibility for employees involved in a joint operation appears clear. It is to rest with the operator alone. As such, one would expect that the non-operator would be free from liabilities arising out of the employment relations of a project. It has been held, in cases of interrelated companies, that an individual can be an employee of more than one company at the same time. Alberta's Occupational Health and Safety Act, as well as the similar Acts in other provinces, impose a hierarchy of duties and obligations not only on employers but also upon contractors, suppliers and workers to ensure that safety is secured. Relevant definitions in the Act state this. An employer of an employee is vicariously liable for torts committed by the employee in the course of his employment. The questions are asked of what happens if a non-operator lends an employee to the operator and the employee tortiously injures a third party, and if the temporary employer, the operator, becomes the employer in the event of vicarious liability. 20 refs

  14. Process hazards analysis (PrHA) program, bridging accident analyses and operational safety

    International Nuclear Information System (INIS)

    Richardson, J.A.; McKernan, S.A.; Vigil, M.J.

    2003-01-01

    Recently the Final Safety Analysis Report (FSAR) for the Plutonium Facility at Los Alamos National Laboratory, Technical Area 55 (TA-55) was revised and submitted to the US. Department of Energy (DOE). As a part of this effort, over seventy Process Hazards Analyses (PrHAs) were written and/or revised over the six years prior to the FSAR revision. TA-55 is a research, development, and production nuclear facility that primarily supports US. defense and space programs. Nuclear fuels and material research; material recovery, refining and analyses; and the casting, machining and fabrication of plutonium components are some of the activities conducted at TA-35. These operations involve a wide variety of industrial, chemical and nuclear hazards. Operational personnel along with safety analysts work as a team to prepare the PrHA. PrHAs describe the process; identi fy the hazards; and analyze hazards including determining hazard scenarios, their likelihood, and consequences. In addition, the interaction of the process to facility systems, structures and operational specific protective features are part of the PrHA. This information is rolled-up to determine bounding accidents and mitigating systems and structures. Further detailed accident analysis is performed for the bounding accidents and included in the FSAR. The FSAR is part of the Documented Safety Analysis (DSA) that defines the safety envelope for all facility operations in order to protect the worker, the public, and the environment. The DSA is in compliance with the US. Code of Federal Regulations, 10 CFR 830, Nuclear Safety Management and is approved by DOE. The DSA sets forth the bounding conditions necessary for the safe operation for the facility and is essentially a 'license to operate.' Safely of day-to-day operations is based on Hazard Control Plans (HCPs). Hazards are initially identified in the PrI-IA for the specific operation and act as input to the HCP. Specific protective features important to worker

  15. A symptom based decision tree approach to boiling water reactor emergency operating procedures

    International Nuclear Information System (INIS)

    Knobel, R.C.

    1984-01-01

    This paper describes a Decision Tree approach to development of BWR Emergency Operating Procedures for use by operators during emergencies. This approach utilizes the symptom based Emergency Procedure Guidelines approved for implementation by the USNRC. Included in the paper is a discussion of the relative merits of the event based Emergency Operating Procedures currently in use at USBWR plants. The body of the paper is devoted to a discussion of the Decision Tree Approach to Emergency Operating Procedures soon to be implemented at two United States Boiling Water Reactor plants, why this approach solves many of the problems with procedures indentified in the post accident reviews of Three Mile Island procedures, and why only now is this approach both desirable and feasible. The paper discusses how nuclear plant simulators were involved in the development of the Emergency Operating Procedure decision trees, and in the verification and validation of these procedures. (orig./HP)

  16. Evaluation of operating experience for early recognition of deteriorating safety performance

    International Nuclear Information System (INIS)

    Beckmerhagen, I.A.; Berg, H.P.

    2004-01-01

    One of the most difficult challenges facing nuclear power plants is to recognize the early signs of degrading safety performance before regulatory requirements are imposed or serious incidents or accidents occur. Today, the nuclear industry is striving for collecting more information on occurrences that could improve the operational safety performance. To achieve this, the reporting threshold has been lowered from incidents to anomalies with minor or no impact to safety. Industry experience (also outside nuclear industry) has shown that these are typical issues which should be considered when looking for such early warning signs. Therefore, it is important that nuclear power plant operators have the capability to trend, analyse and recognize early warning signs of deteriorating performance. It is necessary that plant operators are sensitive to these warning signs which may not be immediately evident. Reviewing operating experience is one of the main tasks for plant operators in their daily activities. Therefore, self assessment should be at the centre of any operational safety performance programme. One way of applying a self assessment program is through the following four basic elements: operational data, events, safety basis, and related experience. This approach will be described in the paper in more details. (authors)

  17. Institutionalization of safety re-assessment system for operating nuclear power plants

    International Nuclear Information System (INIS)

    Kim, H. J.; Cho, J. C.; Min, B. K.; Park, J. S.; Jung, H. D.; Oh, K. M.; Kim, W. K.; Lim, J. H.

    1999-01-01

    In this study, in-depth reviews of the foreign countries' experiences and practices in applications of the periodic safety review (PSR), backfitting and license renewal systems as well as the current status of nuclear power safety assurance programs and activities in Korea have been performed to investigate the necessity and feasibility of the application of the systems for the domestic operating nuclear power plants and to establish effective strategy and methodology for the institutionalization of a periodic safety re-assessment system appropriate to both the domestic and international nuclear power environments by incorporating the PSR with the backfitting and license renewal systems. For these purposes, the regulatory policy, fundamental principles and detailed requirements for the institutionalization of the safety re-assessment system and the effective measures for active implementation of the backfitting program have been developed and then a comparative study of benefits and shortcomings has been conducted for the three different models of the periodic safety re-assessment system incorporated with either the license renewal or life extension process, which have been considered as practicable ones in the domestic situation. The model chosen in this study as the most appropriate safety re-assessment system is the one that the re-assessments are performed at the interval of ten years throughout the service life of nuclear power plant and the ten-year license renewal or life extension after the expiration of design life can be permitted based on the regulatory review of the re-assessment results and follow-up measures. Finally, this paper has discussed on the details of the requirements, approach and procedures established for the institutionalization of the periodic safety re-assessment system chosen as the most appropriate one for domestic applications

  18. International conference on the operational safety performance in nuclear installations. Contributed papers

    International Nuclear Information System (INIS)

    2005-01-01

    In 2001, the IAEA organized an 'International Conference on Topical Issues in Nuclear Safety'. The issues discussed during the conference were: (1) risk- informed decision-making; (2) influence of external factors on safety; (3) safety of fuel cycle facilities; (4) safety of research reactors; and (5) safety performance indicators. Senior nuclear safety decision makers reviewed the issues and formulated recommendations for future actions by national and international organizations. In 2004, the IAEA organized an 'International Conference on Topical Issues in Nuclear Safety' in Beijing China. The issues discussed during the conference were: (1) changing environment - coping with diversity and globalization; (2) operating experience - managing changes effectively; (3) regulatory management systems - adapting to changes in the environment; and (4) long term operations - maintaining safety margins while extending plant lifetimes. The results of this conference confirmed the importance of operators and regulators of nuclear facilities meeting periodically to share experience and opinion on emerging issues and future challenges of the nuclear industry. Substantial progress has been made, and continues to be made by Member States in enhancing the safety of nuclear installations worldwide. At the same time, more attention is being given to other areas of nuclear safety. The safety standards for research reactors are being updated and new standards are planned on the safety of other facilities in the nuclear fuel cycle. The Agency has taken a lead role in this effort and is receiving much support from its Member States to gain international consensus in these areas. The objective of the conference is to foster the exchange of information on operational safety performance and operating experience in nuclear installations, with the aim of consolidating an international consensus on: - the present status of these issues; - emerging issues with international implications

  19. Verification of a primary-to-secondary leaking safety procedure in a nuclear power plant using coloured Petri nets

    International Nuclear Information System (INIS)

    Nemeth, E.; Bartha, T.; Fazekas, Cs.; Hangos, K.M.

    2009-01-01

    This paper deals with formal and simulation-based verification methods of a PRImary-to-SEcondary leaking (abbreviated as PRISE) safety procedure. The PRISE safety procedure controls the draining of the contaminated water in a faulty steam generator when a non-compensable leaking from the primary to the secondary circuit occurs. Because of the discrete nature of the verification, a Coloured Petri Net (CPN) representation is proposed for both the procedure and the plant model. We have proved by using a non-model-based strategy that the PRISE safety procedure is safe, there are no dead markings in the state space, and all transitions are live; being either impartial or fair. Further analysis results have been obtained using a model-based verification approach. We created a simple, low dimensional, nonlinear dynamic model of the primary circuit in a VVER-type pressurized water nuclear power plant for the purpose of the model-based verification. This is in contrast to the widely used safety analysis that requires an accurate detailed model. Our model also describes the relevant safety procedures, as well as all of the major leaking-type faults. We propose a novel method to transform this model to a CPN form by discretization. The composed plant and PRISE safety procedure system has also been analysed by simulation using CPN analysis tools. We found by the model-based analysis-using both single and multiple faults-that the PRISE safety procedure initiates the draining when the PRISE event occurs, and no false alarm will be initiated

  20. Experience gained in enhancing operational safety at ComEd's nuclear power plants

    International Nuclear Information System (INIS)

    Elias, D.

    1997-01-01

    The following aspects of experience gained in enhancing operational safety at Comed's nuclear power plants are discussed: nuclear safety policy; centralization/decentralization; typical nuclear operating organization; safety review boards; human performance enhancement; elements of effective nuclear oversight

  1. Operational and safety requirement of radiation facility

    International Nuclear Information System (INIS)

    Zulkafli Ghazali

    2007-01-01

    Gamma and electron irradiation facilities are the most common industrial sources of ionizing radiation. They have been used for medical, industrial and research purposes since the 1950s. Currently there are more than 160 gamma irradiation facilities and over 600 electron beam facilities in operation worldwide. These facilities are either used for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, or the eradication of insect infestation. Irradiation with electron beam, gamma ray or ultra violet light can also destroy complex organic contaminants in both liquid and gaseous waste. EB systems are replacing traditional chemical sterilization methods in the medical supply industry. The ultra-violet curing facility, however, has found more industrial application in printing and furniture industries. Gamma and electron beam facilities produce very high dose rates during irradiation, and thus there is a potential of accidental exposure in the irradiation chamber which can be lethal within minutes. Although, the safety record of this industry has been relatively very good, there have been fatalities recorded in Italy (1975), Norway (1982), El Salvador (1989) and Israel (1990). Precautions against uncontrolled entry into irradiation chamber must therefore be taken. This is especially so in the case of gamma irradiation facilities those contain large amounts of radioactivity. If the mechanism for retracting the source is damaged, the source may remain exposed. This paper will, to certain extent, describe safety procedure and system being installed at ALURTRON, Nuclear Malaysia to eliminate accidental exposure of electron beam irradiation. (author)

  2. Nuclear electric power safety, operation, and control aspects

    CERN Document Server

    Knowles, J Brian

    2013-01-01

    Assesses the engineering of renewable sources for commercial power generation and discusses the safety, operation, and control aspects of nuclear electric power From an expert who advised the European Commission and UK government in the aftermath of Three Mile Island and Chernobyl comes a book that contains experienced engineering assessments of the options for replacing the existing, aged, fossil-fired power stations with renewable, gas-fired, or nuclear plants. From geothermal, solar, and wind to tidal and hydro generation, Nuclear Electric Power: Safety, Operation, and Control Aspects ass

  3. Modeling of the Operating Information for System of Logistical Support of the Hardware-software Means of Safety of the Distributed Systems for Data Processing

    Directory of Open Access Journals (Sweden)

    A. A. Durakovsky

    2010-03-01

    Full Text Available The technique of information modeling of processes and procedures making them by preparation of the operating information for system of logistical support of technological processes of operation and service of hardware-software means of safety of the distributed systems of data processing is offered. Procedures of preparation of the operating information for the system of logistical support of APSOB РСОД concern: working out and formalization of algorithm of functioning; construction of model of the functioning, allowing to calculate degree of risk of operation; decomposition of model and classification of its objects for the purpose of the unequivocal description of all elements of the operating information and mutual coordination of relations between information units.

  4. Task Analysis of Emergency Operating Procedures for Generating Quantitative HRA Data

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yochan; Park, Jinkyun; Kim, Seunghwan; Choi, Sun Yeong; Jung, Wondea; Jang, Inseok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, the analysis results of the emergency task in the procedures (EOPs; emergency operating procedures) that can be observed from the simulator data are introduced. The task type, component type, system type, and additional information related with the performance of the operators were described. In addition, a prospective application of the analyzed information to HEP quantification process was discussed. In the probabilistic safety analysis (PSA) field, various human reliability analyses (HRAs) have been performed to produce estimates of human error probabilities (HEPs) for significant tasks in complex socio-technical systems. To this end, Many HRA methods have provided basic or nominal HEPs for typical tasks and the quantitative relations describing how a certain performance context or performance shaping factors (PSFs) affects the HEPs. In the HRA community, however, the necessity of appropriate and sufficient human performance data has been recently indicated. This is because a wide range of quantitative estimates in the previous HRA methods are not supported by solid empirical bases. Hence, there have been attempts to collect HRA supporting data. For example, KAERI has started to collect information on both unsafe acts of operators and the relevant PSFs. A characteristic of the database that is being developed at KAERI is that human errors and related PSF surrogates that can be objectively observable are collected from full-scope simulator experiences. In this environment, to produce concretely grounded bases of the HEPs, the traits or attributes of tasks where significant human errors can be observed should be definitely determined. The determined traits should be applicable to compare the HEPs on the traits with the data in previous HRA methods or databases. In this study, task characteristics in a Westinghouse type of EOPs were analyzed with the defining task, component, and system taxonomies.

  5. Operational safety analysis status of Novi Han repository

    International Nuclear Information System (INIS)

    Boiadjiev, A.

    2000-01-01

    This article presents the status of the safety studies and activities related to Novi Han repository. The case of this facility is such that no clear boundary exists between post-closure safety assessment and operational safety assessment. The major findings of these activities are given. The Safety Analysis Report (SAR) for Novi Han repository is developed by Risk Engineering Ltd. under a contract with the Committee on the Use of Atomic Energy for Peaceful Purposes. The general structure and main conclusions and recommendations of the SAR are presented. (author)

  6. Research on Integration of NPP Operational Safety Management Performance Systems

    International Nuclear Information System (INIS)

    Chi, Miao; Shi, Liping

    2014-01-01

    The operational safety management of Nuclear Power Plants demands systematic planning and integrated control. NPPs are following the well-developed safety indicator systems proposed by IAEA Operational Safety Performance Indicator Programme, NRC Reactor Oversight Process or the other institutions. Integration of the systems is proposed to benefiting from the advantages of both systems and avoiding improper application into the real world. The authors analyzed the possibility and necessity for system integration, and propose an indicator system integrating method

  7. Processes and Procedures for Application of CFD to Nuclear Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Richard W. Johnson; Richard R. Schultz; Patrick J. Roache; Ismail B. Celik; William D. Pointer; Yassin A. Hassan

    2006-01-01

    Traditionally, nuclear reactor safety analysis has been performed using systems analysis codes such as RELAP5, which was developed at the INL. However, goals established by the Generation IV program, especially the desire to increase efficiency, has lead to an increase in operating temperatures for the reactors. This increase pushes reactor materials to operate towards their upper temperature limits relative to structural integrity. Because there will be some finite variation of the power density in the reactor core, there will be a potential for local hot spots to occur in the reactor vessel. Hence, it has become apparent that detailed analysis will be required to ensure that local ''hot spots'' do not exceed safety limits. It is generally accepted that computational fluid dynamics (CFD) codes are intrinsically capable of simulating fluid dynamics and heat transport locally because they are based on ''first principles''. Indeed, CFD analysis has reached a fairly mature level of development, including the commercial level. However, CFD experts are aware that even though commercial codes are capable of simulating local fluid and thermal physics, great care must be taken in their application to avoid errors caused by such things as inappropriate grid meshing, low-order discretization schemes, lack of iterative convergence and inaccurate time-stepping. Just as important is the choice of a turbulence model for turbulent flow simulation. Turbulence models model the effects of turbulent transport of mass, momentum and energy, but are not necessarily applicable for wide ranges of flow types. Therefore, there is a well-recognized need to establish practices and procedures for the proper application of CFD to simulate flow physics accurately and establish the level of uncertainty of such computations. The present document represents contributions of CFD experts on what the basic practices, procedures and guidelines should be to aid CFD analysts to obtain accurate estimates

  8. Post Chernobyl safety review at Ontario Hydro

    International Nuclear Information System (INIS)

    Frescura, G.M.; Luxat, J.C.; Jobe, C.

    1991-01-01

    It is generally recognized that the Chernobyl Unit 4 accident did not reveal any new phenomena which had not been previously identified in safety analyses. However, the accident provided a tragic reminder of the potential consequences of reactivity initiated accidents (RIAs) and stimulated nuclear plant operators to review their safety analyses, operating procedures and various operational and management aspects of nuclear safety. Concerning Ontario Hydro, the review of the accident performed by the corporate body responsible for nuclear safety policy and by the Atomic Energy Control Board (the Regulatory Body) led to a number of specific recommendations for further action by various design, analysis and operation groups. These recommendations are very comprehensive in terms of reactor safety issues considered. The general conclusion of the various studies carried out in response to the recommendations, is that the CANDU safety design and the procedures in place to identify and mitigate the consequences of accidents are adequate. Improvements to the reliability of the Pickering NGSA shutdown system and to some aspects of safety management and staff training, although not essential, are possible and would be pursued. In support of this conclusion, the paper describes some of the studies that were carried out and discusses the findings. The first part of the paper deals with safety design aspects. While the second is concerned with operational aspects

  9. Supporting plant operation through computer-based procedures

    International Nuclear Information System (INIS)

    Martinez, Victor; Medrano, Javier; Mendez, Julio

    2014-01-01

    Digital Systems are becoming more important in controlling and monitoring nuclear power plant operations. The capabilities of these systems provide additional functions as well as support operators in making decisions and avoiding errors. Regarding Operation Support Systems, an important way of taking advantage of these features is using computer-based procedures (CBPs) tools that enhance the plant operation. Integrating digital systems in analogue controls at nuclear power plants in operation becomes an extra challenge, in contrast to the integration of Digital Control Systems in new nuclear power plants. Considering the potential advantages of using this technology, Tecnatom has designed and developed a CBP platform taking currently operating nuclear power plants as its design basis. The result is a powerful tool which combines the advantages of CBPs and the conventional analogue control systems minimizing negative effects during plant operation and integrating operation aid-systems to support operators. (authors)

  10. Small nuclear reactor safety design requirements for autonomous operation

    International Nuclear Information System (INIS)

    Kozier, K.S.; Kupca, S.

    1997-01-01

    Small nuclear power reactors offer compelling safety advantages in terms of the limited consequences that can arise from major accident events and the enhanced ability to use reliable, passive means to eliminate their occurrence by design. Accordingly, for some small reactor designs featuring a high degree of safety autonomy, it may be-possible to delineate a ''safety envelope'' for a given set of reactor circumstances within which safe reactor operation can be guaranteed without outside intervention for time periods of practical significance (i.e., days or weeks). The capability to operate a small reactor without the need for highly skilled technical staff permanently present, but with continuous remote monitoring, would aid the economic case for small reactors, simplify their use in remote regions and enhance safety by limiting the potential for accidents initiated by inappropriate operator action. This paper considers some of the technical design options and issues associated with the use of small power reactors in an autonomous mode for limited periods. The focus is on systems that are suitable for a variety of applications, producing steam for electricity generation, district heating, water desalination and/or marine propulsion. Near-term prospects at low power levels favour the use of pressurized, light-water-cooled reactor designs, among which those having an integral core arrangement appear to offer cost and passive-safety advantages. Small integral pressurized water reactors have been studied in many countries, including the test operation of prototype systems. (author)

  11. Safety of installations

    International Nuclear Information System (INIS)

    2001-01-01

    This document presents the fulfilling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 5 of the document contains some details about the siting, designed and construction, operation, maintenance, inspection, testing, procedures for responding to anticipated operational occurrences and accidents, engineering and technical support, reporting of significant incidents, operating experience feedback, radioactive waste and spent fuel

  12. Safety of installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    This document presents the fulfilling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 5 of the document contains some details about the siting, designed and construction, operation, maintenance, inspection, testing, procedures for responding to anticipated operational occurrences and accidents, engineering and technical support, reporting of significant incidents, operating experience feedback, radioactive waste and spent fuel.

  13. Safety of installations

    International Nuclear Information System (INIS)

    1998-01-01

    This document presents the fulfilling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 5 of the document contains some details about the siting, designed and construction, operation, maintenance, inspection, testing, procedures for responding to anticipated operational occurrences and accidents, engineering and technical support, reporting of significant incidents, operating experience feedback, radioactive waste and spent fuel

  14. A method for risk informing procedures at operating nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P. F.; Martin del Campo, C., E-mail: pnelson_007@yahoo.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac No. 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico)

    2012-10-15

    The technical approach presented establishes a framework intended to provide the necessary elements for a deployable human performance monitoring program that incorporates insights from plant specific probabilistic risk assessments, human reliability analysis, as well as the development of plant specific human failure data. A human performance monitoring program of this structure would be used to provide the ability to risk inform procedures (e.g., operations or maintenance) to determine the operational risk significance of procedural performance (i.e., precautions, prerequisites, procedure steps), the likelihood of consequential human error dur the performance of the procedure, and the identification of procedure specific barriers to reduce or eliminate consequential human errors. The program would provide the means to assess procedures prior to execution and the means to record and trend human failure events leading to a plant specific human failure database for human activities characterized as pre-initiator. The technical methods and data processing for each of these areas are developed and presented, as well as an example application of an operational procedure error leading to a plant level event (i.e, plant trip). (Author)

  15. Analysis of minor incidents in the operation of nuclear power plants: a case study on the use of procedures in organizations dealing with hazardous technologies

    International Nuclear Information System (INIS)

    Carvalho, Paulo Victor Rodrigues de; Vidal, Mario Cesar Rodriguea; Carvalho, Eduardo Ferro de

    2005-01-01

    Organizations that work with hazardous materials, such as nuclear power plants, offshore installations, and chemical and petrochemical plants, have risk management systems involving accident control and mitigation to ensure the safety of their facilities. These systems are based on physical devices, such as protective barriers, equipment and systems aimed at preventing the occurrence and propagation of accidents, and on human aspects such as regulations and procedures. This paper analyzes the use of a variety of procedures by nuclear power plant control room operators. The methodology consisted of analyzing the work of control room operators during the normal operations, shutdown, and startup of a nuclear power plant, and in full scale simulator training. This survey revealed that routine noncompliance to procedures was considered normal according to the operating rationale, which is based on technical, organizational and cultural factors. These findings indicate that the competencies nuclear power plant operators must possess far exceed proper technical training and the ability to follow written instructions. (author)

  16. Safety management of a complex R and D ground operating system

    Science.gov (United States)

    Connors, J. F.; Maurer, R. A.

    1975-01-01

    A perspective on safety program management was developed for a complex R&D operating system, such as the NASA-Lewis Research Center. Using a systems approach, hazardous operations are subjected to third-party reviews by designated-area safety committees and are maintained under safety permit controls. To insure personnel alertness, emergency containment forces and employees are trained in dry-run emergency simulation exercises. The keys to real safety effectiveness are top management support and visibility of residual risks.

  17. Operator reliability study for Probabilistic Safety Analysis of an operating research reactor

    International Nuclear Information System (INIS)

    Mohamed, F.; Hassan, A.; Yahaya, R.; Rahman, I.; Maskin, M.; Praktom, P.; Charlie, F.

    2015-01-01

    Highlights: • Human Reliability Analysis (HRA) for Level 1 Probabilistic Safety Analysis (PSA) is performed on research nuclear reactor. • Implemented qualitative HRA framework is addressed. • Human Failure Events of significant impact to the reactor safety are derived. - Abstract: A Level 1 Probabilistic Safety Analysis (PSA) for the TRIGA Mark II research reactor of Malaysian Nuclear Agency has been developed to evaluate the potential risk in its operation. In conjunction to this PSA development, Human Reliability Analysis (HRA) is performed in order to determine human contribution to the risk. The aim of this study is to qualitatively analyze human actions (HAs) involved in the operation of this reactor according to the qualitative part of the HRA framework for PSA which is namely the identification, qualitative screening and modeling of HAs. By performing this framework, Human Failure Events (HFEs) of significant impact to the reactor safety are systematically analyzed and incorporated into the PSA structure. A part of the findings in this study will become the input for the subsequent quantitative part of the HRA framework, i.e. the Human Error Probability (HEP) quantification

  18. Relation between water chemistry and operational safety

    International Nuclear Information System (INIS)

    Oliveira, M.F. de.

    1991-01-01

    This report describes the relation between chemistry/radiochemistry and operational safety, the technics bases for chemical and radiochemical parameters and an analysis of the Annual Report of Angra I Operation and OSRAT Mission report to 1989 in this area too. Furthermore it contains the transcription of the technical Specifications related to the chemistry and radiochemistry for Angra I. (author)

  19. A procedure for safety assessment of components with cracks - Handbook. 3rd revised edition

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, P.; Bergman, M.; Brickstad, B.; Dahlberg, L.; Nilsson, F.; Sattari-Far, I. [SAQ Kontroll AB, Stockholm (Sweden)

    1999-12-01

    In this handbook a procedure is described which can be used both for assessment of detected cracks or crack-like defects and for defect tolerance analysis. The procedure can be used to calculate possible crack growth due to fatigue or stress corrosion and to calculate the reserve margin for failure due to fracture and plastic collapse. For ductile materials, the procedure gives the reserve margin for initiation of stable crack growth. Thus, an extra reserve margin, unknown to size, exists for failure in components made of ductile materials. The procedure was developed for operative use with the following objectives in mind: a) The procedure should be able to handle both linear and non-linear problems without any a priori division. b) The procedure shall ensure uniqueness of the safety assessment. c) The procedure should be well defined and easy to use. d) The conservatism of the procedure should be well validated. e) The handbook, that documents the procedure, should be so complete that for most assessments, access to any other fracture mechanics literature should not be necessary. The method utilized in the procedure is based on the R6-method developed at Nuclear Electric plc. The basic assumption is that fracture initiated by a crack can be described by the variables K{sub r} and L{sub r}. K{sub r} is the ratio between the stress intensity factor and the fracture toughness of the material. L{sub r} is the ratio between applied load and the plastic limit load of the structure. The pair of calculated values of these variables is plotted in a diagram. If the point is situated within the noncritical region, fracture is assumed not to occur. If the point is situated outside the region, crack growth and fracture may occur. The method can in principal be used for all metallic materials. It is, however, more extensively verified for steel alloys only. The method is not intended for use in temperature regions where creep deformation is of importance. To fulfil the above

  20. A procedure for safety assessment of components with cracks - Handbook. 3rd revised edition

    International Nuclear Information System (INIS)

    Andersson, P.; Bergman, M.; Brickstad, B.; Dahlberg, L.; Nilsson, F.; Sattari-Far, I.

    1999-12-01

    In this handbook a procedure is described which can be used both for assessment of detected cracks or crack-like defects and for defect tolerance analysis. The procedure can be used to calculate possible crack growth due to fatigue or stress corrosion and to calculate the reserve margin for failure due to fracture and plastic collapse. For ductile materials, the procedure gives the reserve margin for initiation of stable crack growth. Thus, an extra reserve margin, unknown to size, exists for failure in components made of ductile materials. The procedure was developed for operative use with the following objectives in mind: a) The procedure should be able to handle both linear and non-linear problems without any a priori division. b) The procedure shall ensure uniqueness of the safety assessment. c) The procedure should be well defined and easy to use. d) The conservatism of the procedure should be well validated. e) The handbook, that documents the procedure, should be so complete that for most assessments, access to any other fracture mechanics literature should not be necessary. The method utilized in the procedure is based on the R6-method developed at Nuclear Electric plc. The basic assumption is that fracture initiated by a crack can be described by the variables K r and L r . K r is the ratio between the stress intensity factor and the fracture toughness of the material. L r is the ratio between applied load and the plastic limit load of the structure. The pair of calculated values of these variables is plotted in a diagram. If the point is situated within the noncritical region, fracture is assumed not to occur. If the point is situated outside the region, crack growth and fracture may occur. The method can in principal be used for all metallic materials. It is, however, more extensively verified for steel alloys only. The method is not intended for use in temperature regions where creep deformation is of importance. To fulfil the above given objectives

  1. Evaluation of experience and trends in international co-operation in nuclear safety and licensing

    International Nuclear Information System (INIS)

    Stadie, K.B.; Strohl, P.

    1977-01-01

    The paper traces the development of co-operation in nuclear safety technology between the OECD Member countries which began as early as 1965 and is now organised under the auspices of the Committee on the Safety of Nuclear Installations of the OECD Nuclear Energy Agency. The principal objective is to exchange and evaluate information on relevant R and D and hence broaden the technical basis for decision-making by licensing authorities in the different countries. The membership of the Committee on the Safety of Nuclear Installations combines expertise in nuclear safety R and D and in licensing questions so that licensing procedures in the different countries may be exposed continuously to the influence of overall technological progress. The Committee actively seeks to narrow the differences between administrative procedures and traditional legal practices in Member countries as these affect the licensing of nuclear installations, primarily by assessing and comparing the methods employed. The paper shows how the Committee's working arrangements provide for maximum flexibility: the various co-ordinated programmes are selected after in-depth evaluation of potential areas of priority and are implemented through ad hoc Working Groups, specialist meetings or task forces, or in the form of special studies involving all interested countries. The results, conclusions and recommendations emerging from each programme are reviewed by the Committee before dissemination. Hitherto the greater part of the Committee's activities has been concerned with the safety of light water reactors and related subjects, but more attention is now being given to other topics such as LMFBR safety technology and the safety of fuel cycle facilities, particularly those at the end of the process, the so-called ''back-end'' plants. The paper discusses certain problems and constraints encountered in implementing the programme, some of which stem from Member countries' different degrees of penetration

  2. Nuclear power plant systems, structures and components and their safety classification

    International Nuclear Information System (INIS)

    2000-01-01

    The assurance of a nuclear power plant's safety is based on the reliable functioning of the plant as well as on its appropriate maintenance and operation. To ensure the reliability of operation, special attention shall be paid to the design, manufacturing, commissioning and operation of the plant and its components. To control these functions the nuclear power plant is divided into structural and functional entities, i.e. systems. A systems safety class is determined by its safety significance. Safety class specifies the procedures to be employed in plant design, construction, monitoring and operation. The classification document contains all documentation related to the classification of the nuclear power plant. The principles of safety classification and the procedures pertaining to the classification document are presented in this guide. In the Appendix of the guide, examples of systems most typical of each safety class are given to clarify the safety classification principles

  3. Microbial ecology laboratory procedures manual NASA/MSFC

    Science.gov (United States)

    Huff, Timothy L.

    1990-01-01

    An essential part of the efficient operation of any microbiology laboratory involved in sample analysis is a standard procedures manual. The purpose of this manual is to provide concise and well defined instructions on routine technical procedures involving sample analysis and methods for monitoring and maintaining quality control within the laboratory. Of equal importance is the safe operation of the laboratory. This manual outlines detailed procedures to be followed in the microbial ecology laboratory to assure safety, analytical control, and validity of results.

  4. Use of safety analysis results to support process operation

    International Nuclear Information System (INIS)

    Karvonen, I.; Heino, P.

    1990-01-01

    Safety and risk analysis carried out during the design phase of a process plant produces useful knowledge about the behavior and the disturbances of the system. This knowledge, however, often remains to the designer though it would be of benefit to the operators and supervisors of the process plant, too. In Technical Research Centre of Finland a project has been started to plan and construct a prototype of an information system to make use of the analysis knowledge during the operation phase. The project belongs to a Nordic KRM project (Knowledge Based Risk Management System). The information system is planned to base on safety and risk analysis carried out during the design phase and completed with operational experience. The safety analysis includes knowledge about potential disturbances, their causes and consequences in the form of Hazard and Operability Study, faut trees and/or event trees. During the operation disturbances can however, occur, which are not included in the safety analysis, or the causes or consequences of which have been incompletely identified. Thus the information system must also have an interface for the documentation of the operational knowledge missing from the analysis results. The main tasks off the system when supporting the management of a disturbance are to identify it (or the most important of the coexistent ones) from the stored knowledge and to present it in a proper form (for example as a deviation graph). The information system may also be used to transfer knowledge from one shift to another and to train process personnel

  5. Increasing the operational efficiency and safety in operation control centers: the TRANSPETRO experience; Aumentando a seguranca e eficiencia operacional em centros de controle: a experiencia da TRANSPETRO

    Energy Technology Data Exchange (ETDEWEB)

    Felicio, Marco Aurelio Fierro; Frisoli, Caetano [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2009-12-19

    The increase in operational efficiency and safety in operation control centers has been traditionally obtained through direct actions in the operational activity itself and on the resources and systems used for that. Modern supervisory and control systems, sophisticated simulation software, cutting-edge last generation equipment and installations, clear and comprehensive procedures definitions and intensive and constant training of the operation teams are, usually, the chosen paths followed by control centers in their incessant quest for increased operational efficiency and safety. This paper presents the path followed by the TRANSPETRO's National Operational Control Center - Natural Gas (Centro Nacional de Controle Operacional - CNCO-Gas) - that has not only focused with the traditional aspects above, but has also made intensive investments in systems and data base integrations, aiming at eliminating data inconsistencies and redundancies and at including automation, standardization and systematization of non-operational and complementary operational activities. These investments allowed TRANSPETRO CNCO-Gas face the big challenge of growing that TRANSPETRO's gas transportation activity is facing now and will be facing in the near future: from 2,600 km to 7,000 km of gas pipelines, and a volume of transported natural gas from 35 MMm{sup 3}/day to 100 MMm{sup 3}/day. (author)

  6. Human and organization factors: engineering operating safety into offshore structures

    International Nuclear Information System (INIS)

    Bea, Robert G.

    1998-01-01

    History indicates clearly that the safety of offshore structures is determined primarily by the humans and organizations responsible for these structures during their design, construction, operation, maintenance, and decommissioning. If the safety of offshore structures is to be preserved and improved, then attention of engineers should focus on to how to improve the reliability of the offshore structure 'system,' including the people that come into contact with the structure during its life-cycle. This article reviews and discusss concepts and engineering approaches that can be used in such efforts. Two specific human factor issues are addressed: (1) real-time management of safety during operations, and (2) development of a Safety Management Assessment System to help improve the safety of offshore structures

  7. A successful approach for the implementation of symptom-based emergency operating procedures for VVER reactors

    International Nuclear Information System (INIS)

    Lhoest, V.; Prior, R.; Pascal, G.

    2000-01-01

    The paper provides an overview of the organization, the progress and the results of the various Emergence Operating Procedure (EOP) development programs for VVER type reactors conducted by Westinghouse so far. The detailed working process is presented through the solutions to some major plant issues. The EOPs have been developed for the Temelin, Dukovany, Bohunice, Mochovce and Paks VVER nuclear power plants. The procedures are developed in working teams of experts from the utility and Westinghouse. The completion of the programs constitute an indication of the overall success of this approach. This is further reinforced by the general acceptance of the new procedures by the plant personnel, together with the good results obtained so far from procedure testing. This is also confirmed by a new PSA-level 1 analysis for Dukovany plant, which shows a significant improvement in the overall plant safety. This means a 20% reduction in the Core Damage Frequency due to the introduction of the new EOPs. The fact that some modifications have been implemented to the plants to solve design weaknesses identified in the course of this programs also constitute a positive result

  8. SRP reactor safety evolution

    International Nuclear Information System (INIS)

    Rankin, D.B.

    1984-01-01

    The Savannah River Plant reactors have operated for over 100 reactor years without an incident of significant consequence to on or off-site personnel. The reactor safety posture incorporates a conservative, failure-tolerant design; extensive administrative controls carried out through detailed operating and emergency written procedures; and multiple engineered safety systems backed by comprehensive safety analyses, adapting through the years as operating experience, changes in reactor operational modes, equipment modernization, and experience in the nuclear power industry suggested. Independent technical reviews and audits as well as a strong organizational structure also contribute to the defense-in-depth safety posture. A complete review of safety history would discuss all of the above contributors and the interplay of roles. This report, however, is limited to evolution of the engineered safety features and some of the supporting analyses. The discussion of safety history is divided into finite periods of operating history for preservation of historical perspective and ease of understanding by the reader. Programs in progress are also included. The accident at Three Mile Island was assessed for its safety implications to SRP operation. Resulting recommendations and their current status are discussed separately at the end of the report. 16 refs., 3 figs

  9. Management of nuclear power plants for safe operation

    International Nuclear Information System (INIS)

    Kueffer, K.

    1980-01-01

    This lecture covers management aspects which have an immediate bearing on safety and identifies the objectives and tasks of management which are required for safe operation of a nuclear power plant and is based on the Codes of Practice and Safety Guides of the IAEA as well as arrangements in use at the Swiss Nuclear Power Station Beznau. This lecture - discusses the factors to be considered in structuring the operating organization, the support to be provided to plant management, the services and facilities needed and the management system for assuring the safety tasks are performed - describes the responsibilities of plant management and operating organization - outlines the requirements for recruitment, training and retraining as well as qualification and authorization of personnel - describes the programmes for maintenance, testing, examination, inspection, radiological protection, quality assurance, waste management, fuel management, emergency arrangement and security - describes the development of plant operating procedures including procedures to protect the personnel - outlines the requirements for initial and subsequent operation - describes the importance for evaluation and feedback of operating experience - describes the procedures for changes in hardware, procedures and set points - outlines the information flow and the requirements in reference to records and reports. (orig./RW)

  10. Improvements in operational safety performance of the Magnox power stations

    Energy Technology Data Exchange (ETDEWEB)

    Marchese, C.J. [BNFL Magnox Generation, Berkeley (United Kingdom)

    2000-10-01

    In the 43 years since commencement of operation of Calder Hall, the first Magnox power station, there remain eight Magnox stations and 20 reactors still in operation, owned by BNFL Magnox Generation. This paper describes how the operational safety performance of these stations has significantly improved over the last ten years. This has been achieved against a background of commercial competition introduced by privatization and despite the fact that the Magnox base design belongs to the past. Finally, the company's future plans for continued improvements in operational safety performance are discussed. (author)

  11. Implementing process safety management in gas processing operations

    International Nuclear Information System (INIS)

    Rodman, D.L.

    1992-01-01

    The Occupational Safety and Health Administration (OSHA) standard entitled Process Safety Management of Highly Hazardous Chemicals; Explosives and Blasting Agents was finalized February 24, 1992. The purpose of the standard is to prevent or minimize consequences of catastrophic releases of toxic, flammable, or explosive chemicals. OSHA believes that its rule will accomplish this goal by requiring a comprehensive management program that integrates technologies, procedures, and management practices. Gas Processors Association (GPA) member companies are significantly impacted by this major standard, the requirements of which are extensive and complex. The purpose of this paper is to review the requirements of the standard and to discuss the elements to consider in developing and implementing a viable long term Process Safety Management Program

  12. Soil washing physical separations test procedure - 300-FF-1 operable unit

    Energy Technology Data Exchange (ETDEWEB)

    Belden, R.D.

    1993-10-08

    This procedure provides the operations approach, a field sampling plan, and laboratory procedures for a soil washing test to be conducted by Alternative Remedial Technologies, Inc. (ART) in the 300-FF-1 area at the Hanford site. The {open_quotes}Quality Assurance Project Plan for the Soil Washing Physical Separations Test, 300-FF-1 Operable Unit,{close_quotes} Hanford, Washington, Alternative Remedial Technologies, Inc., February 1994 (QAPP) is provided in a separate document that presents the procedural and organizational guidelines for this test. This document describes specifications, responsibilities, and general procedures to be followed to conduct physical separation soil treatability tests in the North Process Pond of the 300-FF-1 Operable Unit (OU) at the Hanford Site. These procedures are based on the {open_quotes}300-FF-1 Physical Separations CERCLA Treatability Test Plan, DOE/RL 92-2l,{close_quotes} (DOE-RL 1993).

  13. Soil washing physical separations test procedure - 300-FF-1 operable unit

    International Nuclear Information System (INIS)

    Belden, R.D.

    1993-01-01

    This procedure provides the operations approach, a field sampling plan, and laboratory procedures for a soil washing test to be conducted by Alternative Remedial Technologies, Inc. (ART) in the 300-FF-1 area at the Hanford site. The open-quotes Quality Assurance Project Plan for the Soil Washing Physical Separations Test, 300-FF-1 Operable Unit,close quotes Hanford, Washington, Alternative Remedial Technologies, Inc., February 1994 (QAPP) is provided in a separate document that presents the procedural and organizational guidelines for this test. This document describes specifications, responsibilities, and general procedures to be followed to conduct physical separation soil treatability tests in the North Process Pond of the 300-FF-1 Operable Unit (OU) at the Hanford Site. These procedures are based on the open-quotes 300-FF-1 Physical Separations CERCLA Treatability Test Plan, DOE/RL 92-2l,close quotes (DOE-RL 1993)

  14. Effective corrective actions to enhance operational safety of nuclear installations

    International Nuclear Information System (INIS)

    2005-07-01

    The safe operation of nuclear power plants around the world and the prevention of incidents in these installations remain key concerns for the nuclear community. In this connection the feedback of operating experience plays a major role: every nuclear plant operator needs to have a system in place to identify and feed back the lessons learned from operating experience and to implement effective corrective actions to prevent safety events from reoccurring. An effective operating experience programme also includes a proactive approach that is aimed at preventing the first-time occurrence of safety events. In April 2003, the IAEA issued the PROSPER guidelines for nuclear installations to strengthen and enhance their own operating experience process and for self-assessment on the effectiveness of the feedback process. Subsequently, in the course of the Operational Safety Review Teams missions conducted by the IAEA that focused on the operational safety practices of nuclear power plants, the IAEA enhanced the review of the operating experience in nuclear power plants by implementing a new module that is derived from these guidelines. In order to highlight the effective implementation of the operating experience programme and to provide practical assistance in this area, the IAEA organized workshops and conferences to discuss recent trends in operating experience. The IAEA also performed assistance and review missions at plants and corporate organizations. The IAEA is further developing advice and assistance on operating experience feedback programmes and is reporting on good practices. The present publication is the outcome of two years of coordinated effort involving the participation of experts of nuclear organizations in several Member States. It provides information and good practices for successfully establishing an effective corrective actions programme. This publication forms part of a series that develops the principles set forth in these guidelines

  15. IAEA Leads Operational Safety Mission to Muehleberg Nuclear Power Plant

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An international team of nuclear safety experts led by the International Atomic Energy Agency today concluded a review of the safety practices at the Muehleberg Nuclear Power Plant (NPP) near Bern in Switzerland. The team noted a series of good practices and made recommendations and suggestions to reinforce them. The IAEA assembled the Operational Safety Review Team at the request of the Swiss government. The team, led by the IAEA's Division of Nuclear Installation Safety, performed an in-depth operational safety review from 8 to 25 October 2012. The team comprised experts from Belgium, the Czech Republic, Finland, Germany, Hungary, Slovakia, Sweden, the United Kingdom and the United States as well as experts from the IAEA. The team conducted an in-depth review of the aspects essential to the safe operation of the Muehleberg NPP. The conclusions of the review are based on the IAEA's Safety Standards and proven good international practices. The review covered the areas of Management, Organization and Administration; Training; Operations; Maintenance; Technical Support; Operating Experience; Radiation Protection; Chemistry, Emergency Planning and Preparedness, Severe Accident Management and Long-Term Operation. The OSART team made 10 recommendations and 11 suggestions related to areas where operations of Muehleberg NPP could be further improved, for example: - Plant management could improve the operating experience program and methods throughout the plant to ensure corrective actions are taken in a timely manner; - In the area of Long-Term Operation, the ageing management review for some systems and components is not complete and the environmental qualification of originally installed safety cables has not yet been revalidated for long-term operation; and - The plant provisions for the protection of persons on the site during an emergency with radioactive release can be improved to minimize health risks to plant personnel. The team also identified 10 good

  16. Using human factors engineering to improve patient safety in the cardiovascular operating room.

    Science.gov (United States)

    Gurses, Ayse P; Martinez, Elizabeth A; Bauer, Laura; Kim, George; Lubomski, Lisa H; Marsteller, Jill A; Pennathur, Priyadarshini R; Goeschel, Chris; Pronovost, Peter J; Thompson, David

    2012-01-01

    Despite significant medical advances, cardiac surgery remains a high risk procedure. Sub-optimal work system design characteristics can contribute to the risks associated with cardiac surgery. However, hazards due to work system characteristics have not been identified in the cardiovascular operating room (CVOR) in sufficient detail to guide improvement efforts. The purpose of this study was to identify and categorize hazards (anything that has the potential to cause a preventable adverse patient safety event) in the CVOR. An interdisciplinary research team used prospective hazard identification methods including direct observations, contextual inquiry, and photographing to collect data in 5 hospitals for a total 22 cardiac surgeries. We performed thematic analysis of the qualitative data guided by a work system model. 60 categories of hazards such as practice variations, high workload, non-compliance with evidence-based guidelines, not including clinicians' in medical device purchasing decisions were found. Results indicated that hazards are common in cardiac surgery and should be eliminated or mitigated to improve patient safety. To improve patient safety in the CVOR, efforts should focus on creating a culture of safety, increasing compliance with evidence based infection control practices, improving communication and teamwork, and designing better tools and technologies through partnership among all stakeholders.

  17. The Radiation Safety Interlock System for Top-Up Mode Operation at NSRRC

    CERN Document Server

    Chen Chien Rong; Kao, Sheau-Ping; Liu, Joseph; Sheu, Rong-Jiun; Wang, Jau-Ping

    2005-01-01

    The radiation safety interlock systems of NSRRC have been operated for more than a decade. Some modification actions have been implemented in the past to perfect the safe operation. The machine and its interlock system were originally designed to operate at the decay mode. Recently some improvement programs to make the machine injection from original decay mode to top-up mode at NSRRC has initiated. For users at experimental area the radiation dose resulted from top-up re-fill injections where safety shutters of beam-lines are opened will dominate. In addition to radiation safety action plans such as upgrading the shielding, enlarging the exclusion zones and improving the injection efficiency, the interlock system for top-up operation is the most important to make sure that injection efficiency is acceptable. To ensure the personnel radiation safety during the top-up mode, the safety interlock upgrade and action plans will be implemented. This paper will summarize the original design logic of the safety inter...

  18. Radiation protection in dentistry. Recommended safety procedures for the use of dental x-ray equipment. Safety code 30

    International Nuclear Information System (INIS)

    1994-01-01

    The Radiation Protection Bureau has prepared a series of documents on safety codes to set out requirements for the safe use of radiation-emitting equipment. This Safety Code has been prepared to provide specific guidance to the dentist, dental hygienist, dental assistant and other support personnel concerned with safety procedures and equipment performance. Dental radiography is one of the most valuable tools used in modern dental health care. It makes possible the diagnosis of physical conditions that would otherwise be difficult to identify. The use of dental radiological procedures must be carefully managed, because x-radiation has the potential for damaging healthy cells and tissues. Although no known occurrence of cancer or genetic damage has been observed from radiation doses delivered in modern dentistry, and until more evidence is available, one should practice radiation hygiene with the same care as would be dictated if a hazard were known to exist. The aim of radiation protection in dentistry is to obtain the desired clinical information with minimal radiation exposure to patients, dental personnel and the public. 15 tabs

  19. Radiation protection in dentistry. Recommended safety procedures for the use of dental x-ray equipment. Safety code 30

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Radiation Protection Bureau has prepared a series of documents on safety codes to set out requirements for the safe use of radiation-emitting equipment. This Safety Code has been prepared to provide specific guidance to the dentist, dental hygienist, dental assistant and other support personnel concerned with safety procedures and equipment performance. Dental radiography is one of the most valuable tools used in modern dental health care. It makes possible the diagnosis of physical conditions that would otherwise be difficult to identify. The use of dental radiological procedures must be carefully managed, because x-radiation has the potential for damaging healthy cells and tissues. Although no known occurrence of cancer or genetic damage has been observed from radiation doses delivered in modern dentistry, and until more evidence is available, one should practice radiation hygiene with the same care as would be dictated if a hazard were known to exist. The aim of radiation protection in dentistry is to obtain the desired clinical information with minimal radiation exposure to patients, dental personnel and the public. 15 tabs.

  20. CANDU safety under severe accidents

    International Nuclear Information System (INIS)

    Snell, V.G.; Howieson, J.Q.; Frescura, G.M.; King, F.; Rogers, J.T.; Tamm, H.

    1988-01-01

    The characteristics of the CANDU reactor relevant to severe accidents are set first by the inherent properties of the design, and second by the Canadian safety/licensing approach. Probabilistic safety assessment studies have been performed on operating CANDU plants, and on the 4 x 880 MW(e) Darlington station now under construction; furthermore a scoping risk assessment has been done for a CANDU 600 plant. They indicate that the summed severe core damage frequency is of the order of 5 x 10 -6 /year. CANDU nuclear plant designers and owner/operators share information and operational experience nationally and internationally through the CANDU Owners' Group (COG). The research program generally emphasizes the unique aspects of the CANDU concept, such as heat removal through the moderator, but it has also contributed significantly to areas generic to most power reactors such as hydrogen combustion, containment failure modes, fission product chemistry, and high temperature fuel behaviour. Abnormal plant operating procedures are aimed at first using event-specific emergency operating procedures, in cases where the event can be diagnosed. If this is not possible, generic procedures are followed to control Critical Safety Parameters and manage the accident. Similarly, the on-site contingency plans include a generic plan covering overall plant response strategy, and a specific plan covering each category of contingency

  1. Nuclear power safety

    International Nuclear Information System (INIS)

    1988-01-01

    The International Atomic Energy Agency, the organization concerned with worldwide nuclear safety has produced two international conventions to provide (1) prompt notification of nuclear accidents and (2) procedures to facilitate mutual assistance during an emergency. IAEA has also expanded operational safety review team missions, enhanced information exchange on operational safety events at nuclear power plants, and planned a review of its nuclear safety standards to ensure that they include the lessons learned from the Chernobyl nuclear plant accident. However, there appears to be a nearly unanimous belief among IAEA members that may attempt to impose international safety standards verified by an international inspection program would infringe on national sovereignty. Although several Western European countries have proposed establishing binding safety standards and inspections, no specific plant have been made; IAEA's member states are unlikely to adopt such standards and an inspection program

  2. The use of living PSA in safety management, a procedure developed in the nordic project ''safety evaluation, NKS/SIK-1''

    International Nuclear Information System (INIS)

    Johanson, G.; Holmberg, J.

    1994-01-01

    The essential objective with the development of a living PSA concept is to bring the use of the plant specific PSA model out to the daily safety work to allow operational risk experience feedback and to increase the risk awareness of the intended users. This paper will present results of the Nordic project ''Safety Evaluation, NKS/SIK-1''. The SIK-1 project has defined and demonstrated the practical use of living PSA for safety evaluation and for identification of possible improvements in operational safety. Subjects discussed in this paper are dealing with the practical implementation and use of PSA to make proper safety related decisions and evaluation. (author). 24 refs, 1 fig., 1 tab

  3. Assessment of operational safety data in the Nuclear Regulatory Commission (NRC)

    International Nuclear Information System (INIS)

    Michelson, C.; Heltemes, C.J.

    1981-01-01

    The collection, assessment, and dissemination of operational safety data, including the Licensee Event Reports (LERs) is the principal activity of the NRC's Office for Analysis and Evaluation of Operational Data (AEOD). This office was recently formed to provide a dedication to this activity. It has been staffed and fully operational since April 1980. The office programs are evolving and include some new ideas and techniques to aid in the assessment of LERs. For example, the office is managing the development of a computer-based Sequence Coding and Search (SCS) procedure which will have the capability to store and retrieve the detail and individual sequences associated with each LER. Such events may be rather complex and involve a number of isolated or unrelated happenings associated with multiple systems and components with various causes, failure modes, and failure effects. Thus, the SCS system is particularly useful because it documents in a computer-retrievable form not only the principal occurrence, but also related component and system responses which precede, accompany, follow, or result from the principal occurrence. Also noteworthy is the Power Reactor Watch List which is being developed and monitored as a part of the AEOD program

  4. Safety Culture Perspective. Managing the pre Managing the pre-operational phases of new NPPs and creating the safety culture

    International Nuclear Information System (INIS)

    Cowan, Pamela B.; Oh, Chaewoon; Dahlgren Persson, Kerstin; Carnino, Annick

    2008-01-01

    Nuclear safety is a key for the revival of nuclear energy future programmes. Lots of competent people will be needed worldwide for ensuring the safety of the installations both existing ones and future ones. Their expertise should range from design to operation, from regulatory role to operators, from fuel fabrication to waste disposal. The challenge in front of us will be to prepare for the right recruitment, the development of the needed expertise in order to face the demand in developed countries, in countries with economies in transition and in developing countries. Time allocated for the panel does not allow for covering all aspects but the panelists will cover some of the important aspects of the challenge in terms of needs, of new competencies, of learning from operation and licensing requirements including for new designs. The key objectives of the panel are: 1- Maintaining safe operation, learning from experience, licensing including aging management and re-licensing with safety improvements for existing installations: - Presentation by Junko Ogawa of the experience and lessons learned from the earthquake on Kashiwasaki Kariwa NPP: effects in terms of manpower involved in the investigation, effects on regulations and licensing, expertise used. - Presentation by Pamela Cowan of her experience in preparing licensing actions, regulatory compliance and interface with the Regulator for both operating plants and modern requirements for constructing new ones. 2 - Special training needed for the human aspect of safety: what are the challenges in areas of safety culture and management of safety: - Presentation by Chae Woon Oh of the Korean safety culture features developed nationally, at the regulator and at the operating organizations and their integration within the safety training programmes. - Presentation by Kerstin Dahlgren Person of the needs in terms of safety culture and safety management, in terms of expertise, practitioners and assessors. 3 - How to

  5. Safety Culture Perspective. Managing the pre Managing the pre-operational phases of new NPPs and creating the safety culture

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Pamela B. [Exelon Generation, 200 Exelon Way, 19348 Kennett Square, PA 19348 (United States); Oh, Chaewoon [Korea Institute of Nuclear Safety, 19 Gusung-Dong, Yuseong-Ku, 305-338 Daejeon (Korea, Republic of); Dahlgren Persson, Kerstin [International Atomic Energy Agency, Wagramer Strasse 5, PO BOX 100 A-1400 Vienna (Austria); Carnino, Annick [IAEA, Division of Nuclear Installation Safety, Wagramer Strasse 5, PO BOX 100 A-1400 Vienna (Austria)

    2008-07-01

    Nuclear safety is a key for the revival of nuclear energy future programmes. Lots of competent people will be needed worldwide for ensuring the safety of the installations both existing ones and future ones. Their expertise should range from design to operation, from regulatory role to operators, from fuel fabrication to waste disposal. The challenge in front of us will be to prepare for the right recruitment, the development of the needed expertise in order to face the demand in developed countries, in countries with economies in transition and in developing countries. Time allocated for the panel does not allow for covering all aspects but the panelists will cover some of the important aspects of the challenge in terms of needs, of new competencies, of learning from operation and licensing requirements including for new designs. The key objectives of the panel are: 1- Maintaining safe operation, learning from experience, licensing including aging management and re-licensing with safety improvements for existing installations: - Presentation by Junko Ogawa of the experience and lessons learned from the earthquake on Kashiwasaki Kariwa NPP: effects in terms of manpower involved in the investigation, effects on regulations and licensing, expertise used. - Presentation by Pamela Cowan of her experience in preparing licensing actions, regulatory compliance and interface with the Regulator for both operating plants and modern requirements for constructing new ones. 2 - Special training needed for the human aspect of safety: what are the challenges in areas of safety culture and management of safety: - Presentation by Chae Woon Oh of the Korean safety culture features developed nationally, at the regulator and at the operating organizations and their integration within the safety training programmes. - Presentation by Kerstin Dahlgren Person of the needs in terms of safety culture and safety management, in terms of expertise, practitioners and assessors. 3 - How to

  6. Control procedure for well drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Bourdon, J C

    1988-09-09

    A control procedure of rotary drilling operations is proposed. It uses the Drill off test. The drill-off test permits to determine the rock drill speed variation as a function of the wright applied on the top of the pipe. We can deduce from that a rock drill wear parameter. The method permits to prevent a rupture and its grave economic consequences.

  7. Guidance for preparation of safety analysis reports for nonreactor facilities and operations

    International Nuclear Information System (INIS)

    1992-01-01

    Department of Energy (DOE) Orders 5480.23, ''Nuclear Safety Analysis Reports,'' and 5481.1B, ''Safety Analysis and Review System'' require the preparation of appropriate safety analyses for each DOE operation and subsequent significant modifications including decommissioning, and independent review of each safety analysis. The purpose of this guide is to assist in the preparation and review of safety documentation for Oak Ridge Field Office (OR) nonreactor facilities and operation. Appendix A lists DOE Orders, NRC Regulatory Guides and other documents applicable to the preparation of safety analysis reports

  8. Development of a Novel Nuclear Safety Culture Evaluation Method for an Operating Team Using Probabilistic Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sangmin; Lee, Seung Min; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    IAEA defined safety culture as follows: 'Safety Culture is that assembly of characteristics and attitudes in organizations and individuals which establishes that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance'. Also, celebrated behavioral scientist, Cooper, defined safety culture as,'safety culture is that observable degree of effort by which all organizational members direct their attention and actions toward improving safety on a daily basis' with his internal psychological, situational, and behavioral context model. With these various definitions and criteria of safety culture, several safety culture assessment methods have been developed to improve and manage safety culture. To develop a new quantitative safety culture evaluation method for an operating team, we unified and redefined safety culture assessment items. Then we modeled a new safety culture evaluation by adopting level 1 PSA concept. Finally, we suggested the criteria to obtain nominal success probabilities of assessment items by using 'operational definition'. To validate the suggested evaluation method, we analyzed the collected audio-visual recording data collected from a full scope main control room simulator of a NPP in Korea.

  9. Development of a Novel Nuclear Safety Culture Evaluation Method for an Operating Team Using Probabilistic Safety Analysis

    International Nuclear Information System (INIS)

    Han, Sangmin; Lee, Seung Min; Seong, Poong Hyun

    2015-01-01

    IAEA defined safety culture as follows: 'Safety Culture is that assembly of characteristics and attitudes in organizations and individuals which establishes that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance'. Also, celebrated behavioral scientist, Cooper, defined safety culture as,'safety culture is that observable degree of effort by which all organizational members direct their attention and actions toward improving safety on a daily basis' with his internal psychological, situational, and behavioral context model. With these various definitions and criteria of safety culture, several safety culture assessment methods have been developed to improve and manage safety culture. To develop a new quantitative safety culture evaluation method for an operating team, we unified and redefined safety culture assessment items. Then we modeled a new safety culture evaluation by adopting level 1 PSA concept. Finally, we suggested the criteria to obtain nominal success probabilities of assessment items by using 'operational definition'. To validate the suggested evaluation method, we analyzed the collected audio-visual recording data collected from a full scope main control room simulator of a NPP in Korea

  10. Operational safety review programmes for nuclear power plants. Guidelines for assessment

    International Nuclear Information System (INIS)

    2002-01-01

    The IAEA has been offering the Operational Safety Review Team (OSART) programme to provide advice and assistance to Member States in enhancing the operational safety of nuclear power plants (NPPs). Simultaneously, the IAEA has encouraged self-assessment and review by Member States of their own nuclear power plants to continuously improve nuclear safety. Currently, some utilities have been implementing safety review programmes to independently review their own plants. Corporate or national operational safety review programmes may be compliance or performance based. Successful utilities have found that both techniques are necessary to provide assurance that (i) as a minimum the NPP meets specific corporate and legal requirements and (ii) management at the NPP is encouraged to pursue continuous improvement principles. These programmes can bring nuclear safety benefits to the plants and utilities. The IAEA has conducted two pilot missions to assess the effectiveness of the operational review programme. Based on these missions and on the experience gained during OSART missions, this document has been developed to provide guidance on and broaden national/corporate safety review programmes in Member States, and to assist in maximizing their benefits. These guidelines are intended primarily for the IAEA team to conduct assessment of a national/corporate safety review programme. However, this report may also be used by a country or utility to establish its own national/corporate safety review programme. The guidelines may likewise be used for self-assessment or for establishing a baseline when benchmarking other safety review programmes. This report consists of four parts. Section 2 addresses the planning and preparation of an IAEA assessment mission and Sections 3 and 4 deal with specific guidelines for conducting the assessment mission itself

  11. Operational safety of geological disposal: IRSN project 'EXREV' for developing a safety assessment strategy for the operation and reversibility of a geological repository

    International Nuclear Information System (INIS)

    Tichauer, M.; Pellegrini, D.; Serres, C.; Besnus, F.

    2014-01-01

    A high-level waste geological disposal facility is envisioned by the legislator in the French Planning Act no. 2006-739 of 28 June 2006. This act sets major milestones for the operator (Andra) in 2013 (public debate), 2015 (licensing) and 2025 (operation). In the framework of the regulatory review process, IRSN's mission is to conduct an assessment of the safety case provided by Andra at every stage of the process for the French regulator, namely the Nuclear Safety Authority (ASN). In 2005, IRSN gathered more than twenty years of research and expertise in order to provide a comprehensive appraisal of the 'Dossier 2005' prepared by Andra, related to the feasibility of a geological disposal in the Callovo-Oxfordian clay formation. At this time, the description of the operational phase was only at a preliminary stage, but this step paved the way for developing an assessment strategy of the operational phase. In this perspective, IRSN set up the EXREV project in 2008 in order to build up a doctrine and to identify key safety issues to be dealt with. (authors)

  12. Use of operational experience in fire safety assessment of nuclear power plants

    International Nuclear Information System (INIS)

    2000-01-01

    Fire hazard has been identified as a major contributor to a plant's operational risk and the international nuclear power industry has been studying and developing tools for defending against this hazard. Considerable progress in design and regulatory requirements for fire safety, in fire protection technology and in related analytical techniques has been made in the past two decades. Substantial efforts have been undertaken worldwide to implement these advances in the interest of improving fire safety both at new and existing nuclear power plants. To assist in these efforts, the IAEA initiated a programme on fire safety that was intended to provide assistance to Member States in improving fire safety in nuclear power plants. In order to achieve this general objective, the IAEA programme aimed at the development of guidelines and good practices, the promotion of advanced fire safety assessment techniques, the exchange of state of the art information between practitioners and the provision of engineering safety advisory services and training in the implementation of internationally accepted practices. During the period 1993-1994, the IAEA activities related to fire safety concentrated on the development of guidelines and good practice documents related to fire safety and fire protection of operating plants. One of the first tasks was the development of a Safety Guide that formulates specific requirements with regard to the fire safety of operating nuclear power plants. Several documents, which provide advice on fire safety inspection, were developed to assist in its implementation. In the period 1995-1996, the programme focused on the preparation of guidelines for the systematic analysis of fire safety at nuclear power plants (NPPs). The IAEA programme on fire safety for 1997-1998 includes tasks aimed at promoting systematic assessment of fire safety related occurrences and dissemination of essential insights from this assessment. One of the topics addressed is the

  13. Manpower development for safe operation of nuclear power plant. China. Emergency operating procedures. Activity: 5.1.4-Task-11. Technical report

    International Nuclear Information System (INIS)

    Walsh, L.A.

    1994-01-01

    This report covers the period of engagement from July 11, 1994 through July 22, 1994. The events and topics of discussion are as follows: History of Emergency Operating Procedure EOP Development; Emergency Operating Procedures (Event Based, Critical Safe Function Status Trees and Functional Recovery Response Procedures); Transition from Emergency Operating Procedures to Severe Accident Management Guidelines

  14. Procedure generation and verification

    International Nuclear Information System (INIS)

    Sheely, W.F.

    1986-01-01

    The Department of Energy has used Artificial Intelligence of ''AI'' concepts to develop two powerful new computer-based techniques to enhance safety in nuclear applications. The Procedure Generation System, and the Procedure Verification System, can be adapted to other commercial applications, such as a manufacturing plant. The Procedure Generation System can create a procedure to deal with the off-normal condition. The operator can then take correct actions on the system in minimal time. The Verification System evaluates the logic of the Procedure Generator's conclusions. This evaluation uses logic techniques totally independent of the Procedure Generator. The rapid, accurate generation and verification of corrective procedures can greatly reduce the human error, possible in a complex (stressful/high stress) situation

  15. 14 CFR 417.121 - Safety critical preflight operations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Safety critical preflight operations. 417.121 Section 417.121 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... surveillance. A launch operator must implement its hazard area surveillance and clearance plan, of § 417.111(j...

  16. Code on the safety of nuclear research reactors: Operation

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this publication is to provide the essential requirements and recommendations for the safe operation of research reactors, with emphasis on the supervisory and managerial aspects. However, the publication also provides some guidance and information on topics concerning all the organizations involved in operation. These objectives are expressed in terms of requirements and recommendations for the safe operation of research reactors. Emphasis is placed on the safety requirements that shall be met rather than on the ways in which they can be met. The requirements and recommendations may form the foundation necessary for a Member State to develop regulations and safety criteria for its research reactor programme.

  17. Safety and operation of the Stade nuclear power plant

    International Nuclear Information System (INIS)

    Salcher, H.

    1991-01-01

    The concept of PreussenElektra is to continuously increase the existing safety standard of the Stade nuclear power station using experience gained from faults and operation in nuclear power stations and the progressive state of the art. Modifications to achieve the most gentle operation of the plant have been completed and other are on-going. To do so instruments were attached to those components which are susceptible to fatigue to record the transients and extensive calculatory records were kept. Although the plant has almost 20 years successful operation behind it, it can still stand up well to comparisons with more recent plants as far as safety aspects are concerned. 6 figs

  18. Categorization of safety related motor operated valve safety significance for Ulchin Unit 3

    International Nuclear Information System (INIS)

    Kang, D. I.; Kim, K. Y.

    2002-03-01

    We performed a categorization of safety related Motor Operated Valve (MOV) safety significance for Ulchin Unit 3. The safety evaluation of MOV of domestic nuclear power plants affects the generic data used for the quantification of MOV common cause failure ( CCF) events in Ulchin Units 3 PSA. Therefore, in this study, we re-estimated the MGL(Multiple Greek Letter) parameter used for the evaluation of MOV CCF probabilities in Ulchin Units 3 Probabilistic Safety Assessment (PSA) and performed a classification of the MOV safety significance. The re-estimation results of the MGL parameter show that its value is decreased by 30% compared with the current value in Ulchin Unit 3 PSA. The categorization results of MOV safety significance using the changed value of MGL parameter shows that the number of HSSCs(High Safety Significant Components) is decreased by 54.5% compared with those using the current value of it in Ulchin Units 3 PSA

  19. Software quality assurance for safety analysis and risk management at the Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.; Toffer, H.; Crowe, R.D.

    1991-01-01

    As part of its Reactor Operations Improvement Program at the Savannah River Site (SRS), Westinghouse Savannah River Company (WSRC), in cooperation with the Westinghouse Hanford Company, has developed and implemented quality assurance for safety-related software for technical programs essential to the safety and reliability of reactor operations. More specifically, the quality assurance process involved the development and implementation of quality standards and attendant procedures based on industry software quality standards. These procedures were then applied to computer codes in reactor safety and probabilistic risk assessment analyses. This paper provides a review of the major aspects of the WSRC safety-related software quality assurance. In particular, quality assurance procedures are described for the different life cycle phases of the software that include the Requirements, Software Design and Implementation, Testing and Installation, Operation and Maintenance, and Retirement Phases. For each phase, specific provisions are made to categorize the range of activities, the level of responsibilities, and the documentation needed to assure the control of the software. The software quality assurance procedures developed and implemented are evolutionary in nature, and thus, prone to further refinements. These procedures, nevertheless, represent an effective controlling tool for the development, production, and operation of safety-related software applicable to reactor safety and probabilistic risk assessment analyses

  20. Operating experience feedback from safety significant events at research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shokr, A.M. [Atomic Energy Authority, Abouzabal (Egypt). Egypt Second Research Reactor; Rao, D. [Bhabha Atomic Research Centre, Mumbai (India)

    2015-05-15

    Operating experience feedback is an effective mechanism to provide lessons learned from the events and the associated corrective actions to prevent recurrence of events, resulting in improving safety in the nuclear installations. This paper analyzes the events of safety significance that have been occurred at research reactors and discusses the root causes and lessons learned from these events. Insights from literature on events at research reactors and feedback from events at nuclear power plants that are relevant to research reactors are also presented along with discussions. The results of the analysis showed the importance of communication of safety information and exchange of operating experience are vital to prevent reoccurrences of events. The analysis showed also the need for continued attention to human factors and training of operating personnel, and the need for establishing systematic ageing management programmes of reactor facilities, and programmes for safety management of handling of nuclear fuel, core components, and experimental devices.

  1. Operating experience feedback from safety significant events at research reactors

    International Nuclear Information System (INIS)

    Shokr, A.M.

    2015-01-01

    Operating experience feedback is an effective mechanism to provide lessons learned from the events and the associated corrective actions to prevent recurrence of events, resulting in improving safety in the nuclear installations. This paper analyzes the events of safety significance that have been occurred at research reactors and discusses the root causes and lessons learned from these events. Insights from literature on events at research reactors and feedback from events at nuclear power plants that are relevant to research reactors are also presented along with discussions. The results of the analysis showed the importance of communication of safety information and exchange of operating experience are vital to prevent reoccurrences of events. The analysis showed also the need for continued attention to human factors and training of operating personnel, and the need for establishing systematic ageing management programmes of reactor facilities, and programmes for safety management of handling of nuclear fuel, core components, and experimental devices.

  2. Nuclear power plant's safety and risk (requirements of safety and reliability)

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1977-01-01

    Starting out from the given safety objectives as they have evolved during the past few years and from the present legal and regulatory provisions for the construction and operation of nuclear power plants, the hazards involved in regular operation, accidents and emergency situations are discussed. In compliance with the positive safety balance of nuclear power plants in the FRG, special attention is focused on the preventive safety analysis within the frame of the nuclear licensing procedure. Reference is made to the beginnings of a comprehensive hazard concept for an unbiased plant assessment. Emergency situations are discussed from the point of view of general hazard comparisons. (orig.) [de

  3. IAEA Leads Operational Safety Mission To Gravelines Nuclear Power Plant, France

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An IAEA-led international team of experts today began an in-depth operational safety review of the Gravelines Nuclear Power Plant in France. The review, conducted at the invitation of the French government, focuses on programmes and activities essential to the safe operation of the nuclear power plant. The three-week review will cover the areas of Management, Organization and Administration; Training and Qualification; Operations; Maintenance; Technical Support; Operating Experience; Radiation Protection; Chemistry; Emergency Planning and Preparedness; and Severe Accident Management. The conclusions of the review will be based on the IAEA Safety Standards and on well-established international good practices. The mission is not a regulatory inspection, a design review or a substitute for an exhaustive assessment of the plant's overall safety status. The team, led by the IAEA's Division of Nuclear Installation Safety, comprises experts from Bulgaria, China, Germany, Hungary, Japan, Romania, Slovakia, South Africa, Spain and Ukraine. The Gravelines mission is the 173rd conducted as part of the IAEA's Operational Safety Review Team programme, which began in 1982. France participates actively in the programme and the Gravelines mission is the 24th hosted by the country. General information about OSART missions can be found on the IAEA Website: OSART Missions. (IAEA)

  4. Safety analyses for high-temperature reactors

    International Nuclear Information System (INIS)

    Mueller, A.

    1978-01-01

    The safety evaluation of HTRs may be based on the three methods presented here: The licensing procedure, the probabilistic risk analysis, and the damage extent analysis. Thereby all safety aspects - from normal operation to the extreme (hypothetical) accidents - of the HTR are covered. The analyses within the licensing procedure of the HTR-1160 have shown that for normal operation and for the design basis accidents the radiation exposures remain clearly below the maximum permissible levels as prescribed by the radiation protection ordinance, so that no real hazard for the population will avise from them. (orig./RW) [de

  5. Energy conservation aircraft design and operational procedures

    Energy Technology Data Exchange (ETDEWEB)

    Poisson-Quinton, P.

    1978-01-01

    The paper reviews studies associated with improved fuel efficiency. Several aircraft design concepts are described including: (1) increases in aerodynamic efficiency through decreased friction drag, parasitic drag, and drag due to lift, (2) structural efficiency and the implementation of composite materials, (3) active control technology, (4) the optimization of airframe-engine integration, and (5) VTOL and STOL concepts. Consideration is also given to operational procedures associated with flight management, terminal-area operations, and the influence of environmental noise constraints on fuel economy.

  6. IAEA Leads Operational Safety Mission to Smolensk Nuclear Power Plant

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: An international team of nuclear safety experts led by the International Atomic Energy Agency (IAEA) has reviewed the Smolensk Nuclear Power Plant (NPP) near Desnogorsk, in Russia's Smolensk region, for its safety practices and has noted a series of good practices as well as recommendations and suggestions to reinforce them. The IAEA assembled the team at the request of the Government of the Russian Federation to conduct an Operational Safety Review (OSART) of the NPP. Under the leadership of the IAEA's Division of Nuclear Installation Safety, the OSART team performed an in-depth operational safety review from 5 to 22 September 2011. The team was made up of experts from China, India, Lithuania, Slovakia, South Africa, Sweden, UK, USA, the World Association of Nuclear Operators and the IAEA. The team conducted an in-depth review of the aspects essential to the safe operation of the Smolensk NPP. The conclusions of the review are based on the IAEA's Safety Standards and proven good international practices. The review covered the areas of Management, Organization and Administration; Training; Operations; Maintenance; Technical Support; Operating Experience; Radiation Protection; and Chemistry. Throughout the review, the exchange of information between the OSART experts and plant personnel was very open, professional and productive. The plant's staff were found to be motivated, well trained, knowledgeable and experienced. The OSART team has identified good plant practices which will be shared with the rest of the nuclear industry for consideration of their application. Examples include the following: Illuminated hot-spot wire to identify higher radiation levels is used in the radiation-controlled area to reduce exposures when working in the controlled area; Modern and state-of-the-art training infrastructure and facilities are available at the plant. These include: maintenance training centre; multimedia simulator for the refueling machine; and safety

  7. Systematic safety evaluation of old nuclear power plants

    International Nuclear Information System (INIS)

    Dredemis, G.; Fourest, B.

    1984-01-01

    The French safety authorities have undertaken a systematic evaluation of the safety of old nuclear power plants. Apart from a complete revision of safety documents (safety analysis report, general operating rules, incident and accident procedures, internal emergency plan, quality organisation manual), this examination consisted of analysing the operating experience of systems frequently challenged and a systematic examination of the safety-related systems. This paper is based on an exercise at the Ardennes Nuclear Power Plant which has been in operation for 15 years. This paper also summarizes the main surveys and modifications relating to this power plant. (orig.)

  8. Convention on nuclear safety. Rules of procedure and financial rules

    International Nuclear Information System (INIS)

    1998-01-01

    The document presents the Rules of Procedure and Financial Rules that apply mutatis mutandis to any meeting of the Contracting Parties to the Convention on Nuclear Safety (INFCIRC/449) convened in accordance with Chapter 3 of the Convention. It includes four parts: General provisions, Preparatory process for review meetings, Review meetings, and Amendment and interpretation of rules

  9. Operation Grenadier. Onsite radiological safety report for announced nuclear tests, October 1984-September 1985

    International Nuclear Information System (INIS)

    Mullen, O.W.; Eubank, B.F.

    1986-09-01

    Grenadier was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site from October 1, 1984 through September 30, 1985. This report includes those experiments publicly announced. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Monitors with portable radiation detection instruments surveyed reentry routes into ground zeros before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined

  10. Operation fusileer onsite radiological safety report for announced nuclear tests, October 1983-September 1984

    International Nuclear Information System (INIS)

    Mullen, O.W.; Eubank, B.F.

    1985-08-01

    Fusileer was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site from October 1, 1983 through September 30, 1984. This report is limited to announced nuclear tests. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Monitors with portable radiation detection instruments surveyed reentry routes into ground zeros before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined

  11. Safety and operating experience at EBR-II: lessons for the future

    International Nuclear Information System (INIS)

    Sackett, J.I.; Golden, G.H.

    1981-01-01

    EBR-II is a small LMFBR power plant that has performed safely and reliably for 16 years. Much has been learned from operating it to facilitate the design, licensing, and operation of large commercial LMFBR power plants in the US. EBR-II has been found relatively easy to keep in conformity with evolving safety requirements, largely because of inherent safety features of the plant. Such features reduce dependence on active safety systems to protect against accidents. EBR-II has experienced a number of plant-transient incidents, some planned, others inadvertent; none has resulted in any significant plant damage. The operating experience with EBR-II has led to the formulation of an Operational Reliability Test Program (ORTP), aimed at showing inherently safe performance of fuel and plant systems

  12. Experience gained in enhancing operational safety at ComEd`s nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Elias, D [Commonwealth Edison Co. (United States)

    1997-09-01

    The following aspects of experience gained in enhancing operational safety at Comed`s nuclear power plants are discussed: nuclear safety policy; centralization/decentralization; typical nuclear operating organization; safety review boards; human performance enhancement; elements of effective nuclear oversight.

  13. Evaluation of nuclear power plant operating procedures classifications and interfaces: Problems and techniques for improvement

    International Nuclear Information System (INIS)

    Barnes, V.E.; Radford, L.R.

    1987-02-01

    This report presents activities and findings of a project designed to evaluate current practices and problems related to procedure classification schemes and procedure interfaces in commercial nuclear power plants. The phrase ''procedure classification scheme'' refers to how plant operating procedures are categorized and indexed (e.g., normal, abnormal, emergency operating procedures). The term ''procedure interface'' refers to how reactor operators are instructed to transition within and between procedures. The project consisted of four key tasks, including (1) a survey of literature regarding problems associated with procedure classifications and interfaces, as well as techniques for overcoming them; (2) interviews with experts in the nuclear industry to discuss the appropriate scope of different classes of operating procedures and techniques for managing interfaces between them; (3) a reanalysis of data gathered about nuclear power plant normal operating and off-normal operating procedures in a related project, ''Program Plan for Assessing and Upgrading Operating Procedures for Nuclear Power Plants''; and (4) solicitation of the comments and expert opinions of a peer review group on the draft project report and on proposed techniques for resolving classification and interface issues. In addition to describing these activities and their results, recommendations for NRC and utility actions to address procedure classification and interface problems are offered

  14. Experimental studies of computerized procedures and team size in nuclear power plant operations

    International Nuclear Information System (INIS)

    Huang, F.-H.; Hwang, S.-L.

    2009-01-01

    The operation of a nuclear power plant is so complex that it requires teamwork. To support team performance, a system need to provide all team members integrated information displays as well as decision aids (e.g., computerized procedures). Two experiments were conducted to investigate the effects of computerized procedures and team size on operating performance. Forty-five participants were involved in the experiments. Each participant executed decision and action tasks to deal with alarm signals, while detecting occasional system errors in the interface. Results showed that effects of computerized procedures were significant on various performance indicators, such as operation time, operation errors, and learning effect, and that two operators would be a satisfactory size in the teamwork system providing computerized procedures

  15. Safety relevant failure mechanisms in the post-operational phase

    International Nuclear Information System (INIS)

    Mayer, Gerhard; Stiller, Jan Christopher; Roemer, Sarah

    2017-03-01

    When the 13"t"h amendment of the Atomic Energy Act came into force, eight Germ an nuclear power plant units had their power operating licences revoked and are now in the so-called post operation phase. Of the remaining nuclear power plants, one have by now also entered the post operation phase, with those left in operation bound for entering this phase sometime between now and the end of 2022. Therefore, failure mechanisms that are particularly relevant for post operation were to be identified and described in the frame of the present project. To do so, three major steps were taken: Firstly, recent national and international pertinent literature was evaluated to obtain indications of failure mechanisms in the post operation phase. It turned out that most of the national and international literature deals with the general procedure of the transition from power operation to decommissioning and dismantling. However, there were also some documents providing detailed indications of possible failure mechanisms in post operation. This includes e.g. the release of radioactive materials caused by the drop of containers, chemical impacts on systems important to safety in connection with decontamination work, and corrosion in connection with the storage of the core in the spent fuel pool, with the latter leading to the jamming of the fuel assemblies in the storage racks and a possible reduction of coolant circulation. In a second step, three safety analyses of pressurised water reactors prepared by the respective plant operators were evaluated to identify failure mechanisms based on systems engineering. The failure mechanisms that were found here include e.g. faults in the boric acid concentration of the reactor coolant, damage to the equipment airlock upon the unloading of Castor casks, leakages in connection with primary system decontamination, and the drop of packages holding radioactive residual materials or waste with subsequent mobilisation of radioactive aerosols

  16. Relations between the safety authority and the nuclear power plant operators

    International Nuclear Information System (INIS)

    Laverie, M.; Flandrin, R.

    1991-01-01

    The French experience has led the safety authority to pay particular attention to the competence of a nuclear operator and to the exercise of his responsibility. In this context, safety does not seem to be improved by the imposition of too many regulations and control activities. On the contrary, an excessive regulatory framework may blunt the operator's awareness of his responsibility. It is the duty of the safety authority to fix the safety objectives. It is the operator's duty to establish the practical conditions for attaining these objectives and to justify these conditions to the safety authority. It is also his duty to implement them correctly. The authority must then verify the quality of this implementation by random inspection methods. Each of the two partners, each conforming to his role and exercise of his particular responsibilities, must remain vigilant. These different actions necessitate a permanent technical dialogue which is not in contradiction with the exercise of strict regulatory control. (orig.)

  17. Study on operational safety issues in the Japanese disposal concept

    International Nuclear Information System (INIS)

    Suzuki, Satoru; Kitagawa, Yoshito; Hyodo, Hideaki; Kubota, Shigeru; Iijima, Masayoshi; Tamura, Akio; Ishiguro, Katsuhiko; Fujihara, Hiroshi

    2014-01-01

    In Japan, vitrified high-level radioactive waste (HLW) and certain types of low-level radioactive waste that results from the reprocessing of spent fuel and classified as TRU waste will be disposed of in deep geological formations. NUMO aims to ensure the safety of local residents and workers during the operational phase and after repository closure and will therefore establish a safety case for the geological disposal programme at the end of each stage of the stepwise siting process. Although the Japanese programme is still in the stage before initiation of the siting process, updating the generic (non-site-specific) safety case is required for building confidence among stakeholders. This study focuses on operational safety issues for the Japanese HLW disposal concept. (authors)

  18. Technical operations procedure for assembly and emplacement of the soil temperature test--test assembly

    International Nuclear Information System (INIS)

    Weber, A.P.

    1978-01-01

    A description is given of the plan for assembly, instrumentation, emplacement, and operational checkout of the soil temperature test assembly and dry well liner. The activities described cover all operations necessary to accomplish the receiving inspection, instrumentation and pre-construction handling of the dry well liner, plus all operations performed with the test article. Actual details of construction work are not covered by this procedure. Each part and/or section of this procedure is a separate function to be accomplished as required by the nature of the operation. The organization of the procedure is not intended to imply a special operational sequence or schedular requirement. Specific procedure operational sections include: receiving inspection; liner assembly operations; construction operations (by others); prepare shield plug; test article assembly and installation; and operational checkout

  19. Periodic safety review of operational nuclear power plants. A publication within the NUSS programme

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide which supplements the IAEA Safety Fundamentals: The Safety of Nuclear Installations and the Code on the Safety of Nuclear Power Plants: Operation, forms part of the Agency's programme, referred to as the NUSS programme, for establishing Codes and Guides relating to nuclear power plants. A list of NUSS publications is given at the end of this book. This Guide was drafted on the basis of a systematic review approach that was endorsed by the IAEA Conference on the Safety of Nuclear Power: Strategy for the Future. The purpose of this Safety Guide is to provide guidance on the conduct of Periodic Safety Reviews (PSRs) for an operational nuclear power plant. The Guide is directed at both owners/operators and regulators. This Safety Guide deals with the PSR of an operational nuclear power plant. A PSR is a comprehensive safety review addressing all important aspects of safety, carried out at regular intervals. 22 refs, 4 figs

  20. Sex differences in principal farm operators' tractor driving safety beliefs and behaviors.

    Science.gov (United States)

    Cole, H P; Westneat, S C; Browning, S R; Piercy, L R; Struttmann, T

    2000-01-01

    To examine the widely accepted hypothesis that farm women are more concerned with safety issues and behaviors than their male counterparts are. A telephone survey was administered to a random sample of Kentucky principal farm operators, 90 of whom were women. Participants were questioned about their tractor safety beliefs and practices. No significant sex differences in tractor safety perceptions and behavior were observed. Socialization of women to the role of principal farm operator may override their typically greater sensitivity to safety issues, an important consideration when designing safety campaigns for this population.

  1. Safety in Liquefied Natural Gas (LNG) Operations

    Energy Technology Data Exchange (ETDEWEB)

    Buhrow, C. [Technische Univ. Bergakademie, Freiberg (Germany). Lehrstuhl Bergbau/Tiefbau; Niemann-Delius, C.; Okafor, E. [Technische Hochschule Aachen (Germany). Lehrstuhl und Inst. fuer Bergbaukunde 3

    2005-07-01

    Germany needs an LNG receiving terminal to import LNG and supplement expected future gas supply shortages. Enormous economic benefits also abound if Germany is to install an LNG receiving terminal. Jobs will be created for several hundred people. New tax revenues will be generated for state and local governments and this will further enhance the economic competitiveness of Germany. Additionally, it will provide Germany with a reliable source of clean-burning energy. Any proposed LNG receiving terminal should incorporate safety right from the start. These safety requirements will: ensure that certain public land uses, people, and structures outside the LNG facility boundaries are protected in the event of LNG fire, prevent vapour clouds associated with an LNG spill from reaching a property line that can be built upon, prevent severe burns resulting from thermal radiation, specify requirements for design, construction and use of LNG facilities and other equipments, and promote safe, secure and reliable LNG operations. The German future LNG business will not be complete without the evolution of both local and international standards that can apply to LNG operations. Currently existing European standards also appear inadequate. With an OHSAS 18001 management system integrated with other existing standards we can better control our LNG occupational health and safety risks, and improve performance in the process. Additionally, an OHSAS 18001 System will help future German LNG contractors and operators safeguard their most important assets - their employees. (orig.)

  2. Safety aspects and operating experience of LWR plants in Japan

    International Nuclear Information System (INIS)

    Aoki, S.; Hinoki, M.

    1977-01-01

    From the outset of nuclear power development in Japan, major emphasis has been placed on the safety of the nuclear power plants. There are now twelve nuclear power plants in operation with a total output of 6600 MWe. Their operating records were generally satisfactory, but in the 1974 to 1975 period, they experienced somewhat declined availability due to the repair work under the specific circumstances. After investigation of causes of troubles and the countermeasures thereof were made to ensure safety, they are now keeping good performance. In Japan, nuclear power plants are strictly subject to sufficient and careful inspection in compliance with the safety regulation, and are placed under stringent radiation control of employees. Under the various circumstances, however, the period of annual inspection tends to be prolonged more than originally planned, and this consequently is considered to be one of the causes of reduced availability. In order to develop nuclear power generation for the future, it is necessary to put further emphasis on the assurance of safety and to endeavor to devise measures to improve availability of the plants, based on the careful analysis of causes which reduce plant availability. This paper discusses the results of studies made for the following items from such viewpoints: (1) Safety and Operating Experience of LWR Nuclear Power Plants in Japan; a) Operating experience with light water reactors b) Improvements in design of light water reactors during the past ten years c) Analysis of the factors which affect plant availability; 2) Assurance of Safety and Measures to Increase Availability a) Measures for safety and environmental protection b) Measures to reduce radiation exposure of employees c) Appropriateness of maintenance and inspection work d) Measures to increase plant availability e) Measures to improve reliability of equipments and components; and 3) Future Technical Problems

  3. The importance for nuclear safety of efficient feedback of operational experience

    International Nuclear Information System (INIS)

    1987-09-01

    Experience of practical operation is a valuable source of information for improving and optimizing the safety and reliability of nuclear power plants. Therefore it is essential to collect information on abnormal events occurring at plants during operation and on all deviations from normal performance by systems and personnel that could be precursors of accidents. For this purpose it is necessary to establish hierarchical systems to feedback operational safety experience at utility, national and international levels and to make these systems as effective as possible. The present report attempts to identify the safety objectives of these systems, to analyse the difficulties presently encountered and to suggest possible improvements

  4. 49 CFR 214.337 - On-track safety procedures for lone workers.

    Science.gov (United States)

    2010-10-01

    ...-track equipment is not impaired by background noise, lights, precipitation, fog, passing trains, or any... performing routine inspection or minor correction may use individual train detection to establish on-track... worker retains an absolute right to use on-track safety procedures other than individual train detection...

  5. Radiological safety aspects of the operation of neutron generators

    International Nuclear Information System (INIS)

    Boggs, R.F.

    1976-01-01

    The purpose of the manual is to provide some basic guidelines to persons with a minimum of training in radiological health or health physics, on some safety aspects of the operation of sealed-tube and Cockcroft-Walton type neutron generators. The manual does not state rules or regulations but presents a description of the most likely hazards. It is relevant to those relatively compact neutron generators which usually operate at less than 150-200 kV for the purpose of producing 14-MeV neutrons. The scope is limited to basic discussions of hazards and measurement techniques. Separate chapters are devoted to the characteristics and use of neutron generators; radiation hazards and safety considerations; radiation monitoring and interpretation of measurements; and requirements for an effective safety programme. Two appendices deal with non-radiation hazards and safety considerations, and with a neutron generator laboratory, respectively. An extensive list of bibliographic references is included

  6. Apollo-Soyuz test project. Operations handbook command/service/docking modules (CSM 119/DM 1): Operational procedures reference issue

    Science.gov (United States)

    1974-01-01

    Operational and configuration checks for the Apollo-Soyuz Test Project are presented. The checks include: backup crew prelaunch, prime crew prelaunch, boost and insertion, G and C reference data, G and N reference modes, rendezvous, navigation, Apollo-Soyuz operations, abort procedures, and emergency procedures.

  7. Efficacy, safety, and patient acceptability of the Essure™ procedure

    Directory of Open Access Journals (Sweden)

    Hopkins MR

    2011-04-01

    Full Text Available Collette R Lessard, Matthew R HopkinsDepartment of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USAAbstract: The Essure™ system for permanent contraception was developed as a less invasive method of female sterilization. Placement of the Essure™ coil involves a hysteroscopic transcervical technique. This procedure can be done in a variety of settings and with a range of anesthetic options. More than eight years have passed since the US Food and Drug Administration approval of Essure™. Much research has been done to evaluate placement success, adverse outcomes, satisfaction, pain, and the contraceptive efficacy of the Essure™. The purpose of this review is to summarize the available literature regarding the efficacy, safety, and patient satisfaction with this new sterilization technique.Keywords: hysteroscopic sterilization, Essure™, safety, efficacy, acceptability

  8. Nuclear safety requirements for operation licensing of Egyptian research reactors

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.

    2000-01-01

    From the view of responsibility for health and nuclear safety, this work creates a framework for the application of nuclear regulatory rules to ensure safe operation for the sake of obtaining or maintaining operation licensing for nuclear research reactors. It has been performed according to the recommendations of the IAEA for research reactor safety regulations which clearly states that the scope of the application should include all research reactors being designed, constructed, commissioned, operated, modified or decommissioned. From that concept, the present work establishes a model structure and a computer logic program for a regulatory licensing system (RLS code). It applies both the regulatory inspection and enforcement regulatory rules on the different licensing process stages. The present established RLS code is then applied to the Egyptian Research Reactors, namely; the first ET-RR-1, which was constructed and still operating since 1961, and the second MPR research reactor (ET-RR-2) which is now in the preliminary operation stage. The results showed that for the ET-RR-1 reactor, all operational activities, including maintenance, in-service inspection, renewal, modification and experiments should meet the appropriate regulatory compliance action program. Also, the results showed that for the new MPR research reactor (ET-RR-2), all commissioning and operational stages should also meet the regulatory inspection and enforcement action program of the operational licensing safety requirements. (author)

  9. Higher operational safety of nuclear power plants by evaluating the behaviour of operating personnel

    International Nuclear Information System (INIS)

    Mertins, M.; Glasner, P.

    1990-01-01

    In the GDR power reactors have been operated since 1966. Since that time operational experiences of 73 cumulative reactor years have been collected. The behaviour of operating personnel is an essential factor to guarantee the safety of operation of the nuclear power plant. Therefore a continuous analysis of the behaviour of operating personnel has been introduced at the GDR nuclear power plants. In the paper the overall system of the selection, preparation and control of the behaviour of nuclear power plant operating personnel is presented. The methods concerned are based on recording all errors of operating personnel and on analyzing them in order to find out the reasons. The aim of the analysis of reasons is to reduce the number of errors. By a feedback of experiences the nuclear safety of the nuclear power plant can be increased. All data necessary for the evaluation of errors are recorded and evaluated by a computer program. This method is explained thoroughly in the paper. Selected results of error analysis are presented. It is explained how the activities of the personnel are made safer by means of this analysis. Comparisons with other methods are made. (author). 3 refs, 4 figs

  10. Conduct of Operations at Nuclear Power Plants. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide identifies the main responsibilities and practices of nuclear power plant (NPP) operations departments in relation to their responsibility for the safe functioning of the plant. The guide presents the factors to be considered in structuring the operations department of an NPP; setting high standards of performance; making safety related decisions in an effective manner; conducting control room and field activities in a thorough and professional manner; and maintaining an NPP within established operational limits and conditions. Contents: 1. Introduction; 2. Management and organization of plant operations; 3. Shift complement and functions; 4. Shift routines and operating practices; 5. Control of equipment and plant status; 6. Operations equipment and operator aids; 7. Work control and authorization.

  11. 47 CFR 80.1135 - Transmission of maritime safety information.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Transmission of maritime safety information. 80... RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Operating Procedures for Distress and Safety Communications § 80.1135 Transmission of maritime safety...

  12. Safety aspects and operating experience of LWR plants in Japan

    International Nuclear Information System (INIS)

    Aoki, S.; Yoshioka, T.; Toyota, M.; Hinoki, M.

    1977-01-01

    To develop nuclear power generation for the future, it is necessary to put further emphasis on safety assurance and to endeavour to devise measures to improve plant availability, based on the careful analysis of causes that reduce plant availability. The paper discusses the results of studies on the following items from such viewpoints: (1) Safety and operating experience of LWR nuclear power plants in Japan: operating experience with LWRs; improvements in LWR design during the past ten years; analysis of the factors affecting plant availability; (2) Assurance of safety and measures to increase availability: measures for safety and environmental protection; measures to reduce radiation exposure of employees; appropriateness of maintenance and inspection work; measures to increase plant availability; measures to improve reliability of equipment and components; (3) Future technical problems. (author)

  13. Safety requirements for long term operation of NPPs

    International Nuclear Information System (INIS)

    Houdre, T.; Osouf, N.; Juvin, J.-C.

    2012-01-01

    In the future, the reactors operating at present will run alongside reactors of the EPR type or their equivalent, designed for a significantly higher level of safety. This raises the question of the acceptability of continued operation of reactors beyond 40 years when there is an available technology that is safer. Two objectives are therefore imperative. First, a re-evaluation of the safety level in the light of that required of EPR type reactors or their equivalent is necessary, with proposals to bring about significant and relevant improvements to the reactors. R and D work in France and elsewhere is already indicating orientations that could lead to answers, and improvements that would provide significant reductions in release in case of severe accident are being studied. Second, strict compliance of the reactors with the applicable regulations must be demonstrated. At the same time, ageing and obsolescence of the equipment will have to be managed. Where these two points are concerned, ASN expects far-reaching proposals from the licensee. With a view to a request for continued operation beyond 40 years, ASN has referred the matter to the Advisory Committee for nuclear reactors which will meet at the end of 2011 to establish the safety requirements for reactors at their fourth ten-yearly outage. (author)

  14. Automated operator procedure prompting for startup of Experimental Breeder Reactor-2

    International Nuclear Information System (INIS)

    Renshaw, A.W.; Ball, S.J.; Ford, C.E.

    1990-11-01

    This report describes the development of an operator procedure prompting aid for startup of a nuclear reactor. This operator aid is a preliminary design for a similar aid that eventually will be used with the Advanced Liquid Metal Reactor (ALMR) presently in the design stage. Two approaches were used to develop this operator procedure prompting aid. One method uses an expert system software shell, and the other method uses database software. The preliminary requirements strongly pointed toward features traditionally associated with both database and expert systems software. Database software usually provides data manipulation flexibility and user interface tools, and expert systems tools offer sophisticated data representation and reasoning capabilities. Both methods, including software and associated hardware, are described in this report. Proposals for future enhancements to improve the expert system approach to procedure prompting and for developing other operator aids are also offered. 25 refs., 14 figs

  15. Automated operator procedure prompting for startup of Experimental Breeder Reactor-2

    Energy Technology Data Exchange (ETDEWEB)

    Renshaw, A.W.; Ball, S.J.; Ford, C.E.

    1990-11-01

    This report describes the development of an operator procedure prompting aid for startup of a nuclear reactor. This operator aid is a preliminary design for a similar aid that eventually will be used with the Advanced Liquid Metal Reactor (ALMR) presently in the design stage. Two approaches were used to develop this operator procedure prompting aid. One method uses an expert system software shell, and the other method uses database software. The preliminary requirements strongly pointed toward features traditionally associated with both database and expert systems software. Database software usually provides data manipulation flexibility and user interface tools, and expert systems tools offer sophisticated data representation and reasoning capabilities. Both methods, including software and associated hardware, are described in this report. Proposals for future enhancements to improve the expert system approach to procedure prompting and for developing other operator aids are also offered. 25 refs., 14 figs.

  16. Health and Safety First

    CERN Document Server

    2013-01-01

    At CERN, health and safety underpin everything we do. We have strict operational procedures in place, as well as health, safety and environment (HSE) requirements to make our working environment as safe as possible. It’s everyone’s responsibility to follow these procedures and requirements to keep ourselves, and our colleagues, safe. We have a very good safety and operational record at CERN stretching back almost 60 years, but there is never room for complacency.   With this very much in mind, we have developed a robust plan for implementation if something unforeseen goes wrong.  Because however careful we all are, accidents do happen, and the mark of any organisation that aspires to be among the best in the world is how quickly and efficiently it acts when they do. A small team made up of people from several departments at CERN has produced a strategic crisis management plan that we can put into action should a major incident occur.  This plan focuses on...

  17. American National Standard administrative practices for nuclear criticality safety, ANSI/ANS-8.19

    International Nuclear Information System (INIS)

    Smith, D.R.; Carson, R.W.

    1991-01-01

    American National Standard Administrative Practices for Nuclear Criticality Safety, ANSI/ANS-8.19, provides guidance for the administration of an effective program to control the risk of nuclear criticality in operations with fissile material outside reactors. The several sections of the standard address the responsibilities of management, supervisory personnel, and the criticality safety staff, as well as requirements and suggestions for the content of operating procedures, process evaluations, material control procedures, and emergency procedures

  18. Laser Safety Inspection Criteria

    International Nuclear Information System (INIS)

    Barat, K

    2005-01-01

    opportunity to explain audit items to the laser user and thus the reasons for some of these items. Some examples are given from the audit criteria handout. As an explanatory key to the reader, an Operational Safety Procedure (OSP) as a formally reviewed safety procedure required for all Class 3B and Class 4 laser installations. An ''OSP Binder'' contains all safety documentation related to a given laser operation and serves as a central repository for documents, such as the OSP, interlock logs, lessons learned, contact information etc. ''Unattended Operation'' refers to approved procedures for unattended operation of the laser installation and may include operation beyond normal working hours. ''L-train'' is the LLNL training tracking system

  19. Safety prediction technique for nuclear power plants

    International Nuclear Information System (INIS)

    Henry, C.D. III; Anderson, R.T.

    1985-01-01

    This paper presents a safety prediction technique (SPT) developed by Reliability Technology Associates (RTA) for nuclear power plants. It is based on a technique applied by RTA to assess the flight safety of US Air Force aircraft. The purpose of SPT is to provide a computerized technique for objective measurement of the effect on nuclear plant safety of component failure or procedural, software, or human error. A quantification is determined, called criticality, which is proportional to the probability that a given component or procedural-human action will cause the plant to operate in a hazardous mode. A hazardous mode is characterized by the fact that there has been a failure/error and the plant, its operating crew, and the public are exposed to danger. Whether the event results in an accident, an incident, or merely the exposure to danger is dependent on the skill and reaction of the operating crew as well as external influences. There are three major uses of SPT: (a) to predict unsafe situations so that corrective action can be taken before accidents occur, (b) to quantify the impact of equipment malfunction or procedural, software, or human error on safety and thereby establish priorities for proposed modifications, and (c) to provide a means of evaluating proposed changes for their impact on safety prior to implementation and to provide a method of tracking implemented changes

  20. Safety class methodology

    International Nuclear Information System (INIS)

    Donner, E.B.; Low, J.M.; Lux, C.R.

    1992-01-01

    DOE Order 6430.1A, General Design Criteria (GDC), requires that DOE facilities be evaluated with respect to ''safety class items.'' Although the GDC defines safety class items, it does not provide a methodology for selecting safety class items. The methodology described in this paper was developed to assure that Safety Class Items at the Savannah River Site (SRS) are selected in a consistent and technically defensible manner. Safety class items are those in the highest of four categories determined to be of special importance to nuclear safety and, merit appropriately higher-quality design, fabrication, and industrial test standards and codes. The identification of safety class items is approached using a cascading strategy that begins at the 'safety function' level (i.e., a cooling function, ventilation function, etc.) and proceeds down to the system, component, or structure level. Thus, the items that are required to support a safety function are SCls. The basic steps in this procedure apply to the determination of SCls for both new project activities, and for operating facilities. The GDC lists six characteristics of SCls to be considered as a starting point for safety item classification. They are as follows: 1. Those items whose failure would produce exposure consequences that would exceed the guidelines in Section 1300-1.4, ''Guidance on Limiting Exposure of the Public,'' at the site boundary or nearest point of public access 2. Those items required to maintain operating parameters within the safety limits specified in the Operational Safety Requirements during normal operations and anticipated operational occurrences. 3. Those items required for nuclear criticality safety. 4. Those items required to monitor the release of radioactive material to the environment during and after a Design Basis Accident. Those items required to achieve, and maintain the facility in a safe shutdown condition 6. Those items that control Safety Class Item listed above

  1. Administrative practices for nuclear criticality safety, ANSI/ANS-8.19-1996

    International Nuclear Information System (INIS)

    Smith, D.R.

    1996-01-01

    American National Standard, open-quotes Administrative Practices for Nuclear Criticality Safety,close quotes American National Standards Institute/American Nuclear Society (ANSI/ANS)-8.19-1996, addresses the responsibilities of management, supervision, and the criticality safety staff in the administration of an effective criticality safety program. Characteristics of operating procedures, process evaluations, material control procedures, and emergency plans are discussed

  2. Feedback of safety - related operational experience: Lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Elias, D [Commonwealth Edison Co. (United States)

    1997-09-01

    The presentation considers the following aspects of feedback of safety-related operational experience: lessons learned program, objectives, personnel characteristics; three types of documents for transmitting lessons learned issues.

  3. Feedback of safety - related operational experience: Lessons learned

    International Nuclear Information System (INIS)

    Elias, D.

    1997-01-01

    The presentation considers the following aspects of feedback of safety-related operational experience: lessons learned program, objectives, personnel characteristics; three types of documents for transmitting lessons learned issues

  4. Probabilistic safety analysis procedures guide. Sections 1-7 and appendices. Volume 1, Revision 1

    International Nuclear Information System (INIS)

    Bari, R.A.; Buslik, A.J.; Cho, N.Z.

    1985-08-01

    A procedures guide for the performance of probabilistic safety assessment has been prepared for interim use in the Nuclear Regulatory Commission programs. It will be revised as comments are received, and as experience is gained from its use. The probabilistic safety assessment studies performed are intended to produce probabilistic predictive models that can be used and extended by the utilities and by NRC to sharpen the focus of inquiries into a range of issues affecting reactor safety. This first volume of the guide describes the determination of the probability (per year) of core damage resulting from accident initiators internal to the plant (i.e., intrinsic to plant operation) and from loss of off-site electric power. The scope includes human reliability analysis, a determination of the importance of various core damage accident sequences, and an explicit treatment and display of uncertainties for key accident sequences. The second volume deals with the treatment of the so-called external events including seismic disturbances, fires, floods, etc. Ultimately, the guide will be augmented to include the plant-specific analysis of in-plant processes (i.e., containment performance). This guide provides the structure of a probabilistic safety study to be performed, and indicates what products of the study are valuable for regulatory decision making. For internal events, methodology is treated in the guide only to the extent necessary to indicate the range of methods which is acceptable; ample reference is given to alternative methodologies which may be utilized in the performance of the study. For external events, more explicit guidance is given

  5. RESPONSIBILITIES OF FOOD BUSINESS OPERATORS RELATED TO FOOD SAFETY: CONCERNS RELATED TO HACCP IN MICRO-BUSINESSES FOOD COMPANIES

    Directory of Open Access Journals (Sweden)

    T. Civera

    2012-08-01

    Full Text Available The research was aimed at collecting information on food safety knowledge by operators of small and less developed food businesses. This will allow to reveal what are the real drawbacks in HACCP application in these realities. Fifty meat producing plants located in Piedmont region were involved. In all the plants a questionnaire with questions on HACCP system was submitted. The analysis of the collected answers, evidenced that 42% of the operators needed to perform structural modifications in order to address the HACCP measures, whereas 40% applied modifications in working procedures. The most frequent shortcoming (44% of the answers of the HACCP system was represented by the applicability of Good Manufacturing Practices, and the most difficult control measure to be applied was the prevention of the cross-contaminations (40% of the answers. The information gathered within this project allowed to evidence the real needs of the micro businesses in the application of HACCP plan. These results can be useful for the institutions, which could elaborate HACCP alternative systems, able to better fulfil food safety requirements and Food Business Operator needs.

  6. Applying lessons from commercial aviation safety and operations to resuscitation.

    Science.gov (United States)

    Ornato, Joseph P; Peberdy, Mary Ann

    2014-02-01

    Both commercial aviation and resuscitation are complex activities in which team members must respond to unexpected emergencies in a consistent, high quality manner. Lives are at stake in both activities and the two disciplines have similar leadership structures, standard setting processes, training methods, and operational tools. Commercial aviation crews operate with remarkable consistency and safety, while resuscitation team performance and outcomes are highly variable. This commentary provides the perspective of two physician-pilots showing how commercial aviation training, operations, and safety principles can be adapted to resuscitation team training and performance. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. IAEA-NULIFE VERLIFE - Procedure for integrity and lifetime assessment of components and piping in WWER NPPs during operation - Tool for LTO

    International Nuclear Information System (INIS)

    Brumovsky, M.

    2012-01-01

    VERLIFE - 'Unified Procedure for Lifetime Assessment of Components and Piping in WWER NPPs during Operation' was developed within the 5th Framework Programme of the European Union in 2003 and later upgraded within the 6th Framework Programme 'COVERS - Safety of WWER NPPs' of the European Union in 2008. This Procedure had to fill the gap in original Soviet/Russian Codes and Rules for WWER type NPPs, as these codes were developed only for design and manufacture and were not changed since their second edition in 1989. VERLIFE Procedure is based on these Russian codes but incorporates also new developments in research, mainly in fracture mechanics, and also some principal approaches used in PWR codes. To assure that VERLIFE Procedure will remain a living document, new 3-years IAEA project (in close cooperation with another project of the 6th Framework Programme of the European Union 'NULIFE - Plant Life Management of NPPs') has started in 2009. Final document, was approved by expert groups of the IAEA and NULIFE in June 28-30, 2011, and will be issued as 'IAEA/NULIFE Guidelines for Integrity and Lifetime Assessment of Components and Piping in WWER NPPs during Operation'. This document represents a necessary part for any integrity and lifetime assessment during operation that is a bases for further decision about safe and potential long term operation. To prepare documents like TLAA, it is necessary to have a tool that is able to evaluate lifetime of the main NPP components taking into account existing past operation as well as proposal for the future. (author)

  8. Safety improvement of Paks nuclear power plant

    International Nuclear Information System (INIS)

    Vamos, G.

    1999-01-01

    Safety upgrading completed in the early nineties at the Paks NPP include: replacement of steam generator safety valves and control valves; reliability improvement of the electrical supply system; modification of protection logic; enhancement of the fire protection; construction of full scope Training Simulator. Design safety upgrading measures achieved in recent years were concerned with: relocation of steam generator emergency feed-water supply; emergency gas removal from the primary coolant system; hydrogen management in the containment; protection against sumps; preventing of emergency core cooling system tanks from refilling. Increasing seismic resistance, containment assessment, refurbishment of reactor protection system, improving reliability of emergency electrical supply, analysis of internal hazards are now being implemented. Safety upgrading measures which are being prepared include: bleed and feed procedures; reactor over-pressurisation protection in cold state; treatment of steam generator primary to secondary leak accidents. Operational safety improvements are dealing with safety culture, training measures and facilities; symptom based emergency operating procedures; in-service inspection; fire protection. The significance of international cooperation is emphasised in view of achieving nuclear safety standards recognised in EU

  9. Safety system status monitoring

    International Nuclear Information System (INIS)

    Lewis, J.R.; Morgenstern, M.H.; Rideout, T.H.; Cowley, P.J.

    1984-03-01

    The Pacific Northwest Laboratory has studied the safety aspects of monitoring the preoperational status of safety systems in nuclear power plants. The goals of the study were to assess for the NRC the effectiveness of current monitoring systems and procedures, to develop near-term guidelines for reducing human errors associated with monitoring safety system status, and to recommend a regulatory position on this issue. A review of safety system status monitoring practices indicated that current systems and procedures do not adequately aid control room operators in monitoring safety system status. This is true even of some systems and procedures installed to meet existing regulatory guidelines (Regulatory Guide 1.47). In consequence, this report suggests acceptance criteria for meeting the functional requirements of an adequate system for monitoring safety system status. Also suggested are near-term guidelines that could reduce the likelihood of human errors in specific, high-priority status monitoring tasks. It is recommended that (1) Regulatory Guide 1.47 be revised to address these acceptance criteria, and (2) the revised Regulatory Guide 1.47 be applied to all plants, including those built since the issuance of the original Regulatory Guide

  10. Safety system status monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J.R.; Morgenstern, M.H.; Rideout, T.H.; Cowley, P.J.

    1984-03-01

    The Pacific Northwest Laboratory has studied the safety aspects of monitoring the preoperational status of safety systems in nuclear power plants. The goals of the study were to assess for the NRC the effectiveness of current monitoring systems and procedures, to develop near-term guidelines for reducing human errors associated with monitoring safety system status, and to recommend a regulatory position on this issue. A review of safety system status monitoring practices indicated that current systems and procedures do not adequately aid control room operators in monitoring safety system status. This is true even of some systems and procedures installed to meet existing regulatory guidelines (Regulatory Guide 1.47). In consequence, this report suggests acceptance criteria for meeting the functional requirements of an adequate system for monitoring safety system status. Also suggested are near-term guidelines that could reduce the likelihood of human errors in specific, high-priority status monitoring tasks. It is recommended that (1) Regulatory Guide 1.47 be revised to address these acceptance criteria, and (2) the revised Regulatory Guide 1.47 be applied to all plants, including those built since the issuance of the original Regulatory Guide.

  11. A toolkit for computerized operating procedure of complex industrial systems with IVI-COM technology

    International Nuclear Information System (INIS)

    Zhou Yangping; Dong Yujie; Huang Xiaojing; Ye Jingliang; Yoshikawa, Hidekazu

    2013-01-01

    A human interface toolkit is proposed to help the user develop computerized operating procedure of complex industrial system such as Nuclear Power Plants (NPPs). Coupled with a friendly graphical interface, this integrated tool includes a database, a procedure editor and a procedure executor. A three layer hierarchy is adopted to express the complexity of operating procedure, which includes mission, process and node. There are 10 kinds of node: entrance, exit, hint, manual input, detector, actuator, data treatment, branch, judgment and plug-in. The computerized operating procedure will sense and actuate the actual industrial systems with the interface based on IVI-COM (Interchangeable Virtual Instrumentation-Component Object Model) technology. A prototype system of this human interface toolkit has been applied to develop a simple computerized operating procedure for a simulated NPP. (author)

  12. The Increase of Operational Safety of Ships by Improving Diagnostic Methods for Marine Diesel Engine

    Directory of Open Access Journals (Sweden)

    Kazimierz Witkowski

    2017-06-01

    Full Text Available This article shows the importance of the diagnostic improvement methods of marine engines to boost the economy and safety of operation of marine cargo ships. The need to implement effective diagnostic methods is justified by presenting statistical data of marine diesel engines failure and the cost of their operation. Based on the own research has been proven, for the chosen example, that indicator diagrams and analysis of indicated parameters have limited utility in the diagnosis of damages of marine engine, although this is a method commonly used in operational practice. To achieve greater diagnostic effectiveness, when, based on indicator diagrams, are calculated and then the characteristics of heat release is analyzed - net of heat release characteristics and the intensity of the heat release, it was demonstrated. This procedure is particularly effective in the diagnosis of damage of injection system components marine diesel engine.

  13. Study of the Operational Safety of a Vascular Interventional Surgical Robotic System

    Directory of Open Access Journals (Sweden)

    Jian Guo

    2018-03-01

    Full Text Available This paper proposes an operation safety early warning system based on LabView (2014, National Instruments Corporation, Austin, TX, USA for vascular interventional surgery (VIS robotic system. The system not only provides intuitive visual feedback information for the surgeon, but also has a safety early warning function. It is well known that blood vessels differ in their ability to withstand stress in different age groups, therefore, the operation safety early warning system based on LabView has a vascular safety threshold function that changes in real-time, which can be oriented to different age groups of patients and a broader applicable scope. In addition, the tracing performance of the slave manipulator to the master manipulator is also an important index for operation safety. Therefore, we also transformed the slave manipulator and integrated the displacement error compensation algorithm in order to improve the tracking ability of the slave manipulator to the master manipulator and reduce master–slave tracking errors. We performed experiments “in vitro” to validate the proposed system. According to previous studies, 0.12 N is the maximum force when the blood vessel wall has been penetrated. Experimental results showed that the proposed operation safety early warning system based on LabView combined with operating force feedback can effectively avoid excessive collisions between the surgical catheter and vessel wall to avoid vascular puncture. The force feedback error of the proposed system is maintained between ±20 mN, which is within the allowable safety range and meets our design requirements. Therefore, the proposed system can ensure the safety of surgery.

  14. Proceedings of the international symposium on research reactor safety operations and modifications

    International Nuclear Information System (INIS)

    1990-03-01

    The International Symposium on Research Reactor Safety, Operations and Modifications was organized by the International Atomic Energy Agency in cooperation with Atomic Energy of Canada Limited-Research Company. The main objectives of this Symposium were: (1) to exchange information and to discuss current perspectives and concerns relating to all aspects to research reactor safety, operations, and modifications; and, (2) to present views and to discuss future initiatives and directions for research reactor design, operations, utilization, and safety. The symposium topics included: research reactor programmes and experience; research reactor design safety and analysis; research reactor modifications and decommissioning; research reactor licensing; and new research reactors. These topics were covered during eight oral sessions and three poster sessions. These Proceedings include the full text of the 93 papers presented. The subject of Symposium was quite wide-ranging in that it covered essentially all aspects of research reactor safety, operations, and modifications. This was considered to be appropriate and timely given the 326 research reactors currently in operation in some 56 countries; given the degree of their utilization which ranges from pure and applied research to radioisotopes production to basic training and manpower development; and given that many of these reactors are undergoing extensive modifications, core conversions, power upratings, and are becoming the subject of safety reassessment and regulatory reviews. Although the Symposium covered many topics, the majority of papers and discussions tended to focus mainly on research reactor safety. This was seen as a clear sign of the continuing recognition of the fundamental importance of identifying and addressing, particularly through international cooperation, issues and concerns associated with research reactor safety

  15. Analytical Chemistry Laboratory (ACL) procedure compendium

    International Nuclear Information System (INIS)

    1993-01-01

    This volume contains the interim change notice for the safety operation procedure for hot cell. It covers the master-slave manipulators, dry waste removal, cell transfers, hoists, cask handling, liquid waste system, and physical characterization of fluids

  16. PATIENT SAFETY IN SURGERY: THE QUALITY OF IMPLEMENTATION OF PATIENT SAFETY CHECKLISTS IN A REGIONAL HOSPITAL

    Directory of Open Access Journals (Sweden)

    V. Karyadinata

    2012-09-01

    Full Text Available Introduction. Patient safety and the avoidance of inhospital adverse events is a key focus of clinical practice and medical audit. A large of proportion of medical errors affect surgical patients in the peri-operative setting. Safety checklists have been adopted by the medical profession from the aviation industry as a cheap and reliable method of avoiding errors which arise from complex or stressful situations. Current evidence suggests that the use of periooperative checklists has led to a decrease in surgical morbidity and hospital costs. Aim. To assess the quality of implementation of a modified patient safety checklist in a UK district general hospital. Methods. An observational tool was designed to assess in real time the peri-operative performance of the surgical safety checklist in patients undergoing general surgical, urological or orthopaedic procedures. Initiation of the checklist, duration of performance and staff participation were audited in real time. Results. 338 cases were monitored. Nurses were most active in initiating the safety checklist. The checklist was performed successfully in less than a minute in most cases. 11-24% of staff (according to professional group present in the operating room did not participate in the checklist. Critical safety checks (patient identity and procedure name were performed in all cases across all specialties. Variations were noted in checking other categories, such as deep vein thrombosis (DVT prophylaxis or patient warming. Conclusions. There is still a potential for improving the practice and culture of surgical patient safety activities. Staff training and designation of patient safety leadership roles is needed in increasing compliance and implementation of patient safety mechanism, such as peri-operative checklists. There is significant data to advocate the need to implement patient safety surgical checklists internationally

  17. Operating experience and procedures at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Carlson, R.V.; Binning, K.E.; Cole, S.P.; Jenkins, E.M.; Wilhelm, R.C.; Cole, S.P.

    1988-01-01

    Operating procedures are important for the safe and efficient operation of the Tritium Systems Test Assembly (TSTA). TSTA has been operating for four years with tritium in a safe and efficient manner. The inventory of tritium in the process loop is 100 grams and several milestone runs have been completed. This paper describes the methods used to operate TSTA. 3 refs., 1 fig

  18. Safety goals for nuclear power plant operation

    International Nuclear Information System (INIS)

    1983-05-01

    This report presents and discusses the Nuclear Regulatory Commission's, Policy Statement on Safety Goals for the Operation of Nuclear Power Plants. The safety goals have been formulated in terms of qualitative goals and quantitative design objectives. The qualitative goals state that the risk to any individual member of the public from nuclear power plant operation should not be a significant contributor to that individual's risk of accidental death or injury and that the societal risks should be comparable to or less than those of viable competing technologies. The quantitative design objectives state that the average risks to individual and the societal risks of nuclear power plant operation should not exceed 0.1% of certain other risks to which members of the US population are exposed. A subsidiary quantitative design objective is established for the frequency of large-scale core melt. The significance of the goals and objectives, their bases and rationale, and the plan to evaluate the goals are provided. In addition, public comments on the 1982 proposed policy statement and responses to a series of questions that accompanied the 1982 statement are summarized

  19. Safety research for evolutionary light water reactors

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1996-01-01

    The development of nuclear energy has been characterized by a continuous evolution of the technological and philosophical underpinnings of reactor safety to enable operation of the plant without causing harm to either the plant operators or the public. Currently, the safety of a nuclear plant is assured through the combined use of procedures and engineered safety features together with a system of multiple protective barriers against the release of radioactivity. This approach is embodied in the concept of Design-Basis Accidents (DBA), which requires the designers to demonstrate that all credible accidents have been identified and that all safety equipment and procedures perform their functions extremely reliably. Particularly important functions are the automatic protection to shut the reactor down and to remove the decay heat while ensuring the integrity of the containment structure. Within the DBA concept, the so-called severe accidents were conveniently defined to be those accidents that lie beyond the DBA envelope; hence, they did not form part of the safety case. (author)

  20. Safety research for evolutionary light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D G [Karlsruhe Univ. (T.H.) (Germany). Universitaetsbibliothek

    1996-12-01

    The development of nuclear energy has been characterized by a continuous evolution of the technological and philosophical underpinnings of reactor safety to enable operation of the plant without causing harm to either the plant operators or the public. Currently, the safety of a nuclear plant is assured through the combined use of procedures and engineered safety features together with a system of multiple protective barriers against the release of radioactivity. This approach is embodied in the concept of Design-Basis Accidents (DBA), which requires the designers to demonstrate that all credible accidents have been identified and that all safety equipment and procedures perform their functions extremely reliably. Particularly important functions are the automatic protection to shut the reactor down and to remove the decay heat while ensuring the integrity of the containment structure. Within the DBA concept, the so-called severe accidents were conveniently defined to be those accidents that lie beyond the DBA envelope; hence, they did not form part of the safety case. (author).