WorldWideScience

Sample records for safety management manual

  1. Radiological Emergency Response Health and Safety Manual

    Energy Technology Data Exchange (ETDEWEB)

    D. R. Bowman

    2001-05-01

    This manual was created to provide health and safety (H&S) guidance for emergency response operations. The manual is organized in sections that define each aspect of H and S Management for emergency responses. The sections are as follows: Responsibilities; Health Physics; Industrial Hygiene; Safety; Environmental Compliance; Medical; and Record Maintenance. Each section gives guidance on the types of training expected for managers and responders, safety processes and procedures to be followed when performing work, and what is expected of managers and participants. Also included are generic forms that will be used to facilitate or document activities during an emergency response. These ensure consistency in creating useful real-time and archival records and help to prevent the loss or omission of information.

  2. Tank farms criticality safety manual

    International Nuclear Information System (INIS)

    FORT, L.A.

    2003-01-01

    This document defines the Tank Farms Contractor (TFC) criticality safety program, as required by Title 10 Code of Federal Regulations (CFR-), Subpart 830.204(b)(6), ''Documented Safety Analysis'' (10 CFR- 830.204 (b)(6)), and US Department of Energy (DOE) 0 420.1A, Facility Safety, Section 4.3, ''Criticality Safety.'' In addition, this document contains certain best management practices, adopted by TFC management based on successful Hanford Site facility practices. Requirements in this manual are based on the contractor requirements document (CRD) found in Attachment 2 of DOE 0 420.1A, Section 4.3, ''Nuclear Criticality Safety,'' and the cited revisions of applicable standards published jointly by the American National Standards Institute (ANSI) and the American Nuclear Society (ANS) as listed in Appendix A. As an informational device, requirements directly imposed by the CRD or ANSI/ANS Standards are shown in boldface. Requirements developed as best management practices through experience and maintained consistent with Hanford Site practice are shown in italics. Recommendations and explanatory material are provided in plain type

  3. DOE explosives safety manual. Revision 7

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This manual prescribes the Department of Energy (DOE) safety rules used to implement the DOE safety policy for operations involving explosives. This manual is applicable to all DOE facilities engaged in operations of development, manufacturing, handling, storage, transportation, processing, or testing of explosives, pyrotechnics and propellants, or assemblies containing these materials. The standards of this manual deal with the operations involving explosives, pyrotechnics and propellants, and the safe management of such operations. The design of all new explosives facilities shall conform to the requirements established in this manual and implemented in DOE 6430.1A, ``General Design Criteria Manual.`` It is not intended that existing physical facilities be changed arbitrarily to comply with these provisions, except as required by law. Existing facilities that do not comply with these standards may continue to be used for the balance of their functional life, as long as the current operation presents no significantly greater risk than that assumed when the facility was originally designed and it can be demonstrated clearly that a modification to bring the facility into compliance is not feasible. However, in the case of a major renovation, the facility must be brought into compliance with current standards. The standards are presented as either mandatory or advisory. Mandatory standards, denoted by the words ``shall,`` ``must,`` or ``will,`` are requirements that must be followed unless written authority for deviation is granted as an exemption by the DOE. Advisory standards denoted by ``should`` or ``may`` are standards that may be deviated from with a waiver granted by facility management.

  4. Missouri Highway Safety Manual Recalibration

    Science.gov (United States)

    2018-05-01

    The Highway Safety Manual (HSM) is a national manual for analyzing the highway safety of various facilities, including rural roads, urban arterials, freeways, and intersections. The HSM was first published in 2010, and a 2014 supplement addressed fre...

  5. Waste Management Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, J.S. [ed.

    1967-08-31

    This Manual has been prepared to provide a documented compendium of the technical bases and general physical features of Isochem Incorporated`s Waste Management Program. The manual is intended to be used as a means of training and as a reference handbook for use by personnel responsible for executing the Waste Management Program. The material in this manual was assembled by members of Isochem`s Chemical Processing Division, Battelle Northwest Laboratory, and Hanford Engineering Services between September 1965 and March 1967. The manual is divided into the following parts: Introduction, contains a summary of the overall Waste Management Program. It is written to provide the reader with a synoptic view and as an aid in understanding the subsequent parts; Feed Material, contains detailed discussion of the type and sources of feed material used in the Waste Management Program, including a chapter on nuclear reactions and the formation of fission products; Waste Fractionization Plant Processing, contains detailed discussions of the processes used in the Waste Fractionization Plant with supporting data and documentation of the technology employed; Waste Fractionization Plant Product and Waste Effluent Handling, contains detailed discussions of the methods of handling the product and waste material generated by the Waste Fractionization Plant; Plant and Equipment, describes the layout of the Waste Management facilities, arrangement of equipment, and individual equipment pieces; Process Control, describes the instruments and analytical methods used for process control; and Safety describes process hazards and the methods used to safeguard against them.

  6. Program Management System manual

    International Nuclear Information System (INIS)

    1986-01-01

    The Program Management System (PMS), as detailed in this manual, consists of all the plans, policies, procedure, systems, and processes that, taken together, serve as a mechanism for managing the various subprograms and program elements in a cohesive, cost-effective manner. The PMS is consistent with the requirements of the Nuclear Waste Policy Act of 1982 and the ''Mission Plan for the Civilian Radioactive Waste Management Program'' (DOE/RW-0005). It is based on, but goes beyond, the Department of Energy (DOE) management policies and procedures applicable to all DOE programs by adapting these directives to the specific needs of the Civilian Radioactive Waste Management program. This PMS Manual describes the hierarchy of plans required to develop and maintain the cost, schedule, and technical baselines at the various organizational levels of the Civilian Radioactive Waste Management Program. It also establishes the management policies and procedures used in the implementation of the Program. These include requirements for internal reports, data, and other information; systems engineering management; regulatory compliance; safety; quality assurance; and institutional affairs. Although expanded versions of many of these plans, policies, and procedures are found in separate documents, they are an integral part of this manual. The PMS provides the basis for the effective management that is needed to ensure that the Civilian Radioactive Waste Management Program fulfills the mandate of the Nuclear Waste Policy Act of 1982. 5 figs., 2 tabs

  7. Manual on maintenance of systems and components important to safety

    International Nuclear Information System (INIS)

    1986-01-01

    The Manual should serve as guidance at the plant management level for the maintenance of systems and components important to safety. It includes a detailed description of management systems, administrative controls and procedures. The Annexes contain examples of documents and practices adopted by Operating Organizations of some Member States. It is not the intention of this Manual to address the technical problem of how to maintain a particular component but rather to cover the programmatic aspects of maintenance. It also contains some aspects of surveillance and verification activities. The Manual makes only general statements about radiation protection provisions in connection with maintenance; detailed guidance can be found in other IAEA documents

  8. Idaho Safety Manual.

    Science.gov (United States)

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This manual is intended to help teachers, administrators, and local school boards develop and institute effective safety education as a part of all vocational instruction in the public schools of Idaho. This guide is organized in 13 sections that cover the following topics: introduction to safety education, legislation, levels of responsibility,…

  9. Health and safety manual

    International Nuclear Information System (INIS)

    1980-02-01

    The manual consists of the following chapters: general policies and administration; the Environmental Health and Safety Department; the Medical Services Department: biological hazards; chemical safety; confined space entry; cryogenic safety; electrical safety; emergency plans; engineering and construction; evacuations, trenching, and shoring; fire safety; gases, flammable and compressed; guarding, mechanical; ladders and scaffolds, work surfaces; laser safety; materials handling and storage; noise; personal protective equipment; pressure safety; radiation safety, ionizing and non-ionizing; sanitation; seismic safety; training, environmental health and safety; tools, power and hand-operated; traffic and transportation; and warning signs and devices

  10. Helicopter Operations and Personnel Safety (Helirescue Manual). Fourth Edition.

    Science.gov (United States)

    Dalle-Molle, John

    The illustrated manual includes information on various aspects of helicopter rescue missions, including mission management roles for key personnel, safety rules around helicopters, requests for helicopter support, sample military air support forms, selection of landing zones, helicopter evacuations, rescuer delivery, passenger unloading, crash…

  11. Highway Safety Program Manual: Volume 3: Motorcycle Safety.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 3 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) concentrates on aspects of motorcycle safety. The purpose and specific objectives of a State motorcycle safety program are outlined. Federal authority in the highway safety area and general policies…

  12. Environment, safety, and health manual, closeout report

    International Nuclear Information System (INIS)

    1975-12-01

    A coordination draft of the Environment, Safety, and Health (ES and H) manual was submitted on 2 September 1975. Comments provided by Operational Safety personnel were being incorporated by a task team when the effort was terminated on 31 October 1975. This report documents the development history of the manual and provides a status of the manual up to the time the efforts were discontinued. Also discussed are issues which effect completion of the manual. Additionally a plan for completion of the manual is suggested

  13. Development of an environmental safety case guidance manual

    International Nuclear Information System (INIS)

    Wellstead, Matthew John

    2014-01-01

    NDA RWMD is currently considering the scope, purpose and structure of a safety case manual that covers the development of nuclear operational, transport and environmental safety cases for a geological disposal facility in the United Kingdom. This paper considers the Environmental Safety Case (ESC) input into such a manual (herein referred to as the 'ESC Manual'), looking at the drivers and benefits that a guidance manual in this area may provide. (authors)

  14. Safety Management System in Croatia Control Ltd.

    OpenAIRE

    Pavlin, Stanislav; Sorić, Vedran; Bilać, Dragan; Dimnik, Igor; Galić, Daniel

    2009-01-01

    International Civil Aviation Organization and other international aviation organizations regulate the safety in civil aviation. In the recent years the International Civil Aviation Organization has introduced the concept of the safety management system through several documents among which the most important is the 2006 Safety Management Manual. It treats the safety management system in all the segments of civil aviation, from carriers, aerodromes and air traffic control to design, constructi...

  15. A feasibility study for Arizona's roadway safety management process using the Highway Safety Manual and SafetyAnalyst : final report.

    Science.gov (United States)

    2016-07-01

    To enable implementation of the American Association of State Highway Transportation (AASHTO) Highway Safety Manual using : SaftetyAnalyst (an AASHTOWare software product), the Arizona Department of Transportation (ADOT) studied the data assessment :...

  16. Environment, safety and health progress assessment manual

    International Nuclear Information System (INIS)

    1992-12-01

    On June 27, 1989, the Secretary of Energy announced a 10-Point Initiative to strengthen environment, safety, and health (ES ampersand H) programs, and waste management activities at DOE production, research, and testing facilities. One of the points involved conducting dent Tiger Team Assessments of DOE operating facilities. The Office of Special independent Projects (OSP), EH-5, in the Office of the Assistant Secretary for Environment, Safety and Health, EH-1, was assigned the responsibility to conduct the Tiger Team Assessments. Through June 1992, a total of 35 Tiger Team Assessments were completed. The Secretary directed that Corrective Action Plans be developed and implemented to address the concerns identified by the Tiger Teams. In March 1991, the Secretary approved a plan for assessments that are ''more focused, concentrating on ES ampersand H management, ES ampersand H corrective actions, self-assessment programs, and root-cause related issues.'' In July 1991, the Secretary approved the initiation of ES ampersand H Progress Assessments, as a followup to the Tiger Team Assessments, and in the continuing effort to institutionalize the self-assessment process and line management accountability in the ES ampersand H areas. This manual documents the processes to be used to perform the ES ampersand H Progress Assessments. It was developed based upon the lessons learned from Tiger Team Assessments, the two pilot Progress Assessments, and Progress Assessments that have been completed. The manual will be updated periodically to reflect lessons learned or changes in policy

  17. Federal Radiological Monitoring and Assessment Center Health and Safety Manual

    Energy Technology Data Exchange (ETDEWEB)

    FRMAC Health and Safety Working Group

    2012-03-20

    This manual is a tool to provide information to all responders and emergency planners and is suggested as a starting point for all organizations that provide personnel/assets for radiological emergency response. It defines the safety requirements for the protection of all emergency responders. The intent is to comply with appropriate regulations or provide an equal level of protection when the situation makes it necessary to deviate. In the event a situation arises which is not addressed in the manual, an appropriate management-level expert will define alternate requirements based on the specifics of the emergency situation. This manual is not intended to pertain to the general public.

  18. Manual on quality assurance for computer software related to the safety of nuclear power plants

    International Nuclear Information System (INIS)

    1988-01-01

    The objective of the Manual is to provide guidance in the assurance of quality of specification, design, maintenance and use of computer software related to items and activities important to safety (hereinafter referred to as safety related) in nuclear power plants. This guidance is consistent with, and supplements, the requirements and recommendations of Quality Assurance for Safety in Nuclear Power Plants: A Code of Practice, 50-C-QA, and related Safety Guides on quality assurance for nuclear power plants. Annex A identifies the IAEA documents referenced in the Manual. The Manual is intended to be of use to all those who, in any way, are involved with software for safety related applications for nuclear power plants, including auditors who may be called upon to audit management systems and product software. Figs

  19. Chemistry laboratory safety manual available

    Science.gov (United States)

    Elsbrock, R. G.

    1968-01-01

    Chemistry laboratory safety manual outlines safe practices for handling hazardous chemicals and chemistry laboratory equipment. Included are discussions of chemical hazards relating to fire, health, explosion, safety equipment and procedures for certain laboratory techniques and manipulations involving glassware, vacuum equipment, acids, bases, and volatile solvents.

  20. Safety management systems and their role in achieving high standards of operational safety

    International Nuclear Information System (INIS)

    Coulston, D.J.; Baylis, C.C.

    2000-01-01

    Achieving high standards of operational safety requires a robust management framework that is visible to all personnel with responsibility for its implementation. The structure of the management framework must ensure that all processes used to manage safety interlink in a logical and coherent manner, that is, they form a management system that leads to continuous improvement in safety performance. This Paper describes BNFL's safety management system (SMS). The SMS has management processes grouped within 5 main elements: 1. Policy, 2. Organisation, 3. Planning and Implementation, 4. Measuring and Reviewing Performance, 5. Audit. These elements reflect the overall process of setting safety objective (from Policy), measuring success and reviewing the performance. Effective implementation of the SMS requires senior managers to demonstrate leadership through their commitment and accountability. However, the SMS as a whole reflects that every employee at every level within BNFL is responsible for safety of operations under their control. The SMS therefore promotes a proactive safety culture and safe operations. The system is formally documented in the Company's Environmental, Health and Safety (EHS) Manual. Within in BNFL Group, the Company structures enables the Manual to provide overall SMS guidance and co-ordination to its range of nuclear businesses. Each business develops the SMS to be appropriate at all levels of its organisation, but ensuring that each level is consistent with the higher level. The Paper concludes with a summary of BNFL's safety performance. (author)

  1. Environment, safety and health progress assessment manual

    International Nuclear Information System (INIS)

    1992-12-01

    On June 27, 1989, the Secretary of Energy announced a 1O-Point Initiative to strengthen environment,safety, and health (ES ampersand H) programs, and waste management activities at involved conducting DOE production, research, and testing facilities. One of the points independent Tiger Team Assessments of DOE operating facilities. The Office of Special Projects (OSP), EH-5, in the Office of the Assistant Secretary for Environment, Safety and Health, EH-1, was assigned the responsibility to conduct the Tiger Team Assessments. Through June 1992, a total of 35 Tiger Team Assessments were completed. The Secretary directed that Corrective Action Plans be developed and implemented to address the concerns identified by the Tiger Teams. In March 1991, the Secretary approved a plan for assessments that are ''more focused, concentrating on ES ampersand H management, ES ampersand H corrective actions, self-assessment programs, and root-cause related issues.'' In July 1991, the Secretary approved the initiation of ES ampersand H Progress Assessments, as a followup to the Tiger Team Assessments, and in the continuing effort to institutionalize the self-assessment process and line management accountability in the ES ampersand H areas. This volume contains appendices to the Environment, Safety and Health Progress Assessment Manual

  2. Occupational Safety and Health Curriculum Manual.

    Science.gov (United States)

    Gourley, Frank A., Jr., Comp.

    With the enactment of the Occupational Safety and Health Act of 1970, the need for manpower development in the field of industrial safety and hygiene has resulted in the development of a broad based program in Occupational Safety and Health. The manual provides information to administrators and instructors on a program of study in this field for…

  3. Highway Safety Program Manual: Volume 8: Alcohol in Relation to Highway Safety.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 8 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) concentrates on alcohol in relation to highway safety. The purpose and objectives of the alcohol program are outlined. Federal authority in the area of highway safety and general policies regarding…

  4. Manual of functions, assignments, and responsibilities for nuclear safety: Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-15

    The FAR Manual is a convenient easy-to-use collection of the functions, assignments, and responsibilities (FARs) of DOE nuclear safety personnel. Current DOE directives, including Orders, Secretary of Energy Notices, and other assorted policy memoranda, are the source of this information and form the basis of the FAR Manual. Today, the majority of FARs for DOE personnel are contained in DOE`s nuclear safety Orders. As these Orders are converted to rules in the Code of Federal Regulations, the FAR Manual will become the sole source for information relating to the functions, assignments, responsibilities of DOE nuclear safety personnel. The FAR Manual identifies DOE directives that relate to nuclear safety and the specific DOE personnel who are responsible for implementing them. The manual includes only FARs that have been extracted from active directives that have been approved in accordance with the procedures contained in DOE Order 1321.1B.

  5. Sodium safety manual

    International Nuclear Information System (INIS)

    Hayes, D.J.; Gardiner, R.L.

    1980-09-01

    The sodium safety manual is based upon more than a decade of experience with liquid sodium at Berkeley Nuclear Laboratories (BNL). It draws particularly from the expertise and experience developed in the course of research work into sodium fires and sodium water reactions. It draws also on information obtained from the UKAEA and other sodium users. Many of the broad principles will apply to other Establishments but much of the detail is specific to BNL and as a consequence its application at other sites may well be limited. Accidents with sodium are at best unpleasant and at worst lethal in an extremely painful way. The object of this manual is to help prevent sodium accidents. It is not intended to give detailed advice on specific precautions for particular situations, but rather to set out the overall strategy which will ensure that sodium activities will be pursued safely. More detail is generally conveyed to staff by the use of local instructions known as Sodium Working Procedures (SWP's) which are not reproduced in this manual although a list of current SWP's is included. Much attention is properly given to the safe design and operation of larger facilities; nevertheless evidence suggests that sodium accidents most frequently occur in small-scale work particularly in operations associated with sodium cleaning and special care is needed in all such cases. (U.K.)

  6. Biosafety Manual

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce W.

    2010-05-18

    Work with or potential exposure to biological materials in the course of performing research or other work activities at Lawrence Berkeley National Laboratory (LBNL) must be conducted in a safe, ethical, environmentally sound, and compliant manner. Work must be conducted in accordance with established biosafety standards, the principles and functions of Integrated Safety Management (ISM), this Biosafety Manual, Chapter 26 (Biosafety) of the Health and Safety Manual (PUB-3000), and applicable standards and LBNL policies. The purpose of the Biosafety Program is to protect workers, the public, agriculture, and the environment from exposure to biological agents or materials that may cause disease or other detrimental effects in humans, animals, or plants. This manual provides workers; line management; Environment, Health, and Safety (EH&S) Division staff; Institutional Biosafety Committee (IBC) members; and others with a comprehensive overview of biosafety principles, requirements from biosafety standards, and measures needed to control biological risks in work activities and facilities at LBNL.

  7. Development of a health and safety manual for emergency response operations

    International Nuclear Information System (INIS)

    Riland, C.A.; Junio, S.S.

    2000-01-01

    The Federal Radiological Monitoring and Assessment Center (FRMAC) Health and Safety Manual, which has been under development by a multi-agency group, is nearing completion and publication. The manual applies to offsite monitoring during a radiological accident or incident. Though written for multi-agency offsite monitoring activities (FRMAC), the manual is generic in nature and should be readily adaptable for other emergency response operations. Health and safety issues for emergency response situations often differ from those of normal operations. Examples of these differences and methodologies to address these issues are discussed. Challenges in manual development, including lack of regulatory and guidance documentation, are also discussed. One overriding principle in the Health and Safety Manual development is the overall reduction of risk, not just dose. The manual is broken into several chapters, which include Overview of Responsibities, Health Physics, Industrial Hygiene and Safey, Medical, and Environmental Compliance and Records. Included is a series of appendices, which presents additional information on forms and plans for default scenarios

  8. Aircraft operations management manual

    Science.gov (United States)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  9. Quality management for nuclear power plant operation: A manual

    International Nuclear Information System (INIS)

    1990-01-01

    The experience from well operated nuclear power plants shows that achievement of safe, reliable and economic performance is closely related to a strong commitment and involvement by the management personnel. A system of controls is necessary to ensure that satisfactory quality in operation is achieved and maintained over the long term. The key to achieving and assuring quality lies in the ability of management to define performance objectives and to ensure that significant safety and reliability problems are prevented or detected early and resolved. This Manual has been developed by the IAEA to assist plant managers in fulfilling their responsibility with regard to the control and direction of quality and of quality assurance activities in nuclear power plant operation. It emphasizes quality objectives for nuclear power plant operation and indicates the way in which a quality system based on quality assurance principles as established in the IAEA NUSS documents can be used by managers to accomplish these objectives. Since the Manual is mainly directed at management personnel, it is presented in the form of short highlighted practices complemented by typical examples of forms and procedures. Since not all the activities under the heading of quality in operation could be covered in a single document, the activities selected for this Manual comprise those where it was felt that practical advice is generally needed. A pragmatic document useful for direct application by plant managers was the envisaged objective

  10. IAEA publishes first health and safety manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-01-15

    A 'Manual on the Safe Handling of Radioisotopes' was published in English on 15 Dec ember 1958 by the International Atomic Energy Agency. This is a comprehensive handbook of internationally compiled recommendations for users of radioisotopes. It covers organizational, medical and technical aspects of radiation safety practices. It is also the Agency's first technical publication. French, Russian and Spanish editions will appear shortly. The Manual should prove useful to all users of radioisotopes in industry, medicine, research, etc., but is directed mainly to small scale users who may not have access to other sources of information. The recommendations apply only to radioactivity surpassing the limit of 0,002 microcurie concentration per gram of material; or a total activity of more than 0,1 microcuries in the working areas; this limit is based on the most dangerous radioisotopes. The experts state that the limiting level might be higher for less dangerous isotopes, but recommend that all be treated as potentially dangerous. This would have educational value and avoid accidents caused by misidentification. The Manual also stressed that good radiation safety practices depend on effective organization and warns that even very competent workers sometimes ignore or forget important health and safety requirements.

  11. IAEA publishes first health and safety manual

    International Nuclear Information System (INIS)

    1959-01-01

    A 'Manual on the Safe Handling of Radioisotopes' was published in English on 15 Dec ember 1958 by the International Atomic Energy Agency. This is a comprehensive handbook of internationally compiled recommendations for users of radioisotopes. It covers organizational, medical and technical aspects of radiation safety practices. It is also the Agency's first technical publication. French, Russian and Spanish editions will appear shortly. The Manual should prove useful to all users of radioisotopes in industry, medicine, research, etc., but is directed mainly to small scale users who may not have access to other sources of information. The recommendations apply only to radioactivity surpassing the limit of 0,002 microcurie concentration per gram of material; or a total activity of more than 0,1 microcuries in the working areas; this limit is based on the most dangerous radioisotopes. The experts state that the limiting level might be higher for less dangerous isotopes, but recommend that all be treated as potentially dangerous. This would have educational value and avoid accidents caused by misidentification. The Manual also stressed that good radiation safety practices depend on effective organization and warns that even very competent workers sometimes ignore or forget important health and safety requirements

  12. Safety Training: "Manual Handling" course in September

    CERN Multimedia

    Safety Training, HSE Unit

    2016-01-01

    The next "Manual Handling" course will be given, in French, on 26 September 2016. This course is designed for anyone required to carry out manual handling of loads in the course of their work.   The main objective of this course is to adopt and apply the basic principles of physical safety and economy of effort. There are places available. If you are interested in following this course, please fill an EDH training request via our catalogue. 

  13. MORT User's Manual for use with the Management Oversight and Risk Tree analytical logic diagram. [Contains a list of System Safety Development Center publications

    Energy Technology Data Exchange (ETDEWEB)

    Knox, N.W.; Eicher, R.W.

    1992-02-01

    This report contains the User's Manual for MORT (Management Oversight and Risk Tree), a logic diagram in the form of a work sheet'' that illustrates a long series of interrelated questions. MORT is a comprehensive analytical procedure that provides a disciplined method for determining the causes and contributing factors of major accidents. Alternatively, it serves as a tool to evaluate the quality of an existing system. While similar in many respects to fault tree analysis, MORT is more generalized and presents over 1,500 specific elements of an ideal universal'' management program for optimizing environment, safety and health, and other programs. This User's Manual is intended to be used with the MORT diagram dated February 1992.

  14. Investigation of status of safety management in radiation handle works

    International Nuclear Information System (INIS)

    Amauchi, Hiroshi; Nishimura, Kenji; Izumi, Kokichi

    2007-01-01

    This report describes the investigation in the title concerning the system for safety management and for accident prevention, which was done by a questionnaire in a period of 1.5 months in 2005. The questionnaire including 55 questions for safety management system, 33 for instruments and safety utilization of radiation and 57 for present status of safety management in high-risk radiation works, was performed in 780 hospitals, of which 313 answered. The first 55 questions concerned with the facility, patient identification, information exchange, management of private information, safety management activities, measures to prevent accident, manual preparation, personnel education and safety awareness; the second, with management of instruments, package insert, system for reporting the safety information, management of implants, re-imaging and radiation protection; and the third, with the systems for patients' emergency, in departments of CT/MR, of IVR, of nuclear diagnosis and of radiation therapy. Based on the results obtained, many problems, tasks and advices are presented to various items and further continuation of efforts to improve the present status is mentioned to be necessary. Details are given in the homepage of the Japanese Society of Radiological Technology. (T.I.)

  15. Safety manual for civil engineering and building works of nuclear power plants

    International Nuclear Information System (INIS)

    1988-01-01

    This manual lays down the various important considerations that go into safe design of civil structures for nuclear power plants. This manual identifies the design approach, quality assurance requirements and acceptance criteria that need to be observed to assure safety. Considerations on civil design having bearing on safety, during decommissioning are also indicated. (original). 37 refs., tabs

  16. Fire Protection Program Manual

    Energy Technology Data Exchange (ETDEWEB)

    Sharry, J A

    2012-05-18

    This manual documents the Lawrence Livermore National Laboratory (LLNL) Fire Protection Program. Department of Energy (DOE) Orders 420.1B, Facility Safety, requires LLNL to have a comprehensive and effective fire protection program that protects LLNL personnel and property, the public and the environment. The manual provides LLNL and its facilities with general information and guidance for meeting DOE 420.1B requirements. The recommended readers for this manual are: fire protection officers, fire protection engineers, fire fighters, facility managers, directorage assurance managers, facility coordinators, and ES and H team members.

  17. Risk and Work Configuration Management as a Function of Integrated Safety Management

    International Nuclear Information System (INIS)

    Lana Buehrer; Michele Kelly; Fran Lemieux; Fred Williams

    2007-01-01

    National Security Technologies, LLC (NSTec), has established a work management program and corresponding electronic Facilities and Operations Management Information System (e-FOM) to implement Integrated Safety Management (ISM). The management of work scopes, the identification of hazards, and the establishment of implementing controls are reviewed and approved through electronic signatures. Through the execution of the program and the implementation of the electronic system, NSTec staff work within controls and utilize feedback and improvement process. The Integrated Work Control Manual further implements the five functions of ISM at the Activity level. By adding the Risk and Work Configuration Management program, NSTec establishes risk acceptance (business and physical) for liabilities within the performance direction and work management processes. Requirements, roles, and responsibilities are specifically identified in the program while e-FOM provides the interface and establishes the flowdown from the Safety Chain to work and facilities management processes to company work-related directives, and finally to Subject Matter Expert concurrence. The Program establishes, within the defined management structure, management levels for risk identification, risk mitigation (controls), and risk acceptance (business and physical) within the Safety Chain of Responsibility. The Program also implements Integrated Safeguards and Security Management within the NSTec Safety Chain of Responsibility. Once all information has been entered into e-FOM, approved, and captured as data, the information becomes searchable and sortable by hazard, location, organization, mitigating controls, etc

  18. A practical due diligence strategy for managing the safety of contractors

    International Nuclear Information System (INIS)

    Catton, C.

    1998-01-01

    Ontario Hydro's Fossil Business has developed and implemented a practical program to ensure that the due diligence requirements for contractors are met, particularly in the health and safety area. Companies in the power generation business are hiring contractors to protect their competitive potential by having them perform specialty work outside the core business of generating electricity. The reasons behind this trend, and the need for companies to develop comprehensive contractor safety management systems to avoid legislative liability and cost overruns, and to have contractors work safely, are examined. The main elements of Ontario Hydro's Fossil Business Contractor Safety Management Program (contractor safety policy, contractor safety manual, contractor safety training, and a contractor safety performance database) are discussed. 2 figs., 2 appendices

  19. Nuclear criticality safety. Chapter 0530 of AEC manual

    International Nuclear Information System (INIS)

    2006-01-01

    The programme objectives of this chapter of the U.S. Atomic Energy Commission manual on nuclear criticality safety are to protect the health and safety of the public and of the government and contractor personnel working in plants that handle fissionable material and to protect public and private property from the consequences of a criticality accident occurring in AEC-owned plants and other AEC-contracted activities involving fissionable materials

  20. The Effectiveness and Safety of Manual Therapy on Pain and Disability in Older Persons With Chronic Low Back Pain: A Systematic Review.

    Science.gov (United States)

    de Luca, Katie E; Fang, Sheng Hung; Ong, Justin; Shin, Ki-Soo; Woods, Samuel; Tuchin, Peter J

    2017-09-01

    The aim of this study was to perform a systematic review of the literature of the effectiveness and safety of manual therapy interventions on pain and disability in older persons with chronic low back pain (LBP). A literature search of 4 electronic databases was performed (PubMed, EMBASE, OVID, and CINAHL). Inclusion criteria included randomized controlled trials of manual therapy interventions on older persons who had chronic LBP. Effectiveness was determined by extracting and examining outcomes for pain and disability, with safety determined by the report of adverse events. The PEDro scale was used for quality assessment of eligible studies. The search identified 405 articles, and 38 full-text articles were assessed. Four studies met the inclusion criteria. All trials were of good methodologic quality and had a low risk of bias. The included studies provided moderate evidence supporting the use of manual therapy to reduce pain levels and alleviate disability. A limited number of studies have investigated the effectiveness and safety of manual therapy in the management of older people with chronic LBP. The current evidence to make firm clinical recommendations is limited. Research with appropriately designed trials to investigate the effectiveness and safety of manual therapy interventions in older persons with chronic LBP is required. Copyright © 2017. Published by Elsevier Inc.

  1. Joint FAM/Line Management Assessment Report on LLNL Machine Guarding Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, J. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-07-19

    The LLNL Safety Program for Machine Guarding is implemented to comply with requirements in the ES&H Manual Document 11.2, "Hazards-General and Miscellaneous," Section 13 Machine Guarding (Rev 18, issued Dec. 15, 2015). The primary goal of this LLNL Safety Program is to ensure that LLNL operations involving machine guarding are managed so that workers, equipment and government property are adequately protected. This means that all such operations are planned and approved using the Integrated Safety Management System to provide the most cost effective and safest means available to support the LLNL mission.

  2. Health and Safety Procedures Manual for hazardous waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Thate, J.E.

    1992-09-01

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  3. Principles and Practices of Occupational Safety and Health: Student Manual: Booklet One.

    Science.gov (United States)

    Occupational Safety and Health Administration, Washington, DC.

    The manual is the first of six student manuals for use in a course on occupational health and safety for supervisory personnel. The manual contains lessons 1-3 of the 15 consecutively-numbered lessons, each of which contains study questions (and answers) interwoven with the text and review questions at the end of each section. Lesson 1 (three…

  4. Principles and Practices of Occupational Safety and Health: Student Manual: Booklet Five.

    Science.gov (United States)

    Occupational Safety and Health Administration, Washington, DC.

    The manual is the fifth of six student manuals for use in a course on occupational health and safety for supervisory personnel. The manual contains lessons 14 and 15 of the 15 consecutively-numbered lessons, each of which contains study questions (and answers) interwoven with the text and review questions at the end of each section. Lesson 14…

  5. The stormwater management manual for Malaysia

    International Nuclear Information System (INIS)

    Md Nasir Md Noh

    2006-01-01

    The government of Malaysia considers land and water as two very important natural resources. Consequently, the conservation practice of these natural resources remain top priority agenda with various laws and policies apart from manuals and guidelines available for practitioners to follow right from planning, design and implementation stages. Among the laws and regulations are national land code, land conservation act, local government act, street, drainage and building act, town and country planning act, and environmental quality act among others. In addition, stormwater management manual for Malaysia developed by department of irrigation and drainage, guidelines on the prevention and control of soil erosion and siltation in Malaysia developed by department of environment, standard specification for road works established by public works department, use of flood detention ponds as part of open space set up by department of town and country planning, and guideline for agricultural development at slope terrain published by department of agriculture are some of the established manuals and guidelines utilized around the country. The stormwater management manual for malaysia (msma) is the latest of the series of guidelines available in the country for inculcating up to date stormwater management apart from ensuring sustainable soil and water conservation practice in Malaysia. This manual has been published in 2000 and started to be utilized since 1 January 2001. Ever since msma has been widely used for the planning, design and implementation of various land development activities in the country. Among the key points highlighted in this manual are water quantity control and water quality control. Water quantity control focuses on the flash flood control technique due to the increase rate of water flowing out of developed areas while water quality control meant for the controlled of non-point source pollution generated by developed areas by contemplating on the best

  6. Principles and Practices of Occupational Safety and Health: Administrator's Manual.

    Science.gov (United States)

    Occupational Safety and Health Administration, Washington, DC.

    The manual guides an instructor in conducting a training course for first-line supervisors to familiarize them with six aspects relating to the Occupational Safety and Health Act of 1970: (1) requirements of the Act, (2) compliance with its standards, (3) identification of health and safety hazards, (4) correction of adverse conditions, (5) record…

  7. Management Matters. Virtual School Library Media Center Management Manual

    Science.gov (United States)

    Pappas, Marjorie L.

    2005-01-01

    In this article, the author describes a management manual she maintained while working as a school library media specialist. She started the manual when she was a student in the organization and administration course in the library science program and kept it current with information gleaned from conferences, workshops, and networking with other…

  8. Design and management of hot-laboratories. [Manual]. Hottorabo no sekkei to kanri

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    This document is a manual for the design and management of hot-laboratories. It is composed of three parts. The first part is devoted to the design of hot-laboratories. Items included here are; conceptual design; many regulations which must be considered at design stage; design of cave and its shielding; and the design of building, ventilation, and draining. Many examples of specific designs are presented by figures and photographs. The second part is concerned with the methods of operation management. Organizational structure, scheduling of operation, process management, and regulatory problems are discussed with some examples. Technological problems associated with the operation of a hot laboratory (e.g., manipulator, transfer machine, maintenance, and decontamination) are also discussed based on the authors' experiences. An example of the operation manual is presented for reference. The third part is devoted to the safety management and the training of personnel. The regulations by law are briefly explained. Most of this part is devoted to the problem of monitoring radio-activity. Monitoring of control areas, radio-active wastes, and personal dosage is discussed together with many other specific monitoring problems. As for training, the purpose and the present status are explained.

  9. Occupational safety manual. 4. rev. ed.

    International Nuclear Information System (INIS)

    Skiba, R.

    1979-01-01

    With the rapid technical development and increasing life expectancy, protection against occupational hazards has become a central economic and social problem. Consultants and others responsible for occupational safety should not only be interested in their work but also have sufficient basic knowledge. The complex subject is presented in a simplified and easily comprehensible manner, with particular regard to the practical side. The book is at the same time a textbook for basic training and a reference manual for the working practice. (orig./HP) [de

  10. Highway Safety Manual applied in Missouri - freeway/software : research summary.

    Science.gov (United States)

    2016-03-01

    AASHTOs Highway Safety Manual (HSM) : includes models for freeway segments, speedchange : lanes (transitional area between mainline : and ramps), ramps, and interchange terminals. : These predictive models for freeway : interchanges need to be cal...

  11. Small Business Management. Instructor's Manual. Volume I. Third Edition.

    Science.gov (United States)

    Jeanneau, Joseph A.; And Others

    The instructor's manual is one of four prepared as a guide in conducting a small Business Management course for American Indians to prepare them for jobs as owners/managers of their own businesses and for management positions with business owned by bonds, cooperatives, and others. The manual contains lesson plans, suggested methodologies, and…

  12. Fluor Daniel Hanford Inc. integrated safety management system phase 1 verification final report

    International Nuclear Information System (INIS)

    PARSONS, J.E.

    1999-01-01

    The purpose of this review is to verify the adequacy of documentation as submitted to the Approval Authority by Fluor Daniel Hanford, Inc. (FDH). This review is not only a review of the Integrated Safety Management System (ISMS) System Description documentation, but is also a review of the procedures, policies, and manuals of practice used to implement safety management in an environment of organizational restructuring. The FDH ISMS should support the Hanford Strategic Plan (DOE-RL 1996) to safely clean up and manage the site's legacy waste; deploy science and technology while incorporating the ISMS theme to ''Do work safely''; and protect human health and the environment

  13. Mort User's Manual: For use with the Management Oversight and Risk Tree analytical logic diagram

    Energy Technology Data Exchange (ETDEWEB)

    Knox, N.W.; Eicher, R.W.

    1992-02-01

    This report contains the User's Manual for MORT (Management Oversight and Risk Tree), a logic diagram in the form of a work sheet'' that illustrates a long series of interrelated questions. MORT is a comprehensive analytical procedure that provides a disciplined method for determining the causes and contributing factors of major accidents. Alternatively, it serves as a tool to evaluate the quality of an existing system. While similar in many respects to fault tree analysis, MORT is more generalized and presents over 1500 specific elements of an ideal universal'' management program for optimizing environment, safety and health, and other programs. This User's Manual is intended to be used with the MORT diagram dated February 1992.

  14. Development of a SCAT data management manual

    International Nuclear Information System (INIS)

    Lamarche, A.; Owens, E.H.

    2005-01-01

    The Shoreline Cleanup Assessment Technique (SCAT) is a commonly used method in North America to document oiling conditions in the aftermath of an oil spill. The data generated by SCAT can support all aspects of the process needed to develop and apply shoreline treatment methods such as planning treatment strategies, selecting treatment methods, providing detailed instructions to response personnel and evaluating the response effort. In order to be effective, SCAT data must be validated, entered within computerized systems, and transformed into support documents such as maps, tables and reports. This paper describes the development of a guidance manual for SCAT data coordinators and spill response managers that use the results of SCAT data. Guidance is presented for emergency procedures that enable the generation of minimal, but adequate, SCAT data management services. The creation of the manual involved the development of formal descriptions of the role, responsibilities and abilities of the SCAT data management team. The manual provides solution to several data processing issues, including those related to the presence of multiple parallel bands of oil within a segment of shoreline. Summary tables were created to report the length of oiled shoreline by oiling category and to present surface oiling characteristics in overview maps. The manual also includes details on how SCAT data is used for response planning, decision making and to support operations. 12 refs., 7 tabs., 8 figs

  15. VDOT manual of practice for planning stormwater management.

    Science.gov (United States)

    1992-01-01

    The final report is in the form of a manual of practice for the VDOT to use in planning its stormwater management strategies. The manual was proposed to aid in the selection and design of erosion control practices and stormwater control practices for...

  16. Fluor Daniel Hanford Inc. integrated safety management system phase 1 verification final report

    Energy Technology Data Exchange (ETDEWEB)

    PARSONS, J.E.

    1999-10-28

    The purpose of this review is to verify the adequacy of documentation as submitted to the Approval Authority by Fluor Daniel Hanford, Inc. (FDH). This review is not only a review of the Integrated Safety Management System (ISMS) System Description documentation, but is also a review of the procedures, policies, and manuals of practice used to implement safety management in an environment of organizational restructuring. The FDH ISMS should support the Hanford Strategic Plan (DOE-RL 1996) to safely clean up and manage the site's legacy waste; deploy science and technology while incorporating the ISMS theme to ''Do work safely''; and protect human health and the environment.

  17. A survey on management perspectives of the state of workplace health and safety practices in Kenya.

    Science.gov (United States)

    Mbakaya, C F; Onyoyo, H A; Lwaki, S A; Omondi, O J

    1999-07-01

    A baseline survey was conducted in 1995 on management perspectives of occupational health and safety (OHS) structures and practices in Kenya. This was achieved by interviewing management and supervisory staff attending 1 week multi-disciplinary courses that were organized by the Federation of Kenya Employers (FKE) and the International Labour Office (ILO) at hotel venues in Kenya. The purpose of the survey was to gain some insight into work safety conditions in Kenya and to assess the potential for a new OHS manual to meet existing knowledge gaps. The manual was locally developed in 1993/4 by Kenyan OHS experts in collaboration with colleagues from the Swedish National Institute for Working Life. Results of the survey from 65 participants indicated that most workplace managers were not familiar with the Kenyan work safety legislation. Work injuries were largely attributable to working with dangerous machinery. Occupational diseases and HIV/AIDS were cited as other causes of workplace morbidity and mortality. Although most respondents (70%) were satisfied with their work safety conditions, only 37% said their workplaces were annually audited by labour inspectors while 45% said injured workers were not treated well by management. Many workplaces (65%) violated the mandatory legal requirement on the establishment of health and safety committees. The OHS resource person and course content were rated highly by most respondents (96%). The foregoing results provided the basis of a needs analysis for future OHS programs in Kenya.

  18. A Clinical Study on Management of Incomplete Abortion by Manual Vacuum Aspiration (MVA

    Directory of Open Access Journals (Sweden)

    Arifa Akter Jahan

    2012-07-01

    Full Text Available Background: Abortion is an important social and public health issue. In Bangladesh complication from unsafe abortion is one of the leading causes of maternal mortality. It is a serious health problem. World Health Organisation estimates that 14% of maternal deaths which occur every year in the countries of South Asia including Bangladesh are due to abortion. Study shows manual vacuum aspiration procedure is safe and effective in incomplete abortion. Very few clinical trials were carried out in Bangladesh to assess the safety and effectivity of manual vacuum aspiration in managing incomplete abortion. Objective: To find out the outcome of manual vacuum aspiration in the management of patients of incomplete abortion. Materials and Methods: This observational descriptive study was conducted in the department of Obstetrics & Gynaecology, Dhaka Medical College & Hospital from June to December, 2004. One hundred cases of diagnosed incomplete abortion up to 12 weeks of gestation were managed by manual vacuum aspiration during this period. A data recording sheet was designed for this purpose. Haemodynamically stable patients with no history of induced abortion and fever were enrolled. Results: Procedure time of manual vacuum aspiration was short, average duration was 7 minutes. Bleeding was minimum (20-30 mL in 67% cases and weighted mean was 29.80 mL. Eighty three percent patients were stable during the procedure and only 3% needed blood transfusion. Nonnarcotic analgesics were used in 59% cases and 33% needed only proper counselling. Average duration of hospital stay was 2 hours. Effectiveness of the procedure was about 98% with very low post procedure complication rate (2%. Conclusion: MVA procedure is a safe and effective technique of uterine evacuation in incomplete abortion. It is quick, less expensive, effective and less painful. Hospital stay and chance of perforation of uterus is less. So this procedure should be considered by health care

  19. Considerations to improve the safety of cervical spine manual therapy.

    Science.gov (United States)

    Hutting, Nathan; Kerry, Roger; Coppieters, Michel W; Scholten-Peeters, Gwendolijne G M

    2018-02-01

    Manipulation and mobilisation of the cervical spine are well established interventions in the management of patients with headache and/or neck pain. However, their benefits are accompanied by potential, yet rare risks in terms of serious adverse events, including neurovascular insult to the brain. A recent international framework for risk assessment and management offers directions in the mitigation of this risk by facilitating sound clinical reasoning. The aim of this article is to critically reflect on and summarize the current knowledge about cervical spine manual therapy and to provide guidance for clinical reasoning for cervical spine manual therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Program desk manual for occupational safety and health -- U.S. Department of Energy Richland Operations, Office of Environment Safety and Health

    International Nuclear Information System (INIS)

    Musen, L.G.

    1998-01-01

    The format of this manual is designed to make this valuable information easily accessible to the user as well as enjoyable to read. Each chapter contains common information such as Purpose, Scope, Policy and References, as well as information unique to the topic at hand. This manual can also be provided on a CD or Hanford Internet. Major topics include: Organization and program for operational safety; Occupational medicine; Construction and demolition; Material handling and storage; Hoisting and rigging; Explosives; Chemical hazards; Gas cylinders; Electrical; Boiler and pressure vessels; Industrial fire protection; Industrial hygiene; and Safety inspection checklist

  1. Program desk manual for occupational safety and health -- U.S. Department of Energy Richland Operations, Office of Environment Safety and Health

    Energy Technology Data Exchange (ETDEWEB)

    Musen, L.G.

    1998-08-27

    The format of this manual is designed to make this valuable information easily accessible to the user as well as enjoyable to read. Each chapter contains common information such as Purpose, Scope, Policy and References, as well as information unique to the topic at hand. This manual can also be provided on a CD or Hanford Internet. Major topics include: Organization and program for operational safety; Occupational medicine; Construction and demolition; Material handling and storage; Hoisting and rigging; Explosives; Chemical hazards; Gas cylinders; Electrical; Boiler and pressure vessels; Industrial fire protection; Industrial hygiene; and Safety inspection checklist.

  2. Efficacy and Safety of Manual Partial Red Cell Exchange in the Management of Severe Complications of Sickle Cell Disease in a Developing Country

    Directory of Open Access Journals (Sweden)

    B. F. Faye

    2017-01-01

    Full Text Available Introduction. The realization of red cell exchange (RCE in Africa faces the lack of blood, transfusion safety, and equipment. We evaluated its efficacy and safety in severe complications of sickle cell disease. Patients and Method. Manual partial RCE was performed among sickle cell patients who had severe complications. Efficacy was evaluated by clinical evolution, blood count, and electrophoresis of hemoglobin. Safety was evaluated on adverse effects, infections, and alloimmunization. Results. We performed 166 partial RCE among 44 patients including 41 homozygous (SS and 2 heterozygous composites SC and 1 S/β0-thalassemia. The mean age was 27.9 years. The sex ratio was 1.58. The regression of symptoms was complete in 100% of persistent vasoocclusive crisis and acute chest syndrome, 56.7% of intermittent priapism, and 30% of stroke. It was partial in 100% of leg ulcers and null in acute priapism. The mean variations of hemoglobin and hematocrit rate after one procedure were, respectively, +1.4 g/dL and +4.4%. That of hemoglobin S after 2 consecutive RCE was −60%. Neither alloimmunization nor viral seroconversion was observed. Conclusion. This work shows the feasibility of manual partial RCE in a low-resource setting and its efficacy and safety during complications of SCD outside of acute priapism.

  3. Efficacy and Safety of Manual Partial Red Cell Exchange in the Management of Severe Complications of Sickle Cell Disease in a Developing Country

    Science.gov (United States)

    Sow, D.; Seck, M.; Dieng, N.; Toure, S. A.; Gadji, M.; Senghor, A. B.; Gueye, Y. B.; Sy, D.; Sall, A.; Dieye, T. N.; Toure, A. O.; Diop, S.

    2017-01-01

    Introduction The realization of red cell exchange (RCE) in Africa faces the lack of blood, transfusion safety, and equipment. We evaluated its efficacy and safety in severe complications of sickle cell disease. Patients and Method Manual partial RCE was performed among sickle cell patients who had severe complications. Efficacy was evaluated by clinical evolution, blood count, and electrophoresis of hemoglobin. Safety was evaluated on adverse effects, infections, and alloimmunization. Results We performed 166 partial RCE among 44 patients including 41 homozygous (SS) and 2 heterozygous composites SC and 1 S/β0-thalassemia. The mean age was 27.9 years. The sex ratio was 1.58. The regression of symptoms was complete in 100% of persistent vasoocclusive crisis and acute chest syndrome, 56.7% of intermittent priapism, and 30% of stroke. It was partial in 100% of leg ulcers and null in acute priapism. The mean variations of hemoglobin and hematocrit rate after one procedure were, respectively, +1.4 g/dL and +4.4%. That of hemoglobin S after 2 consecutive RCE was −60%. Neither alloimmunization nor viral seroconversion was observed. Conclusion This work shows the feasibility of manual partial RCE in a low-resource setting and its efficacy and safety during complications of SCD outside of acute priapism. PMID:28584527

  4. SNL/CA Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2005-09-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program was developed in accordance with Department of Energy (DOE) Order 450.1 and incorporates the elements of the International Standard on Environmental Management Systems, ISO 14001.

  5. Propensity scores-potential outcomes framework to incorporate severity probabilities in the highway safety manual crash prediction algorithm.

    Science.gov (United States)

    Sasidharan, Lekshmi; Donnell, Eric T

    2014-10-01

    Accurate estimation of the expected number of crashes at different severity levels for entities with and without countermeasures plays a vital role in selecting countermeasures in the framework of the safety management process. The current practice is to use the American Association of State Highway and Transportation Officials' Highway Safety Manual crash prediction algorithms, which combine safety performance functions and crash modification factors, to estimate the effects of safety countermeasures on different highway and street facility types. Many of these crash prediction algorithms are based solely on crash frequency, or assume that severity outcomes are unchanged when planning for, or implementing, safety countermeasures. Failing to account for the uncertainty associated with crash severity outcomes, and assuming crash severity distributions remain unchanged in safety performance evaluations, limits the utility of the Highway Safety Manual crash prediction algorithms in assessing the effect of safety countermeasures on crash severity. This study demonstrates the application of a propensity scores-potential outcomes framework to estimate the probability distribution for the occurrence of different crash severity levels by accounting for the uncertainties associated with them. The probability of fatal and severe injury crash occurrence at lighted and unlighted intersections is estimated in this paper using data from Minnesota. The results show that the expected probability of occurrence of fatal and severe injury crashes at a lighted intersection was 1 in 35 crashes and the estimated risk ratio indicates that the respective probabilities at an unlighted intersection was 1.14 times higher compared to lighted intersections. The results from the potential outcomes-propensity scores framework are compared to results obtained from traditional binary logit models, without application of propensity scores matching. Traditional binary logit analysis suggests that

  6. Leadership and Management for Safety. General Safety Requirements

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factor, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations (registrants and licensees) and other organizations concerned with facilities and activities that give rise to radiation risks

  7. Fire and blast safety manual for fuel element manufacture

    International Nuclear Information System (INIS)

    Ensinger, U.; Koehler, B.; Mester, W.; Riotte, H.G.; Sehrbrock, H.W.

    1988-01-01

    The manual aims to enable people involved in the planning, operation, supervision, licensing or appraisal of fuel element factories to make a quick and accurate assessment of blast safety. In Part A, technical plant principles are shown, and a summary lists the flammable materials and ignition sources to be found in fuel element factories, together with theoretical details of what happens during a fire or a blast. Part B comprises a list of possible fires and explosions in fuel element factories and ways of preventing them. Typical fire and explosion scenarios are analysed more closely on the basis of experiments. Part B also contains a list and an assessment of actual fires and explosions which have occurred in fuel element factories. Part C contains safety measures to protect against fire and explosion, in-built fire safety, fire safety in plant design, explosion protection and measures to protect people from radiation and other hazards when fighting fires. A distinction is drawn between UO 2 , MOX and HTR fuel elements. (orig./DG) [de

  8. Program management system manual

    International Nuclear Information System (INIS)

    1989-08-01

    OCRWM has developed a program management system (PMS) to assist in organizing, planning, directing and controlling the Civilian Radioactive Waste Management Program. A well defined management system is necessary because: (1) the Program is a complex technical undertaking with a large number of participants, (2) the disposal and storage facilities to be developed by the Program must be licensed by the Nuclear Regulatory Commission (NRC) and hence are subject to rigorous quality assurance (QA) requirements, (3) the legislation mandating the Program creates a dichotomy between demanding schedules of performance and a requirement for close and continuous consultation and cooperation with external entities, (4) the various elements of the Program must be managed as parts of an integrated waste management system, (5) the Program has an estimated total system life cycle cost of over $30 billion, and (6) the Program has a unique fiduciary responsibility to the owners and generators of the nuclear waste for controlling costs and minimizing the user fees paid into the Nuclear Waste Fund. This PMS Manual is designed and structured to facilitate strong, effective Program management by providing policies and requirements for organizing, planning, directing and controlling the major Program functions

  9. VRLane: a desktop virtual safety management program for underground coal mine

    Science.gov (United States)

    Li, Mei; Chen, Jingzhu; Xiong, Wei; Zhang, Pengpeng; Wu, Daozheng

    2008-10-01

    VR technologies, which generate immersive, interactive, and three-dimensional (3D) environments, are seldom applied to coal mine safety work management. In this paper, a new method that combined the VR technologies with underground mine safety management system was explored. A desktop virtual safety management program for underground coal mine, called VRLane, was developed. The paper mainly concerned about the current research advance in VR, system design, key techniques and system application. Two important techniques were introduced in the paper. Firstly, an algorithm was designed and implemented, with which the 3D laneway models and equipment models can be built on the basis of the latest mine 2D drawings automatically, whereas common VR programs established 3D environment by using 3DS Max or the other 3D modeling software packages with which laneway models were built manually and laboriously. Secondly, VRLane realized system integration with underground industrial automation. VRLane not only described a realistic 3D laneway environment, but also described the status of the coal mining, with functions of displaying the run states and related parameters of equipment, per-alarming the abnormal mining events, and animating mine cars, mine workers, or long-wall shearers. The system, with advantages of cheap, dynamic, easy to maintenance, provided a useful tool for safety production management in coal mine.

  10. UMTRA [Uranium Mill Tailings Remedial Action] Project site management manual

    International Nuclear Information System (INIS)

    1990-10-01

    The purpose of this manual is to summarize the organizational interfaces and the technical approach used to manage the planning, design development, National Environmental Policy Act (NEPA) compliance, engineering, and remedial action required to stabilize and control the designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites. This manual describes the Project's objective, participants' roles and responsibilities, technical approach for accomplishing the objective, and planning and managerial controls to be used in performing the site work. The narrative follows the flow of activities depicted in Figure 1.1, which provides the typical sequence of key Project activities. A list of acronyms used is presented at the end of the manual. The comparable manual for UMTRA Project vicinity properties is the ''Vicinity Properties Management and Implementation Manual'' (VPMIM) (UMTRA-DOE/AL-050601). Together, the two manuals cover the remedial action activities associated with UMTRA Project sites. The UMTRA Project's objective is to stabilize and control the uranium mill tailings, vicinity property materials, and other residual radioactive materials at the designated sites (Figure 1.2) in a safe and environmentally sound manner in order to minimize radiation health hazards to the public. 26 figs., 6 tabs

  11. Safety Climate, Perceived Risk, and Involvement in Safety Management

    OpenAIRE

    Kouabenan , Dongo Rémi; Ngueutsa , Robert ,; Safiétou , Mbaye

    2015-01-01

    International audience; This article examines the relationship between safety climate, risk perception and involvement in safety management by first-line managers (FLM). Sixty-three FLMs from two French nuclear plants answered a questionnaire measuring perceived workplace safety climate, perceived risk, and involvement in safety management. We hypothesized that a positive perception of safety climate would promote substantial involvement in safety management, and that this effect would be str...

  12. An annotated outline for a traffic management center operations manual

    Science.gov (United States)

    2000-10-01

    This draft Traffic Management Center (TMC) and Operations manual outline is meant to serve as a model "checklist" for the development of similar manuals used in deployed environments. The purpose of this outline is to provide a reference for agencies...

  13. Unique safety manual for experimental personnel

    International Nuclear Information System (INIS)

    Busick, D.D.; Warren, G.J.

    1979-01-01

    Within a few months of the discovery of x-rays the first radiation injuries were reported (ta71). During the past thirty years both the number and complexity of x-ray analytical units have increased markedly. The world-wide number of incidents leading to severe injury has also increased. For analytical x-ray machines the need for engineered and administrative safeguards has long been recognized. At Stanford Synchrotron Radiation Laboratory (SSRL) the personnel protection system has been carefully designed to maximize safety and minimize experimental interference. However, all possible experimental configurations cannot be anticipated and some interference is to be expected. There are means by which safeguards can be substituted as long as these substitutions do not degrade the existing degree of safety. any substitutions must be evaluated by the Radiation Safety Committee, the SSRL staff and Operational Health Physics. Some studies have indicated that between fifty and ninety percent of serious radiation accidents are directly related to human errors, i.e., ignoring administrative proccedures, by-passing engineered safeguards or by inadequate training. Lindell has estimated the annual probability of serious injury to be about 1:100 per macchine. No matter what the real probability of serious injury is the personnel protection system should reduce this risk to a value that approaches zero. It is hoped that this manual will bring into sharper focus some of the more serious results of unnecessary risk taking. We also hope that it will convey the very real necessity for safeguards which may at times appear to be arbitrary and unnecessary impediments to experimental purposes

  14. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Donna L.

    2007-05-03

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, “Quality Assurance Requirements,” ANSI/ASQC E4-2004, “Quality Systems for Environmental Data and Technology Programs – Requirements with Guidance for Use,” and ISO 14001-2004, “Environmental Management Systems,” have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, “Quality Assurance Program,” identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, “QA Program Implementation,” identifies the TAC organizations that have responsibility for

  15. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    2007-01-01

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, 'Quality Assurance Requirements', ANSI/ASQC E4-2004, 'Quality Systems for Environmental Data and Technology Programs - Requirements with Guidance for Use', and ISO 14001-2004, 'Environmental Management Systems', have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, 'Quality Assurance Program', identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, 'QA Program Implementation', identifies the TAC organizations that have responsibility for implementing the QA

  16. SRL process hazards review manual

    International Nuclear Information System (INIS)

    1980-08-01

    The principal objective of the Process Hazards Management Program is to provide a regular, systematic review of each process at the Savannah River Laboratory (SRL) to eliminate injuries and to minimize property damage resulting from process hazards of catastrophic potential. Management effort is directed, through the Du Pont Safety Program, toward those controls and practices that ensure this objective. The Process Hazards Management Program provides an additional dimension to further ensure the health and safety of employees and the public. Du Pont has concluded that an organized approach is essential to obtain an effective and efficient process hazards review. The intent of this manual is to provide guidance in creating such an organized approach to performing process hazards reviews on a continuing basis

  17. Management of safety, safety culture and self assessment

    International Nuclear Information System (INIS)

    Carnino, A.

    2000-01-01

    Safety management is the term used for the measures required to ensure that an acceptable level of safety is maintained throughout the life of an installation, including decommissioning. The safety culture concept and its implementation are described in part one of the paper. The principles of safety are now quite well known and are implemented worldwide. It leads to a situation where harmonization is being achieved as indicated by the entry into force of the Convention on Nuclear Safety. To go beyond the present nuclear safety levels, management of safety and safety culture will be the means for achieving progress. Recent events which took place in major nuclear power countries have shown the importance of the management and the consequences on safety. At the same time, electricity deregulation is coming and will impact on safety through reductions in staffing and in operation and maintenance cost at nuclear installations. Management of safety as well as its control and monitoring by the safety authorities become a key to the future of nuclear energy.(author)

  18. SNL/CA Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004. Elements of the ISO standard overlap with those of Department of Energy (DOE) Order 450.1, thus SNL/CA's EMS program also meets the DOE requirements.

  19. Maintenance manual. Vol. 1. Maintenance management; 2. completely rev. ed.; Handbuch Instandhaltung. Bd. 1. Instandhaltungsmanagement

    Energy Technology Data Exchange (ETDEWEB)

    Warnecke, H.J. [ed.] [Fraunhofer-Institut fuer Produktionstechnik und Automatisierung (IPA), Stuttgart (Germany)

    1992-12-31

    This manual is the second, completely revised edition of the standard manual ``Maintenance - Fundamentals``, which was first published in 1981. It presents an outline of all relevant fields of maintenance today and contains practical information on new and established methods of maintenance management and technology. With its comprehensive concept, which addresses any industrial enterprise that wants to remain competitive, the manual is indispensable for maintenance managers in industry, service enterprises and consultancies. Vol.1, ``Maintenance Management``, informs the reader on fundamentals, design with a view to maintenance, organisation of maintenance work, personnel management, industrial safety and economic aspects of maintenance. Current issues such as product liability, electronic data processing, expert systems, environmental protection, controlling based on characteristic data, etc. are gone into. Graphical representations, concrete procedural information and exemplary solutions may be used directly as working tools for the practice of maintenance. (orig.) [Deutsch] Das vorliegende Handbuch ist die zweite, voellig ueberarbeitete und erweiterte Auflage des Standardwerkes ``Instandhaltung - Grundlagen``, das 1981 erstmals erschien. Es gibt einen Ueberblick ueber alle relevanten Gebiete einer modernen Instandhaltung und vermittelt praxisnahes Wissen ueber neue und bewaehrte Methoden und Verfahren des Instandhaltungsmanagements und der Instandhaltungstechnik. Mit dieser umfassenden Konzeption, die auf die Belange des im Wettbewerb stehenden Industriebetriebes ausgerichtet ist, wendet sich das Handbuch an die Fuehrungskraefte der Instandhaltung in der Industrie sowie an Dienstleistungs- und Beratungsunternehmen. Im Band 1 ``Instandhaltungsmanagement`` kann sich der Leser ueber Grundlagen, instandhaltungsgerechtes Konstruieren, Organisation der Instandhaltung, Personalmanagement, Arbeitssicherheit sowie Wirtschaftlichkeit der Instandhaltung informieren

  20. Facilities management and industrial safety

    International Nuclear Information System (INIS)

    2003-06-01

    This book lists occupation safety and health acts with purpose, definition and management system of safety and health, enforcement ordinance of occupation safety and health acts and enforcement regulations such as general rules, safety and health cover, system of management on safety and health, regulation of management on safety and health, regulations of harmfulness and protection of danger, heath management for workers, supervisor and command and inspection of machine and equipment.

  1. Requirements to be met by the operation manual

    International Nuclear Information System (INIS)

    1981-03-01

    The rule applies to the contents and the lay-out of the operating manual for stationary nuclear power plants. The draft contains: 1. General requirement to be met by the contents of the operating manual. The operating manual to be arranged in 4 parts (part 1: internal rules and regulations; part 2: operation overall plant; part 3: incidents; part 4: operation systems). Safety specifications to be included in the manual, the exemption being the system of technical documentation. 2. General requirements to be met by the lay-out of the operating manual. Comprehensibility; legibility; structure and subdivisions; arrangement of the instructions and design of the manuals cover. 3. Requirements to be met by part 1. Defining the various internal rules and regulations (personnel management); rules and regulations concerning inspections and shift work; maintenance and repair; radiation protection; guard duty and admission; alarm; fire protection; first aid. 4. Requirements to be met by part 2. Provisions and operational limitations; limit values important from the point of view of safety; normal operation; anomalous operation; in-service inspections. 6. Requirements to be met by part 3. 7. Annex: Rules, regulations and stipulations mentioned in the rule draft. (orig.)

  2. Creating strategic brand management manual : Case: Tukikallio Oy

    OpenAIRE

    Vepsäläinen, Sini

    2010-01-01

    The purpose of this Thesis was to create a Strategic Brand Management Manual for the use of a new company called Tukikallio Oy. The manual was composed of the elements that the company wanted to include in it. A qualitative research method was used in collecting information. The theoretical part of the thesis includes theories about brand building. Brand identity tells what the brand really is with its positive and negative sides, image reflects on what kind of things the consumer associa...

  3. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    Energy Technology Data Exchange (ETDEWEB)

    GARVIN, L. J.; JENSEN, M. A.

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  4. Waste management safety

    International Nuclear Information System (INIS)

    Boehm, H.

    1983-01-01

    All studies carried out by competent authors of the safety of a waste management concept on the basis of reprocessing of the spent fuel elements and storage in the deep underground of the radioactive waste show that only a minor technical risk is involved in this step. This also holds true when evaluating the accidents which have occurred in waste management facilities. To explain the risk, first the completely different safety aspects of nuclear power plants, reprocessing plants and repositories are outlined together with the safety related characteristics of these plants. Also this comparison indicates that the risk of waste management facilities is considerably lower than the, already very small, risk of nuclear power plants. For the final storage of waste from reprocessing and for the direct storage of fuel elements, the results of safety analyses show that the radiological exposure following an accident with radioactivity releases, even under conservative assumptions, is considerably below the natural radiation exposure. The very small danger to the environment arising from waste management by reprocessing clearly indicates that aspects of technical safety alone will hardly be a major criterion for the decision in favor of one or the other waste management approach. (orig.) [de

  5. Vault Safety and Inventory System users manual, PRIME 2350. Revision 1

    International Nuclear Information System (INIS)

    Downey, N.J.

    1994-01-01

    This revision is issued to request review of the attached document: VSIS User Manual, PRIME 2350, which provides user information for the operation of the VSIS (Vault Safety and Inventory System). It describes operational aspects of Prime 2350 minicomputer and vault data acquisition equipment. It also describes the User's Main Menu and menu functions, including REPORTS. Also, system procedures for the Prime 2350 minicomputer are covered

  6. Vault Safety and Inventory System users manual, PRIME 2350. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Downey, N.J.

    1994-12-14

    This revision is issued to request review of the attached document: VSIS User Manual, PRIME 2350, which provides user information for the operation of the VSIS (Vault Safety and Inventory System). It describes operational aspects of Prime 2350 minicomputer and vault data acquisition equipment. It also describes the User`s Main Menu and menu functions, including REPORTS. Also, system procedures for the Prime 2350 minicomputer are covered.

  7. Safety handling manual for high dose rate remote afterloading system

    International Nuclear Information System (INIS)

    1999-01-01

    This manual is mainly for safety handling of 192 Ir-RALS (remote afterloading system) of high dose rate and followings were presented: Procedure and document format for the RALS therapy and for handling of its radiation source with the purpose of prevention of human errors and unexpected accidents, Procedure for preventing errors occurring in the treatment schedule and operation, and Procedure and format necessary for newly introducing the system into a facility. Consistency was intended in the description with the quality assurance guideline for therapy with small sealed radiation sources made by JASTRO (Japan Society for Therapeutic Radiology and Oncology). Use of the old type 60 Co-RALS was pointed out to be a serious problem remained and its safety handling procedure was also presented. (K.H.)

  8. Safety management in nuclear technology. Proceedings

    International Nuclear Information System (INIS)

    2008-01-01

    At the symposium of TueV Sued AG (Munich, Federal Republic of Germany) held in Munich on 28 and 29 October 2008, the following lectures were held: (1) Fundamental requirements of the management system in nuclear technology - Experiences from the international developments at IAEA and WENRA (M. Herttrich); (2) Information from a comparison of requirements of safety management systems (B. Kallenbach-Herbert); (3) Requirements of a modern management system in German nuclear power plants from the view of nuclear safety (D. Majer); (4) Requirements on safety management in module 8 of the regulations project (M. Maqua); (5) Requirements on the management system in nuclear power plants according to GRS-229 and developments at the KTA 1402 ''Integrated management system for safe operation of nuclear power plants (in progress)'' (C. Verstegen); (6) Experiences from the development and implementation of safety management systems in connection with the works management of a nuclear power plant (K. Ramler); (7) Design of a safety management system of a nuclear power plant in consideration of existing management systems (U. Naumann); (8) Experiences in the utilization and evaluation of a safety management system (J. Ritter); (9) Aspects of leadership of safety management systems (S. Seitz); (10) Management of safety or safety management system? Prevailing or administration? (A. Frischknecht); (11) Change management - strategies for successful transfer of new projects: How can I motivate co-workers for a further development of the safety management system? (U. Schnabel); (12) Requirements concerning indicators in integrated management systems and safety management systems (J. Stiller); (13) Integration of proactive and reactive indicators in the safety management system (B. Fahlbruch); (14) What do indicators show? About the use of indicators by regulatory authorities (A. Kern); (15) Safety management and radiation protection in nuclear technology (K. Grantner); (16) Any more

  9. Is road safety management linked to road safety performance?

    Science.gov (United States)

    Papadimitriou, Eleonora; Yannis, George

    2013-10-01

    This research aims to explore the relationship between road safety management and road safety performance at country level. For that purpose, an appropriate theoretical framework is selected, namely the 'SUNflower' pyramid, which describes road safety management systems in terms of a five-level hierarchy: (i) structure and culture, (ii) programmes and measures, (iii) 'intermediate' outcomes'--safety performance indicators (SPIs), (iv) final outcomes--fatalities and injuries, and (v) social costs. For each layer of the pyramid, a composite indicator is implemented, on the basis of data for 30 European countries. Especially as regards road safety management indicators, these are estimated on the basis of Categorical Principal Component Analysis upon the responses of a dedicated road safety management questionnaire, jointly created and dispatched by the ETSC/PIN group and the 'DaCoTA' research project. Then, quasi-Poisson models and Beta regression models are developed for linking road safety management indicators and other indicators (i.e. background characteristics, SPIs) with road safety performance. In this context, different indicators of road safety performance are explored: mortality and fatality rates, percentage reduction in fatalities over a given period, a composite indicator of road safety final outcomes, and a composite indicator of 'intermediate' outcomes (SPIs). The results of the analyses suggest that road safety management can be described on the basis of three composite indicators: "vision and strategy", "budget, evaluation and reporting", and "measurement of road user attitudes and behaviours". Moreover, no direct statistical relationship could be established between road safety management indicators and final outcomes. However, a statistical relationship was found between road safety management and 'intermediate' outcomes, which were in turn found to affect 'final' outcomes, confirming the SUNflower approach on the consecutive effect of each layer

  10. Suggestion for a Framework for a Sustainable Infrastructure Asset Management Manual in Korea

    OpenAIRE

    Lee, Sang-Ho; Park, Sanghoon; Kim, Jong

    2015-01-01

    This study proposes a framework for an infrastructure asset management manual containing infrastructure asset management processes and operation techniques, which can be adjusted by different ordering authorities to develop their own manuals. The following conclusions were drawn in this study. First, the justification for implementation of asset management was examined through analysis of changes and status of asset management in domestic infrastructure, and the current status and insufficien...

  11. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  12. Sandia National Laboratories, California Environmental Management System program manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  13. Leadership and Management for Safety. General Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  14. Leadership and Management for Safety. General Safety Requirements (Chinese Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  15. Leadership and Management for Safety. General Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  16. Leadership and Management for Safety. General Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    his Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  17. Manual on radiological safety in uranium and thorium mines and mills

    International Nuclear Information System (INIS)

    1976-01-01

    The manual describes the personnel radiation hazards in uranium and thorium mines and mills. Measures which should be taken in order to protect the workers are outlined. The problems of air born radioactivity, external radiation, surface contamination and radioactive waste are treated. Safety standards in relation to the above mentioned subjects are given. An outline is given for monitoring programme. Monitoring methods, control methods and means of medical control are given

  18. Monitoring the Long-Term Effectiveness of Integrated Safety Management System (ISMS) Implementation Through Use of a Performance Dashboard Process

    International Nuclear Information System (INIS)

    Kinney, Michael D.; Barrick, William D.

    2008-01-01

    This session will examine a method developed by Federal and Contractor personnel at the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) to examine long-term maintenance of DOE Integrated Safety Management System (ISMS) criteria, including safety culture attributes, as well as identification of process improvement opportunities. This process was initially developed in the summer of 2000 and has since been expanded to recognize the importance of safety culture attributes, and associated safety culture elements, as defined in DOE M 450.4-1, 'Integrated Safety Management System Manual'. This process has proven to significantly enhance collective awareness of the importance of long-term ISMS implementation as well as support commitments by NNSA/NSO personnel to examine the continued effectiveness of ISMS processes

  19. Development of Manitoba Hydro's public water safety around dams management guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Dave; McPhail, Gord; Murphy, Shayla; Schellenberg, Gord [KGS Acres, Winnipeg, (Canada); Read, Nick [Manitoba Hydro, Winnipeg, (Canada)

    2010-07-01

    Several drowning fatalities and safety incidents have occurred around dams in Ontario, Manitoba and other jurisdictions in Canada. Following these incidents, Manitoba Hydro implemented several measures to improve public safety around its dams with the development of a warning signs manual. Manitoba Hydro found that a standard centralized approach to the process of improving public safety is better for ensuring compliance and consistency, even though they have safety measures in place. This paper described the process that Manitoba Hydro has followed in developing a formal set of public water safety around dams (PWSD) guidelines and a program for implementing these guidelines. This program was developed with the intent of providing a high standard of public protection and continuous improvement and monitoring on par with the effect spent on similar dam safety type programs. This paper focused on the development of the pilot PWSD management plan for Pine Falls generating station in order to test the effectiveness and usability of the guidelines.

  20. Prototype road weather performance management tool : installation instructions & user manual.

    Science.gov (United States)

    2016-07-20

    This document is the Installation Instructions and User Manual for the Road Weather Performance Management (RW-PM) Tool developed for the project on Development and Demonstration of a Prototype Road Weather Performance Management Application that Use...

  1. Manual on oil-gas industry waste utilization radioecological safety

    International Nuclear Information System (INIS)

    Kudryashev, V.A.; Lukashenko, S.N.; Tuleushev, A.Zh.; Marabaev, Zh.N.; Pasysaev, V.A.; Kayukov, P.G.; Kozhakhmetov, N.B.; Shevtsov, S.P.

    2003-01-01

    The development of a new document - 'Manual on radio-ecologically safe utilization of waste from oil-and-gas production' is carried out. This document regulates the whole cycle of environment protection measures at waste utilization for the named industry in Kazakhstan and is aimed on lowering the radiation risks and assurance of radioecological safety both at present and for the future. The document presents a set regulations necessary for radioactive wastes handling in the oil-gas industry. The normative document was agreed in both the Ministry of Health of the Republic of Kazakhstan (RK) and Ministry of Environment Protection of RK

  2. IAEA Safety Standards on Management Systems and Safety Culture

    International Nuclear Information System (INIS)

    Persson, Kerstin Dahlgren

    2007-01-01

    The IAEA has developed a new set of Safety Standard for applying an integrated Management System for facilities and activities. The objective of the new Safety Standards is to define requirements and provide guidance for establishing, implementing, assessing and continually improving a Management System that integrates safety, health, environmental, security, quality and economic related elements to ensure that safety is properly taken into account in all the activities of an organization. With an integrated approach to management system it is also necessary to include the aspect of culture, where the organizational culture and safety culture is seen as crucial elements of the successful implementation of this management system and the attainment of all the goals and particularly the safety goals of the organization. The IAEA has developed a set of service aimed at assisting it's Member States in establishing. Implementing, assessing and continually improving an integrated management system. (author)

  3. Massage, reflexology and other manual methods for pain management in labour.

    Science.gov (United States)

    Smith, Caroline A; Levett, Kate M; Collins, Carmel T; Dahlen, Hannah G; Ee, Carolyn C; Suganuma, Machiko

    2018-03-28

    Many women would like to avoid pharmacological or invasive methods of pain management in labour, and this may contribute towards the popularity of complementary methods of pain management. This review examined the evidence currently available on manual methods, including massage and reflexology, for pain management in labour. This review is an update of the review first published in 2012. To assess the effect, safety and acceptability of massage, reflexology and other manual methods to manage pain in labour. For this update, we searched Cochrane Pregnancy and Childbirth's Trials Register (30 June 2017), the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 6), MEDLINE (1966 to 30 June 2017, CINAHL (1980 to 30 June 2017), the Australian New Zealand Clinical Trials Registry (4 August 2017), Chinese Clinical Trial Registry (4 August 2017), ClinicalTrials.gov, (4 August 2017), the National Center for Complementary and Integrative Health (4 August 2017), the WHO International Clinical Trials Registry Platform (ICTRP) (4 August 2017) and reference lists of retrieved trials. We included randomised controlled trials comparing manual methods with standard care, other non-pharmacological forms of pain management in labour, no treatment or placebo. We searched for trials of the following modalities: massage, warm packs, thermal manual methods, reflexology, chiropractic, osteopathy, musculo-skeletal manipulation, deep tissue massage, neuro-muscular therapy, shiatsu, tuina, trigger point therapy, myotherapy and zero balancing. We excluded trials for pain management relating to hypnosis, aromatherapy, acupuncture and acupressure; these are included in other Cochrane reviews. Two review authors independently assessed trial quality, extracted data and checked data for accuracy. We contacted trial authors for additional information. We assessed the quality of the evidence using the GRADE approach. We included a total of 14 trials; 10 of these (1055 women

  4. Industrial safety management with emphasis on construction safety

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2016-01-01

    Safety professionals, line managers, team leaders and concerned workers today eagerly discuss to find out the best safety approach for their workplace. Some research suggested that behaviour based and comprehensive ergonomics approaches lead in average reduction of injuries. This article discusses 'the science and engineering' behind improvement in industrial safety aspects particularly at construction sites through various safety approaches. A high degree of commitment to safety by the project management and rigorous and proactive measures are essential to prevent accidents at construction sites particularly in DAE units because of its sensitivity. Persistent efforts by the project management are needed for sustainable and committed safety at work place. The number of fatalities occurring from construction work in DAE units is sometimes disturbing and fall of person from height and through openings are the major causes for serious accidents

  5. Managing electrical safety

    CERN Document Server

    Wiggins, James H, Jr

    2001-01-01

    Managing Electrical Safety provides an overview of electric basics, hazards, and established standards that enables you to understand the hazards you are likely to encounter in your workplace. Focusing on typical industrial environments-which utilize voltages much higher than household or office circuits-the author identifies the eight key components of an electrical safety program and examines each using a model safety management process. You'll learn how to identify electrical hazards, how to prescribe necessary electrical Personal Protective Equipment, how to ensure that equipment is de-ene

  6. Energy management information systems - planning manual and tool

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    An Energy Management Information System (EMIS) provides relevant information that makes energy, performance visible to various levels of an organization, enabling individuals and departments to plan, make decisions and take effective action to manage energy. This manual has two objectives: 1. To enable companies to conduct EMIS audits and prepare EMIS implementation plans; 2. To provide companies with the tools to prepare a financial business case for EMIS implementation. This manual consists of four parts: 1. EMIS Audit is theoretical and provides the methodology to be used by outside or in-house engineers and consultants to do a thorough EMIS Audit. 2. Implementation Plan is to help industry do the work themselves. 3. Appendices is to help the user develop an EMIS Audit, gather data and score their company, prepare a conceptual and detailed design, as well as a business and financial plan for implementation.

  7. Implementation of the safety culture for HANARO Safety Management

    International Nuclear Information System (INIS)

    Wu, Jongsup; Han, Geeyang; Kim, Iksoo

    2008-01-01

    Safety is the fundamental principal upon which the management system is based. The IAEA INSAG(International Nuclear Safety Group) states the general aims of the safety management system. One of which is to foster and support a strong safety culture through the development and reinforcement of good safety attitudes and behavior in individuals and teams so as to allow them to carry out their tasks safety. The safety culture activities have been implemented and the importance of safety management in nuclear activities for a reactor application and utilization has also been emphasized more than 10 years in HANARO which is a 30 MW multi-purpose research reactor and achieved its first criticality in February 1995. The safety culture activities and implementations have been conducted continuously to enhance its safe operation like the seminars and lectures related to safety matters, participation in international workshops, the development of safety culture indicators, the survey on the attitude of safety culture, the development of operational safety performance indicators (SPIs), the preparation of a safety text book and the development of an e-Learning program for safety education. (author)

  8. National Ignition Facility Project Site Safety Program

    International Nuclear Information System (INIS)

    Dun, C

    2003-01-01

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES and H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES and H requirements are consistent with the ''LLNL ES and H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B

  9. Implementation of the safety culture for HANARO safety management

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jongsup; Han, Geeyang; Kim, Iksoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-11-15

    Safety is the fundamental principal upon which a management system is based. The IAEA INSAG (International Nuclear Safety Group) states the general aims of a safety management system. One of which is to foster and support a strong safety culture through the development and reinforcement of good safety attitudes and behavior in individuals and teams, so as to allow them to carry out their tasks safely. The safety culture activities have been implemented and the importance of a safety management in nuclear activities for a reactor application and utilization has also been emphasized for more than 10 years in HANARO which is a 30MW multi-purpose research reactor that achieved its first criticality in February 1995. The safety culture activities and implementations have been conducted continuously to enhance its safe operation such as the seminars and lectures related to safety matters, participation in international workshops and the development of safety culture indicators, a survey on the attitude of HANARO staff toward the safety culture, the development of operational safety performance indicators (SPIs), the preparation of a safety text book and the development of a e-learning program for a safety education purpose.

  10. Implementation of the safety culture for HANARO safety management

    International Nuclear Information System (INIS)

    Wu, Jongsup; Han, Geeyang; Kim, Iksoo

    2008-01-01

    Safety is the fundamental principal upon which a management system is based. The IAEA INSAG (International Nuclear Safety Group) states the general aims of a safety management system. One of which is to foster and support a strong safety culture through the development and reinforcement of good safety attitudes and behavior in individuals and teams, so as to allow them to carry out their tasks safely. The safety culture activities have been implemented and the importance of a safety management in nuclear activities for a reactor application and utilization has also been emphasized for more than 10 years in HANARO which is a 30MW multi-purpose research reactor that achieved its first criticality in February 1995. The safety culture activities and implementations have been conducted continuously to enhance its safe operation such as the seminars and lectures related to safety matters, participation in international workshops and the development of safety culture indicators, a survey on the attitude of HANARO staff toward the safety culture, the development of operational safety performance indicators (SPIs), the preparation of a safety text book and the development of a e-learning program for a safety education purpose

  11. Implementation of the safety culture for HANARO safety management

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jong Sup; Han, Gee Yang; Kim, Ik Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-11-15

    Safety is the fundamental principal upon which a management system is based. The IAEA INSAG(International Nuclear Safety Group) states the general aims of a safety management system. One of which is to foster and support a strong safety culture through the development and reinforcement of good safety attitudes and behavior in individuals and teams, so as to allow them to carry out their tasks safety. The safety culture activities have been implemented and the importance of a safety management in nuclear activities for a reactor application and utilization has also been emphasized for more than 10 years in HANARO which is a 30 MW multi purpose research reactor that achieved its first criticality in February 1995. The safety culture activities and implementation have been conducted continuously to enhance its safe operation such as the seminars and lectures related to safety matters, participation in international workshops and the development of safety culture indicators, a survey on the attitude of HANARO staff toward the safety culture indicators, a survey on the attitude of HANARO staff toward the safety culture, the development of operational safety performance indicators (SPIs), the preparation of a safety text book and the development of an e Learning program for a safety education purpose.

  12. Implementation of the safety culture for HANARO safety management

    International Nuclear Information System (INIS)

    Wu, Jong Sup; Han, Gee Yang; Kim, Ik Soo

    2008-01-01

    Safety is the fundamental principal upon which a management system is based. The IAEA INSAG(International Nuclear Safety Group) states the general aims of a safety management system. One of which is to foster and support a strong safety culture through the development and reinforcement of good safety attitudes and behavior in individuals and teams, so as to allow them to carry out their tasks safety. The safety culture activities have been implemented and the importance of a safety management in nuclear activities for a reactor application and utilization has also been emphasized for more than 10 years in HANARO which is a 30 MW multi purpose research reactor that achieved its first criticality in February 1995. The safety culture activities and implementation have been conducted continuously to enhance its safe operation such as the seminars and lectures related to safety matters, participation in international workshops and the development of safety culture indicators, a survey on the attitude of HANARO staff toward the safety culture indicators, a survey on the attitude of HANARO staff toward the safety culture, the development of operational safety performance indicators (SPIs), the preparation of a safety text book and the development of an e Learning program for a safety education purpose

  13. Identifying environmental safety and health requirements for an Environmental Restoration Management Contractor

    International Nuclear Information System (INIS)

    Beckman, W.H.; Cossel, S.C.; Alhadeff, N.; Lindamood, S.B.; Beers, J.A.

    1993-10-01

    The purpose of the Standards/Requirements Identification Program, developed partially in response to the Defense Nuclear Facilities Safety Board Recommendation 90-2, was to identify applicable requirements that established the Environmental Restoration Management Contractor's (ERMC) responsibilities and authorities under the Environmental Restoration Management Contract, determine the adequacy of these requirements, ascertain a baseline level of compliance with them, and implement a maintenance program that would keep the program current as requirements or compliance levels change. The resultant Standards/Requirements Identification Documents (S/RIDs) consolidate the applicable requirements. These documents govern the development of procedures and manuals to ensure compliance with the requirements. Twenty-four such documents, corresponding with each functional area identified at the site, are to be issued. These requirements are included in the contractor's management plan

  14. Prototype road weather performance management (RWPM) tool installation instructions & user manual.

    Science.gov (United States)

    2016-07-20

    This document is the Installation Instructions and User Manual for the Road Weather Performance Management (RW-PM) Tool developed for the project on Development and Demonstration of a Prototype Road Weather Performance Management Application that Use...

  15. Managing nuclear safety at Point Lepreau

    Energy Technology Data Exchange (ETDEWEB)

    Paciga, J [New Brunswick Power, Point Lepreau NGS, PQ (Canada)

    1997-12-01

    Managing nuclear safety at Point Lepreau nuclear power plant is described, including technical issues (station aging, definition of the safe operating envelope, design configuration management, code validation, safety analysis and engineering standards); regulatory issues (action items, probabilistic safety assessment, event investigation, periodic safety review, prioritization of regulatory issues, cost benefit assessment); human performance issues (goals and measures, expectations and accountability, supervisory training, safety culture, configuration management, quality of operations and maintenance).

  16. Managing nuclear safety at Point Lepreau

    International Nuclear Information System (INIS)

    Paciga, J.

    1997-01-01

    Managing nuclear safety at Point Lepreau nuclear power plant is described, including technical issues (station aging, definition of the safe operating envelope, design configuration management, code validation, safety analysis and engineering standards); regulatory issues (action items, probabilistic safety assessment, event investigation, periodic safety review, prioritization of regulatory issues, cost benefit assessment); human performance issues (goals and measures, expectations and accountability, supervisory training, safety culture, configuration management, quality of operations and maintenance)

  17. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  18. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    International Nuclear Information System (INIS)

    Harvego, Lisa; Bennett, Brion

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  19. A training manual for event history data management using Health and Demographic Surveillance System data.

    Science.gov (United States)

    Bocquier, Philippe; Ginsburg, Carren; Herbst, Kobus; Sankoh, Osman; Collinson, Mark A

    2017-06-26

    The objective of this research note is to introduce a training manual for event history data management. The manual provides a first comprehensive guide to longitudinal Health and Demographic Surveillance System (HDSS) data management that allows for a step-by-step description of the process of structuring and preparing a dataset for the calculation of demographic rates and event history analysis. The research note provides some background information on the INDEPTH Network, and the iShare data repository and describes the need for a manual to guide users as to how to correctly handle HDSS datasets. The approach outlined in the manual is flexible and can be applied to other longitudinal data sources. It facilitates the development of standardised longitudinal data management and harmonization of datasets to produce a comparative set of results.

  20. Communication's Role in Safety Management and Performance for the Road Safety Practices

    OpenAIRE

    Salim Keffane (s)

    2014-01-01

    Communication among organizations could play an important role in increasing road safety. To get in-depth knowledge of its role, this study measured managers' and employees' perceptions of the communication's role on six safety management and performance criteria for road safety practices by conducting a survey using a questionnaire among 165 employees and 135 managers. Path analysis using AMOS-19 software shows that some of the safety management road safety practices have high correlation wi...

  1. Managing for safety at nuclear installations

    International Nuclear Information System (INIS)

    1996-01-01

    This publication, by the Health and Safety Executive's (HSE's) Nuclear Safety Division (NSD), provides a statement of the criteria the Nuclear Installations Inspectorate (NII) uses to judge the adequacy of any proposed or existing system for managing a nuclear installation in so far as it affects safety. These criteria have been developed from the basic HSE model, described in the publication Successful health and safety management that applies to industry generally, in order to meet the additional needs for managing nuclear safety. In addition, the publication identifies earlier studies upon which this work was based together with the key management activities and outputs. (Author)

  2. Anger Management for Substance Abuse and Mental Health Clients: A Cognitive Behavioral Therapy Manual [and] Participant Workbook.

    Science.gov (United States)

    Reilly, Patrick M.; Shopshire, Michael S.; Durazzo, Timothy C.; Campbell, Torri A.

    This manual and workbook set focuses on anger management. The manual was designed for use by qualified substance abuse and mental health clinicians who work with substance abuse and mental health clients with concurrent anger programs. The manual describes a 12-week cognitive behavioral anger management group treatment. Each of the 12 90-minute…

  3. Effective Safety Management in Construction Project

    Science.gov (United States)

    Othman, I.; Shafiq, Nasir; Nuruddin, M. F.

    2017-12-01

    Effective safety management is one of the serious problems in the construction industry worldwide, especially in large-scale construction projects. There have been significant reductions in the number and the rate of injury over the last 20 years. Nevertheless, construction remains as one of the high risk industry. The purpose of this study is to examine safety management in the Malaysian construction industry, as well as to highlight the importance of construction safety management. The industry has contributed significantly to the economic growth of the country. However, when construction safety management is not implemented systematically, accidents will happen and this can affect the economic growth of the country. This study put the safety management in construction project as one of the important elements to project performance and success. The study emphasize on awareness and the factors that lead to the safety cases in construction project.

  4. Methane measurements manual; Handbok metanmaetningar

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Magnus Andreas (SP Technical research institute of Sweden, Boraas (Sweden))

    2011-02-15

    Emissions to air in different parts of the system may arise in biogas plants, where there is biological treatment of organic matter by anaerobic degradation, and during upgrading of biogas to vehicle fuel. There are mainly four reasons why these emissions must be minimized. These are safety, greenhouse gas emissions, economy and smell. This manual gathers experience of several years of work with measurement of methane emissions from biogas and upgrading facilities. This work has been done mainly in the context of Swedish Waste Management's system of voluntary commitment. The purpose of this manual is to standardize methods and procedures when methane measurements are carried out so that the results are comparable between different providers. The main target group of the manual is measurement consultants performing such measurements. Calculation template in Excel is part of the manual, which further contributes to the measurements evaluated in a standardized way. The manual contains several examples which have been calculated in the accompanying Excel template. The handbook also contains a chapter mainly intended for facility staff, in which implementation of accurate leak detection is described, and where there are hints of a system of so-called intermediate inspections to detect leaks in time

  5. Performance standards of road safety management

    Directory of Open Access Journals (Sweden)

    Čabarkapa Milenko R.

    2016-01-01

    Full Text Available Road safety management controlling means the process of finding out the information whether the road safety is improving in a measure to achieve the objectives. The process of control consists of three basic elements: definition of performances and standards, measurement of current performances and comparison with the set standards, and improvement of current performances, if they deviate from the set standards. The performance standards of road safety management system are focused on a performances measurement, in terms of their design and characteristics, in order to support the performances improvement of road safety system and thus, ultimately, improve the road safety. Defining the performance standards of road safety management system, except that determines the design of the system for performances measurement, directly sets requirements whose fulfillment will produce a road safety improvement. The road safety management system, based on the performance standards of road safety, with a focus on results, will produce the continuous improvement of road safety, achieving the long-term 'vision zero', the philosophy of road safety, that human life and health take priority over mobility and other traffic objectives of the road traffic.

  6. Study of industry safety management

    International Nuclear Information System (INIS)

    Park, Pil Su

    1987-06-01

    This book deals with general remarks, industrial accidents, statistics of industrial accidents, unsafe actions, making machinery and facilities safe, safe activities, having working environment safe, survey of industrial accidents and analysis of causes, system of safety management and operations, safety management planning, safety education, human engineering such as human-machines system, system safety, and costs of disaster losses. It lastly adds individual protective equipment and working clothes including protect equipment for eyes, face, hands, arms and feet.

  7. Management of safety and safety culture at the NPPs of Ukraine

    International Nuclear Information System (INIS)

    Koltakov, Vladimir

    2002-01-01

    The report contains general aspects of safety and safety culture. The brief description of operational characteristics and basic indexes of atomic power plants at the Ukraine are represented. The information referring to structure of NPPs of Operation organization license-holder, safety responsibility of both Regulatory and Utility Bodies also is given. The main part of the report include seven sections: 1. Practical application of safety management models; 2. erspective on the relationship between safety management and safety culture; 3. The role of leadership in achieving high standards of safety; 4. Current and future challengers that impact on safety culture and safety management (e.g. the impact of competition, changing, economic and political circumstances, workforce demographics, etc.); 5. Key lessons learned from major events; 6. Practical applications of safety culture concepts (e.g. learning organizations, training staff communications, etc.); 7. dvance in human performance. Some of the main pending safety and safety culture problems that are necessary to achieve in the near future are mentioned

  8. School Survey on Crime and Safety (SSOCS) 2000 Public-Use Data Files, User's Manual, and Detailed Data Documentation. [CD-ROM].

    Science.gov (United States)

    National Center for Education Statistics (ED), Washington, DC.

    This CD-ROM contains the raw, public-use data from the 2000 School Survey on Crime and Safety (SSOCS) along with a User's Manual and Detailed Data Documentation. The data are provided in SAS, SPSS, STATA, and ASCII formats. The User's Manual and the Detailed Data Documentation are provided as .pdf files. (Author)

  9. Manure management in the (Sub-)Tropics : training manual for extension workers

    NARCIS (Netherlands)

    Teenstra, E.D.; Buisonjé, de F.E.; Ndambi, A.; Pelster, D.

    2015-01-01

    Having identified a general lack of knowledge about the value of livestock manure and integrated manure management at multiple levels in government and society, a concerted action led to the compilation of a training manual for extension workers on manure management in the (sub-)tropics. Covering

  10. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    International Nuclear Information System (INIS)

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  11. Safety management - policy, analysis and implementation

    International Nuclear Information System (INIS)

    Allen, F.R.

    1993-01-01

    The nuclear industry is moving towards a period of ever increasing emphasis on business performance and profitability. Safety has, of course, always been a major concern of management in the nuclear industry and elsewhere. The civil aviation industry , for example, has had a similar concern for safety. Other industry sectors are also developing safety management as a response to events within and outside their sectors. In this paper the way that the risk management process as a whole is being addressed is looked at. Can we use risk management, initially a safety-orientated tool, to improve business performance? (author)

  12. Road Infrastructure Safety Management in Poland

    Science.gov (United States)

    Budzynski, Marcin; Jamroz, Kazimierz; Kustra, Wojciech; Michalski, Lech; Gaca, Stanislaw

    2017-10-01

    The objective of road safety infrastructure management is to ensure that when roads are planned, designed, built and used road risks can be identified, assessed and mitigated. Road transport safety is significantly less developed than that of rail, water and air transport. The average individual risk of being a fatality in relation to the distance covered is thirty times higher in road transport that in the other modes. This is mainly because the different modes have a different approach to safety management and to the use of risk management methods and tools. In recent years Poland has had one of the European Union’s highest road death numbers. In 2016 there were 3026 fatalities on Polish roads with 40,766 injuries. Protecting road users from the risk of injury and death should be given top priority. While Poland’s national and regional road safety programmes address this problem and are instrumental in systematically reducing the number of casualties, the effects are far from the expectations. Modern approaches to safety focus on three integrated elements: infrastructure measures, safety management and safety culture. Due to its complexity, the process of road safety management requires modern tools to help with identifying road user risks, assess and evaluate the safety of road infrastructure and select effective measures to improve road safety. One possible tool for tackling this problem is the risk-based method for road infrastructure safety management. European Union Directive 2008/96/EC regulates and proposes a list of tools for managing road infrastructure safety. Road safety tools look at two criteria: the life cycle of a road structure and the process of risk management. Risk can be minimized through the application of the proposed interventions during design process as reasonable. The proposed methods of risk management bring together two stages: risk assessment and risk response occurring within the analyzed road structure (road network, road

  13. Safety-barrier diagrams as a safety management tool

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2009-01-01

    Safety-barrier diagrams and “bow-tie” diagrams have become popular methods in risk analysis and safety management. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The latter's relation to other methods such as fault trees and Bayesian...

  14. Evaluating safety management system implementation

    International Nuclear Information System (INIS)

    Preuss, M.

    2009-01-01

    Canada is committed to not only maintaining, but also improving upon our record of having one of the safest aviation systems in the world. The development, implementation and maintenance of safety management systems is a significant step towards improving safety performance. Canada is considered a world leader in this area and we are fully engaged in implementation. By integrating risk management systems and business practices, the aviation industry stands to gain better safety performance with less regulatory intervention. These are important steps towards improving safety and enhancing the public's confidence in the safety of Canada's aviation system. (author)

  15. Manual editing of automatically recorded data in an anesthesia information management system.

    Science.gov (United States)

    Wax, David B; Beilin, Yaakov; Hossain, Sabera; Lin, Hung-Mo; Reich, David L

    2008-11-01

    Anesthesia information management systems allow automatic recording of physiologic and anesthetic data. The authors investigated the prevalence of such data modification in an academic medical center. The authors queried their anesthesia information management system database of anesthetics performed in 2006 and tabulated the counts of data points for automatically recorded physiologic and anesthetic parameters as well as the subset of those data that were manually invalidated by clinicians (both with and without alternate values manually appended). Patient, practitioner, data source, and timing characteristics of recorded values were also extracted to determine their associations with editing of various parameters in the anesthesia information management system record. A total of 29,491 cases were analyzed, 19% of which had one or more data points manually invalidated. Among 58 attending anesthesiologists, each invalidated data in a median of 7% of their cases when working as a sole practitioner. A minority of invalidated values were manually appended with alternate values. Pulse rate, blood pressure, and pulse oximetry were the most commonly invalidated parameters. Data invalidation usually resulted in a decrease in parameter variance. Factors independently associated with invalidation included extreme physiologic values, American Society of Anesthesiologists physical status classification, emergency status, timing (phase of the procedure/anesthetic), presence of an intraarterial catheter, resident or certified registered nurse anesthetist involvement, and procedure duration. Editing of physiologic data automatically recorded in an anesthesia information management system is a common practice and results in decreased variability of intraoperative data. Further investigation may clarify the reasons for and consequences of this behavior.

  16. Investigation on regulatory requirements for radiation safety management

    International Nuclear Information System (INIS)

    Han, Eun Ok; Choi, Yoon Seok; Cho, Dae Hyung

    2013-01-01

    NRC recognizes that efficient management of radiation safety plan is an important factor to achieve radiation safety service. In case of Korea, the contents to perform the actual radiation safety management are legally contained in radiation safety management reports based on the Nuclear Safety Act. It is to prioritize the importance of safety regulations in each sector in accordance with the current situation of radiation and radioactive isotopes-used industry and to provide a basis for deriving safety requirements and safety regulations system maintenance by the priority of radiation safety management regulations. It would be helpful to achieve regulations to conform to reality based on international standards if consistent safety requirements is developed for domestic users, national standards and international standards on the basis of the results of questions answered by radiation safety managers, who lead on-site radiation safety management, about the priority of important factors in radioactive sources use, sales, production, moving user companies, to check whether derived configuration requirements for radiation safety management are suitable for domestic status

  17. PC based manual and safety logic card test setup for 235 MWe PHWRs

    International Nuclear Information System (INIS)

    Chandgadkar, G.M.; Kohli, A.K.; Agarwal, R.G.; Chandra, Rajesh

    1992-01-01

    Fuel handling controls for 235 MWe PHWR make use of Manual and Logic cards (MLCs) for providing safety interlocks. These cards consist of various type of logic blocks. By connecting these logic blocks all the safety interlocks required for fuel handling controls have been provided. Previously trouble shooting of these cards was done by means of logic probe. Since the method was manual, it was laborious and time consuming. PC based test setup has overcome this drawback and detects the fault at the component level within few seconds. It also gives printout of status of faulty MLC cards. Here motherboard has been designed having slots for insertion of MLC cards. The input/output connection of these cards are coming to two 50 pin FRC connectors. PC communicates through 144 line digital input/output card with MLC card under test. Software is user friendly and outputs suitable input patterns to the card under test and checks for output pattern. It compares this output pattern with compare pattern and detects the fault and displays the symptoms. This system is currently in use at test facility for fuelling machine for 235 MWe PHWR reactor at Refuelling Technology Division, Hall-7. This test setup has been proposed for use at NAPP and future reactors. (author). 4 figs., 1 annexure

  18. The environmental survey manual: Appendices E, F, G, H, I, J, and K

    International Nuclear Information System (INIS)

    1987-08-01

    Appendices E, F, G, H, I, J and K of the Environmental Survey Manual address the following topics: Field Sampling Protocols and Guidance; Guidelines for Preparation of Quality Assurance Plans; Decontamination Guidance; Data Management and Analysis; Sample and Document Management; Health and Safety Guidance for Sampling and Analysis Teams; Documents for Sampling and Analysis Program

  19. Manual on safety aspects of the design and equipment of hot laboratories. 1981 ed

    International Nuclear Information System (INIS)

    1981-01-01

    This manual covers the general principles of planning and design of areas inside laboratories according to the varying potential radiation and contamination hazards; enclosures for radioactive material containment; viewing and lighting systems and various types of manipulators; transfer and transport of radioactive materials within the laboratories; air cleaning and ventilation systems, with particular reference to IAEA Safety Series No.17; techniques for controlling air pollution from the operation of nuclear facilities; various radioactive waste disposal systems; criticality control; fire protection; personnel monitoring, including changing-room monitoring and protective clothing; standardization and automation; and administrative controls. Although alpha, beta, gamma technologies have developed separately, equipment used in radioactive work is common to many operations. There is a step change in technology between work with uranium and plutonium and between work with plutonium and other transuranics; with plutonium one enters the field of alpha, beta, gamma technology. This manual reports the basic requirements and gives reference to more sophisticated techniques available. It is not concerned with work on a commercial scale. Other publications of interest in this context, for instance IAEA Safety Series No.39, are referenced for more detailed information.

  20. Management of construction safety at KKNPP site

    International Nuclear Information System (INIS)

    Khare, P.K.

    2016-01-01

    Construction is considered as one of the most hazardous activities owing to the number of accidents and injuries. At KKNPP, management of industrial safety has been envisaged since the preliminary stage of construction planning, including design aspects. The governing principles of safety management are evolved from the Factories Act, 1948, the Atomic Energy(Factories) Rules, 1996, AERB safety guidelines on Control of works (2011) and Corporate HSE policy of NPCIL (2014). Numerous risk assessment and hazard control measures are adopted consistently to ensure a safe work environment during the construction, which includes Job Hazard Analysis, work permit through Computerized Maintenance Management System, safety procedures, exclusive safety training facility for the contractor's workmen, safety motivational measures, safety surveillance and reporting through Safety Related Deficiencies Management System. Assessment of efficacy of safety management system is continuously done through safety audits and observations are being circulated and discussed in committee meetings. Fire safety is also being taken care of since inception of project work. Well-equipped fire station with trained fire fighters was made available since the beginning as per AERB safety standard on fire protection system for Nuclear facilities. Fire prevention measures specific to the work are implemented during all activities. (author)

  1. Predicting safety culture: the roles of employer, operations manager and safety professional.

    Science.gov (United States)

    Wu, Tsung-Chih; Lin, Chia-Hung; Shiau, Sen-Yu

    2010-10-01

    This study explores predictive factors in safety culture. In 2008, a sample 939 employees was drawn from 22 departments of a telecoms firm in five regions in central Taiwan. The sample completed a questionnaire containing four scales: the employer safety leadership scale, the operations manager safety leadership scale, the safety professional safety leadership scale, and the safety culture scale. The sample was then randomly split into two subsamples. One subsample was used for measures development, one for the empirical study. A stepwise regression analysis found four factors with a significant impact on safety culture (R²=0.337): safety informing by operations managers; safety caring by employers; and safety coordination and safety regulation by safety professionals. Safety informing by operations managers (ß=0.213) was by far the most significant predictive factor. The findings of this study provide a framework for promoting a positive safety culture at the group level. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  2. Associations between safety climate and safety management practices in the construction industry.

    Science.gov (United States)

    Marín, Luz S; Lipscomb, Hester; Cifuentes, Manuel; Punnett, Laura

    2017-06-01

    Safety climate, a group-level measure of workers' perceptions regarding management's safety priorities, has been suggested as a key predictor of safety outcomes. However, its relationship with actual injury rates is inconsistent. We posit that safety climate may instead be a parallel outcome of workplace safety practices, rather than a determinant of workers' safety behaviors or outcomes. Using a sample of 25 commercial construction companies in Colombia, selected by injury rate stratum (high, medium, low), we examined the relationship between workers' safety climate perceptions and safety management practices (SMPs) reported by safety officers. Workers' perceptions of safety climate were independent of their own company's implementation of SMPs, as measured here, and its injury rates. However, injury rates were negatively related to the implementation of SMPs. Safety management practices may be more important than workers' perceptions of safety climate as direct predictors of injury rates. © 2017 Wiley Periodicals, Inc.

  3. Manual Vacuum Aspiration In The Management Of Post Abortal ...

    African Journals Online (AJOL)

    Eleven (11) patients with tetanus were managed by uterine evacuation using the manual vacuum aspiration at the University of Port Harcourt Teaching Hospital, Nigeria over a period of ten years. Eight (8) of the patients had uterine evacuation while in coma, while three (3) were conscious but had spasm and features of ...

  4. Safety Management and Safety Culture Self Assessment of Kartini Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarip, S., E-mail: syarip@batan.go.id [Centre for Accelerator and Material Process Technology, National Nuclear Energy Agency (BATAN), Yogyakarta (Indonesia)

    2014-10-15

    The self-assessment of safety culture and safety management status of Kartini research reactor is a step to foster safety culture and management by identifying good practices and areas for improvement, and also to improve reactor safety in a whole. The method used in this assessment is based on questionnaires provided by the Forum for Nuclear Cooperation in Asia (FNCA), then reviewed by experts. Based on the assessment and evaluation results, it can be concluded that there were several good practices in maintaining the safety status of Kartini reactor such as: reactor operators and radiation protection workers were aware and knowledgeable of the safety standards and policies that apply to their operation, readily accept constructive criticism from their management and from the inspectors of regulatory body that address safety performance. As a proof, for the last four years the number of inspection/audit findings from Regulatory Body (BAPETEN) tended to decrease while the reactor utilization and its operating hour increased. On the other hands there were also some comments and recommendations for improvement of reactor safety culture, such as that there should be more frequent open dialogues between employees and managers, to grow and attain a mutual support to achieve safety goals. (author)

  5. EMSL Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Nancy S.

    2009-06-18

    This manual is a general resource tool to assist EMSL users and Laboratory staff within EMSL locate official policy, practice and subject matter experts. It is not intended to replace or amend any formal Battelle policy or practice. Users of this manual should rely only on Battelle’s Standard Based Management System (SBMS) for official policy. No contractual commitment or right of any kind is created by this manual. Battelle management reserves the right to alter, change, or delete any information contained within this manual without prior notice.

  6. EMSL Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Nancy S.

    2009-03-25

    This manual is a general resource tool to assist EMSL users and Laboratory staff within EMSL locate official policy, practice and subject matter experts. It is not intended to replace or amend any formal Battelle policy or practice. Users of this manual should rely only on Battelle’s Standard Based Management System (SBMS) for official policy. No contractual commitment or right of any kind is created by this manual. Battelle management reserves the right to alter, change, or delete any information contained within this manual without prior notice.

  7. Study on Food Quality and Safety Management Based on Hotel Management

    OpenAIRE

    Shi Zengye

    2017-01-01

    In recent years, with the frequent occurrence of food safety problems, people have begun to pay attention to food safety, especially the food safety of hotels. This paper proposed a Hazard Analysis and Critical Control Point (HACCP) management system to analyze food safety issues of hotels in order to improve the food quality and safety in hotel management. Through the practical application of the HACCP management system in the hotel catering industry, it was found that the amount of bacteria...

  8. Radiological Safety Analysis Computer (RSAC) Program Version 7.0 Users’ Manual

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Bradley J Schrader

    2009-03-01

    The Radiological Safety Analysis Computer (RSAC) Program Version 7.0 (RSAC-7) is the newest version of the RSAC legacy code. It calculates the consequences of a release of radionuclides to the atmosphere. A user can generate a fission product inventory from either reactor operating history or a nuclear criticality event. RSAC-7 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates the decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for inhalation, air immersion, ground surface, ingestion, and cloud gamma pathways. RSAC-7 can be used as a tool to evaluate accident conditions in emergency response scenarios, radiological sabotage events and to evaluate safety basis accident consequences. This users’ manual contains the mathematical models and operating instructions for RSAC-7. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-7. This program was designed for users who are familiar with radiological dose assessment methods.

  9. Radiological Safety Analysis Computer (RSAC) Program Version 7.2 Users’ Manual

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Bradley J Schrader

    2010-10-01

    The Radiological Safety Analysis Computer (RSAC) Program Version 7.2 (RSAC-7) is the newest version of the RSAC legacy code. It calculates the consequences of a release of radionuclides to the atmosphere. A user can generate a fission product inventory from either reactor operating history or a nuclear criticality event. RSAC-7 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates the decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for inhalation, air immersion, ground surface, ingestion, and cloud gamma pathways. RSAC-7 can be used as a tool to evaluate accident conditions in emergency response scenarios, radiological sabotage events and to evaluate safety basis accident consequences. This users’ manual contains the mathematical models and operating instructions for RSAC-7. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-7. This program was designed for users who are familiar with radiological dose assessment methods.

  10. Radiological Safety Analysis Computer (RSAC) Program Version 7.0 Users Manual

    International Nuclear Information System (INIS)

    Schrader, Bradley J.

    2009-01-01

    The Radiological Safety Analysis Computer (RSAC) Program Version 7.0 (RSAC-7) is the newest version of the RSAC legacy code. It calculates the consequences of a release of radionuclides to the atmosphere. A user can generate a fission product inventory from either reactor operating history or a nuclear criticality event. RSAC-7 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates the decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for inhalation, air immersion, ground surface, ingestion, and cloud gamma pathways. RSAC-7 can be used as a tool to evaluate accident conditions in emergency response scenarios, radiological sabotage events and to evaluate safety basis accident consequences. This users manual contains the mathematical models and operating instructions for RSAC-7. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-7. This program was designed for users who are familiar with radiological dose assessment methods

  11. Study on Food Quality and Safety Management Based on Hotel Management

    Directory of Open Access Journals (Sweden)

    Shi Zengye

    2017-12-01

    Full Text Available In recent years, with the frequent occurrence of food safety problems, people have begun to pay attention to food safety, especially the food safety of hotels. This paper proposed a Hazard Analysis and Critical Control Point (HACCP management system to analyze food safety issues of hotels in order to improve the food quality and safety in hotel management. Through the practical application of the HACCP management system in the hotel catering industry, it was found that the amount of bacteria greatly reduced and the pass rate of tableware disinfection increased significantly in the hotel's food processing links, while customer satisfaction greatly improved. Therefore, the HACCP management system had great applicability in improving the food quality and safety of hotels.

  12. School Crisis Management Manual: Guidelines for Administrators. Second Edition.

    Science.gov (United States)

    Smith, Judie

    This three-part manual is intended for principals and other administrators responsible for developing and managing school crisis plans. Part 1, preparation for a school crisis, includes sections on the selection and training of members of the school crisis team, steps in developing a school crisis plan, and four crisis scenarios to train team…

  13. Ageing Management for Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    This Safety Guide was developed under the IAEA programme for safety standards for research reactors, which covers all the important areas of research reactor safety. It supplements and elaborates upon the safety requirements for ageing management of research reactors that are established in paras 6.68-6.70 and 7.109 of the IAEA Safety Requirements publication, Safety of Research Reactors. The safety of a research reactor requires that provisions be made in its design to facilitate ageing management. Throughout the lifetime of a research reactor, including its decommissioning, ageing management of its structures, systems and components (SSCs) important to safety is required, to ensure continued adequacy of the safety level, reliable operation of the reactor, and compliance with the operational limits and conditions. Managing the safety aspects of research reactor ageing requires implementation of an effective programme for the monitoring, prediction, and timely detection and mitigation of degradation of SSCs important to safety, and for maintaining their integrity and functional capability throughout their service lives. Ageing management is defined as engineering, operation, and maintenance strategy and actions to control within acceptable limits the ageing degradation of SSCs. Ageing management includes activities such as repair, refurbishment and replacement of SSCs, which are similar to other activities carried out at a research reactor in maintenance and testing or when a modification project takes place. However, it is important to recognize that effective management of ageing requires the use of a methodology that will detect and evaluate ageing degradation as a consequence of the service conditions, and involves the application of countermeasures for prevention and mitigation of ageing degradation. The objective of this Safety Guide is to provide recommendations on managing ageing of SSCs important to safety at research reactors on the basis of international

  14. Ageing Management for Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide was developed under the IAEA programme for safety standards for research reactors, which covers all the important areas of research reactor safety. It supplements and elaborates upon the safety requirements for ageing management of research reactors that are established in paras 6.68-6.70 and 7.109 of the IAEA Safety Requirements publication, Safety of Research Reactors. The safety of a research reactor requires that provisions be made in its design to facilitate ageing management. Throughout the lifetime of a research reactor, including its decommissioning, ageing management of its structures, systems and components (SSCs) important to safety is required, to ensure continued adequacy of the safety level, reliable operation of the reactor, and compliance with the operational limits and conditions. Managing the safety aspects of research reactor ageing requires implementation of an effective programme for the monitoring, prediction, and timely detection and mitigation of degradation of SSCs important to safety, and for maintaining their integrity and functional capability throughout their service lives. Ageing management is defined as engineering, operation, and maintenance strategy and actions to control within acceptable limits the ageing degradation of SSCs. Ageing management includes activities such as repair, refurbishment and replacement of SSCs, which are similar to other activities carried out at a research reactor in maintenance and testing or when a modification project takes place. However, it is important to recognize that effective management of ageing requires the use of a methodology that will detect and evaluate ageing degradation as a consequence of the service conditions, and involves the application of countermeasures for prevention and mitigation of ageing degradation. The objective of this Safety Guide is to provide recommendations on managing ageing of SSCs important to safety at research reactors on the basis of international

  15. Health physics manual of good practices for accelerator facilities

    International Nuclear Information System (INIS)

    Casey, W.R.; Miller, A.J.; McCaslin, J.B.; Coulson, L.V.

    1988-04-01

    It is hoped that this manual will serve both as a teaching aid as well as a useful adjunct for program development. In the context of application, this manual addresses good practices that should be observed by management, staff, and designers since the achievement of a good radiation program indeed involves a combined effort. Ultimately, radiation safety and good work practices become the personal responsibility of the individual. The practices presented in this manual are not to be construed as mandatory rather they are to be used as appropriate for the specific case in the interest of radiation safety. As experience is accrued and new data obtained in the application of this document, ONS will update the guidance to assure that at any given time the guidance reflects optimum performance consistent with current technology and practice.The intent of this guide therefore is to: define common health physics problems at accelerators; recommend suitable methods of identifying, evaluating, and managing accelerator health physics problems; set out the established safety practices at DOE accelerators that have been arrived at by consensus and, where consensus has not yet been reached, give examples of safe practices; introduce the technical literature in the accelerator health physics field; and supplement the regulatory documents listed in Appendix D. Many accelerator health physics problems are no different than those at other kinds of facilities, e.g., ALARA philosophy, instrument calibration, etc. These problems are touched on very lightly or not at all. Similarly, this document does not cover other hazards such as electrical shock, toxic materials, etc. This does not in any way imply that these problems are not serious. 160 refs

  16. HORECA. Hoger onderwijs reactor elementary core analysis system. User's manual

    International Nuclear Information System (INIS)

    Battum, E. van; Serov, I.V.

    1993-07-01

    HORECA is developed at IRI Delft for quick analysis of power distribution, burnup and safety for the HOR. It can be used for the manual search of a better loading of the reactor. HORECA is based on the Penn State Fuel Management Package and uses the MCRAC code included in this package as a calculation engine. (orig./HP)

  17. Evaluating Performance of Safety Management and Occupational Health Using Total Quality Safety Management Model (TQSM

    Directory of Open Access Journals (Sweden)

    E Mohammadfam

    2015-11-01

    Full Text Available Introduction: All organizations, whether public or private, necessitate performance evaluation systems in regard with growth, stability, and development in the competitive fields. One of the existing models for performance evaluation of occupational health and safety management is Total Quality Safety Management model (TQSM. Therefore, the present study aimed to evaluate performance of safety management and occupational health utilizing TQSM model. Methods: In this descriptive-analytic study, the population consisted of 16 individuals, including managers, supervisors, and members of technical protection and work health committee. Then the participants were asked to respond to TQSM questionnaire before and after the implementation of Occupational Health & Safety Advisory Services 18001 (OHSAS18001. Ultimately, the level of each program as well as the TQSM status were determined before and after the implementation of OHSAS18001. Results: The study results showed that the scores obtained by the company before OHSAS 18001’s implementation, was 43.7 out of 312. After implementing OHSAS 18001 in the company and receiving the related certificate, the total score of safety program that company could obtain was 127.12 out of 312 demonstrating a rise of 83.42 scores (26.8%. The paired t-test revealed that mean difference of TQSM scores before and after OHSAS 18001 implementation was proved to be significant (p> 0.05. Conclusion: The study findings demonstrated that TQSM can be regarded as an appropriate model in order to monitor the performance of safety management system and occupational health, since it possesses the ability to quantitatively evaluate the system performance.

  18. On Safety Management. A Frame of Reference for Studies of Safety Management with Examples From Non-Nuclear Contexts of Relevance for Nuclear Safety

    International Nuclear Information System (INIS)

    Svensson, Ola; Salo, Ilkka; Allwin, Pernilla

    2004-11-01

    A good knowledge about safety management from risk technologies outside the area of nuclear power may contribute to both broaden the perspectives on safety management in general, and point at new opportunities for improving safety measures within the nuclear industry. First, a theoretical framework for the study of safety management in general is presented, followed by three case studies on safety management from different non-nuclear areas with potential relevance for nuclear safety. The chapters are written as separate reports and can be read independently of each other. The nuclear industry has a long experience about the management of risky activities, involving all the stages from planing to implementation, both on a more generalized level and in the specific branches of activities (management, administration, operation, maintenance, etc.). Here, safety management is a key concept related to these areas of activities. Outside the field of nuclear power there exist a number of different non-nuclear risk technologies, each one with their own specific needs and experiences about safety management. The differences between the areas consist partly of the different experiences caused by the different technologies. Besides using own experiences in safety practices within the own areas of activities, it may be profitable to take advantage in knowledge and experiences from one area and put it in practice in another area. In order to facilitate knowledge transfer from one technological area to another it may be possible to adapt a common theoretical model, for descriptions and explanations, to the different technologies. Such a model should admit that common denominators for safety management across the areas might be identified and described with common concepts. Systems theory gives the opportunity to not only create models that are descriptive for events within the limits of a given technology, but also to generate knowledge that can be transferred to other

  19. Safety management in research and development organisation

    International Nuclear Information System (INIS)

    Nivedha, T.

    2016-01-01

    Health and safety is one of the most important aspects of an organizations smooth and effective functioning. It depends on the safety management, health management, motivation, leadership and training, welfare facilities, accident statistics, policy, organization and administration, hazard control and risk analysis, monitoring, statistics and reporting. Workplace accidents are increasingly common, main causes are untidiness, noise, too hot or cold environments, old or poorly maintained machines, and lack of training or carelessness of employees. One of the biggest issues facing employers today is the safety of their employees. This study aims at analyzing the occupational health and safety of Research organization in Indira Gandhi Centre for Atomic Research by gathering information on health management, safety management, motivation, leadership and training, welfare facilities, accident statistics, organization and administration, hazard control and risk analysis, monitoring, statistics and reporting. Data were collected by using questionnaires which were developed on health and safety management system. (author)

  20. Management concepts and safety applications for nuclear fuel facilities

    International Nuclear Information System (INIS)

    Eisner, H.; Scotti, R.S.

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities

  1. Management concepts and safety applications for nuclear fuel facilities

    Energy Technology Data Exchange (ETDEWEB)

    Eisner, H.; Scotti, R.S. [George Washington Univ., Washington, DC (United States). School of Engineering and Applied Science; Delicate, W.S. [KEVRIC Co., Inc., Silver Spring, MD (United States)

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities.

  2. Nuclear safety management at the Wolsong NGS

    Energy Technology Data Exchange (ETDEWEB)

    Bong-Seob, Han [Korea Electric Power Corp., Wolson NPP no. 1 and 2 (Korea, Republic of)

    1997-12-01

    Nuclear safety management at the Wolsong nuclear power plant is described, including the following issues: site selection; plant history; operational goals; operational guidelines; reactor safety; safety training; plant maintenance; management of plant equipment lifetime; future tasks.

  3. Nuclear safety management at the Wolsong NGS

    International Nuclear Information System (INIS)

    Han Bong-Seob

    1997-01-01

    Nuclear safety management at the Wolsong nuclear power plant is described, including the following issues: site selection; plant history; operational goals; operational guidelines; reactor safety; safety training; plant maintenance; management of plant equipment lifetime; future tasks

  4. Airline Safety Management: The development of a proactive safety mechanism model for the evolution of safety management system

    OpenAIRE

    Hsu, Yueh-Ling

    2004-01-01

    The systemic origins of many accidents have led to heightened interest in the way in which organisations identify and manage risks within the airline industry. The activities which are thought to represent the term "organisational accident", "safety culture" and "proactive approach" are documented and seek to explain the fact that airlines differ in their willingness and ability to conduct safety management. However, an important but yet relatively undefined task in the airline...

  5. Irrigation Training Manual. Planning, Design, Operation, and Management of Small-Scale Irrigation Systems [and] Irrigation Reference Manual. A Technical Reference to Be Used with the Peace Corps Irrigation Training Manual T0076 in the Selection, Planning, Design, Operation, and Management of Small-Scale Irrigation Systems.

    Science.gov (United States)

    Salazar, LeRoy; And Others

    This resource for trainers involved in irrigated agriculture training for Peace Corps volunteers consists of two parts: irrigation training manual and irrigation reference manual. The complete course should fully prepare volunteers serving as irrigation, specialists to plan, implement, evaluate and manage small-scale irrigation projects in arid,…

  6. KIT safety management. Annual report 2012

    International Nuclear Information System (INIS)

    Frank, Gerhard

    2013-01-01

    The KIT Safety Management Service Unit (KSM) guarantees radiological and conventional technical safety and security of Karlsruhe Institute of Technology and controls the implementation and observation of legal environmental protection requirements. KSM is responsible for - licensing procedures, - industrial safety organization, - control of environmental protection measures, - planning and implementation of emergency preparedness and response, - operation of radiological laboratories and measurement stations, - extensive radiation protection support and the - the execution of security tasks in and for all organizational units of KIT. Moreover, KSM is in charge of wastewater and environmental monitoring for all facilities and nuclear installations all over the KIT campus. KSM is headed by the Safety Commissioner of KIT, who is appointed by the Presidential Committee. Within his scope of procedure for KIT, the Safety Commissioner controls the implementation of and compliance with safety-relevant requirements. The KIT Safety Management is certified according to DIN EN ISO 9001, its industrial safety management is certified by the VBG as ''AMS-Arbeitsschutz mit System'' and, hence, fulfills the requirements of NLF / ISO-OSH 2001. KSM laboratories are accredited according to DIN EN ISO/IEC 17025. To the extent possible, KSM is committed to maintaining competence in radiation protection and to supporting research and teaching activities. The present reports lists the individual tasks of the KIT Safety Management and informs about the results achieved in 2012. Status figures in principle reflect the status at the end of the year 2012. The processes described cover the areas of competence of KSM.

  7. On Safety Management. A Frame of Reference for Studies of Safety Management with Examples From Non-Nuclear Contexts of Relevance for Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Ola; Salo, Ilkka; Allwin, Pernilla (Risk Analysis, Social and Decision Research Unit, Dept. of Psychology, Stockholm Univ., Stockholm (Sweden))

    2004-11-15

    A good knowledge about safety management from risk technologies outside the area of nuclear power may contribute to both broaden the perspectives on safety management in general, and point at new opportunities for improving safety measures within the nuclear industry. First, a theoretical framework for the study of safety management in general is presented, followed by three case studies on safety management from different non-nuclear areas with potential relevance for nuclear safety. The chapters are written as separate reports and can be read independently of each other. The nuclear industry has a long experience about the management of risky activities, involving all the stages from planing to implementation, both on a more generalized level and in the specific branches of activities (management, administration, operation, maintenance, etc.). Here, safety management is a key concept related to these areas of activities. Outside the field of nuclear power there exist a number of different non-nuclear risk technologies, each one with their own specific needs and experiences about safety management. The differences between the areas consist partly of the different experiences caused by the different technologies. Besides using own experiences in safety practices within the own areas of activities, it may be profitable to take advantage in knowledge and experiences from one area and put it in practice in another area. In order to facilitate knowledge transfer from one technological area to another it may be possible to adapt a common theoretical model, for descriptions and explanations, to the different technologies. Such a model should admit that common denominators for safety management across the areas might be identified and described with common concepts. Systems theory gives the opportunity to not only create models that are descriptive for events within the limits of a given technology, but also to generate knowledge that can be transferred to other

  8. Quality management manual for production of high quality cassava flour

    DEFF Research Database (Denmark)

    Dziedzoave, Nanam Tay; Abass, Adebayo Busura; Amoa-Awua, Wisdom K.

    The high quality cassava flour (HQCF) industry has just started to evolve in Africa and elsewhere. The sustainability of the growing industry, the profitability of small- and medium-scale enterprises (SMEs) that are active in the industry and good-health of consumers can best be guaranteed through...... the adoption of proper quality and food safety procedures. Cassava processing enterprises involved in the productionof HQCF must therefore be commited to the quality and food safety of the HQCF. They must have the right technology, appropriate processing machhinery, standard testing instruments...... and the necessary technical expertise. This quality manual was therefore developed to guide small- to medium-scale cassava in the design and implematation of Hazard Analysis Critical Control Point (HACCP) system and Good manufacturing Practices (GMP) plans for HQCF production. It describes the HQCF production...

  9. SafetyAnalyst : software tools for safety management of specific highway sites

    Science.gov (United States)

    2010-07-01

    SafetyAnalyst provides a set of software tools for use by state and local highway agencies for highway safety management. SafetyAnalyst can be used by highway agencies to improve their programming of site-specific highway safety improvements. SafetyA...

  10. INTEGRATED SAFETY MANAGEMENT SYSTEM IN AIR TRAFFIC SERVICES

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2014-06-01

    Full Text Available The article deals with the analysis of the researches conducted in the field of safety management systems.Safety management system framework, methods and tools for safety analysis in Air Traffic Control have been reviewed.Principles of development of Integrated safety management system in Air Traffic Services have been proposed.

  11. [Management, quality of health and occupational safety and hospital organization: is integration possible?].

    Science.gov (United States)

    Corrao, Carmela Romana Natalina

    2011-01-01

    The evolution of the national and European legislation has progressively transformed the working environments into organized environments. Specific models for its management are being proposed, which should be integrated into general management strategies. In the case of hospitals this integration should consider the peculiar organizational complexity, where the management of the occupational risk needs to be integrated with clinical risk management and economic risk management. Resources management should also consider that Occupational Medicine has not a direct monetary benefit for the organisation, but only indirect health consequences in terms of reduction of accidents and occupational diseases. The deep and simultaneous analysis of the current general management systems and the current management methods of occupational safety and health protection allows one to hyphotesise a possible integration between them. For both of them the Top Management is the main responsible of the quality management strategies and the use of specific documents in the managerial process, such as the document of risks evaluation in the occupational management and the quality manual in the general management, is of paramount importance. An integrated management has also the scope to pursue a particular kind of quality management, where ethics and job satisfaction are innovative, as established by recent European guidelines, management systems and national legislations.

  12. Analysis and design on airport safety information management system

    Directory of Open Access Journals (Sweden)

    Yan Lin

    2017-01-01

    Full Text Available Airport safety information management system is the foundation of implementing safety operation, risk control, safety performance monitor, and safety management decision for the airport. The paper puts forward the architecture of airport safety information management system based on B/S model, focuses on safety information processing flow, designs the functional modules and proposes the supporting conditions for system operation. The system construction is helpful to perfecting the long effect mechanism driven by safety information, continually increasing airport safety management level and control proficiency.

  13. Implementation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Stewart, L.; Tonkay, D.

    2004-01-01

    This paper discusses the implementation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The Joint Convention: establishes a commitment with respect to safe management of spent nuclear fuel and radioactive waste; requires the Parties to ''take appropriate steps'' to ensure the safety of their spent fuel and waste management activities, but does not delineate standards the Parties must meet; and seeks to attain, through its Contracting Parties, a higher level of safety with respect to management of their spent nuclear fuel, disused sealed sources, and radioactive waste

  14. Editorial safety science special issue road safety management.

    NARCIS (Netherlands)

    Wegman, F.C.M. & Hagezieker, M.P.

    2014-01-01

    The articles presented in this Special Issue on Road Safety Management represent an illustration of the growing interest in policy-related research in the area of road safety. The complex nature of this type of research combined with the observation that scientific journals pay limited attention to

  15. Standardized safety management of AP1000 nuclear power plant

    International Nuclear Information System (INIS)

    Li Xingwen; Cao Zhiqiang; Cong Jiuyuan

    2011-01-01

    In 2002, China published and implemented the Law of the People's Republic of China on Work Safety and promulgated a series of guidelines and policies, which strengthened the safety management supervision. Standardization of safety, as another important step on safety supervision, comes after safety assesment and safety production licensing system, is also a permanent solution. Standardization of safety is a strategic, long term and fundamental work, which is also the basic access to achieving scientific safety management and increasing the inherent safety of an enterprise. Haiyang AP1000 nuclear power plant, adopting the modularized, 'open-top' and parallel construction means, overturned the traditional construction theory of installation work comes after the civil work and greatly shorten the construction period. At the same time, the notable increase of oversize module transportation and lifting and parallel construction raises higher demands for safety management. This article combines the characteristics and difficulties of safety management for Haiyang AP1000 nuclear power plant, puts forward ideas and methods for standardized safety management, and could also serve as reference to the safety management for other AP1000 projects. (authors)

  16. Safety management in a competitiveness context

    International Nuclear Information System (INIS)

    Rousseau, J.M.

    2013-01-01

    This paper summarizes the first assessment performed by the IRSN related to the management of French power water reactors (PWR) safety. The conclusions of this assessment were submitted to the 'advisory committee' in April 2008. After an introduction reminding the French industrial and regulatory context as well as the way the assessment has been conducted, the relationship between safety and competitiveness is briefly discussed. Then the main issues and recommendations pointed out by the IRSN assessment are presented. These concern in particular: the balance between the shift operation team and the outage project team; the real-time decision-making capabilities of plant managers; the lessons learnt from the analyses of decision-making processes; the management of cultural changes. Finally, a conclusion presents a global diagnosis in terms of strengths and weaknesses of the EDF safety management system and proposes some ideas regarding the 'priority given to safety', the meaning of safety used by operative people and the continuous improvement approach. Lastly, methodological lessons are pointed out. The slides of the presentation have been added at the end of the paper. (author)

  17. Manual on quality assurance programme auditing

    International Nuclear Information System (INIS)

    1984-01-01

    The objective of this Manual is to provide guidance and illustrative examples of the methodology and techniques of internal and external audits that are consistent with the requirements and recommendations of the Code and the Safety Guide. The methodology and techniques are based on the practices of Member States having considerable experience in auditing QA programmes. This Manual is directed primarily towards QA programme auditors and managers and presents methods and techniques considered appropriate for the preparation and performance of audits and the evaluation of results. Its scope includes the techniques and methods used to carry out QA programme audits variously described as 'System', 'Product' and 'Process' audits. The techniques and methods described here may be used as one approach to the evaluation of suppliers' QA capabilities as defined in 50-SG-QA10. Although the Manual is primarily directed towards purchasers and suppliers, it is also relevant to regulatory organizations, such as government offices responsible for quality assurance, which carry out external audits independent of purchasers and suppliers. In such cases similar methods, procedures and techniques may be used

  18. FOOD QUALITY MANAGEMENT AND SAFETY

    OpenAIRE

    Rizwana Khatoon; Debkumar Chakraborty; R.C. Chandni; Amar Sankar; A.V. Raghu

    2017-01-01

    Food safety system mainly focuses on identifying and preventing hazards that may lead product to deteriorate. The main important of manufacturing practice is a system that ensures that products meet food safety, quality and legal requirements. The hazard analysis and critical control point system, applies to food safety management, uses the approach of controlling critical points in food handling to prevent food safety problems. Besides enhancing food safety, other benefits of applying HACCP ...

  19. New highway accident location manual for Missouri.

    Science.gov (United States)

    2013-12-01

    The Missouri HAL manual is used to identify, analyze, and correct high crash locations, and has not been updated since : 1999. This new edition brings the manual up to date, while incorporating the methodology of the national Highway Safety : Manual ...

  20. Management commitment to safety vs. employee perceived safety training and association with future injury.

    Science.gov (United States)

    Huang, Yueng-Hsiang; Verma, Santosh K; Chang, Wen-Ruey; Courtney, Theodore K; Lombardi, David A; Brennan, Melanye J; Perry, Melissa J

    2012-07-01

    The purpose of this study is to explore and examine, specific to the restaurant industry, two important constructs emerging from the safety climate literature: employee perceptions of safety training and management commitment to safety. Are these two separate constructs? Are there both individual- and shared group-level safety perceptions for these two constructs? What are the relationships between these two constructs and future injury outcomes? A total of 419 employees from 34 limited-service restaurants participated in a prospective cohort study. Employees' perceptions of management commitment to safety and safety training and demographic variables were collected at the baseline. The survey questions were made available in three languages: English, Spanish, and Portuguese. For the following 12 weeks, participants reported their injury experience and weekly work hours. A multivariate negative binomial generalized estimating equation model with compound symmetry covariance structure was used to assess the association between the rate of self-reported injuries and measures of safety perceptions. Even though results showed that the correlation between employees'perceived safety training and management commitment to safety was high, confirmatory factor analysis of measurement models showed that two separate factors fit the model better than as two dimensions of a single factor. Homogeneity tests showed that there was a shared perception of the factor of management commitment to safety for the restaurant workers but there was no consistent perception among them for the factor of perceived safety training. Both individual employees'perceived management commitment to safety and perceptions of safety training can predict employees' subsequent injuries above and beyond demographic variables. However, there was no significant relationship between future injury and employees' shared perception of management commitment to safety. Further, our results suggest that the

  1. Safety and environmental health handbook

    Science.gov (United States)

    ,

    1989-01-01

    This Safety Handbook (445-1-H.) supplements the Geological Survey Safety Management Program objectives set forth in Survey Manual 445.1. Specifically, it provides a compact source of basic information to assist management and employees in preventing motor vehicle accidents, personal injuries, occupational diseases, fire, and other property damage or loss. All work situations incidental to the Geological Survey cannot be discussed in a handbook, and such complete coverage is not intended in this document. However, a wide range of subjects are covered in which a "common sense" approach to safety has been expressed. These subjects have been organized such that Chapters 1-5 address administrative issues, Chapters 6-12 address activities usually conducted within a facility, and Chapters 13-20 address field activities. No information contained in the Handbook is intended to alter any provision of any Federal law or executive order, Department of the Interior or Survey directive, or collective bargaining agreement. Questions or suggestions regarding the content of the Safety Handbook may be directed to the Survey Safety Manager, Administrative Division, Office of Facilities and Management Services, National Center, Reston, Virginia, Mail Stop 246. The previous edition of the Safety Handbook is superseded.

  2. Developing a strong safety culture - a safety management challenge

    International Nuclear Information System (INIS)

    Low, M.; Gipson, G. P.; Williams, M.

    1995-01-01

    The approach is presented adapted by Nuclear Electric to build a strong safety culture through the development of its safety management system. Two features regarded as critical to a strong safety culture are: provision of effective communications to promote an awareness and ownership of safety among craft, and commitment to continuous improvement with a genuine willingness to learn from own experiences and those from others. (N.T.) 5 refs., 4 figs., 1 tab

  3. Inspirations from Dupont Safety Management System

    Institute of Scientific and Technical Information of China (English)

    Ma Yong

    2009-01-01

    @@ Dupont,with its 200 years of safety management experience,tells us:all safety accidents can be prevented. Dupont has a history of more than 200 years,the concept of "safety is priority"has never changed.Dupont is just another word for safety.

  4. Managing Safety and Operations: The Effect of Joint Management System Practices on Safety and Operational Outcomes.

    Science.gov (United States)

    Tompa, Emile; Robson, Lynda; Sarnocinska-Hart, Anna; Klassen, Robert; Shevchenko, Anton; Sharma, Sharvani; Hogg-Johnson, Sheilah; Amick, Benjamin C; Johnston, David A; Veltri, Anthony; Pagell, Mark

    2016-03-01

    The aim of this study was to determine whether management system practices directed at both occupational health and safety (OHS) and operations (joint management system [JMS] practices) result in better outcomes in both areas than in alternative practices. Separate regressions were estimated for OHS and operational outcomes using data from a survey along with administrative records on injuries and illnesses. Organizations with JMS practices had better operational and safety outcomes than organizations without these practices. They had similar OHS outcomes as those with operations-weak practices, and in some cases, better outcomes than organizations with safety-weak practices. They had similar operational outcomes as those with safety-weak practices, and better outcomes than those with operations-weak practices. Safety and operations appear complementary in organizations with JMS practices in that there is no penalty for either safety or operational outcomes.

  5. Restaurant manager and worker food safety certification and knowledge.

    Science.gov (United States)

    Brown, Laura G; Le, Brenda; Wong, Melissa R; Reimann, David; Nicholas, David; Faw, Brenda; Davis, Ernestine; Selman, Carol A

    2014-11-01

    Over half of foodborne illness outbreaks occur in restaurants. To combat these outbreaks, many public health agencies require food safety certification for restaurant managers, and sometimes workers. Certification entails passing a food safety knowledge examination, which is typically preceded by food safety training. Current certification efforts are based on the assumption that certification leads to greater food safety knowledge. The Centers for Disease Control and Prevention conducted this study to examine the relationship between food safety knowledge and certification. We also examined the relationships between food safety knowledge and restaurant, manager, and worker characteristics. We interviewed managers (N=387) and workers (N=365) about their characteristics and assessed their food safety knowledge. Analyses showed that certified managers and workers had greater food safety knowledge than noncertified managers and workers. Additionally, managers and workers whose primary language was English had greater food safety knowledge than those whose primary language was not English. Other factors associated with greater food safety knowledge included working in a chain restaurant, working in a larger restaurant, having more experience, and having more duties. These findings indicate that certification improves food safety knowledge, and that complex relationships exist among restaurant, manager, and worker characteristics and food safety knowledge.

  6. Restaurant Manager and Worker Food Safety Certification and Knowledge

    Science.gov (United States)

    Brown, Laura G.; Le, Brenda; Wong, Melissa R.; Reimann, David; Nicholas, David; Faw, Brenda; Davis, Ernestine; Selman, Carol A.

    2017-01-01

    Over half of foodborne illness outbreaks occur in restaurants. To combat these outbreaks, many public health agencies require food safety certification for restaurant managers, and sometimes workers. Certification entails passing a food safety knowledge examination, which is typically preceded by food safety training. Current certification efforts are based on the assumption that certification leads to greater food safety knowledge. The Centers for Disease Control and Prevention conducted this study to examine the relationship between food safety knowledge and certification. We also examined the relationships between food safety knowledge and restaurant, manager, and worker characteristics. We interviewed managers (N = 387) and workers (N = 365) about their characteristics and assessed their food safety knowledge. Analyses showed that certified managers and workers had greater food safety knowledge than noncertified managers and workers. Additionally, managers and workers whose primary language was English had greater food safety knowledge than those whose primary language was not English. Other factors associated with greater food safety knowledge included working in a chain restaurant, working in a larger restaurant, having more experience, and having more duties. These findings indicate that certification improves food safety knowledge, and that complex relationships exist among restaurant, manager, and worker characteristics and food safety knowledge. PMID:25361386

  7. Safety management: a few techniques and their application

    International Nuclear Information System (INIS)

    Soundararajan, S.

    2016-01-01

    Industrial safety practice has grown in its stature tremendously since the age of industrial revolution. A number of modern techniques are available to strengthen design safety features, to review operational safety, and to critically appraise and upgrade practices of occupational safety and health management. This talk focuses on three prominent yet simple techniques and their usefulness in the overall safety management of a workplace. Any industrial set-up undergoes different stages in its life cycle-conceptual design, actual design, construction, fabrication and installation, commissioning, operation, shutdown/re-start up and decommissioning. Checklist procedure is a safety tool that can be applied at any of these stages. Thus it is a quite useful technique in safety management and accident prevention. It can serve as a form of approval from one step to another in the course of any routine or specific task. Safety Audit or Safety Review is a critical safety management appraisal tool. It gives a reasonable indication of how well a company's safety programme works, how hazards are recognised, how well employees are motivated and so on. It gives a clear picture about where a company stands as far as framing and implementation of its SHE policy is concerned. Each of the above tools is complementing each other and required to be applied at appropriate juncture in sustaining good safety management system at the workplace

  8. Safety culture improvement. An adaptive management framework

    International Nuclear Information System (INIS)

    Obadia, Isaac Jose

    2005-01-01

    After the Chernobyl nuclear accident in 1986, the International Atomic Energy Agency (IAEA) established the safety culture concept as a proactive mean to contribute to safety improvement, starting a worldwide safety culture enhancement program within nuclear organizations mainly focused on nuclear power plants. More recently, the safety culture concept has been extended to non-power applications such as nuclear research reactors and nuclear technological research and development organizations. In 1999, the Nuclear Engineering Institute (IEN), a research and technological development unit of the Brazilian Nuclear Energy Commission (CNEN), started a management change program aiming at improving its performance level of excellence. This change program has been developed assuming the occurrence of complex causal inter-relationships between the organizational culture and the implementation of the management process. A systematic and adaptive management framework comprised of a safety culture improvement practice integrated to a management process based on the Criteria for Excellence of the Brazilian Quality Award Model, has been developed and implemented at IEN. The case study has demonstrated that the developed framework makes possible an effective safety culture improvement and simultaneously facilitates an effective implementation of the management process, thus providing some governance to the change program. (author)

  9. Developing a Manualized Occupational Therapy Diabetes Management Intervention: Resilient, Empowered, Active Living With Diabetes.

    Science.gov (United States)

    Pyatak, Elizabeth A; Carandang, Kristine; Davis, Shain

    2015-07-01

    This article reports on the development of a manualized occupational therapy intervention for diabetes management. An initial theoretical framework and core content areas for a Stage I intervention manual were developed based on an in-depth needs assessment and review of existing literature. After evaluation by a panel of experts and completion of a feasibility study, the intervention was revised into a Stage 2 manual in preparation for a randomized study evaluating the intervention's efficacy. In developing the initial manual, we delineated core theoretical principles to allow for flexible application and tailoring of the intervention's content areas. Expert panel feedback and feasibility study results led to changes to the intervention structure and content as we developed the Stage 2 manual. Through describing this process, we illustrate the dynamic evolution of intervention manuals, which undergo revisions due to both theoretical and practical considerations at each stage of the research-to-clinical practice pipeline.

  10. Building Blocks for School IPM: A Least-Toxic Pest Management Manual.

    Science.gov (United States)

    Crouse, Becky, Ed.; Owens, Kagan, Ed.

    This publication is a compilation of original and republished materials from numerous individuals and organizations working on pesticide reform and integrated pest management (IPM)--using alternatives to prevailing chemical-intensive practices. The manual provides comprehensive information on implementing school IPM, including a practical guide to…

  11. Risk management and safety

    International Nuclear Information System (INIS)

    Niehaus, F.; Novegno, A.

    1985-01-01

    Risk assessment, including probabilistic analyses, has made great progress over the past decade. In spite of the inherent uncertainties it has now become possible to utilize methods and results for decision making at various levels. This paper will, therefore, review risk management in industrial installations, risk management for energy safety policy and prospects of risk management in highly industrialized areas. (orig.) [de

  12. Workplace safety management as correlates of wellbeing among ...

    African Journals Online (AJOL)

    Workplace safety management as correlates of wellbeing among factory ... working in manufacturing firms do not enjoy the desirable level of wellbeing ... Keywords: employees' wellbeing, safety management, workers safety training, design of ...

  13. Safety management in the industry

    International Nuclear Information System (INIS)

    Jaecklin, A.

    1996-01-01

    The safety management in the industry is characterised by the large number of processes and the materials used in them. Correspondingly large are the legal regulations. Through the thickets of today's controls, the industry moves inside a relatively tight network of technical regulations. The experience of environmental audits and industrial damage, however, shows that the greatest deficit lies in the organisational methods and less on the technical side. For the overcoming of risks one needs to recognise the weaknesses of a careful analysis. To this belongs the estimation of how far a possible scenario can be taken. The estimation of the possibilities of occurrence, however, comes up against particular problems in the industry, as the human factor in relationship with danger potentialities is very difficult to evaluate. Actual basic data or statistics are missing. This lack can only be made good with the building up of a safety management. The fundamental principles of such a management can be taken from the environmental management and especially from the standard for environmental management ISO 14001. Here it is important that safety management is integrated into the process-oriented business processes and thus becomes a part of the company culture. (author) 11 figs., tabs., 11 refs

  14. Pedestrian safety management using the risk-based approach

    Directory of Open Access Journals (Sweden)

    Romanowska Aleksandra

    2017-01-01

    Full Text Available The paper presents a concept of a multi-level pedestrian safety management system. Three management levels are distinguished: strategic, tactical and operational. The basis for the proposed approach to pedestrian safety management is a risk-based method. In the approach the elements of behavioural and systemic theories were used, allowing for the development of a formalised and repeatable procedure integrating the phases of risk assessment and response to the hazards of road crashes involving pedestrians. Key to the method are tools supporting pedestrian safety management. According to the risk management approach, the tools can be divided into two groups: tools supporting risk assessment and tools supporting risk response. In the paper attention is paid to selected tools supporting risk assessment, with particular emphasis on the methods for estimating forecasted pedestrian safety measures (at strategic, national and regional level and identification of particularly dangerous locations in terms of pedestrian safety at tactical (regional and local and operational level. The proposed pedestrian safety management methods and tools can support road administration in making rational decisions in terms of road safety, safety of road infrastructure, crash elimination measures or reducing the consequences suffered by road users (particularly pedestrians as a result of road crashes.

  15. Initial development of a practical safety audit tool to assess fleet safety management practices.

    Science.gov (United States)

    Mitchell, Rebecca; Friswell, Rena; Mooren, Lori

    2012-07-01

    Work-related vehicle crashes are a common cause of occupational injury. Yet, there are few studies that investigate management practices used for light vehicle fleets (i.e. vehicles less than 4.5 tonnes). One of the impediments to obtaining and sharing information on effective fleet safety management is the lack of an evidence-based, standardised measurement tool. This article describes the initial development of an audit tool to assess fleet safety management practices in light vehicle fleets. The audit tool was developed by triangulating information from a review of the literature on fleet safety management practices and from semi-structured interviews with 15 fleet managers and 21 fleet drivers. A preliminary useability assessment was conducted with 5 organisations. The audit tool assesses the management of fleet safety against five core categories: (1) management, systems and processes; (2) monitoring and assessment; (3) employee recruitment, training and education; (4) vehicle technology, selection and maintenance; and (5) vehicle journeys. Each of these core categories has between 1 and 3 sub-categories. Organisations are rated at one of 4 levels on each sub-category. The fleet safety management audit tool is designed to identify the extent to which fleet safety is managed in an organisation against best practice. It is intended that the audit tool be used to conduct audits within an organisation to provide an indicator of progress in managing fleet safety and to consistently benchmark performance against other organisations. Application of the tool by fleet safety researchers is now needed to inform its further development and refinement and to permit psychometric evaluation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Configuration management manual as a tool for improving plant change controls

    International Nuclear Information System (INIS)

    Craig, L.L.

    1991-01-01

    Early vintage plants, such as Turkey Point at Florida Power and Light (FP and L) Company, were not provided with as much design documentation as later plants. At FP and L, programs were initiated to reconstruct the design bases, correct and update drawings at Turkey Point, and develop an overall configuration management program for both Turkey Point and St. Lucie plants. This paper discusses the Configuration Management Manual developed by plant and engineering personnel, which is used to train personnel to a common language and achieve better understanding of individual impact on configuration management

  17. Transportation management center data capture for performance and mobility measures reference manual.

    Science.gov (United States)

    2013-03-01

    The Guide to Transportation Management Center (TMC) Data Capture for Performance and Mobility Measures is a two-volume document consisting of a summary Guidebook and this Reference Manual. These documents provide technical guidance and recommended pr...

  18. Defining safety culture and the nexus between safety goals and safety culture. 1. An Investigation Study on Practical Points of Safety Management

    International Nuclear Information System (INIS)

    Hasegawa, Naoko; Takano, Kenichi; Hirose, Ayako

    2001-01-01

    In a report after the Chernobyl accident, the International Atomic Energy Agency indicated the definition and the importance of safety culture and the ideal organizational state where safety culture pervades. However, the report did not mention practical approaches to enhance safety culture. In Japan, although there had been investigations that clarified the consciousness of employees and the organizational climate in the nuclear power and railway industries, organizational factors that clarified the level of organization safety and practical methods that spread safety culture in an organization had not been studied. The Central Research Institute of the Electric Power Industry conducted surveys of organizational culture for the construction, chemical, and manufacturing industries. The aim of our study was to clarify the organizational factors that influence safety in an organization expressed in employee safety consciousness, commitment to safety activities, rate of accidents, etc. If these areas were clarified, the level of organization safety might be evaluated, and practical ways could be suggested to enhance the safety culture. Consequently, a series of investigations was conducted to clarify relationships among organizational climate, employee consciousness, safety management and activities, and rate of accidents. The questionnaire surveys were conducted in 1998-1999. The subjects were (a) managers of the safety management sections in the head offices of the construction, chemical, and manufacturing industries; (b) responsible persons in factories of the chemical and manufacturing industries; and (c) general workers in factories of the chemical and manufacturing industries. The number of collected data was (a) managers in the head office: 48 from the construction industry and 58 from the chemical and manufacturing industries, (b) responsible persons in factories: 567, and (c) general workers: from 29 factories. Items in the questionnaires were selected from

  19. Integrated therapy safety management system.

    Science.gov (United States)

    Podtschaske, Beatrice; Fuchs, Daniela; Friesdorf, Wolfgang

    2013-09-01

    The aim is to demonstrate the benefit of the medico-ergonomic approach for the redesign of clinical work systems. Based on the six layer model, a concept for an 'integrated therapy safety management' is drafted. This concept could serve as a basis to improve resilience. The concept is developed through a concept-based approach. The state of the art of safety and complexity research in human factors and ergonomics forms the basis. The findings are synthesized to a concept for 'integrated therapy safety management'. The concept is applied by way of example for the 'medication process' to demonstrate its practical implementation. The 'integrated therapy safety management' is drafted in accordance with the six layer model. This model supports a detailed description of specific work tasks, the corresponding responsibilities and related workflows at different layers by using the concept of 'bridge managers'. 'Bridge managers' anticipate potential errors and monitor the controlled system continuously. If disruptions or disturbances occur, they respond with corrective actions which ensure that no harm results and they initiate preventive measures for future procedures. The concept demonstrates that in a complex work system, the human factor is the key element and final authority to cope with the residual complexity. The expertise of the 'bridge managers' and the recursive hierarchical structure results in highly adaptive clinical work systems and increases their resilience. The medico-ergonomic approach is a highly promising way of coping with two complexities. It offers a systematic framework for comprehensive analyses of clinical work systems and promotes interdisciplinary collaboration. © 2013 The Authors. British Journal of Clinical Pharmacology © 2013 The British Pharmacological Society.

  20. The energy management manual for arena and rink operators

    Energy Technology Data Exchange (ETDEWEB)

    Raymer, M. [Saskatchewan Parks and Recreation Assoc., Regina, SK (Canada); White, T. [Office of Energy Conservation, Regina, SK (Canada); Kozoriz, D.F. [SaskPower, Regina, SK (Canada); Norman, D. [SaskPower, Saskatoon, SK (Canada)

    2006-08-15

    In an era when energy costs often rise faster than the community tax base, energy conservation plays a key role in ensuring that skating arenas are able to continue operating. This manual on energy management for arena and rink operators includes current technologies and practices that reduce operating costs. It is meant to help in the training and education of all facility operators. Since fossil fuels are the main source of electrical generation in Saskatchewan, reducing energy consumption directly reduces greenhouse gas emissions to the environment. This manual included a brief introduction to energy calculations for operators of rinks and arenas. The calculations can be performed for the heat loss that occurs in winter and the amount of heat input needed to maintain temperatures. It was recommended that the more difficult calculation of estimating the amount of cooling required for ice making should be done by qualified consultants. The 10 sections of the manual addressed the issues of: (1) electrical and natural gas rates, (2) meters and electrical inventory, (3) making a financial analysis, (4) the building envelope, (5) heating and ventilation, (6) refrigeration, (7) lighting, (8) heating effects of electrical equipment, (9) operation and maintenance, and, (10) project planning. The manual also presented methods to improve the power factor by adding relatively inexpensive components, such as capacitors, to lower electricity bills by as much as 20 per cent. A review of geo-exchange systems for rinks and arenas was included along with heat recovery from refrigeration systems and financial assistance for commercial, institutional and municipal buildings. refs., tabs., figs.

  1. Tools for road infrastructure safety management in poland

    Directory of Open Access Journals (Sweden)

    Kustra Wojciech

    2017-01-01

    Full Text Available Road safety can be improved by implementing principles of road safety infrastructure management (RIS on the network of European roads as adopted in the Directive. The document recommends that member states should use tried and tested tools for road safety management such as: road safety impact assessment (RIA, road safety audit (RSA, safety management on existing road networks including road safety ranking (RSM and road safety inspection (RSI. The objective of the methods is to help road authorities to take rational decisions in the area of road safety and road infrastructure safety and understand the consequences occurring in the particular phases of road life cycle. To help with assessing the impact of a road project on the safety of related roads, a method was developed for long-term forecasts of accidents and accident cost estimation as well as a risk classification to identify risks that are not acceptable risks. With regard to road safety audits and road safety inspection, a set of principles was developed to identify risks and the basic classification of mistakes and omissions.

  2. The ConCom Safety Management Scale: developing and testing a measurement instrument for control-based and commitment-based safety management approaches in hospitals.

    Science.gov (United States)

    Alingh, Carien W; Strating, Mathilde M H; van Wijngaarden, Jeroen D H; Paauwe, Jaap; Huijsman, Robbert

    2018-03-06

    Nursing management is considered important for patient safety. Prior research has predominantly focused on charismatic leadership styles, although it is questionable whether these best characterise the role of nurse managers. Managerial control is also relevant. Therefore, we aimed to develop and test a measurement instrument for control-based and commitment-based safety management of nurse managers in clinical hospital departments. A cross-sectional survey design was used to test the newly developed questionnaire in a sample of 2378 nurses working in clinical departments. The nurses were asked about their perceptions of the leadership behaviour and management practices of their direct supervisors. Psychometric properties were evaluated using confirmatory factor analysis and reliability estimates. The final 33-item questionnaire showed acceptable goodness-of-fit indices and internal consistency (Cronbach's α of the subscales range: 0.59-0.90). The factor structure revealed three subdimensions for control-based safety management: (1) stressing the importance of safety rules and regulations; (2) monitoring compliance; and (3) providing employees with feedback. Commitment-based management consisted of four subdimensions: (1) showing role modelling behaviour; (2) creating safety awareness; (3) showing safety commitment; and (4) encouraging participation. Construct validity of the scale was supported by high factor loadings and provided preliminary evidence that control-based and commitment-based safety management are two distinct yet related constructs. The findings were reconfirmed in a cross-validation procedure. The results provide initial support for the construct validity and reliability of our ConCom Safety Management Scale. Both management approaches were found to be relevant for managing patient safety in clinical hospital departments. The scale can be used to deepen our understanding of the influence of patient safety management on healthcare professionals

  3. Integrated environment, safety, and health management system description

    International Nuclear Information System (INIS)

    Zoghbi, J. G.

    2000-01-01

    The Integrated Environment, Safety, and Health Management System Description that is presented in this document describes the approach and management systems used to address integrated safety management within the Richland Environmental Restoration Project

  4. On safety management and nuclear safety - A frame of reference for studies of safety management with examples from non-nuclear contects of relevance for nuclear safety

    International Nuclear Information System (INIS)

    Svenson, O.; Allwin, P.; Salo, I.

    2004-03-01

    The report includes three case studies of safety management. The studies are presented as chapters, but are written in a format that makes them easy to read separately. Two of the studies cover regulators (the Swedish Civil Aviation Safety Authority, Luftfartsinspektionen) and the Norwegian Petroleum Directorate) and one a regulated activity/industry (a car manufacturer, Volvo Car). The introduction outlines a living system framework and relates this to concepts used in organizational management. The report concludes with some findings with potential relevance for safety management in the nuclear power domain. In the next phase of the work, the regulated counterparts of the regulators here will be investigated in addition to a fourth case study of a regulated activity/industry. (au)

  5. Operating manual for the Bulk Shielding Reactor

    International Nuclear Information System (INIS)

    1983-04-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxillary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supercedes all previous operating manuals for the BSR

  6. Operating manual for the Bulk Shielding Reactor

    International Nuclear Information System (INIS)

    1987-03-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxiliary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supersedes all previous operating manuals for the BSR

  7. Operating manual for the Bulk Shielding Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxiliary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supersedes all previous operating manuals for the BSR.

  8. Operating manual for the Bulk Shielding Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxillary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supercedes all previous operating manuals for the BSR.

  9. Food safety performance indicators to benchmark food safety output of food safety management systems.

    Science.gov (United States)

    Jacxsens, L; Uyttendaele, M; Devlieghere, F; Rovira, J; Gomez, S Oses; Luning, P A

    2010-07-31

    There is a need to measure the food safety performance in the agri-food chain without performing actual microbiological analysis. A food safety performance diagnosis, based on seven indicators and corresponding assessment grids have been developed and validated in nine European food businesses. Validation was conducted on the basis of an extensive microbiological assessment scheme (MAS). The assumption behind the food safety performance diagnosis is that food businesses which evaluate the performance of their food safety management system in a more structured way and according to very strict and specific criteria will have a better insight in their actual microbiological food safety performance, because food safety problems will be more systematically detected. The diagnosis can be a useful tool to have a first indication about the microbiological performance of a food safety management system present in a food business. Moreover, the diagnosis can be used in quantitative studies to get insight in the effect of interventions on sector or governmental level. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Home audit program: management manual

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Many public power systems have initiated home energy audit programs in response to the requests of their consumers. The manual provides smaller public power systems with the information and specific skills needed to design and develop a program of residential energy audits. The program is based on the following precepts: locally owned public systems are the best, and in many cases the only agencies available to organize and coordinate energy conservation programs in many smaller communities; consumers' rights to energy conservation information and assistance should not hinge on the size of the utility that serves them; in the short run, public power systems of all sizes should offer residential energy conservation assistance to their consumers, because such assistance is desirable, necessary, and in the public interest; and in the long run, such programs will complement national energy goals and will produce economic benefits for both consumers and the public power system. A detailed description of home audit program planning, organization, and management are given. (MCW)

  11. Nuclear safety chains

    International Nuclear Information System (INIS)

    Robbins, M.C.; Eames, G.F.; Mayell, J.R.

    1981-01-01

    An original scheme has been developed for expressing the complex interrelationships associated with the engineered safeguards provided for a nuclear power station. This management tool, based upon network diagrams called Nuclear Safety Chains, looks at the function required of a particular item of safety plant, defines all of the vital supplies and support features necessary for successful operation, and expresses them in visual form, to facilitate analysis and optimisation for operations and maintenance staff. The safety chains are confined to manual schemes at present, although they are designed to be compatible with modern computer techniques. Their usefulness with any routine maintenance planning application on high technology plant is already being appreciated. (author)

  12. A total safety management model

    International Nuclear Information System (INIS)

    Obadia, I.J.; Vidal, M.C.R.; Melo, P.F.F.F.

    2002-01-01

    In nuclear organizations, quality and safety are inextricably linked. Therefore, the search for excellence means reaching excellence in nuclear safety. The International Atomic Energy Agency, IAEA, developed, after the Chernobyl accident, the organizational approach for improving nuclear safety based on the safety culture, which requires a framework necessary to provide modifications in personnel attitudes and behaviors in situations related to safety. This work presents a Total Safety Management Model, based on the Model of Excellence of the Brazilian Quality Award and on the safety culture approach, which represents an alternative to this framework. The Model is currently under validation at the Nuclear Engineering Institute, in Rio de Janeiro, Brazil, and the results of its initial safety culture self assessment are also presented and discussed. (author)

  13. Perceived safety management practices in the logistics sector.

    Science.gov (United States)

    Auyong, Hui-Nee; Zailani, Suhaiza; Surienty, Lilis

    2016-03-09

    Malaysia's progress on logistics has been slowed to keep pace with its growth in trade. The Government has been pressing companies to improve the safety of their activities in order to reduce society's loss due to occupational accidents and illnesses. Occupational safety and health is a crucial part of a workplace because every worker has to take care of his/her own safety and health. The main occupational safety and health (OSH) national policy in Malaysia is the enactment of the Occupational Safety and Health Act (OSHA) 1994. Only those companies which have excellent health and safety care have good quality and productive employees. This study investigated safety management practices in the logistics sector. The present study is concerned with the human factors to safety in the logistics industry. The authors examined the perceived safety management practices of workers in the logistics sector. The purpose was to identify the perception of safety management practices of Malaysian logistics personnel. Survey questionnaires were distributed to assess logistics personnel about management commitment. The quantitative method using the availability sampling method was applied. The data gathered from the survey were analysed using SPSS software. The responses to the survey were rated according to the Likert scale type, with '1' indicating strongly disagree and '5' indicating strongly agree. One hundred and three employees of logistics functions completed the survey. The highest mean scores were found for fire apparatus, prioritisation of safety, and safety policy. The results from this study also emphasise the importance of the management's commitment in enhancing workplace safety. Specifically, companies should maintain good relations between the employer and the employee to help reduce workplace injuries.

  14. The role of PSA in safety management

    International Nuclear Information System (INIS)

    Szikszai, T.

    1997-01-01

    The presentation discusses the following issues: defence in depth principle (the role of the barriers, how does PSA represents the barriers?); the safety management and nuclear power plants; the probabilistic and deterministic approaches; the PSA applications and safety management

  15. Design manual for management of solid by-products from advanced coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    Developing coal conversion technologies face major obstacles in byproduct management. This project has developed several management strategies based on field trials of small-scale landfills in an earlier phase of the project, as well as on published/unpublished sources detailing regulatory issues, current industry practice, and reuse opportunities. Field testing, which forms the basis for several of the disposal alternatives presented in this design manual, was limited to byproducts from Ca-based dry SO{sub 2} control technologies, circulating fluidized bed combustion ash, and bubbling bed fluidized bed combustion ash. Data on byproducts from other advanced coal technologies and on reuse opportunities are drawn from other sources (citations following Chapter 3). Field results from the 5 test cases examined under this project, together with results from other ongoing research, provide a basis for predictive modeling of long-term performance of some advanced coal byproducts on exposure to ambient environment. This manual is intended to provide a reference database and development plan for designing, permitting, and operating facilities where advanced coal technology byproducts are managed.

  16. Sandia SWiFT Wind Turbine Manual.

    Energy Technology Data Exchange (ETDEWEB)

    White, Jonathan; LeBlanc, Bruce Philip; Berg, Jonathan Charles; Bryant, Joshua; Johnson, Wesley D.; Paquette, Joshua

    2016-01-01

    The Scaled Wind Farm Technology (SWiFT) facility, operated by Sandia National Laboratories for the U.S. Department of Energy's Wind and Water Power Program, is a wind energy research site with multiple wind turbines scaled for the experimental study of wake dynamics, advanced rotor development, turbine control, and advanced sensing for production-scale wind farms. The SWiFT site currently includes three variable-speed, pitch-regulated, three-bladed wind turbines. The six volumes of this manual provide a detailed description of the SWiFT wind turbines, including their operation and user interfaces, electrical and mechanical systems, assembly and commissioning procedures, and safety systems. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE programmatic authority. 111 UNCLASSIFIED UNLIMITED RELEASE Sandia SWiFT Wind Turbine Manual (SAND2016-0746 ) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Site Supervisor Dave Mitchell (6121) Date Note: Document revision logs are found after the title page of each volume of this manual. iv

  17. MOSEG code for safety oriented maintenance management Safety of management of maintenance oriented by MOSEG code

    International Nuclear Information System (INIS)

    Torres Valle, Antonio

    2005-01-01

    Full text: One of the main reasons that makes maintenance contribute highly when facing safety problems and facilities availability is the lack of maintenance management systems to solve these fields in a balanced way. Their main setbacks are shown in this paper. It briefly describes the development of an integrating algorithm for a safety and availability-oriented maintenance management by virtue of the MOSEG Win 1.0 code. (author)

  18. Default Management Manual.

    Science.gov (United States)

    Dent, Richard A.

    This manual is designed to instruct administrators of the Guaranteed Student Loan (GSL) Program in how to take every step possible to administer the program effectively and to minimize the program costs of serving the high risk student. It shows schools how to work with students throughout their time in school, create ownership of the loan(s) by…

  19. Nuclear safety culture and integrated risk management

    International Nuclear Information System (INIS)

    Joksimovich, V.; Orvis, D.D.

    1993-01-01

    A primary focus of nuclear safety is the prevention of large releases of radioactivity in the case of low-probability severe accidents. An analysis of the anatomy of nuclear (Chernobyl, Three Mile Island Unit 2) and nonnuclear (Challenger, Bhopal, Piper Alpha, etc.) severe accidents yields four broad categories of root causes: human (operating crew response), machine (design with its basic flaws), media (natural phenomena, operational considerations, political environment, commercial pressures, etc.)-providing triggering events, and management (basic organizational safety culture flaws). A strong management can minimize the contributions of humans, machines, and media to the risk arising from the operation of hazardous facilities. One way that management can have a powerful positive influence is through the establishment of a proper safety culture. The term safety culture is used as defined by the International Atomic Energy Agency's International Safety Advisory Group

  20. Effect of national cultural values on safety climate, and safety management system

    International Nuclear Information System (INIS)

    Ali, T.H.; Memon, N.A.

    2008-01-01

    This paper investigates the critical role played by the national culture in influencing how workers safely or otherwise behave (mainly in risky situations) on construction sites, and how site managers implement safety management processes and practices. The paper presents the findings of an empirical research study based on a questionnaire survey, administered in Pakistan, targeting construction site managers and workers to gauge the effect national culture has on managers preferences for and perceptions of safety management systems (policies and practices) and than linking this effect to predict workers attitudes and intentional behaviors. (author)

  1. The Radiological Safety Analysis Computer Program (RSAC-5) user's manual

    International Nuclear Information System (INIS)

    Wenzel, D.R.

    1994-02-01

    The Radiological Safety Analysis Computer Program (RSAC-5) calculates the consequences of the release of radionuclides to the atmosphere. Using a personal computer, a user can generate a fission product inventory from either reactor operating history or nuclear criticalities. RSAC-5 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated through the inhalation, immersion, ground surface, and ingestion pathways. RSAC+, a menu-driven companion program to RSAC-5, assists users in creating and running RSAC-5 input files. This user's manual contains the mathematical models and operating instructions for RSAC-5 and RSAC+. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-5 and RSAC+. These programs are designed for users who are familiar with radiological dose assessment methods

  2. The Research on Safety Management Information System of Railway Passenger Based on Risk Management Theory

    Science.gov (United States)

    Zhu, Wenmin; Jia, Yuanhua

    2018-01-01

    Based on the risk management theory and the PDCA cycle model, requirements of the railway passenger transport safety production is analyzed, and the establishment of the security risk assessment team is proposed to manage risk by FTA with Delphi from both qualitative and quantitative aspects. The safety production committee is also established to accomplish performance appraisal, which is for further ensuring the correctness of risk management results, optimizing the safety management business processes and improving risk management capabilities. The basic framework and risk information database of risk management information system of railway passenger transport safety are designed by Ajax, Web Services and SQL technologies. The system realizes functions about risk management, performance appraisal and data management, and provides an efficient and convenient information management platform for railway passenger safety manager.

  3. A Safety Management Model for FAR 141 Approved Flight Schools

    OpenAIRE

    Mendonca, Flavio A. C.; Carney, Thomas Q

    2017-01-01

    The Safety Management Annex (Annex 19), which became applicable in November 2013, consolidates safety management provisions previously contained in six other International Civil Aviation Organization (ICAO) Annexes, and will serve as a resource for overarching state safety management responsibilities. Through Annex 19, ICAO has required that its member states develop and implement safety management systems (SMS) to improve safety. This mandate includes an approved training organization that i...

  4. A management system integrating radiation protection and safety supporting safety culture in the hospital

    International Nuclear Information System (INIS)

    Almen, A.; Lundh, C.

    2015-01-01

    Quality assurance has been identified as an important part of radiation protection and safety for a considerable time period. A rational expansion and improvement of quality assurance is to integrate radiation protection and safety in a management system. The aim of this study was to explore factors influencing the implementing strategy when introducing a management system including radiation protection and safety in hospitals and to outline benefits of such a system. The main experience from developing a management system is that it is possible to create a vast number of common policies and routines for the whole hospital, resulting in a cost-efficient system. One of the key benefits is the involvement of management at all levels, including the hospital director. Furthermore, a transparent system will involve staff throughout the organisation as well. A management system supports a common view on what should be done, who should do it and how the activities are reviewed. An integrated management system for radiation protection and safety includes key elements supporting a safety culture. (authors)

  5. Radiological survey activities: uranium mill tailings remedial action project procedures manual

    International Nuclear Information System (INIS)

    Little, C.A.; Berven, B.A.; Carter, T.E.

    1986-07-01

    The US Department of Energy (DOE) was assigned the responsibility for conducting remedial action at 24 sites, which are located in one eastern and nine western states. The DOE's responsibilities are being met through its Uranium Mill Tailings Remedial Action Project Office (UMTRA-PO) in Albuquerque, New Mexico. The purpose of this Procedures Manual is to provide a standardized set of procedures that document in an auditable manner the activities performed by the Radiological Survey Activities (RASA) group in the Dosimetry and Biophysical Transport Section (DABTS) of the Health and Safety Research Division (HASRD) at the Oak Ridge National Laboratory (ORNL), in its role as the Inclusion Survey Contractor (ISC). Members of the RASA group assigned to the UMTRA Project are headquartered in the ORNL/RASA office in Grand Junction, Colorado, and report to the ORNL/RASA Project Manager. The Procedures Manual ensures that the organizational, administrative, and technical activities of the RASA/UMTRA group conform properly to those of the ISC as described in the Vicinity Properties Management and Implementation Manual and the Summary Protocol. This manual also ensures that the techniques and procedures used by the RASA/UMTRA group and contractor personnel meet the requirements of applicable governmental, scientific, and industrial standards

  6. Safety standards of IAEA for management systems

    International Nuclear Information System (INIS)

    Vincze, P.

    2005-01-01

    IAEA has developed a new series of safety standards which are assigned for constitution of the conditions and which give the instruction for setting up the management systems that integrate the aims of safety, health, life environment and quality. The new standard shall replace IAEA 50-C-Q - Requirements for security of the quality for safety in nuclear power plants and other nuclear facilities as well as 14 related safety instructions mentioned in the Safety series No. 50-C/SG-Q (1996). When developing of this complex, integrated set of requirements for management systems, the IAEA requirements 50-C-Q (1996) were taken into consideration as well as the publications developed within the International organisation for standardization (ISO) ISO 9001:2000 and ISO14001: 1996. The experience of European Union member states during the development, implementation and improvement of the management systems were also taken into consideration

  7. National report of the Slovak Republic compiled in terms of the Join on the safety of spent fuel management and on the safety of radwaste management

    International Nuclear Information System (INIS)

    Jurina, V.; Viktory, D.; Petrik, T.; Sovcik, J.; Suess, J.; Tomek, J.; Lukacovic, J.; Ivan, J.; Ziakova, M.; Metke, E.; Pospisil, M.; Turner, M.; Homola, J.; Vaclav, J.; Bystricka, S.; Barbaric, M.; Horvath, J.; Betak, J.; Mihaly, B.; Adamovsky, V.; Baloghova, A.; Orihel, M.; Vasina, D.; Balaz, J.; Misovicova, D.; Vrtoch, M.; Mlcuch, J.; Granak, P.; Meleg, J.; Bardy, M.; Gogoliak, J.

    2011-08-01

    The National safety report of the Slovak Republic on the safety of spent fuel management and on the safety of radwaste management in 2011 is presented. These activities in the safety of spent fuel management and radioactive waste management in the Slovak Republic are reported under the headings: (A) Introduction; B) Concept for spent nuclear fuel management (SNF) and radwaste management (RAW); (C) Scope of application of the convention; (D) Spent fuel management and radioactive waste (RAW) management facilities; (E) Legislation and regulation; (F) General safety provisions; (G) Safety of spent fuel management; (H) Safety of radioactive waste (RAW) management; (I) Transboundary movement of spent nuclear fuel and radioactive waste; (J) Disused sealed sources; (K) Planned measures to improve safety; (L) Communication with the public; (M) Annexes. Annexes consists of following parts: I. List of nuclear facilities for spent fuel and RAW management. II. Limits of radioactive material discharges into atmosphere and hydrosphere. III. List of nuclear installations in decommissioning. IV. Inventory of stored spent nuclear fuel. V. Inventory of stored RAW. VI. List of national laws, decrees and guidelines. VII. List of international expert reports (including safety reports). VIII. List of authors.

  8. Improving safety in small enterprises through an integrated safety management intervention.

    Science.gov (United States)

    Kines, Pete; Andersen, Dorte; Andersen, Lars Peter; Nielsen, Kent; Pedersen, Louise

    2013-02-01

    This study tests the applicability of a participatory behavior-based injury prevention approach integrated with safety culture initiatives. Sixteen small metal industry enterprises (10-19 employees) are randomly assigned to receive the intervention or not. Safety coaching of owners/managers result in the identification of 48 safety tasks, 85% of which are solved at follow-up. Owner/manager led constructive dialogue meetings with workers result in the prioritization of 29 tasks, 79% of which are accomplished at follow-up. Intervention enterprises have significant increases on six of eight safety-perception-survey factors, while comparisons increase on only one factor. Both intervention and comparison enterprises demonstrate significant increases in their safety observation scores. Interview data validate and supplement these results, providing some evidence for behavior change and the initiation of safety culture change. Given that over 95% of enterprises in most countries have less than 20 employees, there is great potential for adapting this integrated approach to other industries. Copyright © 2012 National Safety Council and Elsevier Ltd. All rights reserved.

  9. Safety behavior: Job demands, job resources, and perceived management commitment to safety.

    Science.gov (United States)

    Hansez, Isabelle; Chmiel, Nik

    2010-07-01

    The job demands-resources model posits that job demands and resources influence outcomes through job strain and work engagement processes. We test whether the model can be extended to effort-related "routine" safety violations and "situational" safety violations provoked by the organization. In addition we test more directly the involvement of job strain than previous studies which have used burnout measures. Structural equation modeling provided, for the first time, evidence of predicted relationships between job strain and "routine" violations and work engagement with "routine" and "situational" violations, thereby supporting the extension of the job demands-resources model to safety behaviors. In addition our results showed that a key safety-specific construct 'perceived management commitment to safety' added to the explanatory power of the job demands-resources model. A predicted path from job resources to perceived management commitment to safety was highly significant, supporting the view that job resources can influence safety behavior through both general motivational involvement in work (work engagement) and through safety-specific processes.

  10. Achievements and Perspectives of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Louvat, D.; Lacoste, A.C.

    2006-01-01

    The Joint Convention on the Safety of Spent Fuel management and on the Safety of Radioactive Waste Management is the first legal instrument to directly address the safety of spent fuel and radioactive waste management on a global scale. The Joint Convention entered into force in 2001. This paper describes its process and its main achievements to date. The perspectives to establish of a Global Waste Safety Regime based on the Joint Convention are also discussed. (authors)

  11. Marketing Research. Instructor's Manual.

    Science.gov (United States)

    Small Business Administration, Washington, DC.

    Prepared for the Administrative Management Course Program, this instructor's manual was developed to serve small-business management needs. The sections of the manual are as follows: (1) Lesson Plan--an outline of material covered, which may be used as a teaching guide, presented in two columns: the presentation, and a step-by-step indication of…

  12. The IAEA Accident Management Programme

    Energy Technology Data Exchange (ETDEWEB)

    Kabanov, L.; Jankowski, M.; Mauersberger, H. (International Atomic Energy Agency, Vienna (Austria))

    1993-02-01

    Accident prevention and mitigation programmes and the Emergency Response System (ERS) are important elements of the Agency's activities in the area of nuclear power plant (NPP) safety. Safety Codes and Guides on siting, design, quality assurance and the operation of NPPs have been produced and are used by NPP operating organizations. Nuclear safety evaluation services are provided by the IAEA. The Emergency Response System and the International Nuclear Event Scale (INES) have been developed. The framework for the development of an accident management programme has been set up. The main goal is to develop an Accident Management Manual to provide a systematic, structured approach to the development and implementation of an accident management programme at NPPs. An outline of the Manual has been distributed and the first draft is available. The component parts are: Co-ordinated research programmes (CRPs) on severe accident management and containment behaviour; the use of vulnerability analysis; mitigation of the effects of hydrogen, and generic symptom oriented emergency operating procedures. The IAEA provides guidance by the dissemination of information on methods for accident management; collates information on approaches in this field in different organizations and countries; and arranges exchange of experience and the promulgation of knowledge through the training of NPP managers and senior technical staff. (orig.).

  13. The IAEA Accident Management Programme

    International Nuclear Information System (INIS)

    Kabanov, L.; Jankowski, M.; Mauersberger, H.

    1993-01-01

    Accident prevention and mitigation programmes and the Emergency Response System (ERS) are important elements of the Agency's activities in the area of nuclear power plant (NPP) safety. Safety Codes and Guides on siting, design, quality assurance and the operation of NPPs have been produced and are used by NPP operating organizations. Nuclear safety evaluation services are provided by the IAEA. The Emergency Response System and the International Nuclear Event Scale (INES) have been developed. The framework for the development of an accident management programme has been set up. The main goal is to develop an Accident Management Manual to provide a systematic, structured approach to the development and implementation of an accident management programme at NPPs. An outline of the Manual has been distributed and the first draft is available. The component parts are: Co-ordinated research programmes (CRPs) on severe accident management and containment behaviour; the use of vulnerability analysis; mitigation of the effects of hydrogen, and generic symptom oriented emergency operating procedures. The IAEA provides guidance by the dissemination of information on methods for accident management; collates information on approaches in this field in different organizations and countries; and arranges exchange of experience and the promulgation of knowledge through the training of NPP managers and senior technical staff. (orig.)

  14. Management Commitment to Safety, Teamwork, and Hospital Worker Injuries.

    Science.gov (United States)

    McGonagle, Alyssa K; Essenmacher, Lynnette; Hamblin, Lydia; Luborsky, Mark; Upfal, Mark; Arnetz, Judith

    2016-01-01

    Although many studies link teamwork in health care settings to patient safety, evidence linking teamwork to hospital worker safety is lacking. This study addresses this gap by providing evidence linking teamwork perceptions in hospital workers to worker injuries, and further, finds a linkage between manager commitment to safety and teamwork. Organizational records of worker injuries and survey responses regarding management commitment to safety and teamwork from 446 hospital workers within 42 work units in a multi-site hospital system were examined. Results underscored the particular importance of teamwork on worker injuries as well as the importance of management commitment to safety as relating to teamwork. To improve worker safety, organizational leaders and unit managers should work to maintain environments wherein teamwork can thrive.

  15. Radiological control manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kloepping, R.

    1996-05-01

    This Lawrence Berkeley National Laboratory Radiological Control Manual (LBNL RCM) has been prepared to provide guidance for site-specific additions, supplements and interpretation of the DOE Radiological Control Manual. The guidance provided in this manual is one methodology to implement the requirements given in Title 10 Code of Federal Regulations Part 835 (10 CFR 835) and the DOE Radiological Control Manual. Information given in this manual is also intended to provide demonstration of compliance to specific requirements in 10 CFR 835. The LBNL RCM (Publication 3113) and LBNL Health and Safety Manual Publication-3000 form the technical basis for the LBNL RPP and will be revised as necessary to ensure that current requirements from Rules and Orders are represented. The LBNL RCM will form the standard for excellence in the implementation of the LBNL RPP.

  16. Radiological control manual. Revision 1

    International Nuclear Information System (INIS)

    Kloepping, R.

    1996-05-01

    This Lawrence Berkeley National Laboratory Radiological Control Manual (LBNL RCM) has been prepared to provide guidance for site-specific additions, supplements and interpretation of the DOE Radiological Control Manual. The guidance provided in this manual is one methodology to implement the requirements given in Title 10 Code of Federal Regulations Part 835 (10 CFR 835) and the DOE Radiological Control Manual. Information given in this manual is also intended to provide demonstration of compliance to specific requirements in 10 CFR 835. The LBNL RCM (Publication 3113) and LBNL Health and Safety Manual Publication-3000 form the technical basis for the LBNL RPP and will be revised as necessary to ensure that current requirements from Rules and Orders are represented. The LBNL RCM will form the standard for excellence in the implementation of the LBNL RPP

  17. Activity Management System user reference manual. Revision 1

    International Nuclear Information System (INIS)

    Gates, T.A.; Burdick, M.B.

    1994-01-01

    The Activity Management System (AMS) was developed in response to the need for a simple-to-use, low-cost, user interface system for collecting and logging Hanford Waste Vitrification Plant Project (HWVP) activities. This system needed to run on user workstations and provide common user access to a database stored on a local network file server. Most important, users wanted a system that provided a management tool that supported their individual process for completing activities. Existing system treated the performer as a tool of the system. All AMS data is maintained in encrypted format. Users can feel confident that any activities they have entered into the database are private and that, as the originator, they retain sole control over who can see them. Once entered into the AMS database, the activities cannot be accessed by anyone other than the originator, the designated agent, or by authorized viewers who have been explicitly granted the right to look at specific activities by the originator. This user guide is intended to assist new AMS users in learning how to use the application and, after the initial learning process, will serve as an ongoing reference for experienced users in performing infrequently used functions. Online help screens provide reference to some of the key information in this manual. Additional help screens, encompassing all the applicable material in this manual, will be incorporated into future AMS revisions. A third, and most important, source of help is the AMS administrator(s). This guide describes the initial production version of AMS, which has been designated Revision 1.0

  18. Managing bottlenecks in manual automobile assembly systems using discrete event simulation

    Directory of Open Access Journals (Sweden)

    Dewa, M.

    2013-08-01

    Full Text Available Batch model lines are quite handy when the demand for each product is moderate. However, they are characterised by high work-in-progress inventories, lost production time when changing over models, and reduced flexibility when it comes to altering production rates as product demand changes. On the other hand, mixed model lines can offer reduced work-in-progress inventory and increased flexibility. The object of this paper is to illustrate that a manual automobile assembling system can be optimised through managing bottlenecks by ensuring high workstation utilisation, reducing queue lengths before stations and reducing station downtime. A case study from the automobile industry is used for data collection. A model is developed through the use of simulation software. The model is then verified and validated before a detailed bottleneck analysis is conducted. An operational strategy is then proposed for optimal bottleneck management. Although the paper focuses on improving automobile assembly systems in batch mode, the methodology can also be applied in single model manual and automated production lines.

  19. Fuel Element Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Burley, H.H. [ed.

    1956-08-01

    It is the purpose of the Fuel Element Technical Manual to Provide a single document describing the fabrication processes used in the manufacture of the fuel element as well as the technical bases for these processes. The manual will be instrumental in the indoctrination of personnel new to the field and will provide a single data reference for all personnel involved in the design or manufacture of the fuel element. The material contained in this manual was assembled by members of the Engineering Department and the Manufacturing Department at the Hanford Atomic Products Operation between the dates October, 1955 and June, 1956. Arrangement of the manual. The manual is divided into six parts: Part I--introduction; Part II--technical bases; Part III--process; Part IV--plant and equipment; Part V--process control and improvement; and VI--safety.

  20. Safety in waste management plants: An Indian perspective

    International Nuclear Information System (INIS)

    Shekhar, P.; Ozarde, P.D.; Gandhi, P.M.

    2000-01-01

    Assurance of safety of public and plant workers and protection of the environment are prime objectives in the design and construction of Waste Management Plants. In India, waste management principles and strategies have been evolved in accordance with national and international regulations and standards for radiation protection. The regulations governing radiation protection have a far-reaching impact on the management of the radioactive waste. The wastes arise at each stages of the fuel cycle with varying chemical nature, generation rate and specific activity levels depending upon the type of the facility. Segregation of waste based on its chemical nature and specific activity levels is an essential feature, as its aids in selection of treatment and conditioning process. Selection of the process, equipment and materials in the plant, are governed by safety consideration alongside factors like efficiency and simplicity. The plant design considerations like physical separation, general arrangement, ventilation zoning, access control, remote handling, process piping routing, decontamination etc. have major role in realizing waste safety. Stringent quality control measures during all stages of construction have helped in achieving the design intended safety. These aspects together with operating experience gained form basis for the improved safety features in the design and construction of waste management plants. The comprehensive safety is derived from adoption of waste management strategies and appropriate plant design considerations. The paper briefly brings safety in waste management programme in India, in its current perspective. (author)

  1. Safety and Waste Management for SAM Pathogen Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the pathogens included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  2. Safety and Waste Management for SAM Biotoxin Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the biotoxins included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  3. Accident Prevention: A Workers' Education Manual.

    Science.gov (United States)

    International Labour Office, Geneva (Switzerland).

    Devoted to providing industrial workers with a greater knowledge of precautionary measures undertaken and enforced by industries for the protection of workers, this safety education manual contains 14 lessons ranging from "The Problems of Accidents during Work" to "Trade Unions and Workers and Industrial Safety." Fire protection, safety equipment…

  4. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2010-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  5. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  6. Manual on brachytherapy. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to brachytherapy: its application and procedures guides

  7. Safety and Waste Management for SAM Chemistry Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the chemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  8. Safety and Waste Management for SAM Radiochemical Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the radiochemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  9. Institutional failure: are safety management systems the answer?

    Energy Technology Data Exchange (ETDEWEB)

    Waddington, J.G.; Lafortune, J.F. [International Safety Research, Ottawa, Ontario (Canada); Duffey, R.B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2009-07-01

    In spite of an overwhelming number of safety management programs, incidents and accidents that could seemingly, in hindsight, have been prevented, still occur. Institutional failure is seen as a major contributor in almost all cases. With the anticipated significant increase in the number of nuclear plants around the world, a drastic step in the way we manage safety is deemed essential to further reduce the currently already very low rate of accidents to levels that will not cause undue public concern and threaten the success of the nuclear 'renaissance'. To achieve this, many industries have already started implementing a Safety Management System (SMS) approach, aimed at harmonizing, rationalizing and integrating management processes, safety culture and operational risk assessment. This paper discusses the origins and the nature of SMS based in part on the experience of the aviation industry, and shows how SMS is poised to be the next generation in the way the nuclear industry manages safety. It also discusses the need for better direct measures of risk to demonstrate the success of SMS implementation. (author)

  10. Institutional failure: are safety management systems the answer?

    International Nuclear Information System (INIS)

    Waddington, J.G.; Lafortune, J.F.; Duffey, R.B.

    2009-01-01

    In spite of an overwhelming number of safety management programs, incidents and accidents that could seemingly, in hindsight, have been prevented, still occur. Institutional failure is seen as a major contributor in almost all cases. With the anticipated significant increase in the number of nuclear plants around the world, a drastic step in the way we manage safety is deemed essential to further reduce the currently already very low rate of accidents to levels that will not cause undue public concern and threaten the success of the nuclear 'renaissance'. To achieve this, many industries have already started implementing a Safety Management System (SMS) approach, aimed at harmonizing, rationalizing and integrating management processes, safety culture and operational risk assessment. This paper discusses the origins and the nature of SMS based in part on the experience of the aviation industry, and shows how SMS is poised to be the next generation in the way the nuclear industry manages safety. It also discusses the need for better direct measures of risk to demonstrate the success of SMS implementation. (author)

  11. Design an optimum safety policy for personnel safety management - A system dynamic approach

    International Nuclear Information System (INIS)

    Balaji, P.

    2014-01-01

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making

  12. Design an optimum safety policy for personnel safety management - A system dynamic approach

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, P. [The Glocal University, Mirzapur Pole, Delhi- Yamuntori Highway, Saharanpur 2470001 (India)

    2014-10-06

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  13. Design an optimum safety policy for personnel safety management - A system dynamic approach

    Science.gov (United States)

    Balaji, P.

    2014-10-01

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  14. Joint convention on the safety of spent fuel management and on the safety of radioactive waste management

    International Nuclear Information System (INIS)

    1997-01-01

    The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management was adopted on 5 September 1997 by a Diplomatic Conference convened by the IAEA from 1 to 5 September 1997. The Joint Convention was opened for signature at Vienna on 29 September 1997 during the forty-first session of the General Conference of the IAEA. This document reproduces the text of the Convention

  15. Joint convention on the safety of spent fuel management and on the safety of radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-24

    The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management was adopted on 5 September 1997 by a Diplomatic Conference convened by the IAEA from 1 to 5 September 1997. The Joint Convention was opened for signature at Vienna on 29 September 1997 during the forty-first session of the General Conference of the IAEA. This document reproduces the text of the Convention.

  16. The Alaska Commercial Fisheries Water Quality Sampling Methods and Procedures Manual

    Energy Technology Data Exchange (ETDEWEB)

    Folley, G.; Pearson, L.; Crosby, C. [Alaska Dept. of Environmental Conservation, Soldotna, AK (United States); DeCola, E.; Robertson, T. [Nuka Research and Planning Group, Seldovia, AK (United States)

    2006-07-01

    A comprehensive water quality sampling program was conducted in response to the oil spill that occurred when the M/V Selendang Ayu ship ran aground near a major fishing port at Unalaska Island, Alaska in December 2004. In particular, the sampling program focused on the threat of spilled oil to the local commercial fisheries resources. Spill scientists were unable to confidently model the movement of oil away from the wreck because of limited oceanographic data. In order to determine which fish species were at risk of oil contamination, a real-time assessment of how and where the oil was moving was needed, because the wreck became a continual source of oil release for several weeks after the initial grounding. The newly developed methods and procedures used to detect whole oil during the sampling program will be presented in the Alaska Commercial Fisheries Water Quality Sampling Methods and Procedures Manual which is currently under development. The purpose of the manual is to provide instructions to spill managers while they try to determine where spilled oil has or has not been encountered. The manual will include a meaningful data set that can be analyzed in real time to assess oil movement and concentration. Sections on oil properties and processes will be included along with scientific water quality sampling methods for whole and dissolved phase oil to assess potential contamination of commercial fishery resources and gear in Alaska waters during an oil spill. The manual will present a general discussion of factors that should be considered when designing a sampling program after a spill. In order to implement Alaska's improved seafood safety measures, the spatial scope of spilled oil must be known. A water quality sampling program can provide state and federal fishery managers and food safety inspectors with important information as they identify at-risk fisheries. 11 refs., 7 figs.

  17. Enhancing NPP Safety Through an Effective Dependability Management

    Energy Technology Data Exchange (ETDEWEB)

    Vieru, G., E-mail: g_vieru@yahoo.com [AREN, Bucharest (Romania)

    2014-10-15

    Taking into account the importance of the continuous improvement of the performance and reliability of a NPP and practical measures to strengthen nuclear safety and security, it is to be noted that a good management for a nuclear power reactor involves a ''good dependability management'' of the activities, such as: Reliability, Availability, Maintainability (RAM) and maintenance support. In order to evaluate certain safety assessment criteria intended to be applied at the level of the nuclear reactor unit management, equipment dependability indicators and their impact over the availability and reactor safety have to be evaluated. Reactor equipment dependability indicators provide a quantitative indication of equipment RAM performances (Reliability, Availability and Maintenance). One of the important benefits of maintenance and failure data gathering is that it can be used as a support of probabilistic safety assessment (PSA). Also, a good dependability management implementation may be used to complement reactor level unit performance indicators in the field of safe operation, maintenance and improving operating parameters, as well as for Strengthening Safety and Improving Reliability of a NPP. This paper underlines the importance of nuclear safety and security as prerequisites for nuclear power. In addition, it demonstrates how different technical aspects, through implementation of a good dependability management, contribute to a strengthened safety and an improvement of availability of the NPP through dependability indicators determination and evaluation. (author)

  18. Norwegian national report. Joint convention on the safety of spent fuel management and on the safety of radioactive waste management

    International Nuclear Information System (INIS)

    2011-11-01

    This report contains the national report from Norway to the fourth review meeting of the JointConvention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management to be held 14-23 May 2012. (Author)

  19. National report of the Slovak Republic compiled in terms of the join convention on the safety of spent fuel management and on the safety of radwaste management

    International Nuclear Information System (INIS)

    Jurina, V.; Viktory, D.; Petrik, T.; Sovcik, J.; Suess, J.; Tomek, J.; Lukacovic, J.; Ivan, J.; Ziakova, M.; Metke, E.; Pospisil, M.; Turner, M.; Homola, J.; Vaclav, J.; Bystricka, S.; Barbaric, M.; Horvath, J.; Betak, J.; Mihaly, B.; Adamovsky, V.; Baloghova, A.; Orihel, M.; Vasina, D.; Balaz, J.; Misovicova, D.; Vrtoch, M.; Mlcuch, J.; Granak, P.; Meleg, J.; Bardy, M.; Gogoliak, J.

    2011-08-01

    The National safety report of the Slovak Republic on the safety of spent fuel management and on the safety of radwaste management in 2011 is presented. These activities in the safety of spent fuel management and radioactive waste management in the Slovak Republic are reported under the headings: (A) Introduction; B) Concept for spent nuclear fuel management (SNF) and radwaste management (RAW); (C) Scope of application of the convention; (D) Spent fuel management and radioactive waste (RAW) management facilities; (E) Legislation and regulation; (F) General safety provisions; (G) Safety of spent fuel management; (H) Safety of radioactive waste (RAW) management; (I) Transboundary movement of spent nuclear fuel and radioactive waste; (J) Disused sealed sources; (K) Planned measures to improve safety; (L) Communication with the public; (M) Annexes. Annexes consists of following parts: I. List of nuclear facilities for spent fuel and RAW management. II. Limits of radioactive material discharges into atmosphere and hydrosphere. III. List of nuclear installations in decommissioning. IV. Inventory of stored spent nuclear fuel. V. Inventory of stored RAW. VI. List of national laws, decrees and guidelines. VII. List of international expert reports (including safety reports). VIII. List of authors.

  20. The role of the ward manager in promoting patient safety.

    Science.gov (United States)

    Pinnock, David

    In this article the role of the ward manager in promoting patient safety is explored. The background to the development of the patient safety agenda is briefly discussed and the relationship between quality and safety is illustrated. The pivotal importance of the role of the ward manager in delivering services to patients is underlined and literature on patient safety is examined to identify what a ward manager can do to make care safer. Possible actions of the ward manager to improve safety discussed in the literature are structured around the Leadership Framework. This framework identifies seven domains for the leadership of service delivery. Ward managers use their personal qualities, and network and work within teams, while managing performance and facilitating innovation, change and measurement for improvement. The challenge of promoting patient safety for ward managers is briefly explored and recommendations for further research are made.

  1. Management Information System Project. Data Processors Manual to the Program Oriented Accounting System: The Budgetary Process.

    Science.gov (United States)

    Foley, Walter; Harr, Gordon

    The purpose of this manual is to serve the needs of a data processing facility in the operation of a management information system (MIS). Included in the manual are system flowcharts, job control language, and system documentation. The system has been field tested and operates under IBM System 360/Model 65-05-MVT-HASP. The programing language is…

  2. Utilization technique of 'radiation management manual in medical field (2012).' What should be learnt from the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Kikuchi, Toru

    2014-01-01

    From the abstract of contents of the 'Radiation management manual in medical field (2012),' the utilization technique of the manual is introduced. Introduced items are as follows: (1) Exposure management; exposure management for radiation medical workers, patients, and citizens in the medical field, and exposure management for radiation workers and citizens involved in the emergency work related to the Fukushima nuclear accident, (2) Health management; health management for radiation medical workers, (3) Radiation education: Education/training for radiation medical workers, and radiation education for health care workers, (4) Accident and emergency measures; emergency actions involved in the radiation accidents and radiation medicine at medical facilities

  3. Safety management of radioisotopes and others in educational institutions

    International Nuclear Information System (INIS)

    1981-01-01

    Radioisotopes are extensively used in the fields of research in various educational institutions. While considerable progress has been seen in the safety management of RI utilization, such accidents as the loss of radioisotopes and radioactive contamination occurred. Under the situation, the safety management of RIs and others in RI-using facilities provided by the law has been examined by the ad hoc committee. A report by the committee is described as follows: need for a RI safety management organization, defining the responsibility of the chief technicians handling radiation, need for the practices of using RIs, etc. in education and traininng, planned RI-handling facilities, cautions for the loss of RIs and the contamination, centralization in RI safety management, improvement of remuneration for the chief technicians handling radiation, occasional restudy on the safety management of RIs, etc. (J.P.N.)

  4. Applying Sensor-Based Technology to Improve Construction Safety Management.

    Science.gov (United States)

    Zhang, Mingyuan; Cao, Tianzhuo; Zhao, Xuefeng

    2017-08-11

    Construction sites are dynamic and complicated systems. The movement and interaction of people, goods and energy make construction safety management extremely difficult. Due to the ever-increasing amount of information, traditional construction safety management has operated under difficult circumstances. As an effective way to collect, identify and process information, sensor-based technology is deemed to provide new generation of methods for advancing construction safety management. It makes the real-time construction safety management with high efficiency and accuracy a reality and provides a solid foundation for facilitating its modernization, and informatization. Nowadays, various sensor-based technologies have been adopted for construction safety management, including locating sensor-based technology, vision-based sensing and wireless sensor networks. This paper provides a systematic and comprehensive review of previous studies in this field to acknowledge useful findings, identify the research gaps and point out future research directions.

  5. A user's manual for managing database system of tensile property

    International Nuclear Information System (INIS)

    Ryu, Woo Seok; Park, S. J.; Kim, D. H.; Jun, I.

    2003-06-01

    This manual is written for the management and maintenance of the tensile database system for managing the tensile property test data. The data base constructed the data produced from tensile property test can increase the application of test results. Also, we can get easily the basic data from database when we prepare the new experiment and can produce better result by compare the previous data. To develop the database we must analyze and design carefully application and after that, we can offer the best quality to customers various requirements. The tensile database system was developed by internet method using Java, PL/SQL, JSP(Java Server Pages) tool

  6. Administrative Management Competencies for Safety Professionals.

    Science.gov (United States)

    Blair, Earl H.; Logan, Joyce P.

    1999-01-01

    In a 1997 study, 245 safety professionals and educators identified and prioritized management competencies that are important for safety professionals. Results show that the most important competencies are communication, listening, motivating others, creative thinking, and flexibility. (JOW)

  7. Quality Manual

    Science.gov (United States)

    Koch, Michael

    The quality manual is the “heart” of every management system related to quality. Quality assurance in analytical laboratories is most frequently linked with ISO/IEC 17025, which lists the standard requirements for a quality manual. In this chapter examples are used to demonstrate, how these requirements can be met. But, certainly, there are many other ways to do this.

  8. Examining the Relationship Between Safety Management System Implementation and Safety Culture in Collegiate Flight Schools

    OpenAIRE

    Robertson, Michael F

    2018-01-01

    Safety management systems (SMS) are becoming the industry standard for safety management throughout the aviation industry. As the Federal Aviation Administration continues to mandate SMS for different segments, the assessment of an organization’s safety culture becomes more important. An SMS can facilitate the development of a strong aviation safety culture. This study describes how safety culture and SMS are integrated. The purpose of this study was to examine the relationship between an ...

  9. Study Of Safety Management By Using Gis In Coimbatore

    Directory of Open Access Journals (Sweden)

    S. Kanchana

    2015-08-01

    Full Text Available The safety management is very important in the process of construction .The traditional methods of construction safety control cannot meet the construction of big project. To ensure the safety of construction and reduce accidents in the process of construction the current situation and problems we face in construction safety management should be studied first. And then the project risk warning mechanism based on the GIS is constructed according to the problems we faced to achieve visual monitoring and warning of construction safety risk management and to provide decision support for construction. This project aims to develop a web-based spatial decision support system model for proactive health and safety management in linear construction projects. 5 Currently health and safety management is usually performed reactively instead of proactive management since hazard identification and risk assessment is mostly performed on paper based documents that are not effectively used at site. An information system relates to a chain of operations lead to planning the observation and collection of data to storage and analysis of data to the use of derived information in decision-making processes. To create a web-based free and open sourced GIS that can work with different data formats by exchanging and presenting data as a real-time map on web.

  10. New Paradigm in Nuclear Safety from Quality Assurance to Safety Management System

    International Nuclear Information System (INIS)

    Lim, Nam-Jin; Park, Chan-Gook; Nam, Ji-Hee; Kim, Kwan-Hyun; Kwon, Hyuk-il; Lee, Young-Gun Lee

    2006-01-01

    The initial concept of Quality Control (QC) controlling the quality of products is now evolving toward the Management System (MS) achieving safety, through Quality Assurance (QA) ensuring the quality of products and Quality Management (QM) managing the quality by a systematic approach. Nuclear safety can be achieved through an integrated MS that ensures the health, environmental, security, quality and economic requirements being considered together with nuclear safety requirements. MS approach is developed through realizing that most of nuclear accidents had occurred not by the malfunction of hardware or equipment, but by the human error. The MS is a set of inter-related or interacting elements (system) that establishes policies and objectives and which enables those objectives to be achieved in an efficient and effective way

  11. Improving operational safety management through probabilistic safety assessment on personal computers

    International Nuclear Information System (INIS)

    1988-10-01

    The Technical Committee Meeting considered the current effort in the implementation and use of PSA information for day-to-day operational safety management on Personal Computers. Due to the very recent development of the necessary hardware and software for Personal Computers, the application of PSA information for day-to-day operational safety management on PCs is essentially still in a pioneering stage. There is at present only one such system for end users existing, the PRISIM (Plant Risk Status Information Management) program for which a limited practical application experience is available. Others are still in the development stage. The main aim of the Technical Committee Meeting was to discuss the present status of PSA based systems for operational safety management support on small computers, to consider practical aspects when implementing these systems into a nuclear installation and to address problems related to the further work in the area. A separate abstract was prepared for the summary of the Technical Committee Meeting and for the 8 papers presented by the participants. Refs, figs and tabs

  12. Research on station management in subway operation safety

    Science.gov (United States)

    Li, Yiman

    2017-10-01

    The management of subway station is an important part of the safe operation of urban subway. In order to ensure the safety of subway operation, it is necessary to study the relevant factors that affect station management. In the protection of subway safety operations on the basis of improving the quality of service, to promote the sustained and healthy development of subway stations. This paper discusses the influencing factors of subway operation accident and station management, and analyzes the specific contents of station management security for subway operation, and develops effective suppression measures. It is desirable to improve the operational quality and safety factor for subway operations.

  13. A proposal of safety indicators aggregation to assess the safety management effectiveness of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Jose Antonio B.; Saldanha, Pedro L.C. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao-Geral de Reatores e Ciclo Combustivel], e-mail: jantonio@cnen.gov.br, e-mail: saldanha@cnen.gov.br; Melo, Paulo F.F. Frutuoso e [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: frutuoso@con.ufrj.br

    2009-07-01

    Safety management has changed with the evolution of management methods, named Quality Systems, moving from Quality Control, where the focus was the product, passing through Quality Assurance, which takes care of the whole manufacturing process and reaching the Total Quality Management, where policies and goals are established. Nowadays, there is a trend towards Management Systems, which integrate all different aspects related to the management of an organization (safety, environment, security, quality, costs and, etc), but it is necessary to have features to establish and assure that safety overrides the remaining aspects. The most usual way to reach this goal is to establish a policy where safety is a priority, but its implementation and the assessment of its effectiveness are no so simple. Nuclear power plants usually have over a hundred safety indicators in many processes dedicated to prevent and detect problems, although a lot of them do not evaluate these indicators in an integrated manner or point out degradation trends of organizational aspects, which can affect the plant safety. This work develops an aggregation of proactive and reactive safety indicators in order to evaluate the effectiveness of nuclear power plant safety management and to detect, at early stages, signs of process degradation or activities used to establish, maintain and assure safety conditions. The aggregation integrates indicators of the usual processes and is based on the manner the management activities have been developed in the last decades, that is: Planning, Doing, Checking and Acting - known as PDCA cycle - plus a fifth element related to the capability of those who perform safety activities. The proposed aggregation is in accordance to Brazilian standards and international recommendations and constitutes a friendly link between the top management level and the daily aspects of the organization. (author)

  14. A proposal of safety indicators aggregation to assess the safety management effectiveness of nuclear power plants

    International Nuclear Information System (INIS)

    Carvalho, Jose Antonio B.; Saldanha, Pedro L.C.; Melo, Paulo F.F. Frutuoso e

    2009-01-01

    Safety management has changed with the evolution of management methods, named Quality Systems, moving from Quality Control, where the focus was the product, passing through Quality Assurance, which takes care of the whole manufacturing process and reaching the Total Quality Management, where policies and goals are established. Nowadays, there is a trend towards Management Systems, which integrate all different aspects related to the management of an organization (safety, environment, security, quality, costs and, etc), but it is necessary to have features to establish and assure that safety overrides the remaining aspects. The most usual way to reach this goal is to establish a policy where safety is a priority, but its implementation and the assessment of its effectiveness are no so simple. Nuclear power plants usually have over a hundred safety indicators in many processes dedicated to prevent and detect problems, although a lot of them do not evaluate these indicators in an integrated manner or point out degradation trends of organizational aspects, which can affect the plant safety. This work develops an aggregation of proactive and reactive safety indicators in order to evaluate the effectiveness of nuclear power plant safety management and to detect, at early stages, signs of process degradation or activities used to establish, maintain and assure safety conditions. The aggregation integrates indicators of the usual processes and is based on the manner the management activities have been developed in the last decades, that is: Planning, Doing, Checking and Acting - known as PDCA cycle - plus a fifth element related to the capability of those who perform safety activities. The proposed aggregation is in accordance to Brazilian standards and international recommendations and constitutes a friendly link between the top management level and the daily aspects of the organization. (author)

  15. Investigating road safety management processes in Europe.

    NARCIS (Netherlands)

    Jähi, H. Muhlrad, N. Buttler, I. Gitelman, V. Bax, C. Dupont, E. Giustiniani, G. Machata, K. Martensen, H. Papadimitriou, E. Persia, L. Talbot, R. Vallet, G. & Yannis, G.

    2012-01-01

    The work package 1 of the EC FP7 project DaCoTA investigates road safety management processes in Europe. It has drafted a model to investigate the state of the art of road safety policy-making and management at the national level and to define “good practice”. The DaCoTA “good practice”

  16. Safety managements of the linear IFMIF/EVEDA prototype accelerator

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Maebara, Sunao; Kojima, Toshiyuki; Narita, Takahiro; Tsutsumi, Kazuyoshi; Sakaki, Hironao; Suzuki, Hiromitsu; Sugimoto, Masayoshi

    2014-01-01

    Highlights: •Safety management is needed to secure the personnel safety from high dose rate. •The management of access to the accelerator vault is mainly performed by PPS. •The operation management is needed for safety during Injector and RFQ commissioning. •Pulse Duty Management system is newly developed for Injector commissioning for operation management. •PDM system is useful to reduce the radioactivation of equipment and the radiation exposure during and after beam operation. -- Abstract: On the Linear IFMIF/EVEDA Prototype Accelerator (LIPAc), the validation up to 9 MeV deuteron beam with 125 mA continuous wave is planned in Rokkasho, Aomori, Japan. Since the deuteron beam power exceeds 1 MW, safety issue related to γ-ray and neutron production is critical. To establish the safety management indispensable to reduce radiation exposure for personnel and activation of accelerator equipment, Personnel Protection System (PPS) of LIPAc control system, which works together with Radiation Monitoring System and Access Control System, was developed for LIPAc. The management of access to the accelerator vault by PPS and the beam duty management of PPS are presented in details

  17. Human and organizational biases affecting the management of safety

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Teemu, E-mail: teemu.reiman@vtt.fi [VTT, Espoo (Finland); Rollenhagen, Carl [KTH, Stockholm (Sweden)

    2011-10-15

    Management of safety is always based on underlying models or theories of organization, human behavior and system safety. The aim of the article is to review and describe a set of potential biases in these models and theories. We will outline human and organizational biases that have an effect on the management of safety in four thematic areas: beliefs about human behavior, beliefs about organizations, beliefs about information and safety models. At worst, biases in these areas can lead to an approach where people are treated as isolated and independent actors who make (bad) decisions in a social vacuum and who pose a threat to safety. Such an approach aims at building barriers and constraints to human behavior and neglects the measures aiming at providing prerequisites and organizational conditions for people to work effectively. This reductionist view of safety management can also lead to too drastic a strong separation of so-called human factors from technical issues, undermining the holistic view of system safety. Human behavior needs to be understood in the context of people attempting (together) to make sense of themselves and their environment, and act based on perpetually incomplete information while relying on social conventions, affordances provided by the environment and the available cognitive heuristics. In addition, a move toward a positive view of the human contribution to safety is needed. Systemic safety management requires an increased understanding of various normal organizational phenomena - in this paper discussed from the point of view of biases - coupled with a systemic safety culture that encourages and endorses a holistic view of the workings and challenges of the socio-technical system in question. - Highlights: > Biases in safety management approaches are reviewed and described. > Four thematic areas are covered: human behavior, organizations, information, safety models. > The biases influence how safety management is defined, executed

  18. Human and organizational biases affecting the management of safety

    International Nuclear Information System (INIS)

    Reiman, Teemu; Rollenhagen, Carl

    2011-01-01

    Management of safety is always based on underlying models or theories of organization, human behavior and system safety. The aim of the article is to review and describe a set of potential biases in these models and theories. We will outline human and organizational biases that have an effect on the management of safety in four thematic areas: beliefs about human behavior, beliefs about organizations, beliefs about information and safety models. At worst, biases in these areas can lead to an approach where people are treated as isolated and independent actors who make (bad) decisions in a social vacuum and who pose a threat to safety. Such an approach aims at building barriers and constraints to human behavior and neglects the measures aiming at providing prerequisites and organizational conditions for people to work effectively. This reductionist view of safety management can also lead to too drastic a strong separation of so-called human factors from technical issues, undermining the holistic view of system safety. Human behavior needs to be understood in the context of people attempting (together) to make sense of themselves and their environment, and act based on perpetually incomplete information while relying on social conventions, affordances provided by the environment and the available cognitive heuristics. In addition, a move toward a positive view of the human contribution to safety is needed. Systemic safety management requires an increased understanding of various normal organizational phenomena - in this paper discussed from the point of view of biases - coupled with a systemic safety culture that encourages and endorses a holistic view of the workings and challenges of the socio-technical system in question. - Highlights: → Biases in safety management approaches are reviewed and described. → Four thematic areas are covered: human behavior, organizations, information, safety models. → The biases influence how safety management is defined

  19. Hanford Waste Vitrification Plant technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.E. [ed.; Watrous, R.A.; Kruger, O.L. [and others

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

  20. Hanford Waste Vitrification Plant technical manual

    International Nuclear Information System (INIS)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version

  1. Managing for safety and safety culture within the UK nuclear industry. A regulator's perspective

    International Nuclear Information System (INIS)

    Tyrer, M.J.

    2002-01-01

    This paper outlines the basis of the legal system for the regulation of health and safety at work within the United Kingdom (UK), and in particular, the regulation of the nuclear industry. The framework, formulated by the regulator, which has been published as a practical guide for directors, managers, health and safety professionals and employee representatives for the successful management of health and safety is explained. This guidance, however, concentrates, to a large extent, on management systems and only addresses in part the types of issues, such as behaviours, values, attitudes and beliefs which contribute to the safety culture of an organization. The regulator of the UK nuclear industry has considered research, and other work, carried out by several organizations in this area, notably the Advisory Committee on the Safety of Nuclear Installations (ACSNI) and the International Atomic Energy Agency (IAEA), and produced its own framework for managing for safety at nuclear installations. As a regulator, the Health and Safety Executive (HSE), and its inspectorate responsible for regulation of the nuclear industry, HM Nuclear Installations Inspectorate (HMNII), are not the appropriate organization to assess the safety culture of an organization, but positively encourage organizations to both carry out this assessment themselves and to monitor their performance. To this end, HSE has developed, and made available, the Health and Safety Climate Tool which is aimed at providing organizations with information which can be used as part of a continuous improvement process. (author)

  2. Development of a Safety Management Web Tool for Horse Stables.

    Science.gov (United States)

    Leppälä, Jarkko; Kolstrup, Christina Lunner; Pinzke, Stefan; Rautiainen, Risto; Saastamoinen, Markku; Särkijärvi, Susanna

    2015-11-12

    Managing a horse stable involves risks, which can have serious consequences for the stable, employees, clients, visitors and horses. Existing industrial or farm production risk management tools are not directly applicable to horse stables and they need to be adapted for use by managers of different types of stables. As a part of the InnoEquine project, an innovative web tool, InnoHorse, was developed to support horse stable managers in business, safety, pasture and manure management. A literature review, empirical horse stable case studies, expert panel workshops and stakeholder interviews were carried out to support the design. The InnoHorse web tool includes a safety section containing a horse stable safety map, stable safety checklists, and examples of good practices in stable safety, horse handling and rescue planning. This new horse stable safety management tool can also help in organizing work processes in horse stables in general.

  3. Examining the Relationship between Safety Management System Implementation and Safety Culture in Collegiate Flight Schools

    Science.gov (United States)

    Robertson, Mike Fuller

    2017-01-01

    Safety Management Systems (SMS) are becoming the industry standard for safety management throughout the aviation industry. As the Federal Aviation Administration (FAA) continues to mandate SMS for different segments, the assessment of an organization's safety culture becomes more important. An SMS can facilitate the development of a strong…

  4. Managing health and safety risks: Implications for tailoring health and safety management system practices.

    Science.gov (United States)

    Willmer, D R; Haas, E J

    2016-01-01

    As national and international health and safety management system (HSMS) standards are voluntarily accepted or regulated into practice, organizations are making an effort to modify and integrate strategic elements of a connected management system into their daily risk management practices. In high-risk industries such as mining, that effort takes on added importance. The mining industry has long recognized the importance of a more integrated approach to recognizing and responding to site-specific risks, encouraging the adoption of a risk-based management framework. Recently, the U.S. National Mining Association led the development of an industry-specific HSMS built on the strategic frameworks of ANSI: Z10, OHSAS 18001, The American Chemistry Council's Responsible Care, and ILO-OSH 2001. All of these standards provide strategic guidance and focus on how to incorporate a plan-do-check-act cycle into the identification, management and evaluation of worksite risks. This paper details an exploratory study into whether practices associated with executing a risk-based management framework are visible through the actions of an organization's site-level management of health and safety risks. The results of this study show ways that site-level leaders manage day-to-day risk at their operations that can be characterized according to practices associated with a risk-based management framework. Having tangible operational examples of day-to-day risk management can serve as a starting point for evaluating field-level risk assessment efforts and their alignment to overall company efforts at effective risk mitigation through a HSMS or other processes.

  5. Safety cost management in construction companies: A proposal classification.

    Science.gov (United States)

    López-Alonso, M; Ibarrondo-Dávila, M P; Rubio, M C

    2016-06-16

    Estimating health and safety costs in the construction industry presents various difficulties, including the complexity of cost allocation, the inadequacy of data available to managers and the absence of an accounting model designed specifically for safety cost management. Very often, the costs arising from accidents in the workplace are not fully identifiable due to the hidden costs involved. This paper reviews some studies of occupational health and safety cost management and proposes a means of classifying these costs. We conducted an empirical study in which the health and safety costs of 40 construction worksites are estimated. A new classification of the health and safety cost and its categories is proposed: Safety and non-safety costs. The costs of the company's health and safety policy should be included in the information provided by the accounting system, as a starting point for analysis and control. From this perspective, a classification of health and safety costs and its categories is put forward.

  6. Navigating safety necessary compromises and trade-offs : theory and practice

    CERN Document Server

    Amalberti, René

    2013-01-01

    Managing safety in a professional environment requires constant negotiation with other competitive dimensions of risk management (finances, market and political drivers, manpower and social crisis). This is obvious, although generally not said in safety manuals. The book provides a unique vision of how to best find these compromises, starting with lessons learnt from natural risk management by individuals, then applying them to the craftsman industry, complex industrial systems (civil aviation, nuclear energy) and public services (like transportation and medicine). It offers a unique, illustrated, easy to read and scientifically based set of original concepts and pragmatic methods to revisit safety management and adopt a successful system vision. As such, and with illustrations coming from many various fields (aviation, fishing, nuclear, oil, medicine), it potentially covers a broad readership.

  7. TA-55 change control manual

    International Nuclear Information System (INIS)

    Blum, T.W.; Selvage, R.D.; Courtney, K.H.

    1997-11-01

    This manual is the guide for initiating change at the Plutonium Facility, which handles the processing of plutonium as well as research on plutonium metallurgy. It describes the change and work control processes employed at TA-55 to ensure that all proposed changes are properly identified, reviewed, approved, implemented, tested, and documented so that operations are maintained within the approved safety envelope. All Laboratory groups, their contractors, and subcontractors doing work at TA-55 follow requirements set forth herein. This manual applies to all new and modified processes and experiments inside the TA-55 Plutonium Facility; general plant project (GPP) and line item funded construction projects at TA-55; temporary and permanent changes that directly or indirectly affect structures, systems, or components (SSCs) as described in the safety analysis, including Facility Control System (FCS) software; and major modifications to procedures. This manual does not apply to maintenance performed on process equipment or facility SSCs or the replacement of SSCs or equipment with documented approved equivalents

  8. Manual on gamma radiography. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to gamma radiography: its application and procedures guides

  9. Manual on shielded enclosures. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to shielding enclosures: their application and procedures guides

  10. Manual on nuclear gauges. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to nuclear gauges: their application and procedures guides

  11. Project safety studies - nuclear waste management (PSE)

    International Nuclear Information System (INIS)

    1981-10-01

    The project 'Safety Studies-Nuclear Waste Management' (PSE) is a research project performed by order of the Federal Minister for Research and Technology, the general purpose of which is to deepen and ensure the understanding of the safety aspects of the nuclear waste management and to prepare a risk analysis which will have to be established in the future. Owing to this the project is part of a series of projects which serve the further development of the concept of nuclear waste management and its safety, and which are set up in such a way as to accompany the realization of that concept. This report contains the results of the first stage of the project from 1978 to mid-1981. (orig./RW) [de

  12. Radiological control technician: Training program management manual

    International Nuclear Information System (INIS)

    1992-10-01

    This manual defines and describes the DOE Radiological Control Technician Core Training Program qualification and training process, material development requirements, standards and policies, and administration. The manual applies to Radiological Control Technician Training Programs at all DOE contractor sites

  13. Ethical issues in patient safety: Implications for nursing management.

    Science.gov (United States)

    Kangasniemi, Mari; Vaismoradi, Mojtaba; Jasper, Melanie; Turunen, Hannele

    2013-12-01

    The purpose of this article is to discuss the ethical issues impacting the phenomenon of patient safety and to present implications for nursing management. Previous knowledge of this perspective is fragmented. In this discussion, the main drivers are identified and formulated in 'the ethical imperative' of patient safety. Underlying values and principles are considered, with the aim of increasing their visibility for nurse managers' decision-making. The contradictory nature of individual and utilitarian safety is identified as a challenge in nurse management practice, together with the context of shared responsibility and identification of future challenges. As a conclusion, nurse managers play a strategic role in patient safety. Their role is to incorporate ethical values of patient safety into decision-making at all levels in an organization, and also to encourage clinical nurses to consider values in the provision of care to patients. Patient safety that is sensitive to ethics provides sustainable practice where the humanity and dignity of all stakeholders are respected.

  14. Self arrangements in occupational safety and health management

    International Nuclear Information System (INIS)

    Ismail Bahari

    2002-01-01

    The book is written with the awareness of safe work culture where success does not lie to compliance with the law only. Instead it is more of an excellent management based on the principle of self organization. Self arrangements in the management of occupational safety and health do not rest on the shoulders of the employer or the safety management and safety communities, but are committed together with the leadership of the employer. Self arrangements will be more meaningful and successful if those involved have knowledge about the philosophy and principles of why and how this management is done, and so the method can be practiced and eventually cultivated as a working system. (author)

  15. Evaluation of safety management in an Appliances manufacturing company

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2015-01-01

    Full Text Available Introduction: Prevention of accidents and work related diseases, are not allowed regardless of the safety of employees, customers, contractors and other persons. Assessment of individual safety management activities could reduce many losses. Present study aimed to evaluate the safety management of a household appliance manufacturing company.  .Material and Method: This study has done in a household appliance manufacturing company in Damavand city. Two questionnaires were firstly designed based on the weighted scores. The questionnaire 1 consisted of 4 indicators: Safety of machinery, Electrical safety, Risk assessment and Fire safety. Questionnaire 2 consisted of 11 sub indicators. Both questionnaires were completed by 30 HSE experts and supervisors. Reliability of questionnaires was based on cronbachs alpha coefficient. the safety status of each unit was determined and scored using information acquired by the questionnaires. Lastly, the safety of the entire company was determined.  .Result: Results showed that in safety management: the pressing and store house were in a good range of 66.66 and 60.12 points. Powder painting, enameling, laboratory were in a average range of 56.25, 55.92 and 54.15 points. Assembling and door storage were in a week range of 46.06 points.  .Conclusion: The findings showed that the safety status in the studied appliances company is in average range with 55.45 points. Therefore, it is recommended that the safety indicators should be improved for the betterment of the safety management in the company.

  16. Food safety objective: an integral part of food chain management

    NARCIS (Netherlands)

    Gorris, L.G.M.

    2005-01-01

    The concept of food safety objective has been proposed to provide a target for operational food safety management, leaving flexibility in the way equivalent food safety levels are achieved by different food chains. The concept helps to better relate operational food safety management to public

  17. The Management System for Nuclear Installations Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a)To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b)As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c)To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a)Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b)Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c)Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d)Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e)Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear installation. (f

  18. Safety risk management of underground engineering in China: Progress, challenges and strategies

    Directory of Open Access Journals (Sweden)

    Qihu Qian

    2016-08-01

    Full Text Available Underground construction in China is featured by large scale, high speed, long construction period, complex operation and frustrating situations regarding project safety. Various accidents have been reported from time to time, resulting in serious social impact and huge economic loss. This paper presents the main progress in the safety risk management of underground engineering in China over the last decade, i.e. (1 establishment of laws and regulations for safety risk management of underground engineering, (2 implementation of the safety risk management plan, (3 establishment of decision support system for risk management and early-warning based on information technology, and (4 strengthening the study on safety risk management, prediction and prevention. Based on the analysis of the typical accidents in China in the last decade, the new challenges in the safety risk management for underground engineering are identified as follows: (1 control of unsafe human behaviors; (2 technological innovation in safety risk management; and (3 design of safety risk management regulations. Finally, the strategies for safety risk management of underground engineering in China are proposed in six aspects, i.e. the safety risk management system and policy, law, administration, economy, education and technology.

  19. Manual control models of industrial management

    Science.gov (United States)

    Crossman, E. R. F. W.

    1972-01-01

    The industrial engineer is often required to design and implement control systems and organization for manufacturing and service facilities, to optimize quality, delivery, and yield, and minimize cost. Despite progress in computer science most such systems still employ human operators and managers as real-time control elements. Manual control theory should therefore be applicable to at least some aspects of industrial system design and operations. Formulation of adequate model structures is an essential prerequisite to progress in this area; since real-world production systems invariably include multilevel and multiloop control, and are implemented by timeshared human effort. A modular structure incorporating certain new types of functional element, has been developed. This forms the basis for analysis of an industrial process operation. In this case it appears that managerial controllers operate in a discrete predictive mode based on fast time modelling, with sampling interval related to plant dynamics. Successive aggregation causes reduced response bandwidth and hence increased sampling interval as a function of level.

  20. Management of safety culture

    International Nuclear Information System (INIS)

    Kavsek, D.

    2004-01-01

    The strengthening of safety culture in an organization has become an increasingly important issue for nuclear industry. A high level of safety performance is essential for business success in intensely competitive global environment. This presentation offers a discussion of some principles and activities used in enhancing safety performance and appropriate safety behaviour at the Krsko NPP. Over the years a number of events have occurred in nuclear industry that have involved problems in human performance. A review of these and other significant events has identified recurring weaknesses in plant safety culture and policy. Focusing attention on the strengthening of relevant processes can help plants avoid similar undesirable events. The policy of the Krsko NPP is that all employees concerned shall constantly be alert to opportunities to reduce risks to the lowest practicable level and to achieve excellence in plant safety. The most important objective is to protect individuals, society and the environment by establishing and maintaining an effective defense against radiological hazard in the nuclear power plant. It is achieved through the use of reliable structures, components, systems, and procedures, as well as plant personnel committed to a strong safety culture. The elements of safety culture include both organizational and individual aspects. Elements commonly included at the organizational level are senior management commitment to safety, organizational effectiveness, effective communication, organizational learning, and a culture that encourages identification and resolution of safety issues. Elements identified at the individual level include personal accountability, a questioning attitude, communication, procedural adherence, etc.(author)

  1. Road safety issues for bus transport management.

    Science.gov (United States)

    Cafiso, Salvatore; Di Graziano, Alessandro; Pappalardo, Giuseppina

    2013-11-01

    Because of the low percentage of crashes involving buses and the assumption that public transport improves road safety by reducing vehicular traffic, public interest in bus safety is not as great as that in the safety of other types of vehicles. It is possible that less attention is paid to the significance of crashes involving buses because the safety level of bus systems is considered to be adequate. The purpose of this study was to evaluate the knowledge and perceptions of bus managers with respect to safety issues and the potential effectiveness of various technologies in achieving higher safety standards. Bus managers were asked to give their opinions on safety issues related to drivers (training, skills, performance evaluation and behaviour), vehicles (maintenance and advanced devices) and roads (road and traffic safety issues) in response to a research survey. Kendall's algorithm was used to evaluate the level of concordance. The results showed that the majority of the proposed items were considered to have great potential for improving bus safety. The data indicated that in the experience of the participants, passenger unloading and pedestrians crossing near bus stops are the most dangerous actions with respect to vulnerable users. The final results of the investigation showed that start inhibition, automatic door opening, and the materials and internal architecture of buses were considered the items most strongly related to bus passenger safety. Brake assistance and vehicle monitoring systems were also considered to be very effective. With the exception of driver assistance systems for passenger and pedestrian safety, the perceptions of the importance of other driver assistance systems for vehicle monitoring and bus safety were not unanimous among the bus company managers who participated in this survey. The study results showed that the introduction of new technologies is perceived as an important factor in improving bus safety, but a better understanding

  2. New safety management method at Cominak

    International Nuclear Information System (INIS)

    Kallam, A.

    1993-01-01

    Operations manager Mr. Kallam presents the new safety management system, its implementation and results in this underground uranium mine in northern Niger, where the rate of accidents increased dangerously during the eighties. 3 figs., 3 photos

  3. Life Management and Safety of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, S.; Diluch, A.; Vega, G., E-mail: fabbri@cnea.gov.ar [Comisión Nacional de Energía Atómica, Buenos Aires (Argentina)

    2014-10-15

    The nuclear programme in Argentina includes: nuclear power and related supplies, medical and industrial applications, waste management, research and development and human training. Nuclear facilities require life management programs that allow a safe operation. Safety is the first priority for designers and operators. This can be attained with defence in depth: regular inspections and maintenance procedures to minimize failure risks. CNEA objectives in this area are to possess the necessary capability to give safe and fast technical support. Within this scheme, one of the main activities undertaken by CNEA is to provide technological assistance to the nuclear plants and research reactors. As a consequence of an increasing concern about safety and ageing a Life Management Department for safe operation was created to take care of these subjects. The goal is to elaborate a Safety Evaluation Process for the critical components of nuclear plants and other facilities. The overall objectives of a safety process are to ensure a continuous safe, reliable and effective operation of nuclear facilities and it means the implementation of the defence in deep concept to enhance safety for the protection of the public, the workers and the environment. (author)

  4. Process management - critical safety issues with focus on risk management

    International Nuclear Information System (INIS)

    Sanne, Johan M.

    2005-12-01

    Organizational changes focused on process orientation are taking place among Swedish nuclear power plants, aiming at improving the operation. The Swedish Nuclear Power Inspectorate has identified a need for increased knowledge within the area for its regulatory activities. In order to analyze what process orientation imply for nuclear power plant safety a number of questions must be asked: 1. How is safety in nuclear power production created currently? What significance does the functional organization play? 2. How can organizational forms be analysed? What consequences does quality management have for work and for the enterprise? 3. Why should nuclear power plants be process oriented? Who are the customers and what are their customer values? Which customers are expected to contribute from process orientation? 4. What can one learn from process orientation in other safety critical systems? What is the effect on those features that currently create safety? 5. Could customer values increase for one customer without decreasing for other customers? What is the relationship between economic and safety interests from an increased process orientation? The deregulation of the electricity market have caused an interest in increased economic efficiency, which is the motivation for the interest in process orientation. among other means. It is the nuclear power plants' owners and the distributors (often the same corporations) that have the strongest interest in process orientation. If the functional organization and associated practices are decomposed, the prerequisites of the risk management regime changes, perhaps deteriorating its functionality. When nuclear power operators consider the introduction of process orientation, the Nuclear Power Inspectorate should require that 1. The operators perform a risk analysis beforehand concerning the potential consequences that process orientation might convey: the analysis should contain a model specifying how safety is currently

  5. Organizational and methodological aspects for contemporary health and safety management system

    Directory of Open Access Journals (Sweden)

    Sugak Evgeny

    2017-01-01

    Full Text Available Industrial injuries and work-related disorders considerable lowering we are facing in developed countries may be due to switching to a new health and safety management system entitled “Occupational Safety and Health Management System”. The Russian Federation has prepared certain regulatory documents prescribing some suggestions regarding implementing the contemporary system for industrial injuries prevention based upon the methods for professional risks management. However, despite the efforts made by the Russian Government, reformation of the health and safety management system at various companies is being performed rather slowly that may be as well owing to poor competence of managers and specialists regarding contemporary labor safety model content, methodical and organizational novations in the sphere of occupational safety and health management.. The article refers to a number of principal issues distinguishing the new health and safety management system from conventional approach.

  6. Management Commitment to Safety, Teamwork, and Hospital Worker Injuries

    OpenAIRE

    McGonagle, Alyssa K.; Essenmacher, Lynnette; Hamblin, Lydia; Luborsky, Mark; Upfal, Mark; Arnetz, Judith

    2016-01-01

    Although many studies link teamwork in health care settings to patient safety, evidence linking teamwork to hospital worker safety is lacking. This study addresses this gap by providing evidence linking teamwork perceptions in hospital workers to worker injuries, and further, finds a linkage between manager commitment to safety and teamwork. Organizational records of worker injuries and survey responses regarding management commitment to safety and teamwork from 446 hospital workers within 42...

  7. HVAC system operation manual of IMEF

    International Nuclear Information System (INIS)

    Baek, Sang Yeol; Park, Dae Kyu; Ahn, Sang Bok; Ju, Yong Sun.

    1997-06-01

    This manual is operation procedures of the IMEF(Irradiated Material Examination Facility) HVAC(Heating, Ventilation and Air Conditioning) System. General operation procedures and test method of the IMEF HVAC system are described. The manual is as follows; 1. HVAC system operation manual 2. HVAC system management guide 3. HVAC system maintenance manual 4. HVAC system air velocity and flowrate measurement manual 5. HVAC system HEPA filter leak test manual 6. HVAC system charcoal filter leak test manual 7. HVAC system HEPA and charcoal filter exchange manual. (author). 8 tabs

  8. Implementing process safety management in gas processing operations

    International Nuclear Information System (INIS)

    Rodman, D.L.

    1992-01-01

    The Occupational Safety and Health Administration (OSHA) standard entitled Process Safety Management of Highly Hazardous Chemicals; Explosives and Blasting Agents was finalized February 24, 1992. The purpose of the standard is to prevent or minimize consequences of catastrophic releases of toxic, flammable, or explosive chemicals. OSHA believes that its rule will accomplish this goal by requiring a comprehensive management program that integrates technologies, procedures, and management practices. Gas Processors Association (GPA) member companies are significantly impacted by this major standard, the requirements of which are extensive and complex. The purpose of this paper is to review the requirements of the standard and to discuss the elements to consider in developing and implementing a viable long term Process Safety Management Program

  9. 78 FR 75238 - Federal Housing Administration (FHA) Risk Management Initiatives: New Manual Underwriting...

    Science.gov (United States)

    2013-12-11

    ...-AJ07 Federal Housing Administration (FHA) Risk Management Initiatives: New Manual Underwriting... case numbers assigned on or after a date to be established by Mortgagee Letter following publication of... constrained. FHA played this role in the recent housing crisis, and the volume of FHA insurance increased...

  10. Safety Psychology Applicating on Coal Mine Safety Management Based on Information System

    Science.gov (United States)

    Hou, Baoyue; Chen, Fei

    In recent years, with the increase of intensity of coal mining, a great number of major accidents happen frequently, the reason mostly due to human factors, but human's unsafely behavior are affected by insecurity mental control. In order to reduce accidents, and to improve safety management, with the help of application security psychology, we analyse the cause of insecurity psychological factors from human perception, from personality development, from motivation incentive, from reward and punishment mechanism, and from security aspects of mental training , and put forward countermeasures to promote coal mine safety production,and to provide information for coal mining to improve the level of safety management.

  11. PC and monitor night status: Power management enabling and manual turn-off

    International Nuclear Information System (INIS)

    Nordman, Bruce; Meier, Alan; Piette, Mary Ann

    1998-01-01

    While office equipment accounts for about 7 percent of commercial building energy use, this reflects considerable energy savings from the use of automatic power management. Most of these savings were gained through the use of low-power modes that meet the criteria of the U.S. EPA's Energy Star program. Despite this success, there are large amounts of additional savings that could be gained if all equipment capable of power management use were enabled and functioning. A considerable portion of equipment is not enabled for power management at all, enabled only partially, or is enabled but prevented from functioning. Additional savings could be gained if more equipment were turned off at night manually. We compiled results from 17 studies from the office equipment literature addressing PCs and monitors. Some factors important for annual energy use, such as power levels, have been documented elsewhere and are not covered. We review methods for estimating office equipment use patterns and energy use, and present findings on night status-power management and manual turn-off rates. In early studies, PC power management was often found to function in 25 percent or less of the Energy Star compliant units (10 percent of all PCs). However, recent assessments have found higher rates, and we estimate that for Energy Star models, 35 percent of PC CPUs and 65 percent of PC monitors are enabled for power management. While the data lack statistical rigor, they can be used to estimate the magnitude of current and potential power management savings, which we did for major types of office equipment. The data also make clear that the topic of enabling rates, and the factors which influence them, deserve greater scrutiny

  12. Establishing management information system to solve the information management problem of nuclear safety related personnel's qualification management

    International Nuclear Information System (INIS)

    Sun Haipeng; Liu Zhijun; Li Tianshu

    2013-01-01

    With the rapid progress of nuclear energy and nuclear technology utilization, nuclear safety related personnel play an increasingly important role in ensuring nuclear safety. NNSA personnel qualification management information system conducts a multi-faceted, effective, real-time monitoring and information collection for nuclear safety staff practice unit management, knowledge management, license application, appraisal management or supervision, training management or supervision and certified staff management, and also is a milestone for NNSA to build the state department with 'five-feature' (learning-oriented, service-oriented, economical, innovative, clean-type). (authors)

  13. Radiation safety management system in a radioactive facility

    International Nuclear Information System (INIS)

    Amador, Zayda H.

    2008-01-01

    Full text: This paper illustrates the Cuban experience in implementing and promoting an effective radiation safety system for the Centre of Isotopes, the biggest radioactive facility of our country. Current management practice demands that an organization inculcate culture of safety in preventing radiation hazard. The aforementioned objectives of radiation protection can only be met when it is implemented and evaluated continuously. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important to implement radiation safety policy efficiently. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. All those areas of the radiation protection program are considered (e.g. licensing and training of the staff, occupational exposure, authorization of the practices, control of the radioactive material, radiological occurrences, monitoring equipment, radioactive waste management, public exposure due to airborne effluents, audits and safety costs). A set of indicators designed to monitor key aspects of operational safety performance are used. Their trends over a period of time are analyzed with the modern information technologies, because this can provide an early warning to plant management for searching causes behind the observed changes. In addition to analyze the changes and trends, these indicators are compared against identified targets and goals to evaluate performance strengths and weaknesses. A structured and proper radiation self-auditing system is seen as a basic requirement to meet the current and future needs in sustainability of radiation safety. The integrated safety management system establishment has been identified as a goal and way for the continuous improvement. (author)

  14. The practical implementation of integrated safety management for nuclear safety analysis and fire hazards analysis documentation

    International Nuclear Information System (INIS)

    COLLOPY, M.T.

    1999-01-01

    In 1995 Mr. Joseph DiNunno of the Defense Nuclear Facilities Safety Board issued an approach to describe the concept of an integrated safety management program which incorporates hazard and safety analysis to address a multitude of hazards affecting the public, worker, property, and the environment. Since then the U S . Department of Energy (DOE) has adopted a policy to systematically integrate safety into management and work practices at all levels so that missions can be completed while protecting the public, worker, and the environment. While the DOE and its contractors possessed a variety of processes for analyzing fire hazards at a facility, activity, and job; the outcome and assumptions of these processes have not always been consistent for similar types of hazards within the safety analysis and the fire hazard analysis. Although the safety analysis and the fire hazard analysis are driven by different DOE Orders and requirements, these analyses should not be entirely independent and their preparation should be integrated to ensure consistency of assumptions, consequences, design considerations, and other controls. Under the DOE policy to implement an integrated safety management system, identification of hazards must be evaluated and agreed upon to ensure that the public. the workers. and the environment are protected from adverse consequences. The DOE program and contractor management need a uniform, up-to-date reference with which to plan. budget, and manage nuclear programs. It is crucial that DOE understand the hazards and risks necessarily to authorize the work needed to be performed. If integrated safety management is not incorporated into the preparation of the safety analysis and the fire hazard analysis, inconsistencies between assumptions, consequences, design considerations, and controls may occur that affect safety. Furthermore, confusion created by inconsistencies may occur in the DOE process to grant authorization of the work. In accordance with

  15. Development of the Advanced Nuclear Safety Information Management (ANSIM) System

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jae Min; Ko, Young Cheol; Song, Tai Gil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Korea has become a technically independent nuclear country and has grown into an exporter of nuclear technologies. Thus, nuclear facilities are increasing in significance at KAERI (Korea Atomic Energy Research Institute), and it is time to address the nuclear safety. The importance of nuclear safety cannot be overemphasized. Therefore, a management system is needed urgently to manage the safety of nuclear facilities and to enhance the efficiency of nuclear information. We have established ISP (Information Strategy Planning) for the Integrated Information System of nuclear facility and safety management. The purpose of this paper is to develop a management system for nuclear safety. Therefore, we developed the Advanced Nuclear Safety Information Management system (hereinafter referred to as the 'ANSIM system'). The ANSIM system has been designed and implemented to computerize nuclear safety information for standardization, integration, and sharing in real-time. Figure 1 shows the main home page of the ANSIM system. In this paper, we describe the design requirements, contents, configurations, and utilizations of the ANSIM system

  16. Safety culture and quality management of Kartini research reactor

    International Nuclear Information System (INIS)

    Syarip; Hauptmanns, Ulrich

    1999-01-01

    The evaluation for assessing the safety culture and quality of safety management of Kartini research reactor is presented. The method is based on the concept of management control of safety (audit) as well as by using the developed method i.e. the questionnaires concerning areas of relevance which have to be answered with value statements. There are seven statements or qualifiers in answering the questions. Since such statements are vague, they are represented by fuzzy numbers. The weaknesses can be identified from the different areas contemplated. The evaluation result show that the quality of safety management of Kartini research reactor is globally rated as 'Average'. The operator behavior in the implementation of 'safety culture' concept is found as a weakness, therefore this area should be improved. (author)

  17. Manual on laboratory testing for uranium ore processing

    International Nuclear Information System (INIS)

    1990-01-01

    Laboratory testing of uranium ores is an essential step in the economic evaluation of uranium occurrences and in the development of a project for the production of uranium concentrates. Although these tests represent only a small proportion of the total cost of a project, their proper planning, execution and interpretation are of crucial importance. The main purposes of this manual are to discuss the objectives of metallurgical laboratory ore testing, to show the specific role of these tests in the development of a project, and to provide practical instructions for performing the tests and for interpreting their results. Guidelines on the design of a metallurgical laboratory, on the equipment required to perform the tests and on laboratory safety are also given. This manual is part of a series of Technical Reports on uranium ore processing being prepared by the IAEA's Division of Nuclear Fuel Cycle and Waste Management. A report on the Significance of Mineralogy in the Development of Flowsheets for Processing Uranium Ores (Technical Reports Series No. 196, 1980) and an instruction manual on Methods for the Estimation of Uranium Ore Reserves (No. 255, 1985) have already been published. 17 refs, 40 figs, 17 tabs

  18. Implementation of safety management systems in Hong Kong construction industry - A safety practitioner's perspective.

    Science.gov (United States)

    Yiu, Nicole S N; Sze, N N; Chan, Daniel W M

    2018-02-01

    In the 1980s, the safety management system (SMS) was introduced in the construction industry to mitigate against workplaces hazards, reduce the risk of injuries, and minimize property damage. Also, the Factories and Industrial Undertakings (Safety Management) Regulation was introduced on 24 November 1999 in Hong Kong to empower the mandatory implementation of a SMS in certain industries including building construction. Therefore, it is essential to evaluate the effectiveness of the SMS in improving construction safety and identify the factors that influence its implementation in Hong Kong. A review of the current state-of-the-practice helped to establish the critical success factors (CSFs), benefits, and difficulties of implementing the SMS in the construction industry, while structured interviews were used to establish the key factors of the SMS implementation. Results of the state-of-the-practice review and structured interviews indicated that visible senior commitment, in terms of manpower and cost allocation, and competency of safety manager as key drivers for the SMS implementation. More so, reduced accident rates and accident costs, improved organization framework, and increased safety audit ratings were identified as core benefits of implementing the SMS. Meanwhile, factors such as insufficient resources, tight working schedule, and high labor turnover rate were the key challenges to the effective SMS implementation in Hong Kong. The findings of the study were consistent and indicative of the future development of safety management practice and the sustainable safety improvement of Hong Kong construction industry in the long run. Copyright © 2018 National Safety Council and Elsevier Ltd. All rights reserved.

  19. Exploiting data from safety investigations and processes to assess performance of safety management aspects

    NARCIS (Netherlands)

    Karanikas, Nektarios

    2016-01-01

    This paper presents an alternative way to use records from safety investigations as a means to support the evaluation of safety management (SM) aspects. Datasets from safety investigation reports and progress records of an aviation organization were analyzed with the scope of assessing safety

  20. Data Analysis of Occupational Health and Safety Management and Total Quality Management Systems

    Directory of Open Access Journals (Sweden)

    Ahmet Yakut

    2013-01-01

    Full Text Available In our study, Total Quality Management, Occupational Health and Safety on the effects of the construction industry, building sites of Istanbul evaluated with the results of the survey of 25 firms. For Occupational Health and Safety program, walked healthy, active employees in her role increased and will increase the importance of education. Due to non-implementation of the OHS system in our country enough, work-related accidents and deaths and injuries resulting from these accidents is very high. Firms as a result of the analysis, an effective health and safety management system needs to be able to fulfill their responsibilities. This system is designated as OHSAS 18001 Occupational Health and Safety Management System and the construction industry can be regarded as the imperatives.

  1. The evolving role and care management approaches of safety-net Medicaid managed care plans.

    Science.gov (United States)

    Gusmano, Michael K; Sparer, Michael S; Brown, Lawrence D; Rowe, Catherine; Gray, Bradford

    2002-12-01

    This article provides new empirical data about the viability and the care management activities of Medicaid managed-care plans sponsored by provider organizations that serve Medicaid and other low-income populations. Using survey and case study methods, we studied these "safety-net" health plans in 1998 and 2000. Although the number of safety-net plans declined over this period, the surviving plans were larger and enjoying greater financial success than the plans we surveyed in 1998. We also found that, based on a partnership with providers, safety-net plans are moving toward more sophisticated efforts to manage the care of their enrollees. Our study suggests that, with supportive state policies, safety-net plans are capable of remaining viable. Contracting with safety-net plans may not be an efficient mechanism for enabling Medicaid recipients to "enter the mainstream of American health care," but it may provide states with an effective way to manage and coordinate the care of Medicaid recipients, while helping to maintain the health care safety-net for the uninsured.

  2. Guidance manual for conducting technology demonstration activities

    International Nuclear Information System (INIS)

    Jolley, R.L.; Morris, M.I.; Singh, S.P.N.

    1991-12-01

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety

  3. Guidance manual for conducting technology demonstration activities

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, Robert L.; Morris, Michael I.; Singh, Suman P.N.

    1991-12-01

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety.

  4. Predisposal management of low and intermediate level radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2003-01-01

    Radioactive waste is generated in the generation of electricity in nuclear power reactors and in the use of radioactive material in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized. The principles and requirements that govern the safety of the management of radioactive waste are presented in 'The Principles of Radioactive Waste Management', 'Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety' and 'Predisposal Management of Radioactive Waste, Including Decommissioning'. The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established in Refs for the predisposal management of LLW. This Safety Guide deals with the safety issues associated with the predisposal management of LLW from nuclear fuel cycle facilities, large research and development installations and radioisotope production facilities. This includes all steps and activities in the management of waste, from its initial generation to its final acceptance at a waste disposal facility or the removal of regulatory control. The predisposal management of radioactive waste includes decommissioning. The term 'decommissioning' encompasses both the process of decommissioning a facility and the management of the waste that results (prior to its disposal). Recommendations on the process of decommissioning are provided in Refs. Recommendations on the management of the waste resulting from decommissioning are included in this Safety Guide. Although the mining and milling of uranium and thorium ores is part of the nuclear fuel cycle, the management of the operational waste (e.g. waste rock, tailings and effluent treatment waste) from these activities is not within the scope of this Safety Guide. The LLW that is

  5. Reducing the risk, managing safety.

    Science.gov (United States)

    Aldridge, Peter

    2016-02-01

    Fire safety in healthcare premises has always been a challenge to those that discharge this duty. Statutory compliance should be a matter of course, but in an ever increasingly challenged NHS, even this is not a given. While the NHS is driven by managing very complex risk to deliver cutting edge healthcare, providers cannot be risk averse. Which risk, however, takes priority? Here Peter Aldridge, fire and corporate services manager at Leeds Teaching Hospitals NHS Trust, and Secretary to the National Association of Healthcare Fire Officers (NAHFO)--which will this month and next jointly stage fire safety seminars with IHEEM; see page 8--considers the key issues, with input from a fire officer at a leading mental health and community Trust.

  6. FULCRUM - A dam safety management and alert system

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Cameron; Greenaway, Graham [Knight Piesold Ltd., Vancouver, (Canada)

    2010-07-01

    Efficient management of instrumentation, monitoring and inspection data are the keys to safe performance and dam structure stability. This paper presented a data management system, FULCRUM, developed for dam safety management. FULCRUM is a secure web-based data management system which simplifies the process of data collection, processing and analysis of the information. The system was designed to organize and coordinate dam safety management requirements. Geotechnical instrumentation such as piezometers or inclinometers and operating data can be added to the database. Data from routine surveillance and engineering inspection can also be incorporated into the database. The system provides users with immediate access to historical and recent data. The integration of a GIS system allows for rapid assessment of the project site. Customisable alerting protocols can be set to identify and respond quickly to significant changes in operating conditions and potential impacts on dam safety.

  7. Safety Management at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Ligam, A.S.; Zarina Masood; Ahmad Nabil Abdul Rahim

    2011-01-01

    Adequate safety measures and precautions, which follow relevant safety standards and procedures, should be in place so that personnel safety is assured. Nevertheless, the public, visitor, contractor or anyone who wishes to enter or be in the reactor building should be well informed with the safety measures applied. Furthermore, these same elements of safety are also applied to other irradiation facilities within the premises of Nuclear Malaysia. This paper will describes and explains current safety management system being enforced especially in the TRIGA PUSPATI Reactor (RTP) namely radiation monitoring system, safety equipment, safe work instruction, and interconnected internal and external health, safety and security related departments. (author)

  8. An integrated management system to improve the performance of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Beckmerhagen, I.A.; Berg, H.P. [Bundesamt fur Strahlenschutz, Salzgitter (Germany)

    2001-07-01

    A integrated management system encompasses all management and assessment activities. The integration of DM, QM, safety management and occupational health into an integrated management system is shown for structures, systems and components of waste repositories because they have to fulfill reliability requirements derived from comprehensive safety assessments, and these structures, systems and components (such as transport vehicles and stacker trucks for the underground emplacement activities) are especially manufactured for this purpose and are not series products. QM institutes a QM system which ensures that there are clearly defined and auditable procedures. The requirements are written down in specifications or operation manuals and/or maintenance manuals. The QM system provides assurance that the installed structures, systems or components meet and continue to meet the prescribed goals with the help of DM and that safety management and occupational health specified requirements are fulfilled. DM focuses on the use of engineering analyses, assessments and methods to improve the design, specification, construction, dependability and operation of important systems, structures and components. (author)

  9. An integrated management system to improve the performance of nuclear installations

    International Nuclear Information System (INIS)

    Beckmerhagen, I.A.; Berg, H.P.

    2001-01-01

    A integrated management system encompasses all management and assessment activities. The integration of DM, QM, safety management and occupational health into an integrated management system is shown for structures, systems and components of waste repositories because they have to fulfill reliability requirements derived from comprehensive safety assessments, and these structures, systems and components (such as transport vehicles and stacker trucks for the underground emplacement activities) are especially manufactured for this purpose and are not series products. QM institutes a QM system which ensures that there are clearly defined and auditable procedures. The requirements are written down in specifications or operation manuals and/or maintenance manuals. The QM system provides assurance that the installed structures, systems or components meet and continue to meet the prescribed goals with the help of DM and that safety management and occupational health specified requirements are fulfilled. DM focuses on the use of engineering analyses, assessments and methods to improve the design, specification, construction, dependability and operation of important systems, structures and components. (author)

  10. The determinants of employee participation in occupational health and safety management.

    Science.gov (United States)

    Masso, Märt

    2015-01-01

    This article focuses on employee direct participation in occupational health and safety (OHS) management. The article explains what determines employee opportunities to participate in OHS management. The explanatory framework focuses on safety culture and safety management at workplaces. The framework is empirically tested using Estonian cross-sectional, multilevel data of organizations and their employees. The analysis indicates that differences in employee participation in OHS management in the Estonian case could be explained by differences in OHS management practices rather than differences in safety culture. This indicates that throughout the institutional change and shift to the European model of employment relations system, change in management practices has preceded changes in safety culture which according to theoretical argument is supposed to follow culture change.

  11. Accident beyond the design basis management with the coolant loss at the NPP with WWER

    International Nuclear Information System (INIS)

    Skalozubov, V.I.; Klyuchnikov, A.A.; Kolykhanov, V.N.

    2010-01-01

    The analysis of status and experience of development on modelling and accident beyond the design basis management, including the severe accidents, at the nuclear power plants is carried out. The methodical providing of manuals on the accident beyond the design basis management with the coolant loss on the basis of simulated critical system configurations providing the necessary safety function performance on reactor unit is proposed. The project of symptom-oriented manuals on accident beyond the design basis management with the coolant loss on the serial power unit with WWER-1000 on the basis of developed methodical providing and well known results of deepened safety analysis is presented.

  12. A user's manual for the database management system of impact property

    International Nuclear Information System (INIS)

    Ryu, Woo Seok; Park, S. J.; Kong, W. S.; Jun, I.

    2003-06-01

    This manual is written for the management and maintenance of the impact database system for managing the impact property test data. The data base constructed the data produced from impact property test can increase the application of test results. Also, we can get easily the basic data from database when we prepare the new experiment and can produce better result by compare the previous data. To develop the database we must analyze and design carefully application and after that, we can offer the best quality to customers various requirements. The impact database system was developed by internet method using jsp(Java Server pages) tool

  13. Safety implications of diesel generator aging management

    International Nuclear Information System (INIS)

    Hoopingarner, K.R.

    1989-01-01

    Significant safety improvements can be achieved in diesel-generator management related to aging, testing, and other important regulatory concerns. This paper reports on the progress of aging research related to nuclear service diesel generators, which developed data and information supporting the recommended safety improvements. The key to diesel-generator safety improvements is the development of a new balanced approach where testing, inspections, monitoring and trending, training, and maintenance all have appropriate importance. Safety improvement is projected in a management program that concurrently achieves three goals: first, the reduction of the fast-start stressor by regulatory and utility actions; second, the establishment of more appropriate testing and trending procedures; third, the adoption and use of reliability-centered maintenance activities. This paper describes the recommended safety improvements and the positive role of utility management in the process and outlines a new recommended regulatory approach. Diesel generator aging and wear is the subject of research sponsored by the Nuclear Plant Aging Research (NPAR) Program under the US Nuclear Regulatory Commission (NRC). Office of Nuclear Regulatory Research. The research was conducted by Pacific Northwest Laboratory (PNL), which is operated for the US Department of Energy by Battelle Memorial Institute. 4 refs., 1 fig., 1 tab

  14. Safety culture and quality management of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarip [Yogyakarta Nuclear Research Centre, Yogyakarta (Indonesia); Hauptmanns, Ulrich [Department of Plant Design and Safety, Otto-Von-Guericke-University, Magdeburg (Germany)

    1999-10-01

    The evaluation for assessing the safety culture and quality of safety management of Kartini research reactor is presented. The method is based on the concept of management control of safety (audit) as well as by using the developed method i.e. the questionnaires concerning areas of relevance which have to be answered with value statements. There are seven statements or qualifiers in answering the questions. Since such statements are vague, they are represented by fuzzy numbers. The weaknesses can be identified from the different areas contemplated. The evaluation result show that the quality of safety management of Kartini research reactor is globally rated as 'Average'. The operator behavior in the implementation of 'safety culture' concept is found as a weakness, therefore this area should be improved. (author)

  15. Safety Culture Perspective. Managing the pre Managing the pre-operational phases of new NPPs and creating the safety culture

    International Nuclear Information System (INIS)

    Cowan, Pamela B.; Oh, Chaewoon; Dahlgren Persson, Kerstin; Carnino, Annick

    2008-01-01

    Nuclear safety is a key for the revival of nuclear energy future programmes. Lots of competent people will be needed worldwide for ensuring the safety of the installations both existing ones and future ones. Their expertise should range from design to operation, from regulatory role to operators, from fuel fabrication to waste disposal. The challenge in front of us will be to prepare for the right recruitment, the development of the needed expertise in order to face the demand in developed countries, in countries with economies in transition and in developing countries. Time allocated for the panel does not allow for covering all aspects but the panelists will cover some of the important aspects of the challenge in terms of needs, of new competencies, of learning from operation and licensing requirements including for new designs. The key objectives of the panel are: 1- Maintaining safe operation, learning from experience, licensing including aging management and re-licensing with safety improvements for existing installations: - Presentation by Junko Ogawa of the experience and lessons learned from the earthquake on Kashiwasaki Kariwa NPP: effects in terms of manpower involved in the investigation, effects on regulations and licensing, expertise used. - Presentation by Pamela Cowan of her experience in preparing licensing actions, regulatory compliance and interface with the Regulator for both operating plants and modern requirements for constructing new ones. 2 - Special training needed for the human aspect of safety: what are the challenges in areas of safety culture and management of safety: - Presentation by Chae Woon Oh of the Korean safety culture features developed nationally, at the regulator and at the operating organizations and their integration within the safety training programmes. - Presentation by Kerstin Dahlgren Person of the needs in terms of safety culture and safety management, in terms of expertise, practitioners and assessors. 3 - How to

  16. Safety Culture Perspective. Managing the pre Managing the pre-operational phases of new NPPs and creating the safety culture

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Pamela B. [Exelon Generation, 200 Exelon Way, 19348 Kennett Square, PA 19348 (United States); Oh, Chaewoon [Korea Institute of Nuclear Safety, 19 Gusung-Dong, Yuseong-Ku, 305-338 Daejeon (Korea, Republic of); Dahlgren Persson, Kerstin [International Atomic Energy Agency, Wagramer Strasse 5, PO BOX 100 A-1400 Vienna (Austria); Carnino, Annick [IAEA, Division of Nuclear Installation Safety, Wagramer Strasse 5, PO BOX 100 A-1400 Vienna (Austria)

    2008-07-01

    Nuclear safety is a key for the revival of nuclear energy future programmes. Lots of competent people will be needed worldwide for ensuring the safety of the installations both existing ones and future ones. Their expertise should range from design to operation, from regulatory role to operators, from fuel fabrication to waste disposal. The challenge in front of us will be to prepare for the right recruitment, the development of the needed expertise in order to face the demand in developed countries, in countries with economies in transition and in developing countries. Time allocated for the panel does not allow for covering all aspects but the panelists will cover some of the important aspects of the challenge in terms of needs, of new competencies, of learning from operation and licensing requirements including for new designs. The key objectives of the panel are: 1- Maintaining safe operation, learning from experience, licensing including aging management and re-licensing with safety improvements for existing installations: - Presentation by Junko Ogawa of the experience and lessons learned from the earthquake on Kashiwasaki Kariwa NPP: effects in terms of manpower involved in the investigation, effects on regulations and licensing, expertise used. - Presentation by Pamela Cowan of her experience in preparing licensing actions, regulatory compliance and interface with the Regulator for both operating plants and modern requirements for constructing new ones. 2 - Special training needed for the human aspect of safety: what are the challenges in areas of safety culture and management of safety: - Presentation by Chae Woon Oh of the Korean safety culture features developed nationally, at the regulator and at the operating organizations and their integration within the safety training programmes. - Presentation by Kerstin Dahlgren Person of the needs in terms of safety culture and safety management, in terms of expertise, practitioners and assessors. 3 - How to

  17. Human factors in safety and business management.

    Science.gov (United States)

    Vogt, Joachim; Leonhardt, Jorg; Koper, Birgit; Pennig, Stefan

    2010-02-01

    Human factors in safety is concerned with all those factors that influence people and their behaviour in safety-critical situations. In aviation these are, for example, environmental factors in the cockpit, organisational factors such as shift work, human characteristics such as ability and motivation of staff. Careful consideration of human factors is necessary to improve health and safety at work by optimising the interaction of humans with their technical and social (team, supervisor) work environment. This provides considerable benefits for business by increasing efficiency and by preventing incidents/accidents. The aim of this paper is to suggest management tools for this purpose. Management tools such as balanced scorecards (BSC) are widespread instruments and also well known in aviation organisations. Only a few aviation organisations utilise management tools for human factors although they are the most important conditions in the safety management systems of aviation organisations. One reason for this is that human factors are difficult to measure and therefore also difficult to manage. Studies in other domains, such as workplace health promotion, indicate that BSC-based tools are useful for human factor management. Their mission is to develop a set of indicators that are sensitive to organisational performance and help identify driving forces as well as bottlenecks. Another tool presented in this paper is the Human Resources Performance Model (HPM). HPM facilitates the integrative assessment of human factors programmes on the basis of a systematic performance analysis of the whole system. Cause-effect relationships between system elements are defined in process models in a first step and validated empirically in a second step. Thus, a specific representation of the performance processes is developed, which ranges from individual behaviour to system performance. HPM is more analytic than BSC-based tools because HPM also asks why a certain factor is

  18. Quality manual. Nuclear Regulatory Authority of the Slovak Republic

    International Nuclear Information System (INIS)

    2006-03-01

    This quality manual of the Nuclear Regulatory Authority of the Slovak Republic (UJD) is presented. Basic characteristics of the UJD, Quality manual operative control, and Quality management system (QMS) are described. Management responsibility, Processes realization, Measurement, analysis (assessment) and improvement of the quality management system, Cancellation provision as well as abbreviations used in the Quality Manual are presented.

  19. Equipment Qualification Data Base user manual

    International Nuclear Information System (INIS)

    Decker, Q.R.; Fackrell, L.J.; Fitch, L.R.; Meeky, O.B.

    1985-09-01

    This manual details the Equipment Qualification Data Base (EQDB), its usage, and contents. The EQDB consists of two files; the Plant Qualification File (PQF) and the Equipment Qualification File (EQF). The PQF contains plant specific environmental data and the EQF contains summaries of various test results. Two data management systems are used to manipulate the data and are discussed in this manual. SAS Institute System 2000 (S2K) is the management system for the PQF and Query Update (QU) is the operating system for the EQF. Each management system contains report writers. These writers and how to use them are discussed in detail in this manual

  20. Tank farm health and safety plan. Revision 2

    International Nuclear Information System (INIS)

    Mickle, G.D.

    1995-01-01

    This Tank Farm Health and Safety Plan (HASP) for the conduct of all operations and work activities at the Hanford Site 200 Area Tank Farms is provided in order to minimize health and safety risks to workers and other onsite personnel. The HASP accomplishes this objective by establishing requirements, providing general guidelines, and conveying farm and facility-specific hazard communication information. The HASP, in conjunction with the job-specific information required by the HASP, is provided also as a reference for use during the planning of work activities at the tank farms. This HASP applies to Westinghouse Hanford Company (WHC), other prime contractors to the U.S. Department of Energy (DOE), and subcontractors to WHC who may be involved in tank farm work activities. This plan is intended to be both a requirements document and a useful reference to aid tank farm workers in understanding the safety and health issues that are encountered in routine and nonroutine work activities. The HASP defines the health and safety responsibilities of personnel working at the tank farms. It has been prepared in recognition of and is consistent with National Institute of Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA)/Unlimited State Coast Guard (USCG)/U.S. Environmental Protection Agency (EPA), Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (NIOSH 1985); WHC-CM-4-3, Industrial Safety Manual, Volume 4, open-quotes Health and Safety Programs for Hazardous Waste Operations;close quotes 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response; WHC-CM-1-1, Management Policies; and WHC-CM-1-3, Management Requirements and Procedures. When differences in governing regulations or policies exist, the more stringent requirements shall apply until the discrepancy can be resolved

  1. Tank farm health and safety plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Mickle, G.D.

    1995-03-29

    This Tank Farm Health and Safety Plan (HASP) for the conduct of all operations and work activities at the Hanford Site 200 Area Tank Farms is provided in order to minimize health and safety risks to workers and other onsite personnel. The HASP accomplishes this objective by establishing requirements, providing general guidelines, and conveying farm and facility-specific hazard communication information. The HASP, in conjunction with the job-specific information required by the HASP, is provided also as a reference for use during the planning of work activities at the tank farms. This HASP applies to Westinghouse Hanford Company (WHC), other prime contractors to the U.S. Department of Energy (DOE), and subcontractors to WHC who may be involved in tank farm work activities. This plan is intended to be both a requirements document and a useful reference to aid tank farm workers in understanding the safety and health issues that are encountered in routine and nonroutine work activities. The HASP defines the health and safety responsibilities of personnel working at the tank farms. It has been prepared in recognition of and is consistent with National Institute of Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA)/Unlimited State Coast Guard (USCG)/U.S. Environmental Protection Agency (EPA), Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (NIOSH 1985); WHC-CM-4-3, Industrial Safety Manual, Volume 4, {open_quotes}Health and Safety Programs for Hazardous Waste Operations;{close_quotes} 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response; WHC-CM-1-1, Management Policies; and WHC-CM-1-3, Management Requirements and Procedures. When differences in governing regulations or policies exist, the more stringent requirements shall apply until the discrepancy can be resolved.

  2. Predisposal management of high level radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste is generated in the generation of electricity in nuclear power plants and in the use of radioactive material in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized. The principles and requirements that govern the safety of the management of radioactive waste are presented in 'The Principles of Radioactive Waste Management', 'Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety' and 'Predisposal Management of Radioactive Waste, Including Decommissioning'. The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established in Refs for the predisposal management of HLW. This Safety Guide applies to the predisposal management of HLW. For liquid HLW arising from the reprocessing of spent fuel the recommendations of this Safety Guide apply from when liquid waste from the first extraction process is collected for storage and subsequent processing. Recommendations and guidance on the storage of spent fuel, whether or not declared as waste, subsequent to its removal from the storage facility of a reactor are provided in Refs. For spent fuel declared as waste this Safety Guide applies to all activities subsequent to its removal from the storage facility of a reactor and prior to its disposal. Requirements pertaining to the transport of spent fuel, whether or not declared as waste, and of all forms of HLW are established. This Safety Guide provides recommendations on the safety aspects of managing HLW, including the planning, design, construction, commissioning, operation and decommissioning of equipment or facilities for the predisposal management of HLW. It addresses the following elements: (a) The characterization and processing (i.e. pretreatment

  3. Drafting Lab Management Guide.

    Science.gov (United States)

    Ohio State Univ., Columbus. Instructional Materials Lab.

    This manual was developed to guide drafting instructors and vocational supervisors in sequencing laboratory instruction and controlling the flow of work for a 2-year machine trades training program. The first part of the guide provides information on program management (program description, safety concerns, academic issues, implementation…

  4. Appraisal of Fire Safety Management Systems at Educational Buildings

    Directory of Open Access Journals (Sweden)

    Nadzim N.

    2014-01-01

    Full Text Available Educational buildings are one type of government asset that should be protected, and they play an important role as temporary communal meeting places for children, teachers and communities. In terms of management, schools need to emphasize fire safety for their buildings. It is well known that fires are not only a threat to the building’s occupants, but also to the property and the school environment. A study on fire safety management has been carried out on schools that have recently experienced fires in Penang. From the study, it was found that the school buildings require further enhancement in terms of both active and passive fire protection systems. For instance, adequate fire extinguishers should be provided to the school and the management should inspect and maintain fire protection devices regularly. The most effective methods to increase the level of awareness on fire safety are by organizing related programs on the management of fire safety involving all staff, teachers and students, educational talks on the dangers of fire and important actions to take in the event of an emergency, and, lastly, to appoint particular staff to join the management safety team in schools.

  5. The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Risoluti, P.

    2004-01-01

    The Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management (the Joint Convention) is the only legally binding international treaty in the area of radioactive waste management. It was adopted by a Diplomatic Conference in September 1997 and opened for signature on 29 September 1997. The Convention entered into force on 18 June 1998, and to date (September 04) has been signed by 42 States, of which 34 have formally ratified, thus becoming Contracting Parties. The Joint Convention applies to spent fuel and radioactive waste resulting from civilian application. Its principal aim is to achieve and maintain a high degree of safety in their management worldwide. The Convention is an incentive instrument, not designed to ensure fulfillment of obligations through control and sanction, but by a peer pressure. The obligations of the Contracting Parties are mainly based on the international safety standards developed by the IAEA in past decades. The Convention is intended for all countries generating radioactive waste. Therefore it is relevant not only for those using nuclear power, but for any country where application of nuclear energy in medicine, conventional industry and research is currently used. Obligations of Contracting Parties include attending periodic Review Meetings and prepare National Reports for review by the other Contracting Parties. The National Reports should describe how the country is complying with the requirements of the Articles of the Convention. The first such meeting was held at the IAEA headquarters in November 2003. This paper will describe the origin of the Convention, present its content, the expected outcome for the worldwide safety, and the benefits for a country to be part of it

  6. Spent Nuclear Fuel Project Cold Vacuum Drying Facility Operations Manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, (Cold Vacuum Drying Facility Design Requirements), Rev. 4. and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  7. Scale development of safety management system evaluation for the airline industry.

    Science.gov (United States)

    Chen, Ching-Fu; Chen, Shu-Chuan

    2012-07-01

    The airline industry relies on the implementation of Safety Management System (SMS) to integrate safety policies and augment safety performance at both organizational and individual levels. Although there are various degrees of SMS implementation in practice, a comprehensive scale measuring the essential dimensions of SMS is still lacking. This paper thus aims to develop an SMS measurement scale from the perspective of aviation experts and airline managers to evaluate the performance of company's safety management system, by adopting Schwab's (1980) three-stage scale development procedure. The results reveal a five-factor structure consisting of 23 items. The five factors include documentation and commands, safety promotion and training, executive management commitment, emergency preparedness and response plan and safety management policy. The implications of this SMS evaluation scale for practitioners and future research are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. National Report from Norway

    International Nuclear Information System (INIS)

    2006-05-01

    This report is the Norwegian report to the second review meeting to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The comments, questions and remarks given to Norway's initial national report and Norway's presentation given at the first review meeting have been incorporated in this report. The second report is a full revision of the first report. This report concludes that Norway meets the obligations of the Joint Convention. However, Norwegian authorities will aim for development in the waste management policy and Norway will continue to improve its existing systems to further enhance safety, in line with the aims of the Joint Convention

  9. Effect of Occupational Health and Safety Management System on Work-Related Accident Rate and Differences of Occupational Health and Safety Management System Awareness between Managers in South Korea's Construction Industry

    OpenAIRE

    Yoon, Seok J.; Lin, Hsing K.; Chen, Gang; Yi, Shinjea; Choi, Jeawook; Rui, Zhenhua

    2013-01-01

    Background: The study was conducted to investigate the current status of the occupational health and safety management system (OHSMS) in the construction industry and the effect of OHSMS on accident rates. Differences of awareness levels on safety issues among site general managers and occupational health and safety (OHS) managers are identified through surveys. Methods: The accident rates for the OHSMS-certified construction companies from 2006 to 2011, when the construction OHSMS became ...

  10. 33 CFR 96.220 - What makes up a safety management system?

    Science.gov (United States)

    2010-07-01

    ... system? 96.220 Section 96.220 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.220 What makes up a safety management system? (a) The...

  11. Microbial ecology laboratory procedures manual NASA/MSFC

    Science.gov (United States)

    Huff, Timothy L.

    1990-01-01

    An essential part of the efficient operation of any microbiology laboratory involved in sample analysis is a standard procedures manual. The purpose of this manual is to provide concise and well defined instructions on routine technical procedures involving sample analysis and methods for monitoring and maintaining quality control within the laboratory. Of equal importance is the safe operation of the laboratory. This manual outlines detailed procedures to be followed in the microbial ecology laboratory to assure safety, analytical control, and validity of results.

  12. ENHANCEMENT OF ROAD SAFETY THROUGH MORE EFFECTIVE ROAD AND TRAFFIC MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Tomasz SZCZURASZEK

    2016-07-01

    Full Text Available To make the policy aimed at mitigating the risk of road incidents more effective, Poland should see the introduction of the more efficient road and traffic management. In November 2008 the European Parliament and the European Council published the Directive on "infrastructure safety management" which provides guidance on the procedures for carrying impact assessments of traffic safety, traffic safety audits, safety management on the road network and monitoring traffic safety in Member States. In this article, the authors have proposed a systemic approach to road and traffic management, involving the implementation of consistent procedures that should include regular revisions of roads, eliminating hazardous sites, speed management, as well as the approval and implementation of traffic organization designs.

  13. The Safety Attitudes of Senior Managers in the Chinese Coal Industry.

    Science.gov (United States)

    Zhang, Jiangshi; Chen, Na; Fu, Gui; Yan, Mingwei; Kim, Young-Chan

    2016-11-17

    Introduction: Senior managers' attitudes towards safety are very important regarding the safety practices in an organization. The study is to describe the current situation of senior managers' attitudes towards safety in the Chinese coal industry. Method : We evaluated the changing trends as well as the reasons for these changes in the Chinese coal industry in 2009 and in 2014 with 168 senior manager samples from large Chinese state-owned coal enterprises. Evaluations of 15 safety concepts were performed by means of a questionnaire. Results and Conclusions : Results indicate that, in 2014, three concepts were at a very high level (mean > 4.5), and six were at a relatively high level (4.5 > mean > 4.0). Analyses of changing trends revealed that nine concepts improved significantly, while four greatly declined in 2014 compared to those in 2009. The data reported here suggest that the reasons for the significant improvement with respect to the nine concepts include the improvement in social and legal environments, the improvement of the culture of social safety, workers' safety demands being met, and scientific and technical advances in the coal industry. The decline of the four concepts seemed to be caused by a poor awareness of managers in the coal industry that safety creates economic benefits, insufficient information on safety, inadequate attention to the development of a safety culture and safety management methods, and safety organizations and workers' unions not playing their role effectively. Practical Applications : We therefore recommend strengthening the evidence that safety creates economic benefits, providing incentives for employees to encourage their participation in safety management, and paying more attention to the prevention of accidents in coal mines via safety organizations and unions. These results can provide guidelines for workers, industrialists, and government regarding occupational safety in the whole coal industry.

  14. Manual on high energy teletherapy. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to high energy radiotherapy: its application and procedures guides

  15. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report

    International Nuclear Information System (INIS)

    Herborn, D.I.

    1993-11-01

    Westinghouse Hanford Company (WHC) is the Integrating Contractor for the Hanford Waste Vitrification Plant (HWVP) Project, and as such is responsible for preparation of the HWVP Preliminary Safety Analysis Report (PSAR). The HWVP PSAR was prepared pursuant to the requirements for safety analyses contained in US Department of Energy (DOE) Orders 4700.1, Project Management System (DOE 1987); 5480.5, Safety of Nuclear Facilities (DOE 1986a); 5481.lB, Safety Analysis and Review System (DOE 1986b) which was superseded by DOE order 5480-23, Nuclear Safety Analysis Reports, for nuclear facilities effective April 30, 1992 (DOE 1992); and 6430.lA, General Design Criteria (DOE 1989). The WHC procedures that, in large part, implement these DOE requirements are contained in WHC-CM-4-46, Nonreactor Facility Safety Analysis Manual. This manual describes the overall WHC safety analysis process in terms of requirements for safety analyses, responsibilities of the various contributing organizations, and required reviews and approvals

  16. National report of the Slovak Republic - proposal. Compiled in terms of the joint convention on the safety of spent fuel management and on the safety of radioactive waste management. Jun 2008

    International Nuclear Information System (INIS)

    Jurina, V.; Viktory, D.; Kobzova, D.; Petrik, T.; Sovcik, J.; Hekel, P.; Suess, J.; Tomek, J.; Lukacovic, J.; Hekel, P.; Ivan, J.; Ziakova, M.; Metke, E.; Pospisil, M.; Turner, M.; Homola, J.; Konecny, L.; Parimucha, F.; Vaclav, J.; Horvath, J.; Soos, F.; Betak, A.; Pospisil, P.; Mihaly, B.; Kubala, M.; Schmidtova, B.; Orihel, M.; Vasina, D.; Balaz, J.; Ehn, L.; Micovicova, D.; Vrtoch, M.; Mlcuch, L.; Granak, P.; Meleg, J.; Sedliak, D.; Bardy, M.; Gogoliak, J.; Prazska, M.; Burslova, J.

    2008-06-01

    A brief national safety report of the Slovak Republic compiled in terms of the joint convention on the safety of spent fuel management and on the safety of radioactive waste management in 2008 is presented. This safety report consists of following chapters: (A) Introduction; (B) Spent nuclear fuel (SNF) and radioactive waste (RAW) management conception; (C) Scope of application; (D) Spent nuclear fuel (SNF) and radioactive waste (RAW) management; (E) Legislation and regulatory framework; (F) General safety provisions; (G) Safety of spent nuclear fuel management; (H) Safety of radioactive waste management; (I) Transboundary movement of spent nuclear fuel and radioactive waste; (J) Discussed sealed radioactive sources; (K) Planned measures to improve safety; (L) Annexes

  17. Manual to radioactive waste management produced in hospitals, research and education centers

    International Nuclear Information System (INIS)

    Villasenor N, L.F.; Mejia L, M.

    1996-01-01

    This manual collects the experience on the disposal and management of the wastes produced in the preparation and application of radioactive material. Although the content is not so extensive, the authors have tried to provide the necessary guidelines and adequate information for the management of the wastes produced in hospitals and research and education centers. The objective of this work is to describe the basis and principles for the establishment of a minimization program, a segregation program and a provisional waste storage, in order to reduce the generation of wastes, personal exposure and the environmental impact. (authors). 5 refs

  18. The Integrated Safety Management System (ISMS) of the US Department of Energy

    International Nuclear Information System (INIS)

    Linn, M.A.

    1999-01-01

    While the Integrated Safety Management System (ISMS) program is a fairly rational approach to safety, it represents the culmination of several years of hard-earned lessons learned. Considering the size and the diversity of interrelated elements which make up the USDOE complex, this result shows the determination of both the USDOE and its contractors to bring safety hazards to heel. While these lessons learned were frustrating and expensive, the results were several key insights upon which the ISMS was built: (1) Ensure safety management is integral to the business. Safety management must become part of each work activity, rather that something in addition to or on top of. (2) Tailor the safety requirements to the work and its hazards. In order to be cost-effective and efficient, safety management should have flexibility in order to match safety requirements with the level of the hazards in a graded manner. (3) Safety management must be coherent and integrated. Large and complex organizations are no excuse for fragmented and overlapping safety initiatives and programs. Simple, from the ground up objectives and principles must be defined and used to guide a comprehensive safety management program. (4) A safety management system must balance resources and priorities. The system must provide the means to balance resources against the particular work hazards, recognizing that different degrees of hazards requires corresponding prevention measures. (5) Clear roles and responsibilities for safety management must be defined. Both the regulator and the contractor have specific responsibilities for safety which must be clearly articulated at all levels of the work processes. (6) Those responsible for safety must have the competence to carry it out. Those assigned responsibilities must have the experience, knowledge, skills, and authority to carry them out. As one can surmise, the ISMS is not a new program to be implemented, but rather a new attitude which must be adopted

  19. Core management and fuel handling for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide supplements and elaborates upon the safety requirements for core management and fuel handling that are presented in Section 5 of the Safety Requirements publication on the operation of nuclear power plants. The present publication supersedes the IAEA Safety Guide on Safety Aspects of Core Management and Fuel Handling, issued in 1985 as Safety Series No. 50-SG-010. It is also related to the Safety Guide on the Operating Organization for Nuclear Power Plants, which identifies fuel management as one of the various functions to be performed by the operating organization. The purpose of this Safety Guide is to provide recommendations for core management and fuel handling at nuclear power plants on the basis of current international good practice. The present Safety Guide addresses those aspects of fuel management activities that are necessary in order to allow optimum reactor core operation without compromising the limits imposed by the design safety considerations relating to the nuclear fuel and the plant as a whole. In this publication, 'core management' refers to those activities that are associated with fuel management in the core and reactivity control, and 'fuel handling' refers to the movement, storage and control of fresh and irradiated fuel. Fuel management comprises both core management and fuel handling. This Safety Guide deals with fuel management for all types of land based stationary thermal neutron power plants. It describes the safety objectives of core management, the tasks that have to be accomplished to meet these objectives and the activities undertaken to perform those tasks. It also deals with the receipt of fresh fuel, storage and handling of fuel and other core components, the loading and unloading of fuel and core components, and the insertion and removal of other reactor materials. In addition, it deals with loading a transport container with irradiated fuel and its preparation for transport off the site. Transport

  20. Core management and fuel handling for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    This Safety Guide supplements and elaborates upon the safety requirements for core management and fuel handling that are presented in Section 5 of the Safety Requirements publication on the operation of nuclear power plants. The present publication supersedes the IAEA Safety Guide on Safety Aspects of Core Management and Fuel Handling, issued in 1985 as Safety Series No. 50-SG-010. It is also related to the Safety Guide on the Operating Organization for Nuclear Power Plants, which identifies fuel management as one of the various functions to be performed by the operating organization. The purpose of this Safety Guide is to provide recommendations for core management and fuel handling at nuclear power plants on the basis of current international good practice. The present Safety Guide addresses those aspects of fuel management activities that are necessary in order to allow optimum reactor core operation without compromising the limits imposed by the design safety considerations relating to the nuclear fuel and the plant as a whole. In this publication, 'core management' refers to those activities that are associated with fuel management in the core and reactivity control, and 'fuel handling' refers to the movement, storage and control of fresh and irradiated fuel. Fuel management comprises both core management and fuel handling. This Safety Guide deals with fuel management for all types of land based stationary thermal neutron power plants. It describes the safety objectives of core management, the tasks that have to be accomplished to meet these objectives and the activities undertaken to perform those tasks. It also deals with the receipt of fresh fuel, storage and handling of fuel and other core components, the loading and unloading of fuel and core components, and the insertion and removal of other reactor materials. In addition, it deals with loading a transport container with irradiated fuel and its preparation for transport off the site. Transport

  1. Differences in Hospital Managers', Unit Managers', and Health Care Workers' Perceptions of the Safety Climate for Respiratory Protection.

    Science.gov (United States)

    Peterson, Kristina; Rogers, Bonnie M E; Brosseau, Lisa M; Payne, Julianne; Cooney, Jennifer; Joe, Lauren; Novak, Debra

    2016-07-01

    This article compares hospital managers' (HM), unit managers' (UM), and health care workers' (HCW) perceptions of respiratory protection safety climate in acute care hospitals. The article is based on survey responses from 215 HMs, 245 UMs, and 1,105 HCWs employed by 98 acute care hospitals in six states. Ten survey questions assessed five of the key dimensions of safety climate commonly identified in the literature: managerial commitment to safety, management feedback on safety procedures, coworkers' safety norms, worker involvement, and worker safety training. Clinically and statistically significant differences were found across the three respondent types. HCWs had less positive perceptions of management commitment, worker involvement, and safety training aspects of safety climate than HMs and UMs. UMs had more positive perceptions of management's supervision of HCWs' respiratory protection practices. Implications for practice improvements indicate the need for frontline HCWs' inclusion in efforts to reduce safety climate barriers and better support effective respiratory protection programs and daily health protection practices. © 2016 The Author(s).

  2. 76 FR 35130 - Pipeline Safety: Control Room Management/Human Factors

    Science.gov (United States)

    2011-06-16

    ...: Control Room Management/Human Factors AGENCY: Pipeline and Hazardous Materials Safety Administration... the Control Room Management/Human Factors regulations in order to realize the safety benefits sooner... FR 5536). By this amendment to the Control Room Management/Human Factors (CRM) rule, an operator must...

  3. Integrating environment health and safety management at Petro-Canada

    International Nuclear Information System (INIS)

    Raymond, G.

    1993-01-01

    Petro-Canada has developed a tool to integrate, measure, and improve its management systems of environment, health, and safety (EH ampersand S). This tool, called the Total Loss Management System, is described in the areas of general management issues, policies and procedures, evaluations, organization, stewardship, issue management, and performance measures. Petro-Canada's policies on occupational health and safety are consistent with its environmental policy, being structured in the same way. An integrated audit system is used to cover health, safety, industrial hygiene, reliability, environment, and risk management. EH ampersand S matters are integrated at the corporate level in a separate department. Regional divisions review EH ampersand S performance every month, incidents are discussed, and preventive measures are taken as necessary. Regional performances are combined every quarter for ultimate presentation to the Petro-Canada board. New or emerging issues that may affect divisions are assigned an issue sponsor, a member of divisional management who makes sure the issue receives the resources necessary to study and define its impact. Examples of issues include soil contamination, process hazard management, and benzene exposure limits. Performance measures flow from the corporate environment and occupational health and safety policies, and come in two types: those that measure activities to improve performance and those that measure the outcome of the activities

  4. A user's manual to the PMBOK guide

    CERN Document Server

    Stackpole Snyder, Cynthia

    2013-01-01

    The must-have manual to understand and use the latest edition of the Fifth Edition The professional standard in the field of project management, A Guide to the Project Management Body of Knowledge (PMBOK® Guide-Fifth Edition) published by the Project Management Institute (PMI) serves as the ultimate resource for professionals and as a valuable studying and training device for students taking the PMP® Exam. A User''s Manual to the PMBOK® Guide takes the next logical step to act as a true user''s manual. With an accessible format and easy-to-understand language, it helps to not only distill es

  5. Quality management, a directive approach to patient safety.

    Science.gov (United States)

    Ayuso-Murillo, Diego; de Andrés-Gimeno, Begoña; Noriega-Matanza, Concha; López-Suárez, Rafael Jesús; Herrera-Peco, Ivan

    Nowadays the implementation of effective quality management systems and external evaluation in healthcare is a necessity to ensure not only transparency in activities related to health but also access to health and patient safety. The key to correctly implementing a quality management system is support from the managers of health facilities, since it is managers who design and communicate to health professionals the strategies of action involved in quality management systems. This article focuses on nursing managers' approach to quality management through the implementation of cycles of continuous improvement, participation of improvement groups, monitoring systems and external evaluation quality models (EFQM, ISO). The implementation of a quality management system will enable preventable adverse effects to be minimized or eliminated, and promote patient safety and safe practice by health professionals. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  6. Guidelines for Management Consulting Programs for Small-Scale Enterprise. Appropriate Technologies for Development. Manual M-14.

    Science.gov (United States)

    Vaughan, Gary L.

    This manual is designed to assist management consultants in working with small-scale entrepreneurs in developing countries. Addressed in an overview of the small-scale enterprise (SSE) are: the role of the SSE in third world development, problems of SSEs, and target firms. The second chapter deals with various forms of management assistance to…

  7. Automated Transportation Management System (ATMS) user's manual. Revision 1

    International Nuclear Information System (INIS)

    Smith, P.D.

    1994-01-01

    The Automated Transportation Management System (ATMS) Software User Guide (SUG) constitutes the user procedures for the ATMS System. Information in this document will be used by the user to operate the automated system. It is intended to be used as a reference manual to guide and direct the user(s) through the ATMS software product and its environment. The objectives of ATMS are as follows: to better support the Procurement function with freight rate information; to free Transportation Logistics personnel from routine activities such as the auditing and input of freight billing information; to comply with Headquarters Department of Energy-Inspector General (DOE-IG) audit findings to automate transportation management functions; to reduce the keying of data into the Shipment Mobility Accountability Collection (SMAC) database; and to provide automation for the preparing of Bill of Lading, Declaration of Dangerous Goods, Emergency Response Guide and shipping Labels using HM181 Retrieval of hazardous material table text information

  8. Relevance of microbial finished product testing in food safety management

    DEFF Research Database (Denmark)

    Zwietering, Marcel H.; Jacxsens, Liesbeth; Membré, Jeanne Marie

    2016-01-01

    Management of microbiological food safety is largely based on good design of processes, products and procedures. Finished product testing may be considered as a control measure at the end of the production process. However, testing gives only very limited information on the safety status of a food......-active way by implementing an effective food safety management system. For verification activities in a food safety management system, finished product testing may however be useful. For three cases studies; canned food, chocolate and cooked ham, the relevance of testing both of finished products....... If a hazardous organism is found it means something, but absence in a limited number of samples is no guarantee of safety of a whole production batch. Finished product testing is often too little and too late. Therefore most attention should be focussed on management and control of the hazards in a more pro...

  9. Safety Culture for Regulator Competence Management in Embarking States

    International Nuclear Information System (INIS)

    Kandil, M.

    2016-01-01

    Full text: Safety is based on preventive actions where the ability of a regulatory body to fulfill its responsibilities depends largely on the competence of its staff. Building employees’ skills and knowledge is an investment for each employee and in the future of the organization. This building must be the competence of its staff integration with their safety culture, the essential to ensure competent human resources as required in the IAEA safety standards and other documents, in which the need and importance of ensuring regulatory competence is emphasized. As it involves both operational and management issues, safety culture is a sensitive topic for regulators whose role is to ensure compliance with safety requirements and not to intervene in management decisions. A number of embarking States are aspiring to develop nuclear power generation and this means that, among other things, regulatory bodies have to be established and rapidly expanded. This paper reports major considerations on the integration of safety culture with an adequate competence management system for regulators in embarking states. (author

  10. The Management System for Facilities and Activities. Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements for management systems that integrate safety, health, security, quality assurance and environmental objectives. A successful management system ensures that nuclear safety matters are not dealt with in isolation but are considered within the context of all these objectives. The aim of this publication is to assist Member States in establishing and implementing effective management systems that integrate all aspects of managing nuclear facilities and activities in a coherent manner. It details the planned and systematic actions necessary to provide adequate confidence that all these requirements are satisfied. Contents: 1. Introduction; 2. Management system; 3. Management responsibility; 4. Resource management; 5. Process implementation; 6. Measurement, assessment and improvement.

  11. Swedish REGULATORY APPROACH TO SAFETY Assessment AND SEVERE ACCIDENT MANAGEMENT

    International Nuclear Information System (INIS)

    Frid, W.; Sandervaag, O.

    1997-01-01

    The Swedish regulatory approach to safety assessment and severe accident management is briefly described. The safety assessment program, which focuses on prevention of incidents and accidents, has three main components: periodic safety reviews, probabilistic safety analysis, and analysis of postulated disturbances and accident progression sequences. Management and man-technology-organisation issues, as well as inspections, play a key role in safety assessment. Basis for severe accident management were established by the Government decisions in 1981 and 1986. By the end of 1988, the severe accident mitigation systems and emergency operating procedures were implemented at all Swedish reactors. The severe accident research has continued after 1988 for further verification of the protection provided by the systems and reduction of remaining uncertainties in risk dominant phenomena

  12. Interface management: Effective communication to improve process safety

    International Nuclear Information System (INIS)

    Kelly, Brian; Berger, Scott

    2006-01-01

    Failure to successfully communicate maintenance activities, abnormal conditions, emergency response procedures, process hazards, and hundreds of other items of critical information can lead to disaster, regardless of the thoroughness of the process safety management system. Therefore, a well-functioning process safety program depends on maintaining successful communication interfaces between each involved employee or stakeholder and the many other employees or stakeholders that person must interact with. The authors discuss a process to identify the critical 'Interfaces' between the many participants in a process safety management system, and then to establish a protocol for each critical interface

  13. Using objectives for managing safety and health

    International Nuclear Information System (INIS)

    Shoemaker, D.R.

    1990-01-01

    This morning I am going to talk about the International Mine Safety Rating System of the International Loss Control Institute. At the Questa mine we simply call it the ILCI System. The ILCI System has been in effect at Questa since 1982. Today, I want to offer you an outline of the system and a little bit of our experience with the system at Molycorp. In 1965, Molycorp started large-scale open-pit mining at Questa, New Mexico. In 1978 the decision was made to phase out surface mining and develop a large underground mine. Construction started in 1979, and production commenced in 1983. In 1982, with a work force approaching 900, and a 15-man safety department, we had an accident frequency rate twice the national average. At that point, as we were preparing to start underground production, we decided to become part of the International Safety Rating System. The International Safety Rating System (ISRS) is a modern safety program evaluation system. It provides the means for a systematic analysis of each element of the safety program to determine the extent and quality of management control. Auditing has long been an accepted management practice to ensure that critical business operations are performed in an efficient and profitable manner. Likewise, management has inadequate verification of the effectiveness of a safety program without the kind of audit this rating system provides. Today, largely because of the ILCI system our accident/incident rate has dropped to almost half the national average. Our production costs are nearly half of their historical high. A significant part of the savings has come from decreased expenditures for total accident losses as a result of our lower accident rates

  14. [Karachi Nuclear Power Plant (KANUPP), Safety Management

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S M [Karachi Nuclear Power Plant (KANUPP), Karachi (Pakistan)

    1997-12-01

    The present regime for CANDU safety management in Pakistan has evolved in line with contemporary international practice, and is essential adequate to ensure the continued safety of KANUPP and other future CANDU reactors, as confirmed by international reviews as well. But the small size of Pakistan nuclear power program poses limitations in developing - expert judgment in analysis of in-service inspection data; and own methodology for CANDU safety analysis.

  15. [Karachi Nuclear Power Plant (KANUPP), Safety Management

    International Nuclear Information System (INIS)

    Hasan, S.M.

    1997-01-01

    The present regime for CANDU safety management in Pakistan has evolved in line with contemporary international practice, and is essential adequate to ensure the continued safety of KANUPP and other future CANDU reactors, as confirmed by international reviews as well. But the small size of Pakistan nuclear power program poses limitations in developing - expert judgment in analysis of in-service inspection data; and own methodology for CANDU safety analysis

  16. Review of nuclear regulatory activities associated with safety culture and the management of safety in the United Kingdom

    International Nuclear Information System (INIS)

    Woodhouse, P.A.

    1995-01-01

    This paper describes some of the key regulatory activities which have taken place in the United Kingdom in recent years in the areas of safety culture and management of safety. It explains how the UK's nuclear licensing regime, regulated and enforced by the Nuclear Installations Inspectorate, (NII), provides the framework for a viable safety management system and identifies a management of safety model which a NII Task Force has developed. It finally identifies further work which is being undertaken by the NII. (author). 4 refs, 2 figs

  17. [Medical safety management in the setting of a clinical reference laboratory--risk management efforts in clinical testing].

    Science.gov (United States)

    Seki, Akira; Miya, Tetsumasa

    2011-03-01

    As a result of recurring medical accidents, risk management in the medical setting has been given much attention. The announcement in August, 2000 by the Ministry of Health committee for formulating a standard manual for risk management, of a "Risk management manual formulation guideline" has since been accompanied by the efforts of numerous medical testing facilities to develop such documents. In 2008, ISO/TS 22367:2008 on "Medical laboratories-Reduction of error through risk management and continual improvement" was published. However, at present, risk management within a medical testing facility stresses the implementation of provisional actions in response to a problem after it has occurred. Risk management is basically a planned process and includes "corrective actions" as well as "preventive actions." A corrective action is defined as identifying the root cause of the problem and removing it, and is conducted to prevent the problem from recurring. A preventive action is defined as identifying of the any potential problem and removing it, and is conducted to prevent a problem before it occurs. Presently, I shall report on the experiences of our laboratory regarding corrective and preventive actions taken in response to accidents and incidents, respectively.

  18. Indoor Air Quality Manual.

    Science.gov (United States)

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  19. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    International Nuclear Information System (INIS)

    Rao, Suman

    2007-01-01

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly

  20. Intranet-based safety documentation in management of major hazards and occupational health and safety.

    Science.gov (United States)

    Leino, Antti

    2002-01-01

    In the European Union, Council Directive 96/82/EC requires operators producing, using, or handling significant amounts of dangerous substances to improve their safety management systems in order to better manage the major accident potentials deriving from human error. A new safety management system for the Viikinmäki wastewater treatment plant in Helsinki, Finland, was implemented in this study. The system was designed to comply with both the new safety liabilities and the requirements of OHSAS 18001 (British Standards Institute, 1999). During the implementation phase experiences were gathered from the development processes in this small organisation. The complete documentation was placed in the intranet of the plant. Hyperlinks between documents were created to ensure convenience of use. Documentation was made accessible for all workers from every workstation.

  1. Regulations and Procedures Manual

    Energy Technology Data Exchange (ETDEWEB)

    Young, Lydia J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-07-25

    The purpose of the Regulations and Procedures Manual (RPM) is to provide LBNL personnel with a reference to University and Lawrence Berkeley National Laboratory (LBNL or Laboratory) policies and regulations by outlining normal practices and answering most policy questions that arise in the day-to-day operations of Laboratory organizations. Much of the information in this manual has been condensed from detail provided in LBNL procedure manuals, Department of Energy (DOE) directives, and Contract DE-AC02-05CH11231. This manual is not intended, however, to replace any of those documents. RPM sections on personnel apply only to employees who are not represented by unions. Personnel policies pertaining to employees represented by unions may be found in their labor agreements. Questions concerning policy interpretation should be directed to the LBNL organization responsible for the particular policy. A link to the Managers Responsible for RPM Sections is available on the RPM home page. If it is not clear which organization is responsible for a policy, please contact Requirements Manager Lydia Young or the RPM Editor.

  2. Management of National Nuclear Power Programs for assured safety

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, T.J. (ed.)

    1985-01-01

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  3. Management of National Nuclear Power Programs for assured safety

    International Nuclear Information System (INIS)

    Connolly, T.J.

    1985-01-01

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA)

  4. Relating safety, productivity and company type for motor-manual logging operations in the Italian Alps.

    Science.gov (United States)

    Montorselli, Niccolò Brachetti; Lombardini, Carolina; Magagnotti, Natascia; Marchi, Enrico; Neri, Francesco; Picchi, Gianni; Spinelli, Raffaele

    2010-11-01

    The study compared the performance of four different logging crews with respect to productivity, organization and safety. To this purpose, the authors developed a data collection method capable of providing a quantitative analysis of risk-taking behavior. Four crews were tested under the same working conditions, representative of close-to-nature alpine forestry. Motor-manual working methods were applied, since these methods are still prevalent in the specific study area, despite the growing popularity of mechanical processors. Crews from public companies showed a significantly lower frequency of risk-taking behavior. The best safety performance was offered by the only (public) crew that had been administered formal safety training. The study seems to deny the common prejudice that safety practice is inversely proportional to productivity. Instead, productivity is increased by introducing more efficient working methods and equipment. The quantitative analysis of risk-taking behavior developed in this study can be applied to a number of industrial fields besides forestry. Characterizing risk-taking behavior for a given case may eventually lead to the development of custom-made training programmes, which may address problem areas while avoiding that the message is weakened by the inclusion of redundant information. In the specific case of logging crews in the central Alps, the study suggests that current training courses may be weak on ergonomics, and advocates a staged training programme, focusing first on accident reduction and then expanding to the prevention of chronic illness. 2010 Elsevier Ltd. All rights reserved.

  5. Health and Safety Audit Design Manual

    Energy Technology Data Exchange (ETDEWEB)

    Ternes, Mark P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Langley, Brandon R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Accawi, Gina K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Malhotra, Mini [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-01

    The Health and Safety Audit is an electronic audit tool developed by the Oak Ridge National Laboratory to assist in the identification and selection of health and safety measures when a home is being weatherized (i.e., receiving home energy upgrades), especially as part of the US Department of Energy (DOE) Weatherization Assistance Program, or during home energy-efficiency retrofit or remodeling jobs. The audit is specifically applicable to existing single-family homes (including mobile homes), and is generally applicable to individual dwelling units in low-rise multifamily buildings. The health and safety issues covered in the audit are grouped in nine categories: mold and moisture, lead, radon, asbestos, formaldehyde and volatile organic compounds (VOCs), combustion, pest infestation, safety, and ventilation. Development of the audit was supported by the US Department of Housing and Urban Development Office of Healthy Homes and Lead Hazard Control and the DOE Weatherization Assistance Program.

  6. Spent Nuclear Fuel (SNF) Cold Vacuum Drying (CVD) Facility Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-07-02

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, Cold Vacuum Drying Facility Design Requirements, Rev. 4, and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  7. ASN guide project. Safety policy and management in INBs (base nuclear installations)

    International Nuclear Information System (INIS)

    2010-01-01

    This guide presents the recommendations of the French Nuclear Safety Authority (ASN) in the field of safety policy and management (PMS) for base nuclear installations (INBs). It gives an overview and comments of some prescriptions of the so-called INB order and PMS decision. These regulatory texts define a framework for provisions any INB operator must implement to establish his safety policy, to define and implement a system which allows the safety to be maintained, the improvement of his INB safety to be permanently looked for. The following issues are addressed: operator's safety policy, identification of elements important for safety, of activities pertaining to safety, and of associated requirements, safety management organization and system, management of activities pertaining to safety, documentation and archiving

  8. A case for safety leadership team training of hospital managers.

    Science.gov (United States)

    Singer, Sara J; Hayes, Jennifer; Cooper, Jeffrey B; Vogt, Jay W; Sales, Michael; Aristidou, Angela; Gray, Garry C; Kiang, Mathew V; Meyer, Gregg S

    2011-01-01

    Delivering safe patient care remains an elusive goal. Resolving problems in complex organizations like hospitals requires managers to work together. Safety leadership training that encourages managers to exercise learning-oriented, team-based leadership behaviors could promote systemic problem solving and enhance patient safety. Despite the need for such training, few programs teach multidisciplinary groups of managers about specific behaviors that can enhance their role as leadership teams in the realm of patient safety. The aims of this study were to describe a learning-oriented, team-based, safety leadership training program composed of reinforcing exercises and to provide evidence confirming the need for such training and demonstrating behavior change among management groups after training. Twelve groups of managers from an academic medical center based in the Northeast United States were randomly selected to participate in the program and exposed to its customized, experience-based, integrated, multimodal curriculum. We extracted data from transcripts of four training sessions over 15 months with groups of managers about the need for the training in these groups and change in participants' awareness, professional behaviors, and group activity. Training transcripts confirmed the need for safety leadership team training and provided evidence of the potential for training to increase targeted behaviors. The training increased awareness and use of leadership behaviors among many managers and led to new routines and coordinated effort among most management groups. Enhanced learning-oriented leadership often helped promote a learning orientation in managers' work areas. Team-based training that promotes specific learning-oriented leader behaviors can promote behavioral change among multidisciplinary groups of hospital managers.

  9. Effect of Occupational Health and Safety Management System on Work-Related Accident Rate and Differences of Occupational Health and Safety Management System Awareness between Managers in South Korea's Construction Industry.

    Science.gov (United States)

    Yoon, Seok J; Lin, Hsing K; Chen, Gang; Yi, Shinjea; Choi, Jeawook; Rui, Zhenhua

    2013-12-01

    The study was conducted to investigate the current status of the occupational health and safety management system (OHSMS) in the construction industry and the effect of OHSMS on accident rates. Differences of awareness levels on safety issues among site general managers and occupational health and safety (OHS) managers are identified through surveys. The accident rates for the OHSMS-certified construction companies from 2006 to 2011, when the construction OHSMS became widely available, were analyzed to understand the effect of OHSMS on the work-related injury rates in the construction industry. The Korea Occupational Safety and Health Agency 18001 is the certification to these companies performing OHSMS in South Korea. The questionnaire was created to analyze the differences of OHSMS awareness between site general managers and OHS managers of construction companies. The implementation of OHSMS among the top 100 construction companies in South Korea shows that the accident rate decreased by 67% and the fatal accident rate decreased by 10.3% during the period from 2006 to 2011. The survey in this study shows different OHSMS awareness levels between site general managers and OHS managers. The differences were motivation for developing OHSMS, external support needed for implementing OHSMS, problems and effectiveness of implementing OHSMS. Both work-related accident and fatal accident rates were found to be significantly reduced by implementing OHSMS in this study. The differences of OHSMS awareness between site general managers and OHS managers were identified through a survey. The effect of these differences on safety and other benefits warrants further research with proper data collection.

  10. Remodeling Strategic Staff Safety and Security Risks Management in Nigerian Tertiary Institutions

    Directory of Open Access Journals (Sweden)

    Sunday S. AKPAN

    2015-10-01

    Full Text Available This paper examined safety and security risk management in tertiary institutions in Nigeria. The frequent attacks at workplace, especially schools, have placed safety and security in the front burner of discussion in both business and political circles. This therefore, forms the imperative for the conduct of this study. The work adopted a cross sectional survey research design and collected data from respondents who are security personnel of the University of Uyo. Analysis of data was done with simple percentage statistics while the research hypotheses were tested with mean and simple regression and correlation statistics. The findings of the study revealed that assassination, kidnappings and bombings were principal risk incidents threatening the safety and security of staff in University of Uyo. A significant positive relationship was found between the funding of security management and workers’ performance. It was discovered specifically that employment screening, regular training of security personnel, regular safety and security meetings and strategic security policy formation were the main strategies for managing safety and security in University of Uyo. The paper concluded that safety and security management and control involves every worker (management and staff of University of Uyo. It was recommended, among others, that management should be more committed to safety and security management in the University by means of making safety and security issues an integral part of University’s strategic plan and also by adopting the management line model – one form of management structure-where safety and security are located, with other general management responsibilities. This way, the resurgent cases of kidnapping, hired assassination, etc. would be reduced if not completely eradicated in the University.

  11. Drug Safety Crises Management in Pharmacovigilance

    Directory of Open Access Journals (Sweden)

    Gloria Shalviri

    2018-05-01

    Full Text Available Background: Adverse drug events can cause serious consequences including death. A published report by Lazarou et al in 1998 showed that adverse drug events were the 4th to 6th leading cause of death in the United States. These events may lead to drug safety crises in some issues, which need to take crises management process for solving the problem and/or preventing similar events.Objectives: To evaluate nature of drug safety crises based on adverse events reported to Iranian Pharmacovigilance Center from 1999 through 2012. To mention success and failure outcomes of crises management process taken against detected crises.Methods: All adverse drug events received by Iranian Pharmacovigilance Center from 1999 through 2012 were evaluated for reports with fatal outcome. All alerting letters and manuscripts published by the Center during the same period were reviewed for detailed information on detected crises. World Health Organization definition was used for detecting drug safety crises.Results: Among 42036 registered cases in our database, 463 deaths were recorded. The most frequent suspected drug for adverse events with fatal outcome was ceftriaxone (100 cases. Ten different drug safety crises issues were detected during the study period and their successful or failure outcomes were evaluated. There were 112 issued alerting letters and 17 published manuscript during the same period which was monitored for detailed information.  Conclusion: It is necessary for national pharmacovigilance centers to have prepared programs for crises management. This could be useful for reducing drug related mortality.

  12. Advanced Test Reactor Safety Basis Upgrade Lessons Learned Relative to Design Basis Verification and Safety Basis Management

    International Nuclear Information System (INIS)

    G. L. Sharp; R. T. McCracken

    2004-01-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The reactor also provides other irradiation services such as radioisotope production. The ATR and its support facilities are located at the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL). An audit conducted by the Department of Energy's Office of Independent Oversight and Performance Assurance (DOE OA) raised concerns that design conditions at the ATR were not adequately analyzed in the safety analysis and that legacy design basis management practices had the potential to further impact safe operation of the facility.1 The concerns identified by the audit team, and issues raised during additional reviews performed by ATR safety analysts, were evaluated through the unreviewed safety question process resulting in shutdown of the ATR for more than three months while these concerns were resolved. Past management of the ATR safety basis, relative to facility design basis management and change control, led to concerns that discrepancies in the safety basis may have developed. Although not required by DOE orders or regulations, not performing design basis verification in conjunction with development of the 10 CFR 830 Subpart B upgraded safety basis allowed these potential weaknesses to be carried forward. Configuration management and a clear definition of the existing facility design basis have a direct relation to developing and maintaining a high quality safety basis which properly identifies and mitigates all hazards and postulated accident conditions. These relations and the impact of past safety basis management practices have been reviewed in order to identify lessons learned from the safety basis upgrade process and appropriate actions to resolve possible concerns with respect to the current ATR safety

  13. Study on coal mine macro, meso and micro safety management system

    Directory of Open Access Journals (Sweden)

    Longkang Wang

    2016-03-01

    Full Text Available In recent years, the coal mine safety production situation in our country improved year by year, but severe accidents still occurred; the accidents caused great economic loss to the national economy. According to statistical analysis, almost all of the coal mine accidents will expose the hidden danger in before, most of the accidents caused due to safety management not reaching the designated position and the hidden danger management does not take any decision in time. Based on the coal mine safety management holes in our country, the coal mine macro, meso and micro safety management system was established in this paper, which includes meaning and conception of the theories of the macro, meso and micro safety management, and also includes the matching hardware equipment, in order to achieve the hidden danger's closed-loop control and dynamic early warning in the process of coal mine production.

  14. Nuclear material operations manual

    International Nuclear Information System (INIS)

    Tyler, R.P.

    1981-02-01

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  15. Nuclear material operations manuals

    International Nuclear Information System (INIS)

    Tyler, R.P.

    1979-06-01

    This manual is intended to provide a concise and comprehensive documentation of the operating procedures currently practiced at Sandia Laboratories with regard to the management, control, and accountability of radioactive and nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  16. Integrated Management System Incorporating Quality Management and Management of Environment, Health and Occupational Safety

    International Nuclear Information System (INIS)

    Manchev, B.; Nenkova, B.; Tomov, E.

    2012-01-01

    Risk Engineering Ltd is a Bulgarian private company founded in 1990 to provide engineering and consulting services applicable to each and every field of the energy sector. Since its establishment Risk Engineering Ltd develops, implement and apply a System for quality assurance, certified for the first time by BVQI (now Bureau Veritas Certification) in 1999 for conformity with the standard ISO 9001:1994. Later on, in connection with the revision of the standards of ISO 9000 series and introduction of the standard ISO 9001:2000 a Quality Management System in conformity with the standard ISO 9001:2000 was developed, introduced and certified. At present, Risk Engineering Ltd has got developed, documented, introduced and certified by Lloyd's Register Quality Assurance (LRQA) Quality Management System in compliance with ISO 9001:2008 on the process approach basis. On this basis and including the requirements of the ISO 14001:2004 (regarding the environment) and OHSAS 18001:2007 (regarding the health and occupational safety), Risk Engineering Ltd has developed and introduced Integrated Management System aim at achieving and demonstrating good results regarding protection of the environment, health and occupational safety. The processes under control by the Integrated Management System and applicable at the company are divided in two general types: A) Management processes: Strategic management and Management of the human resources. B) Processes describing the main activities: design/development process; project management; management of industrial projects and technical infrastructure project; construction, installation, repair and operation of power industry facilities; commercial activities and marketing; investigation of energy efficiency of industrial systems and certification of buildings regarding energy efficiency; consulting activity in the field of industry and energy as well as consultant in accordance with the Law of the Spatial Planning; management of the

  17. MATHEMATICAL APPARATUS FOR KNOWLEDGE BASE PROJECT MANAGEMENT OF OCCUPATIONAL SAFETY

    Directory of Open Access Journals (Sweden)

    Валентина Николаевна ПУРИЧ

    2015-05-01

    Full Text Available The occupational safety project (OSP management is aimed onto a rational choice implementation. With respect to the subjectivity of management goals the project selection is considered as a minimum formalization level information process, The proposed project selection model relies upon the enterprise’s occupational and industrial safety assessment using fuzzy logic and linguistic variables based on occupational safety knowledge base.

  18. 33 CFR 96.230 - What objectives must a safety management system meet?

    Science.gov (United States)

    2010-07-01

    ... management system meet? 96.230 Section 96.230 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.230 What objectives must a safety...

  19. The Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management. An instrument to achieve a global safety

    International Nuclear Information System (INIS)

    Risoluti, P.

    2006-01-01

    The Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management (the Joint Convention) is the first legally binding international treaty in the area of radioactive material management. It was adopted by a Diplomatic Conference in September 1997 and opened for signature on 29 September 1997. The Convention entered into force on 18 June 1998, and to date (May 2006) has been ratified by 41 countries. The Joint Convention applies to spent fuel and radioactive waste resulting from civilian application. Its principal aim is to achieve and maintain a high degree of safety in their management worldwide. The Convention is an incentive instrument, not designed to ensure fulfilment of obligations through control and sanction, but by a volunteer peer review mechanism. The obligations of the Contracting Parties are mainly based on the international safety standards developed by the IAEA in past decades. The Convention is of interest of all countries generating radioactive waste. Therefore it is relevant not only for those using nuclear power, but for any country where application of nuclear energy in education, agriculture, medicine and industry is currently used. Obligations of Contracting Parties include attending a Review Meeting held every three years and prepare National Reports for review by the other Contracting Parties. In the National Reports basic information on inventory and facilities for management of radioactive materials has to be provided. Countries with small nuclear power and/or research programs or countries having radioactive materials only from nuclear application on medicine, agriculture or conventional industry, can benefit from the exchange of information and the technical knowledge gained by the reporting procedure set up by the Convention. The second Review Meeting is to be held at IAEA headquarters from 15 to 26 May 2006. This paper presents the objectives and the implementation status of the Convention, the

  20. Safety of radioactive waste management. Proceedings of an international conference

    International Nuclear Information System (INIS)

    2000-01-01

    The principal objective of the Conference was to enable members of the scientific community and representatives of facilities which produce radioactive waste, of bodies responsible for radioactive waste management, of nuclear regulatory bodies and of public interest groups, among others, to engage in an open dialogue. The open dialogue which took place may, by providing policy and decision makers with a basis for political action, prove to be an important step in the search for the international consensus so essential in the area of radioactive waste management. The relevant policies and activities of the IAEA, the European Commission, the OECD Nuclear Energy Agency and the World Health Organization were presented. The evolution, under the aegis of the IAEA, of a de facto international radiation and nuclear safety regime was noted. In the area of radioactive waste safety, this regime consists of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, the body of international waste safety standards established by the IAEA and other international organizations, and the IAEA's mechanisms for providing for the application of those standards. The topics covered by the Conference were: Current international co-operative efforts; Recommendations from the International Commission on Radiological Protection; Recommendations from the International Nuclear Safety Advisory Group; Conclusions and recommendations of the International Symposium on the Restoration of Environments with Radioactive Residues; Siting of radioactive waste management facilities; Participation of interested parties; Legislative and general radiation safety aspects; Removal of material from regulatory control (exclusion, exemption and clearance); Predisposal management (dilution, recycling, transmutation, etc.); Near surface disposal; Residues from the mining and processing of radioactive ores; Long term institutional control; Geological disposal

  1. Methodology for Safety Assessment Applied to Predisposal Waste Management. Report of the Results of the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) 2004–2010)

    International Nuclear Information System (INIS)

    2015-12-01

    Report of the Results of the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) (2004–2010) The IAEA’s progamme on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) focused on approaches and mechanisms for application of safety assessment methodologies for the predisposal management of radioactive waste. The initial outcome of the SADRWMS Project was achieved through the development of flowcharts, which have since been incorporated into IAEA Safety Standards Series No. GSG-3, Safety Case and Safety Assessment for Predisposal Management of Radioactive Waste. In 2005, an initial specification was developed for the Safety Assessment Framework (SAFRAN) software tool to apply the SADRWMS flowcharts. In 2008, an in-depth application of the SAFRAN tool and the SADRWMS methodology was carried out on the predisposal management facilities of the Thailand Institute of Nuclear Technology Radioactive Waste Management Centre (TINT Facility). This publication summarizes the content and outcomes of the SADRWMS programme. The Chairman’s Report of the SADRWMS Project and the Report of the TINT test case are provided on the CD-ROM which accompanies this report

  2. What Do Managers Really Want?

    International Nuclear Information System (INIS)

    Haberstok, J.K.

    1997-01-01

    Fluor Daniel Hanford, Inc. (FDH) is the Management Contractor for the Project Hanford Management Contract for the Department of Energy - Richland Operations Office. The Central Training Organization within FDH provides cross-cutting training services for its own personnel as well as for six subcontractors and six enterprise companies performing project work across the 560 square miles of the Hanford Site near Richland, Washington. Manager Safety Training has been presented by the Environmental, Safety and Health Training (ES and HT) team to managers, supervisors, team leads, and other personnel across the Hanford Site for over four years. The training is intended to heighten the awareness of management toward both identified (via accident/injury reports) and potential safety issues and concerns. Managers need to be aware of their responsibilities and to know where to go/who to contact (for example, company manuals or facility safety representatives) for additional information. At the conclusion of each training session, students are asked to complete a Level I evaluation (Kirkpatrick Model, see sidebar) and this feedback is reviewed by the instructors Commonly, revisions to the course content and presentation format are made solely by the ES and HT instructors and their manager each year

  3. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Suman [Risk Analyst (India)]. E-mail: sumanashokrao@yahoo.co.in

    2007-04-11

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly.

  4. Spent nuclear fuel project cold vacuum drying facility operations manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  5. Instrumentation and Control Life Cycle Management Plan Methodology. Volume 1, Manual: Final report

    International Nuclear Information System (INIS)

    Quick, D.S.; Murray, S.; Florio, F.; Bliss, M.J.

    1995-08-01

    This methodology manual describes how to develop a Life Cycle Management Plan (LCMP). An LCMP is a long-term strategic plan that can be developed for a nuclear power plant to cost-effectively maintain and upgrade its aging or obsolete Instrumentation and Control (I ampersand C) systems. An LCMP defines the utility's mission and objectives in regards to long range I ampersand C planning, as well as the plant's present configuration (I ampersand C systems, networks, man machine interfaces, etc.), its desired future I ampersand C systems, a long term I ampersand C maintenance strategy, and initial upgrade priorities and schedules to cost-effectively implement system upgrades. This manual is accompanied by a workbook (EPRI TR-105555-V2) which contains various worksheets, outlines, and generic interview questions that aid in the LCNW development process

  6. Cesium legacy safety project management work plan

    International Nuclear Information System (INIS)

    Durham, J.S.

    1998-01-01

    This Management Work Plan (MWP) describes the process flow, quality assurance controls, and the Environment, Safety, and Health requirements of the Cesium Legacy Safety Project. This MWP provides an overview of the project goals and methods for repackaging the non-conforming Type W overpacks and packaging the CsCl powder and pellets. This MWP is not intended to apply to other activities associated with the CsCl Legacy Safety Program (i.e., clean out of South Cell)

  7. Managing risk in healthcare: understanding your safety culture using the Manchester Patient Safety Framework (MaPSaF).

    Science.gov (United States)

    Parker, Dianne

    2009-03-01

    To provide sufficient information about the Manchester Patient Safety Framework (MaPSaF) to allow healthcare professionals to assess its potential usefulness. The assessment of safety culture is an important aspect of risk management, and one in which there is increasing interest among healthcare organizations. Manchester Patient Safety Framework offers a theory-based framework for assessing safety culture, designed specifically for use in the NHS. The framework covers multiple dimensions of safety culture, and five levels of safety culture development. This allows the generation of a profile of an organization's safety culture in terms of areas of relative strength and challenge, which can be used to identify focus issues for change and improvement. Manchester Patient Safety Framework provides a useful method for engaging healthcare professionals in assessing and improving the safety culture in their organization, as part of a programme of risk management.

  8. Safety culture aspects of managing for safety. Experience of a large nuclear reprocessing site

    International Nuclear Information System (INIS)

    Rycraft, H.S.

    1996-01-01

    The Nuclear Industry is going through turbulent times both in terms of public acceptance and business issues. Safety is one area which impacts on whether the business is allowed to continue, and how an organisation organizes itself. The need to cut costs to make nuclear power a viable energy resource, has forced the nuclear utilities to review manning policies, and management style, and in particular how to maintain safety standards during a period of change, and ultimately support continuing improvement of standards. The shrinking workforce requires a new style of management, one that depends more on the people of the organisation taking responsibility for safety at all levels of the organisation. Not only personal safety but the safety of their colleagues, general public and the environment. The safety culture of an organisation is indivisible from the company culture, each aspect of a culture influences the whole and so the balance between business, safety and quality, has to be managed. BNFL provides a full fuel cycle service to nuclear power plants, and associated services to many national and international organisations. The following notes are taken from the work carried out in the company, and mostly at the Nuclear Reprocessing and Waste storage Site at Sellafield, based in the North West of England. Following the recent re-organisation, the site now employs 6200 people and has a further 1500 contractors working on construction activities on the site. Activities on the site range from remote handling to hands on tasks, involving highly active materials to low level waste. (author)

  9. Performance scorecard for occupational safety and health management systems

    Directory of Open Access Journals (Sweden)

    Hernâni Veloso Neto

    2012-06-01

    Full Text Available The pro-active and systematic search for best performances should be the two assumptions of any management system, so safety and health management in organizations must also be guided by these same precepts. However, the scientific production evidences that the performance evaluation processes in safety and health continue to be guided, in their essence, by intermittency, reactivity and negativity, which are not consistent with the assumptions referenced above. Therefore, it is essential that health and safety at work management systems (HSW MS are structured from an active and positive viewpoint, focusing on continuous improvement. This implies considering performance evaluation processes that incorporate, on the one hand, monitoring, measuring and verification procedures, and on the other hand, structured matrixes of results that capture the key factors of success, by mobilizing both reactive and proactive indicators. One of the instruments that can fulfill these precepts of health and safety performance evaluation is the SafetyCard, a performance scorecard for HSW MS that we developed and will seek to outline and demonstrate over this paper.

  10. L-059: EPR-First responders: Radiological emergency manual for first responders

    International Nuclear Information System (INIS)

    2011-01-01

    This conference is an emergency manual review about the first responders knowledge. The IAEA safety standard manuals, the medical gestion, the security forces and the fast communications are very important in a radiological emergency

  11. Development of a Safety Assessment Information System for the Management of Periodic Safety Assessment Activities

    International Nuclear Information System (INIS)

    Song, Tae Young

    2007-01-01

    At present, the 10-year Periodic Safety Review(PSR) has been performing to confirm all the aspects of safety issues for all the operating plants in compliance with domestic nuclear law of article 23, subarticle 3. For each plant, in addition, Probabilistic Safety Assessment(PSA) and Severe Accident Management Guideline(SAMG) are being implemented and revised periodically to reflect the latest safety level according to principle fulfillment of severe accident policy statement. The assessment reports, as one of outcomes from these activities, are submitted into and reviewed by domestic regulatory body. During reviewing (in-office duty) and licensing (regulatory duty) process, a large number of outcomes of which most are the formal technical reports and licensing materials, are inevitably produced. Moreover, repeated review process over the plants can make them accumulated and produce a variety of documents additionally. This circumstance motivates to develop effective tool or system for the management of these reports and related technical documents for the future use in licensing process and for subsequent plant assessments. This paper presents the development status of Safety Assessment Information System(SAIS) which manages safety-related documents of PSR, PSA and SAMG for practical use for experienced engineers in charge of these areas

  12. Development of a Safety Assessment Information System for the Management of Periodic Safety Assessment Activities

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Young [Nuclear Engineering and Technology Institute, Daejeon (Korea, Republic of)

    2007-07-01

    At present, the 10-year Periodic Safety Review(PSR) has been performing to confirm all the aspects of safety issues for all the operating plants in compliance with domestic nuclear law of article 23, subarticle 3. For each plant, in addition, Probabilistic Safety Assessment(PSA) and Severe Accident Management Guideline(SAMG) are being implemented and revised periodically to reflect the latest safety level according to principle fulfillment of severe accident policy statement. The assessment reports, as one of outcomes from these activities, are submitted into and reviewed by domestic regulatory body. During reviewing (in-office duty) and licensing (regulatory duty) process, a large number of outcomes of which most are the formal technical reports and licensing materials, are inevitably produced. Moreover, repeated review process over the plants can make them accumulated and produce a variety of documents additionally. This circumstance motivates to develop effective tool or system for the management of these reports and related technical documents for the future use in licensing process and for subsequent plant assessments. This paper presents the development status of Safety Assessment Information System(SAIS) which manages safety-related documents of PSR, PSA and SAMG for practical use for experienced engineers in charge of these areas.

  13. Managing Safety in Small and Medium Enterprises

    DEFF Research Database (Denmark)

    Stephen, legg; Olsen, Kirsten Bendix; Ian S., laird

    2015-01-01

    on safety in SMEs, showing how most current policy and legislation on occupational health and safety (OSH) and the work environment is based on large enterprises and that there is a relative paucity of research on OSH in SMEs. In a summary of current knowledge, it is argued that modern OHS legislation......This paper presents a conceptual model for increasing acceptable working environments for SMEs. It also acts as an editorial for the special issue of Safety Science on ‘Managing safety in small and medium enterprises (SMEs)’. It describes how seven of the ten papers in the special issue originate...

  14. Health and Safety Management for Small-scale Methane Fermentation Facilities

    Science.gov (United States)

    Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko

    In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.

  15. National Machine Guarding Program: Part 2. Safety management in small metal fabrication enterprises.

    Science.gov (United States)

    Parker, David L; Yamin, Samuel C; Brosseau, Lisa M; Xi, Min; Gordon, Robert; Most, Ivan G; Stanley, Rodney

    2015-11-01

    Small manufacturing businesses often lack important safety programs. Many reasons have been set forth on why this has remained a persistent problem. The National Machine Guarding Program (NMGP) was a nationwide intervention conducted in partnership with two workers' compensation insurers. Insurance safety consultants collected baseline data in 221 business using a 33-question safety management audit. Audits were completed during an interview with the business owner or manager. Most measures of safety management improved with an increasing number of employees. This trend was particularly strong for lockout/tagout. However, size was only significant for businesses without a safety committee. Establishments with a safety committee scored higher (55% vs. 36%) on the safety management audit compared with those lacking a committee (P < 0.0001). Critical safety management programs were frequently absent. A safety committee appears to be a more important factor than business size in accounting for differences in outcome measures. © 2015 The Authors. American Journal of Industrial Medicine Published by Wiley Periodicals, Inc.

  16. Patient Safety Based Knowledge Management SECI to Improve Nusrsing Students Competency

    Directory of Open Access Journals (Sweden)

    Joanggi Wiriatarina Harianto

    2015-10-01

    Full Text Available Introduction: Patient safety is an important component of health services quality,and  basic principles of patient care. Nursing students also have a great potential to make an action that could endanger the patient, because hospital is one of student practice area. The purpose of this study was to improve the nursing students competency in patient safety by using knowledge management SECI approached. Method: The study used exploratory survey, and quasy experiment. The samples were some of nursing students of STIKes Muhammadiyah Samarinda who were on internship programme that selected using simple random sampling technique, in total of 54 students. This research’s variables were the knowledge management SECI based-patient safety and nursing student’s competency. The data were collected by using questionnaires and observation. The data were analyze by using Partial Least Square (PLS. Result: The result showed that there were significant influence the implementation of a model patient safety based knowledge management seci on increased competence nursing students. Discussion: Improved student competency in patient safety using SECI knowledge management was carried out in four phases, that is Socialization, Externalization, Combination, and Internalization. The result was a new knowledge related to patient safety that able to improve the student’s competency.. Keywords: Patient safety, Knowledge management, SECI, competency

  17. Application of the management system for facilities and activities. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Guide supports the Safety Requirements publication on The Management System for Facilities and Activities. It provides generic guidance to aid in establishing, implementing, assessing and continually improving a management system that complies with the requirements established. In addition to this Safety Guide, there are a number of Safety Guides for specific technical areas. Together these provide all the guidance necessary for implementing these requirements. This publication supersedes Safety Series No. 50-SG-Q1-Q7 (1996). The guidance provided here may be used by organizations in the following ways: - To assist in the development of the management systems of organizations directly responsible for operating facilities and activities and providing services for: Nuclear facilities; Activities using sources of ionizing radiation; Radioactive waste management; The transport of radioactive material; Radiation protection activities; Any other practices or circumstances in which people may be exposed to radiation from naturally occurring or artificial sources; The regulation of such facilities and activities; - To assist in the development of the management systems of the relevant regulatory bodies; - By the operator, to specify to a supplier, via contractual documentation, any guidance of this Safety Guide that should be included in the supplier's management system for the supply and delivery of products

  18. Nuclear material operations manual

    International Nuclear Information System (INIS)

    Tyler, R.P.; Gassman, L.D.

    1978-04-01

    This manual is intended to provide a concise and comprehensive documentation of the operating procedures currently practiced at Sandia Laboratories with regard to the management, control, and accountability of radioactive and nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations--management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of ''play-scripts'' in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  19. Towards integrated hygiene and food safety management systems: the Hygieneomic approach.

    Science.gov (United States)

    Armstrong, G D

    1999-09-15

    Integrated hygiene and food safety management systems in food production can give rise to exceptional improvements in food safety performance, but require high level commitment and full functional involvement. A new approach, named hygieneomics, has been developed to assist management in their introduction of hygiene and food safety systems. For an effective introduction, the management systems must be designed to fit with the current generational state of an organisation. There are, broadly speaking, four generational states of an organisation in their approach to food safety. They comprise: (i) rules setting; (ii) ensuring compliance; (iii) individual commitment; (iv) interdependent action. In order to set up an effective integrated hygiene and food safety management system a number of key managerial requirements are necessary. The most important ones are: (a) management systems must integrate the activities of key functions from research and development through to supply chain and all functions need to be involved; (b) there is a critical role for the senior executive, in communicating policy and standards; (c) responsibilities must be clearly defined, and it should be clear that food safety is a line management responsibility not to be delegated to technical or quality personnel; (d) a thorough and effective multi-level audit approach is necessary; (e) key activities in the system are HACCP and risk management, but it is stressed that these are ongoing management activities, not once-off paper generating exercises; and (f) executive management board level review is necessary of audit results, measurements, status and business benefits.

  20. Economic Techniques of Occupational Health and Safety Management

    Science.gov (United States)

    Sidorov, Aleksandr I.; Beregovaya, Irina B.; Khanzhina, Olga A.

    2016-10-01

    The article deals with the issues on economic techniques of occupational health and safety management. Authors’ definition of safety management is given. It is represented as a task-oriented process to identify, establish and maintain such a state of work environment in which there are no possible effects of hazardous and harmful factors, or their influence does not go beyond certain limits. It was noted that management techniques that are the part of the control mechanism, are divided into administrative, organizational and administrative, social and psychological and economic. The economic management techniques are proposed to be classified depending on the management subject, management object, in relation to an enterprise environment, depending on a control action. Technoeconomic study, feasibility study, planning, financial incentives, preferential crediting of enterprises, pricing, profit sharing and equity, preferential tax treatment for enterprises, economic regulations and standards setting have been distinguished as economic techniques.

  1. Cost-effectiveness of manual therapy for the management of musculoskeletal conditions: a systematic review and narrative synthesis of evidence from randomized controlled trials.

    Science.gov (United States)

    Tsertsvadze, Alexander; Clar, Christine; Court, Rachel; Clarke, Aileen; Mistry, Hema; Sutcliffe, Paul

    2014-01-01

    The purpose of this study was to systematically review trial-based economic evaluations of manual therapy relative to other alternative interventions used for the management of musculoskeletal conditions. A comprehensive literature search was undertaken in major medical, health-related, science and health economic electronic databases. Twenty-five publications were included (11 trial-based economic evaluations). The studies compared cost-effectiveness and/or cost-utility of manual therapy interventions to other treatment alternatives in reducing pain (spinal, shoulder, ankle). Manual therapy techniques (e.g., osteopathic spinal manipulation, physiotherapy manipulation and mobilization techniques, and chiropractic manipulation with or without other treatments) were more cost-effective than usual general practitioner (GP) care alone or with exercise, spinal stabilization, GP advice, advice to remain active, or brief pain management for improving low back and shoulder pain/disability. Chiropractic manipulation was found to be less costly and more effective than alternative treatment compared with either physiotherapy or GP care in improving neck pain. Preliminary evidence from this review shows some economic advantage of manual therapy relative to other interventions used for the management of musculoskeletal conditions, indicating that some manual therapy techniques may be more cost-effective than usual GP care, spinal stabilization, GP advice, advice to remain active, or brief pain management for improving low back and shoulder pain/disability. However, at present, there is a paucity of evidence on the cost-effectiveness and/or cost-utility evaluations for manual therapy interventions. Further improvements in the methodological conduct and reporting quality of economic evaluations of manual therapy are warranted in order to facilitate adequate evidence-based decisions among policy makers, health care practitioners, and patients. Copyright © 2014 National University

  2. KIT safety management. Annual report 2012; KIT-Sicherheitsmanagement. Jahresbericht 2012

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Gerhard (ed.)

    2013-07-01

    The KIT Safety Management Service Unit (KSM) guarantees radiological and conventional technical safety and security of Karlsruhe Institute of Technology and controls the implementation and observation of legal environmental protection requirements. KSM is responsible for - licensing procedures, - industrial safety organization, - control of environmental protection measures, - planning and implementation of emergency preparedness and response, - operation of radiological laboratories and measurement stations, - extensive radiation protection support and the - the execution of security tasks in and for all organizational units of KIT. Moreover, KSM is in charge of wastewater and environmental monitoring for all facilities and nuclear installations all over the KIT campus. KSM is headed by the Safety Commissioner of KIT, who is appointed by the Presidential Committee. Within his scope of procedure for KIT, the Safety Commissioner controls the implementation of and compliance with safety-relevant requirements. The KIT Safety Management is certified according to DIN EN ISO 9001, its industrial safety management is certified by the VBG as ''AMS-Arbeitsschutz mit System'' and, hence, fulfills the requirements of NLF / ISO-OSH 2001. KSM laboratories are accredited according to DIN EN ISO/IEC 17025. To the extent possible, KSM is committed to maintaining competence in radiation protection and to supporting research and teaching activities. The present reports lists the individual tasks of the KIT Safety Management and informs about the results achieved in 2012. Status figures in principle reflect the status at the end of the year 2012. The processes described cover the areas of competence of KSM.

  3. A study for safety and health management problem of semiconductor industry in Taiwan.

    Science.gov (United States)

    Chao, Chin-Jung; Wang, Hui-Ming; Feng, Wen-Yang; Tseng, Feng-Yi

    2008-12-01

    The main purpose of this study is to discuss and explore the safety and health management in semiconductor industry. The researcher practically investigates and interviews the input, process and output of the safety and health management of semiconductor industry by using the questionnaires and the interview method which is developed according to the framework of the OHSAS 18001. The result shows that there are six important factors for the safety and health management in Taiwan semiconductor industry. 1. The company should make employee clearly understand the safety and health laws and standards. 2. The company should make the safety and health management policy known to the public. 3. The company should put emphasis on the pursuance of the safety and health management laws. 4. The company should prevent the accidents. 5. The safety and health message should be communicated sufficiently. 6. The company should consider safety and health norm completely.

  4. Application of fuzzy set theory for safety culture and safety management assessment of Kartini research reactor

    International Nuclear Information System (INIS)

    Syarip; Hauptmanns, U.

    2000-01-01

    The safety culture status of nuclear power plant is usually assessed through interview and/or discussions with personnel and management in plant, and an assessment of the pertinent documentation. The approach for safety culture assessment described in IAEA Safety Series, make uses of a questionnaire composed of questions which require 'Yes' or 'No' as an answer. Hence, it is basically a check-list approach which is quite common for safety assessments in industry. Such a procedure ignores the fact that the expert answering the question usually has knowledge which goes far beyond a mere binary answer. Additionally, many situations cannot readily be described in such restricted terms. Therefore, it was developed a checklist consisting of questions which are formulated such that they require more than a simple 'yes' or 'no' as an answer. This allows one to exploit the expert knowledge of the analyst appropriately by asking him to qualify the degree of compliance of each of the topics examined. The method presented has proved useful in assessing the safety culture and quality of safety management of the research reactor. The safety culture status and the quality of safety management of Kartini research reactor is rated as 'average'. The method is also flexible and allows one to add questions to existing areas or to introduce new areas covering related topics

  5. Total Quality Management and the System Safety Secretary

    Science.gov (United States)

    Elliott, Suzan E.

    1993-01-01

    The system safety secretary is a valuable member of the system safety team. As downsizing occurs to meet economic constraints, the Total Quality Management (TQM) approach is frequently adopted as a formula for success and, in some cases, for survival.

  6. Simulation modeling on the growth of firm's safety management capability

    Institute of Scientific and Technical Information of China (English)

    LIU Tie-zhong; LI Zhi-xiang

    2008-01-01

    Aiming to the deficiency of safety management measure, established simulation model about firm's safety management capability(FSMC) based on organizational learning theory. The system dynamics(SD) method was used, in which level and rate system, variable equation and system structure flow diagram was concluded. Simulation model was verified from two aspects: first, model's sensitivity to variable was tested from the gross of safety investment and the proportion of safety investment; second, variables dependency was checked up from the correlative variable of FSMC and organizational learning. The feasibility of simulation model is verified though these processes.

  7. The influence of environmental conditions on safety management in hospitals: a qualitative study.

    Science.gov (United States)

    Alingh, Carien W; van Wijngaarden, Jeroen D H; Huijsman, Robbert; Paauwe, Jaap

    2018-05-02

    Hospitals are confronted with increasing safety demands from a diverse set of stakeholders, including governmental organisations, professional associations, health insurance companies, patient associations and the media. However, little is known about the effects of these institutional and competitive pressures on hospital safety management. Previous research has shown that organisations generally shape their safety management approach along the lines of control- or commitment-based management. Using a heuristic framework, based on the contextually-based human resource theory, we analysed how environmental pressures affect the safety management approach used by hospitals. A qualitative study was conducted into hospital care in the Netherlands. Five hospitals were selected for participation, based on organisational characteristics as well as variation in their reputation for patient safety. We interviewed hospital managers and staff with a central role in safety management. A total of 43 semi-structured interviews were conducted with 48 respondents. The heuristic framework was used as an initial model for analysing the data, though new codes emerged from the data as well. In order to ensure safe care delivery, institutional and competitive stakeholders often impose detailed safety requirements, strong forces for compliance and growing demands for accountability. As a consequence, hospitals experience a decrease in the room to manoeuvre. Hence, organisations increasingly choose a control-based management approach to make sure that safety demands are met. In contrast, in case of more abstract safety demands and an organisational culture which favours patient safety, hospitals generally experience more leeway. This often results in a stronger focus on commitment-based management. Institutional and competitive conditions as well as strategic choices that hospitals make have resulted in various combinations of control- and commitment-based safety management. A balanced

  8. Predisposal Management of Low and Intermediate Level Radioactive Waste. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established for the predisposal management of low and intermediate level waste. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Roles and responsibilities; 4. General safety considerations; 5. Safety features for the predisposal management of LILW; 6. Record keeping and reporting; 7. Safety assessment; 8. Quality assurance; Annex I: Nature and sources of LILW from nuclear facilities; Annex II: Development of specifications for waste packages; Annex III: Site conditions, processes and events for consideration in a safety assessment (external natural phenomena); Annex IV: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex V: Postulated initiating events for consideration in a safety assessment (internal phenomena).

  9. The Management System for Nuclear Installations. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a) To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b) As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c) To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a) Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b) Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c) Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d) Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e) Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear

  10. Safety management and risk assessment in chemical laboratories.

    Science.gov (United States)

    Marendaz, Jean-Luc; Friedrich, Kirstin; Meyer, Thierry

    2011-01-01

    The present paper highlights a new safety management program, MICE (Management, Information, Control and Emergency), which has been specifically adapted for the academic environment. The process starts with an exhaustive hazard inventory supported by a platform assembling specific hazards encountered in laboratories and their subsequent classification. A proof of concept is given by a series of implementations in the domain of chemistry targeting workplace health protection. The methodology is expressed through three examples to illustrate how the MICE program can be used to address safety concerns regarding chemicals, strong magnetic fields and nanoparticles in research laboratories. A comprehensive chemical management program is also depicted.

  11. Spent Nuclear Fuel (SNF) Cold Vacuum Drying (CVD) Facility Operations Manual; FINAL

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B-Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, Cold Vacuum Drying Facility Design Requirements, Rev. 4, and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  12. Information systems in food safety management.

    Science.gov (United States)

    McMeekin, T A; Baranyi, J; Bowman, J; Dalgaard, P; Kirk, M; Ross, T; Schmid, S; Zwietering, M H

    2006-12-01

    Information systems are concerned with data capture, storage, analysis and retrieval. In the context of food safety management they are vital to assist decision making in a short time frame, potentially allowing decisions to be made and practices to be actioned in real time. Databases with information on microorganisms pertinent to the identification of foodborne pathogens, response of microbial populations to the environment and characteristics of foods and processing conditions are the cornerstone of food safety management systems. Such databases find application in: Identifying pathogens in food at the genus or species level using applied systematics in automated ways. Identifying pathogens below the species level by molecular subtyping, an approach successfully applied in epidemiological investigations of foodborne disease and the basis for national surveillance programs. Predictive modelling software, such as the Pathogen Modeling Program and Growth Predictor (that took over the main functions of Food Micromodel) the raw data of which were combined as the genesis of an international web based searchable database (ComBase). Expert systems combining databases on microbial characteristics, food composition and processing information with the resulting "pattern match" indicating problems that may arise from changes in product formulation or processing conditions. Computer software packages to aid the practical application of HACCP and risk assessment and decision trees to bring logical sequences to establishing and modifying food safety management practices. In addition there are many other uses of information systems that benefit food safety more globally, including: Rapid dissemination of information on foodborne disease outbreaks via websites or list servers carrying commentary from many sources, including the press and interest groups, on the reasons for and consequences of foodborne disease incidents. Active surveillance networks allowing rapid dissemination

  13. WAM-E user's manual

    International Nuclear Information System (INIS)

    Rayes, L.G.; Riley, J.E.

    1986-07-01

    The WAM-E series of mainframe computer codes have been developed to efficiently analyze the large binary models (e.g., fault trees) used to represent the logic relationships within and between the systems of a nuclear power plant or other large, multisystem entity. These codes have found wide application in reliability and safety studies of nuclear power plant systems. There are now nine codes in the WAM-E series, with six (WAMBAM/WAMTAP, WAMCUT, WAMCUT-II, WAMFM, WAMMRG, and SPASM) classified as Type A Production codes and the other three (WAMFTP, WAMTOP, and WAMCONV) classified as Research codes. This document serves as a combined User's Guide, Programmer's Manual, and Theory Reference for the codes, with emphasis on the Production codes. To that end, the manual is divided into four parts: Part I, Introduction; Part II, Theory and Numerics; Part III, WAM-E User's Guide; and Part IV, WAMMRG Programmer's Manual

  14. Manual on therapeutic uses of iodine-131. Incorporating: Applications guide, procedures guide, basics guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to therapeutic uses of Iodine-131: its application and procedures guides.

  15. Manual on therapeutic uses of iodine-131. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to therapeutic uses of Iodine-131: its application and procedures guides

  16. Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines.

    Science.gov (United States)

    Zhou, Lu-Jie; Cao, Qing-Gui; Yu, Kai; Wang, Lin-Lin; Wang, Hai-Bin

    2018-04-26

    This paper studies the occupational safety and health management methods as well as risk control technology associated with the coal mining industry, including daily management of occupational safety and health, identification and assessment of risks, early warning and dynamic monitoring of risks, etc.; also, a B/S mode software (Geting Coal Mine, Jining, Shandong, China), i.e., Coal Mine Occupational Safety and Health Management and Risk Control System, is developed to attain the aforementioned objectives, namely promoting the coal mine occupational safety and health management based on early warning and dynamic monitoring of risks. Furthermore, the practical effectiveness and the associated pattern for applying this software package to coal mining is analyzed. The study indicates that the presently developed coal mine occupational safety and health management and risk control technology and the associated software can support the occupational safety and health management efforts in coal mines in a standardized and effective manner. It can also control the accident risks scientifically and effectively; its effective implementation can further improve the coal mine occupational safety and health management mechanism, and further enhance the risk management approaches. Besides, its implementation indicates that the occupational safety and health management and risk control technology has been established based on a benign cycle involving dynamic feedback and scientific development, which can provide a reliable assurance to the safe operation of coal mines.

  17. Integrated Safety, Environmental and Emergency Management System (ISEEMS)

    International Nuclear Information System (INIS)

    Silver, R.; Langwell, G.; Thomas, C.; Coffing, S.

    1996-01-01

    The Risk Management and NEPA (National Environmental Policy Act) Department of Sandia National Laboratories/New Mexico (SNL/NM) recognized the need for hazard and environmental data analysis and management to support the line managers' need to know, understand, manage and document the hazards in their facilities and activities. The Integrated Safety, Environmental, and Emergency Management System (ISEEMS) was developed in response to this need. SNL needed a process that would quickly and easily determine if a facility or project activity contained only standard industrial hazards and therefore require minimal safety documentation, or if non-standard industrial hazards existed which would require more extensive analysis and documentation. Many facilities and project activities at SNL would benefit from the quick screening process used in ISEEMS. In addition, a process was needed that would expedite the NEPA process. ISEEMS takes advantage of the fact that there is some information needed for the NEPA process that is also needed for the safety documentation process. The ISEEMS process enables SNL line organizations to identify and manage hazards and environmental concerns at a level of effort commensurate with the hazards themselves by adopting a necessary and sufficient (graded) approach to compliance. All hazard-related information contained within ISEEMS is location based and can be displayed using on-line maps and building floor plans. This visual representation provides for quick assimilation and analysis

  18. 30 CFR 285.810 - What must I include in my Safety Management System?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I include in my Safety Management System? 285.810 Section 285.810 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR..., COPs and GAPs Safety Management Systems § 285.810 What must I include in my Safety Management System...

  19. A proactive method for safety management in nuclear facilities

    International Nuclear Information System (INIS)

    Grecco, Claudio Henrique dos Santos; Carvalho, Paulo Victor Rodrigues de; Santos, Isaac Antonio Luquetti dos

    2014-01-01

    Due to the modern approach to address the safety of nuclear facilities which highlights that these organizations must be able to assess and proactively manage their activities becomes increasingly important the need for instruments to evaluate working conditions. In this context, this work presents a proactive method of managing organizational safety, which has three innovative features: 1) the use of predictive indicators that provide current information on the performance of activities, allowing preventive actions and not just reactive in safety management, different from safety indicators traditionally used (reactive indicators) that are obtained after the occurrence of undesired events; 2) the adoption of resilience engineering approach in the development of indicators - indicators are based on six principles of resilience engineering: top management commitment, learning, flexibility, awareness, culture of justice and preparation for the problems; 3) the adoption of the concepts and properties of fuzzy set theory to deal with subjectivity and consistency of human trials in the evaluation of the indicators. The fuzzy theory is used primarily to map qualitative models of decision-making, and inaccurate representation methods. The results of this study aim an improvement in performance and safety in organizations. The method was applied in a radiopharmaceutical shipping sector of a nuclear facility. The results showed that the method is a good monitoring tool objectively and proactively of the working conditions of an organizational domain

  20. 23 CFR 973.212 - Indian lands safety management system (SMS).

    Science.gov (United States)

    2010-04-01

    ... implementation of public information and education activities on safety needs, programs, and countermeasures... 23 Highways 1 2010-04-01 2010-04-01 false Indian lands safety management system (SMS). 973.212... HIGHWAYS MANAGEMENT SYSTEMS PERTAINING TO THE BUREAU OF INDIAN AFFAIRS AND THE INDIAN RESERVATION ROADS...

  1. Hanford ground-water data base management guide and user's manual

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Argo, R.S.; Bradymire, S.L.; Newbill, C.A.

    1985-05-01

    This management guide and user's manual is a working document for the computerized Hanford Ground-water Data Base maintained by the Geosciences Research and Engineering Department at Pacific Northwest Laboratory for the Hanford Ground-Water Surveillance Program. The program is managed by the Occupational and Environmental Protection Department for the US Department of Energy. The data base is maintained to provide rapid access to data that are rountinely collected from ground-water monitoring wells at the Hanford site. The data include water levels, sample analyses, geologic descriptions and well construction information of over 3000 existing or destroyed wells. These data are used to monitor water quality and for the evaluation of ground-water flow and pollutant transport problems. The management guide gives instructions for maintenance of the data base on the Digital Equipment Corporation PDP 11/70 Computer using the CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) data base management software developed at Pacific Northwest Laboratory. Maintenance activities include inserting, modifying and deleting data, making back-up copies of the data base, and generating tables for annual monitoring reports. The user's guide includes instructions for running programs to retrieve the data in the form of listings of graphical plots. 3 refs

  2. Research on integrated managing system based on CIMS for nuclear power plant safety

    International Nuclear Information System (INIS)

    Zhou Gang

    2006-01-01

    In order to improve safety, economy and reliability of operation for nuclear power plant (NPP), a novel integrated managing method was proposed based on the ideas of computer and contemporary integrated manufacturing system (CIMS). The application of CIMS to nuclear power plant safety management was researched. In order to design an integrated managing system to meet the needs of NPP safety management, all work related to nuclear safety is divided into different category according to its characters. On basis of this work, general integrated managing system was designed at first. Then subsystems were designed and every subsystem implements a category of nuclear safety management work. All subsystems are independent relatively on the one hand and are interrelated on other hand by global information system. (authors)

  3. Evaluation of food safety management systems in Serbian dairy industry

    Directory of Open Access Journals (Sweden)

    Igor Tomašević

    2016-01-01

    Full Text Available This paper reports incentives, costs, difficulties and benefits of food safety management systems implementation in the Serbian dairy industry. The survey involved 27 food business operators with the national milk and dairy market share of 65 %. Almost two thirds of the assessed dairy producers (70.4 % claimed that they had a fully operational and certified HACCP system in place, while 29.6 % implemented HACCP, but had no third party certification. ISO 22000 was implemented and certified in 29.6 % of the companies, while only 11.1 % had implemented and certified IFS standard. The most important incentive for implementing food safety management systems for Serbian dairy producers was to increase and improve safety and quality of dairy products. The cost of product investigation/analysis and hiring external consultants were related to the initial set-up of food safety management system with the greatest importance. Serbian dairy industry was not greatly concerned by the financial side of implementing food safety management systems due to the fact that majority of prerequisite programmes were in place and regularly used by almost 100 % of the producers surveyed. The presence of competency gap between the generic knowledge for manufacturing food products and the knowledge necessary to develop and implement food safety management systems was confirmed, despite the fact that 58.8 % of Serbian dairy managers had university level of education. Our study brings about the innovation emphasizing the attitudes and the motivation of the food production staff as the most important barrier for the development and implementation of HACCP. The most important identified benefit was increased safety of dairy products with the mean rank scores of 6.85. The increased customer confidence and working discipline of staff employed in food processing were also found as important benefits of implementing/operating HACCP. The study shows that the level of HACCP

  4. Major accident prevention through applying safety knowledge management approach.

    Science.gov (United States)

    Kalatpour, Omid

    2016-01-01

    Many scattered resources of knowledge are available to use for chemical accident prevention purposes. The common approach to management process safety, including using databases and referring to the available knowledge has some drawbacks. The main goal of this article was to devise a new emerged knowledge base (KB) for the chemical accident prevention domain. The scattered sources of safety knowledge were identified and scanned. Then, the collected knowledge was formalized through a computerized program. The Protégé software was used to formalize and represent the stored safety knowledge. The domain knowledge retrieved as well as data and information. This optimized approach improved safety and health knowledge management (KM) process and resolved some typical problems in the KM process. Upgrading the traditional resources of safety databases into the KBs can improve the interaction between the users and knowledge repository.

  5. Bowtie Risk Management methodology and Modern Nuclear Safety Reports

    International Nuclear Information System (INIS)

    Ilizastigui Pérez, F.

    2016-01-01

    The Safety Report (SR) plays a crucial role within the nuclear licensing regime as the principal means for demonstrating the adequacy of safety analysis for a nuclear facility to ensure that it can be constructed, operated, maintained, shut down, and decommissioned safely and in compliance with applicable laws and regulations. It serves as the basis for granting authorizations for the commencement of the main stages of the facility’s life cycle as well as decision-making processes related to safety. Historically, the majority of nuclear safety reports have operated under rather prescriptive regimes, with emphasis placed on demonstrations of the robustness of the facility’s design (design safety) against prescriptive technical requirements set by the regulatory body, and less attention paid to demonstrating the adequacy and effectiveness of Operator’s management system for managing risks to daily operation.

  6. The Safety Attitudes of Senior Managers in the Chinese Coal Industry

    Directory of Open Access Journals (Sweden)

    Jiangshi Zhang

    2016-11-01

    Full Text Available Introduction: Senior managers’ attitudes towards safety are very important regarding the safety practices in an organization. The study is to describe the current situation of senior managers′ attitudes towards safety in the Chinese coal industry. Method: We evaluated the changing trends as well as the reasons for these changes in the Chinese coal industry in 2009 and in 2014 with 168 senior manager samples from large Chinese state-owned coal enterprises. Evaluations of 15 safety concepts were performed by means of a questionnaire. Results and Conclusions: Results indicate that, in 2014, three concepts were at a very high level (mean > 4.5, and six were at a relatively high level (4.5 > mean > 4.0. Analyses of changing trends revealed that nine concepts improved significantly, while four greatly declined in 2014 compared to those in 2009. The data reported here suggest that the reasons for the significant improvement with respect to the nine concepts include the improvement in social and legal environments, the improvement of the culture of social safety, workers′ safety demands being met, and scientific and technical advances in the coal industry. The decline of the four concepts seemed to be caused by a poor awareness of managers in the coal industry that safety creates economic benefits, insufficient information on safety, inadequate attention to the development of a safety culture and safety management methods, and safety organizations and workers′ unions not playing their role effectively. Practical Applications: We therefore recommend strengthening the evidence that safety creates economic benefits, providing incentives for employees to encourage their participation in safety management, and paying more attention to the prevention of accidents in coal mines via safety organizations and unions. These results can provide guidelines for workers, industrialists, and government regarding occupational safety in the whole coal industry.

  7. The Safety Attitudes of Senior Managers in the Chinese Coal Industry

    Science.gov (United States)

    Zhang, Jiangshi; Chen, Na; Fu, Gui; Yan, Mingwei; Kim, Young-Chan

    2016-01-01

    Introduction: Senior managers’ attitudes towards safety are very important regarding the safety practices in an organization. The study is to describe the current situation of senior managers′ attitudes towards safety in the Chinese coal industry. Method: We evaluated the changing trends as well as the reasons for these changes in the Chinese coal industry in 2009 and in 2014 with 168 senior manager samples from large Chinese state-owned coal enterprises. Evaluations of 15 safety concepts were performed by means of a questionnaire. Results and Conclusions: Results indicate that, in 2014, three concepts were at a very high level (mean > 4.5), and six were at a relatively high level (4.5 > mean > 4.0). Analyses of changing trends revealed that nine concepts improved significantly, while four greatly declined in 2014 compared to those in 2009. The data reported here suggest that the reasons for the significant improvement with respect to the nine concepts include the improvement in social and legal environments, the improvement of the culture of social safety, workers′ safety demands being met, and scientific and technical advances in the coal industry. The decline of the four concepts seemed to be caused by a poor awareness of managers in the coal industry that safety creates economic benefits, insufficient information on safety, inadequate attention to the development of a safety culture and safety management methods, and safety organizations and workers′ unions not playing their role effectively. Practical Applications: We therefore recommend strengthening the evidence that safety creates economic benefits, providing incentives for employees to encourage their participation in safety management, and paying more attention to the prevention of accidents in coal mines via safety organizations and unions. These results can provide guidelines for workers, industrialists, and government regarding occupational safety in the whole coal industry. PMID:27869654

  8. ETAP user's manual

    International Nuclear Information System (INIS)

    Watanabe, Norio; Higuchi, Suminori.

    1990-11-01

    The event tree analysis technique has been used in Probabilistic Safety Assessment for LWRs to delineate various accident scenarios leading to core melt or containment failure and to evaluate their frequencies. This technique often requires manual preparation of event trees with iterative process and time-consuming work in data handling. For the purpose of reducing manual efforts in event tree analysis, we developed a new software package named ETAP (Event Tree Analysis Supporting Program) for event tree analysis. ETAP is an interactive PC-based program which has the ability to construct, update, document, and quantify event trees. Because of its fast running capability to quantify event trees, use of the EATP program can make it easy to perform the sensitivity studies on a variety of system/containment performance issues. This report provides a user's manual for ETAP, which describes the structure, installation, and use of EATP. This software runs on NEC/PC-9800 or compatible PCs that have a 640 KB memory and MS-DOS 2.11 or higher. (author)

  9. Management by process based systems and safety focus

    International Nuclear Information System (INIS)

    Rydnert, Bo; Groenlund, Bjoern

    2005-12-01

    An initiative from The Swedish Nuclear Power Inspectorate led to this study carried out in the late autumn of 2005. The objective was to understand in more detail how an increasing use of process management affects organisations, on the one hand regarding risks and security, on the other hand regarding management by objectives and other management and operative effects. The main method was interviewing representatives of companies and independent experts. More than 20 interviews were carried out. In addition a literature study was made. All participating companies are using Management Systems based on processes. However, the methods chosen, and the results achieved, vary extensively. Thus, there are surprisingly few examples of complete and effective management by processes. Yet there is no doubt that management by processes is effective and efficient. Overall goals are reached, business results are achieved in more reliable ways and customers are more satisfied. The weaknesses found can be translated into a few comprehensive recommendations. A clear, structured and acknowledged model should be used and the processes should be described unambiguously. The changed management roles should be described and obeyed extremely legibly. New types of process objectives need to be formulated. In addition one fact needs to be observed and effectively fended off. Changes are often met by mental opposition on management level, as well as among co-workers. This fact needs attention and leadership. Safety development is closely related to the design and operation of a business management system and its continual improvement. A deep understanding of what constitutes an efficient and effective management system affects the understanding of safety. safety culture and abilities to achieve safety goals. Concerning risk, the opinions were unambiguous. Management by processes as such does not result in any further risks. On the contrary. Processes give a clear view of production and

  10. A prediction model for the radiation safety management behavior of medical cyclotrons

    International Nuclear Information System (INIS)

    Jung, Ji Hye; Han, Eun Ok; Kim, Ssang Tae

    2008-01-01

    This study attempted to provide reference materials for improving the behavior level in radiation safety managements by drawing a prediction model that affects the radiation safety management behavior because the radiation safety management of medical Cyclotrons, which can be used to produce radioisotopes, is an important factor that protects radiation caused diseases not only for radiological operators but average users. In addition, this study obtained follows results through the investigation applied from January 2 to January 30, 2008 for the radiation safety managers employed in 24 authorized organizations, which have already installed Cyclotrons, through applying a specific form of questionnaire in which the validity was guaranteed by reference study, site investigation, and focus discussion by related experts. The radiation safety management were configured as seven steps: step 1 is a production preparation step, step 2 is an RI production step, step 3 is a synthesis step, step 4 is a distribution step, step 5 is a quality control step, step 6 is a carriage container packing step, and step 7 is a transportation step. It was recognized that the distribution step was the most exposed as 15 subjects (62.5%), the items of 'the sanction and permission related works' and 'the guarantee of installation facilities and production equipment' were the most difficult as 9 subjects (37.5%), and in the trouble steps in such exposure, the item of 'the synthesis and distribution' steps were 4 times, respectively (30.8%). In the score of the behavior level in radiation safety managements, the minimum and maximum scores were 2.42 and 4.00, respectively, and the average score was 3.46 ± 0.47 out of 4. Prosperity and well-being programs in the behavior and job in radiation safety managements (r=0.529) represented a significant correlation statistically. In the drawing of a prediction model based on the factors that affected the behavior in radiation safety managements, general

  11. OSH technical reference manual

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinent to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.

  12. Nordic perspectives on safety management in high reliability organizations: Theory and applications

    International Nuclear Information System (INIS)

    Svenson, Ola; Salo, I.; Sjerve, A.B.; Reiman, T.; Oedewald, P.

    2006-04-01

    The chapters in this volume are written on a stand-alone basis meaning that the chapters can be read in any order. The first 4 chapters focus on theory and method in general with some applied examples illustrating the methods and theories. Chapters 5 and 6 are about safety management in the aviation industry with some additional information about incident reporting in the aviation industry and the health care sector. Chapters 7 through 9 cover safety management with applied examples from the nuclear power industry and with considerable validity for safety management in any industry. Chapters 10 through 12 cover generic safety issues with examples from the oil industry and chapter 13 presents issues related to organizations with different internal organizational structures. Although the many of the chapters use a specific industry to illustrate safety management, the messages in all the chapters are of importance for safety management in any high reliability industry or risky activity. The interested reader is also referred to, e.g., a document by an international NEA group (SEGHOF), who is about to publish a state of the art report on Systematic Approaches to Safety Management (cf., CSNI/NEA/SEGHOF, home page: www.nea.fr). (au)

  13. Nordic perspectives on safety management in high reliability organizations: Theory and applications

    Energy Technology Data Exchange (ETDEWEB)

    Svenson, Ola; Salo, I; Sjerve, A B; Reiman, T; Oedewald, P [Stockholm Univ. (Sweden)

    2006-04-15

    The chapters in this volume are written on a stand-alone basis meaning that the chapters can be read in any order. The first 4 chapters focus on theory and method in general with some applied examples illustrating the methods and theories. Chapters 5 and 6 are about safety management in the aviation industry with some additional information about incident reporting in the aviation industry and the health care sector. Chapters 7 through 9 cover safety management with applied examples from the nuclear power industry and with considerable validity for safety management in any industry. Chapters 10 through 12 cover generic safety issues with examples from the oil industry and chapter 13 presents issues related to organizations with different internal organizational structures. Although the many of the chapters use a specific industry to illustrate safety management, the messages in all the chapters are of importance for safety management in any high reliability industry or risky activity. The interested reader is also referred to, e.g., a document by an international NEA group (SEGHOF), who is about to publish a state of the art report on Systematic Approaches to Safety Management (cf., CSNI/NEA/SEGHOF, home page: www.nea.fr). (au)

  14. workplace safety management as correlates of wellbeing among ...

    African Journals Online (AJOL)

    User

    2017-12-28

    Dec 28, 2017 ... ABSTRACT. Significant proportion of Nigerians working in manufacturing firms do not enjoy the desirable level of wellbeing when it comes to safety and health. Safety management practices of industries have implications for employees' wellbeing and productivity. This study investigates relationship ...

  15. Introduction to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management and Canada's participation

    International Nuclear Information System (INIS)

    Mecke, J.L.

    2011-01-01

    The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) is the first and the only legally binding international instrument to address safety issues concerning the management of spent fuel and radioactive waste on a global scale. It entered into force on June 18, 2001. The Government of Canada strongly supported international efforts to bring into force the Joint Convention and was the second country to ratify it. The Joint Convention is an 'incentive instrument' that is based on peer review (similar in that respect to the Convention on Nuclear Safety) and devised to encourage countries that are Contracting Parties to report and to foster open and frank discussions on the safety of spent fuel and radioactive waste management. Being an incentive convention, it is not designed to mandate Contracting Parties to fulfill its obligation through control and sanction, but it is based on the common objectives of Contracting Parties to achieve and maintain a high level of safety in spent fuel and radioactive waste management, protect individuals, society and the environment from ionizing radiation and prevent accidents and if necessary mitigating the consequences of such accidents. The following paper will provide an introduction to the Joint Convention and provide a summary of Canada's peer review at the most recent Review Meeting which was held on May 11-20, 2009, at the International Atomic Energy Agency (IAEA) headquarters in Vienna, Austria. (author)

  16. Application of project management methodology in design management of nuclear safety related structure

    International Nuclear Information System (INIS)

    Chen Mao

    2004-01-01

    This paper focuses on the application of project management methodology in the design management of Nuclear Safety Related Structure (NSRS), considering the design management features of its civil construction. Based on the experiences from the management of several projects, the project management triangle is proposed to be used in the management, to well treat the position of design interface in the project management. Some other management methods are also proposed

  17. Safety and Mission Assurance Knowledge Management Retention: Managing Knowledge for Successful Mission Operations

    Science.gov (United States)

    Johnson, Teresa A.

    2006-01-01

    Knowledge Management is a proactive pursuit for the future success of any large organization faced with the imminent possibility that their senior managers/engineers with gained experiences and lessons learned plan to retire in the near term. Safety and Mission Assurance (S&MA) is proactively pursuing unique mechanism to ensure knowledge learned is retained and lessons learned captured and documented. Knowledge Capture Event/Activities/Management helps to provide a gateway between future retirees and our next generation of managers/engineers. S&MA hosted two Knowledge Capture Events during 2005 featuring three of its retiring fellows (Axel Larsen, Dave Whittle and Gary Johnson). The first Knowledge Capture Event February 24, 2005 focused on two Safety and Mission Assurance Safety Panels (Space Shuttle System Safety Review Panel (SSRP); Payload Safety Review Panel (PSRP) and the latter event December 15, 2005 featured lessons learned during Apollo, Skylab, and Space Shuttle which could be applicable in the newly created Crew Exploration Vehicle (CEV)/Constellation development program. Gemini, Apollo, Skylab and the Space Shuttle promised and delivered exciting human advances in space and benefits of space in people s everyday lives on earth. Johnson Space Center's Safety & Mission Assurance team work over the last 20 years has been mostly focused on operations we are now beginning the Exploration development program. S&MA will promote an atmosphere of knowledge sharing in its formal and informal cultures and work processes, and reward the open dissemination and sharing of information; we are asking "Why embrace relearning the "lessons learned" in the past?" On the Exploration program the focus will be on Design, Development, Test, & Evaluation (DDT&E); therefore, it is critical to understand the lessons from these past programs during the DDT&E phase.

  18. 33 CFR 96.240 - What functional requirements must a safety management system meet?

    Science.gov (United States)

    2010-07-01

    ... a safety management system meet? 96.240 Section 96.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.240 What functional...

  19. 77 FR 65000 - Drug Safety and Risk Management Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-10-24

    ...] Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Drug Safety and Risk Management Advisory Committee. General Function of the Committee: To provide... Use (ETASU) before CDER's Drug Safety and Risk Management Advisory Committee (DSaRM). The Agency plans...

  20. 78 FR 30929 - Drug Safety and Risk Management Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-05-23

    ...] Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Drug Safety and Risk Management Advisory Committee. General Function of the Committee: To provide... (REMS) with elements to assure safe use (ETASU) before its Drug Safety and Risk Management Advisory...

  1. Knowledge management and networking for enhancing nuclear safety

    International Nuclear Information System (INIS)

    Taniguchi, T.; Lederman, L.

    2004-01-01

    Striving for innovative solutions to enhance efficiency of programme delivery and a wider outreach of its nuclear safety activities, the International Atomic Energy Agency (IAEA) has developed an Integrated Safety Approach as a platform for linking its safety related statutory functions and its many associated activities. The approach recognizes the vital importance of effective management of the knowledge base and builds on the integration between the IAEA's safety standards and all aspects of the provision for their application, including peer reviews and technical meetings to share lessons learned. The IAEA is using knowledge management techniques to develop process flows, map safety knowledge and to promote knowledge sharing. The first practical application was the establishment of a knowledge base related to safety aspects of ageing and long-term operation of nuclear power plants. The IAEA is also promoting and facilitating the establishment of regional nuclear and radiation safety networks to preserve existing knowledge and expertise as well as to strengthen sharing and creation of new knowledge in these fields. Prominent examples are the Asian Nuclear Safety Network established in the frame of the IAEA's Programme on the Safety of Nuclear Installations in South East Asia, Pacific and Far East Countries, and the Ibero-American Radiation Safety Network in the frame of the Ibero-American Forum of Nuclear Regulators. Results to date are most encouraging and suggest that this pioneer work should be extended to other regions and eventually to a global nuclear safety network. Responsive to the need of Member States, the IAEA Secretariat has prepared and made available a large number of up-to-date training packages in nuclear, radiation, transport and waste safety, using IAEA safety standards as a basis. It is also providing instruction to trainers in Member States on the use of these modules. This ensures that the material is properly used and that the IAEA

  2. On preparation for accident management in LWR power stations

    International Nuclear Information System (INIS)

    1996-01-01

    Nuclear Safety Commission received the report from Reactor Safety General Examination Committee which investigated the policy of executing the preparation for accident management. The basic policy on the preparation for accident management was decided by Nuclear Safety Commission in May, 1992. This Examination Committee investigated the policy of executing the preparation for accident management, which had been reported from the administrative office, and as the result, it judged the policy as adequate, therefore, the report is made. The course to the foundation of subcommittee is reported. The basic policy of the examination on accident management by the subcommittee conforming to the decision by Nuclear Safety Commission, the measures of accident management which were extracted for BWR and PWR facilities, the examination of the technical adequacy of selecting accident sequences in BWR and PWR facilities and the countermeasures to them, the adequacy of the evaluation of the possibility of executing accident management measures and their effectiveness and the adequacy of the evaluation of effect to existing safety functions, the preparation of operation procedure manual, and education and training plan are reported. (K.I.)

  3. Safety management of a complex R and D ground operating system

    Science.gov (United States)

    Connors, J. F.; Maurer, R. A.

    1975-01-01

    A perspective on safety program management was developed for a complex R&D operating system, such as the NASA-Lewis Research Center. Using a systems approach, hazardous operations are subjected to third-party reviews by designated-area safety committees and are maintained under safety permit controls. To insure personnel alertness, emergency containment forces and employees are trained in dry-run emergency simulation exercises. The keys to real safety effectiveness are top management support and visibility of residual risks.

  4. Experience with the EPA manual for waste minimization opportunity assessments

    International Nuclear Information System (INIS)

    Bridges, J.S.

    1990-01-01

    The EPA Waste Minimization Opportunity Assessment Manual (EPA/625/788/003) was published to assist those responsible for managing waste minimization activities at the waste generating facility and at corporate levels. The Manual sets forth a procedure that incorporates technical and managerial principles and motivates people to develop and implement pollution prevention concepts and ideas. Environmental management has increasingly become one of cooperative endeavor whereby whether in government, industry, or other forms of enterprise, the effectiveness with whirl, people work together toward the attainment of a clean environment is largely determined by the ability of those who hold managerial position. This paper offers a description of the EPA Waste Minimization Opportunity Assessment Manual procedure which supports the waste minimization assessment as a systematic planned procedure with the objective of identifying ways to reduce or eliminate waste generation. The Manual is a management tool that blends science and management principles. The practice of managing waste minimization/pollution prevention makes use of the underlying organized science and engineering knowledge and applies it in the light of realities to gain a desired, practical result. The early stages of EPA's Pollution Prevention Research Program centered on the development of the Manual and its use at a number of facilities within the private and public sectors. This paper identifies a number of case studies and waste minimization opportunity assessment reports that demonstrate the value of using the Manual's approach. Several industry-specific waste minimization assessment manuals have resulted from the Manual's generic approach to waste minimization. There were some modifications to the Manual's generic approach when the waste stream has been other than industrial hazardous waste

  5. 75 FR 76928 - Safety Management System for Certificated Airports; Extension of Comment Period

    Science.gov (United States)

    2010-12-10

    ...-0997; Notice No. 10-14] RIN 2120-AJ38 Safety Management System for Certificated Airports; Extension of... holder to establish a safety management system (SMS) for its entire airfield environment (including... ``Safety Management System for Certificated Airports'' (75 FR 62008). Comments to that document were to be...

  6. 77 FR 75176 - Drug Safety and Risk Management Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-12-19

    ...] Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug... being rescheduled due to the postponement of the October 29-30, 2012, Drug Safety and Risk Management... Committee: Drug Safety and Risk Management Advisory Committee. General Function of the Committee: To provide...

  7. National Synchrotron Light Source Facility Manual Maintenance Management Program. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fewell, N.

    1993-12-01

    The purpose of this program s to meet the policy and objectives for the management and performance of cost-effective maintenance and repair of the National Synchrotron Light Source, as required by the US Department of Energy order DOE 433O.4A. It is the DOE`s policy that: The maintenance management program for the NSLS be consistent with this Order and that NSLS property is maintained in a manner which promotes operational safety, worker health, environmental protection and compliance, property preservation, and cost-effectiveness while meeting the NSLS`s programmatic mission. Structures, components and systems (active and passive) that are imporant to safe operation of the NSLS shall be subject to a maintenance program to ensure that they meet or exceed their design requirements throughout the life of the NSLS. Periodic examination of structures, systems components and equipment be performed to determine deterioration or technical obsolescence which may threaten performance and/or safety. Primary responsibility, authority, and accountability for the direction and management of the maintenance program at the NSLS reside with the line management assigned direct programmatic responsibility. Budgeting and accounting for maintenance programs are consistent with DOE Orders guidance.

  8. National machine guarding program: Part 2. Safety management in small metal fabrication enterprises

    Science.gov (United States)

    Yamin, Samuel C.; Brosseau, Lisa M.; Xi, Min; Gordon, Robert; Most, Ivan G.; Stanley, Rodney

    2015-01-01

    Background Small manufacturing businesses often lack important safety programs. Many reasons have been set forth on why this has remained a persistent problem. Methods The National Machine Guarding Program (NMGP) was a nationwide intervention conducted in partnership with two workers' compensation insurers. Insurance safety consultants collected baseline data in 221 business using a 33‐question safety management audit. Audits were completed during an interview with the business owner or manager. Results Most measures of safety management improved with an increasing number of employees. This trend was particularly strong for lockout/tagout. However, size was only significant for businesses without a safety committee. Establishments with a safety committee scored higher (55% vs. 36%) on the safety management audit compared with those lacking a committee (P management programs were frequently absent. A safety committee appears to be a more important factor than business size in accounting for differences in outcome measures. Am. J. Ind. Med. 58:1184–1193, 2015. © 2015 The Authors. American Journal of Industrial Medicine Published by Wiley Periodicals, Inc. PMID:26345591

  9. Present situation and countermeasures for managing expenses of safety in production in enterprise

    International Nuclear Information System (INIS)

    Pang Liefen

    2012-01-01

    The paper introduces the evolutions concerning accountant accounting for the capital of safety in production over the recent years, and analyses the present situation and reasons for the problems existed in enterprise as for gathering expenses of safety in production, and propose the countermeasures to reinforce the management of enterprise expenses of safety in production, in order to improve the management of enterprise expenses of safety in production and to enhance the level of the management in safety for the enterprise. (author)

  10. 76 FR 12300 - Safety Management System for Certificated Airports; Extension of Comment Period

    Science.gov (United States)

    2011-03-07

    ...-0997; Notice No. 10-14] RIN 2120-AJ38 Safety Management System for Certificated Airports; Extension of...: Background On October 7, 2010, the FAA published Notice No. 10-14, entitled ``Safety Management System for... conclusions from the safety management systems proof of concept. The FAA anticipates making this report...

  11. Legislation and regulatory infrastructure for the safety of radioactive waste management

    International Nuclear Information System (INIS)

    Hoegberg, L.

    2000-01-01

    The essential generic characteristics of a national legislative and regulatory system for the safety of radioactive waste management are defined and discussed. The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management as well as other relevant international legal instruments and guidelines are discussed. Special emphasis is given to the following characteristics of a national legislative and regulatory system: (i) definition of responsibilities, (ii) financing of future costs, (iii) nuclear and radiation safety requirements, (iv) siting and licensing procedures, (v) regulatory functions, and (vi) international co-operation. It is concluded that there exists an internationally endorsed basis for establishing effective national legislation and regulatory infrastructures for the safety of radioactive waste management. It is underlined that the continuing internationalization of the nuclear industry stresses the need for national legislation and regulatory infrastructure to be based on such internationally endorsed principles and standards. It is pointed out that regulators are accountable to the public and have to gain public trust by being active in the public arena, demonstrating their competence and integrity. Finally, prescriptive and goal-oriented international safety regimes are briefly discussed in the light of experience so far gained with the Convention on Nuclear Safety. (author)

  12. Investigation of Fire Safety Awareness and Management in Mall

    Directory of Open Access Journals (Sweden)

    Abdul Rahim N.

    2014-03-01

    Full Text Available In spite of having sufficient fire safety system installed in buildings, the incidence of fire hazard becomes the furthermost and supreme threat to health and safety, as well as property to any community. In order to make sure that the safety of the building and its users, the fundamental features depends on the fire precaution system and equipment which should be according to the standard requirements. Nevertheless, the awareness on fire safety could necessarily alleviate the damages or rate of fatality during the event of fire. This paper presents the results on the investigation of fire safety awareness and management, concentrating on shopping mall. The endeavour of this study is to explore the level of fire safety knowledge of the users in the mall, and to study the effectiveness level of fire safety management in a mall. From the study, public awareness is highly related to understanding human behaviour and their personal background. The respondents’ levels of awareness are rather low, which reflects on their poor action when facing emergency situation during fire. The most effective methods identified to improve the awareness and effectiveness of fire safety level is through involvement in related fire safety programmes, distribution of pamphlets or brochures on fire safety and appointing specific personnel for Emergency Response Team in the mall.

  13. OCRWM [Office of Civilian Radioactive Waste Management] Safety Plan

    International Nuclear Information System (INIS)

    1986-12-01

    The OCRWM Safety Plan sets forth management policies and general requirements for the safety of the public and of personnel associated with the Civilian Radioactive Waste Management Program (hereinafter called the ''Program''). It is applicable to all individuals and organizational elements of the Program, including all facilities and activities controlled by the Program pursuant to the Act, and to all phases of the Program. The plan defines the responsibilities assigned by the Director of the OCRWM to the various OCRWM line organizations, and to the contractors and the projects. It discusses the means by which safety policies and requirements will be communicated, and summarizes the applicable DOE Orders, and the procedures for reviewing, reporting, and evaluating safety problems. In addition, the OCRWM Safety Plan addresses DOE Orders applicable to occupational health and safety, worker protection, and public health and safety. OCRWM believes that it has an equally high level of commitment to both public safety and worker safety. The Plan also summarizes applicable NRC criteria and regulations that will be imposed through the formal licensing proceedings. While the Safety Plan sets forth OCRWM policy, it is not intended to be prescriptive in the details of implementation. Each OCRWM program element must develop and control its own set of detailed requirements for the protection of its workers and the public based on the principles set forth herein

  14. Department of Energy safety management: A need for change

    International Nuclear Information System (INIS)

    McCoy, F.B. III

    1995-01-01

    The U.S. Department of Energy's (DOE's) approach to safety management is undergoing fundamental change that should improve effective implementation of requirements throughout the complex. The most significant conveyor of this change is the open-quotes necessary and sufficientclose quotes closure process. The necessary and sufficient closure process draws upon the many and varied laws, requirements, and standards that exist in today's world to systematically derive a necessary and sufficient set of requirements for the particular work at hand to provide adequate protection for the associated hazards. The set is implemented through a system of management controls that convey fundamental safety principles and include design and analyses, engineered safety features, and procedures for the particular work. Assurance that an adequate level of protection is afforded by the set demands a need for competent, disciplined, and rigorous implementation. When properly done, the necessary and sufficient closure process enables such implementation. The focus of this paper is to provide an understanding of why the necessary and sufficient closure process is a necessary safety management program change and how integrity of this process can be assured

  15. Management of operational safety in nuclear power plants. INSAG-13. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    1999-01-01

    The International Atomic Energy Agency's activities relating to nuclear safety are based upon a number of premises. First and foremost, each Member State bears full responsibility for the safety of its nuclear facilities. States can be advised, but they cannot be relieved of this responsibility. Secondly, much can be gained by exchanging experience; lessons learned can prevent accidents. Finally, the image of nuclear safety is international; a serious accident anywhere affects the public's view of nuclear power everywhere. With the intention of strengthening its contribution to ensuring the safety of nuclear power plants, the IAEA established the International Nuclear Safety Advisory Group (INSAG), whose duties include serving as a forum for the exchange of information on nuclear safety issues of international significance and formulating, where possible, commonly shared safety principles. Engineering issues have received close attention from the nuclear community over many years. However, it is only in the last decade or so that organizational and cultural issues have been identified as vital to achieving safe operation. INSAG's publication No. 4 has been widely recognized as a milestone in advancing thinking about safety culture in the nuclear community and more widely. The present report deals with the framework for safety management that is necessary in organizations in order to promote safety culture. It deals with the general principles underlying the management of operational safety in a systematic way and provides guidance on good practices. It also draws on the results of audits and reviews to highlight how shortfalls in safety management have led to incidents at nuclear power plants. In addition, several specific issues are raised which are particularly topical in view of organizational changes that are taking place in the nuclear industry in various countries. Advice is given on how safety can be managed during organizational change, how safety

  16. Ageing management of Indian PHWRs - safety aspects

    International Nuclear Information System (INIS)

    Kapoor, R.K.; Sah, B.M.L.; Das, M.; Srinivasan, G.R.

    1994-01-01

    Ageing management has now become a vital area of concern. Ageing management includes determination of degradation factors, taking various steps to determine present conditions of systems, structures and components and taking mitigating steps. It also includes updating, modernization, refurbishment etc. It is important that ageing management starts right from the time of commissioning of the unit and is treated as a continuous process, and a parallel effort to the normal running of the plant. Thus elaborate research and development efforts are required to be instituted. Life extension could have a high benefit to cost ratio. Various steps to ensure safety in ageing management are listed. Selection of critical items, condition monitoring and life estimation of the same and a chronological check sheet from 0 to 60 years, for Indian PHWRs is explained. Areas where future research and development and other efforts need to be directed is listed. The paper concludes emphasizing the need for a systematized approach to ageing management. It recommends intensive research in certain listed areas and suggests standing committees in specialized areas to tap Indian experience in other industries and establishments. A safety guide is also required to be produced to cover all facets of ageing management. (author). 3 appendices

  17. Management capacity to promote nurse workplace health and safety.

    Science.gov (United States)

    Fang, Yaxuan; McDonald, Tracey

    2018-04-01

    To investigate regarding workplace health and safety factors, and to identify strategies to preserve and promote a healthy nursing workplace. Data collected using the Delphi technique with input from 41 key informants across four participant categories drawn from a Chinese university and four hospitals were thematically analysed. Most respondents agreed on the importance of nurses' health and safety, and that nurse managers should act to protect nurses, but not enough on workplace safety. Hospital policies, staff disempowerment, workload and workplace conflicts are major obstacles. The reality of Chinese nurses' workplaces is that health and safety risks abound and relate to socio-cultural expectations of women. Self-management of risks is neccessary, gaps exist in understanding of workplace risks among different nursing groups and their perceptions of the professional status, and the value of nurses' contribution to ongoing risks in the hospital workplace. The Chinese hospital system must make these changes to produce a safer working environment for nurses. This research, based in China, presents an instructive tale for all countries that need support on the types and amounts of management for nurses working at the clinical interface, and on the consequences of management neglect of relevant policies and procedures. © 2017 John Wiley & Sons Ltd.

  18. Predisposal management of radioactive waste. General safety requirements. Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    The objective of this Safety Requirements publication is to establish, the requirements that must be satisfied in the predisposal management of radioactive waste. This publication sets out the objectives, criteria and requirements for the protection of human health and the environment that apply to the siting, design, construction, commissioning, operation and shutdown of facilities for the predisposal management of radioactive waste, and the requirements that must be met to ensure the safety of such facilities and activities. This Safety Requirements publication applies to the predisposal management of radioactive waste of all types and covers all the steps in its management from its generation up to its disposal, including its processing (pretreatment, treatment and conditioning), storage and transport. Such waste may arise from the commissioning, operation and decommissioning of nuclear facilities; the use of radionuclides in medicine, industry, agriculture, research and education; the processing of materials that contain naturally occurring radionuclides; and the remediation of contaminated areas. The introduction of the document (Section 1) informs about its objective, scope and structure. The protection of human health and the environment is considered in Section 2 of this publication. Section 3 establishes requirements for the responsibilities associated with the predisposal management of radioactive waste. Requirements for the principal approaches to and the elements of the predisposal management of radioactive waste are established in Section 4. Section 5 establishes requirements for the safe development and operation of predisposal radioactive waste management facilities and safe conduct of activities. The Annex presents a discussion of the consistency of the safety requirements established in this publication with the fundamental safety principles

  19. FLIGHT SAFETY MANAGEMENT PROBLEMS AND EVALUATION OF FLIGHT SAFETY LEVEL OF AN AVIATION ENTERPRISE

    Directory of Open Access Journals (Sweden)

    B. V. Zubkov

    2017-01-01

    Full Text Available This article is devoted to studying the problem of safety management system (SMS and evaluating safety level of an aviation enterprise.This article discusses the problems of SMS, presented at the 41st meeting of the Russian Aviation Production Commanders Club in June 2014 in St. Petersburg in connection with the verification of the status of the CA of the Russian Federation by the International Civil Aviation Organization (ICAO in the same year, a set of urgent measures to eliminate the deficiencies identified in the current safety management system by participants of this meeting were proposed.In addition, the problems of evaluating flight safety level based on operation data of an aviation enterprise were analyzed. This analysis made it possible to take into account the problems listed in this article as a tool for a comprehensive study of SMS parameters and allows to analyze the quantitative indicators of the flights safety level.The concepts of Acceptable Safety Level (ASL indicators are interpreted differently depending on the available/applicable methods of their evaluation and how to implement them in SMS. However, the indicators for assessing ASL under operational condition at the aviation enterprise should become universal. Currently, defined safety levels and safety indicators are not yet established functionally and often with distorted underrepresented models describing their contextual contents, as well as ways of integrating them into SMS aviation enterprise.The results obtained can be used for better implementation of SMS and solving problems determining the aviation enterprise technical level of flight safety.

  20. Food quality and safety management

    Directory of Open Access Journals (Sweden)

    Agnieszka Bilska

    2014-09-01

    Full Text Available Ensuring quality and safety of food are nowadays the most important goals set by companies who produce and distribute it. As a result, regulations have been introduced in the European Union countries concerning the production and distribution of food as well as norms which oblige companies to implement and execute several quality management systems.

  1. A prediction model for the radiation safety management behavior of medical cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ji Hye; Han, Eun Ok [Daegu Health College, Daegu (Korea, Republic of); Kim, Ssang Tae [CareCamp Inc., Seoul (Korea, Republic of)

    2008-06-15

    This study attempted to provide reference materials for improving the behavior level in radiation safety managements by drawing a prediction model that affects the radiation safety management behavior because the radiation safety management of medical Cyclotrons, which can be used to produce radioisotopes, is an important factor that protects radiation caused diseases not only for radiological operators but average users. In addition, this study obtained follows results through the investigation applied from January 2 to January 30, 2008 for the radiation safety managers employed in 24 authorized organizations, which have already installed Cyclotrons, through applying a specific form of questionnaire in which the validity was guaranteed by reference study, site investigation, and focus discussion by related experts. The radiation safety management were configured as seven steps: step 1 is a production preparation step, step 2 is an RI production step, step 3 is a synthesis step, step 4 is a distribution step, step 5 is a quality control step, step 6 is a carriage container packing step, and step 7 is a transportation step. It was recognized that the distribution step was the most exposed as 15 subjects (62.5%), the items of 'the sanction and permission related works' and 'the guarantee of installation facilities and production equipment' were the most difficult as 9 subjects (37.5%), and in the trouble steps in such exposure, the item of 'the synthesis and distribution' steps were 4 times, respectively (30.8%). In the score of the behavior level in radiation safety managements, the minimum and maximum scores were 2.42 and 4.00, respectively, and the average score was 3.46 {+-} 0.47 out of 4. Prosperity and well-being programs in the behavior and job in radiation safety managements (r=0.529) represented a significant correlation statistically. In the drawing of a prediction model based on the factors that affected the behavior in

  2. Strengthening of nuclear power plant construction safety management

    International Nuclear Information System (INIS)

    Yu Jun

    2012-01-01

    The article describes the warning of the Fukushima nuclear accident, and analyzes the major nuclear safety issues in nuclear power development in China, problems in nuclear power plants under construction, and how to strengthen supervision and management in nuclear power construction. It also points out that the development of nuclear power must attach great importance to the safety, and nuclear power plant construction should strictly implement the principle of 'safety first and quality first'. (author)

  3. Probabilistic safety assessment in nuclear power plant management

    International Nuclear Information System (INIS)

    Holloway, N.J.

    1989-06-01

    Probabilistic Safety Assessment (PSA) techniques have been widely used over the past few years to assist in understanding how engineered systems respond to abnormal conditions, particularly during a severe accident. The use of PSAs in the design and operation of such systems thus contributes to the safety of nuclear power plants. Probabilistic safety assessments can be maintained to provide a continuous up-to-date assessment (Living PSA), supporting the management of plant operations and modifications

  4. Quality management of pharmacology and safety pharmacology studies

    DEFF Research Database (Denmark)

    Spindler, Per; Seiler, Jürg P

    2002-01-01

    to safety pharmacology studies, and, when indicated, to secondary pharmacodynamic studies, does not influence the scientific standards of studies. However, applying formal GLP standards will ensure the quality, reliability and integrity of studies, which reflect sound study management. It is important...... to encourage a positive attitude among researchers and academics towards these lines, whenever possible. GLP principles applied to the management of non-clinical safety studies are appropriate quality standards when studies are used in the context of protecting public health, and these quality standards...... of pharmacology studies (ICH S7A): primary pharmacodynamic, secondary pharmacodynamic and safety pharmacology studies, and guidance on the quality standards (expectations for GLP conformity) for these study types have been provided. Primary pharmacodynamic studies are the only study types that are fully exempt...

  5. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia

  6. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  7. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories

  8. Management commitment to safety as organizational support: relationships with non-safety outcomes in wood manufacturing employees

    Science.gov (United States)

    Judd H. Michael; Demetrice D. Evans; Karen J. Jansen; Joel M. Haight

    2005-01-01

    Employee perceptions of management commitment to safety are known to influence important safety-related outcomes. However, little work has been conducted to explore nonsafety-related outcomes resulting from a commitment to safety. Method: Employee-level outcomes critical to the effective functioning of an organization, including attitudes such as job...

  9. Joint convention on the safety of spent fuel management and on the safety of radioactive waste management. Report of the Federal Republic of Germany for the sixth review meeting in May 2018

    International Nuclear Information System (INIS)

    2017-08-01

    The joint convention on the safety of spent fuel management and on the safety of radioactive waste management covers the following topics: historical development and actual status of the civil use of nuclear power, politics and the spent fuel management, inventories and listing, legislation and executive systems, other safeguard regulations, safety during spent fuel handling, safety during radioactive waste processing, transport across national borders, disused enclosed radioactive sources, general regulations for safety enhancement.

  10. Proactive safety management in health care : towards a broader view of risk analysis, error recovery, and safety culture

    NARCIS (Netherlands)

    Habraken, M.M.P.

    2010-01-01

    Medical errors occur frequently. The harm and additional costs associated with those errors ask for effective safety management. According to the objective of minimal patient harm, safety management in health care should be proactive; that is, risks should be anticipated and reduced before patients

  11. Quality management and perceptions of teamwork and safety climate in European hospitals.

    Science.gov (United States)

    Kristensen, Solvejg; Hammer, Antje; Bartels, Paul; Suñol, Rosa; Groene, Oliver; Thompson, Caroline A; Arah, Onyebuchi A; Kutaj-Wasikowska, Halina; Michel, Philippe; Wagner, Cordula

    2015-12-01

    This study aimed to investigate the associations of quality management systems with teamwork and safety climate, and to describe and compare differences in perceptions of teamwork climate and safety climate among clinical leaders and frontline clinicians. We used a multi-method, cross-sectional approach to collect survey data of quality management systems and perceived teamwork and safety climate. Our data analyses included descriptive and multilevel regression methods. Data on implementation of quality management system from seven European countries were evaluated including patient safety culture surveys from 3622 clinical leaders and 4903 frontline clinicians. Perceived teamwork and safety climate. Teamwork climate was reported as positive by 67% of clinical leaders and 43% of frontline clinicians. Safety climate was perceived as positive by 54% of clinical leaders and 32% of frontline clinicians. We found positive associations between implementation of quality management systems and teamwork and safety climate. Our findings, which should be placed in a broader clinical quality improvement context, point to the importance of quality management systems as a supportive structural feature for promoting teamwork and safety climate. To gain a deeper understanding of this association, further qualitative and quantitative studies using longitudinally collected data are recommended. The study also confirms that more clinical leaders than frontline clinicians have a positive perception of teamwork and safety climate. Such differences should be accounted for in daily clinical practice and when tailoring initiatives to improve teamwork and safety climate. © The Author 2015. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  12. Management services, quality assurance, and safety

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Broad technical and administrative support for the programmatic research and development activities of the Fusion Energy Division is provided by the Management Services Section and by the division's quality assurance (QA) and safety programs. Support is provided through effective communication with division programmatic staff and through the coordination of resources from disciplines outside the division. The QA activity in the division emphasizes the development and documentation of a QA program that conforms to national standards, the review and approval of engineering documents, supplier surveillance, identification and documentation of nonconforming items, audits, and QA assessments/plans. The division's safety activities include a formal safety program, emergency planning activities, and environmental protection services. Efforts devoted to the removal of hazardous wastes from division facilities were expanded during 1986

  13. Resource Conservation and Recovery Act (RCRA) new-employee training manual for the Operations Division RCRA personnel

    Energy Technology Data Exchange (ETDEWEB)

    Barkenbus, B.D.

    1987-03-01

    This manual has been prepared for the training of new employees who will work with RCRA hazardous waste management in the Operations Division. It will be taught by a person who is trained in hazardous waste regulations/procedures. It consists of nine modules. The topics of these modules are: RCRA Training, Hazardous Waste Regulations, Transportation Regulations, Hazardous Waste Management at ORNL, Chemical Hazards and Safety, Hazardous Waste Operations Training, Sampling of Hazardous Waste, Hazardous Waste Identification/Classification, and RCRA Contingency Plans and Emergency Procedures. The on-the-job training areas are identified in the modules. They are an integral part of training.

  14. Outcome of manual hemorrhoidopexy in the management of hemorrhoids

    Directory of Open Access Journals (Sweden)

    Sujit Kumar

    2014-01-01

    Full Text Available Background: Manual hemorrhoidopexy is a new technique of treating second degree hemorrhoids. In contrast to the conventional resectional techniques (Milligan-Morgan, manual hemorrhoidopexy is a novel technique as described by T Carlo. It does not involve excision but plication with fixation of the prolapsing hemorrhoid. Objective: To study the outcome of manual hemorrhoidopexy and to compare manual hemorrhoidopexy with the traditional hemorrhoidectomy. Methods: This is a prospective study conducted over 16 months (January 2012 to April 2013 in the College of Medical Sciences Teaching Hospital (COMS-TH, Bharatpur, Chitwan, Department of Surgery. The patients who presented with third degree internal-hemorrhoids on a random basis, and underwent either conventional hemorrhoidectomy (Group A or Manual hemorrhoidopexy (Group B by senior consultant surgeons were included. The patients who had external hemorrhoids in addition to internal were excluded. Preoperative, intraoperative, and postoperative characteristics were evaluated. Results: Twenty five patients with median age group 42.5 years underwent conventional (Milligan-Morgan hemorrhoidectomy (Group A and 25 patients with mean age of 40.1 years underwent manual hemorrhoidopexy (Group B. Male patients were predominant in both groups. The patients in group A had more postoperative pain as compared to group B (as assessed by the visual analogue scale and requirement of post-operative analgesic and this was statistically significant (p<0.001. There was no significant difference among the other post-operative urinary retention. Twelve percent (n=3 patients in group A had post-operative bleeding and only 4% (n=1 in group B which was statistically significant (p<0.001. Mean duration of hospital stay in group A was 2.5 days as compared to 1.5 day in group B. Median follow up in both the study group was 3 (2-4 months. Conclusion: Manual hemorrhoidopexy has comparable outcomes in term of postoperative

  15. Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. National Report of the Kingdom of the Netherlands

    International Nuclear Information System (INIS)

    2005-10-01

    On 10 March 1999, the Netherlands signed the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, which was subsequently formally ratified on 26 April 2000 and entered into force on 18 June 2001. The Joint Convention obliges each contracting party to apply widely recognized principles and tools in order to achieve and maintain high standards of safety during management of spent fuel and radioactive waste. The Joint Convention also requires each party to report on the national implementation of these principles to review meetings of the parties to this Convention. This report describes the manner in which the Netherlands is fulfilling its obligations under the Joint Convention

  16. Manual for a Volunteer Services System.

    Science.gov (United States)

    Helgerson, Linda; And Others

    This manual presents guidelines for planning, monitoring, and controlling the development and operation of volunteer assistance programs. The materials included address questions related to both the process of establishing a volunteer program and the administration of a volunteer management system. The manual is not intended to provide a blueprint…

  17. Towards a radiation safety culture at Universidad Nacional de Colombia

    International Nuclear Information System (INIS)

    Poveda, Jairo F.; Munera, Hector A.

    2008-01-01

    Full text: During the 20th century, nuclear and radiation techniques for research, teaching, and medical and engineering practice slowly appeared at the National University of Colombia, mainly at the Bogota, Medellin and Manizales branches. Each individual laboratory or researcher obtained the license for the use of the radioactive source, or radiation emitting apparatus. However, the University as a whole does not have as yet a Radiation Safety Manual, nor an inventory of laboratories using radiation. From the viewpoint of radiation safety and culture, this situation is undesirable, and may easily lead to inappropriate waste management practices, including the possibility of orphan sources (one such source has been already found). As part of the program of environmental management of dangerous wastes promoted by the National Division of Laboratories of our University, an office of radiation safety was created in the year 2006. This paper describes the situation that was found, the activities that have been carried out, some of the difficulties that we have met, and the plans that we have to help shape a safety culture at our institution. Currently we are pursuing an inventory of laboratories using radioactive sources and radiation emitting apparatuses, starting with the branches in Bogota and Manizales which are perceived as the most urgent to deal with. Fortunately, the branch in Medellin has been for about a decade under the care of a former radiation safety officer of our national Institute of Nuclear Affairs, who presently teaches there. During 2006 and 2007, 13 laboratories using radioactive sources were visited in the Bogota branch. Safety procedures and waste handling protocols were checked, safety manuals prepared and/or revised, and recommendations for safety culture provided. During 2008 we will visit Manizales, and will continue visiting a number of X-ray machines used in the Bogota branch for engineering, veterinary, and diagnostic, and surgery medical

  18. Manual on industrial radiography

    International Nuclear Information System (INIS)

    1981-08-01

    This manual is intended as a source of educational material to personnel seeking certification as industrial radiographers, and as a guide and reference text for educational organizations that are providng courses in industrial radiography. It covers the basic principles of x-ray and gamma radiation, radiation safety, films and film processing, welding, casting and forging, aircraft structures and components, radiographic techniques, and records

  19. Develpment of quality assurance manual for fabrication of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Gun; Lee, J. W.; Kim, S. S. and others

    2001-09-01

    The Quality Assurance Manual for the fabrication of DUPIC fuel with high quality was developed. The Quality Assurance Policy established by this manual is to assure that the DUPIC fuel element supplied to customer conform to the specified requirements of customer, applicable codes and standards. The management of KAERI is committed to implementation and maintenance of the program described by this manual. This manual describes the quality assurance program for DUPIC fuel fabrication to comply with CAN3-Z299.2-85 to the extent as needed and appropriate. This manual describes the methods which DUPIC Fuel Development Team(DFDT) personnel must follow to achieve and assure high quality of our product. This manual also describes the quality management system applicable to the activities performed at DFDT.

  20. Develpment of quality assurance manual for fabrication of DUPIC fuel

    International Nuclear Information System (INIS)

    Lee, Young Gun; Lee, J. W.; Kim, S. S. and others

    2001-09-01

    The Quality Assurance Manual for the fabrication of DUPIC fuel with high quality was developed. The Quality Assurance Policy established by this manual is to assure that the DUPIC fuel element supplied to customer conform to the specified requirements of customer, applicable codes and standards. The management of KAERI is committed to implementation and maintenance of the program described by this manual. This manual describes the quality assurance program for DUPIC fuel fabrication to comply with CAN3-Z299.2-85 to the extent as needed and appropriate. This manual describes the methods which DUPIC Fuel Development Team(DFDT) personnel must follow to achieve and assure high quality of our product. This manual also describes the quality management system applicable to the activities performed at DFDT