WorldWideScience

Sample records for safety integrity level

  1. Estimation of average hazardous-event-frequency for allocation of safety-integrity levels

    International Nuclear Information System (INIS)

    Misumi, Y.; Sato, Y.

    1999-01-01

    One of the fundamental concepts of the draft international standard, IEC 61508, is target failure measures to be allocated to Electric/Electronic/Programmable Electronic Safety-Related Systems, i.e. Safety Integrity Levels. The Safety Integrity Levels consist of four discrete probabilistic levels for specifying the safety integrity requirements or the safety functions to be allocated to Electric/Electronic/Programmable Electronic Safety-Related Systems. In order to select the Safety Integrity Levels the draft standard classifies Electric/Electronic/Programmable Electronic Safety-Related Systems into two modes of operation using demand frequencies only. It is not clear which modes of operation should be applied to Electric/Electronic/Programmable Electronic Safety-Related Systems taking into account the demand-state probability and the spurious demand frequency. It is essential for the allocation of Safety Integrity Levels that generic algorithms be derived by involving possible parameters, which make it possible to model the actuality of real systems. The present paper addresses this issue. First of all, the overall system including Electric/Electronic/programmable Electronic Safety-Related Systems is described using a simplified fault-tree. Then, the relationships among demands, demand-states and proof-tests are studied. Overall systems are classified into two groups: a non-demand-state-at-proof-test system which includes both repairable and non-repairable demand states and a constant-demand-frequency system. The new ideas such as a demand-state, spurious demand-state, mean time between detections, rates of d-failure and h-failure, and an h/d ratio are introduced in order to make the Safety Integrity Levels and modes of operation generic and comprehensive. Finally, the overall system is simplified and modeled by fault-trees using Priority-AND gates. At the same time the assumptions for modeling are described. Generic algorithms to estimate hazardous

  2. Behavioral integrity for safety, priority of safety, psychological safety, and patient safety : a team-level study

    NARCIS (Netherlands)

    Leroy, H.; Dierynck, B.; Anseel, F.; Simons, T.; Halbesleben, J.R.; McCaughey, D.; Savage, G.T.; Sels, L.

    2012-01-01

    This article clarifies how leader behavioral integrity for safety helps solve follower's double bind between adhering to safety protocols and speaking up about mistakes against protocols. Path modeling of survey data in 54 nursing teams showed that head nurse behavioral integrity for safety

  3. Do we need an integrative approach to food safety at the country level?

    International Nuclear Information System (INIS)

    Ristic, G.

    2002-01-01

    Scientific data show increasing evidence of relationship between food safety and food standards on one hand and public health concern on the other hand. In FR Yugoslavia in 1989 the system of reporting on food safety issues on federal and republic level was established. The system provides data on laboratory analysis of 22 food items (bread, milk, meat and meat products, vegetables, processed vegetables etc). Those items were and still are tested on food quality and safety parameters such as microbiological, chemical and radio nuclides. Seldom all required testing on chemical and radio nuclides are performed, so we lack exact risk assessment for those contaminants. Further, during war conflict in FR Yugoslavia and also due to industrial hazards in neighbouring countries (Rumania, Hungary) high quantities of PCBs, dioxins, heavy metals, arsenic compounds and other toxic compounds contaminated the environment. In the soil and in some food products (animal fats predominantly) radionuclides originating from Chernobyl hazard can still be detected. In order to identify the level of exposure to chemical and radio nuclide contaminants in the food chain it is essential to test intensively and systematically food from animal and from plant origin. In order to prevent entering the contaminants to the food chain new recommendations from WHO, FAO and EU suggest implementation of integrative approach to food safety and control over the whole chain of food production from 'farm to table'. This approach provides control of the contaminants in soil, water, air, control over primary food production (covering animal feed too), intensive control over processing with implementation of HACCP system, but also, over transportation, retail trade, street food and home made food too. In our country creation of the map of the polluted areas, and actions in order to treat the pollution should accompany implementation of this new food safety system. The need for assessment of the level of

  4. Do we need an integrative approach to food safety at the country level?

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, G E-mail:risticg@eunet yu [Department of Nutrition, Medical Faculty, Belgrade (Yugoslavia)

    2002-05-01

    Scientific data show increasing evidence of relationship between food safety and food standards on one hand and public health concern on the other hand. In FR Yugoslavia in 1989 the system of reporting on food safety issues on federal and republic level was established. The system provides data on laboratory analysis of 22 food items (bread, milk, meat and meat products, vegetables, processed vegetables etc). Those items were and still are tested on food quality and safety parameters such as microbiological, chemical and radio nuclides. Seldom all required testing on chemical and radio nuclides are performed, so we lack exact risk assessment for those contaminants. Further, during war conflict in FR Yugoslavia and also due to industrial hazards in neighbouring countries (Rumania, Hungary) high quantities of PCBs, dioxins, heavy metals, arsenic compounds and other toxic compounds contaminated the environment. In the soil and in some food products (animal fats predominantly) radionuclides originating from Chernobyl hazard can still be detected. In order to identify the level of exposure to chemical and radio nuclide contaminants in the food chain it is essential to test intensively and systematically food from animal and from plant origin. In order to prevent entering the contaminants to the food chain new recommendations from WHO, FAO and EU suggest implementation of integrative approach to food safety and control over the whole chain of food production from 'farm to table'. This approach provides control of the contaminants in soil, water, air, control over primary food production (covering animal feed too), intensive control over processing with implementation of HACCP system, but also, over transportation, retail trade, street food and home made food too. In our country creation of the map of the polluted areas, and actions in order to treat the pollution should accompany implementation of this new food safety system. The need for assessment of the level of

  5. Developing an integrated dam safety program

    International Nuclear Information System (INIS)

    Nielsen, N. M.; Lampa, J.

    1996-01-01

    An effort has been made to demonstrate that dam safety is an integral part of asset management which, when properly done, ensures that all objectives relating to safety and compliance, profitability, stakeholders' expectations and customer satisfaction, are achieved. The means to achieving this integration of the dam safety program and the level of effort required for each core function have been identified using the risk management approach to pinpoint vulnerabilities, and subsequently to focus priorities. The process is considered appropriate for any combination of numbers, sizes and uses of dams, and is designed to prevent exposure to unacceptable risks. 5 refs., 1 tab

  6. Integrated Safety Culture Model and Application

    Institute of Scientific and Technical Information of China (English)

    汪磊; 孙瑞山; 刘汉辉

    2009-01-01

    A new safety culture model is constructed and is applied to analyze the correlations between safety culture and SMS. On the basis of previous typical definitions, models and theories of safety culture, an in-depth analysis on safety culture's structure, composing elements and their correlations was conducted. A new definition of safety culture was proposed from the perspective of sub-cuhure. 7 types of safety sub-culture, which are safety priority culture, standardizing culture, flexible culture, learning culture, teamwork culture, reporting culture and justice culture were defined later. Then integrated safety culture model (ISCM) was put forward based on the definition. The model divided safety culture into intrinsic latency level and extrinsic indication level and explained the potential relationship between safety sub-culture and all safety culture dimensions. Finally in the analyzing of safety culture and SMS, it concluded that positive safety culture is the basis of im-plementing SMS effectively and an advanced SMS will improve safety culture from all around.

  7. Safety Analysis for Medium/Small Size Integral Reactor: Evaluation of Safety Characteristics for Small and Medium Integral Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hho jung; Seul, K W; Ahn, S K; Bang, Y S; Park, D G; Kim, B K; Kim, W S; Lee, J H; Kim, W K; Shim, T M; Choi, H S; Ahn, H J; Jung, D W; Kim, G I; Park, Y M; Lee, Y J [Korea Inst. of Nuclear Safety, Taejon (Korea, Republic of)

    1997-07-01

    The Small and medium integral reactor is developed to be utilized for non-electric areas such as district heating and steam production for desalination and other industrial purposes, and then these applications may typically imply a closeness between the reactor and the user. It requires the reactor to be designed with the adoption of special functional and inherent safety features to ensure and promote a high level of safety and reliability, in comparison with the existing nuclear power plants. The objective of the present study is to establish the bases for the development of regulatory requirements and technical guides to address the special safety characteristics of the small and medium integral reactor. In addition, the study aims to identify and to propose resolutions to the possible safety concerns in the design of the small and medium integral reactor. 34 refs., 20 tabs. (author)

  8. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The integral fast reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: a pool-type primary system, and advanced ternary alloy metallic fuel, and an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  9. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  10. The Conceptual Framework for Ensuring Economic Safety of Corporate Integration Processes

    Directory of Open Access Journals (Sweden)

    Gutsaliuk Oleksii M.

    2016-08-01

    Full Text Available The objective growth of the number of displays and influence of negative factors of threats from the environment actualizes the issue of ensuring economic safety of national economic entities. The article notes that simultaneously with counteracting threats enterprises are working for development, one form of which is the establishment of corporate structures and implementation of integration processes. It is proposed to ensure achieving the desired level of the corporate structure economic safety through optimizing the correlation of resources and competencies, skills and technologies for their use within the integrated logistics value chain. In this case it is the implementation of the integration process that serves as an instrument for achieving this optimal correlation, and the level of economic safety is considered as one of the optimization criteria. The system of authors’ hypotheses is taken as the basis for ensuring economic safety of the corporate integration process. Each of the hypotheses corresponds to a set of conceptual principles aimed at practical implementation of the proposed approaches. Within these conceptual principles the relationship between incentives and benefits of integration and the basis for ensuring their safety is presented, the differences between safety of functioning and safety of development are studied, the use of the methodology of logistics to harmonize the interests of participants of the corporate structure is justified, the relevance of applying the resource approach to manage the integration and development safety is proved. The graphical representation of causal relationships between the proposed conceptual principles allowed formalizing the subject area of studying corporate integration safety

  11. Safety in Schools: An Integral Approach

    Science.gov (United States)

    Gairin, Joaquin; Castro, Diego

    2011-01-01

    The present paper summarizes a research project into integral safety in schools. The aims of this particular research are, firstly, to evaluate the degree of integral safety in schools, secondly, to propose means for improving prevention and integral safety systems and thirdly, to identify the characteristics of safety culture. The field work was…

  12. Determination of Safety Performance Grade of NPP Using Integrated Safety Performance Assessment (ISPA) Program

    International Nuclear Information System (INIS)

    Chung, Dae Wook

    2011-01-01

    Since the beginning of 2000, the safety regulation of nuclear power plant (NPP) has been challenged to be conducted more reasonable, effective and efficient way using risk and performance information. In the United States, USNRC established Reactor Oversight Process (ROP) in 2000 for improving the effectiveness of safety regulation of operating NPPs. The main idea of ROP is to classify the NPPs into 5 categories based on the results of safety performance assessment and to conduct graded regulatory programs according to categorization, which might be interpreted as 'Graded Regulation'. However, the classification of safety performance categories is highly comprehensive and sensitive process so that safety performance assessment program should be prepared in integrated, objective and quantitative manner. Furthermore, the results of assessment should characterize and categorize the actual level of safety performance of specific NPP, integrating all the substantial elements for assessing the safety performance. In consideration of particular regulatory environment in Korea, the integrated safety performance assessment (ISPA) program is being under development for the use in the determination of safety performance grade (SPG) of a NPP. The ISPA program consists of 6 individual assessment programs (4 quantitative and 2 qualitative) which cover the overall safety performance of NPP. Some of the assessment programs which are already implemented are used directly or modified for incorporating risk aspects. The others which are not existing regulatory programs are newly developed. Eventually, all the assessment results from individual assessment programs are produced and integrated to determine the safety performance grade of a specific NPP

  13. Architecture Level Safety Analyses for Safety-Critical Systems

    Directory of Open Access Journals (Sweden)

    K. S. Kushal

    2017-01-01

    Full Text Available The dependency of complex embedded Safety-Critical Systems across Avionics and Aerospace domains on their underlying software and hardware components has gradually increased with progression in time. Such application domain systems are developed based on a complex integrated architecture, which is modular in nature. Engineering practices assured with system safety standards to manage the failure, faulty, and unsafe operational conditions are very much necessary. System safety analyses involve the analysis of complex software architecture of the system, a major aspect in leading to fatal consequences in the behaviour of Safety-Critical Systems, and provide high reliability and dependability factors during their development. In this paper, we propose an architecture fault modeling and the safety analyses approach that will aid in identifying and eliminating the design flaws. The formal foundations of SAE Architecture Analysis & Design Language (AADL augmented with the Error Model Annex (EMV are discussed. The fault propagation, failure behaviour, and the composite behaviour of the design flaws/failures are considered for architecture safety analysis. The illustration of the proposed approach is validated by implementing the Speed Control Unit of Power-Boat Autopilot (PBA system. The Error Model Annex (EMV is guided with the pattern of consideration and inclusion of probable failure scenarios and propagation of fault conditions in the Speed Control Unit of Power-Boat Autopilot (PBA. This helps in validating the system architecture with the detection of the error event in the model and its impact in the operational environment. This also provides an insight of the certification impact that these exceptional conditions pose at various criticality levels and design assurance levels and its implications in verifying and validating the designs.

  14. Integrated Environment and Safety and Health Management System (ISMS) Implementation Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL, R.L.

    2000-01-10

    The Integrated Environment, Safety and Health Management System (ISMS) Implementation Project Plan serves as the project document to guide the Fluor Hanford, Inc (FHI) and Major Subcontractor (MSC) participants through the steps necessary to complete the integration of environment, safety, and health into management and work practices at all levels.

  15. Integrated Environment and Safety and Health Management System (ISMS) Implementation Project Plan

    International Nuclear Information System (INIS)

    MITCHELL, R.L.

    2000-01-01

    The Integrated Environment, Safety and Health Management System (ISMS) Implementation Project Plan serves as the project document to guide the Fluor Hanford, Inc (FHI) and Major Subcontractor (MSC) participants through the steps necessary to complete the integration of environment, safety, and health into management and work practices at all levels

  16. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Science.gov (United States)

    2010-01-01

    ...; (iv) Potential accident sequences caused by process deviations or other events internal to the... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process... this safety program; namely, process safety information, integrated safety analysis, and management...

  17. Integration of safety in management tasks in onshore transport SME´s

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2015-01-01

    with animals and the risk of violence and robbery. To create a high level of safety in an enterprise is a difficult task that demands a great degree of management engagement. It is not only a question of having the right equipment, procedures and organization etc.; it is also necessary for everyone...... in the enterprise to have an understanding of safety and feel obligated to take responsibility for safety in all work at all times. Accident research shows that safety must be integrated in the whole enterprise and function on all levels of management, while it must also involve all employees in their daily work...... prevention. The result is a realistic strategy for integration safety, quality and environmental factors in an SME and procedures for how to go from strategy to action. Different tools were developed to fulfil the strategy ranging from risk identification, involvement of the employee and motivational...

  18. FLIGHT SAFETY MANAGEMENT PROBLEMS AND EVALUATION OF FLIGHT SAFETY LEVEL OF AN AVIATION ENTERPRISE

    Directory of Open Access Journals (Sweden)

    B. V. Zubkov

    2017-01-01

    Full Text Available This article is devoted to studying the problem of safety management system (SMS and evaluating safety level of an aviation enterprise.This article discusses the problems of SMS, presented at the 41st meeting of the Russian Aviation Production Commanders Club in June 2014 in St. Petersburg in connection with the verification of the status of the CA of the Russian Federation by the International Civil Aviation Organization (ICAO in the same year, a set of urgent measures to eliminate the deficiencies identified in the current safety management system by participants of this meeting were proposed.In addition, the problems of evaluating flight safety level based on operation data of an aviation enterprise were analyzed. This analysis made it possible to take into account the problems listed in this article as a tool for a comprehensive study of SMS parameters and allows to analyze the quantitative indicators of the flights safety level.The concepts of Acceptable Safety Level (ASL indicators are interpreted differently depending on the available/applicable methods of their evaluation and how to implement them in SMS. However, the indicators for assessing ASL under operational condition at the aviation enterprise should become universal. Currently, defined safety levels and safety indicators are not yet established functionally and often with distorted underrepresented models describing their contextual contents, as well as ways of integrating them into SMS aviation enterprise.The results obtained can be used for better implementation of SMS and solving problems determining the aviation enterprise technical level of flight safety.

  19. Development of safety analysis technology for integral reactor; evaluation on safety concerns of integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Chul; Kim, Woong Sik; Lee, J. H. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2002-03-01

    The Nuclear Desalination Plant (NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in this study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current light water reactor and advanced reactor designs, and user requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified and discussed. They include the use of proven technology for new safety features, systematic event classification and selection, strengthening containment function, and the safety impacts on desalination-related systems. The study presents the general safety requirements applicable to licensing of an integral reactor and suggests additional regulatory requirements, which need to be developed, based on the direction to resolution of the safety concerns. The efforts to identify and technically resolve the safety concerns in the design stage will provide the early confidence of SMART safety and the technical basis to evaluate the safety to designers and reviewers in the future. Suggestion on the development of additional regulatory requirements will contribute for the regulator to taking actions for licensing of an integral reactor. 66 refs., 5 figs., 24 tabs. (Author)

  20. Work-related driver safety: A multi-level investigation

    OpenAIRE

    AMANDA ROSE WARMERDAM

    2017-01-01

    This program of research explored the organisational determinants of work-related road traffic injury in light vehicle fleets. The landscape of risk management in workplace road safety in Australia and organisational practices that influence safe driver behaviour were investigated. Key findings included that safe driving is influenced by factors at multiple levels, including senior managers, supervisors and individual fleet drivers and workplace road safety is not well integrated within curre...

  1. Development of safety analysis technology for integral reactor

    International Nuclear Information System (INIS)

    Kim, Hee Cheol; Kim, K. K.; Kim, S. H.

    2002-04-01

    The state-of-the-arts for the integral reactor was performed to investigate the safety features. The safety and performance of SMART were assessed using the technologies developed during the study. For this purpose, the computer code system and the analysis methodology were developed and the safety and performance analyses on SMART basic design were carried out for the design basis event and accident. The experimental facilities were designed for the core flow distribution test and the self-pressurizing pressurizer performance test. The tests on the 2-phase critical flow with non-condensable gas were completed and the results were used to assess the critical flow model. Probabilistic Safety Assessment(PSA) was carried out to evaluate the safety level and to optimize the design by identifying and remedying any weakness in the design. A joint study with KINS was carried out to promote licensing environment. The generic safety issues of integral reactors were identified and the solutions were formulated. The economic evaluation of the SMART desalination plant and the activities related to the process control were carried out in the scope of the study

  2. A management system integrating radiation protection and safety supporting safety culture in the hospital

    International Nuclear Information System (INIS)

    Almen, A.; Lundh, C.

    2015-01-01

    Quality assurance has been identified as an important part of radiation protection and safety for a considerable time period. A rational expansion and improvement of quality assurance is to integrate radiation protection and safety in a management system. The aim of this study was to explore factors influencing the implementing strategy when introducing a management system including radiation protection and safety in hospitals and to outline benefits of such a system. The main experience from developing a management system is that it is possible to create a vast number of common policies and routines for the whole hospital, resulting in a cost-efficient system. One of the key benefits is the involvement of management at all levels, including the hospital director. Furthermore, a transparent system will involve staff throughout the organisation as well. A management system supports a common view on what should be done, who should do it and how the activities are reviewed. An integrated management system for radiation protection and safety includes key elements supporting a safety culture. (authors)

  3. Towards integrated hygiene and food safety management systems: the Hygieneomic approach.

    Science.gov (United States)

    Armstrong, G D

    1999-09-15

    Integrated hygiene and food safety management systems in food production can give rise to exceptional improvements in food safety performance, but require high level commitment and full functional involvement. A new approach, named hygieneomics, has been developed to assist management in their introduction of hygiene and food safety systems. For an effective introduction, the management systems must be designed to fit with the current generational state of an organisation. There are, broadly speaking, four generational states of an organisation in their approach to food safety. They comprise: (i) rules setting; (ii) ensuring compliance; (iii) individual commitment; (iv) interdependent action. In order to set up an effective integrated hygiene and food safety management system a number of key managerial requirements are necessary. The most important ones are: (a) management systems must integrate the activities of key functions from research and development through to supply chain and all functions need to be involved; (b) there is a critical role for the senior executive, in communicating policy and standards; (c) responsibilities must be clearly defined, and it should be clear that food safety is a line management responsibility not to be delegated to technical or quality personnel; (d) a thorough and effective multi-level audit approach is necessary; (e) key activities in the system are HACCP and risk management, but it is stressed that these are ongoing management activities, not once-off paper generating exercises; and (f) executive management board level review is necessary of audit results, measurements, status and business benefits.

  4. The practical implementation of integrated safety management for nuclear safety analysis and fire hazards analysis documentation

    International Nuclear Information System (INIS)

    COLLOPY, M.T.

    1999-01-01

    In 1995 Mr. Joseph DiNunno of the Defense Nuclear Facilities Safety Board issued an approach to describe the concept of an integrated safety management program which incorporates hazard and safety analysis to address a multitude of hazards affecting the public, worker, property, and the environment. Since then the U S . Department of Energy (DOE) has adopted a policy to systematically integrate safety into management and work practices at all levels so that missions can be completed while protecting the public, worker, and the environment. While the DOE and its contractors possessed a variety of processes for analyzing fire hazards at a facility, activity, and job; the outcome and assumptions of these processes have not always been consistent for similar types of hazards within the safety analysis and the fire hazard analysis. Although the safety analysis and the fire hazard analysis are driven by different DOE Orders and requirements, these analyses should not be entirely independent and their preparation should be integrated to ensure consistency of assumptions, consequences, design considerations, and other controls. Under the DOE policy to implement an integrated safety management system, identification of hazards must be evaluated and agreed upon to ensure that the public. the workers. and the environment are protected from adverse consequences. The DOE program and contractor management need a uniform, up-to-date reference with which to plan. budget, and manage nuclear programs. It is crucial that DOE understand the hazards and risks necessarily to authorize the work needed to be performed. If integrated safety management is not incorporated into the preparation of the safety analysis and the fire hazard analysis, inconsistencies between assumptions, consequences, design considerations, and controls may occur that affect safety. Furthermore, confusion created by inconsistencies may occur in the DOE process to grant authorization of the work. In accordance with

  5. Development of safety analysis technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Suk K.; Song, J. H.; Chung, Y. J. and others

    1999-03-01

    Inherent safety features and safety system characteristics of the SMART integral reactor are investigated in this study. Performance and safety of the SMART conceptual design have been evaluated and confirmed through the performance and safety analyses using safety analysis system codes as well as a preliminary performance and safety analysis methodology. SMART design base events and their acceptance criteria are identified to develop a preliminary PIRT for the SMART integral reactor. Using the preliminary PIRT, a set of experimental program for the thermal hydraulic separate effect tests and the integral effect tests was developed for the thermal hydraulic model development and the system code validation. Safety characteristics as well as the safety issues of the integral reactor has been identified during the study, which will be used to resolve the safety issues and guide the regulatory criteria for the integral reactor. The results of the performance and safety analyses performed during the study were used to feedback for the SMART conceptual design. The performance and safety analysis code systems as well as the preliminary safety analysis methodology developed in this study will be validated as the SMART design evolves. The performance and safety analysis technology developed during the study will be utilized for the SMART basic design development. (author)

  6. PSA Level 2 as element of an integral safety assessment before plant commissioning

    International Nuclear Information System (INIS)

    Loeffler, H.; Mildenberger, O.; Sonnenkalb, M.; Steinroetter, T.

    2012-01-01

    In Argentina the Central Nuclear Atucha II is near to completion. This is a pressurized heavy water reactor. PSA (Probability Safety Assessment) level 1, level 2 and level 3 have to be performed in order to show compliance with the Argentinean dose limit. Such studies have been done first by the former KWU in the 1980's to get the construction license (FABIAN 1985). Nowadays the plant owner NA-SA performs PSA level 1 and provides information about the core damage states to GRS, who does the subsequent PSA level 2 part. GRS delivers source terms to the environment and the associated frequencies to the Argentinean research institute CNEA, which performs level 3 together with NA-SA. Since GRS is situated in the middle of the chain, interface definition with both ends has been a significant task of the GRS activities. Experience gained during this process will be highlighted in the presentation. The analysis of PSA level 2 proper follows a traditional approach: -) deterministic accident simulation with integral code MELCOR; -) analyses of specific issues which are not covered by MELCOR; and -) probabilistic accident progression analysis with EVNTRE event tree methodology. It appears that MELCOR and EVNTRE and PSA guidelines in general are flexible enough to analyse new or uncommon reactor designs. It also appears that the plant specific design features may require analyses beyond present code capabilities, calling for expert judgment and they can largely determine PSA results. The behaviour of iodine is not yet covered satisfactorily by state-of-the-art models in MELCOR

  7. The Integrated Safety Management System (ISMS) of the US Department of Energy

    International Nuclear Information System (INIS)

    Linn, M.A.

    1999-01-01

    While the Integrated Safety Management System (ISMS) program is a fairly rational approach to safety, it represents the culmination of several years of hard-earned lessons learned. Considering the size and the diversity of interrelated elements which make up the USDOE complex, this result shows the determination of both the USDOE and its contractors to bring safety hazards to heel. While these lessons learned were frustrating and expensive, the results were several key insights upon which the ISMS was built: (1) Ensure safety management is integral to the business. Safety management must become part of each work activity, rather that something in addition to or on top of. (2) Tailor the safety requirements to the work and its hazards. In order to be cost-effective and efficient, safety management should have flexibility in order to match safety requirements with the level of the hazards in a graded manner. (3) Safety management must be coherent and integrated. Large and complex organizations are no excuse for fragmented and overlapping safety initiatives and programs. Simple, from the ground up objectives and principles must be defined and used to guide a comprehensive safety management program. (4) A safety management system must balance resources and priorities. The system must provide the means to balance resources against the particular work hazards, recognizing that different degrees of hazards requires corresponding prevention measures. (5) Clear roles and responsibilities for safety management must be defined. Both the regulator and the contractor have specific responsibilities for safety which must be clearly articulated at all levels of the work processes. (6) Those responsible for safety must have the competence to carry it out. Those assigned responsibilities must have the experience, knowledge, skills, and authority to carry them out. As one can surmise, the ISMS is not a new program to be implemented, but rather a new attitude which must be adopted

  8. From extended integrity monitoring to the safety evaluation of satellite-based localisation system

    International Nuclear Information System (INIS)

    Legrand, Cyril; Beugin, Julie; Marais, Juliette; Conrard, Blaise; El-Koursi, El-Miloudi; Berbineau, Marion

    2016-01-01

    Global Navigation Satellite Systems (GNSS) such as GPS, already used in aeronautics for safety-related applications, can play a major role in railway safety by allowing a train to locate itself safely. However, in order to implement this positioning solution in any embedded system, its performances must be evaluated according to railway standards. The evaluation of GNSS performances is not based on the same attributes class than RAMS evaluation. Face to these diffculties, we propose to express the integrity attribute, performance of satellite-based localisation. This attribute comes from aeronautical standards and for a hybridised GNSS with inertial system. To achieve this objective, the integrity attribute must be extended to this kind of system and algorithms initially devoted to GNSS integrity monitoring only must be adapted. Thereafter, the formalisation of this integrity attribute permits us to analyse the safety quantitatively through the probabilities of integrity risk and wrong-side failure. In this paper, after an introductory discussion about the use of localisation systems in railway safety context together with integrity issues, a particular integrity monitoring is proposed and described. The detection events of this algorithm permit us to conclude about safety level of satellite-based localisation system.

  9. Spent Nuclear Fuel (SNF) project Integrated Safety Management System phase I and II Verification Review Plan

    International Nuclear Information System (INIS)

    CARTER, R.P.

    1999-01-01

    The U.S. Department of Energy (DOE) commits to accomplishing its mission safely. To ensure this objective is met, DOE issued DOE P 450.4, Safety Management System Policy, and incorporated safety management into the DOE Acquisition Regulations ([DEAR] 48 CFR 970.5204-2 and 90.5204-78). Integrated Safety Management (ISM) requires contractors to integrate safety into management and work practices at all levels so that missions are achieved while protecting the public, the worker, and the environment. The contractor is required to describe the Integrated Safety Management System (ISMS) to be used to implement the safety performance objective

  10. Spent Nuclear Fuel (SNF) project Integrated Safety Management System phase I and II Verification Review Plan

    Energy Technology Data Exchange (ETDEWEB)

    CARTER, R.P.

    1999-11-19

    The U.S. Department of Energy (DOE) commits to accomplishing its mission safely. To ensure this objective is met, DOE issued DOE P 450.4, Safety Management System Policy, and incorporated safety management into the DOE Acquisition Regulations ([DEAR] 48 CFR 970.5204-2 and 90.5204-78). Integrated Safety Management (ISM) requires contractors to integrate safety into management and work practices at all levels so that missions are achieved while protecting the public, the worker, and the environment. The contractor is required to describe the Integrated Safety Management System (ISMS) to be used to implement the safety performance objective.

  11. Integrating environment health and safety management at Petro-Canada

    International Nuclear Information System (INIS)

    Raymond, G.

    1993-01-01

    Petro-Canada has developed a tool to integrate, measure, and improve its management systems of environment, health, and safety (EH ampersand S). This tool, called the Total Loss Management System, is described in the areas of general management issues, policies and procedures, evaluations, organization, stewardship, issue management, and performance measures. Petro-Canada's policies on occupational health and safety are consistent with its environmental policy, being structured in the same way. An integrated audit system is used to cover health, safety, industrial hygiene, reliability, environment, and risk management. EH ampersand S matters are integrated at the corporate level in a separate department. Regional divisions review EH ampersand S performance every month, incidents are discussed, and preventive measures are taken as necessary. Regional performances are combined every quarter for ultimate presentation to the Petro-Canada board. New or emerging issues that may affect divisions are assigned an issue sponsor, a member of divisional management who makes sure the issue receives the resources necessary to study and define its impact. Examples of issues include soil contamination, process hazard management, and benzene exposure limits. Performance measures flow from the corporate environment and occupational health and safety policies, and come in two types: those that measure activities to improve performance and those that measure the outcome of the activities

  12. Integrating animal health and food safety surveillance data from slaughterhouse control.

    Science.gov (United States)

    Lynch, J A; Silva, P

    2013-08-01

    Surveillance at the slaughterhouse level for animal health and food safety purposes encompasses examination for the presence of pathology, pathogens, drug residues, chemical contaminants and antimicrobial resistance. Government, industry and academia are the primary proponents of such surveillance. A variety of policies and policy instruments from voluntary to legislative may be applied to promote or obligate participation. Efforts to integrate data across such diverse organisations encounter significant legal, logistical and financial challenges. Enhancement of policies to encourage effective integration of animal health and food safety surveillance data from slaughterhouse control should promote: a long-term approach; collaboration among government, industry and academia; application of a risk-based scheme; and transparent public access to data, with generation of consumer-oriented communications derived from the data. A strong case can be made that the complementary pursuit of both sustainable animal health and food safety can continue to be aided by surveillance at the slaughterhouse level.

  13. Integrated framework for dynamic safety analysis

    International Nuclear Information System (INIS)

    Kim, Tae Wan; Karanki, Durga R.

    2012-01-01

    In the conventional PSA (Probabilistic Safety Assessment), detailed plant simulations by independent thermal hydraulic (TH) codes are used in the development of accident sequence models. Typical accidents in a NPP involve complex interactions among process, safety systems, and operator actions. As independent TH codes do not have the models of operator actions and full safety systems, they cannot literally simulate the integrated and dynamic interactions of process, safety systems, and operator responses. Offline simulation with pre decided states and time delays may not model the accident sequences properly. Moreover, when stochastic variability in responses of accident models is considered, defining all the combinations for simulations will be cumbersome task. To overcome some of these limitations of conventional safety analysis approach, TH models are coupled with the stochastic models in the dynamic event tree (DET) framework, which provides flexibility to model the integrated response due to better communication as all the accident elements are in the same model. The advantages of this framework also include: Realistic modeling in dynamic scenarios, comprehensive results, integrated approach (both deterministic and probabilistic models), and support for HRA (Human Reliability Analysis)

  14. 75 FR 56112 - Integrated Food Safety System Online Collaboration Development-Cooperative Agreement With the...

    Science.gov (United States)

    2010-09-15

    ... FDA to meet the White House Food Safety Working Group recommendation that the Federal government... development of an integrated food safety system, and the development and implementation of a sustainable model... levels. NCFPD also has past experience directly supporting the White House Food Safety Working Group...

  15. An integrative model of organizational safety behavior.

    Science.gov (United States)

    Cui, Lin; Fan, Di; Fu, Gui; Zhu, Cherrie Jiuhua

    2013-06-01

    This study develops an integrative model of safety management based on social cognitive theory and the total safety culture triadic framework. The purpose of the model is to reveal the causal linkages between a hazardous environment, safety climate, and individual safety behaviors. Based on primary survey data from 209 front-line workers in one of the largest state-owned coal mining corporations in China, the model is tested using structural equation modeling techniques. An employee's perception of a hazardous environment is found to have a statistically significant impact on employee safety behaviors through a psychological process mediated by the perception of management commitment to safety and individual beliefs about safety. The integrative model developed here leads to a comprehensive solution that takes into consideration the environmental, organizational and employees' psychological and behavioral aspects of safety management. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  16. Training courses on integrated safety assessment modelling for waste repositories

    International Nuclear Information System (INIS)

    Mallants, D.

    2007-01-01

    Near-surface or deep repositories of radioactive waste are being developed and evaluated all over the world. Also, existing repositories for low- and intermediate-level waste often need to be re-evaluated to extend their license or to obtain permission for final closure. The evaluation encompasses both a technical feasibility as well as a safety analysis. The long term safety is usually demonstrated by means of performance or safety assessment. For this purpose computer models are used that calculate the migration of radionuclides from the conditioned radioactive waste, through engineered barriers to the environment (groundwater, surface water, and biosphere). Integrated safety assessment modelling addresses all relevant radionuclide pathways from source to receptor (man), using in combination various computer codes in which the most relevant physical, chemical, mechanical, or even microbiological processes are mathematically described. SCK-CEN organizes training courses in Integrated safety assessment modelling that are intended for individuals who have either a controlling or supervising role within the national radwaste agencies or regulating authorities, or for technical experts that carry out the actual post-closure safety assessment for an existing or new repository. Courses are organised by the Department of Waste and Disposal

  17. The safety features of an integrated maritime reactor

    International Nuclear Information System (INIS)

    Miyakoshi, Junichi; Yamada, Nobuyuki; Kuwahara, Shin-ichi

    1975-01-01

    The EFDR-80, a typical integrated maritime reactor, which is being developed in West Germany is outlined. The safety features of the integrated maritime reactor are presented with the analysis of reactor accidents and hazards, and are compared with those of the separated maritime reactor. Furthermore, the safety criteria of maritime reactors in Japan and West Germany are compared, and some of the differences are presented from the viewpoint of reactor design and safety analysis. In this report the authors express an earnest desire that the definite and reasonable safety criteria of the integrated maritime reactor should be established and that the safety criteria of the nuclear ship should be standardized internationally. (auth.)

  18. Levels of safety

    International Nuclear Information System (INIS)

    Povyakalo, A.A.

    1996-01-01

    When speaking about danger of catastrophe, it is the first level of danger. Its absence is the first level of safety. When speaking about danger of danger of catastrophe, it is the second level of danger. Its absence is the second level of safety. The paper proposes the way to formalize these ideas and use formal models to construct the states-and-event scale for a given object. The proposed approach can be applied to objects of different nature. The states-and-events scale may be used for transformation of initial objectives state-and-transitions graph to reduce bad classes of states

  19. Technical safety requirements control level verification

    International Nuclear Information System (INIS)

    STEWART, J.L.

    1999-01-01

    A Technical Safety Requirement (TSR) control level verification process was developed for the Tank Waste Remediation System (TWRS) TSRs at the Hanford Site in Richland, WA, at the direction of the US. Department of Energy, Richland Operations Office (RL). The objective of the effort was to develop a process to ensure that the TWRS TSR controls are designated and managed at the appropriate levels as Safety Limits (SLs), Limiting Control Settings (LCSs), Limiting Conditions for Operation (LCOs), Administrative Controls (ACs), or Design Features. The TSR control level verification process was developed and implemented by a team of contractor personnel with the participation of Fluor Daniel Hanford, Inc. (FDH), the Project Hanford Management Contract (PHMC) integrating contractor, and RL representatives. The team was composed of individuals with the following experience base: nuclear safety analysis; licensing; nuclear industry and DOE-complex TSR preparation/review experience; tank farm operations; FDH policy and compliance; and RL-TWRS oversight. Each TSR control level designation was completed utilizing TSR control logic diagrams and TSR criteria checklists based on DOE Orders, Standards, Contractor TSR policy, and other guidance. The control logic diagrams and criteria checklists were reviewed and modified by team members during team meetings. The TSR control level verification process was used to systematically evaluate 12 LCOs, 22 AC programs, and approximately 100 program key elements identified in the TWRS TSR document. The verification of each TSR control required a team consensus. Based on the results of the process, refinements were identified and the TWRS TSRs were modified as appropriate. A final report documenting key assumptions and the control level designation for each TSR control was prepared and is maintained on file for future reference. The results of the process were used as a reference in the RL review of the final TWRS TSRs and control suite. RL

  20. Supporting Fernald Site Closure with Integrated Health and Safety Plans as Documented Safety Analyses

    International Nuclear Information System (INIS)

    Kohler, S.; Brown, T.; Fisk, P.; Krach, F.; Klein, B.

    2004-01-01

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D and D) of over 200 structures, including eight major nuclear production plants. There is one of twelve nuclear facilities still remaining (Silos containing uranium ore residues) with its own safety basis documentation. This paper presents the status of the FCP's safety basis documentation program, illustrating that all of the former nuclear facilities and activities have now replaced. Basis of Interim Operations (BIOs) with I-HASPs as their safety basis during the closure process

  1. Safety design integrated in the building delivery system

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2013-01-01

    . The purpose of this article is to demonstrate how safety and health can be integrated in the design phases integrated in the management delivery systems within construction, The method for the research was to go through the building delivery system step by step and create a normative description of what, when......In construction, it is important to view safety and health as an integrated part of the way that “designers” are working. The designers cowers architects, constructors, engineers and others who carry out their consulting services in the design phase of a construction project. The philosophy...... and how to fully integrate safety in each part of the process. The result is a concept and guideline including control forms for how to integrate safety design in the Building Delivery System plus what to do and when. The concept has been tested in an educational context. The practical value...

  2. Integrated environment, safety, and health management system description

    International Nuclear Information System (INIS)

    Zoghbi, J. G.

    2000-01-01

    The Integrated Environment, Safety, and Health Management System Description that is presented in this document describes the approach and management systems used to address integrated safety management within the Richland Environmental Restoration Project

  3. Improving safety in small enterprises through an integrated safety management intervention.

    Science.gov (United States)

    Kines, Pete; Andersen, Dorte; Andersen, Lars Peter; Nielsen, Kent; Pedersen, Louise

    2013-02-01

    This study tests the applicability of a participatory behavior-based injury prevention approach integrated with safety culture initiatives. Sixteen small metal industry enterprises (10-19 employees) are randomly assigned to receive the intervention or not. Safety coaching of owners/managers result in the identification of 48 safety tasks, 85% of which are solved at follow-up. Owner/manager led constructive dialogue meetings with workers result in the prioritization of 29 tasks, 79% of which are accomplished at follow-up. Intervention enterprises have significant increases on six of eight safety-perception-survey factors, while comparisons increase on only one factor. Both intervention and comparison enterprises demonstrate significant increases in their safety observation scores. Interview data validate and supplement these results, providing some evidence for behavior change and the initiation of safety culture change. Given that over 95% of enterprises in most countries have less than 20 employees, there is great potential for adapting this integrated approach to other industries. Copyright © 2012 National Safety Council and Elsevier Ltd. All rights reserved.

  4. Oswer integrated health and safety standard operating practices. Directive

    International Nuclear Information System (INIS)

    1993-02-01

    The directive implements the OSWER (Office of Solid Waste and Emergency Response) Integrated Health and Safety Standards Operating Practices in conjunction with the OSHA (Occupational Safety and Health Act) Worker Protection Standards, replacing the OSWER Integrated Health and Safety Policy

  5. Optimum Safety Levels for Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Sørensen, John Dalsgaard

    2005-01-01

    Optimum design safety levels for rock and cube armoured rubble mound breakwaters without superstructure are investigated by numerical simulations on the basis of minimization of the total costs over the service life of the structure, taking into account typical uncertainties related to wave...... statistics and structure response. The study comprises the influence of interest rate, service lifetime, downtime costs and damage accumulation. Design limit states and safety classes for breakwaters are discussed. The results indicate that optimum safety levels are somewhat higher than the safety levels...

  6. Integral reactor vessel related to power reactor safety

    International Nuclear Information System (INIS)

    Widart, J.; Scailteur, A.

    1978-01-01

    Integral design applied to PWR pressure vessels allows to reach a high level of safety because: 1) it presents a better balance of the material in the geometry, resulting in an improved stress level (mainly faulted condition loadings); 2) location and geometry of the welds are designed in order to get a very sound pressure boundary of the upper part of the vessel; 3) the new location and geometry of the welds allow an easy ISI in such a way that ambiguity surrounding defect size or locaton is practically suppressed. (author)

  7. Risk and Work Configuration Management as a Function of Integrated Safety Management

    International Nuclear Information System (INIS)

    Lana Buehrer; Michele Kelly; Fran Lemieux; Fred Williams

    2007-01-01

    National Security Technologies, LLC (NSTec), has established a work management program and corresponding electronic Facilities and Operations Management Information System (e-FOM) to implement Integrated Safety Management (ISM). The management of work scopes, the identification of hazards, and the establishment of implementing controls are reviewed and approved through electronic signatures. Through the execution of the program and the implementation of the electronic system, NSTec staff work within controls and utilize feedback and improvement process. The Integrated Work Control Manual further implements the five functions of ISM at the Activity level. By adding the Risk and Work Configuration Management program, NSTec establishes risk acceptance (business and physical) for liabilities within the performance direction and work management processes. Requirements, roles, and responsibilities are specifically identified in the program while e-FOM provides the interface and establishes the flowdown from the Safety Chain to work and facilities management processes to company work-related directives, and finally to Subject Matter Expert concurrence. The Program establishes, within the defined management structure, management levels for risk identification, risk mitigation (controls), and risk acceptance (business and physical) within the Safety Chain of Responsibility. The Program also implements Integrated Safeguards and Security Management within the NSTec Safety Chain of Responsibility. Once all information has been entered into e-FOM, approved, and captured as data, the information becomes searchable and sortable by hazard, location, organization, mitigating controls, etc

  8. Timing of Formal Phase Safety Reviews for Large-Scale Integrated Hazard Analysis

    Science.gov (United States)

    Massie, Michael J.; Morris, A. Terry

    2010-01-01

    Integrated hazard analysis (IHA) is a process used to identify and control unacceptable risk. As such, it does not occur in a vacuum. IHA approaches must be tailored to fit the system being analyzed. Physical, resource, organizational and temporal constraints on large-scale integrated systems impose additional direct or derived requirements on the IHA. The timing and interaction between engineering and safety organizations can provide either benefits or hindrances to the overall end product. The traditional approach for formal phase safety review timing and content, which generally works well for small- to moderate-scale systems, does not work well for very large-scale integrated systems. This paper proposes a modified approach to timing and content of formal phase safety reviews for IHA. Details of the tailoring process for IHA will describe how to avoid temporary disconnects in major milestone reviews and how to maintain a cohesive end-to-end integration story particularly for systems where the integrator inherently has little to no insight into lower level systems. The proposal has the advantage of allowing the hazard analysis development process to occur as technical data normally matures.

  9. Fluor Hanford Integrated Safety Management System Phase II Verification Vol 1 & Vol 2

    Energy Technology Data Exchange (ETDEWEB)

    PARSONS, J.E.

    2000-07-15

    The U.S. Department of Energy (DOE) is committed to conducting work efficiently and in a manner that ensures protection of the workers, public, and environment. DOE policy mandates that safety management systems be used to systematically integrate safety into management and work practices at all levels while accomplishing mission goals in an effective and efficient manner. The purpose of the Fluor Hanford (FH) Integrated Safety Management System (ISMS) verification was to determine whether FH's ISM system and processes are sufficiently implemented to accomplish the goal of ''Do work safely.'' The purpose of the DOE, Richland Operations Office (RL) verification was to determine whether RL has established processes that adequately describe RL's role in safety management and if those processes are sufficiently implemented.

  10. Report of study group 4.3 ''pipeline integrity management and safety''

    Energy Technology Data Exchange (ETDEWEB)

    Clavel, P.

    2000-07-01

    This report highlights the Pipeline integrity Management methods being implemented by gas companies. These aim at maintaining the current high safety level, prevent major hazards, ensure the integrity of the pipeline and protect people and environment in the vicinity of the pipeline in the most cost effective way. It should be noticed that Pipeline Integrity Management aspects, technical and organisational, are included in the more general framework of the Safety Management System. Currently, more and more gas companies implement such a system on the basis of standards like ISO 9000 and so on. In this way, the report shows how practices of Pipeline Integrity Management are continually developing in order to adapt to their environment, and to improve performance. Past experience and imminent developments show that Pipeline Integrity Management is a flexible and efficient approach to improve safety in the long term. Consequently, Pipeline Integrity Management Systems are, under the control of authorities, the best alternative to additional safety regulations. Within the context of deregulation of the European markets and globalization Pipeline Integrity Management appears to be a tool to promote the gas industry in the eyes of the authorities, the market regulators and the customers (industrialists,...). (author)

  11. Simplifying documentation while approaching site closure: integrated health and safety plans as documented safety analysis

    International Nuclear Information System (INIS)

    Brown, Tulanda

    2003-01-01

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). By isolating any remediation activities that deal with Enriched Restricted Materials, the SBRs and PRs assure that the hazard categories of former nuclear facilities undergoing remediation remain less than Nuclear. These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D and D) of over 150 structures, including six major nuclear production plants. This paper presents the FCP method for maintaining safety basis documentation, using the D and D I-HASP as an example

  12. Technical safety requirements control level verification; TOPICAL

    International Nuclear Information System (INIS)

    STEWART, J.L.

    1999-01-01

    A Technical Safety Requirement (TSR) control level verification process was developed for the Tank Waste Remediation System (TWRS) TSRs at the Hanford Site in Richland, WA, at the direction of the US. Department of Energy, Richland Operations Office (RL). The objective of the effort was to develop a process to ensure that the TWRS TSR controls are designated and managed at the appropriate levels as Safety Limits (SLs), Limiting Control Settings (LCSs), Limiting Conditions for Operation (LCOs), Administrative Controls (ACs), or Design Features. The TSR control level verification process was developed and implemented by a team of contractor personnel with the participation of Fluor Daniel Hanford, Inc. (FDH), the Project Hanford Management Contract (PHMC) integrating contractor, and RL representatives. The team was composed of individuals with the following experience base: nuclear safety analysis; licensing; nuclear industry and DOE-complex TSR preparation/review experience; tank farm operations; FDH policy and compliance; and RL-TWRS oversight. Each TSR control level designation was completed utilizing TSR control logic diagrams and TSR criteria checklists based on DOE Orders, Standards, Contractor TSR policy, and other guidance. The control logic diagrams and criteria checklists were reviewed and modified by team members during team meetings. The TSR control level verification process was used to systematically evaluate 12 LCOs, 22 AC programs, and approximately 100 program key elements identified in the TWRS TSR document. The verification of each TSR control required a team consensus. Based on the results of the process, refinements were identified and the TWRS TSRs were modified as appropriate. A final report documenting key assumptions and the control level designation for each TSR control was prepared and is maintained on file for future reference. The results of the process were used as a reference in the RL review of the final TWRS TSRs and control suite. RL

  13. Research on Integration of NPP Operational Safety Management Performance Systems

    International Nuclear Information System (INIS)

    Chi, Miao; Shi, Liping

    2014-01-01

    The operational safety management of Nuclear Power Plants demands systematic planning and integrated control. NPPs are following the well-developed safety indicator systems proposed by IAEA Operational Safety Performance Indicator Programme, NRC Reactor Oversight Process or the other institutions. Integration of the systems is proposed to benefiting from the advantages of both systems and avoiding improper application into the real world. The authors analyzed the possibility and necessity for system integration, and propose an indicator system integrating method

  14. Fluor Hanford Integrated Safety Management System Phase II Verification Vol 1 and Vol 2

    CERN Document Server

    Parsons, J E

    2000-01-01

    The U.S. Department of Energy (DOE) is committed to conducting work efficiently and in a manner that ensures protection of the workers, public, and environment. DOE policy mandates that safety management systems be used to systematically integrate safety into management and work practices at all levels while accomplishing mission goals in an effective and efficient manner. The purpose of the Fluor Hanford (FH) Integrated Safety Management System (ISMS) verification was to determine whether FH's ISM system and processes are sufficiently implemented to accomplish the goal of ''Do work safely.'' The purpose of the DOE, Richland Operations Office (RL) verification was to determine whether RL has established processes that adequately describe RL's role in safety management and if those processes are sufficiently implemented.

  15. Fluor Hanford Integrated Safety Management System Phase II Verification Vol 1 and Vol 2

    International Nuclear Information System (INIS)

    PARSONS, J.E.

    2000-01-01

    The U.S. Department of Energy (DOE) is committed to conducting work efficiently and in a manner that ensures protection of the workers, public, and environment. DOE policy mandates that safety management systems be used to systematically integrate safety into management and work practices at all levels while accomplishing mission goals in an effective and efficient manner. The purpose of the Fluor Hanford (FH) Integrated Safety Management System (ISMS) verification was to determine whether FH's ISM system and processes are sufficiently implemented to accomplish the goal of ''Do work safely.'' The purpose of the DOE, Richland Operations Office (RL) verification was to determine whether RL has established processes that adequately describe RL's role in safety management and if those processes are sufficiently implemented

  16. Integrated therapy safety management system.

    Science.gov (United States)

    Podtschaske, Beatrice; Fuchs, Daniela; Friesdorf, Wolfgang

    2013-09-01

    The aim is to demonstrate the benefit of the medico-ergonomic approach for the redesign of clinical work systems. Based on the six layer model, a concept for an 'integrated therapy safety management' is drafted. This concept could serve as a basis to improve resilience. The concept is developed through a concept-based approach. The state of the art of safety and complexity research in human factors and ergonomics forms the basis. The findings are synthesized to a concept for 'integrated therapy safety management'. The concept is applied by way of example for the 'medication process' to demonstrate its practical implementation. The 'integrated therapy safety management' is drafted in accordance with the six layer model. This model supports a detailed description of specific work tasks, the corresponding responsibilities and related workflows at different layers by using the concept of 'bridge managers'. 'Bridge managers' anticipate potential errors and monitor the controlled system continuously. If disruptions or disturbances occur, they respond with corrective actions which ensure that no harm results and they initiate preventive measures for future procedures. The concept demonstrates that in a complex work system, the human factor is the key element and final authority to cope with the residual complexity. The expertise of the 'bridge managers' and the recursive hierarchical structure results in highly adaptive clinical work systems and increases their resilience. The medico-ergonomic approach is a highly promising way of coping with two complexities. It offers a systematic framework for comprehensive analyses of clinical work systems and promotes interdisciplinary collaboration. © 2013 The Authors. British Journal of Clinical Pharmacology © 2013 The British Pharmacological Society.

  17. Integrated therapy safety management system

    Science.gov (United States)

    Podtschaske, Beatrice; Fuchs, Daniela; Friesdorf, Wolfgang

    2013-01-01

    Aims The aim is to demonstrate the benefit of the medico-ergonomic approach for the redesign of clinical work systems. Based on the six layer model, a concept for an ‘integrated therapy safety management’ is drafted. This concept could serve as a basis to improve resilience. Methods The concept is developed through a concept-based approach. The state of the art of safety and complexity research in human factors and ergonomics forms the basis. The findings are synthesized to a concept for ‘integrated therapy safety management’. The concept is applied by way of example for the ‘medication process’ to demonstrate its practical implementation. Results The ‘integrated therapy safety management’ is drafted in accordance with the six layer model. This model supports a detailed description of specific work tasks, the corresponding responsibilities and related workflows at different layers by using the concept of ‘bridge managers’. ‘Bridge managers’ anticipate potential errors and monitor the controlled system continuously. If disruptions or disturbances occur, they respond with corrective actions which ensure that no harm results and they initiate preventive measures for future procedures. The concept demonstrates that in a complex work system, the human factor is the key element and final authority to cope with the residual complexity. The expertise of the ‘bridge managers’ and the recursive hierarchical structure results in highly adaptive clinical work systems and increases their resilience. Conclusions The medico-ergonomic approach is a highly promising way of coping with two complexities. It offers a systematic framework for comprehensive analyses of clinical work systems and promotes interdisciplinary collaboration. PMID:24007448

  18. 49 CFR 1106.4 - The Safety Integration Plan process.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false The Safety Integration Plan process. 1106.4 Section 1106.4 Transportation Other Regulations Relating to Transportation (Continued) SURFACE... CONSIDERATION OF SAFETY INTEGRATION PLANS IN CASES INVOLVING RAILROAD CONSOLIDATIONS, MERGERS, AND ACQUISITIONS...

  19. A simple reliability block diagram method for safety integrity verification

    International Nuclear Information System (INIS)

    Guo Haitao; Yang Xianhui

    2007-01-01

    IEC 61508 requires safety integrity verification for safety related systems to be a necessary procedure in safety life cycle. PFD avg must be calculated to verify the safety integrity level (SIL). Since IEC 61508-6 does not give detailed explanations of the definitions and PFD avg calculations for its examples, it is difficult for common reliability or safety engineers to understand when they use the standard as guidance in practice. A method using reliability block diagram is investigated in this study in order to provide a clear and feasible way of PFD avg calculation and help those who take IEC 61508-6 as their guidance. The method finds mean down times (MDTs) of both channel and voted group first and then PFD avg . The calculated results of various voted groups are compared with those in IEC61508 part 6 and Ref. [Zhang T, Long W, Sato Y. Availability of systems with self-diagnostic components-applying Markov model to IEC 61508-6. Reliab Eng System Saf 2003;80(2):133-41]. An interesting outcome can be realized from the comparison. Furthermore, although differences in MDT of voted groups exist between IEC 61508-6 and this paper, PFD avg of voted groups are comparatively close. With detailed description, the method of RBD presented can be applied to the quantitative SIL verification, showing a similarity of the method in IEC 61508-6

  20. INTEGRATED SAFETY MANAGEMENT SYSTEM IN AIR TRAFFIC SERVICES

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2014-06-01

    Full Text Available The article deals with the analysis of the researches conducted in the field of safety management systems.Safety management system framework, methods and tools for safety analysis in Air Traffic Control have been reviewed.Principles of development of Integrated safety management system in Air Traffic Services have been proposed.

  1. The mediating role of integration of safety by activity versus operator between organizational culture and safety climate.

    Science.gov (United States)

    Auzoult, Laurent; Gangloff, Bernard

    2018-04-20

    In this study, we analyse the impact of the organizational culture and introduce a new variable, the integration of safety, which relates to the modalities for the implementation and adoption of safety in the work process, either through the activity or by the operator. One hundred and eighty employees replied to a questionnaire measuring the organizational climate, the safety climate and the integration of safety. We expected that implementation centred on the activity or on the operator would mediate the relationship between the organizational culture and the safety climate. The results support our assumptions. A regression analysis highlights the positive impact on the safety climate of organizational values of the 'rule' and 'support' type, as well as of integration by the operator and activity. Moreover, integration mediates the relation between these variables. The results suggest to take into account organizational culture and to introduce different implementation modalities to improve the safety climate.

  2. An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

    International Nuclear Information System (INIS)

    Leahy, Timothy J.

    2010-01-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated 'toolkit' consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

  3. Preliminary Integrated Safety Analysis Status Report

    International Nuclear Information System (INIS)

    Gwyn, D.

    2001-01-01

    This report provides the status of the potential Monitored Geologic Repository (MGR) Integrated Safety Analysis (EA) by identifying the initial work scope scheduled for completion during the ISA development period, the schedules associated with the tasks identified, safety analysis issues encountered, and a summary of accomplishments during the reporting period. This status covers the period from October 1, 2000 through March 30, 2001

  4. Development of Safety Analysis Technology for Integral Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, S. K. [Korea Atomic Energy Research Institute, Taejeon (Korea); Seul, K. W.; Kim, W. S.; Kim, W. K.; Yun, Y. G.; Ahn, H. J.; Lee, J. S.; Sin, A. D. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2000-03-01

    The Nuclear Desalination Plant(NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in a present study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated based on the design of foreign and domestic integral reactors. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current and advanced reactor designs, and use requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified. They includes the use of proven technology for new safety systems, the systematic classification and selection of design basis accidents, and the safety assurance of desalination-related systems. These efforts to identify and resolve the safety concerns in the design stage will provide the early confidence of SMART safety to designers, and the technical basis to evaluate the safety to reviewers in the future. 8 refs., 20 figs., 4 tabs. (Author)

  5. THE PLACE OF OCCUPATIONAL HEALTH AND SAFETY MANAGEMENT SYSTEM IN THE INTEGRATED MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Piotr Kafel

    2016-06-01

    Full Text Available The purpose of this paper is to analyze the place of occupational health and safety management system (OHSMS within the integrated management system. Implementation aspects of management systems are discussed, namely the different management system standards used for registration, for example ISO 14001, ISO 9001, OHSAS 18001, ISO 27001, the order in which they were implemented, the time required for each implementation, as well as the scope of integration of these management system standards into a single Integrated Management System and the level of integration. In order to do so, some of the results of a survey carried out in 81 organizations registered to at least two management systems selected from popular international standards, e.g.: ISO 9001, ISO 14001, OHSAS 18001, ISO/IEC 27001, ISO 22000 were used. OHSMS is not the system that is implemented as a first one. Usually it is implemented after or simultaneously with ISO 9001 and ISO 14001 standards. Time of implementation of MSSs in second and further round of implementation is shorter than during the implementation of first standards. There is a higher level of integration of implemented management standards in organizations where one of the standards in OHSMS, than in a companies without OHSMS. The paper analyses those sequences of management systems implementation of safety management systems with other system, that allow organizations to achieve higher levels of integration and presents a possible pattern for the companies initiating the integration process.

  6. Psychology in nuclear power plants: an integrative approach to safety - general statement

    International Nuclear Information System (INIS)

    Shikiar, R.

    1983-08-01

    Since the accident at the Three Mile Island nuclear power plant on March 28, 1979, the commercial nuclear industry in the United States has paid increasing attention to the role of humans in overall plant safety. As the regulatory body with primary responsibility for ensuring public health and safety involving nuclear operations, the United States Nuclear Regulatory Commission (NRC) has also become increasingly involved with the ''human'' side of nuclear operations. The purpose of this symposium is to describe a major program of research and technical assistance that the Pacific Northwest Laboratory is performing for the NRC that deals with the issues of safety at nuclear power plants (NPPs). This program addresses safety from several different levels of analysis, which are all important within the context of an integrative approach to system safety

  7. Food Safety: an Integral Part of Food Security

    International Nuclear Information System (INIS)

    Kilian, Lizette

    2012-01-01

    In recent years, many countries have developed integrated and harmonized food safety and quality control guidelines in accordance with national legislation and international standards to protect the health of consumers. But food safety standards alone are not enough. Radiation technology can complement and supplement existing technologies to ensure food security, safety and quality.

  8. The role of risk assessment and safety analysis in integrated safety assessments

    International Nuclear Information System (INIS)

    Niall, R.; Hunt, M.; Wierman, T.E.

    1990-01-01

    To ensure that the design and operation of both nuclear and non- nuclear hazardous facilities is acceptable, and meets all societal safety expectations, a rigorous deterministic and probabilistic assessment is necessary. An approach is introduced, founded on the concept of an ''Integrated Safety Assessment.'' It merges the commonly performed safety and risk analyses and uses them in concert to provide decision makers with the necessary depth of understanding to achieve ''adequacy.'' 3 refs., 1 fig

  9. On Optimum Safety Levels of Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Sørensen, John Dalsgaard

    2006-01-01

    The paper presents results from numerical simulations performed with the objective of identifying optimum design safety levels of conventional rubble mound and caisson breakwaters, corresponding to the lowest costs over the service life of the structures. The work is related to the PIANC Working...... Group 47 on "Selection of type of breakwater structures". The paper summaries results given in Burcharth and Sorensen (2005) related to outer rubble mound breakwaters but focus on optimum safety levels for outer caisson breakwaters on low and high rubble foundations placed on sea beds strong enough...... to resist geotechnical slip failures. Optimum safety levels formulated for use both in deterministic and probabilistic design procedures are given. Results obtained so far indicate that the optimum safety levels for caisson breakwaters are much higher than for rubble mound breakwaters....

  10. 49 CFR 244.11 - Contents of a Safety Integration Plan.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Contents of a Safety Integration Plan. 244.11 Section 244.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS ON SAFETY INTEGRATION PLANS GOVERNING RAILROAD...

  11. Integrated program of using of Probabilistic Safety Analysis in Spain

    International Nuclear Information System (INIS)

    1998-01-01

    Since 25 June 1986, when the CSN (Nuclear Safety Conseil) approve the Integrated Program of Probabilistic Safety Analysis, this program has articulated the main activities of CSN. This document summarize the activities developed during these years and reviews the Integrated programme

  12. Using level-I PRA for enhanced safety of the advanced neutron source reactor

    International Nuclear Information System (INIS)

    Ramsey, C.T.; Linn, M.A.

    1995-01-01

    The phase-1, level-I probabilistic risk assessment (PRA) of the Advanced Neutron Source (ANS) reactor has been completed as part of the conceptual design phase of this proposed research facility. Since project inception, PRA and reliability concepts have been an integral part of the design evolutions contributing to many of the safety features in the current design. The level-I PRA has been used to evaluate the internal events core damage frequency against project goals and to identify systems important to safety and availability, and it will continue to guide and provide support to accident analysis, both severe and nonsevere. The results also reflect the risk value of defense-in-depth safety features in reducing the likelihood of core damage

  13. Integrating Safeguards and Security with Safety into Design

    International Nuclear Information System (INIS)

    Bean, Robert S.; Hockert, John W.; Hebditch, David J.

    2009-01-01

    There is a need to minimize security risks, proliferation hazards, and safety risks in the design of new nuclear facilities in a global environment of nuclear power expansion, while improving the synergy of major design features and raising operational efficiency. In 2008, the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) launched the Next Generation Safeguards Initiative (NGSI) covering many safeguards areas. One of these, launched by NNSA with support of the DOE Office of Nuclear Energy, was a multi-laboratory project, led by the Idaho National Laboratory (INL), to develop safeguards by design. The proposed Safeguards-by-Design (SBD) process has been developed as a structured approach to ensure the timely, efficient, and cost effective integration of international safeguards and other nonproliferation barriers with national material control and accountability, physical security, and safety objectives into the overall design process for the nuclear facility lifecycle. A graded, iterative process was developed to integrate these areas throughout the project phases. It identified activities, deliverables, interfaces, and hold points covering both domestic regulatory requirements and international safeguards using the DOE regulatory environment as exemplar to provide a framework and guidance for project management and integration of safety with security during design. Further work, reported in this paper, created a generalized SBD process which could also be employed within the licensed nuclear industry and internationally for design of new facilities. Several tools for integrating safeguards, safety, and security into design are discussed here. SBD appears complementary to the EFCOG TROSSI process for security and safety integration created in 2006, which focuses on standardized upgrades to enable existing DOE facilities to meet a more severe design basis threat. A collaborative approach is suggested.

  14. Integrated Safety in Design

    DEFF Research Database (Denmark)

    Schultz, Casper Siebken; Jørgensen, Kirsten

    2014-01-01

    An on-going research project investigates the inclusion of health and safety considerations in the design phase as a means to achieve a higher level of health and safety in the construction industry. Moreover, the approach is coupled to the overall quality efforts. Two architectural firms and two...... consulting engineering firms are project participants. The hypothesis is that health and safety problems in execution can be prevented through better planning in the early stages of the construction processes and that accidents are prevented by providing safety. In the first stage of the research project...... a theoretical framework is developed from a combination of existing literature on health and safety and a mapping of existing practices based on interviews in all four companies. The interviews revealed that the basic knowledge on OHS among architects and engineers is limited. Also currently designers typically...

  15. Comparing performance level estimation of safety functions in three distributed structures

    International Nuclear Information System (INIS)

    Hietikko, Marita; Malm, Timo; Saha, Heikki

    2015-01-01

    The capability of a machine control system to perform a safety function is expressed using performance levels (PL). This paper presents the results of a study where PL estimation was carried out for a safety function implemented using three different distributed control system structures. Challenges relating to the process of estimating PLs for safety related distributed machine control functions are highlighted. One of these examines the use of different cabling schemes in the implementation of a safety function and its effect on the PL evaluation. The safety function used as a generic example in PL calculations relates to a mobile work machine. It is a safety stop function where different technologies (electrical, hydraulic and pneumatic) can be utilized. It was detected that by replacing analogue cables with digital communication the system structure becomes simpler with less number of failing components, which can better the PL of the safety function. - Highlights: • Integration in distributed systems enables systems with less components. • It offers high reliability and diagnostic properties. • Analogue signals create uncertainty in signal reliability and difficult diagnostics

  16. Lessons in Nuclear Safety, Panel on Integration of People and Programs

    International Nuclear Information System (INIS)

    Pinkston, David

    2015-01-01

    Four slides present a historical perspective on the evolution of nuclear safety, a description of systemic misalignment (available resources do not match expectations, demographic cliff developing, promulgation of increased expectations and new requirements proceeds unabated), and needs facing nuclear safety (financial stability, operational stability, and succession planning). The following conclusions are stated under the heading ''Nuclear Safety - 'The System''': the current universe of requirements is too large for the resource pool available; the current universe of requirements has too many different sources of interpretation; there are so many indicators that it's hard to know what is leading (or important); and the net result can come to defy integrated comprehension at the worker level.

  17. Integrated Management System in construction company-effective tool of quality, environment and safety level improving

    OpenAIRE

    Gašparík, Jozef

    2009-01-01

    Contribution Presents the struCture of integrated M anageMent systeM ( iMs) according to international standards ISO 9001:2008, ISO 14001:2004 and STN OHSAS 18001:2009, which consists of 3 management systems focused to quality, environment and safety of building processes. The purpose of paper is to describe basic steps concerning the development of IMS. Paper analises basic processes of IMS like company vision, IMS planning, implementing, monitoring, revive and improving. The paper presents ...

  18. Patient safety and infection control: bases for curricular integration.

    Science.gov (United States)

    Silva, Andréa Mara Bernardes da; Bim, Lucas Lazarini; Bim, Felipe Lazarini; Sousa, Alvaro Francisco Lopes; Domingues, Pedro Castania Amadio; Nicolussi, Adriana Cristina; Andrade, Denise de

    2018-05-01

    To analyze curricular integration between teaching of patient safety and good infection prevention and control practices. Integrative review, designed to answer the question: "How does curricular integration of content about 'patient safety teaching' and content about 'infection prevention and control practices' occur in undergraduate courses in the health field?". The following databases were searched for primary studies: CINAHL, LILACS, ScienceDirect, Web of Science, Scopus, Europe PMC and MEDLINE. The final sample consisted of 13 studies. After content analysis, primary studies were grouped into two subject categories: "Innovative teaching practices" and "Curricular evaluation. Patient safety related to infection prevention and control practices is present in the curriculum of health undergraduate courses, but is not coordinated with other themes, is taught sporadically, and focuses mainly on hand hygiene.

  19. Safety analysis of urban arterials at the meso level.

    Science.gov (United States)

    Li, Jia; Wang, Xuesong

    2017-11-01

    Urban arterials form the main structure of street networks. They typically have multiple lanes, high traffic volume, and high crash frequency. Classical crash prediction models investigate the relationship between arterial characteristics and traffic safety by treating road segments and intersections as isolated units. This micro-level analysis does not work when examining urban arterial crashes because signal spacing is typically short for urban arterials, and there are interactions between intersections and road segments that classical models do not accommodate. Signal spacing also has safety effects on both intersections and road segments that classical models cannot fully account for because they allocate crashes separately to intersections and road segments. In addition, classical models do not consider the impact on arterial safety of the immediately surrounding street network pattern. This study proposes a new modeling methodology that will offer an integrated treatment of intersections and road segments by combining signalized intersections and their adjacent road segments into a single unit based on road geometric design characteristics and operational conditions. These are called meso-level units because they offer an analytical approach between micro and macro. The safety effects of signal spacing and street network pattern were estimated for this study based on 118 meso-level units obtained from 21 urban arterials in Shanghai, and were examined using CAR (conditional auto regressive) models that corrected for spatial correlation among the units within individual arterials. Results showed shorter arterial signal spacing was associated with higher total and PDO (property damage only) crashes, while arterials with a greater number of parallel roads were associated with lower total, PDO, and injury crashes. The findings from this study can be used in the traffic safety planning, design, and management of urban arterials. Copyright © 2017 Elsevier Ltd. All

  20. Integrated Deterministic-Probabilistic Safety Assessment Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, P.; Vorobyev, Y.; Sanchez-Perea, M.; Queral, C.; Jimenez Varas, G.; Rebollo, M. J.; Mena, L.; Gomez-Magin, J.

    2014-02-01

    IDPSA (Integrated Deterministic-Probabilistic Safety Assessment) is a family of methods which use tightly coupled probabilistic and deterministic approaches to address respective sources of uncertainties, enabling Risk informed decision making in a consistent manner. The starting point of the IDPSA framework is that safety justification must be based on the coupling of deterministic (consequences) and probabilistic (frequency) considerations to address the mutual interactions between stochastic disturbances (e.g. failures of the equipment, human actions, stochastic physical phenomena) and deterministic response of the plant (i.e. transients). This paper gives a general overview of some IDPSA methods as well as some possible applications to PWR safety analyses. (Author)

  1. Large Scale System Safety Integration for Human Rated Space Vehicles

    Science.gov (United States)

    Massie, Michael J.

    2005-12-01

    Since the 1960s man has searched for ways to establish a human presence in space. Unfortunately, the development and operation of human spaceflight vehicles carry significant safety risks that are not always well understood. As a result, the countries with human space programs have felt the pain of loss of lives in the attempt to develop human space travel systems. Integrated System Safety is a process developed through years of experience (since before Apollo and Soyuz) as a way to assess risks involved in space travel and prevent such losses. The intent of Integrated System Safety is to take a look at an entire program and put together all the pieces in such a way that the risks can be identified, understood and dispositioned by program management. This process has many inherent challenges and they need to be explored, understood and addressed.In order to prepare truly integrated analysis safety professionals must gain a level of technical understanding of all of the project's pieces and how they interact. Next, they must find a way to present the analysis so the customer can understand the risks and make decisions about managing them. However, every organization in a large-scale project can have different ideas about what is or is not a hazard, what is or is not an appropriate hazard control, and what is or is not adequate hazard control verification. NASA provides some direction on these topics, but interpretations of those instructions can vary widely.Even more challenging is the fact that every individual/organization involved in a project has different levels of risk tolerance. When the discrete hazard controls of the contracts and agreements cannot be met, additional risk must be accepted. However, when one has left the arena of compliance with the known rules, there can be no longer be specific ground rules on which to base a decision as to what is acceptable and what is not. The integrator must find common grounds between all parties to achieve

  2. Integrated safety assessment report: Integrated Safety Assessment Program: Millstone Nuclear Power Station, Unit 1 (Docket No. 50-245): Draft report

    International Nuclear Information System (INIS)

    1987-04-01

    The Integrated Safety Assessment Program (ISAP) was initiated in November 1984, by the US Nuclear Regulatory Commission to conduct integrated assessments for operating nuclear power reactors. The integrated assessment is conducted in a plant-specific basis to evaluate all licensing actions, licensee initiated plant improvements and selected unresolved generic/safety issues to establish implementation schedules for each item. In addition, procedures will be established to allow for a periodic updating of the schedules to account for licensing issues that arise in the future. This report documents the review of Millstone Nuclear Power Station, Unit No. 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit No. 1, is one of two plants being reviewed under the pilot program for ISAP. This report indicates how 85 topics selected for review were addressed. This report presents the staff's recommendations regarding the corrective actions to resolve the 85 topics and other actions to enhance plant safety. The report is being issued in draft form to obtain comments from the licensee, nuclear safety experts, and the Advisory Committee for Reactor Safeguards (ACRS). Once those comments have been resolved, the staff will present its positions, along with a long-term implementation schedule from the licensee, in the final version of this report

  3. Integral fast reactor concept inherent safety features

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFT development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: 1) a liquid metal (sodium) coolant, 2) a pool-type reactor primary system configuration, 3) an advanced ternary alloy metallic fuel, and 4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS)

  4. Integral Fast Reactor concept inherent safety features

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: (1) a liquid metal (sodium) coolant, (2) a pool-type reactor primary system configuration, (3) an advanced ternary alloy metallic fuel, and (4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS)

  5. Idaho National Laboratory Integrated Safety Management System FY 2016 Effectiveness Review and Declaration Report

    International Nuclear Information System (INIS)

    Hunt, Farren J.

    2016-01-01

    Idaho National Laboratory's (INL's) Integrated Safety Management System (ISMS) effectiveness review of fiscal year (FY) 2016 shows that INL has integrated management programs and safety elements throughout the oversight and operational activities performed at INL. The significant maturity of Contractor Assurance System (CAS) processes, as demonstrated across INL's management systems and periodic reporting through the Management Review Meeting process, over the past two years has provided INL with current real-time understanding and knowledge pertaining to the health of the institution. INL's sustained excellence of the Integrated Safety and effective implementation of the Worker Safety and Health Program is also evidenced by other external validations and key indicators. In particular, external validations include VPP, ISO 14001, DOELAP accreditation, and key Laboratory level indicators such as ORPS (number, event frequency and severity); injury/illness indicators such as Days Away, Restricted and Transfer (DART) case rate, back & shoulder metric and open reporting indicators, demonstrate a continuous positive trend and therefore improved operational performance over the last few years. These indicators are also reflective of the Laboratory's overall organizational and safety culture improvement. Notably, there has also been a step change in ESH&Q Leadership actions that have been recognized both locally and complex-wide. Notwithstanding, Laboratory management continues to monitor and take action on lower level negative trends in numerous areas including: Conduct of Operations, Work Control, Work Site Analysis, Risk Assessment, LO/TO, Fire Protection, and Life Safety Systems, to mention a few. While the number of severe injury cases has decreased, as evidenced by the reduction in the DART case rate, the two hand injuries and the fire truck/ambulance accident were of particular concern. Aggressive actions continue in order to understand the causes and define actions

  6. Idaho National Laboratory Integrated Safety Management System FY 2016 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Farren J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    Idaho National Laboratory’s (INL’s) Integrated Safety Management System (ISMS) effectiveness review of fiscal year (FY) 2016 shows that INL has integrated management programs and safety elements throughout the oversight and operational activities performed at INL. The significant maturity of Contractor Assurance System (CAS) processes, as demonstrated across INL’s management systems and periodic reporting through the Management Review Meeting process, over the past two years has provided INL with current real-time understanding and knowledge pertaining to the health of the institution. INL’s sustained excellence of the Integrated Safety and effective implementation of the Worker Safety and Health Program is also evidenced by other external validations and key indicators. In particular, external validations include VPP, ISO 14001, DOELAP accreditation, and key Laboratory level indicators such as ORPS (number, event frequency and severity); injury/illness indicators such as Days Away, Restricted and Transfer (DART) case rate, back & shoulder metric and open reporting indicators, demonstrate a continuous positive trend and therefore improved operational performance over the last few years. These indicators are also reflective of the Laboratory’s overall organizational and safety culture improvement. Notably, there has also been a step change in ESH&Q Leadership actions that have been recognized both locally and complex-wide. Notwithstanding, Laboratory management continues to monitor and take action on lower level negative trends in numerous areas including: Conduct of Operations, Work Control, Work Site Analysis, Risk Assessment, LO/TO, Fire Protection, and Life Safety Systems, to mention a few. While the number of severe injury cases has decreased, as evidenced by the reduction in the DART case rate, the two hand injuries and the fire truck/ambulance accident were of particular concern. Aggressive actions continue in order to understand the causes and

  7. SBO simulations for Integrated Passive Safety System (IPSS) using MARS

    International Nuclear Information System (INIS)

    Kim, Sang Ho; Jeong, Sung Yeop; Chang, Soon Heung

    2012-01-01

    The current nuclear power plants have lots of active safety systems with some passive safety systems. The safety of current and future nuclear power plants can be enhanced by the application of additional passive safety systems for the ultimate safety. It is helpful to install the passive safety systems on current nuclear power plants without the design change for the licensibility. For solving the problem about the system complexity shown in the Fukushima accidents, the current nuclear power plants are needed to be enhanced by an additional integrated and simplified system. As a previous research, the integrated passive safety system (IPSS) was proposed to solve the safety issues related with the decay heat removal, containment integrity and radiation release. It could be operated by natural phenomena like gravity, natural circulation and pressure difference without AC power. The five main functions of IPSS are: (a) Passive decay heat removal, (b) Passive emergency core cooling, (c) Passive containment cooling, (d) Passive in vessel retention and ex-vessel cooling, and (e) Filtered venting and pressure control. The purpose of this research is to analyze the performances of each function by using MARS code. The simulated accident scenarios were station black out (SBO) and the additional accidents accompanied by SBO

  8. Safety studies on Korean fusion DEMO plant using integrated safety assessment methodology

    International Nuclear Information System (INIS)

    Oh, Kyemin; Kang, Myoung-suk; Heo, Gyunyoung; Kim, Hyoung-chan

    2014-01-01

    Highlights: •The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant. •The concepts of integrated safety assessment methodology (ISAM) that can be applied in addressing regulatory requirements and recognizing safety issues for K-DEMO were emphasized. •Phenomena identification and ranking table (PIRT) was proposed. It can recognize vulnerabilities of systems and identify the gaps in technical areas requiring additional researches. •This work is expected to contribute on the conceptual design of safety features for K-DEMO to design engineers and the guidance for regulatory requirements to licensers. -- Abstract: The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant (K-DEMO) as a part of R and D program through the National Fusion Research Institute of Korea. Even though nuclear regulation and licensing framework is well setup due to the operating and design experience of Pressurized Water Reactors (PWRs) since 1970s, the regulatory authority of South Korea has concerns on the challenge of facing new nuclear facilities including K-DEMO due to the differences in systems, materials, and inherent safety feature from conventional PWRs. Even though the follow-up of the ITER license process facilitates to deal with significant safety issues of fusion facilities, a licensee as well as a licenser should identify the gaps between ITER and DEMO in terms of safety issues. First we reviewed the methods of conducting safety analysis for unprecedented nuclear facilities such as Generation IV reactors, particularly very high temperature reactor (VHTR), which is called as integrated safety assessment methodology (ISAM). Second, the analysis for the conceptual design of K-DEMO on the basis of ISAM was conducted. The ISAM consists of five analytical tools to develop the safety requirements from licensee

  9. Safety studies on Korean fusion DEMO plant using integrated safety assessment methodology

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Kyemin; Kang, Myoung-suk [Kyung Hee University, Youngin-si, Gyeonggi-do 446-701 (Korea, Republic of); Heo, Gyunyoung, E-mail: gheo@khu.ac.kr [Kyung Hee University, Youngin-si, Gyeonggi-do 446-701 (Korea, Republic of); Kim, Hyoung-chan [National Fusion Research Institute, Daejeon-si 305-333 (Korea, Republic of)

    2014-10-15

    Highlights: •The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant. •The concepts of integrated safety assessment methodology (ISAM) that can be applied in addressing regulatory requirements and recognizing safety issues for K-DEMO were emphasized. •Phenomena identification and ranking table (PIRT) was proposed. It can recognize vulnerabilities of systems and identify the gaps in technical areas requiring additional researches. •This work is expected to contribute on the conceptual design of safety features for K-DEMO to design engineers and the guidance for regulatory requirements to licensers. -- Abstract: The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant (K-DEMO) as a part of R and D program through the National Fusion Research Institute of Korea. Even though nuclear regulation and licensing framework is well setup due to the operating and design experience of Pressurized Water Reactors (PWRs) since 1970s, the regulatory authority of South Korea has concerns on the challenge of facing new nuclear facilities including K-DEMO due to the differences in systems, materials, and inherent safety feature from conventional PWRs. Even though the follow-up of the ITER license process facilitates to deal with significant safety issues of fusion facilities, a licensee as well as a licenser should identify the gaps between ITER and DEMO in terms of safety issues. First we reviewed the methods of conducting safety analysis for unprecedented nuclear facilities such as Generation IV reactors, particularly very high temperature reactor (VHTR), which is called as integrated safety assessment methodology (ISAM). Second, the analysis for the conceptual design of K-DEMO on the basis of ISAM was conducted. The ISAM consists of five analytical tools to develop the safety requirements from licensee

  10. Systems engineering applied to integrated safety management for high consequence facilities

    International Nuclear Information System (INIS)

    Barter, R; Morais, B.

    1998-01-01

    Integrated Safety Management is a concept that is being actively promoted by the U.S. Department of Energy as a means of assuring safe operation of its facilities. The concept involves the integration of safety precepts into work planning rather than adjusting for safe operations after defining the work activity. The system engineering techniques used to design an integrated safety management system for a high consequence research facility are described. An example is given to show how the concepts evolved with the system design

  11. Integration of safety culture in transient analyses for nuclear power plants

    International Nuclear Information System (INIS)

    Stosic, Zoran V.; Stoll, Uwe

    2009-01-01

    In the nuclear field Safety Culture is the arrangement of attitudes and characteristics in individuals and organisations which determines first and foremost that nuclear power plant safety issues receive adequate attention due to their outstanding significance. It differs from general Corporate Culture via its concept of core hazards and the potentially large effects associated with the release of radioactivity. One can talk about positive and negative Safety Cultures. A positive Safety Culture assumes that the whole is more than the sum of the parts. The different parts interact to increase the overall effectiveness. In a negative Safety Culture the opposite is the case, with the action of some individuals restricted by the cynicism of others. Some examples of issues that contribute to a negative safety culture are: non-adherence to the established instructions and procedures, unclear definition of responsibilities, disinterest and inattentiveness, overestimation of own capabilities and arrogance, unclear rules, and mistrust between involved organisations. In addition to differentiation and importance of Safety Culture, necessary commitment levels, safety management framework, the paper discusses integration of Safety Culture in transient analyses of nuclear power plants. In this course the commitment to Safety Culture is defined as: a good Safety Culture depends on the continuous commitment and fulfilment of all involved organizations, persons and processes without any exception. (author)

  12. Development and methodology of level 1 probability safety assessment at PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Maskin, Mazleha; Tom, Phongsakorn Prak; Lanyau, Tonny Anak; Saad, Mohamad Fauzi; Ismail, Ahmad Razali; Abu, Mohamad Puad Haji; Brayon, Fedrick Charlie Matthew; Mohamed, Faizal

    2014-01-01

    As a consequence of the accident at the Fukushima Dai-ichi Nuclear Power Plant in Japan, the safety aspects of the one and only research reactor (31 years old) in Malaysia need be reviewed. Based on this decision, Malaysian Nuclear Agency in collaboration with Atomic Energy Licensing Board and Universiti Kebangsaan Malaysia develop a Level-1 Probability Safety Assessment on this research reactor. This work is aimed to evaluate the potential risks of incidents in RTP and at the same time to identify internal and external hazard that may cause any extreme initiating events. This report documents the methodology in developing a Level 1 PSA performed for the RTP as a complementary approach to deterministic safety analysis both in neutronics and thermal hydraulics. This Level-1 PSA work has been performed according to the procedures suggested in relevant IAEA publications and at the same time numbers of procedures has been developed as part of an Integrated Management System programme implemented in Nuclear Malaysia

  13. Development and methodology of level 1 probability safety assessment at PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Mazleha Maskin; Phongsakorn, P.T.; Tonny, A.L.; Fedrick, C.M.B.; Faizal Mohamed; Mohamad Fauzi Saad; Ahmad Razali Ismail; Mohamad Puad Haji Abu

    2013-01-01

    Full-text: As a consequence of the accident at the Fukushima Dai-ichi Nuclear Power Plant in Japan, the safety aspects of the one and only research reactor (31 years old) in Malaysia need be reviewed. Based on this decision, Malaysian Nuclear Agency in collaboration with Atomic Energy Licensing Board and Universiti Kebangsaan Malaysia develop a Level-1 Probability Safety Assessment on this research reactor. This work is aimed to evaluate the potential risks of incidents in RTP and at the same time to identify internal and external hazard that may cause any extreme initiating events. This report documents the methodology in developing a Level 1 PSA performed for the RTP as a complementary approach to deterministic safety analysis both in neutronics and thermal hydraulics. This Level-1 PSA work has been performed according to the procedures suggested in relevant IAEA publications and at the same time numbers of procedures has been developed as part of an Integrated Management System programme implemented in Nuclear Malaysia. (author)

  14. 78 FR 32010 - Pipeline Safety: Public Workshop on Integrity Verification Process

    Science.gov (United States)

    2013-05-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Hazardous Materials Safety Administration, DOT. ACTION: Notice of public meeting. SUMMARY: This notice is announcing a public workshop to be held on the concept of ``Integrity Verification Process.'' The Integrity...

  15. Integral type small PWR with stand-alone safety

    International Nuclear Information System (INIS)

    Makihara, Yoshiaki

    2001-01-01

    A feasibility study is achieved on an integral type small PWR with stand-alone safety. It is designed to have the following features. (1) The coolant does not leak out at any accidental condition. (2) The fuel failure does never occur while it is supposed on the large scale PWR at the design base accident. (3) At any accidental condition the safety is secured without any support from the outside (stand-alone safety secure). (4) It has self-regulating characteristics and easy controllability. The above features can be satisfied by integrate the steam generator and CRDM in the reactor vessel while the pipe line break has to be considered on the conventional PWR. Several counter measures are planned to satisfy the above features. The economy feature is also attained by several simplifications such as (1) elimination of main coolant piping and pressurizer by the integration of primary cooling system and self-pressurizing, (2) elimination of RCP by application of natural circulating system, (3) elimination of ECCS and accumulator by application of static safety system, (4) large scale volume reduction of the container vessel by application of integrated primary cooling system, (5) elimination of boric acid treatment by deletion of chemical shim. The long operation period such as 10 years can be attained by the application of Gd fuel in one batch refueling. The construction period can be shortened by the standardizing the design and the introduction of modular component system. Furthermore the applicability of the reduced modulation core is also considered. (K. Tsuchihashi)

  16. Safety Concepts in Structural Glass Engineering : Towards an Integrated Approach

    NARCIS (Netherlands)

    Bos, F.P.

    2009-01-01

    This dissertation proposes the Integrated Approach to Structural Glass Safety, based on four clearly defined element safety properties, damage sensitivity, relative resistance, redundancy, and fracture mode. The Element Safety Diagram (ESD) is introduced to provide an easy-to-read graphical

  17. Patient Safety and Workplace Bullying: An Integrative Review.

    Science.gov (United States)

    Houck, Noreen M; Colbert, Alison M

    Workplace bullying is strongly associated with negative nursing outcomes, such as work dissatisfaction, turnover, and intent to leave; however, results of studies examining associations with specific patient safety outcomes are limited or nonspecific. This integrative review explores and synthesizes the published articles that address the impact of workplace nurse bullying on patient safety.

  18. The Structure and Application of High Level Safety Goals. A Review by the MDEP Sub-committee on Safety Goals

    International Nuclear Information System (INIS)

    2011-01-01

    One of the aims of MDEP is to work towards greater harmonisation of regulatory requirements. To achieve this aim, it is necessary that there is a degree of convergence on the safety goals that are required to be met by designers and operators. The term 'safety goals' is defined to cover all health and safety requirements which must be met: these may be deterministic rules and/or probabilistic targets. They should cover the safety of workers, public and the environment in line with the IAEA's Basic Safety Objective; encompassing safety in normal operation through to severe accidents. All regulators have safety goals, but these are expressed in many different ways and exercises in comparing them frequently are done at a very low level eg specific temperatures in the reactor vessel. The differences in the requirements from different regulators are difficult to resolve as the goals are derived using different principles and assumptions and are for a specific technology. Therefore MDEP set up a sub-committee to investigate a different approach. This approach was to start with the top level goals and to derive a structure and means of deriving lower tier goals that can be seen to be clearly related to the higher level ones. This approach has the potential to greatly assist in the process of harmonisation of regulatory requirements. The paper reviews the high level goals used in MDEP countries and the relevant work of international groups. From these it draws broad conclusions that the form of the framework should be an Hierarchical Structure of Safety Goals, incorporating an extended Defense-in-Depth approach. The basis concept is that the higher level safety goals can then developed, in a coherent and consistent manner, into lower level safety goals and targets that can be applied within the design and operation of reactors, with a clear connection between the different levels. This structured approach is technology-neutral and is sufficiently flexible that it can be

  19. Planning exercise for the resolution of high level waste tank safety issues

    International Nuclear Information System (INIS)

    Bunting, J.; Saveland, J.

    1992-01-01

    Several conditions have been found to exist within high level radioactive waste storage tanks at the Hanford site which could lead to uncontrolled exothermic reactions and/or to the release of tank contents into the environment. These conditions have led to the establishment of four priority 1 safety issues for the Hanford tanks. Resolution of these safety issues will require the coordinated efforts of professionals in chemical, nuclear, operations, safety, and other technical areas. A coordinated and integrated approach is necessary in order to achieve resolution in the shortest possible time, while ensuring that the steps taken do not complicate the later jobs of vitrification and ultimate disposal. This paper describes the purpose, process, and results of an effort to develop a suggested approach. (author)

  20. Fusion integral experiments and analysis and the determination of design safety factors - I: Methodology

    International Nuclear Information System (INIS)

    Youssef, M.Z.; Kumar, A.; Abdou, M.A.; Oyama, Y.; Maekawa, H.

    1995-01-01

    The role of the neutronics experimentation and analysis in fusion neutronics research and development programs is discussed. A new methodology was developed to arrive at estimates to design safety factors based on the experimental and analytical results from design-oriented integral experiments. In this methodology, and for a particular nuclear response, R, a normalized density function (NDF) is constructed from the prediction uncertainties, and their associated standard deviations, as found in the various integral experiments where that response, R, is measured. Important statistical parameters are derived from the NDF, such as the global mean prediction uncertainty, and the possible spread around it. The method of deriving safety factors from many possible NDFs based on various calculational and measuring methods (among other variants) is also described. Associated with each safety factor is a confidence level, designers may choose to have, that the calculated response, R, will not exceed (or will not fall below) the actual measured value. An illustrative example is given on how to construct the NDFs. The methodology is applied in two areas, namely the line-integrated tritium production rate and bulk shielding integral experiments. Conditions under which these factors could be derived and the validity of the method are discussed. 72 refs., 17 figs., 4 tabs

  1. Office of River Protection Integrated Safety Management System Description

    Energy Technology Data Exchange (ETDEWEB)

    CLARK, D.L.

    1999-08-09

    Revision O was never issued. Finding safe and environmentally sound methods of storage and disposal of 54 million gallons of highly radioactive waste contained in 177 underground tanks is the largest challenge of Hanford cleanup. TWRS was established in 1991 and continues to integrate all aspects of the treatment and management of the high-level radioactive waste tanks. In fiscal Year 1997, program objectives were advanced in a number of areas. RL TWRS refocused the program toward retrieving, treating, and immobilizing the tank wastes, while maintaining safety as first priority. Moving from a mode of storing the wastes to getting the waste out of the tanks will provide the greatest cleanup return on the investment and eliminate costly mortgage continuance. There were a number of safety-related achievements in FY1997. The first high priority safety issue was resolved with the removal of 16 tanks from the ''Wyden Watch List''. The list, brought forward by Senator Ron Wyden of Oregon, identified various Hanford safety issues needing attention. One of these issues was ferrocyanide, a chemical present in 24 tanks. Although ferrocyanide can ignite at high temperature, analysis found that the chemical has decomposed into harmless compounds and is no longer a concern.

  2. Integration profile and safety of an adenovirus hybrid-vector utilizing hyperactive sleeping beauty transposase for somatic integration.

    Directory of Open Access Journals (Sweden)

    Wenli Zhang

    Full Text Available We recently developed adenovirus/transposase hybrid-vectors utilizing the previously described hyperactive Sleeping Beauty (SB transposase HSB5 for somatic integration and we could show stabilized transgene expression in mice and a canine model for hemophilia B. However, the safety profile of these hybrid-vectors with respect to vector dose and genotoxicity remains to be investigated. Herein, we evaluated this hybrid-vector system in C57Bl/6 mice with escalating vector dose settings. We found that in all mice which received the hyperactive SB transposase, transgene expression levels were stabilized in a dose-dependent manner and that the highest vector dose was accompanied by fatalities in mice. To analyze potential genotoxic side-effects due to somatic integration into host chromosomes, we performed a genome-wide integration site analysis using linker-mediated PCR (LM-PCR and linear amplification-mediated PCR (LAM-PCR. Analysis of genomic DNA samples obtained from HSB5 treated female and male mice revealed a total of 1327 unique transposition events. Overall the chromosomal distribution pattern was close-to-random and we observed a random integration profile with respect to integration into gene and non-gene areas. Notably, when using the LM-PCR protocol, 27 extra-chromosomal integration events were identified, most likely caused by transposon excision and subsequent transposition into the delivered adenoviral vector genome. In total, this study provides a careful evaluation of the safety profile of adenovirus/Sleeping Beauty transposase hybrid-vectors. The obtained information will be useful when designing future preclinical studies utilizing hybrid-vectors in small and large animal models.

  3. K West integrated water treatment system subproject safety analysis document

    International Nuclear Information System (INIS)

    SEMMENS, L.S.

    1999-01-01

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System

  4. K West integrated water treatment system subproject safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  5. Individual employee's perceptions of " Group-level Safety Climate" (supervisor referenced) versus " Organization-level Safety Climate" (top management referenced): Associations with safety outcomes for lone workers.

    Science.gov (United States)

    Huang, Yueng-Hsiang; Lee, Jin; McFadden, Anna C; Rineer, Jennifer; Robertson, Michelle M

    2017-01-01

    Research has shown that safety climate is among the strongest predictors of safety behavior and safety outcomes in a variety of settings. Previous studies have established that safety climate is a multi-faceted construct referencing multiple levels of management within a company, most generally: the organization level (employee perceptions of top management's commitment to and prioritization of safety) and group level (employee perceptions of direct supervisor's commitment to and prioritization of safety). Yet, no research to date has examined the potential interaction between employees' organization-level safety climate (OSC) and group-level safety climate (GSC) perceptions. Furthermore, prior research has mainly focused on traditional work environments in which supervisors and workers interact in the same location throughout the day. Little research has been done to examine safety climate with regard to lone workers. The present study aims to address these gaps by examining the relationships between truck drivers' (as an example of lone workers) perceptions of OSC and GSC, both potential linear and non-linear relationships, and how these predict important safety outcomes. Participants were 8095 truck drivers from eight trucking companies in the United States with an average response rate of 44.8%. Results showed that employees' OSC and GSC perceptions are highly correlated (r= 0.78), but notable gaps between the two were observed for some truck drivers. Uniquely, both OSC and GSC scores were found to have curvilinear relationships with safe driving behavior, and both scores were equally predictive of safe driving behavior. Results also showed the two levels of climate significantly interacted with one another to predict safety behavior such that if either the OSC or GSC scores were low, the other's contribution to safety behavior became stronger. These findings suggest that OSC and GSC may function in a compensatory manner and promote safe driving behavior even

  6. Integrated risk reduction framework to improve railway hazardous materials transportation safety

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: liu94@illinois.edu; Saat, M. Rapik, E-mail: mohdsaat@illinois.edu; Barkan, Christopher P.L., E-mail: cbarkan@illinois.edu

    2013-09-15

    Highlights: • An integrated framework is developed to optimize risk reduction. • A negative binomial regression model is developed to analyze accident-cause-specific railcar derailment probability. • A Pareto-optimality technique is applied to determine the lowest risk given any level of resource. • A multi-attribute decision model is developed to determine the optimal amount of investment for risk reduction. • The models could aid the government and rail industry in developing cost-efficient risk reduction policy and practice. -- Abstract: Rail transportation plays a critical role to safely and efficiently transport hazardous materials. A number of strategies have been implemented or are being developed to reduce the risk of hazardous materials release from train accidents. Each of these risk reduction strategies has its safety benefit and corresponding implementation cost. However, the cost effectiveness of the integration of different risk reduction strategies is not well understood. Meanwhile, there has been growing interest in the U.S. rail industry and government to best allocate resources for improving hazardous materials transportation safety. This paper presents an optimization model that considers the combination of two types of risk reduction strategies, broken rail prevention and tank car safety design enhancement. A Pareto-optimality technique is used to maximize risk reduction at a given level of investment. The framework presented in this paper can be adapted to address a broader set of risk reduction strategies and is intended to assist decision makers for local, regional and system-wide risk management of rail hazardous materials transportation.

  7. Research on integrated managing system based on CIMS for nuclear power plant safety

    International Nuclear Information System (INIS)

    Zhou Gang

    2006-01-01

    In order to improve safety, economy and reliability of operation for nuclear power plant (NPP), a novel integrated managing method was proposed based on the ideas of computer and contemporary integrated manufacturing system (CIMS). The application of CIMS to nuclear power plant safety management was researched. In order to design an integrated managing system to meet the needs of NPP safety management, all work related to nuclear safety is divided into different category according to its characters. On basis of this work, general integrated managing system was designed at first. Then subsystems were designed and every subsystem implements a category of nuclear safety management work. All subsystems are independent relatively on the one hand and are interrelated on other hand by global information system. (authors)

  8. A Study on the Comprehensive and Integrated Workplace Safety and Health Services in Singapore.

    Science.gov (United States)

    Chia, Sin Eng; Wah, Lim John; Khim, Judy Sng Gek; Yoong, Joanne; Lim, Raymond Boon Tar; Seng, Chia Kee

    2015-09-01

    The aim of this study was to evaluate the level of comprehensiveness and integration of workplace safety and health (WSH) services (safety, occupational health, and well-being) in Singapore. Thirty workplaces from five different sectors comprising more than 28,000 workers were assessed using three custom-developed tools. One quarter of the workplaces have applied the principles of comprehensive and integrated WSH. Among those that managed WSH comprehensively, workers were 4.4 times (95% confidence interval [CI], 2.33 to 8.25) more likely to be proud to work for their company, 7.4 times (95% CI, 3.96 to 13.90) more likely to be satisfied with their current job, and 1.7 times (95% CI, 1.21 to 2.32) more likely to balance the demands of work and home. There is a need to enhance awareness and education on comprehensive and integrated WSH in Singapore companies.

  9. Probabilistic safety criteria at the safety function/system level

    International Nuclear Information System (INIS)

    1989-09-01

    A Technical Committee Meeting was held in Vienna, Austria, from 26-30 January 1987. The objectives of the meeting were: to review the national developments of PSC at the level of safety functions/systems including future trends; to analyse basic principles, assumptions, and objectives; to compare numerical values and the rationale for choosing them; to compile the experience with use of such PSC; to analyse the role of uncertainties in particular regarding procedures for showing compliance. The general objective of establishing PSC at the level of safety functions/systems is to provide a pragmatic tool to evaluate plant safety which is placing emphasis on the prevention principle. Such criteria could thus lead to a better understanding of the importance to safety of the various functions which have to be performed to ensure the safety of the plant, and the engineering means of performing these functions. They would reflect the state-of-the-art in modern PSAs and could contribute to a balance in system design. This report, prepared by the participants of the meeting, reviews the current status and future trends in the field and should assist Member States in developing their national approaches. The draft of this document was also submitted to INSAG to be considered in its work to prepare a document on safety principles for nuclear power plants. Five papers presented at the meeting are also included in this publication. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  10. IRIS guidelines. 2014 ed. Integrated Review of Infrastructure for Safety (IRIS) for self-assessment when establishing the safety infrastructure for a nuclear power programme

    International Nuclear Information System (INIS)

    2014-01-01

    The IAEA safety standards reflect an international consensus on what constitutes a high level of safety for protecting people and the environment, and therefore represent what all Member States should achieve, whilst recognizing the ultimate responsibility of each State to ensure safety when implementing a nuclear power programme. IAEA Safety Standards Series No. SSG-16, entitled Establishing the Safety Infrastructure for a Nuclear Power Programme was published in order to provide recommendations, presented in the form of sequential actions, on meeting safety requirements progressively during the initial three phases of the development of safety, as described in INSAG-22, Nuclear Safety Infrastructure for a National Nuclear Power Programme Supported by the IAEA Fundamental Safety Principles. To that end, the 200 safety related actions, which are proposed by SSG-16, constitute a roadmap to establish a foundation for promoting a high level of safety over the entire lifetime of the nuclear power plant. These actions reflect international consensus on good practice in order to achieve full implementation of IAEA safety standards. The IAEA has developed a methodology and tool, the Integrated Review of Infrastructure for Safety (IRIS), to assist States in undertaking self-assessment with respect to SSG-16 recommendations when establishing the safety infrastructure for a nuclear power programme, and to develop an action plan for improvement. The IRIS methodology and the associated tool are fully compatible with the IAEA safety standards and are also used, when appropriate, in the preparation of review missions, such as the Integrated Regulatory Review Service and advisory missions. The present guidelines describe the IRIS methodology for self-assessment against SSG-16 recommendations. Through IRIS implementation, every organization concerned with nuclear safety may gain proper awareness and engage in a continuous progressive process to develop the effective national

  11. Addressing Uniqueness and Unison of Reliability and Safety for a Better Integration

    Science.gov (United States)

    Huang, Zhaofeng; Safie, Fayssal

    2016-01-01

    Over time, it has been observed that Safety and Reliability have not been clearly differentiated, which leads to confusion, inefficiency, and, sometimes, counter-productive practices in executing each of these two disciplines. It is imperative to address this situation to help Reliability and Safety disciplines improve their effectiveness and efficiency. The paper poses an important question to address, "Safety and Reliability - Are they unique or unisonous?" To answer the question, the paper reviewed several most commonly used analyses from each of the disciplines, namely, FMEA, reliability allocation and prediction, reliability design involvement, system safety hazard analysis, Fault Tree Analysis, and Probabilistic Risk Assessment. The paper pointed out uniqueness and unison of Safety and Reliability in their respective roles, requirements, approaches, and tools, and presented some suggestions for enhancing and improving the individual disciplines, as well as promoting the integration of the two. The paper concludes that Safety and Reliability are unique, but compensating each other in many aspects, and need to be integrated. Particularly, the individual roles of Safety and Reliability need to be differentiated, that is, Safety is to ensure and assure the product meets safety requirements, goals, or desires, and Reliability is to ensure and assure maximum achievability of intended design functions. With the integration of Safety and Reliability, personnel can be shared, tools and analyses have to be integrated, and skill sets can be possessed by the same person with the purpose of providing the best value to a product development.

  12. Safety design integrated in the Building Delivery System

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2012-01-01

    phases of the building delivery system by using the principle of the lean construction modelling. The method for the research was to go through the lean construction building delivery system step by step and create a normative description of what to do, when to do and how to do to fully integration...... of safety in each process. The group of participants who created the description had a high experience in a combination of research, safety and health in general and especial in construction and knowledge of the lean construction processes both from the clients perspective as well as from the designers...... and the consultants. The result is a concept and guideline including control schemes for how to integrate safety design in the lean construction building delivery system including what to do and when. The concept has been tested in an educational context and found useful by the designers. The practical value...

  13. Design of integrated passive safety system (IPSS) for ultimate passive safety of nuclear power plants

    International Nuclear Information System (INIS)

    Chang, Soon Heung; Kim, Sang Ho; Choi, Jae Young

    2013-01-01

    Highlights: • We newly propose the design concept of integrated passive safety system (IPSS). • It has five safety functions for decay heat removal and severe accident mitigation. • Simulations for IPSS show that core melt does not occur in accidents with SBO. • IPSS can achieve the passive in-vessel retention and ex-vessel cooling strategy. • The applicability of IPSS is high due to the installation outside the containment. -- Abstract: The design concept of integrated passive safety system (IPSS) which can perform various passive safety functions is proposed in this paper. It has the various functions of passive decay heat removal system, passive safety injection system, passive containment cooling system, passive in-vessel retention and cavity flooding system, and filtered venting system with containment pressure control. The objectives of this paper are to propose the conceptual design of an IPSS and to estimate the design characters of the IPSS with accident simulations using MARS code. Some functions of the IPSS are newly proposed and the other functions are reviewed with the integration of the functions. Consequently, all of the functions are modified and integrated for simplicity of the design in preparation for beyond design based accidents (BDBAs) focused on a station black out (SBO). The simulation results with the IPSS show that the decay heat can be sufficiently removed in accidents that occur with a SBO. Also, the molten core can be retained in a vessel via the passive in-vessel retention strategy of the IPSS. The actual application potential of the IPSS is high, as numerous strong design characters are evaluated. The installation of the IPSS into the original design of a nuclear power plant requires minimal design change using the current penetrations of the containment. The functions are integrated in one or two large tanks outside the containment. Furthermore, the operation time of the IPSS can be increased by refilling coolant from the

  14. Integrating safety and health during deactiviation: With lessons learned from PUREX

    International Nuclear Information System (INIS)

    1995-01-01

    This report summarizes an integrated safety and health approach used during facility deactivation activities at the Department of Energy (DOE) Plutonium-Uranium Extraction (PUREX) Facility in Hanford, Washington. Resulting safety and health improvements and the potential, complex-wide application of this approach are discussed in this report through a description of its components and the impacts, or lessons-learned, of its use during the PUREX deactivation project. As a means of developing and implementing the integrated safety and health approach, the PUREX technical partnership was established in 1993 among the Office of Environment, Safety and Health's Office of Worker Health and Safety (EH-5); the Office of Environmental Management's Offices of Nuclear Material and Facility Stabilization (EM-60) and Compliance and Program Coordination (EM-20); the DOE Richland Operations Office; and the Westinghouse Hanford Company. It is believed that this report will provide guidance for instituting an integrated safety and health approach not only for deactivation activities, but for decommissioning and other clean-up activities as well. This confidence is based largely upon the rationality of the approach, often termed as common sense, and the measurable safety and health and project performance results that application of the approach produced during actual deactivation work at the PUREX Facility

  15. Integrated safety case development for deep geological repositories

    International Nuclear Information System (INIS)

    Kawamura, Hideki; McKinley, Ian G.

    2008-01-01

    The paper will illustrate an 'integrated safety case', which involves combining both pre-closure and post-closure safety arguments from the point of view of a repository implementer, who must also ensure that projects are practical, acceptable and economic. The post-closure safety case is based on the performance of a number of barriers, which are established during construction, operation and closure. Such barriers must be confirmed using quality assured methods, supported, as required, by inspection and monitoring. The requirement for integrated assessment means that even the final process to end institutional control and transfer any liabilities from the implementer needs to be considered at present, even though this will undoubtedly be refined and tailored to the site characteristics over the many decades that will pass before this occurs. To illustrate the practical application of this approach, assessment of variants for remote-handled emplacement of the EBS for disposal of HLW in Japan will be discussed. (author)

  16. Regulatory Oversight of Radioactive Sources through the Integrated Management of Safety and Security

    International Nuclear Information System (INIS)

    Horvath, K.

    2016-01-01

    The Hungarian Atomic Energy Authority (HAEA) has full regulatory competence; its mission is to oversee the safety and security of all the peaceful applications of atomic energy. All the radioactive sources having activity above the exemption level is registered and licensed both from safety and security points of view. The Hungarian central register of radioactive sources contains about 7,000 radioactive sources and 450 license holders. In order to use its limited resources the HAEA has decided to introduce an integrated regulatory oversight programme. Accordingly, during the licensing process and inspection activities the HAEA intends to assess both safety and security aspects at the same time. The article describes the Hungarian the various applications of radioactive materials, and summarizes the preparation activities of the HAEA. (author)

  17. Bibliography for computer security, integrity, and safety

    Science.gov (United States)

    Bown, Rodney L.

    1991-01-01

    A bibliography of computer security, integrity, and safety issues is given. The bibliography is divided into the following sections: recent national publications; books; journal, magazine articles, and miscellaneous reports; conferences, proceedings, and tutorials; and government documents and contractor reports.

  18. Integrating Occupational Health and Safety into TAFE Courses: Curriculum Topics.

    Science.gov (United States)

    Hall, Bob; Mageean, Pauline

    This guide is designed to help technical and further education (TAFE) curriculum writers in Australia integrate safety education into vocational education courses. It provides a general overview of occupational health and safety from the perspective of TAFE trade training and a brief summary of the major health and safety issues that might be…

  19. 49 CFR 1106.3 - Actions for which Safety Integration Plan is required.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Actions for which Safety Integration Plan is required. 1106.3 Section 1106.3 Transportation Other Regulations Relating to Transportation (Continued... TRANSPORTATION BOARD CONSIDERATION OF SAFETY INTEGRATION PLANS IN CASES INVOLVING RAILROAD CONSOLIDATIONS...

  20. Optimal safety levels via social indicators

    International Nuclear Information System (INIS)

    Lind, N.C.; Nathwani, J.S.

    1992-01-01

    In the management of natural or technological hazards in a society, the objective should be to serve the public interest in a rational manner. Decisions with regard to risk levels for the public - if they are to be defensible and self-consistent - require an integrated system of values that covers the entire range of hazards under public regulation. The process for setting risk levels (or safety goals) should ideally involve a thorough consideration of cost and benefit of all kinds, supported by explicit quantified comparison on a widely acceptable scale. The purpose of the paper is to show how quantitative criteria within the context of an appropriate framework can be used to guide risk management decisions. Social indicators are time series, statistics that reflect some aspect of the quality of life in a society or group of individuals. Development, validation, and use of social indicators is an important current research activity, as exemplified by journals such as Social Indicators Research. The basic objective is to provide quantitative measures for assessing the rationales and effectiveness of public decision-making. The concept is applicable to the nuclear industry

  1. Criticality safety evaluations - a open-quotes stalking horseclose quotes for integrated safety assessment

    International Nuclear Information System (INIS)

    Williams, R.A.

    1995-01-01

    The Columbia Fuel Fabrication Facility of the Westinghouse Commercial Nuclear Fuel Division manufactures low-enriched uranium fuel and associated components for use in commercial pressurized water power reactors. To support development of a comprehensive integrated safety assessment (ISA) for the facility, as well as to address increasing U.S. Nuclear Regulatory Commission (NRC) expectations regarding such a facility's criticality safety assessments, a project is under way to complete criticality safety evaluations (CSEs) of all plant systems used in processing nuclear materials. Each CSE is made up of seven sections, prepared by a multidisciplinary team of process engineers, systems engineers, safety engineers, maintenance representatives, and operators. This paper provides a cursory outline of the type of information presented in a CSE

  2. Integrated safety assessment report, Haddam Neck Plant (Docket No. 50-213): Integrated Safety Assessment Program: Draft report

    International Nuclear Information System (INIS)

    1987-07-01

    The integrated assessment is conducted on a plant-specific basis to evaluate all licensing actions, licensee initiated plant improvements and selected unresolved generic/safety issues to establish implementation schedules for each item. Procedures allow for a periodic updating of the schedules to account for licensing issues that arise in the future. The Haddam Neck Plant is one of two plants being reviewed under the pilot program. This report indicates how 82 topics selected for review were addressed, and presents the staff's recommendations regarding the corrective actions to resolve the 82 topics and other actions to enhance plant safety. 135 refs., 4 figs., 5 tabs

  3. Integrated Safety, Environmental and Emergency Management System (ISEEMS)

    International Nuclear Information System (INIS)

    Silver, R.; Langwell, G.; Thomas, C.; Coffing, S.

    1996-01-01

    The Risk Management and NEPA (National Environmental Policy Act) Department of Sandia National Laboratories/New Mexico (SNL/NM) recognized the need for hazard and environmental data analysis and management to support the line managers' need to know, understand, manage and document the hazards in their facilities and activities. The Integrated Safety, Environmental, and Emergency Management System (ISEEMS) was developed in response to this need. SNL needed a process that would quickly and easily determine if a facility or project activity contained only standard industrial hazards and therefore require minimal safety documentation, or if non-standard industrial hazards existed which would require more extensive analysis and documentation. Many facilities and project activities at SNL would benefit from the quick screening process used in ISEEMS. In addition, a process was needed that would expedite the NEPA process. ISEEMS takes advantage of the fact that there is some information needed for the NEPA process that is also needed for the safety documentation process. The ISEEMS process enables SNL line organizations to identify and manage hazards and environmental concerns at a level of effort commensurate with the hazards themselves by adopting a necessary and sufficient (graded) approach to compliance. All hazard-related information contained within ISEEMS is location based and can be displayed using on-line maps and building floor plans. This visual representation provides for quick assimilation and analysis

  4. Foundational development of an advanced nuclear reactor integrated safety code

    International Nuclear Information System (INIS)

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-01-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  5. Foundational development of an advanced nuclear reactor integrated safety code.

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  6. Safety culture' is integrating 'human' into risk assessment

    International Nuclear Information System (INIS)

    Sugimoto, Taiji

    2014-01-01

    Significance of Fukushima nuclear power accident requested reconsideration of safety standards, of which we had usually no doubt. Risk assessment standard (JIS B 9702), Which was used for repetition of database preparation and cumulative assessment, defined allowable risk and residual risk. However, work site and immediate assessment was indispensable beside such assessment so as to ensure safety. Risk of casualties was absolutely not acceptable in principle and judgments to approve allowable risk needed accountability, which was reminded by safety culture proposed by IAEA and also identified by investigation of organizational cause of Columbia accident. Actor of safety culture would be organization and individual, and mainly individual. Realization of safety culture was conducted by personnel having moral consciousness and firm sense of mission in the course of jobs and working daily with sweat pouring. Safety engineering/technology should have framework integrating human as such totality. (T. Tanaka)

  7. Safety climate and culture: Integrating psychological and systems perspectives.

    Science.gov (United States)

    Casey, Tristan; Griffin, Mark A; Flatau Harrison, Huw; Neal, Andrew

    2017-07-01

    Safety climate research has reached a mature stage of development, with a number of meta-analyses demonstrating the link between safety climate and safety outcomes. More recently, there has been interest from systems theorists in integrating the concept of safety culture and to a lesser extent, safety climate into systems-based models of organizational safety. Such models represent a theoretical and practical development of the safety climate concept by positioning climate as part of a dynamic work system in which perceptions of safety act to constrain and shape employee behavior. We propose safety climate and safety culture constitute part of the enabling capitals through which organizations build safety capability. We discuss how organizations can deploy different configurations of enabling capital to exert control over work systems and maintain safe and productive performance. We outline 4 key strategies through which organizations to reconcile the system control problems of promotion versus prevention, and stability versus flexibility. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Nuclear safety, security and safeguards. An application of an integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Howard; Edwards, Jeremy; Fitzpatrick, Joshua; Grundy, Colette; Rodger, Robert; Scott, Jonathan [National Nuclear Laboratory, Warrington (United Kingdom)

    2018-01-15

    National Nuclear Laboratory has recently produced a paper regarding the integrated approach of nuclear safety, security and safeguards. The paper considered the international acknowledgement of the inter-relationships and potential benefits to be gained through improved integration of the nuclear '3S'; Safety, Security and Safeguards. It considered that combining capabilities into one synergistic team can provide improved performance and value. This approach to integration has been adopted, and benefits realised by the National Nuclear Laboratory through creation of a Safety, Security and Safeguards team. In some instances the interface is clear and established, as is the case between safety and security in the areas of Vital Area Identification. In others the interface is developing such as the utilisation of safeguards related techniques such as nuclear material accountancy and control to enhance the security of materials. This paper looks at a practical example of the progress to date in implementing Triple S by a duty holder.

  9. A dynamic probabilistic safety margin characterization approach in support of Integrated Deterministic and Probabilistic Safety Analysis

    International Nuclear Information System (INIS)

    Di Maio, Francesco; Rai, Ajit; Zio, Enrico

    2016-01-01

    The challenge of Risk-Informed Safety Margin Characterization (RISMC) is to develop a methodology for estimating system safety margins in the presence of stochastic and epistemic uncertainties affecting the system dynamic behavior. This is useful to support decision-making for licensing purposes. In the present work, safety margin uncertainties are handled by Order Statistics (OS) (with both Bracketing and Coverage approaches) to jointly estimate percentiles of the distributions of the safety parameter and of the time required for it to reach these percentiles values during its dynamic evolution. The novelty of the proposed approach consists in the integration of dynamic aspects (i.e., timing of events) into the definition of a dynamic safety margin for a probabilistic Quantification of Margin and Uncertainties (QMU). The system here considered for demonstration purposes is the Lead–Bismuth Eutectic- eXperimental Accelerator Driven System (LBE-XADS). - Highlights: • We integrate dynamic aspects into the definition of a safety margins. • We consider stochastic and epistemic uncertainties affecting the system dynamics. • Uncertainties are handled by Order Statistics (OS). • We estimate the system grace time during accidental scenarios. • We apply the approach to an LBE-XADS accidental scenario.

  10. Integration, differentiation and ambiguity in safety cultures

    DEFF Research Database (Denmark)

    Richter, Anne; Koch, Christian

    2004-01-01

    This article discusses safety cultures, drawing on the differentiation, integration and ambiguity-scheme introduced by scholars of organizational culture. An ethnographic approach has been applied in the study of meaning and symbols relating to work, hazards, occupational accidents and prevention....... The application of this approach is demonstrated through a multifacetted analysis of safety cultures. Case studies in Danish manufacturing show that it usually is necessary to differentiate between several safety cultures dispersed throughout the shop floor and other parts of the manufacturing organization....... Although some common elements are present across cultures, they are indeed a multiple configuration of cultures. The article illustrates this by providing one case showing a configuration of three cultures, metaphorically labelled Production, Welfare and Master. For example, the former views risk...

  11. Integrated Approaches to Occupational Health and Safety: A Systematic Review.

    Science.gov (United States)

    Cooklin, A; Joss, N; Husser, E; Oldenburg, B

    2017-09-01

    The study objective was to conduct a systematic review of the effectiveness of integrated workplace interventions that combine health promotion with occupational health and safety. Electronic databases (n = 8), including PsychInfo and MEDLINE, were systematically searched. Studies included were those that reported on workplace interventions that met the consensus definition of an "integrated approach," published in English, in the scientific literature since 1990. Data extracted were occupation, worksite, country, sample size, intervention targets, follow-up period, and results reported. Quality was assessed according to American College of Occupational and Environmental Medicine Practice Guidelines. Heterogeneity precluded formal meta-analyses. Results were classified according to the outcome(s) assessed into five categories (health promotion, injury prevention, occupational health and safety management, psychosocial, and return-on-investment). Narrative synthesis of outcomes was performed. A total of 31 eligible studies were identified; 23 (74%) were (quasi-)experimental trials. Effective interventions were most of those aimed at improving employee physical or mental health. Less consistent results were reported from integrated interventions targeting occupational health and safety management, injury prevention, or organizational cost savings. Integrated approaches have been posed as comprehensive solutions to complex issues. Empirical evidence, while still emerging, provides some support for this. Continuing investment in, and evaluation of, integrated approaches are worthwhile.

  12. Disentangling the roles of safety climate and safety culture: Multi-level effects on the relationship between supervisor enforcement and safety compliance.

    Science.gov (United States)

    Petitta, Laura; Probst, Tahira M; Barbaranelli, Claudio; Ghezzi, Valerio

    2017-02-01

    Despite increasing attention to contextual effects on the relationship between supervisor enforcement and employee safety compliance, no study has yet explored the conjoint influence exerted simultaneously by organizational safety climate and safety culture. The present study seeks to address this literature shortcoming. We first begin by briefly discussing the theoretical distinctions between safety climate and culture and the rationale for examining these together. Next, using survey data collected from 1342 employees in 32 Italian organizations, we found that employee-level supervisor enforcement, organizational-level safety climate, and autocratic, bureaucratic, and technocratic safety culture dimensions all predicted individual-level safety compliance behaviors. However, the cross-level moderating effect of safety climate was bounded by certain safety culture dimensions, such that safety climate moderated the supervisor enforcement-compliance relationship only under the clan-patronage culture dimension. Additionally, the autocratic and bureaucratic culture dimensions attenuated the relationship between supervisor enforcement and compliance. Finally, when testing the effects of technocratic safety culture and cooperative safety culture, neither safety culture nor climate moderated the relationship between supervisor enforcement and safety compliance. The results suggest a complex relationship between organizational safety culture and safety climate, indicating that organizations with particular safety cultures may be more likely to develop more (or less) positive safety climates. Moreover, employee safety compliance is a function of supervisor safety leadership, as well as the safety climate and safety culture dimensions prevalent within the organization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Severe accident management at the Loviisa NPP - Application of integrated ROAAM and PSA level 2

    International Nuclear Information System (INIS)

    Siltanen, S.; Routamo, T.; Tuomisto, H.; Lundstrom, P.

    2007-01-01

    The Risk Oriented Accident Analysis Methodology (ROAAM) was developed for assessment and management of rare, high consequence hazards. The purpose of most ROAAM applications has been to solve major, isolated severe accident issues related to early containment failure such as Mark-I Liner Attack and Direct Containment Heating. In addition to ROAAM in the issue resolution context, the so called Integrated ROAAM approach can be used to provide an overall frame of safety evaluation that allows determination of whether an adequate level of safety has been achieved for a plant. Integrated ROAAM approach brings together quantifications of probabilistic elements based on statistical inference and treatment of deterministic elements based on identification of dominant physics, for severe accident phenomenology, in a well defined and clearly structured way. Fortum, as an owner of the Loviisa NPP, used the Integrated ROAAM approach when developing and implementing a comprehensive severe accident management (SAM) strategy for the Loviisa NPP. The SAM strategy is based on unique features of this VVER-440 plant with ice condenser containment and it includes hardware modifications at the plant, substantial new I and C qualified for severe accident conditions, new SAM guidelines, a SAM Handbook, revision of emergency preparedness organization, and versatile training approaches. It could be argued that the resolution of individual severe accident issues is not sufficient for assessing the overall safety of a nuclear power plant, and thus the ROAAM (in an issue resolution context) is not performing the same function as a PSA study (level 2 included). Actually the Integrated ROAAM approach takes on even a more ambitious task than the PSA, since it determines how a balance can be achieved between accident prevention and mitigation of containment-threatening physical phenomena. Thus it provides a tool for implementing a sound diverse defence-in-depth strategy at a plant. Integrated

  14. Software for the occupational health and safety integrated management system

    International Nuclear Information System (INIS)

    Vătăsescu, Mihaela

    2015-01-01

    This paper intends to present the design and the production of a software for the Occupational Health and Safety Integrated Management System with the view to a rapid drawing up of the system documents in the field of occupational health and safety

  15. Software for the occupational health and safety integrated management system

    Energy Technology Data Exchange (ETDEWEB)

    Vătăsescu, Mihaela [University Politehnica Timisoara, Department of Engineering and Management, 5 Revolutiei street, 331128 Hunedoara (Romania)

    2015-03-10

    This paper intends to present the design and the production of a software for the Occupational Health and Safety Integrated Management System with the view to a rapid drawing up of the system documents in the field of occupational health and safety.

  16. Need for an "integrated safety assessment" of GMOs, linking food safety and environmental considerations.

    Science.gov (United States)

    Haslberger, Alexander G

    2006-05-03

    information. An integrated assessment might help to focus and save capacities in highly technical areas such as molecular characterization or profiling, which are often necessary for both assessments. In the area of establishing international standards for traded foods, such as for the newly created Standards in Trade and Development Facility (STDF), an integrated assessment might help in the consideration of important environmental aspects involved in health and food safety. Furthermore, an established integrated view on GMOs may create greater consumer confidence in the technology.

  17. Integration of radiation and physical safety in large radiator facilities

    International Nuclear Information System (INIS)

    Lima, P.P.M.; Benedito, A.M.; Lima, C.M.A.; Silva, F.C.A. da

    2017-01-01

    Growing international concern about radioactive sources after the Sept. 11, 2001 event has led to a strengthening of physical safety. There is evidence that the illicit use of radioactive sources is a real possibility and may result in harmful radiological consequences for the population and the environment. In Brazil there are about 2000 medical, industrial and research facilities with radioactive sources, of which 400 are Category 1 and 2 classified by the - International Atomic Energy Agency - AIEA, where large irradiators occupy a prominent position due to the very high cobalt-60 activities. The radiological safety is well established in these facilities, due to the intense work of the authorities in the Country. In the paper the main aspects on radiological and physical safety applied in the large radiators are presented, in order to integrate both concepts for the benefit of the safety as a whole. The research showed that the items related to radiation safety are well defined, for example, the tests on the access control devices to the irradiation room. On the other hand, items related to physical security, such as effective control of access to the company, use of safety cameras throughout the company, are not yet fully incorporated. Integration of radiation and physical safety is fundamental for total safety. The elaboration of a Brazilian regulation on the subject is of extreme importance

  18. Addressing Unison and Uniqueness of Reliability and Safety for Better Integration

    Science.gov (United States)

    Huang, Zhaofeng; Safie, Fayssal

    2015-01-01

    For a long time, both in theory and in practice, safety and reliability have not been clearly differentiated, which leads to confusion, inefficiency, and sometime counter-productive practices in executing each of these two disciplines. It is imperative to address the uniqueness and the unison of these two disciplines to help both disciplines become more effective and to promote a better integration of the two for enhancing safety and reliability in our products as an overall objective. There are two purposes of this paper. First, it will investigate the uniqueness and unison of each discipline and discuss the interrelationship between the two for awareness and clarification. Second, after clearly understanding the unique roles and interrelationship between the two in a product design and development life cycle, we offer suggestions to enhance the disciplines with distinguished and focused roles, to better integrate the two, and to improve unique sets of skills and tools of reliability and safety processes. From the uniqueness aspect, the paper identifies and discusses the respective uniqueness of reliability and safety from their roles, accountability, nature of requirements, technical scopes, detailed technical approaches, and analysis boundaries. It is misleading to equate unreliable to unsafe, since a safety hazard may or may not be related to the component, sub-system, or system functions, which are primarily what reliability addresses. Similarly, failing-to-function may or may not lead to hazard events. Examples will be given in the paper from aerospace, defense, and consumer products to illustrate the uniqueness and differences between reliability and safety. From the unison aspect, the paper discusses what the commonalities between reliability and safety are, and how these two disciplines are linked, integrated, and supplemented with each other to accomplish the customer requirements and product goals. In addition to understanding the uniqueness in

  19. Criticality safety evaluations - a {open_quotes}stalking horse{close_quotes} for integrated safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R.A. [Westinghouse Electric Corp., Columbia, SC (United States)

    1995-12-31

    The Columbia Fuel Fabrication Facility of the Westinghouse Commercial Nuclear Fuel Division manufactures low-enriched uranium fuel and associated components for use in commercial pressurized water power reactors. To support development of a comprehensive integrated safety assessment (ISA) for the facility, as well as to address increasing U.S. Nuclear Regulatory Commission (NRC) expectations regarding such a facility`s criticality safety assessments, a project is under way to complete criticality safety evaluations (CSEs) of all plant systems used in processing nuclear materials. Each CSE is made up of seven sections, prepared by a multidisciplinary team of process engineers, systems engineers, safety engineers, maintenance representatives, and operators. This paper provides a cursory outline of the type of information presented in a CSE.

  20. Trending of low level events and near misses to enhance safety performance in nuclear power plants

    International Nuclear Information System (INIS)

    2005-11-01

    The IAEA Safety Fundamentals publication, Safety of Nuclear Installations, Safety Series No. 110, states the need for operating organizations to establish a programme for the collection and analysis of operating experience in nuclear power plants. Such a programme ensures that operating experience is analysed, events important to safety are reviewed in depth, and lessons learned are disseminated to the staff of the organization and to relevant national and international organizations. As a result of the effort to enhance safety in operating organizations, incidents are progressively decreasing in number and significance. This means that in accordance with international reporting requirements the amount of collected data becomes less sufficient to draw meaningful statistical conclusions. This is where the collection and trend analysis of low level events and near misses can prove to be very useful. These trends can show which of the safety barriers are weak or failing more frequently. Evaluation and trending of low level events and near misses will help to prevent major incidents because latent weaknesses have been identified and corrective actions taken to prevent recurrence. This leads to improved safety and production. Low level events and near misses, which may reach several thousand per reactor operating year, need to be treated by the organizations as learning opportunities. A system for capturing these low level events and near misses truly needs to be an organization-wide system in which all levels of the organization, including contractors, participate. It is desirable that the overall operational experience feedback (OEF) process should integrate the lessons learned and the associated data from significant events with those of lower level events and near misses. To be able to effectively implement a process dealing with low level events and near misses, it is necessary that the organization have a well established OEF process for significant events

  1. Integrated risk reduction framework to improve railway hazardous materials transportation safety.

    Science.gov (United States)

    Liu, Xiang; Saat, M Rapik; Barkan, Christopher P L

    2013-09-15

    Rail transportation plays a critical role to safely and efficiently transport hazardous materials. A number of strategies have been implemented or are being developed to reduce the risk of hazardous materials release from train accidents. Each of these risk reduction strategies has its safety benefit and corresponding implementation cost. However, the cost effectiveness of the integration of different risk reduction strategies is not well understood. Meanwhile, there has been growing interest in the U.S. rail industry and government to best allocate resources for improving hazardous materials transportation safety. This paper presents an optimization model that considers the combination of two types of risk reduction strategies, broken rail prevention and tank car safety design enhancement. A Pareto-optimality technique is used to maximize risk reduction at a given level of investment. The framework presented in this paper can be adapted to address a broader set of risk reduction strategies and is intended to assist decision makers for local, regional and system-wide risk management of rail hazardous materials transportation. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Idaho National Laboratory Integrated Safety Management System FY 2012 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Farren Hunt

    2012-12-01

    Idaho National Laboratory (INL) performed an Annual Effectiveness Review of the Integrated Safety Management System (ISMS), per 48 Code of Federal Regulations (CFR) 970.5223 1, “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and identified target areas for focused improvements and assessments for fiscal year (FY) 2013. Results of the FY 2012 annual effectiveness review demonstrated that the INL’s ISMS program was significantly strengthened. Actions implemented by the INL demonstrate that the overall Integrated Safety Management System is sound and ensures safe and successful performance of work while protecting workers, the public, and environment. This report also provides several opportunities for improvement that will help further strengthen the ISM Program and the pursuit of safety excellence. Demonstrated leadership and commitment, continued surveillance, and dedicated resources have been instrumental in maturing a sound ISMS program. Based upon interviews with personnel, reviews of assurance activities, and analysis of ISMS process implementation, this effectiveness review concludes that ISM is institutionalized and is “Effective”.

  3. Technical findings and regulatory analysis for Generic Safety Issue II.E.4.3, ''Containment Integrity Check''

    International Nuclear Information System (INIS)

    Serkiz, A.W.

    1988-04-01

    This report contains the technical findings and regulatory analysis for Generic Safety Issue II.E.4.3, ''Containment Integrity Check.'' An evaluation of the containment isolation history from 1965 to 1983 reveals that (except for a small number of events) containment integrity has been maintained and that the majority of reported events have been events related to exceeding Technical Specification limits (or 0.6 of the allowable leakage level). In addition, more recent risk analyses have shown that allowable leakage rates even if increased by a factor of 10 would not significantly increase risk. Potential methods of continuous monitoring are identified and evaluated. Therefore, these technical findings and risk evaluations support closure of Generic Safety Issue II.E.4.3

  4. Temperature and level measurements realized for Nuclear Safety Level Improvement of Slovak NPPs

    International Nuclear Information System (INIS)

    Badiar, S.; Slanina, M.; Stanc, S.; Golan, P.; Krupa, J.

    2001-01-01

    Process of continual safety improvement in the individual Slovak nuclear power plants has been in progress since the beginning of nineties with the objective to upgrade the safety level of units in operation up to the European standards. In the framework of these activities, safety instrumentation systems with 1E qualification for the control of WWER reactor coolant systems were built and added. Methods for implementation of safety instrumentation systems for monitoring temperature and level in reactor coolant systems in the particular plants in Slovakia are presented showing the objectives and methods of their implementation. (Authors)

  5. EFFECT OF SHORT-TERM ART INTERRUPTION ON LEVELS OF INTEGRATED HIV DNA.

    Science.gov (United States)

    Strongin, Zachary; Sharaf, Radwa; VanBelzen, D Jake; Jacobson, Jeffrey M; Connick, Elizabeth; Volberding, Paul; Skiest, Daniel J; Gandhi, Rajesh T; Kuritzkes, Daniel R; O'Doherty, Una; Li, Jonathan Z

    2018-03-28

    Analytic treatment interruption (ATI) studies are required to evaluate strategies aimed at achieving ART-free HIV remission, but the impact of ATI on the viral reservoir remains unclear. We validated a DNA size selection-based assay for measuring levels of integrated HIV DNA and applied it to assess the effects of short-term ATI on the HIV reservoir. Samples from participants from four AIDS Clinical Trials Group (ACTG) ATI studies were assayed for integrated HIV DNA levels. Cryopreserved PBMCs were obtained for 12 participants with available samples pre-ATI and approximately 6 months after ART resumption. Four participants also had samples available during the ATI. The median duration of ATI was 12 weeks. Validation of the HIV Integrated DNA size-Exclusion (HIDE) assay was performed using samples spiked with unintegrated HIV DNA, HIV-infected cell lines, and participant PBMCs. The HIDE assay eliminated 99% of unintegrated HIV DNA species and strongly correlated with the established Alu- gag assay. For the majority of individuals, integrated DNA levels increased during ATI and subsequently declined upon ART resumption. There was no significant difference in levels of integrated HIV DNA between the pre- and post-ATI time points, with the median ratio of post:pre-ATI HIV DNA levels of 0.95. Using a new integrated HIV DNA assay, we found minimal change in the levels of integrated HIV DNA in participants who underwent an ATI followed by 6 months of ART. This suggests that short-term ATI can be conducted without a significant impact on levels of integrated proviral DNA in the peripheral blood. IMPORTANCE Interventions aimed at achieving sustained antiretroviral therapy (ART)-free HIV remission require treatment interruption trials to assess their efficacy. However, these trials are accompanied by safety concerns related to the expansion of the viral reservoir. We validated an assay that uses an automated DNA size-selection platform for quantifying levels of integrated

  6. Representing the Fuzzy improved risk graph for determination of optimized safety integrity level in industrial setting

    Directory of Open Access Journals (Sweden)

    Z. Qorbali

    2013-12-01

    .Conclusion: as a result of establishing the presented method, identical levels in conventional risk graph table are replaced with different sublevels that not only increases the accuracy in determining the SIL, but also elucidates the effective factor in improving the safety level and consequently saves time and cost significantly. The proposed technique has been employed to develop the SIL of Tehran Refinery ISOMAX Center. IRG and FIRG results have been compared to clarify the efficacy and importance of the proposed method

  7. Improving occupational safety and health by integration into product development

    DEFF Research Database (Denmark)

    Broberg, Ole

    1996-01-01

    A cross-sectional case study was performed in a large company producing electro-mechanical products for industrial application. The objectives were: (i) to study the product development process and the role of key actors', (ii) to identify current practice on integrating occupational safety and h...... and studies of documents. A questionnaire regarding product development tasks and occupational safety and health were distributed to 30 design and production engineers. A total of 27 completed the questionnaire corresponding to a response rate of 90 per cent.......A cross-sectional case study was performed in a large company producing electro-mechanical products for industrial application. The objectives were: (i) to study the product development process and the role of key actors', (ii) to identify current practice on integrating occupational safety...... and health into the development process, especially the efforts and attitudes of design and production engineers', and (iii) to identify key actors'reflections on how to improve this integration. The study was based on qualitative as well as quantitative methods including interviews, questionnaires...

  8. Integrating Occupational Safety and Health into TAFE Courses: Policy Guidelines.

    Science.gov (United States)

    Hill, Graham L.; Mageean, Pauline

    Intended to help administrators, curriculum developers, and teachers integrate occupational health and safety into Australian vocational courses on bricklaying, metal fabrication, and horticulture, this document suggests specific policies and provides further amplification concerning three general policies for that integration. The three general…

  9. Development and application of an integrated evaluation framework for preventive safety applications

    NARCIS (Netherlands)

    Scholliers, J.; Joshi, S.; Gemou, M.; Hendriks, F.; Ljung Aust, M.; Luoma, J.; Netto, M.; Engstrom, J.; Leanderson Olsson, S.; Kutzner, R.; Tango, F.; Amditis, A.J.; Blosseville, J.M.; Bekiaris, E.

    2011-01-01

    Preventive safety functions help drivers avoid or mitigate accidents. No quantitative methods have been available to evaluate the safety impact of these systems. This paper describes a framework for the assessment of preventive and active safety functions, which integrates procedures for technical

  10. Probabilistic safety analysis second level of WWER-TOI

    International Nuclear Information System (INIS)

    Chekin, A.A.; Bajkova, E.V.; Levin, V.N.; Shishina, E.S.

    2015-01-01

    Probabilistic safety assessment (PSA) of Level-1 and Level-2 gives a comprehensive qualitative and quantitative evaluation of the safety of the project. The operation of the unit at rated power is considered. As sources of radioactivity in the development of the second-level PSA, nuclear fuel in the core of the reactor is considered. As initiating events, internal initiating events (including de-energizing) are considered, which may arise due to failures of NPP systems, equipment or components, or due to erroneous actions of personnel. In general, an assessment of the level of project safety shows that the WWER-TOI project complies with the requirements of the TOR, as well as all the requirements of modern Russian and foreign regulatory documents in the field of security [ru

  11. Occupational Health and Safety. Numeracy. Level 1. Level 2. Level 3. Support Materials for Agricultural Training.

    Science.gov (United States)

    Batman, Kangan; Tully, Chris

    This publication contains the three numeracy units of the three levels of Support Materials for Agricultural Training (SMAT) in the area of occupational health and safety: Level 1 (starting), 2 (continuing), and 3 (completing). The units are designed to help the learner improve his or her numeracy skills needed to deal with occupational safety and…

  12. The integrated criticality safety evaluation for the Hanford tank waste treatment and immobilization plant

    International Nuclear Information System (INIS)

    Losey, D. C.; Miles, R. E.; Perks, M. F.

    2009-01-01

    The Criticality Safety Evaluation Report (CSER) for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) has been developed as a single, integrated evaluation with a scope that covers all of the planned WTP operations. This integrated approach is atypical, as the scopes of criticality evaluations are usually more narrowly defined. Several adjustments were made in developing the WTP CSER, but the primary changes were to provide introductory overview for the criticality safety control strategy and to provide in-depth analysis of the underlying physical and chemical mechanisms that contribute to ensuring safety. The integrated approach for the CSER allowed a more consistent evaluation of safety and avoided redundancies that occur when evaluation is distributed over multiple documents. While the approach used with the WTP CSER necessitated more coordination and teamwork, it has yielded a report is that more integrated and concise than is typical. The integrated approach with the CSER produced a simple criticality control scheme that uses relatively few controls. (authors)

  13. Risk management: integration of social and technical risk variables into safety assessments of LWR'S

    International Nuclear Information System (INIS)

    Turnage, J.J.; Husseiny, A.A.

    1980-01-01

    A risk management methodology is developed here to formalize the acceptability levels of commercial LWR power plants via the estimation of risk levels acceptable to the public and the integration of such estimates into risk-benefit analysis. Utility theory is used for developing preference models based on value trade-offs among multiple objectives and uncertainties about the impact of alternatives. The method involves reducing the various variables affecting safety acceptability decisions to a single function that provides a metric for acceptability levels. The function accomondates for technical criteria related to design and licensing decisions, as well as public reactions to certain choices

  14. Integrity of Safety-Related Fast Reactor Structures

    International Nuclear Information System (INIS)

    Rose, R.T.; Tomkins, B.

    1981-01-01

    The LMFBR contains several structural items whose integrity must be safeguarded during the life of the plant. These items include the main core support structures (strongback, diagrid) and the primary tank to which these structures are attached. In order to demonstrate an acceptable level of structural integrity, the chosen design philosophy must be supported by both analytical and experimental evidence. This paper describes the current approaches in the UK to these requirements. Section 2 describes the materials mechanical properties tests performed to date on both fracture toughness and fatigue crack growth in Type 316 austenitic stainless steel plate and weldments. This data illustrates the problems in identifying the relevant materials fracture parameters for use in assessments. Section 3 shows the test programmes in hand to extend the materials programmes to tests on structural features (mainly welded wide plate tests) which incorporate the complexity of weldments in a structural context. This includes experimental evidence on the effects of local weld residual stresses on structural failure. Various routes are open for the integrity assessment of FR structures. These are discussed in Section 4 but in effect they reduce to a fracture mechanics approach using some technique to cope with elastic-plastic fracture. The main problems at present relate to our ability in analysis to cope with residual stresses and the post-initiation region of the fracture resistance curve. Also, there is the problem of initial defect sizing by current NDE techniques. Current conservative analytical assessments give acceptable defect sizes of order a few millimetres in irradiated weldments. Finally, Section 5 discusses the options open in design to cope with safety related structures under normal and abnormal loading conditions. It is clear that several options exist in design to satisfy the demand for high integrity

  15. Confidence improvement of disosal safety bydevelopement of a safety case for high-level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Min Hoon; Ko, Nak Youl; Jeong, Jong Tae; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    Many countries have developed a safety case suitable to their own countries in order to improve the confidence of disposal safety in deep geological disposal of high-level radioactive waste as well as to develop a disposal program and obtain its license. This study introduces and summarizes the meaning, necessity, and development process of the safety case for radioactive waste disposal. The disposal safety is also discussed in various aspects of the safety case. In addition, the status of safety case development in the foreign countries is briefly introduced for Switzerland, Japan, the United States of America, Sweden, and Finland. The strategy for the safety case development that is being developed by KAERI is also briefly introduced. Based on the safety case, we analyze the efforts necessary to improve confidence in disposal safety for high-level radioactive waste. Considering domestic situations, we propose and discuss some implementing methods for the improvement of disposal safety, such as construction of a reliable information database, understanding of processes related to safety, reduction of uncertainties in safety assessment, communication with stakeholders, and ensuring justice and transparency. This study will contribute to the understanding of the safety case for deep geological disposal and to improving confidence in disposal safety through the development of the safety case in Korea for the disposal of high-level radioactive waste.

  16. Safety characteristics of the integral fast reactor concept

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Cahalan, J.E.; Sevy, R.H.; Wright, A.E.

    1985-01-01

    The Integral Fast Reactor (IFR) concept is an innovative approach to liquid metal reactor design which is being studied by Argonne National Laboratory. Two of the key features of the IFR design are a metal fuel core design, based on the fuel technology developed at EBR-II, and an integral fuel cycle with a colocated fuel cycle facility based on the compact and simplified process steps made possible by the use of metal fuel. The paper presents the safety characteristics of the IFR concept which derive from the use of metal fuel. Liquid metal reactors, because of the low pressure coolant operating far below its boiling point, the natural circulation capability, and high system heat capacities, possess a high degree of inherent safety. The use of metallic fuel allows the reactor designer to further enhance the system capability for passive accommodation of postulated accidents

  17. Safety integrity requirements for computer based I ampersand C systems

    International Nuclear Information System (INIS)

    Thuy, N.N.Q.; Ficheux-Vapne, F.

    1997-01-01

    In order to take into account increasingly demanding functional requirements, many instrumentation and control (I ampersand C) systems in nuclear power plants are implemented with computers. In order to ensure the required safety integrity of such equipment, i.e., to ensure that they satisfactorily perform the required safety functions under all stated conditions and within stated periods of time, requirements applicable to these equipment and to their life cycle need to be expressed and followed. On the other hand, the experience of the last years has led EDF (Electricite de France) and its partners to consider three classes of systems and equipment, according to their importance to safety. In the EPR project (European Pressurized water Reactor), these classes are labeled E1A, E1B and E2. The objective of this paper is to present the outline of the work currently done in the framework of the ETC-I (EPR Technical Code for I ampersand C) regarding safety integrity requirements applicable to each of the three classes. 4 refs., 2 figs

  18. Determining supply chain safety stock level and location

    Directory of Open Access Journals (Sweden)

    Bahareh Amirjabbari

    2014-01-01

    Full Text Available Purpose: The lean methodology and its principles have widely been applied in supply chain management in recent decades. Manufacturers are one of the most important contributors in a supply chain and inventory plays a paramount role for them to become lean. Therefore, there should be appropriate management of inventory and all of its drivers in accordance with a lean strategy. Safety stock is one of the main drivers of inventory; it protects against increasing the stretch in the breaking points of the supply chain, which in turn can result in possible reduction of inventory. In this paper an optimization model and a simulation model are developed and applied in a real case to optimize the safety stock level with the objective of logistics cost minimization.Design/methodology/approach: In order to optimize the safety stock level while minimizing logistics costs, a nonlinear cost minimization safety stock model is developed in this paper and then it is applied in a real world manufacturing case company. A safety stock simulation model based on appropriate metrics in the case company’s supply chain performance is also provided.Findings: These models result in not only the optimum levels but also locations of safety stock within the supply chain.Originality/value: In this research, two models of cost minimization and simulation have been developed and also applied in a real case company to result in not only optimized levels but also optimized locations of safety stock across the whole supply chain. In addition, the appropriate supply chain performance measurement metrics have been introduced in this paper and the simulation model is developed based on those.

  19. Evaluation of implementation an Integrated Safety and Preventive Maintenance System for Improving of Safety Indexes

    Directory of Open Access Journals (Sweden)

    I mohammadfam

    2014-03-01

    Full Text Available Accident analysis shows that one of the main reasons for accidents is non-integration of maintenance units with safety. Merging these two processes through an integrated system can reduce and or eliminate accidents, diseases, and environmental pollution. These issues lead to improvement in organizational performance, as well. The aim of this study is to design and establish an integrated system for obtaining the aforementioned goal. Integration was carried out at Nirou Moharreke Machine Tools Company via Structured System Analysis & Design Method (SSADM. In order to measure the effectiveness of the system, selected indexes were compared using statistical methods prior and after system establishment. Results show that the accident severity index reduced from 135.46 in 2010, to 43.85 in 2012. Moreover, system effectiveness improved equipment reliability and availability (e.g. reliability of the Pfeiffer Milling machine (P (t>50 increased from 0.89 in 2010, to 0.9 in 2012. This system by forecasting various failures, and planning and designing the required operations for preventing occurrence of these failures, plays an important role in improving safety conditions of equipment, and increasing organizational performance, and is capable of presenting an excellent accident prevention program.

  20. Development and Application of Level 2 Probabilistic Safety Assessment for Nuclear Power Plants. Specific Safety Guide

    International Nuclear Information System (INIS)

    2010-01-01

    The objective of this Safety Guide is to provide recommendations for meeting the IAEA safety requirements in performing or managing a level 2 probabilistic safety assessment (PSA) project for a nuclear power plant; thus it complements the Safety Guide on level 1 PSA. One of the aims of this Safety Guide is to promote a standard framework, standard terms and a standard set of documents for level 2 PSAs to facilitate regulatory and external peer review of their results. It describes all elements of the level 2 PSA that need to be carried out if the starting point is a fully comprehensive level 1 PSA. Contents: 1. Introduction; 2. PSA project management and organization; 3. Identification of design aspects important to severe accidents and acquisition of information; 4. Interface with level 1 PSA: Grouping of sequences; 5. Accident progression and containment analysis; 6. Source terms for severe accidents; 7. Documentation of the analysis: Presentation and interpretation of results; 8. Use and applications of the PSA; Annex I: Example of a typical schedule for a level 2 PSA; Annex II: Computer codes for simulation of severe accidents; Annex III: Sample outline of documentation for a level 2 PSA study.

  1. A periodic review integrated inventory model with controllable safety stock and setup cost under service level constraint and distribution-free demand

    Science.gov (United States)

    Kurdhi, N. A.; Jamaluddin, A.; Jauhari, W. A.; Saputro, D. R. S.

    2017-06-01

    In this study, we consider a stochastic integrated manufacturer-retailer inventory model with service level constraint. The model analyzed in this article considers the situation in which the vendor and the buyer establish a long-term contract and strategic partnership to jointly determine the best strategy. The lead time and setup cost are assumed can be controlled by an additional crashing cost and an investment, respectively. It is assumed that shortages are allowed and partially backlogged on the buyer’s side, and that the protection interval (i.e., review period plus lead time) demand distribution is unknown but has given finite first and second moments. The objective is to apply the minmax distribution free approach to simultaneously optimize the review period, the lead time, the setup cost, the safety factor, and the number of deliveries in order to minimize the joint total expected annual cost. The service level constraint guarantees that the service level requirement can be satisfied at the worst case. By constructing Lagrange function, the analysis regarding the solution procedure is conducted, and a solution algorithm is then developed. Moreover, a numerical example and sensitivity analysis are given to illustrate the proposed model and to provide some observations and managerial implications.

  2. Integrated approach for combining sustainability and safety into a RAM analysis, RAM2S (Reliability, Availability, Maintainability, Sustainability and Safety) towards greenhouse gases emission targets

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Tobias V. [Det Norske Veritas (DNV), Hovik, Oslo (Norway)

    2009-07-01

    This paper aims to present an approach to integrate sustainability and safety concerns on top of a typical RAM Analysis to support new enterprises to find alternatives to align themselves to the greenhouse gases emission targets, measured as CO{sub 2} (carbon dioxide) equivalent. This approach can be used to measure the impact of the potential CO{sub 2} equivalent emission levels mainly related to new enterprises with high CO{sub 2} content towards environment and production, as per example, the extraction of oil and gas from the Brazilian Pre-salt layers. In this sense, this integrated approach, combining Sustainability and Safety into a RAM analysis, RAM2S (Reliability, Availability, Maintainability, Sustainability and Safety), can be used to assess the impact of CO{sub 2} 'production' along the entire enterprise life-cycle, including the impact of possible facility shutdown due to emission restrictions limits, as well as due to the occurrence of additional failures modes related to CO{sub 2} corrosion capabilities. Thus, at the end, this integrated approach would allow companies to find out a more cost-effective alternative to adapt their business into the global warming reality, overcoming the inherent threats of greenhouse gases. (author)

  3. An Integrated Development Tool for a safety application using FBD language

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Jun; Lee, Jang Soo; Lee, Dong Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Regarding digitalizing the Nuclear Instrumentation and Control Systems, the application program responsible for the safety functions of Nuclear I and C Systems shall ensure the robustness of the safety function through development, testing, and validation roles for a life cycle process during software development. The importance of software in nuclear systems increases continuously. The integrated engineering tools to develop, test, and validate safety application programs require increasingly more complex parts among a number of components within nuclear digital I and C systems. This paper introduces the integrated engineering tool (SafeCASE-PLC) developed by our project. The SafeCASE-PLC is a kind of software engineering tool to develop, test, and validate the nuclear application program performed in an automatic controller

  4. The relationship between patient safety climate and occupational safety climate in healthcare - A multi-level investigation.

    Science.gov (United States)

    Pousette, Anders; Larsman, Pernilla; Eklöf, Mats; Törner, Marianne

    2017-06-01

    Patient safety climate/culture is attracting increasing research interest, but there is little research on its relation with organizational climates regarding other target domains. The aim of this study was to investigate the relationship between patient safety climate and occupational safety climate in healthcare. The climates were assessed using two questionnaires: Hospital Survey on Patient Safety Culture and Nordic Occupational Safety Climate Questionnaire. The final sample consisted of 1154 nurses, 886 assistant nurses, and 324 physicians, organized in 150 work units, within hospitals (117units), primary healthcare (5units) and elderly care (28units) in western Sweden, which represented 56% of the original sample contacted. Within each type of safety climate, two global dimensions were confirmed in a higher order factor analysis; one with an external focus relative the own unit, and one with an internal focus. Two methods were used to estimate the covariation between the global climate dimensions, in order to minimize the influence of bias from common method variance. First multilevel analysis was used for partitioning variances and covariances in a within unit part (individual level) and a between unit part (unit level). Second, a split sample technique was used to calculate unit level correlations based on aggregated observations from different respondents. Both methods showed associations similar in strength between the patient safety climate and the occupational safety climate domains. The results indicated that patient safety climate and occupational safety climate are strongly positively related at the unit level, and that the same organizational processes may be important for the development of both types of organizational climate. Safety improvement interventions should not be separated in different organizational processes, but be planned so that both patient safety and staff safety are considered concomitantly. Copyright © 2017 National Safety

  5. System Interface for an Integrated Intelligent Safety System (ISS for Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Mahammad A. Hannan

    2010-01-01

    Full Text Available This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS that includes an airbag deployment decision system (ADDS and a tire pressure monitoring system (TPMS. A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications.

  6. Passive safety systems for integral reactors

    International Nuclear Information System (INIS)

    Kuul, V.S.; Samoilov, O.B.

    1996-01-01

    In this paper, a wide range of passive safety systems intended for use on integral reactors is considered. The operation of these systems relies on natural processes and does not require external power supplies. Using these systems, there is the possibility of preventing serious consequences for all classes of accidents including reactivity, loss-of-coolant and loss of heat sink as well as severe accidents. Enhancement of safety system reliability has been achieved through the use of self-actuating devices, capable of providing passive initiation of protective and isolation systems, which respond immediately to variations in the physical parameters of the fluid in the reactor or in a guard vessel. For beyond design base accidents accompanied by complete loss of heat removal capability, autonomous self-actuated ERHR trains have been proposed. These trains are completely independent of the secondary loops and need no action to isolate them from the steam turbine plant. Passive safety principles have been consistently implemented in AST-500, ATETS-200 and VPBER 600 which are new generation NPPs developed by OKBM. Their main characteristic is enhanced stability over a wide range of internal and external emergency initiators. (author). 10 figs

  7. Passive safety systems for integral reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuul, V S; Samoilov, O B [OKB Mechanical Engineering (Russian Federation)

    1996-12-01

    In this paper, a wide range of passive safety systems intended for use on integral reactors is considered. The operation of these systems relies on natural processes and does not require external power supplies. Using these systems, there is the possibility of preventing serious consequences for all classes of accidents including reactivity, loss-of-coolant and loss of heat sink as well as severe accidents. Enhancement of safety system reliability has been achieved through the use of self-actuating devices, capable of providing passive initiation of protective and isolation systems, which respond immediately to variations in the physical parameters of the fluid in the reactor or in a guard vessel. For beyond design base accidents accompanied by complete loss of heat removal capability, autonomous self-actuated ERHR trains have been proposed. These trains are completely independent of the secondary loops and need no action to isolate them from the steam turbine plant. Passive safety principles have been consistently implemented in AST-500, ATETS-200 and VPBER 600 which are new generation NPPs developed by OKBM. Their main characteristic is enhanced stability over a wide range of internal and external emergency initiators. (author). 10 figs.

  8. Rad waste disposal safety analysis / Integrated safety assessment of a waste repository

    International Nuclear Information System (INIS)

    Jeong, Jongtae; Choi, Jongwon; Kang, Chulhyung

    2012-04-01

    We developed CYPRUS+and adopted PID and RES method for the development of scenario. Safety performance assessment program was developed using GoldSim for the safety assessment of disposal system for the disposal of spnet fuels and wastes resulting from the pyrpoprocessing. Biosphere model was developed and verified in cooperation with JAEA. The capability to evaluate post-closure performance and safety was added to the previously developed program. And, nuclide migration and release to the biosphere considering site characteristics was evaluated by using deterministic and probabilistic approach. Operational safety assessment for drop, fire, and earthquake was also statistically evaluated considering well-established input parameter distribution. Conservative assessment showed that dose rate is below the limit value of low- and intermediate-level repository. Gas generation mechanism within engineered barrier was defined and its influence on safety was evaluated. We made probabilistic safety assessment by obtaining the probability distribution functions of important input variables and also made a sensitivity analysis. The maximum annual dose rate was shown to be below the safety limit value of 10 mSv/yr. The structure and element of safety case was developed to increase reliability of safety assessment methodology for a deep geological repository. Finally, milestone for safety case development and implementation strategy for each safety case element was also proposed

  9. Probabilistic safety assessment of Tehran Research Reactor using systems analysis programs for hands-on integrated reliability evaluations

    International Nuclear Information System (INIS)

    Hosseini, M.H.; Nematollahi, M.R.; Sepanloo, K.

    2004-01-01

    Probabilistic safety assessment application is found to be a practical tool for research reactor safety due to intense involvement of human interactions in an experimental facility. In this document the application of the probabilistic safety assessment to the Tehran Research Reactor is presented. The level 1 practicabilities safety assessment application involved: Familiarization with the plant, selection of accident initiators, mitigating functions and system definitions, event tree constructions and quantifications, fault tree constructions and quantification, human reliability, component failure data base development and dependent failure analysis. Each of the steps of the analysis given above is discussed with highlights from the selected results. Quantification of the constructed models is done using systems analysis programs for hands-on integrated reliability evaluations software

  10. 77 FR 34123 - Pipeline Safety: Public Meeting on Integrity Management of Gas Distribution Pipelines

    Science.gov (United States)

    2012-06-08

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2012-0100] Pipeline Safety: Public Meeting on Integrity Management of Gas Distribution Pipelines AGENCY: Office of Pipeline Safety, Pipeline and Hazardous Materials Safety Administration, DOT. ACTION...

  11. Making safety an integral part of 5S in healthcare.

    Science.gov (United States)

    Ikuma, Laura H; Nahmens, Isabelina

    2014-01-01

    Healthcare faces major challenges with provider safety and rising costs, and many organizations are using Lean to instigate change. One Lean tool, 5S, is becoming popular for improving efficiency of physical work environments, and it can also improve safety. This paper demonstrates that safety is an integral part of 5S by examining five specific 5S events in acute care facilities. We provide two arguments for how safety is linked to 5S:1. Safety is affected by 5S events, regardless of whether safety is a specific goal and 2. Safety can and should permeate all five S's as part of a comprehensive plan for system improvement. Reports of 5S events from five departments in one health system were used to evaluate how changes made at each step of the 5S impacted safety. Safety was affected positively in each step of the 5S through initial safety goals and side effects of other changes. The case studies show that 5S can be a mechanism for improving safety. Practitioners may reap additional safety benefits by incorporating safety into 5S events through a safety analysis before the 5S, safety goals and considerations during the 5S, and follow-up safety analysis.

  12. The safety case in support of the license application of the surface repository of low-level waste in Dessel, Belgium

    International Nuclear Information System (INIS)

    Wacquier, William; Cool, Wim

    2014-01-01

    The modern concept of the safety case, developed by the OECD/NEA for geological repositories of high- and medium-level waste has been successfully applied by ONDRAF/ NIRAS for a surface repository for Category A waste (i.e. low-level waste) in Belgium in the current project phase 2006-2012. This resulted in the submission on 31 January 2013 by ONDRAF/NIRAS of an application for a 'construction and operation license' to the safety authorities. The benefits of using the notion of the safety case have been that: i) safety has been incorporated in an integrated manner within all assessment basis, design and safety assessment activities; ii) the process of development of the license application has gained in clarity and traceability; iii) the documentation of the license application contains multiple lines of argumentation for safety rather than argumentation based only on quantitative radiological impact calculations. To offer a comprehensive view on the safety argumentation and its development, it has been found useful to develop the argumentation not only along a safety statements structure but also along the safety report structure. (authors)

  13. Proposal of Integrated Safety Assessment Methodology for Embedded System

    International Nuclear Information System (INIS)

    Sun, Wei; Kageyama, Makoto; Kanemoto, Shigeru

    2011-01-01

    To do risk analysis and risk evaluation for complicated safety critical embedded systems, there are three things should be paid a good attention: 1) an efficient and integrated model expression of embedded systems: 2) systematic risk analysis based on integrated system model: 3) quantitative risk evaluation for software and hardware integrated system. In this paper, taken electric water boiler as a target system, a proposal of risk analysis and risk evaluation for the embedded system is presented to meet these three purposes. In risk analysis, MFM is used and FT is generated automatically from MFM following some rules: And in risk evaluation, GO-FLOW is used to evaluate the reliability of sensors. And furthermore, FIT is applied to evaluate the safety software logic based on the diversity design concept. Although the electric water boiler is a simple example, it includes the key components of the embedded system like sensors, actuators, and software component. So, the process of modeling, analysis, and evaluation could be applied to other kinds of complicated embedded systems

  14. IGSC - Integration Group for the Safety Case

    International Nuclear Information System (INIS)

    2015-01-01

    Countries that rely on nuclear energy and materials have an ethical obligation to manage radioactive waste in a safe and environmentally responsible manner. For society to support the sustainable solutions envisaged, disposal concepts must be technologically sound and the safety of these concepts must be convincingly demonstrated. The Nuclear Energy Agency's Integration Group for the Safety Case (IGSC) establishes and documents the technical and scientific basis for developing and reviewing safety cases as a platform for dialogue among technical experts and as a tool for decision making. The IGSC addresses various strategic and policy aspects of radioactive waste management as the technical advisory body to the NEA Radioactive Waste Management Committee (RWMC) for all issues related to repository development. For more than two decades, the IGSC and its predecessor technical groups have promoted the exchange of national experience in evaluating and implementing geological repositories. IGSC activities foster consensus on best practices and encourage the development of innovative, advanced approaches covering the technical aspects at all stages of repository implementation, including: - strategies to characterise and evaluate potential disposal sites; - methods to design and test engineered barrier systems; - priorities for research and development programmes to improve the understanding of important processes and interactions; - tools for safety assessments; - techniques for the effective presentation and communication of the results of safety cases and other factors that provide the basis for increased confidence in the safety of geological disposal facilities. The IGSC has been instrumental in further developing the 'modern safety case', a concept that originally emerged from NEA work in the 1990's. Cooperation with the International Atomic Energy Agency (IAEA) and the European Commission (EC) has led to the worldwide adoption of this safety

  15. Idaho National Laboratory Integrated Safety Management System 2011 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Farren Hunt

    2011-12-01

    Idaho National Laboratory (INL) performed an annual Integrated Safety Management System (ISMS) effectiveness review per 48 Code of Federal Regulations (CFR) 970.5223-1, 'Integration of Environment, Safety and Health into Work Planning and Execution.' The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and helped identify target areas for focused improvements and assessments for fiscal year (FY) 2012. The information presented in this review of FY 2011 shows that the INL has performed many corrective actions and improvement activities, which are starting to show some of the desired results. These corrective actions and improvement activities will continue to help change culture that will lead to better implementation of defined programs, resulting in moving the Laboratory's performance from the categorization of 'Needs Improvement' to the desired results of 'Effective Performance.'

  16. Integrated model of port oil piping transportation system safety including operating environment threats

    Directory of Open Access Journals (Sweden)

    Kołowrocki Krzysztof

    2017-06-01

    Full Text Available The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  17. Integrated model of port oil piping transportation system safety including operating environment threats

    OpenAIRE

    Kołowrocki, Krzysztof; Kuligowska, Ewa; Soszyńska-Budny, Joanna

    2017-01-01

    The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  18. Advancing medication infusion safety through the clinical integration of technology.

    Science.gov (United States)

    Gerhart, Donald; O'Shea, Kristen; Muller, Sharon

    2013-01-01

    Adverse drug events resulting from errors in prescribing or administering medications are preventable. Within a hospital system, numerous technologies are employed to address the common sources of medication error, including the use of electronic medical records, physician order entry, smart infusion pumps, and barcode medication administration systems. Infusion safety is inherently risky because of the high-risk medications administered and the lack of integration among the stand-alone systems in most institutions. Intravenous clinical integration (IVCI) is a technology that connects electronic medical records, physician order entry, smart infusion pumps, and barcode medication administration systems. It combines the safety features of an automatically programmed infusion pump (drug, concentration, infusion rate, and patient weight, all auto-programmed into the device) with software that provides visibility to real-time clinical infusion data. Our article describes the characteristics of IVCI at WellSpan Health and its impact on patient safety. The integrated infusion system has the capability of reducing medication errors, improving patient care, reducing in-facility costs, and supporting asset management. It can enhance continuous quality improvement efforts and efficiency of clinical work flow. After implementing IVCI, the institution realized a safer patient environment and a more streamlined work flow for pharmacy and nursing.

  19. 48 CFR 970.5223-1 - Integration of environment, safety, and health into work planning and execution.

    Science.gov (United States)

    2010-10-01

    ..., safety, and health into work planning and execution. 970.5223-1 Section 970.5223-1 Federal Acquisition... Integration of environment, safety, and health into work planning and execution. As prescribed in 970.2303-3(b), insert the following clause: Integration of Environment, Safety, and Health Into Work Planning and...

  20. Evaluating and Predicting Patient Safety for Medical Devices With Integral Information Technology

    Science.gov (United States)

    2005-01-01

    323 Evaluating and Predicting Patient Safety for Medical Devices with Integral Information Technology Jiajie Zhang, Vimla L. Patel, Todd R...errors are due to inappropriate designs for user interactions, rather than mechanical failures. Evaluating and predicting patient safety in medical ...the users on the identified trouble spots in the devices. We developed two methods for evaluating and predicting patient safety in medical devices

  1. Integrating RAMS engineering and management with the safety life cycle of IEC 61508

    International Nuclear Information System (INIS)

    Lundteigen, Mary Ann; Rausand, Marvin; Utne, Ingrid Bouwer

    2009-01-01

    This article outlines a new approach to reliability, availability, maintainability, and safety (RAMS) engineering and management. The new approach covers all phases of the new product development process and is aimed at producers of complex products like safety instrumented systems (SIS). The article discusses main RAMS requirements to a SIS and presents these requirements in a holistic perspective. The approach is based on a new life cycle model for product development and integrates this model into the safety life cycle of IEC 61508. A high integrity pressure protection system (HIPPS) for an offshore oil and gas application is used to illustrate the approach.

  2. Safety and security profiles of industry networks used in safety- critical applications

    Directory of Open Access Journals (Sweden)

    Mária FRANEKOVÁ

    2008-01-01

    Full Text Available The author describes the mechanisms of safety and security profiles of industry and communication networks used within safety – related applications in technological and information levels of process control recommended according to standards IEC 61784-3,4. Nowadays the number of vendors of the safety – related communication technologies who guarantees besides the standard communication, the communication amongst the safety – related equipment according to IEC 61508 is increasing. Also the number of safety – related products is increasing, e. g. safety Fieldbus, safety PLC, safety curtains, safety laser scanners, safety buttons, safety relays and other. According to world survey the safety Fieldbus denoted the highest growth from all manufactured safety products.The main part of this paper is the description of the safety-related Fieldbus communication system, which has to guaranty Safety Integrity Level.

  3. Integrated Safety in ''SARAF'

    International Nuclear Information System (INIS)

    Dickstein, P.; Grof, Y.; Machlev, M.; Pernick, A.

    2004-01-01

    As of the very early stages of the accelerator project at the Soreq Nuclear Research Center ''SARAF'' a safety group was established which has been an inseparable participant in the planning and design of the new facility. The safety group comprises of teams responsible for the shielding, radiation protection and general industrial safety aspects of ''SARAF''. The safety group prepared and documented the safety envelope for the accelerator, dealing with the safety requirements and guidelines for the first, pre-operational, stages of the project. The safety envelope, though based upon generic principles, took into account the accelerator features and the expected modes of operation. The safety envelope was prepared in a hierarchical structure, containing Basic Principles, Basic Guidelines, General Principles for Safety Implementation, Safety Requirements and Safety Underlining Issues. The above safety envelope applies to the entire facility, which entails the accelerator itself and the experimental areas and associated plant and equipment utilizing and supporting the production of the accelerated particle beams

  4. Methodology for the Integration of Safety in the Optimization of the Advanced Reactors Design

    International Nuclear Information System (INIS)

    Grinblat, P.; Schlamp, M.; Brasnarof, D.; Gimenez, M.

    2003-01-01

    In this work a new methodology has been developed and implemented for taking into account the safety levels of the reactor in a design optimization process, by using Design Maps.They represent a new technique for comparing critical variables in case an accidental sequenced happened, with limit values set by the design criteria.So a good balance is achieved, without allowing the economic performance search to cause a too risky reactor, and guaranteeing the competitiveness of it in spite of the safety costs.Up to the moment, there is no design tool able to accomplish this task in an integrated way.A computational tool based on this methodology has been implemented.These tool specially programmed routines allow carrying out the mentioned tasks

  5. Food safety objective: an integral part of food chain management

    NARCIS (Netherlands)

    Gorris, L.G.M.

    2005-01-01

    The concept of food safety objective has been proposed to provide a target for operational food safety management, leaving flexibility in the way equivalent food safety levels are achieved by different food chains. The concept helps to better relate operational food safety management to public

  6. АSSESSMENT AND FORECASTING OF FLIGHT SAFETY LEVEL OF AIRLINE

    Directory of Open Access Journals (Sweden)

    E. S. Prozorov

    2015-01-01

    Full Text Available The article presents methods based on probability theory and mathematical statistics for solving a number of basic problems: formation and evaluation of the current flight safety level; forecasting the level of flight safety; ranking the objects (planes, pilots in terms of flight safety; evaluation of the presence (or absence of control actions arising in the context of the organization of corporate safety management system. At the same time as the main source of information are considered forward-looking events received from flight data.

  7. Safety measures for integrity test apparatus for IS process. Sulfuric acid decomposition section

    International Nuclear Information System (INIS)

    Noguchi, Hiroki; Kubo, Shinji; Iwatsuki, Jin; Onuki, Kaoru

    2013-07-01

    Hazardous substances such as sulfuric acid, sulfur dioxide and hydrogen iodide acid are employed in thermochemical Iodine-Sulfur (IS) process. It is necessary to take safety measure against workers and external environments to study experimentally on IS process. Presently we have been conducting to verify the soundness of main components made of engineering material in actual corrosive condition. An integrity test apparatus for the components of sulfuric acid decomposition was set up. We will use the hazardous substances such as sulfuric acid and sulfur dioxide and perform the experiment in pressurized condition in this integrity test. Safety measures for the test apparatus, operation and abnormal situation were considered prior to starting the test. This report summarized the consideration results for the safety measures on the integrity test apparatus for the components of sulfuric acid decomposition. (author)

  8. Idaho National Laboratory Integrated Safety Management System 2010 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas J. Haney

    2010-12-01

    Idaho National Laboratory completes an annual Integrated Safety Management System effectiveness review per 48 CFR 970.5223-1 “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assesses ISMS effectiveness, provides feedback to maintain system integrity, and helps identify target areas for focused improvements and assessments for the following year. Using one of the three Department of Energy (DOE) descriptors in DOE M 450.4-1 regarding the state of ISMS effectiveness during Fiscal Year (FY) 2010, the information presented in this review shows that INL achieved “Effective Performance.”

  9. Regional Integrated Tenets to Reinforce the Safety and Security of Radioactive Sources (ClearZone)

    International Nuclear Information System (INIS)

    Salzer, P.

    2003-01-01

    The EURATOM Research and Training Programme on Nuclear Energy includes 2 main fields - fusion energy research and management of radioactive waste, radiation protection and other activities of nuclear technology and safety.Seven instruments (mechanisms) for projects management are used - 'Network of Excellence' (NOE); 'Integrated Project' (IP); 'Specific Targeted Research Project' or 'Specific Targeted Training Project' (STREP); 'Co-ordination Action' (CA); Actions to Promote and Develop Human Resources and Mobility Specific Support Actions; Integrated Infrastructure Initiatives. Two consecutive sub-projects are proposed: 'small' - countries of the Visegrad four + Austrian participant -within the 6th FP 'Specific Supported Actions' and 'large' - participation of more countries in the region - more oriented to practical implementation of the 'small' project findings - intention to use the 6th Framework Programme resources to co-financing the implementation activities. The main objectives are: to create effective lines of defense (prevention -detection - categorization - transport - storage) against malicious use of radioactive sources; to achieve and maintain a high level of safety and security of radioactive sources; to arise the radioactive sources management safety and security culture at the Central European region. Consortium of 11 organisations from Czech Republic, Slovak Republic, Austria, Hungary and Poland is established for the Project implementation. The Project task are grouped in the following areas: legislation, infrastructure, practices; metallurgical industry, cross border control; instrumentation and metrology; information system

  10. Integrated care: an Information Model for Patient Safety and Vigilance Reporting Systems.

    Science.gov (United States)

    Rodrigues, Jean-Marie; Schulz, Stefan; Souvignet, Julien

    2015-01-01

    Quality management information systems for safety as a whole or for specific vigilances share the same information types but are not interoperable. An international initiative tries to develop an integrated information model for patient safety and vigilance reporting to support a global approach of heath care quality.

  11. Dynamic probability evaluation of safety levels of earth-rockfill dams using Bayesian approach

    Directory of Open Access Journals (Sweden)

    Zi-wu Fan

    2009-06-01

    Full Text Available In order to accurately predict and control the aging process of dams, new information should be collected continuously to renew the quantitative evaluation of dam safety levels. Owing to the complex structural characteristics of dams, it is quite difficult to predict the time-varying factors affecting their safety levels. It is not feasible to employ dynamic reliability indices to evaluate the actual safety levels of dams. Based on the relevant regulations for dam safety classification in China, a dynamic probability description of dam safety levels was developed. Using the Bayesian approach and effective information mining, as well as real-time information, this study achieved more rational evaluation and prediction of dam safety levels. With the Bayesian expression of discrete stochastic variables, the a priori probabilities of the dam safety levels determined by experts were combined with the likelihood probability of the real-time check information, and the probability information for the evaluation of dam safety levels was renewed. The probability index was then applied to dam rehabilitation decision-making. This method helps reduce the difficulty and uncertainty of the evaluation of dam safety levels and complies with the current safe decision-making regulations for dams in China. It also enhances the application of current risk analysis methods for dam safety levels.

  12. Integrated Chassis Control System with Fail Safety Using Optimum Yaw Moment Distribution

    International Nuclear Information System (INIS)

    Yim, Seongjin

    2014-01-01

    This paper presents an integrated chassis control system with fail safety using optimum yaw moment distribution for a vehicle with steer-by-wire and brake-by-wire devices. The proposed system has two-level structure: upper- and lower-level controllers. In the upper-level controller, the control yaw moment is computed with sliding mode control theory. In the lower-level controller, the control yaw moment is distributed into the tire forces of active front steering(AFS) and electronic stability control(ESC) with the weighted pseudo-inverse based control allocation(WPCA) method. By setting the variable weights in WPCA, it is possible to take the sensor/actuator failure into account. In this framework, it is necessary to optimize the variables weights in order to enhance the yaw moment distribution. For this purpose, simulation-based tuning is proposed. To show the effectiveness of the proposed method, simulations are conducted on a vehicle simulation package, CarSim

  13. Integrated Chassis Control System with Fail Safety Using Optimum Yaw Moment Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Seongjin [Seoul Nat' l Univ. of Sci. and Tech., Seoul (Korea, Republic of)

    2014-03-15

    This paper presents an integrated chassis control system with fail safety using optimum yaw moment distribution for a vehicle with steer-by-wire and brake-by-wire devices. The proposed system has two-level structure: upper- and lower-level controllers. In the upper-level controller, the control yaw moment is computed with sliding mode control theory. In the lower-level controller, the control yaw moment is distributed into the tire forces of active front steering(AFS) and electronic stability control(ESC) with the weighted pseudo-inverse based control allocation(WPCA) method. By setting the variable weights in WPCA, it is possible to take the sensor/actuator failure into account. In this framework, it is necessary to optimize the variables weights in order to enhance the yaw moment distribution. For this purpose, simulation-based tuning is proposed. To show the effectiveness of the proposed method, simulations are conducted on a vehicle simulation package, CarSim.

  14. RECENT ADDITIONS OF CRITICALITY SAFETY RELATED INTEGRAL BENCHMARK DATA TO THE ICSBEP AND IRPHEP HANDBOOKS

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Sartori

    2009-09-01

    High-quality integral benchmark experiments have always been a priority for criticality safety. However, interest in integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of future criticality safety needs to support next generation reactor and advanced fuel cycle concepts. The importance of drawing upon existing benchmark data is becoming more apparent because of dwindling availability of critical facilities worldwide and the high cost of performing new experiments. Integral benchmark data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the International Handbook of Reactor Physics Benchmark Experiments are widely used. Benchmark data have been added to these two handbooks since the last Nuclear Criticality Safety Division Topical Meeting in Knoxville, Tennessee (September 2005). This paper highlights these additions.

  15. Recent additions of criticality safety related integral benchmark data to the ICSBEP and IRPHEP handbooks

    International Nuclear Information System (INIS)

    Briggs, J. B.; Scott, L.; Rugama, Y.; Sartori, E.

    2009-01-01

    High-quality integral benchmark experiments have always been a priority for criticality safety. However, interest in integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of future criticality safety needs to support next generation reactor and advanced fuel cycle concepts. The importance of drawing upon existing benchmark data is becoming more apparent because of dwindling availability of critical facilities worldwide and the high cost of performing new experiments. Integral benchmark data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the International Handbook of Reactor Physics Benchmark Experiments are widely used. Benchmark data have been added to these two handbooks since the last Nuclear Criticality Safety Division Topical Meeting in Knoxville, Tennessee (September 2005). This paper highlights these additions. (authors)

  16. REcent Additions Of Criticality Safety Related Integral Benchmark Data To The Icsbep And Irphep Handbooks

    International Nuclear Information System (INIS)

    Briggs, J. Blair; Scott, Lori; Rugama, Yolanda; Sartori, Enrico

    2009-01-01

    High-quality integral benchmark experiments have always been a priority for criticality safety. However, interest in integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of future criticality safety needs to support next generation reactor and advanced fuel cycle concepts. The importance of drawing upon existing benchmark data is becoming more apparent because of dwindling availability of critical facilities worldwide and the high cost of performing new experiments. Integral benchmark data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the International Handbook of Reactor Physics Benchmark Experiments are widely used. Benchmark data have been added to these two handbooks since the last Nuclear Criticality Safety Division Topical Meeting in Knoxville, Tennessee (September 2005). This paper highlights these additions.

  17. Does company size matter? Validation of an integrative model of safety behavior across small and large construction companies.

    Science.gov (United States)

    Guo, Brian H W; Yiu, Tak Wing; González, Vicente A

    2018-02-01

    Previous safety climate studies primarily focused on either large construction companies or the construction industry as a whole, while little is known about whether company size has significant effects on workers' understanding of safety climate measures and relationships between safety climate factors and safety behavior. Thus, this study aims to: (a) test the measurement equivalence (ME) of a safety climate measure across workers from small and large companies; (b) investigate if company size alters the causal structure of the integrative model developed by Guo, Yiu, and González (2016). Data were collected from 253 construction workers in New Zealand using a safety climate measure. This study used multi-group confirmatory factor analyses (MCFA) to test the measurement equivalence of the safety climate measure and structure invariance of the integrative model. Results indicate that workers from small and large companies understood the safety climate measure in a similar manner. In addition, it was suggested that company size does not change the causal structure and mediational processes of the integrative model. Both measurement equivalence of the safety climate measure and structural invariance of the integrative model were supported by this study. Practical applications: Findings of this study provided strong support for a meaningful use of the safety climate measure across construction companies in different sizes. Safety behavior promotion strategies designed based on the integrative model may be well suited for both large and small companies. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  18. A Novel Control Algorithm for Integration of Active and Passive Vehicle Safety Systems in Frontal Collisions

    Directory of Open Access Journals (Sweden)

    Daniel Wallner

    2010-10-01

    Full Text Available The present paper investigates an approach to integrate active and passive safety systems of passenger cars. Worldwide, the introduction of Integrated Safety Systems and Advanced Driver Assistance Systems (ADAS is considered to continue the today

  19. Integration of Behaviour-Based Safety Programme into Engineering Laboratories and Workshops Conceptually

    Science.gov (United States)

    Koo, Kean Eng; Zain, Ahmad Nurulazam Md; Zainal, Siti Rohaida Mohamed

    2012-01-01

    The purpose of this conceptual research framework is to develop and integrate a safety training model using a behaviour-based safety training programme into laboratories for young adults, during their tertiary education, particularly in technical and vocational education. Hence, this research will be investigating the outcome of basic safety…

  20. Road identification for its-integrated systems of automotive active safety

    Directory of Open Access Journals (Sweden)

    V. Ivanov

    2005-04-01

    Full Text Available The paper discusses several aspects of active safety control for automotive application. Particular emphasis is placed on the fuzzy logic determination of friction properties of a tyre-road contact. An example of vehicle control systems equipped with off-board sensors of road roughness, temperature, moisture and rain intensity demonstrates the implementation of this approach. The paper proposes conceptual solutions for preventive active safety control applied to vehicles which are integrated in an intelligent transportation system.

  1. A study on the methodology of integrated safety assessment on low and intermediate level waste (LILW) managed in temporary storage facility at NPP

    International Nuclear Information System (INIS)

    Ahn, Min Ho

    2010-02-01

    Since 1978, the KHNP has been operating 20 NPPs (16 PWRs and 4 CANDUs) and generating about 67,000 drums (200 L) of LILW (as of December 31, 2005), which have been stored in the temporary storage facility (TSF) at each NPP due to the absence of a repository for the disposal of LILW. Therefore, the period of temporary storage of LILW is so long compared to other countries. Furthermore, the details with respect to the safety analyse on the TSF have not been considered in PSAR and FSAR. Especially, the risk assessment on the TSF has scarcely been conducted as opposed to many researches on the disposal of LILW. Since 2003, however, the IAEA has been recognized on the importance of predispoal management of LILW. And then, the regulatory frame of U.S. NRC was being shifted to risk-based regulation from the deterministic approach. Therefore, most of radioactive wastes including the LILW will be managed in terms of the risk-based graded approach to future regulation system called RIR (risk informed regulation). If the radioactive wastes do not quantitatively deal with the risk-based regulation, the radiological risk on some of radioactive wastes might be overestimated or underestimated regardless of the degree of the risk. According to a consequence of these situations, the numbers of the researches on the predisposal management of LILW have been required for the preparation on new regulatory frame. In this study, the main objective of this study is to establish the methodology of integrated safety assessment on LILW managed in the TSF at NPP, and to develop the integrated safety assessment code for routine operating condition and for for accident analysis on LILW managed in the TSF. In order to establish the methodology of integrated safety assessment on LILW managed in the TSF at NPP, three main parameters were considered: risk-based accident scenarios, radionuclide inventory, and atmospheric dispersion factor (χ/Q). Arbitrary accidents related to LILW management in the

  2. 77 FR 33777 - General Aviation Safety Forum: Climbing to the Next Level

    Science.gov (United States)

    2012-06-07

    ... NATIONAL TRANSPORTATION SAFETY BOARD General Aviation Safety Forum: Climbing to the Next Level The National Transportation Safety Board (NTSB) will convene a 2- day forum focused on safety issues related to... the Next Level,'' will be chaired by NTSB Chairman Deborah A. P. Hersman and all five Board Members...

  3. 75 FR 5244 - Pipeline Safety: Integrity Management Program for Gas Distribution Pipelines; Correction

    Science.gov (United States)

    2010-02-02

    ... Management Program for Gas Distribution Pipelines; Correction AGENCY: Pipeline and Hazardous Materials Safety... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... Regulations to require operators of gas distribution pipelines to develop and implement integrity management...

  4. Defining safety culture and the nexus between safety goals and safety culture. 4. Enhancing Safety Culture Through the Establishment of Safety Goals

    International Nuclear Information System (INIS)

    Tateiwa, Kenji; Miyata, Koichi; Yahagi, Kimitoshi

    2001-01-01

    efficient management. To seek compatibility between safety culture and efficient management, and to build an agreeable common perception among the utility, regulatory body, and the public on rationalizing the safety level to the extent acceptable, two issues must be considered: (a) establishing safety goals and (b) quantifying the safety culture. As for the first issue, currently no generic safety goal for the nuclear industry is available in Japan. This causes difficulty in deciding whether or not a specific action that takes place in a plant leading to a certain amount of risk increment is acceptable. Therefore, it is important for us to have a safety goal established. By establishing the safety goal, we could utilize it for the following usage: 1. to enable prompt response in case a safety level has entered an unacceptable level; 2. to sustain and enhance the safety culture centered by risk information (sustaining safety culture and achieving rational management simultaneously); 3. to use public relations for plant activities, where condemnation for overlooking safety culture might arrive for a minor risk increasing activity. As for the second issue, we must devise a method to quantify the level of safety culture. This could be done based on the safety culture indicators listed in the appendix of IAEA INSAG-4 (Ref. 1). By quantifying the level of safety culture, a comprehensive safety level of a plant can be evaluated by integrating with the safety level based on PSA. For example, when considering on-line maintenance for specific equipment, it is important not only to assess the safety level in terms of PSA but also to assess the level of safety culture in order to have a comprehensive view of the safety level and to compare it with the safety goal. By both establishing safety goals and quantifying the level of safety culture in a nuclear power plant, the ability to assess the comprehensive safety level of a plant and acknowledge the quantitative margin from the safety

  5. Guidelines for the review research reactor safety. Reference document for IAEA Integrated Safety Assessment of Research Reactors (INSARR)

    International Nuclear Information System (INIS)

    1997-01-01

    In 1992, the IAEA published new safety standards for research reactors as part of the set of publications considered by its Research Reactor Safety Programme (RRSP). This set also includes publications giving guidance for all safety aspects related to the lifetime of a research reactor. In addition, the IAEA has also revised the Safety Standards for radiation protection. Consequently, it was considered advisable to revise the Integrated Safety Assessment of Research Reactors (INSARR) procedures to incorporate the new requirements and guidance as well as to extend the scope of the safety reviews to currently operating research reactors. The present report is the result of this revision. The purpose of this report is to give guidance on the preparation, execution, reporting and follow-up of safety review mission to research reactors as conducted by the IAEA under its INSARR missions safety service. However, it will also be of assistance to operators and regulators in conducting: (a) ad hoc safety assessments of research reactors to address individual issues such as ageing or safety culture; and (b) other types of safety reviews such as internal and peer reviews and regulatory inspections

  6. Optimal Design of Integrated Systems Health Management (ISHM) Systems for improving safety in NASA's Exploration Vehicles: A Two-Level Multidisciplinary Design Approach

    Science.gov (United States)

    Mehr, Ali Farhang; Tumer, Irem; Barszcz, Eric

    2005-01-01

    Integrated Vehicle Health Management (ISHM) systems are used to detect, assess, and isolate functional failures in order to improve safety of space systems such as Orbital Space Planes (OSPs). An ISHM system, as a whole, consists of several subsystems that monitor different components of an OSP including: Spacecraft, Launch Vehicle, Ground Control, and the International Space Station. In this research, therefore, we propose a new methodology to design and optimize ISHM as a distributed system with multiple disciplines (that correspond to different subsystems of OSP safety). A paramount amount of interest has been given in the literature to the multidisciplinary design optimization of problems with such architecture (as will be reviewed in the full paper).

  7. Study concerning the power plant control and safety equipment by integrated distributed systems

    International Nuclear Information System (INIS)

    Optea, I.; Oprea, M.; Stanescu, P.

    1995-01-01

    The paper deals with the trends existing in the field of nuclear control and safety equipment and systems, proposing a high-efficiency integrated system. In order to enhance the safety of the plant and reliability of the structure system and components, we present a concept based on the latest computer technology with an open, distributed system, connected by a local area network with high redundancy. A modern conception for the control and safety system is to integrate all the information related to the reactor protection, active engineered safeguard and auxiliary systems parameters, offering a fast flow of information between all the agencies concerned so that situations can be quickly assessed. The integrated distributed control is based on a high performance operating system for realtime applications, flexible enough for transparent networking and modular for demanding configurations. The general design considerations for nuclear reactors instrumentation reliability and testing methods for real-time functions under dynamic regime are presented. Taking into account the fast progress in information technology, we consider the replacement of the old instrumentation of Cernavoda-1 NPP by a modern integrated system as an economical and efficient solution for the next units. (Author) 20 Refs

  8. Integration of radiation protection in safety management: sharing best practices between radiation protection and other safety areas

    International Nuclear Information System (INIS)

    Kockerols, Pierre; Fessler, Andreas

    2008-01-01

    Full text: The Institute for Reference Materials and Measurements (IRMM) located in Geel is one of the seven institutes of the Joint Research Centre of the European Commission (EC, DG JRC). The institute was founded in 1960 as a nuclear research centre, but has gradually shifted its activities to also include 'non-nuclear' domains, mainly in the areas of food safety and environmental surveillance. As the activities on the IRMM site are currently quite diversified, they necessitate the operation of nuclear controlled areas, accelerators, as well as bio safety restricted areas and chemical laboratories. Therefore, the care for occupational health and safety and for environmental protection has to take into consideration various types of hazards and threats. Recently an integrated management system according to ISO-9001, ISO-14001 and OHSAS-18001 was implemented. The integrated system combines 'vertically' quality, occupational health and safety and environmental issues and covers 'horizontally' the nuclear, biological and chemical fields. The paper outlines how the radiation protection can be included in an overall health, safety and environmental management system. It will give various practical examples where synergies can be applied: 1-) the overall policy; 2-) The assessment and ranking of all risks and the identification, in a combined way, of the appropriate prevention measures; 3-) The planning and review of related actions; 4-) The monitoring, auditing and registration of anomalies and incidents and the definition of corrective actions; 5-) The training of personnel based on lessons learned from past experiences; 6-) The organisation of an internal emergency plan dealing with nuclear and non-nuclear hazards. Based on these examples, the benefits of having an integrated approach are commented. In addition, the paper will illustrate how the recent ICRP fundamental recommendations and more particularly some of the principles of radiation protection such as

  9. Common basis of establishing safety standards and other safety decision-making levels for different sources of health risk

    International Nuclear Information System (INIS)

    Demin, V.F.

    2002-01-01

    Current approaches in establishing safety standards and other decision-making levels for different sources of health risk are critically analysed. To have a common basis for this decision-making a specific risk index R is recommended. In the common sense R is quantitatively defined as LLE caused by the annual exposure to the risk source considered: R = annual exposure, damage (LLE) from the exposure unit. This common definition is also rewritten in specific forms for a set of different risk sources (ionising radiation, chemical pollutants, etc): for different risk sources the exposure can be measured with different quantities (the probability of death, the exposure dose, etc.). R is relative LLE: LLE in years referred to 1 year under the risk. The dimension of this value is [year/year]. In the statistical sense R is conditionally the share of the year, which is lost due to exposure to a risk source during this year. In this sense R can be called as the relative damage. Really lifetime years are lost after the exposure. R can be in some conditional sense considered as a dimensionless quantity. General safety standards R n for the public and occupational workers have been suggested in terms of this index: R n = 0.0007 and 0.01 accordingly. Secondary safety standards are derived for a number of risk sources (ionising radiation, environmental chemical pollutants, etc). Values of R n are chosen in such a way that to have the secondary radiation BSS being equivalent to the current one's. Other general and derived levels for safety decision-making are also proposed including the de-minimus levels. Their possible dependence on the national or regional health-demographic data (HDD) is considered. Such issues as the ways of the integration and averaging of risk indices considered through the national or regional HDD for different risk sources and the use of non-threshold linear exposure - response relationships for ionising radiation and chemical pollutants are analysed

  10. Partial Safety Factors and Target Reliability Level in Danish Structural Codes

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Hansen, J. O.; Nielsen, T. A.

    2001-01-01

    The partial safety factors in the newly revised Danish structural codes have been derived using a reliability-based calibration. The calibrated partial safety factors result in the same average reliability level as in the previous codes, but a much more uniform reliability level has been obtained....... The paper describes the code format, the stochastic models and the resulting optimised partial safety factors....

  11. Toward an integrated system concept for monitoring and evaluation of safety culture

    International Nuclear Information System (INIS)

    Makino, Maomi; Sakaue, Takeharu

    2004-01-01

    The concept of ''nuclear safety culture'' has been advocated and has been much discussed internationally by INSAG (The International Nuclear Safety Advisory Group) under IAEA (the International Atomic Energy Agency) and other institutions since Chernobyl accident. On the safety front, Japan had maintained an excellent track record in nuclear power operations throughout the 1990s. However, there have been a series of new type of problems strongly implying degradation of safety culture, e.g., Monju accident, fire and explosion accident at an Asphalt Solidification Process Facility at Tokai, falsification of annealing data at nuclear power plants (NPP), another data falsification for transport cask of spent fuel and JCO criticality accident. Then the TEPCO (Tokyo Electric Power Company) issue was revealed in 2002. Triggered by this issue, the Nuclear and Industrial Safety Agency (NISA) has been implementing a variety of improvements, one of which was the establishment of a study group in 2003, which invited experts from other fields as well as from nuclear-related industries, to study on how to implement safety culture sufficiently and possible recommendations. Subjects such as the followings piled in the study report will indicate leading keys in case it is going to realize such efforts: ''Foundation of safety culture is a quality management'' and ''Realistic and scientific technique is necessary for the evaluation of safety culture''. In order to respond to these requests, JNES have been advancing the development toward an Integrated System Concept for Monitoring and Evaluation of Safety Culture. This paper describes the outline of the study results reported by the study group and then introduces one of subsystems, SCEST, structuring the integrated system concept for Monitoring and Evaluation of Safety Culture. (author)

  12. TWRS safety and technical integration risk management plan

    International Nuclear Information System (INIS)

    Fordham, R.A.

    1996-01-01

    The objectives of the Tank Waste Remediation System (TWRS) Safety and Technical Integration (STI) programmatic risk management program are to assess, analyze, and handle risks associated with TWRS STI responsibilities and to communicate information about the actions being taken and the results to enable decision making. The objective of this TWRS STI Risk Management Plan is to communicate a consistent approach to risk management that will be used by the organization

  13. A plan for safety and integrity of research reactor components

    International Nuclear Information System (INIS)

    Moatty, Mona S. Abdel; Khattab, M.S.

    2013-01-01

    Highlights: ► A plan for in-service inspection of research reactor components is put. ► Section XI of the ASME Code requirements is applied. ► Components subjected to inspection and their classes are defined. ► Flaw evaluation and its acceptance–rejection criteria are reviewed. ► A plan of repair or replacement is prepared. -- Abstract: Safety and integrity of a research reactor that has been operated over 40 years requires frequent and thorough inspection of all the safety-related components of the facility. The need of increasing the safety is the need of improving the reliability of its systems. Diligent and extensive planning of in-service inspection (ISI) of all reactor components has been imposed for satisfying the most stringent safety requirements. The Safeguards Officer's responsibilities of Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code ASME Code have been applied. These represent the most extensive and time-consuming part of ISI program, and identify the components subjected to inspection and testing, methods of component classification, inspection and testing techniques, acceptance/rejection criteria, and the responsibilities. The paper focuses on ISI planning requirements for welded systems such as vessels, piping, valve bodies, pump casings, and control rod-housing parts. The weld in integral attachments for piping, pumps, and valves are considered too. These are taken in consideration of safety class (1, 2, 3, etc.), reactor age, and weld type. The parts involve in the frequency of inspection, the examination requirements for each inspection, the examination method are included. Moreover the flaw evaluation, the plan of repair or replacement, and the qualification of nondestructive examination personnel are considered

  14. DOE-RL Integrated Safety Management System Description

    International Nuclear Information System (INIS)

    SHOOP, D.S.

    2000-01-01

    The purpose of this Integrated Safety Management System Description (ISMSD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This ISMSD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this ISMSD contains some information on contractor processes and procedures which then require RL approval or oversight. This ISMSD does not purport to contain a full description of the contractors' ISM System Descriptions

  15. DOE-RL Integrated Safety Management System Description

    CERN Document Server

    Shoop, D S

    2000-01-01

    The purpose of this Integrated Safety Management System Description (ISMSD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This ISMSD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this ISMSD contains some information on contractor processes and procedures which then require RL approval or oversight. This ISMSD does not purport to contain a full description of the contractors' ISM System Descriptions.

  16. 242-A Evaporator crystallizer facility integrated annual safety appraisal

    International Nuclear Information System (INIS)

    1991-01-01

    This report provides the results of the Fiscal Year (FY) 1991 Annual Integrated Safety Appraisal of the 242-A Evaporator Crystallizer Facility in the Hanford 200 East Area. The appraisal was conducted in December 1990 and January 1991, by the Waste Tank Safety Assurance (WTSA) organizations in conjunction with Radiological Engineering, Criticality Safety, Packaging and Shipping Safety, Emergency Preparedness, Environmental Compliance, and Quality Assurance. Reports of these eight organizations are presented as Sections 2 through 7 of this report. The purpose of the appraisal was to verify that the 242-A Evaporator meets US Department of Energy (DOE) and Westinghouse Hanford Company (WHC) requirements and current industry standards of good practice for the areas being appraised. A further purpose was to identify areas in which program effectiveness could be improved. In accordance with the guidance of WHC Management Requirements and Procedures (MRP)5.6, previously identified deficiencies which are being resolved by line management were not repeated as Findings or Observations unless progress or intended disposition was considered to be unsatisfactory

  17. Occupational Health and Safety. Level 1. Level 2. Level 3. Support Materials for Agricultural Training.

    Science.gov (United States)

    Batman, Kangan; Gadd, Nick; Lucas, Michele

    This publication contains the three communication skills units of the three levels of Support Materials for Agricultural Training (SMAT) in the area of occupational health and safety: Level 1 (starting), 2 (continuing), and 3 (completing). The units are designed to help the learner improve his or her written and spoken communication skills needed…

  18. Chemical Safety Vulnerability Working Group Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This report marks the culmination of a 4-month review conducted to identify chemical safety vulnerabilities existing at DOE facilities. This review is an integral part of DOE's efforts to raise its commitment to chemical safety to the same level as that for nuclear safety.

  19. Implementation Science: New Approaches to Integrating Quality and Safety Education for Nurses Competencies in Nursing Education.

    Science.gov (United States)

    Dolansky, Mary A; Schexnayder, Julie; Patrician, Patricia A; Sales, Anne

    Although quality and safety competencies were developed and disseminated nearly a decade ago by the Quality and Safety Education for Nurses (QSEN) project, the uptake in schools of nursing has been slow. The use of implementation science methods may be useful to accelerate quality and safety competency integration in nursing education. The article includes a definition and description of implementation science methods and practical implementation strategies for nurse educators to consider when integrating the QSEN competencies into nursing curriculum.

  20. Emergency concepts for the safety level four; Notfallkonzepte der Sicherheitsebene Vier

    Energy Technology Data Exchange (ETDEWEB)

    Richner, Martin [Axpo Power AG, Doettingen (Switzerland). Kernkraftwerk Beznau

    2016-04-15

    According to the IAEA Guidelines and the Swiss Safety Guidelines the defence-in depth safety concept for a nuclear power plant consists of four safety levels. Emergency measures for the limitation of beyond design basis accidents are of safety level four. They are referred to as incident management. After the Chernobyl accident in 1986, in Switzerland the former regulatory body HSK (today ENSI) requested several retrofit measures in the field of accident management. The importance of accident management was visible again in Fukushima and demands for preventive measures grew.

  1. Engineering systems reliability, safety, and maintenance an integrated approach

    CERN Document Server

    Dhillon, B S

    2017-01-01

    Today, engineering systems are an important element of the world economy and each year billions of dollars are spent to develop, manufacture, operate, and maintain various types of engineering systems around the globe. Many of these systems are highly sophisticated and contain millions of parts. For example, a Boeing jumbo 747 is made up of approximately 4.5 million parts including fasteners. Needless to say, reliability, safety, and maintenance of systems such as this have become more important than ever before.  Global competition and other factors are forcing manufacturers to produce highly reliable, safe, and maintainable engineering products. Therefore, there is a definite need for the reliability, safety, and maintenance professionals to work closely during design and other phases. Engineering Systems Reliability, Safety, and Maintenance: An Integrated Approach eliminates the need to consult many different and diverse sources in the hunt for the information required to design better engineering syste...

  2. 75 FR 15485 - Pipeline Safety: Workshop on Guidelines for Integrity Assessment of Cased Pipe

    Science.gov (United States)

    2010-03-29

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID...: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice of workshop. SUMMARY... ``Guidelines for Integrity Assessment of Cased Pipe in Gas Transmission Pipelines'' and related Frequently...

  3. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    Science.gov (United States)

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry. © The Author(s) 2016.

  4. B plant/WESF integrated annual safety appraisal

    International Nuclear Information System (INIS)

    Anderson, J.K.

    1990-12-01

    This report provides the results of the Fiscal Year 1990 Annual Integrated Safety Appraisal of the B Plant and Waste Encapsulation and Storage Facility in the Hanford Site 200 East Area. The appraisal was conducted in August and September 1990, by the Defense Waste Disposal Safety group, in conjunction with Health Physics and Emergency Preparedness. Reports of these three organizations for their areas of responsibility are presented. The purpose of the appraisal was to determine if the areas being appraised meet US Department of Energy (DOE) and Westinghouse Hanford Company (WHC) requirements and current industry standards of good practice. A further purpose was to identify areas in which program effectiveness could be improved. In accordance with the guidance of WHC Management Requirements and Procedures 5.6, previously identified deficiencies which are being resolved by line management were not repeated as Findings or Observations unless progress or intended disposition was considered to be unsatisfactory. The overall assessment is that there are no major safety problems associated with current operations. Programs are in place to provide the necessary safety controls, evaluations, overviews, and support. In most respects these programs are being implemented effectively. However, there are a number of deficiencies in details of program design and implementation. The appraisal identified a total of 23 Findings and 27 Observations of deficiencies. All Observations are Seriousness Category 3. Fifteen Findings were Category 2 and 8 were Category 3. Most of the Category 2 Findings were so categorized on the basis of noncompliance with mandatory DOE Orders or WHC policies and procedures, rather than potential risk to personnel

  5. Research on the improvement of nuclear safety

    International Nuclear Information System (INIS)

    Yoo, Keon Joong; Kim, Dong Soo; Kim, Hui Dong; Park, Chang Kyu

    1993-06-01

    To improve the nuclear safety, this project is divided into three areas which are the development of safety analysis technology, the development of severe accident analysis technology and the development of integrated safety assessment technology. 1. The development of safety analysis technology. The present research aims at the development of necessary technologies for nuclear safety analysis in Korea. Establishment of the safety analysis technologies enables to reduce the expenditure both by eliminating excessive conservatisms incorporated in nuclear reactor design and by increasing safety margins in operation. It also contributes to improving plant safety through realistic analyses of the Emergency Operating Procedures (EOP). 2. The development of severe accident analysis technology. By the computer codes (MELCOR and CONTAIN), the in-vessel and the ex-vessel severe accident phenomena are simulated. 3. The development of integrated safety assessment technology. In the development of integrated safety assessment techniques, the included research areas are the improvement of PSA computer codes, the basic study on the methodology for human reliability analysis (HRA) and common cause failure (CCF). For the development of the level 2 PSA computer code, the basic research for the interface between level 1 and 2 PSA, the methodology for the treatment of containment event tree are performed. Also the new technologies such as artificial intelligence, object-oriented programming techniques are used for the improvement of computer code and the assessment techniques

  6. Towards an integrated approach in supporting microbiological food safety decisions

    DEFF Research Database (Denmark)

    Havelaar, A.H.; Braunig, J.; Christiansen, K.

    2007-01-01

    an integrated scientific approach combining veterinary and medical epidemiology, risk assessment for the farm-to-fork food chain as well as agricultural and health economy. Scientific advice is relevant in all stages of the policy cycle: to assess the magnitude of the food safety problem, to define...

  7. A hybrid simulation approach for integrating safety behavior into construction planning: An earthmoving case study.

    Science.gov (United States)

    Goh, Yang Miang; Askar Ali, Mohamed Jawad

    2016-08-01

    One of the key challenges in improving construction safety and health is the management of safety behavior. From a system point of view, workers work unsafely due to system level issues such as poor safety culture, excessive production pressure, inadequate allocation of resources and time and lack of training. These systemic issues should be eradicated or minimized during planning. However, there is a lack of detailed planning tools to help managers assess the impact of their upstream decisions on worker safety behavior. Even though simulation had been used in construction planning, the review conducted in this study showed that construction safety management research had not been exploiting the potential of simulation techniques. Thus, a hybrid simulation framework is proposed to facilitate integration of safety management considerations into construction activity simulation. The hybrid framework consists of discrete event simulation (DES) as the core, but heterogeneous, interactive and intelligent (able to make decisions) agents replace traditional entities and resources. In addition, some of the cognitive processes and physiological aspects of agents are captured using system dynamics (SD) approach. The combination of DES, agent-based simulation (ABS) and SD allows a more "natural" representation of the complex dynamics in construction activities. The proposed hybrid framework was demonstrated using a hypothetical case study. In addition, due to the lack of application of factorial experiment approach in safety management simulation, the case study demonstrated sensitivity analysis and factorial experiment to guide future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Integral Safety Assessment of Underground Storage of CO2 in Barendrecht, the Netherlands

    International Nuclear Information System (INIS)

    Vijgen, L.; Nitert, M.; Buijtendijk, B.; Van Dalen, A.

    2009-10-01

    The DCMR Environmental Protection Agency Rijnmond in the Netherlands conducted an Integral Safety Assessment of Underground Storage of CO2 in Barendrecht, the Netherlands, in cooperation with the involved safety and supervision authorities. The following aspects of the entire storage project and its safety issues have been examined: the compressor station in Pernis; the underground pipes between the compressor station and the injection locations; and the injection locations Barendrecht-Ziedewij and Barendrecht. [nl

  9. Measuring patient safety culture: an assessment of the clustering of responses at unit level and hospital level

    NARCIS (Netherlands)

    Smits, M.; Wagner, C.; Spreeuwenberg, P.; Wal, van der G.

    2009-01-01

    OBJECTIVES: To test the claim that the Hospital Survey on Patient Safety Culture (HSOPS) measures patient safety culture instead of mere individual attitudes and to determine the most appropriate level (individual, unit or hospital level) for interventions aimed at improving the culture of patient

  10. Measuring patient safety culture : an assessment of the clustering of responses at unit level and hospital level

    NARCIS (Netherlands)

    Smits, M.; Wagner, C.; Spreeuwenberg, P.; Wal, G. van der; Groenewegen, P.P.

    2009-01-01

    Objectives: To test the claim that the Hospital Survey on Patient Safety Culture (HSOPS) measures patient safety culture instead of mere individual attitudes and to determine the most appropriate level (individual, unit or hospital level) for interventions aimed at improving the culture of patient

  11. Integration of Nevada Test Site (NTS) Work Control Programs and Incorporating Integrated Safety Management (ISM) into Activity Level Work Planning and Control

    International Nuclear Information System (INIS)

    Kinney, Mike; Breen, Kevin

    2008-01-01

    This session will examine a method developed by Federal and Contractor personnel at the Nevada Site Office (NSO) to improve the planning and execution of work activities utilizing an Activity Level Work Control process in response to Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2004-1, Oversight of Complex, High-Hazard Nuclear Operations. The process was initially developed during Fiscal Year (FY) 2007, and implementation is commencing during the fourth quarter of FY 2008. This process will significantly enhance the flexibility and the appropriate rigor in the performance of work activities

  12. Study on a quantitative evaluation method of equipment maintenance level and plant safety level for giant complex plant system

    International Nuclear Information System (INIS)

    Aoki, Takayuki

    2010-01-01

    In this study, a quantitative method on maintenance level which is determined by the two factors, maintenance plan and field work implementation ability by maintenance crew is discussed. And also a quantitative evaluation method on safety level for giant complex plant system is discussed. As a result of consideration, the following results were obtained. (1) It was considered that equipment condition after maintenance work was determined by the two factors, maintenance plan and field work implementation ability possessed by maintenance crew. The equipment condition determined by the two factors was named as 'equipment maintenance level' and its quantitative evaluation method was clarified. (2) It was considered that CDF in a nuclear power plant, evaluated by using a failure rate counting the above maintenance level was quite different from CDF evaluated by using existing failure rates including a safety margin. Then, the former CDF was named as 'plant safety level' of plant system and its quantitative evaluation method was clarified. (3) Enhancing equipment maintenance level means an improvement of maintenance quality. That results in the enhancement of plant safety level. Therefore, plant safety level should be always watched as a plant performance indicator. (author)

  13. Safety on a Rural Community College Campus via Integrated Communications

    Science.gov (United States)

    Gnage, Marie Foster; Dziagwa, Connie; White, Dave

    2009-01-01

    West Virginia University at Parkersburg uses a two-way emergency system as a baseline for emergency communications. The college has found that such a system, a key component of its safety and crisis management plan, can be integrated with other communication initiatives to provide focused security on the campus.

  14. Development of High-Level Safety Requirements for a Pyroprocessing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seok Jun; Jo, Woo Jin; You, Gil Sung; Choung, Won Myung; Lee, Ho Hee; Kim, Hyun Min; Jeon, Hong Rae; Ku, Jeong Hoe; Lee, Hyo Jik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Korea Atomic Energy Research Institute (KAERI) has been developing a pyroproceesing technology to reduce the waste volume and recycle some elements. The pyroprocessing includes several treatment processes which are related with not only radiological and physical but also chemical and electrochemical properties. Thus, it is of importance to establish safety design requirements considering all the aspects of those properties for a reliable pyroprocessing facility. In this study, high-level requirements are presented in terms of not only radiation protection, nuclear criticality, fire protection, and seismic safety but also confinement and chemical safety for the unique characteristics of a pyroprocessing facility. Several high-level safety design requirements such as radiation protection, nuclear criticality, fire protection, seismic, confinement, and chemical processing were presented for a pyroprocessing facility. The requirements must fulfill domestic and international safety technology standards for a nuclear facility. Furthermore, additional requirements should be considered for the unique electrochemical treatments in a pyroprocessing facility.

  15. Progress report on safety research of high-level waste management for the period April, 1982 to March, 1983

    International Nuclear Information System (INIS)

    Nakamura, Haruto; Tashiro, Shingo

    1983-06-01

    Main results obtained on Safety Research of High-Level waste Management in 1982 were editted. 1) The leaching mechanisms of the vitrified waste were studied to estimate the leach rate in disposal condition. 2) For the safety assessment of storage and disposal of the returning waste resulted from overseas reprocessing, properties of the glass simulating the composition by COGEMA are being measured. 3) In order to assess the integrity of the repository, influence of heat on the characteristics of rock mass and buffer materials was studied in underground drift. And also the retardation mechanism of the leached elements by rock mass was discussed. 4) The construction of Waste Safety Testing Facility (WASTEF) was completed, and vitrification test and near-field test using large radiation sources were initiated. (author)

  16. Levels of safety satisfactory for commercialization of the breeder

    International Nuclear Information System (INIS)

    Ferguson, R.L.

    1979-01-01

    A brief discussion is presented of the Department of Energy's LMFBR safety program and the safety levels which DOE believes would be satisfactory for the commercialization of the breeder are indicated. Some observations are offered on the Three Mile Island accident and some of its implications are discussed for the LMFBR program

  17. The structural integrity safety case for Sizewell B power station

    International Nuclear Information System (INIS)

    Gerachty, J.E.

    1993-01-01

    This paper presents the safety case approach adopted for the components of the Sizewell 'B' Power Station for which a high degree of structural integrity is required. Such components include the Reactor Pressure Vessel, Steam Generator and Pressuriser for which Incredibility of Failure is claimed. The two parts of the case involve achievement and demonstration of integrity. This is achieved by extensive measures involving design, manufacture, materials and inspection. The demonstration has required a fracture mechanics approach. The specific role of inspection validation and its relation to critical defect size is described. (author)

  18. Integrated Safety and Security Risk Assessment Methods: A Survey of Key Characteristics and Applications

    NARCIS (Netherlands)

    Chockalingam, Sabarathinam; Hadziosmanovic, D.; Pieters, Wolter; Texeira, Andre; van Gelder, Pieter

    2016-01-01

    Over the last years, we have seen several security incidents that compromised system safety, of which some caused physical harm to people. Meanwhile, various risk assessment methods have been developed that integrate safety and security, and these could help to address the corresponding threats by

  19. Improving the safety of Ukrainian NPP to reach an internationally accepted level

    International Nuclear Information System (INIS)

    Bozhko, S.; Helske, J.; Janke, R.; Mayoral, C.

    2013-01-01

    This paper summarizes the safety status and the modernization progress of Ukrainian NPPs towards an internationally accepted level of safety. After a brief discussion of the concept of what is called an 'international accepted level' for new and operating NPPs, the status of Russian type WWER and in particular the Ukrainian NPPs is presented. Then, the performed investigations of the gaps between international accepted level and the original status of Ukrainian NPPs are presented. The safety objectives of the modernization programs, some examples of defence in depth improvements, and an overall view of the modernization programs of Ukrainian NPPs are produced. Then, few important safety improvements implemented at the oldest Ukrainian WWER-1000 South Ukraine-1 are given in more detail. Finally, a conclusion presents the current status on the way to fulfill the national safety targets and to reach an internationally accepted level for all the Ukrainian NPPs. The paper is followed by the slides of the presentation. (authors)

  20. Major results from safety-related integral effect tests with VISTA-ITL for the SMART design

    International Nuclear Information System (INIS)

    Park, H. S.; Min, B. Y.; Shin, Y. C.; Yi, S. J.

    2012-01-01

    A series of integral effect tests (IETs) was performed by the Korea Atomic Energy Research Inst. (KAERI) using the VISTA integral test loop (VISTA-ITL) as a small-scale IET program. Among them this paper presents major results acquired from the safety-related IETs with the VISTA-ITL facility for the SMART design. Three small-break loss-of-coolant accident (SBLOCA) tests of safety injection system (SIS) line break, shutdown cooling system (SCS) line break and pressurizer safety valve (PSV) line break were successfully performed and the transient characteristics of a complete loss of flowrate (CLOF) was simulated properly with the VISTA-ITL facility. (authors)

  1. A multilevel model of patient safety culture: cross-level relationship between organizational culture and patient safety behavior in Taiwan's hospitals.

    Science.gov (United States)

    Chen, I-Chi; Ng, Hui-Fuang; Li, Hung-Hui

    2012-01-01

    As health-care organizations endeavor to improve their quality of care, there is a growing recognition of the importance of establishing a culture of patient safety. The main objective of this study was to investigate the cross-level influences of organizational culture on patient safety behavior in Taiwan's hospitals. The authors measured organizational culture (bureaucratic, supportive and innovative culture), patient safety culture and behavior from 788 hospital workers among 42 hospitals in Taiwan. Multilevel analysis was applied to explore the relationship between organizational culture (group level) and patient safety behavior (individual level). Patient safety culture had positive impact on patient safety behavior in Taiwan's hospitals. The results also indicated that bureaucratic, innovative and supportive organizational cultures all had direct influence on patient safety behavior. However, only supportive culture demonstrated significant moderation effect on the relationship between patient safety culture and patient safety behavior. Furthermore, organizational culture strength was shown correlated negatively with patient safety culture variability. Overall, organizational culture plays an important role in patient safety activities. Safety behaviors of hospital staff are partly influenced by the prevailing cultural norms in their organizations and work groups. For management implications, constructed patient priority from management commitment to leadership is necessary. For academic implications, research on patient safety should consider leadership, group dynamics and organizational learning. These factors are important for understanding the barriers and the possibilities embedded in patient safety. Copyright © 2011 John Wiley & Sons, Ltd.

  2. THE CONDITION AND THE DYNAMICS OF CHANGES OF REGIONAL ENERGETIC SAFETY LEVEL

    Directory of Open Access Journals (Sweden)

    A.L. Myzin

    2006-12-01

    Full Text Available On the basis of indicative analysis method use, the dynamic processes of changes of energetic safety condition of federal districts and subjects of Russian Federation for last 5 years are investigated. The results of diagnosing safety levels for separate indicators, their blocks and the results of situation evaluation as a whole are discussed. The comparison of regions’ energetic safety condition is given, the causes of crisis situations appearance are discovered, and on this basis the suggestions for regions’ safety levels increasing are formulated.

  3. Measuring Best Practices for Workplace Safety, Health, and Well-Being: The Workplace Integrated Safety and Health Assessment.

    Science.gov (United States)

    Sorensen, Glorian; Sparer, Emily; Williams, Jessica A R; Gundersen, Daniel; Boden, Leslie I; Dennerlein, Jack T; Hashimoto, Dean; Katz, Jeffrey N; McLellan, Deborah L; Okechukwu, Cassandra A; Pronk, Nicolaas P; Revette, Anna; Wagner, Gregory R

    2018-05-01

    To present a measure of effective workplace organizational policies, programs, and practices that focuses on working conditions and organizational facilitators of worker safety, health and well-being: the workplace integrated safety and health (WISH) assessment. Development of this assessment used an iterative process involving a modified Delphi method, extensive literature reviews, and systematic cognitive testing. The assessment measures six core constructs identified as central to best practices for protecting and promoting worker safety, health and well-being: leadership commitment; participation; policies, programs, and practices that foster supportive working conditions; comprehensive and collaborative strategies; adherence to federal and state regulations and ethical norms; and data-driven change. The WISH Assessment holds promise as a tool that may inform organizational priority setting and guide research around causal pathways influencing implementation and outcomes related to these approaches.

  4. Integrated Safety Management System Phase 1 and 2 Verification for the Environmental Restoration Contractor Volumes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    CARTER, R.P.

    2000-04-04

    DOE Policy 450.4 mandates that safety be integrated into all aspects of the management and operations of its facilities. The goal of an institutionalized Integrated Safety Management System (ISMS) is to have a single integrated system that includes Environment, Safety, and Health requirements in the work planning and execution processes to ensure the protection of the worker, public, environment, and the federal property over the life cycle of the Environmental Restoration (ER) Project. The purpose of this Environmental Restoration Contractor (ERC) ISMS Phase MI Verification was to determine whether ISMS programs and processes were institutionalized within the ER Project, whether these programs and processes were implemented, and whether the system had promoted the development of a safety conscious work culture.

  5. 48 CFR 952.223-71 - Integration of environment, safety, and health into work planning and execution.

    Science.gov (United States)

    2010-10-01

    ..., safety, and health into work planning and execution. 952.223-71 Section 952.223-71 Federal Acquisition... Provisions and Clauses 952.223-71 Integration of environment, safety, and health into work planning and... safety and health standards applicable to the work conditions of contractor and subcontractor employees...

  6. Nuclear safety and security culture - an integrated approach to regulatory oversight

    International Nuclear Information System (INIS)

    Tronea, M.; Ciurea Ercau, C.

    2013-01-01

    The paper presents the development and implementation of regulatory guidelines for the oversight of safety and security culture within licensees organizations. CNCAN (the National Commission for Nuclear Activities of Romania) has used the International Atomic Energy Agency (IAEA) attributes for a strong safety culture as the basis for its regulatory guidelines providing support to the reviewers and inspectors for recognizing and gathering information relevant to safety culture. These guidelines are in process of being extended to address also security culture, based on the IAEA Nuclear Security Series No. 7 document Nuclear Security Culture: Implementing Guide. Recognizing that safety and security cultures coexist and need to reinforce each other because they share the common objective of limiting risk and that similar regulatory review and inspection processes are in place for nuclear security oversight, an integrated approach is considered justified, moreover since the common elements of these cultures outweigh the differences. (authors)

  7. An Integrated Approach of Model checking and Temporal Fault Tree for System Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kwang Yong; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-10-15

    Digitalization of instruments and control systems in nuclear power plants offers the potential to improve plant safety and reliability through features such as increased hardware reliability and stability, and improved failure detection capability. It however makes the systems and their safety analysis more complex. Originally, safety analysis was applied to hardware system components and formal methods mainly to software. For software-controlled or digitalized systems, it is necessary to integrate both. Fault tree analysis (FTA) which has been one of the most widely used safety analysis technique in nuclear industry suffers from several drawbacks as described in. In this work, to resolve the problems, FTA and model checking are integrated to provide formal, automated and qualitative assistance to informal and/or quantitative safety analysis. Our approach proposes to build a formal model of the system together with fault trees. We introduce several temporal gates based on timed computational tree logic (TCTL) to capture absolute time behaviors of the system and to give concrete semantics to fault tree gates to reduce errors during the analysis, and use model checking technique to automate the reasoning process of FTA.

  8. Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rich, Bethany M [Los Alamos National Laboratory

    2012-04-02

    The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrial safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.

  9. A new integrated approach to demonstrate the safe disposal of high-level radioactive waste and spent nuclear fuel in a geological repository

    International Nuclear Information System (INIS)

    Mueller-Hoeppe, N.; Krone, J.; Niehues, N.; Raitz von Frentz, R.

    2000-01-01

    Multi-barrier systems are accepted as the basic approach for long term environmental safe isolation of radioactive waste in geological repositories. Assessing the performance of natural and engineered barriers is one of the major difficulties in producing evidence of environmental safety for any radioactive waste disposal facility, due to the enormous complexity of scenarios and uncertainties to be considered. This paper outlines a new methodological approach originally developed basically for a repository in salt, but that can be transferred with minor modifications to any other host rock formation. The approach is based on the integration of following elements: (1) Implementation of a simple method and efficient criteria to assess and prove the tightness of geological and engineered barriers; (2) Using the method of Partial Safety Factors in order to assess barrier performance at certain reasonable level of confidence; (3) Integration of a diverse geochemical barrier in the near field of waste emplacement limiting systematically the radiological consequences from any radionuclide release in safety investigations and (4) Risk based approach for the assessment of radionuclide releases. Indicative calculations performed with extremely conservative assumptions allowed to exclude any radiological health consequences from a HLW repository in salt to a reference person with a safety level of 99,9999% per year. (author)

  10. 49 CFR 244.15 - Subjects to be addressed in a Safety Integration Plan not involving an amalgamation of operations.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Subjects to be addressed in a Safety Integration... Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS ON SAFETY INTEGRATION PLANS GOVERNING RAILROAD CONSOLIDATIONS, MERGERS, AND...

  11. Nuclear safety in Slovak Republic. Status of safety improvements

    International Nuclear Information System (INIS)

    Toth, A.

    1999-01-01

    Status of the safety improvements at Bohunice V-1 units concerning WWER-440/V-230 design upgrading were as follows: supplementing of steam generator super-emergency feed water system; higher capacity of emergency core cooling system; supplementing of automatic links between primary and secondary circuit systems; higher level of secondary system automation. The goal of the modernization program for Bohunice V-1 units WWER-440/V-230 was to increase nuclear safety to the level of the proposals and IAEA recommendations and to reach probability goals of the reactor concerning active zone damage, leak of radioactive materials, failures of safety systems and damage shields. Upgrading program for Mochovce NPP - WWER-440/V-213 is concerned with improving the integrity of the reactor pressure vessel, steam generators 'leak before break' methods applied for the NPP, instrumentation and control of safety systems, diagnostic systems, replacement of in-core monitoring system, emergency analyses, pressurizers safety relief valves, hydrogen removal system, seismic evaluations, non-destructive testing, fire protection. Implementation of quality assurance has a special role in improvement of operational safety activities as well as safety management and safety culture, radiation protection, decommissioning and waste management and training. The Year 2000 problem is mentioned as well

  12. Segurança e produção: um modelo para o planejamento e controle integrado Safety and production: an integrated planning and control model

    Directory of Open Access Journals (Sweden)

    Tarcisio A. Saurin

    2002-01-01

    Full Text Available Este artigo apresenta um modelo de planejamento e controle da segurança no trabalho (PCS integrado ao processo de planejamento e controle da produção (PCP. O modelo foi desenvolvido por meio de dois estudos empíricos em obras industriais, adotando-se a pesquisa ação como estratégia de pesquisa. Os requisitos de segurança são integrados ao PCP em três níveis hierárquicos deste processo. No nível de longo prazo, o planejamento da segurança é configurado pelo desenvolvimento de análises preliminares de risco dos processos construtivos. A atualização e detalhamento da implantação destes planos é então feita por meio de sua integração aos níveis de médio e curto prazo do PCP.This paper presents a safety planning and control model (SPC that has been integrated to the production planning and control process. The model was developed through two action research empirical studies in industrial construction projects. Safety requirements are integrated into three hierarchical levels of planning and control process. At the long-term level, safety planning is featured by preliminary hazard analysis of construction processes. These plans are updated and detailed through its integration into both medium-term and short-term planning levels.

  13. The necessity of periodic fire safety review

    International Nuclear Information System (INIS)

    Mowrer, D.S.

    1998-01-01

    Effective fire safety requires the coordinated integration of many diverse elements. Clear fire safety objectives are defined by plant management and/or regulatory authorities. Extensive and time-consuming systematic analyses are performed. Fire safety features (both active and passive) are installed and maintained, and administrative programs are established and implemented to achieve the defined objectives. Personnel are rigorously trained. Given the time, effort and monetary resources expended to achieve a specific level of fire safety, conducting periodic assessments to verify that the specified level of fire safety has been achieved and is maintained is a matter of common sense. Periodic fire safety reviews and assessment play an essential role in assuring continual nuclear safety in the world's power plants

  14. FLIGHT SAFETY MANAGEMENT PROBLEMS AND EVALUATION OF FLIGHT SAFETY LEVEL OF AN AVIATION ENTERPRISE

    OpenAIRE

    B. V. Zubkov; H. E. Fourar

    2017-01-01

    This article is devoted to studying the problem of safety management system (SMS) and evaluating safety level of an aviation enterprise.This article discusses the problems of SMS, presented at the 41st meeting of the Russian Aviation Production Commanders Club in June 2014 in St. Petersburg in connection with the verification of the status of the CA of the Russian Federation by the International Civil Aviation Organization (ICAO) in the same year, a set of urgent measures to eliminate the def...

  15. Analysis of Traffic Safety Factors at Level Rail-Road Crossings

    Directory of Open Access Journals (Sweden)

    Tomislav Mlinarić

    2012-10-01

    Full Text Available The paper analyses the main factors of traffic safety andreliabilityat level crossings. The number and causes of accidentsare stated, that result from ignorance, insufficient training ofthe traffic participants, their ilnsponsibility and insufficient orincomplete legislation, as well as from insufficiently professionaland scientifically not serious enough approach to solvingthis cardinal problem in road and railway traffic. Based on theanalysis the causes are determined and solutions proposed, aswell as more efficient methods to improve safety and reduce thenumber of traffic accidents at level crossings.

  16. Application of the Integrated Safety Assessment methodology to safety margins. Dynamic Event Trees, Damage Domains and Risk Assessment

    International Nuclear Information System (INIS)

    Ibánez, L.; Hortal, J.; Queral, C.; Gómez-Magán, J.; Sánchez-Perea, M.; Fernández, I.; Meléndez, E.; Expósito, A.; Izquierdo, J.M.; Gil, J.; Marrao, H.; Villalba-Jabonero, E.

    2016-01-01

    The Integrated Safety Assessment (ISA) methodology, developed by the Consejo de Seguridad Nuclear, has been applied to an analysis of Zion NPP for sequences with Loss of the Component Cooling Water System (CCWS). The ISA methodology proposal starts from the unfolding of the Dynamic Event Tree (DET). Results from this first step allow assessing the sequence delineation of standard Probabilistic Safety Analysis results. For some sequences of interest of the outlined DET, ISA then identifies the Damage Domain (DD). This is the region of uncertain times and/or parameters where a safety limit is exceeded, which indicates the occurrence of certain damage situation. This paper illustrates application of this concept obtained simulating sequences with MAAP and with TRACE. From information of simulation results of sequence transients belonging to the DD and the time-density probability distributions of the manual actions and of occurrence of stochastic phenomena, ISA integrates the dynamic reliability equations proposed to obtain the sequence contribution to the global Damage Exceedance Frequency (DEF). Reported results show a slight increase in the DEF for sequences investigated following a power uprate from 100% to 110%. This demonstrates the potential use of the method to help in the assessment of design modifications. - Highlights: • This paper illustrates an application of the ISA methodology to safety margins. • Dynamic Event Trees are useful tool for verifying the standard PSA Event Trees. • The ISA methodology takes into account the uncertainties in human action times. • The ISA methodology shows the Damage Exceedance Frequency increase in power uprates.

  17. Integrated Safety Management System Phase I Verification for the Plutonium Finishing Plant (PFP) [VOL 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    SETH, S.S.

    2000-01-10

    U.S. Department of Energy (DOE) Policy 450.4, Safety Management System Policy commits to institutionalizing an Integrated Safety Management System (ISMS) throughout the DOE complex as a means of accomplishing its missions safely. DOE Acquisition Regulation 970.5204-2 requires that contractors manage and perform work in accordance with a documented safety management system.

  18. A comparison of the difference of requirements between functional safety and nuclear safety controllers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.K.; Lee, C.L.; Shyu, S.S. [Inst. of Nuclear Energy Research, Taoyuan, Taiwan (China)

    2014-07-01

    In order to establish self-reliant capabilities of nuclear I&C systems in Taiwan, Taiwan's Nuclear I&C System (TNICS) project had been established by Institute of Nuclear Energy Research (INER). A Triple Modular Redundant (TMR) safety controller (SCS-2000) has been completed and gone through the IEC 61508 Safety Integrity Level 3 (SIL3) certification of Functional Safety for industries. Based on the certification processes, the difference of requirements between Functional Safety and Nuclear Safety controllers in term of hardware and software are addressed in this study. Besides, the measures used to determine and verify the reliability of the safety control system design are presented. (author)

  19. Integrated Plant Safety Assessment, Systematic Evaluation Program: Yankee Nuclear Power Station (Docket No. 50-29)

    International Nuclear Information System (INIS)

    1987-10-01

    The US Nuclear Regulatory Commission (NRC) has prepared Supplement 1 to the final Integrated Plant Safety Assessment Report (IPSAR) (NUREG-0825), under the scope of the Systematic Evaluation Program (SEP), for Yankee Atomic Electric Company's Yankee Nuclear Power Station located in Rowe, Massachusetts. The SEP was initiated by the NRC to review the design of older operating nuclear power plants to reconfirm and document their safety. This report documents the review completed under the SEP for those issues that required refined engineering evaluations or the continuation of ongoing evaluations after the Final IPSAR for the Yankee plant was issued. The review has provided for (1) an assessment of the significance of differences between current technical positions on selected safety issues and those that existed when Yankee was licensed, (2) a basis for deciding how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. 2 tabs

  20. Safety of intrinsically safe and economical reactor (ISER)

    International Nuclear Information System (INIS)

    Asahi, Y.; Sugawara, I.; Yamanaka, K.

    1988-01-01

    Inherent safety of a reactor may be quantified by the grace period at various safety levels such as maintenance of fuel integrity, maintenance of fuel coolability and avoidance of core-melt. It is important to find out the grace period especially at the safety level of maintenance of fuel integrity. It has been conducted to design the ISER, which is characterized by the steel-made reactor pressure vessel. In addition to the passive nature of the safety design of the reactor itself, the ISER is equipped in the secondary system with a subsystem called the passive safety and shutdown system (PSSS), which will help to increase the grace period. It was found by the null transient analysis that check valves are needed at the top hot/cold interface. The analysis of the station blackout, which is one of the severest accident conceivable for the ISER, was made to examine inherent safety of the ISER with and without the PSSS. This paper reports that found out that the PSSS enhances inherent safety of the ISER

  1. Five Levels of Curriculum Integration Defined, Refined, and Described.

    Science.gov (United States)

    Schumacher, Donna H.

    1995-01-01

    Provides a description of five levels of curriculum integration at the middle level, specifically: departmentalization, reinforcement, complementary or shared units, webbed, and integrated themes. Discusses curriculum integration in relation to preservice and inservice programs, common planning time, team composition, time issues, and…

  2. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1 of 2: Technical standard

    International Nuclear Information System (INIS)

    1998-05-01

    This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities

  3. Impact of ITER liquid metal design options on safety level and licensing - Sweden

    International Nuclear Information System (INIS)

    Harfors, C.; Devell, L.; Johansson, Kjell; Lundell, B.; Rolandsson, S.

    1993-01-01

    The safety level and licensability of five design options for ITER coolant, breeding material and structural material are assessed, with emphasis on some specified accident scenarios. The safety level is assessed in terms of barrier requirements and the feasibility to construct and qualify such a barrier. The licensability in Sweden of each design option is assessed based on the indicated safety level and on a judgement of the technical feasibility to construct and qualify the ITER tokamak itself, based on the selected design option. 20 refs

  4. Assessment of safety culture at INPP

    International Nuclear Information System (INIS)

    Lesin, S.

    2002-01-01

    Safety Culture covers all main directions of plant activities and the plant departments involved through integration into the INPP Quality Assurance System. Safety Culture is represented by three components. The first is the clear INPP Safety and Quality Assurance Policy. Based on the Policy INPP is safely operated and managers' actions firstly aim at safety assurance. The second component is based on personal responsibility for safety and attitude of each employee of the plant. The third component is based on commitment to safety and competence of managers and employees of the plant. This component links the first two to ensure efficient management of safety at the plant. The above mentioned components including the elements which may significantly affect Safety Culture are also presented in the attachment. The concept of such model implies understanding of effect of different factors on the level of Safety Culture in the organization. In order to continuously correct safety problems, self-assessment of the Safety Culture level is performed at regular intervals. (author)

  5. Functional Safety Specification of Communication Profile PROFIsafe

    Directory of Open Access Journals (Sweden)

    Jan Rofar

    2006-01-01

    Full Text Available Paper maps the trends in area of safety-related communication within PROFIBUS and PROFINET industry networks. There are analyses safety measures and Fail-safe parameters of PROFIsafe profile in version V2 and their localisation in Safety Communication Layer SCL, which guarantees Safety Integrity Level SIL according to standard IEC 61508. The last chapter analyses the reaction in the event of fault during transmission of messages.

  6. A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies.

    Science.gov (United States)

    Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng

    2018-02-02

    In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications.

  7. IMPLEMENTING AN INTEGRATED HEALTH, SAFETY, AND ENVIRONMENTAL MANAGEMENT SYSTEM: THE CASE OF A CONSTRUCTION COMPANY

    Directory of Open Access Journals (Sweden)

    Filippos Tepaskoualos

    2017-12-01

    Full Text Available Over the past two decades, there has been an increasing trend of organizations implementing simultaneously two or more management systems. The structural similarities of these systems - despite the diversity of their fields of application, such as occupational health and safety for OHSAS 18001, and environmental management for ISO 14001 - have enabled many organizations to integrate different systems into a single one, rather than implementing them separately from one another. The purpose of this paper is to examine in depth a case of integration of the ISO 14001 and OHSAS 18001 systems, using a construction company as a research setting, in order to draw conclusions about the level of integration achieved, as well as the benefits, the problems, and the critical success factors of this endeavour. The findings of this study show that both the company's devotion to the fulfillment of the critical success factors and the identical structure of the two systems under consideration have facilitated the successful outcome of integration. However, this does not automatically imply that the company adopted the idea of full integration. Instead, the maximization of integration benefits and the elimination of related problems was achieved through the company's conscious choice to proceed with partial integration, keeping separate manuals, policies, and risk management procedures for each system. This study will be useful in order to understand that partial integration is a perfectly acceptable and realistic solution that, under certain circumstances, may even have a better cost-benefit ratio than full integration.

  8. National HTGR safety program

    International Nuclear Information System (INIS)

    Davis, D.E.; Kelley, A.P. Jr.

    1982-01-01

    This paper presents an overview of the National HTGR Program in the US with emphasis on the safety and licensing strategy being pursued. This strategy centers upon the development of an integrated approach to organizing and classifying the functions needed to produce safe and economical nuclear power production. At the highest level, four plant goals are defined - Normal Operation, Core and Plant Protection, Containment Integrity and Emergency Preparedness. The HTGR features which support the attainment of each goal are described and finally a brief summary is provided of the current status of the principal safety development program supporting the validation of the four plant goals

  9. The integral fast reactor (IFR) concept: Physics of operation and safety

    International Nuclear Information System (INIS)

    Wade, D.C.; Chang, Y.I.

    1987-01-01

    The IFR concept employs a pool layout, a U/Pu/Zr metal alloy fuel and a closed fuel cycle based on pyrometallurgical reprocessing and injection casting refabrication. The reactor physics issues of designing for inherent safety and for a closed fissile self-sufficient integral fuel cycle with uranium startup and potential actinide transmutation are discussed

  10. The integral fast reactor (IFR) concept: physics of operation and safety

    International Nuclear Information System (INIS)

    Wade, D.C.; Chang, Y.I.

    1987-01-01

    The IFR concept employs a pool layout, a U/Pu/Zr metal alloy fuel and a closed fuel cycle based on pyrometallurgical reprocessing and injection casting refabrication. The reactor physics issues of designing for inherent safety and for a closed fissile self-sufficient integral fuel cycle with uranium startup and potential actinide transmutation are discussed

  11. Validation and Verification of Future Integrated Safety-Critical Systems Operating under Off-Nominal Conditions

    Science.gov (United States)

    Belcastro, Christine M.

    2010-01-01

    Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents and reducing them will require a holistic integrated intervention capability. Future onboard integrated system technologies developed for preventing loss of vehicle control accidents must be able to assure safe operation under the associated off-nominal conditions. The transition of these technologies into the commercial fleet will require their extensive validation and verification (V and V) and ultimate certification. The V and V of complex integrated systems poses major nontrivial technical challenges particularly for safety-critical operation under highly off-nominal conditions associated with aircraft loss-of-control events. This paper summarizes the V and V problem and presents a proposed process that could be applied to complex integrated safety-critical systems developed for preventing aircraft loss-of-control accidents. A summary of recent research accomplishments in this effort is also provided.

  12. Criticality safety considerations. Integral Monitored Retrievable Storage (MRS) Facility

    International Nuclear Information System (INIS)

    1986-09-01

    This report summarizes the criticality analysis performed to address criticality safety concerns and to support facility design during the conceptual design phase of the Monitored Retrievable Storage (MRS) Facility. The report addresses the criticality safety concerns, the design features of the facility relative to criticality, and the results of the analysis of both normal operating and hypothetical off-normal conditions. Key references are provided (Appendix C) if additional information is desired by the reader. The MRS Facility design was developed and the related analysis was performed in accordance with the MRS Facility Functional Design Criteria and the Basis for Design. The detailed description and calculations are documented in the Integral MRS Facility Conceptual Design Report. In addition to the summary portion of this report, explanatary notes for various terms, calculation methodology, and design parameters are presented in Appendix A. Appendix B provides a brief glossary of technical terms

  13. Idaho National Laboratory Integrated Safety Management System FY 2013 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Farren [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-12-01

    Idaho National Laboratory (INL) performed an Annual Effectiveness Review of the Integrated Safety Management System (ISMS), per 48 Code of Federal Regulations (CFR) 970.5223 1, “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and identified target areas for focused improvements and assessments for Fiscal Year (FY) 2014. Results of the FY 2013 annual effectiveness review demonstrate that the INL’s ISMS program is “Effective” and continually improving and shows signs of being significantly strengthened. Although there have been unacceptable serious events in the past, there has also been significant attention, dedication, and resources focused on improvement, lessons learned and future prevention. BEA’s strategy of focusing on these improvements includes extensive action and improvement plans that include PLN 4030, “INL Sustained Operational Improvement Plan, PLN 4058, “MFC Strategic Excellence Plan,” PLN 4141, “ATR Sustained Excellence Plan,” and PLN 4145, “Radiological Control Road to Excellence,” and the development of LWP 20000, “Conduct of Research.” As a result of these action plans, coupled with other assurance activities and metrics, significant improvement in operational performance, organizational competence, management oversight and a reduction in the number of operational events is being realized. In short, the realization of the fifth core function of ISMS (feedback and continuous improvement) and the associated benefits are apparent.

  14. Integrated Safety Management System Phase I Verification for the Plutonium Finishing Plant (PFP) [VOL 1 and 2

    International Nuclear Information System (INIS)

    SETH, S.S.

    2000-01-01

    U.S. Department of Energy (DOE) Policy 450.4, Safety Management System Policy commits to institutionalizing an Integrated Safety Management System (ISMS) throughout the DOE complex as a means of accomplishing its missions safely. DOE Acquisition Regulation 970.5204-2 requires that contractors manage and perform work in accordance with a documented safety management system

  15. The social neuroscience and the theory of integrative levels.

    Science.gov (United States)

    Bello-Morales, Raquel; Delgado-García, José María

    2015-01-01

    The theory of integrative levels provides a general description of the evolution of matter through successive orders of complexity and integration. Along its development, material forms pass through different levels of organization, such as physical, chemical, biological or sociological. The appearance of novel structures and dynamics during this process of development of matter in complex systems has been called emergence. Social neuroscience (SN), an interdisciplinary field that aims to investigate the biological mechanisms that underlie social structures, processes, and behavior and the influences between social and biological levels of organization, has affirmed the necessity for including social context as an essential element to understand the human behavior. To do this, SN proposes a multilevel integrative approach by means of three principles: multiple determinism, nonadditive determinism and reciprocal determinism. These theoretical principles seem to share the basic tenets of the theory of integrative levels but, in this paper, we aim to reveal the differences among both doctrines. First, SN asserts that combination of neural and social variables can produce emergent phenomena that would not be predictable from a neuroscientific or social psychological analysis alone; SN also suggests that to achieve a complete understanding of social structures we should use an integrative analysis that encompasses levels of organization ranging from the genetic level to the social one; finally, SN establishes that there can be mutual influences between biological and social factors in determining behavior, accepting, therefore, a double influence, upward from biology to social level, and downward, from social level to biology. In contrast, following the theory of integrative levels, emergent phenomena are not produced by the combination of variables from two levels, but by the increment of complexity at one level. In addition, the social behavior and structures might be

  16. The social neuroscience and the theory of integrative levels

    Directory of Open Access Journals (Sweden)

    Raquel eBello-Morales

    2015-10-01

    Full Text Available The theory of integrative levels provides a general description of the evolution of matter through successive orders of complexity and integration. Along its development, material forms pass through different levels of organization, such as physical, chemical, biological or sociological. The appearance of novel structures and dynamics during this process of development of matter in complex systems has been called emergence. Social neuroscience (SN, an interdisciplinary field that aims to investigate the biological mechanisms that underlie social structures, processes, and behavior and the influences between social and biological levels of organization, has affirmed the necessity for including social context as an essential element to understand the human behavior. To do this, SN proposes a multilevel integrative approach by means of three principles: multiple determinism, nonadditive determinism and reciprocal determinism. These theoretical principles seem to share the basic tenets of the theory of integrative levels but, in this paper, we aim to reveal the differences among both doctrines.First, SN asserts that combination of neural and social variables can produce emergent phenomena that would not be predictable from a neuroscientific or social psychological analysis alone; SN also suggests that to achieve a complete understanding of social structures we should use an integrative analysis that encompasses levels of organization ranging from the genetic level to the social one; finally, SN establishes that there can be mutual influences between biological and social factors in determining behavior, accepting, therefore, a double influence, upward from biology to social level, and downward, from social level to biology.In contrast, following the theory of integrative levels, emergent phenomena are not produced by the combination of variables from two levels, but by the increment of complexity at one level. In addition, the social behavior and

  17. Technical safety Organisations (TSO) contribute to European Nuclear Safety

    International Nuclear Information System (INIS)

    Repussard, J.

    2010-01-01

    Nuclear safety and radiation protection rely on science to achieve high level prevention objectives, through the analysis of safety files proposed by the licensees. The necessary expertise needs to be exercised so as to ensure adequate independence from nuclear operators, appropriate implementation of state of the art knowledge, and a broad spectrum of analysis, adequately ranking the positive and negative points of the safety files. The absence of a Europe-wide nuclear safety regime is extremely costly for an industry which has to cope with a highly competitive and open international environment, but has to comply with fragmented national regulatory systems. Harmonization is therefore critical, but such a goal is difficult to achieve. Only a gradual policy, made up of planned steps in each of the three key dimensions of the problem (energy policy at EU level, regulatory harmonization, consolidation of Europe-wide technical expertise capability) can be successful to achieve the required integration on the basis of the highest safety levels. TSO's contribute to this consolidation, with the support of the EC, in the fields of research (EURATOM-Programmes), of experience feedback analysis (European Clearinghouse), of training and knowledge management (European Training and Tutoring Institute, EUROSAFE). The TSO's network, ETSON, is becoming a formal organisation, able to enter into formal dialogue with EU institutions. However, nuclear safety nevertheless remains a world wide issue, requiring intensive international cooperation, including on TSO issues. (author)

  18. SAFETY: an integrated clinical reasoning and reflection framework for undergraduate nursing students.

    Science.gov (United States)

    Hicks Russell, Bedelia; Geist, Melissa J; House Maffett, Jenny

    2013-01-01

    Nurse educators can no longer focus on imparting to students knowledge that is merely factual and content specific. Activities that provide students with opportunities to apply concepts in real-world scenarios can be powerful tools. Nurse educators should take advantage of student-patient interactions to model clinical reasoning and allow students to practice complex decision making throughout the entire curriculum. In response to this change in nursing education, faculty in a pediatric course designed a reflective clinical reasoning activity based on the SAFETY template, which is derived from the National Council of State Boards of Nursing RN practice analysis. Students were able to prioritize key components of nursing care, as well as integrate practice issues such as delegation, Health Insurance Portability and Accountability Act violations, and questioning the accuracy of orders. SAFETY is proposed as a framework for integration of content knowledge, clinical reasoning, and reflection on authentic professional nursing concerns. Copyright 2012, SLACK Incorporated.

  19. Designing continuous safety improvement within chemical industrial areas

    NARCIS (Netherlands)

    Reniers, G.L.L.; Ale, B. J.M.; Dullaert, W.; Soudan, K.

    This article provides support in organizing and implementing novel concepts for enhancing safety on a cluster level of chemical plants. The paper elaborates the requirements for integrating Safety Management Systems of chemical plants situated within a so-called chemical cluster. Recommendations of

  20. Integrated vehicle-based safety systems light-vehicle field operational test key findings report.

    Science.gov (United States)

    2011-01-01

    "This document presents key findings from the light-vehicle field operational test conducted as part of the Integrated Vehicle-Based Safety Systems program. These findings are the result of analyses performed by the University of Michigan Transportat...

  1. Nuclear power: levels of safety

    International Nuclear Information System (INIS)

    Lidsky, L.M.

    1988-01-01

    The rise and fall of the nuclear power industry in the United States is a well-documented story with enough socio-technological conflict to fill dozens of scholarly, and not so scholarly, books. Whatever the reasons for the situation we are now in, and no matter how we apportion the blame, the ultimate choice of whether to use nuclear power in this country is made by the utilities and by the public. Their choices are, finally, based on some form of risk-benefit analysis. Such analysis is done in well-documented and apparently logical form by the utilities and in a rather more inchoate but not necessarily less accurate form by the public. Nuclear power has failed in the United States because both the real and perceived risks outweigh the potential benefits. The national decision not to rely upon nuclear power in its present form is not an irrational one. A wide ranging public balancing of risk and benefit requires a classification of risk which is clear and believable for the public to be able to assess the risks associated with given technological structures. The qualitative four-level safety ladder provides such a framework. Nuclear reactors have been designed which fit clearly and demonstrably into each of the possible qualitative safety levels. Surprisingly, it appears that safer may also mean cheaper. The intellectual and technical prerequisites are in hand for an important national decision. Deployment of a qualitatively different second generation of nuclear reactors can have important benefits for the United States. Surprisingly, it may well be the nuclear establishment itself, with enormous investments of money and pride in the existing nuclear systems, that rejects second generation reactors. It may be that we will not have a second generation of reactors until the first generation of nuclear engineers and nuclear power advocates has retired

  2. IAEA Safety Standards on Management Systems and Safety Culture

    International Nuclear Information System (INIS)

    Persson, Kerstin Dahlgren

    2007-01-01

    The IAEA has developed a new set of Safety Standard for applying an integrated Management System for facilities and activities. The objective of the new Safety Standards is to define requirements and provide guidance for establishing, implementing, assessing and continually improving a Management System that integrates safety, health, environmental, security, quality and economic related elements to ensure that safety is properly taken into account in all the activities of an organization. With an integrated approach to management system it is also necessary to include the aspect of culture, where the organizational culture and safety culture is seen as crucial elements of the successful implementation of this management system and the attainment of all the goals and particularly the safety goals of the organization. The IAEA has developed a set of service aimed at assisting it's Member States in establishing. Implementing, assessing and continually improving an integrated management system. (author)

  3. Assessment of Integrated Pedestrian Protection Systems with Autonomous Emergency Braking (AEB) and Passive Safety Components.

    Science.gov (United States)

    Edwards, Mervyn; Nathanson, Andrew; Carroll, Jolyon; Wisch, Marcus; Zander, Oliver; Lubbe, Nils

    2015-01-01

    estimated AEB benefit. German and Great Britain versions of the methodology are available. The methodology was used to assess cars with good, average, and poor Euro NCAP pedestrian ratings, in combination with a current AEB system. The fitment of a hypothetical A-pillar airbag was also investigated. It was found that the decrease in casualty injury cost achieved by fitting an AEB system was approximately equivalent to that achieved by increasing the passive safety rating from poor to average. Because the assessment was influenced strongly by the level of head protection offered in the scuttle and windscreen area, a hypothetical A-pillar airbag showed high potential to reduce overall casualty cost. A benefit-based methodology for assessment of integrated pedestrian protection systems with AEB has been developed and tested. It uses input from AEB tests and Euro NCAP passive safety tests to give an integrated assessment of the system performance, which includes consideration of effects such as the change in head impact location caused by the impact speed reduction given by the AEB.

  4. The development of integrated safety assessment technology

    International Nuclear Information System (INIS)

    Yoo, Keon Joong; Park, Chang Kyu; Kim, Tae Un; Han, Sang Hoon; Yang, Joon Eon; Lim, Tae Jin; Han, Jae Joo; Je, Moo Seong; An, Kwang Il; Kim, Shi Dal; Jeong, Jong Tae; Jeong, Kwang Seop; Jin, Yeong Ho; Kim, Dong Ha; Kim, Kil Yoo; Cho, Yeong Kyoon; Jeong, Won Dae; Jang, Seung Cheol; Choi, Yeong; Park, Soo Yong; Seong, Tae Yong; Song, Yong Man; Kang, Dae Il; Park, Jin Hee; Jang, Seon Joo; Hwang, Mi Jeong; Choi, Seon Yeong

    1993-05-01

    For the purpose of developing the integrated PSA methodology and computer codes, Level-1 and Level-2 PSA methodology and tools were reviewed and improved. The Level-1 PSA computer code package KIRAP was improved and released by the name of KIRAP Release 2.0 Several Human reliability analysis and common cause failure analysis methods was reviewed and compared. For the development of Level-2 PSA computer code, several level-1 and Level-2 interface methods and containment event tree development methods were reviewed and compared. And the new technology such as artificial intelligence was reviewed if the technology can be applied to the development of PSA methodology.(Author)

  5. Safety of geologic disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Zaitsu, Tomohisa; Ishiguro, Katsuhiko; Masuda, Sumio

    1992-01-01

    This article introduces current concepts of geologic disposal of high level radioactive waste and its safety. High level radioactive waste is physically stabilized by solidifying it in a glass form. Characteristics of deep geologic layer are presented from the viewpoint of geologic disposal. Reconstruction of multi-barrier system receives much attention to secure the safety of geologic disposal. It is important to research performance assessment of multi-barrier system for preventing dissolution or transfer of radionuclides into the ground water. Physical and chemical modeling for the performance assessment is outlined in the following terms: (1) chemical property of deep ground water, (2) geochemical modeling of artificial barrier spatial water, (3) hydrology of deep ground water, (4) hydrology of the inside of artificial barrier, and (5) modeling of radionuclide transfer from artificial barrier. (N.K.)

  6. DOE high-level waste tank safety program Final report, Task 002

    International Nuclear Information System (INIS)

    1998-01-01

    The overall objective of the work on Task 002 was to provide LANL with support to the DOE High-Level Waste Tank Safety program. The objective of the work was to develop safety documentation in support of the unsafe tank mitigation activities at Hanford. The work includes the development of safety assessment and an environmental assessment. All tasks which were assigned under this Task Order were completed. Descriptions of the objectives of each task and effort performed to complete each objective are provided. The two tasks were: Task 2.1--safety assessment for instrumentation insertion; and Task 2.2--environmental assessment

  7. Optimum Safety Levels and Design Rules for the Icelandic Type Berm Breakwater

    DEFF Research Database (Denmark)

    Sigurdarson, Sigurdur; van der Meer, Jentsje W.; Burcharth, Hans F.

    2007-01-01

    Guidance on selection of breakwater types and related design safety levels for breakwaters are almost non-existent, which is the reason that PIANC has initiated working group 47 on this subject. This paper presents ongoing work particulary on the Icelandic type berm breakwater within the PIANC...... working group. It will concentrate on design guidance and on the optimum safety levels for this type of structure....

  8. Evaluation of health and safety impacts of defense high-level waste in geologic repositories

    International Nuclear Information System (INIS)

    Smith, E.D.; Kocher, D.C.; Witherspoon, J.P.

    1985-02-01

    Pursuant to the requirement of the Nuclear Waste Policy Act of 1982 that the President evaluate the use of commercial high-level waste repositories for the disposal of defense high-level wastes, a comparative assessment has been performed of the potential health and safety impacts of disposal of defense wastes in commercial or defense-only repositories. Simplified models were used to make quantitative estimates of both long- and short-term health and safety impacts of several options for defense high-level waste disposal. The results indicate that potential health and safety impacts are not likely to vary significantly among the different disposal options for defense wastes. Estimated long-term health and safety impacts from all defense-waste disposal options are somewhat less than those from commercial waste disposal, while short-term health and safety impacts appear to be insensitive to the differences between defense and commercial wastes. In all cases, potential health and safety impacts are small because of the need to meet stringent standards promulgated by the US Environmental Protection Agency and the US Nuclear Regulatory Commission. We conclude that health and safety impacts should not be a significant factor in the choice of a disposal option for defense high-level wastes. 20 references, 14 tables

  9. Predisposal Management of Low and Intermediate Level Radioactive Waste. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established for the predisposal management of low and intermediate level waste. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Roles and responsibilities; 4. General safety considerations; 5. Safety features for the predisposal management of LILW; 6. Record keeping and reporting; 7. Safety assessment; 8. Quality assurance; Annex I: Nature and sources of LILW from nuclear facilities; Annex II: Development of specifications for waste packages; Annex III: Site conditions, processes and events for consideration in a safety assessment (external natural phenomena); Annex IV: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex V: Postulated initiating events for consideration in a safety assessment (internal phenomena).

  10. Operator Actions Within a Safety Instrumented Function

    International Nuclear Information System (INIS)

    Suttinger, L.T.

    2002-01-01

    This paper presents an overview of the factors that should be considered when crediting operator action for performing a safety function or being a part of the process of enabling a safety function. Criteria for evaluating operator action, such as required time response and operator training among others, are discussed. The paper will address these and other factors that should be considered when determining the reliability of the operator to respond and perform his/her part of the safety function. The entire safety function includes the operator and the reliability of the instrumented system that provides the alarm or indication, the final control element, and support systems. The integration of the operator performance with the hardware safety availability, including the effects of the supporting systems is discussed. The analysis of these factors will provide the justification for the amount of risk reduction or safety integrity level that can be credited for the Safety Instrumented Function (SIF), including operator action

  11. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Badwan, Faris M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Demuth, Scott F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-06

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the

  12. Safety in the design of production lines

    DEFF Research Database (Denmark)

    Dyhrberg, Mette Bang; Broberg, Ole; Jacobsen, Peter

    2006-01-01

    This paper is a case study report on how safety considerations were handled in the process of redesigning a production line. The design process was characterized as a specification and negotiation process between engineers from the company and the supplier organization. The new production line...... in the specification material nor in their face-to-face meetings with the supplier. Safety aspects were not part of their work practice. On this basis, it was suggested that formal guidelines or procedures for integrating safety in the design of production lines would have no effect. Instead, the researchers set up...... became safer, but not as a result of any intentional plan to integrate safety aspects into the design process. Instead, the supplier’s design of a new piece of equipment had a higher built-in safety level. The engineering team in the company was aware of the importance of safety aspects neither...

  13. Safety in the redesigning of production lines

    DEFF Research Database (Denmark)

    Dyhrberg, Mette Bang; Broberg, Ole; Jacobsen, Peter

    2006-01-01

    This paper is a case study report on how safety considerations were handled in the process of redesigning a production line. The design process was characterized as a specification and negotiation process between engineers from the company and the supplier organization. The new production line...... became safer, but not as a result of any intentional plan to integrate safety aspects into the design process. Instead, the supplier’s design of a new piece of equipment had a higher built-in safety level. The engineering team in the company was aware of the importance of safety aspects neither...... in the specification material nor in their face-to-face meetings with the supplier. Safety aspects were not part of their work practice. On this basis, it was suggested that formal guidelines or procedures for integrating safety in the design of production lines would have no effect. Instead, the researchers set up...

  14. A status report on the integral fast reactor fuels and safety program

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Seidel, B.R.

    1990-01-01

    The integral fast reactor (IFR) is an advanced liquid-metal-cooled reactor (ALMR) concept being developed at Argonne National Laboratory. The IFR program is specifically responsible for the irradiation performance, advanced core design, safety analysis, and development of the fuel cycle for the US Department of Energy's ALMR program. The basic elements of the IFR concept are (a) metallic fuel, (b) liquid-sodium cooling, (c) modular, pool-type reactor configuration, (d) an integral fuel cycle based upon pyrometallurgical processing. The most significant safety aspects of the IFR program result from its unique fuel design, a ternary alloy of uranium, plutonium, and zirconium. This fuel is based on experience gained through > 25 yr operation of the Experimental Breeder Reactor II (EBR-II) with a uranium alloy metallic fuel. The ultimate criteria for fuel pin design is the overall integrity at the target burnup. The probability of core meltdown is remote; however, a theoretical possibility of core meltdown remains. The next major step in the IFR development program will be a full-scale pyroprocessing demonstration to be carried out in conjunction with EBR-II. The IFR fuel cycle closure based on pyroprocessing will also have a dramatic impact on waste management options and on actinide recycling

  15. The safety basis of the integral fast reactor program

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Seidel, B.R.

    1990-01-01

    The Integral Fast Reactor (IFR) and metallic fuel have emerged as the US Department of Energy reference reactor concept and fuel system for the development of an advanced liquid-metal reactor. This article addresses the basic elements of the IFR reactor concept and focuses on the safety advances achieved by the IFR Program in the areas of (1) fuel performance, (2) superior local faults tolerance, (3) transient fuel performance, (4) fuel-failure mechanisms, (5) performance in anticipated transients without scram, (6) core-melt mitigation, and (7) actinide recycle

  16. NRU licence extension via integrated safety review

    Energy Technology Data Exchange (ETDEWEB)

    Mantifel, N. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The National Research Reactor, NRU at AECL Chalk River Laboratories achieved first criticality in November 1957. The completion of an Integrated Safety Review (ISR) in 2011, and subsequent Global Assessment Report (GAR), and Integrated Implementation Plan (IIP) has given confidence in the safe and reliable operation of NRU, therefore extending the licensing case to safely and reliably operate NRU until 2021 and beyond (64+ years of operation). The key vehicle to achieve this confidence is the IIP, that resulted from the ISR. NRU's IIP is a 10 year plan that addresses the gaps identified in the ISR between modern codes and standards in a prioritized approach. AECL is currently in year 3 of the IIP execution, is on or ahead of schedule to complete the identified improvements. The IIP in conjunction with a License Condition Handbook has replaced the licensing protocol with the Canadian Nuclear Safety Commission, (CNSC). Execution of the IIP to plan supports the continued safe operation of NRU. The ISR was carried out with the recognition that the NRU reactor is a research and isotope producing reactor approaching license renewal and not a power reactor undergoing refurbishment and life extension. Therefore, the IIP is being executed while NRU continues to deliver on its three missions: production of medical isotopes, support for fuels and materials research, and serving as a high flux neutron source in support of research relying on neutron scattering. The IIP is grouped into 5 Global Issue Groups, (GIGs) to support focused execution. The activities and tasks within the five GIGs are being executed via a matrix organization through the use of the Chalk River Laboratories Corrective Action Program to ensure the assignment of actions, completion and evidence to support closure is documented and retained. This paper discusses the approach taken by AECL to license and ensure safe, reliable operation of NRU until 2021 and beyond. (author)

  17. Predisposal management of low and intermediate level radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2003-01-01

    considered in this publication begins with the refining and conversion of uranium concentrates. Recommendations on the management of radioactive waste from the mining and milling of uranium and thorium ores are provided. Some parts of the nuclear fuel cycle generate both high level waste and LLW. The management of high level waste itself generates LLW. The predisposal management of this LLW is included in the scope of this Safety Guide. Recommendations on the predisposal management of high level waste are provided. The recommendations in this Safety Guide primarily concern complex management activities for LLW. The regulatory body should decide which parts of this Safety Guide are relevant and appropriate for particular circumstances, and the extent to which the recommendations and guidance apply. This Safety Guide provides only introductory material on the transport and storage of LLW. Requirements and recommendations are provided in Refs. There may be non-radiological hazards associated with the predisposal management of LLW. Some guidance is given on the safety measures to be taken against non-radiological hazards if they have potential consequences for radiation safety. However, detailed recommendations are beyond the scope of this Safety Guide. The user should seek guidance from the regulatory body in the areas of health and safety and environmental protection

  18. 78 FR 10181 - Global Quality Systems-An Integrated Approach To Improving Medical Product Safety; Public Workshop

    Science.gov (United States)

    2013-02-13

    ...] Global Quality Systems--An Integrated Approach To Improving Medical Product Safety; Public Workshop... (AFDO), is announcing a public workshop entitled ``Global Quality Systems--An Integrated Approach to... topics concerning FDA requirements related to the production and marketing of drugs and/or devices...

  19. Integration of emergency action levels with Combustion Engineering Emergency Operating Procedures

    International Nuclear Information System (INIS)

    Faletti, D.W.; Jamison, J.D.

    1985-09-01

    This report documents the development of a method for integrating Emergency Action Levels (EALs) with plant-specific Emergency Operating Procedures (EOPs) using the Combustion Engineering Owners' Group Emergency Operating Procedure Technical Guidelines (CEOG EOPTFs). EALs are discrete conditions or values of plant operating parameters which, if exceeded, require declaration of an appropriate level of emergency. At most operating plants, the EALs and event classification procedures are totally separate from the Emergency Operating Procedures used by the plant staff to control the plant during abnormal conditions. Control room personnel using the EOPs to deal with abnormal plant conditions must recognize when plant safety is sufficiently degraded that an emergency declaration may be warranted, and then enter a separate classification procedure containing EALs for a number of plant conditions and parameters. The operator then compares the existing plant conditions to the EALs and makes an emergency declaration accordingly. Using the Combustion Engineering Owners' Group Technical Guidelines document, a set of emergency class definitions and criteria were developed based on the status of the three main fission product barriers (fuel cladding, primary coolant system and containment). The EOPTGs were then annotated with suggested guidance to a procedure writer. The proposed method was tested by applying it to the reactor accident sequences that were shown in the reactor safety study to dominate accident risk. The object of the test was to determine if an EAL set linked to the EOP annotations would produce timely and accurate classification of the risk-dominant sequences. 6 refs., 13 figs., 31 tabs

  20. Thoughts of the nuclear safety culture and 'star-level' management

    International Nuclear Information System (INIS)

    Wang Sen

    2004-01-01

    From the point of view that enterprise management has come into the stage of cultural management, this article divides the contents of nuclear safety culture into target management, safety management, quality management, site management, cost management, authority management, teamwork, information communication and continuous improvement. Each aspect win be classified by five 'star- level's according to the appearance, and the present situation of the company should be assessed with those star-level indices so as to find out the disadvantages. Improvement will follow with the promotion of company management level. (author)

  1. Integrated Safety and Security Risk Assessment Methods: A Survey of Key Characteristics and Applications

    OpenAIRE

    Chockalingam, Sabarathinam; Hadziosmanovic, Dina; Pieters, Wolter; Teixeira, Andre; van Gelder, Pieter

    2017-01-01

    Over the last years, we have seen several security incidents that compromised system safety, of which some caused physical harm to people. Meanwhile, various risk assessment methods have been developed that integrate safety and security, and these could help to address the corresponding threats by implementing suitable risk treatment plans. However, an overarching overview of these methods, systematizing the characteristics of such methods, is missing. In this paper, we conduct a systematic l...

  2. Monitoring the Long-Term Effectiveness of Integrated Safety Management System (ISMS) Implementation Through Use of a Performance Dashboard Process

    International Nuclear Information System (INIS)

    Kinney, Michael D.; Barrick, William D.

    2008-01-01

    This session will examine a method developed by Federal and Contractor personnel at the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) to examine long-term maintenance of DOE Integrated Safety Management System (ISMS) criteria, including safety culture attributes, as well as identification of process improvement opportunities. This process was initially developed in the summer of 2000 and has since been expanded to recognize the importance of safety culture attributes, and associated safety culture elements, as defined in DOE M 450.4-1, 'Integrated Safety Management System Manual'. This process has proven to significantly enhance collective awareness of the importance of long-term ISMS implementation as well as support commitments by NNSA/NSO personnel to examine the continued effectiveness of ISMS processes

  3. Methodology used in the integrated assessment of PIUS-600 safety

    International Nuclear Information System (INIS)

    Fullwood, R.; Higgins, J.; Kroegar, P.

    1993-01-01

    The revolutionary reactor design, PIUS-600 as described in the Preliminary Safety Analysis Report (PSID) was subjected to analysis consisting of Failure Modes, Effects and Criticality Analysis (FMECA), Hazards and Operability (HAZOP) analysis, and conventional engineering review of the stress, neutronics, thermal hydraulics, and corrosion. These results were integrated in the PIUS Intermediate Table (PIT) from which accident initiators and mitigators were identified and categorized into seven estimated frequency intervals. Accident consequences were classified as: CC-1, minor radiological release, CC-2, clad release, CC-3, major release. The systems were analyzed using event sequence diagrams (ESDs) and event trees (ETs). The resulting accident sequences of the ET, were categorized into Event conditions (ECs) based on initiator frequency and combinations of failures. System interactions were considered in the FMECAs, ESDs, ETs and in an interaction table that also identified system safety classifications

  4. Methodology used in the integrated assessment of PIUS-600 safety

    International Nuclear Information System (INIS)

    Fullwood, R.; Higgins, J.; Kroeger, P.

    1993-01-01

    The revolutionary reactor design, PIUS-600 as described in the Preliminary Safety Analysis Report (PSID) was subject to analyses consisting of Failure Modes. Effects and Criticality Analysis (FMECA), Hazards and Operability (HAZOP) analysis, and conventional engineering review of the stress, neutronics, thermal hydraulics, and corrosion. These results were integrated in the PIUS Intermediate Table (PIT) from which accident initiators and mitigators were identified and categorized into seven estimated frequency intervals. Accident consequences were classified as: CC-1, minor radiological release, CC-2, clad release, CC-3, major release. The systems were analyzed using event sequence diagrams (ESDs) and event trees (ETs). The resulting accident sequences of the ET, were categorized into Event conditions (ECs) based on initiator frequency and combinations of failures. System interactions were considered in the FMECAs, ESDs, ETs and in an interaction table that also identified system safety classifications

  5. Occupational Therapy and Sensory Integration for Children with Autism: A Feasibility, Safety, Acceptability and Fidelity Study

    Science.gov (United States)

    Schaaf, Roseann C.; Benevides, Teal W.; Kelly, Donna; Mailloux-Maggio, Zoe

    2012-01-01

    Objective: To examine the feasibility, safety, and acceptability of a manualized protocol of occupational therapy using sensory integration principles for children with autism. Methods: Ten children diagnosed with autism spectrum disorder ages 4-8 years received intensive occupational therapy intervention using sensory integration principles…

  6. Integrated assessment of pedestrian head impact protection in testing secondary safety and autonomous emergency braking.

    Science.gov (United States)

    Searson, D J; Anderson, R W G; Hutchinson, T P

    2014-02-01

    Pedestrian impact testing is used to provide information to the public about the relative level of protection provided by different vehicles to a struck pedestrian. Autonomous Emergency Braking (AEB) is a relatively new technology that aims to reduce the impact speed of such crashes. It is expected that vehicles with AEB will pose less harm to pedestrians, and that the benefit will come about through reductions in the number of collisions and a change in the severity of impacts that will still occur. In this paper, an integration of the assessment of AEB performance and impact performance is proposed based on average injury risk. Average injury risk is calculated using the result of an impact test and a previously published distribution of real world crash speeds. A second published speed distribution is used that accounts for the effects of AEB, and reduced average risks are implied. This principle allows the effects of AEB systems and secondary safety performance to be integrated into a single measure of safety. The results are used to examine the effect of AEB on Euro NCAP and ANCAP assessments using previously published results on the likely effect of AEB. The results show that, given certain assumptions about AEB performance, the addition of AEB is approximately the equivalent of increasing Euro NCAP test performance by one band, which corresponds to an increase in the score of 25% of the maximum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Methodology of safety evaluation about land disposal of low level radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki

    1986-01-01

    Accompanying the progress of the construction project of low level radioactive waste storage facilities in Aomori Prefecture, the full scale land disposal of low level radioactive wastes shows its symptom also in Japan. In this report, the scientific methodology to explain the safety about the land disposal of low level radioactive wastes is discussed. The land disposal of general wastes by shallow burying has already had sufficient results. In the case of low level radioactive wastes, also the land disposal by shallow burying is considered. Low level radioactive wastes can be regarded as one form of industrial wastes, as there are many common parts in the scientific and theoretical base of the safety. Attention is paid most to the contamination of ground water. Low level radioactive wastes are solid wastes, accordingly the degree of contamination should be less. The space in which ground water existes, the phenomena of ground water movement, the phenomena of ground water dispersion and Fick's law, the adsorption effect of strata, and the evaluation of source term are explained. These are the method to analyze the degree of contamination from safety evaluation viewpoint. (Kako, I.)

  8. Level-1 probability safety assessment of the Iranian heavy water reactor using SAPHIRE software

    International Nuclear Information System (INIS)

    Faghihi, F.; Ramezani, E.; Yousefpour, F.; Mirvakili, S.M.

    2008-01-01

    The main goal of this review paper is to analyze the total frequency of the core damage of the Iranian Heavy Water Research Reactor (IHWRR) compared with standard criteria and to determine the strengths and the weaknesses of the reactor safety systems towards improving its design and operation. The PSA has been considered for full-power state of the reactor and this article represents a level-1 PSA analysis using System Analysis Programs for Hands-On Integrated Reliability Evaluations (SAPHIRE) software. It is specifically designed to permit a listing of the potential accident sequences, compute their frequencies of occurrence and assign each sequence to a consequence. The method used for modeling the systems and accident sequences, is Large Fault Tree/Small Event Tree method. This PSA level-1 for IHWRR indicates that, based on conservative assumptions, the total frequency of accidents that would lead to core damage from internal initiating events is 4.44E-05 per year of reactor operation

  9. Level-1 probability safety assessment of the Iranian heavy water reactor using SAPHIRE software

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, F. [Department of Nuclear Engineering, School of Engineering, Shiraz University, 71348-51153 Shiraz (Iran, Islamic Republic of); Research Center for Radiation Protection, Shiraz University, Shiraz (Iran, Islamic Republic of); Nuclear Safety Research Center, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: faghihif@shirazu.ac.ir; Ramezani, E. [Department of Nuclear Engineering, School of Engineering, Shiraz University, 71348-51153 Shiraz (Iran, Islamic Republic of); Yousefpour, F. [Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of); Mirvakili, S.M. [Department of Nuclear Engineering, School of Engineering, Shiraz University, 71348-51153 Shiraz (Iran, Islamic Republic of)

    2008-10-15

    The main goal of this review paper is to analyze the total frequency of the core damage of the Iranian Heavy Water Research Reactor (IHWRR) compared with standard criteria and to determine the strengths and the weaknesses of the reactor safety systems towards improving its design and operation. The PSA has been considered for full-power state of the reactor and this article represents a level-1 PSA analysis using System Analysis Programs for Hands-On Integrated Reliability Evaluations (SAPHIRE) software. It is specifically designed to permit a listing of the potential accident sequences, compute their frequencies of occurrence and assign each sequence to a consequence. The method used for modeling the systems and accident sequences, is Large Fault Tree/Small Event Tree method. This PSA level-1 for IHWRR indicates that, based on conservative assumptions, the total frequency of accidents that would lead to core damage from internal initiating events is 4.44E-05 per year of reactor operation.

  10. Integrated, digital experiment transient control and safety protection of an in-pile test

    International Nuclear Information System (INIS)

    Thomas, R.W.; Whitacre, R.F.; Klingler, W.B.

    1982-01-01

    The Sodium Loop Safety Facility experimental program has demonstrated that in-pile loop fuel failure transient tests can be digitally controlled and protected with reliability and precision. This was done in four nuclear experiments conducted in the Engineering Test Reactor operated by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory. Loop sodium flow and reactor power transients can be programmed to sponsor requirements and verified prior to the test. Each controller has redundancy, which reduces the effect of single failures occurring during test transients. Feedback and reject criteria are included in the reactor power control. Timed sequencing integrates the initiation of the controllers, programmed safety set-points, and other experiment actions (e.g., planned scram). Off-line and on-line testing is included. Loss-of-flow, loss-of-piping-integrity, boiling-window, transient-overpower, and local fault tests have been successfully run using this system

  11. Integrated safety analysis of rolapitant with coadministered drugs from phase II/III trials

    DEFF Research Database (Denmark)

    Barbour, S; Smit, T.; Wang, X

    2017-01-01

    adverse events by use versus non-use of drug substrates of CYP2D6 or BCRP. Patients and methods: Patients were randomized to receive either 180 mg oral rolapitant or placebo approximately 1-2 hours before chemotherapy in combination with a 5-hydroxytryptamine type 3 RA and dexamethasone. Data...... cytochrome P450 (CYP) 3A4, but it does inhibit CYP2D6 and breast cancer resistance protein (BCRP). To analyze potential drug-drug interactions between rolapitant and concomitant medications, this integrated safety analysis of four double-blind, randomized phase II or III studies of rolapitant examined...... for treatment-emergent adverse events (TEAEs) and treatment-emergent serious adverse events (TESAEs) during cycle 1 were pooled across the four studies and summarized in the overall population and by concomitant use/non-use of CYP2D6 or BCRP substrate drugs. Results: In the integrated safety population, 828...

  12. A strategic approach to quality improvement and patient safety education and resident integration in a general surgery residency.

    Science.gov (United States)

    O'Heron, Colette T; Jarman, Benjamin T

    2014-01-01

    To outline a structured approach for general surgery resident integration into institutional quality improvement and patient safety education and development. A strategic plan to address Accreditation Council for Graduate Medical Education (ACGME) Clinical Learning Environment Review assessments for resident integration into Quality Improvement and Patient Safety initiatives is described. Gundersen Lutheran Medical Foundation is an independent academic medical center graduating three categorical residents per year within an integrated multi-specialty health system serving 19 counties over 3 states. The quality improvement and patient safety education program includes a formal lecture series, online didactic sessions, mandatory quality improvement or patient safety projects, institutional committee membership, an opportunity to serve as a designated American College of Surgeons National Surgical Quality Improvement Project and Quality in Training representative, mandatory morbidity and mortality conference attendance and clinical electives in rural surgery and international settings. Structured education regarding and participation in quality improvement and patient safety programs are able to be accomplished during general surgery residency. The long-term outcomes and benefits of these strategies are unknown at this time and will be difficult to measure with objective data. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.

  13. A risk characterization of safety research areas for integral fast reactor program planning

    International Nuclear Information System (INIS)

    Mueller, C.J.; Cahalan, J.E.; Hill, D.J.; Kramer, J.M.; Marchaterre, J.F.; Pedersen, D.R.; Sevy, R.H.; Tibbrook, R.W.; Wei, T.Y.; Wright, A.E.

    1988-01-01

    This paper characterizes the areas of integral fast reactor (IFR) safety research in terms of their importance in addressing the risk of core disruption sequences for innovative designs. Such sequences have traditionally been determined to constitute the primary risk to public health and safety. All core disruption sequences are folded into four fault categories: classic unprotected (unscrammed) events; loss of decay heat; local fault propagation; and failure to critical reactor structures. Event trees are used to describe these sequences and the areas in the IFR safety and related base technology research programs are discussed with respect to their relevance in addressing the key issues in preventing or delimiting core disruptive sequences. Thus a measure of potential for risk reduction is obtained for guidance in establishing research priorities

  14. A risk characterization of safety research areas for Integral Fast Reactor program planning

    International Nuclear Information System (INIS)

    Mueller, C.J.; Cahalan, J.E.; Hill, D.J.

    1988-01-01

    This paper characterizes the areas of Integral Fast Reactor (IFR) safety research in terms of their importance in addressing the risk of core disruption sequences for innovative designs. Such sequences have traditionally been determined to constitute the primary risk to public health and safety. All core disruption sequences are folded into four fault categories: classic unprotected (unscrammed) events; loss of decay heat; local fault propagation; and failure of critical reactor structures. Event trees are used to describe these sequences and the areas in the IFR Safety and related Base Technology research programs are discussed with respect to their relevance in addressing the key issues in preventing or delimiting core disruptive sequences. Thus a measure of potential for risk reduction is obtained for guidance in establishing research priorites

  15. Towards an interpretive measurement framework to assess the levels of integrated and integrative thinking within organisations

    Directory of Open Access Journals (Sweden)

    Daniel Schörger

    2015-07-01

    Full Text Available This research study is located within the context of corporate reporting and is relevant for the agenda of sustainability and sustainable development. The specific context for this study is the South African mining industry, within which three units in the form of three companies, were chosen to provide a coherent case for this study. The sample for the analysis is based on the integrated reports of these companies for the years 2012 and 2013. This gives this research a total sample size of six reports. Based on the research findings an initial interpretive measurement framework to assess the levels of capital integration has been theorised which enables the various stakeholders of an organisation to assess the integrated and integrative thinking capabilities. The level of integration is represented as a maturity scale on which integrated thinking is associated with the lower levels, while integrative thinking is attributed to higher levels of maturity. In the elaborated framework, integrated thinking is perceived as being a prerequisite for integrative thinking. The practical implication of this study is that it provides a potential measurement framework for various organisational stakeholders, including investors, to assess the thinking capabilities that are more likely to lead to long term financial stability and sustainability. The value of this research study is that it provides an initial step towards measuring the level of integrated and integrative thinking capabilities within organisations where no such measurement framework currently exists. The limitations and implications of this research study are that the interpretive measurement framework represents merely an initial step and an ongoing working hypothesis which requires further research to develop its maturity and usefulness.

  16. ESTIMATION OF PROCESSES REALIZATION RISK AS A MANNER OF SAFETY MANAGEMENT IN THE INTEGRATED SYSTEMS

    Directory of Open Access Journals (Sweden)

    Tatiana Karkoszka

    2011-12-01

    Full Text Available Realization of quality, environmental and occupational health and safety policy using the proposed model of processes' integrated risk estimation leads to the improvement of the analyzed productive processes by the preventive and corrective actions, and in consequence - to their optimization from the point of view of products' quality and in the aspect of quality of environmental influence and occupational health and safety.

  17. ESTIMATION OF PROCESSES REALIZATION RISK AS A MANNER OF SAFETY MANAGEMENT IN THE INTEGRATED SYSTEMS

    Directory of Open Access Journals (Sweden)

    Tatiana Karkoszka

    2011-06-01

    Full Text Available Realization of quality, environmental and occupational health and safety policy using the proposed model of processes' integrated risk estimation leads to the improvement of the analyzed productive processes by the preventive and corrective actions, and in consequence - to their optimization from the point of view of products' quality and in the aspect of quality of environmental influence and occupational health and safety.

  18. MTR and PWR/PHWR in-pile loop safety in integration with the operation of multipurpose reactor - GAS

    International Nuclear Information System (INIS)

    Suharno; Aji, Bintoro; Sugiyanto; Rohman, Budi; Zarkasi, Amin S.; Giarno

    1998-01-01

    MTR and PWR/PHWR In-Pile Loop safety analysis in integration with the operation of Multipurpose Reactor - Gas has been carried out and completed. The assessment is emphasized on the function of the interface systems from the dependence of the operation and the evaluation to the possibility of leakage or failure of the in-pile part inside the reactor pool and reactor core. The analysis is refers to the logic function of the interface system and the possibility of leakage or failure of the in-pile part inside reactor pool and reactor core to consider the integrity of the core qualitatively. The results show that in normal and in transient conditions , the interface system meet the function requirement in safe integrated operation of in-pile loop and reactor. And the results of the possibility analysis of the leakage shows that the possibility based on mechanically assessment is very low and the impact to core integrity is nothing or can be eliminated. The possible position for leakage is on the flen on which one meter above the top level of the core, therefore no influence of leakage to the core

  19. Lessons learned in the implementation of Integrated Safety Management at DOE Order Compliance Sites vs Necessary and Sufficient Sites

    International Nuclear Information System (INIS)

    Hill, R.L.

    2000-01-01

    This paper summarizes the development and implementation of Integrated Safety Management (ISM) at an Order Compliance Site (Savannah River Site) and a Necessary and Sufficient Site (Nevada Test Site). A discussion of each core safety function of ISM is followed by an example from an Order Compliance Site and a Necessary and Sufficient Site. The Savannah River Site was the first DOE site to have a DOE Headquarters-validated and approved ISM System. The NTS is beginning the process of verification and validation. This paper defines successful strategies for integrating Environment, Safety, and Health management into work under various scenarios

  20. Basic concept on safety regulation for land disposal of low level radioactive solid wastes

    International Nuclear Information System (INIS)

    1985-01-01

    As to the land disposal of low level radioactive solid wastes, to which the countermeasures have become the urgent problem at present, it is considered to be a realistic method to finally store the solid wastes concentratedly outside the sites of nuclear power stations and others, and effort has been exerted by those concerned to realize it. Besides, as for extremely low level radioactive solid wastes, the measures of disposing them corresponding to the radioactivity level are necessary, and the concrete method has been examined. The Committee on Safety Regulation for Radioactive Wastes has discussed the safety regulation for those since April, 1984, and the basic concept on the safety regulation was worked up. It is expected that the safety of the land disposal of low level radioactive solid wastes can be ensured when the safety regulation is carried out in conformity with this basic concept. The present status of the countermeasures to the land disposal of low level radioactive solid wastes is shown. As the concrete method, the disposal in shallow strate has been generally adopted. At present, the plan for the final storage in Aomori Prefecture is considered, and it will be started with the first stage of four-stage control. (Kako, I.)

  1. Advanced safety management systems for maintenance of pipeline integrity

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Potempski, S.

    2005-01-01

    One of the duties of the pipeline's operator is to introduce means for protection of human safety and the environment. This should be reflected in preparation of comprehensive Risk Management System with its key element Activity Programme for Management of Pipeline Integrity. In the paper such programme has been described taking into account law regulations and practical activities undertaken in technologically advanced countries (mainly USA and EU), where such solutions are implemented in routine operations. Possible solutions of realization of all elements of the programme, as well as information on utilization of computer aided support have been also included. (authors)

  2. Operating safety requirements for the intermediate level liquid waste system

    International Nuclear Information System (INIS)

    1980-07-01

    The operation of the Intermediate Level Liquid Waste (ILW) System, which is described in the Final Safety Analysis, consists of two types of operations, namely: (1) the operation of a tank farm which involves the storage and transportation through pipelines of various radioactive liquids; and (2) concentration of the radioactive liquids by evaporation including rejection of the decontaminated condensate to the Waste Treatment Plant and retention of the concentrate. The following safety requirements in regard to these operations are presented: safety limits and limiting control settings; limiting conditions for operation; and surveillance requirements. Staffing requirements, reporting requirements, and steps to be taken in the event of an abnormal occurrence are also described

  3. Steam generator collector integrity of WWER-1000 reactors. IAEA extrabudgetary programme on the safety of WWER NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C.; Strupczewski, A. [International Atomic Energy Agency, Vienna (Austria)

    1995-12-31

    At the Consultants` Meeting on `The Safety of WWER-1000 Model 320 Nuclear Power Plants` organized by the IAEA within the framework of its Extrabudgetary Programme on the Safety of WWER-1000 NPPs, which was held in Vienna, 1-5 June 1992, the problem of WWER-1000 steam generator integrity was identified as an important issue of safety concern. Considering the safety importance of this issue, a Consultants` Meeting on `The Steam Generator Integrity of WWER-1000 Nuclear Power Plants` was convened in Vienna in May 1993, attended by 15 international experts in the area to compile information on the steam generator operating experience, deficiencies and corrective measures implemented and planned. In order to also include information from the main designer OKB Gidropress and to finalize the meeting report the IAEA convened a second meeting on the issue on 23-27 November 1993. The present paper summarizes the information and conclusions from those meetings.

  4. Steam generator collector integrity of WWER-1000 reactors. IAEA extrabudgetary programme on the safety of WWER NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C; Strupczewski, A [International Atomic Energy Agency, Vienna (Austria)

    1996-12-31

    At the Consultants` Meeting on `The Safety of WWER-1000 Model 320 Nuclear Power Plants` organized by the IAEA within the framework of its Extrabudgetary Programme on the Safety of WWER-1000 NPPs, which was held in Vienna, 1-5 June 1992, the problem of WWER-1000 steam generator integrity was identified as an important issue of safety concern. Considering the safety importance of this issue, a Consultants` Meeting on `The Steam Generator Integrity of WWER-1000 Nuclear Power Plants` was convened in Vienna in May 1993, attended by 15 international experts in the area to compile information on the steam generator operating experience, deficiencies and corrective measures implemented and planned. In order to also include information from the main designer OKB Gidropress and to finalize the meeting report the IAEA convened a second meeting on the issue on 23-27 November 1993. The present paper summarizes the information and conclusions from those meetings.

  5. Strengths, weaknesses, opportunities, and threats analysis of integrating the World Health Organization patient safety curriculum into undergraduate medical education in Pakistan: a qualitative case study

    Directory of Open Access Journals (Sweden)

    Samreen Misbah

    2017-12-01

    Full Text Available Purpose The purpose of this study was to conduct a strengths, weaknesses, opportunities, and threats (SWOT analysis of integrating the World Health Organization (WHO patient safety curriculum into undergraduate medical education in Pakistan. Methods A qualitative interpretive case study was conducted at Riphah International University, Islamabad, from October 2016 to June 2017. The study included 9 faculty members and 1 expert on patient safety. The interviews were audiotaped, and a thematic analysis of the transcripts was performed using NVivo software. Results Four themes were derived based on the need analysis model. The sub-themes derived from the collected data were arranged under the themes of strengths, weaknesses, opportunities, and threats, in accordance with the principles of SWOT analysis. The strengths identified were the need for a formal patient safety curriculum and its early integration into the undergraduate program. The weaknesses were faculty awareness and participation in development programs. The opportunities were an ongoing effort to develop an appropriate curriculum, to improve the current culture of healthcare, and to use the WHO curricular resource guide. The threats were attitudes towards patient safety in Pakistani culture, resistance to implementation from different levels, and the role of regulatory authorities. Conclusion The theme of patient safety needs to be incorporated early into the formal medical education curriculum, with the main goals of striving to do no harm and seeing mistakes as opportunities to learn. Faculty development activities need to be organized, and faculty members should to be encouraged to participate in them. The lack of a patient safety culture was identified as the primary reason for resistance to this initiative at many levels. The WHO curriculum, amended according to local institutional culture, can be implemented appropriately with support from the corresponding regulatory bodies.

  6. Strengths, weaknesses, opportunities, and threats analysis of integrating the World Health Organization patient safety curriculum into undergraduate medical education in Pakistan: a qualitative case study.

    Science.gov (United States)

    Misbah, Samreen; Mahboob, Usman

    2017-01-01

    The purpose of this study was to conduct a strengths, weaknesses, opportunities, and threats (SWOT) analysis of integrating the World Health Organization (WHO) patient safety curriculum into undergraduate medical education in Pakistan. A qualitative interpretive case study was conducted at Riphah International University, Islamabad, from October 2016 to June 2017. The study included 9 faculty members and 1 expert on patient safety. The interviews were audiotaped, and a thematic analysis of the transcripts was performed using NVivo software. Four themes were derived based on the need analysis model. The sub-themes derived from the collected data were arranged under the themes of strengths, weaknesses, opportunities, and threats, in accordance with the principles of SWOT analysis. The strengths identified were the need for a formal patient safety curriculum and its early integration into the undergraduate program. The weaknesses were faculty awareness and participation in development programs. The opportunities were an ongoing effort to develop an appropriate curriculum, to improve the current culture of healthcare, and to use the WHO curricular resource guide. The threats were attitudes towards patient safety in Pakistani culture, resistance to implementation from different levels, and the role of regulatory authorities. The theme of patient safety needs to be incorporated early into the formal medical education curriculum, with the main goals of striving to do no harm and seeing mistakes as opportunities to learn. Faculty development activities need to be organized, and faculty members should to be encouraged to participate in them. The lack of a patient safety culture was identified as the primary reason for resistance to this initiative at many levels. The WHO curriculum, amended according to local institutional culture, can be implemented appropriately with support from the corresponding regulatory bodies.

  7. Study on the development of safety regulations for geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Wei Fangxin

    2012-01-01

    The development of regulations under Regulations on Safety Management of Radioactive Waste has become necessary as the issuance of it. The regulations related to geological disposal of high-level radioactive waste can promote the progress of research and development on geological disposal of high-level radioactive waste in China. This paper has present suggestions on development of regulations on geological disposal of high-level radioactive waste by analyzing development of safety regulations on geological disposal of high-level radioactive waste in foreign countries and problems occurred in China and discussed important issues related to the development of safety regulations on geological disposal of high-level radioactive waste. (author)

  8. Screening-Level Safety Assessment of Personal Care Product Constituents Using Publicly Available Data

    Directory of Open Access Journals (Sweden)

    Ernest S. Fung

    2018-06-01

    Full Text Available Organizations recommend evaluating individual ingredients when assessing the safety of personal care or cosmetic products. The goal of this study was to present a screening-level safety assessment methodology to evaluate the safety of a product by identifying individual ingredients, determining their frequency of use in on-market products, and examining published safe-level-of-use information for each ingredient. As a case study, we evaluated WEN by Chaz Dean (WCD cleansing conditioners since there have been claims of adverse health effects associated with product use. We evaluated 30 ingredients in three on-market WCD cleansing conditioners. We then analyzed the National Library of Medicine’s Household Products Database and the Environmental Working Group’s (EWG Skin Deep Cosmetic Database, two of the largest publicly available databases, for other on-market personal care and cosmetic products that contained these ingredients. Safe-level-of-use information for each ingredient was obtained by reviewing peer-reviewed literature, the Food and Drug Administration’s (FDA generally recognized as safe (GRAS database, available Cosmetic Ingredient Review (CIR publications, and available product safety publications. The results of this analysis showed that more than 20,000 personal care and cosmetic products contained one or more of the evaluated ingredients used in WCD cleaning conditioners. Published safety information was available for 21 of the 30 evaluated ingredients: seven identified ingredients were designated as GRAS by the FDA and 16 ingredients had safe-level-of-use information available from the CIR. This study presents a screening-level safety assessment methodology that can serve as an initial screening tool to evaluate the safety of an ingredient intended for use in personal care and cosmetic products before a product is launched onto the market. This study provides evidence that the evaluated WCD cleansing conditioner ingredients

  9. Integrated vehicle-based safety systems light-vehicle field operational test, methodology and results report.

    Science.gov (United States)

    2010-12-01

    "This document presents the methodology and results from the light-vehicle field operational test conducted as part of the Integrated Vehicle-Based Safety Systems program. These findings are the result of analyses performed by the University of Michi...

  10. Economics of food safety in chains: a review of general principles

    NARCIS (Netherlands)

    Valeeva, N.I.; Meuwissen, M.P.M.; Huirne, R.B.M.

    2004-01-01

    The increased demand for safer food has resulted in the development and introduction of new food safety standards and regulations to reach a higher level of food safety. An integrated approach of controlling food safety throughout the entire food chain (`farm to table`) has become an important issue

  11. Deep Borehole Disposal Safety Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Tillman, Jack Bruce [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.

  12. Prediction of the safety level in a tritium processing facility through predictive maintenance

    International Nuclear Information System (INIS)

    Anghel, Vasile

    2007-01-01

    Full text: The safety level of a nuclear facility for personnel and environment depends generally on the technological process quality of operation and maintenance and particularly on several technical, technological, economic, and human factors. The role of maintenance is fundamental because it is determined by all the technical, economic and human elements as parts of an integrated system dominated by an important feedback from upstream activities which eventually define the life cycle of the nuclear facility considered. In the maintenance activity as in case of any dynamic area, new elements may appear which, sometimes, require new methods of approach. For considered installation which is a Nuclear Detritiation Plant (NDP) operating as a division of the National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI, Rm.Valcea, in order to ensure a safety level in operation as high as possible through predictive maintenance, the fuzzy theory and software LabVIEW were applied. The final aim is to achieve the best practices in maintenance of the tritium processing plant. The safety in operation of the NDP equipment and installations is directly related with the maintenance achieved by improving the reliability through methods and advanced techniques. The maintainability is the capacity of an industrial product, in given utilization conditions, to be maintained and re-established up to achieve specified functions. In general the reliability on some interval is a probability conditioned by good operation at the beginning of the interval, representing thus the probability as the element which operated at t = t 0 to operate in the interval (t 0 , t 1 ). The failure is a fundamental event in the reliability theory. Breakdown (failure) is understood as the stop process of the function required from a given product, the failure representing the effect upon that process. The operation of a product on a certain duration can be a 'success' or a

  13. Integrating Safety in the Aviation System: Interdepartmental Training for Pilots and Maintenance Technicians

    Science.gov (United States)

    Mattson, Marifran; Petrin, Donald A.; Young, John P.

    2001-01-01

    The study of human factors has had a decisive impact on the aviation industry. However, the entire aviation system often is not considered in researching, training, and evaluating human factors issues especially with regard to safety. In both conceptual and practical terms, we argue for the proactive management of human error from both an individual and organizational systems perspective. The results of a multidisciplinary research project incorporating survey data from professional pilots and maintenance technicians and an exploratory study integrating students from relevant disciplines are reported. Survey findings suggest that latent safety errors may occur during the maintenance discrepancy reporting process because pilots and maintenance technicians do not effectively interact with one another. The importance of interdepartmental or cross-disciplinary training for decreasing these errors and increasing safety is discussed as a primary implication.

  14. An Integrated Approach for Characterization of Uncertainty in Complex Best Estimate Safety Assessment

    International Nuclear Information System (INIS)

    Pourgol-Mohamad, Mohammad; Modarres, Mohammad; Mosleh, Ali

    2013-01-01

    This paper discusses an approach called Integrated Methodology for Thermal-Hydraulics Uncertainty Analysis (IMTHUA) to characterize and integrate a wide range of uncertainties associated with the best estimate models and complex system codes used for nuclear power plant safety analyses. Examples of applications include complex thermal hydraulic and fire analysis codes. In identifying and assessing uncertainties, the proposed methodology treats the complex code as a 'white box', thus explicitly treating internal sub-model uncertainties in addition to the uncertainties related to the inputs to the code. The methodology accounts for uncertainties related to experimental data used to develop such sub-models, and efficiently propagates all uncertainties during best estimate calculations. Uncertainties are formally analyzed and probabilistically treated using a Bayesian inference framework. This comprehensive approach presents the results in a form usable in most other safety analyses such as the probabilistic safety assessment. The code output results are further updated through additional Bayesian inference using any available experimental data, for example from thermal hydraulic integral test facilities. The approach includes provisions to account for uncertainties associated with user-specified options, for example for choices among alternative sub-models, or among several different correlations. Complex time-dependent best-estimate calculations are computationally intense. The paper presents approaches to minimize computational intensity during the uncertainty propagation. Finally, the paper will report effectiveness and practicality of the methodology with two applications to a complex thermal-hydraulics system code as well as a complex fire simulation code. In case of multiple alternative models, several techniques, including dynamic model switching, user-controlled model selection, and model mixing, are discussed. (authors)

  15. Spallation Neutron Source Accelerator Facility Target Safety and Non-safety Control Systems

    International Nuclear Information System (INIS)

    Battle, Ronald E.; DeVan, B.; Munro, John K. Jr.

    2006-01-01

    The Spallation Neutron Source (SNS) is a proton accelerator facility that generates neutrons for scientific researchers by spallation of neutrons from a mercury target. The SNS became operational on April 28, 2006, with first beam on target at approximately 200 W. The SNS accelerator, target, and conventional facilities controls are integrated by standardized hardware and software throughout the facility and were designed and fabricated to SNS conventions to ensure compatibility of systems with Experimental Physics Integrated Control System (EPICS). ControlLogix Programmable Logic Controllers (PLCs) interface to instruments and actuators, and EPICS performs the high-level integration of the PLCs such that all operator control can be accomplished from the Central Control room using EPICS graphical screens that pass process variables to and from the PLCs. Three active safety systems were designed to industry standards ISA S84.01 and IEEE 603 to meet the desired reliability for these safety systems. The safety systems protect facility workers and the environment from mercury vapor, mercury radiation, and proton beam radiation. The facility operators operated many of the systems prior to beam on target and developed the operating procedures. The safety and non-safety control systems were tested extensively prior to beam on target. This testing was crucial to identify wiring and software errors and failed components, the result of which was few problems during operation with beam on target. The SNS has continued beam on target since April to increase beam power, check out the scientific instruments, and continue testing the operation of facility subsystems

  16. An integrated safety analysis of intravenous ibuprofen (Caldolor® in adults

    Directory of Open Access Journals (Sweden)

    Southworth SR

    2015-10-01

    Full Text Available Stephen R Southworth,1 Emily J Woodward,2 Alex Peng,2 Amy D Rock21North Mississippi Sports Medicine and Orthopaedic Clinic, PLLC, Tupelo, MS, 2Department of Research and Development, Cumberland Pharmaceuticals Inc., Nashville, TN, USAAbstract: Intravenous (IV nonsteroidal anti-inflammatory drugs such as IV ibuprofen are increasingly used as a component of multimodal pain management in the inpatient and outpatient settings. The safety of IV ibuprofen as assessed in ten sponsored clinical studies is presented in this analysis. Overall, 1,752 adult patients have been included in safety and efficacy trials over 11 years; 1,220 of these patients have received IV ibuprofen and 532 received either placebo or comparator medication. The incidence of adverse events (AEs, serious AEs, and changes in vital signs and clinically significant laboratory parameters have been summarized and compared to patients receiving placebo or active comparator drug. Overall, IV ibuprofen has been well tolerated by hospitalized and outpatient patients when administered both prior to surgery and postoperatively as well as for nonsurgical pain or fever. The overall incidence of AEs is lower in patients receiving IV ibuprofen as compared to those receiving placebo in this integrated analysis. Specific analysis of hematological and renal effects showed no increased risk for patients receiving IV ibuprofen. A subset analysis of elderly patients suggests that no dose adjustment is needed in this higher risk population. This integrated safety analysis demonstrates that IV ibuprofen can be safely administered prior to surgery and continued in the postoperative period as a component of multimodal pain management.Keywords: NSAID, surgical pain, fever, perioperative analgesia, critical care, multimodal pain management

  17. An integrated environment of software development and V and V for PLC based safety-critical systems

    International Nuclear Information System (INIS)

    Koo, Seo Ryong

    2005-02-01

    To develop and implement a safety-critical system, the requirements of the system must be analyzed thoroughly during the phases of a software development's life cycle because a single error in the requirements can generate serious software faults. We therefore propose an Integrated Environment (IE) approach for requirements which is an integrated approach that enables easy inspection by combining requirement traceability and effective use of a formal method. For the V and V tasks of requirements phase, our approach uses software inspection, requirement traceability, and formal specification with structural decomposition. Software inspection and the analysis of requirements traceability are the most effective methods of software V and V. Although formal methods are also considered an effective V and V activity, they are difficult to use properly in nuclear fields, as well as in other fields, because of their mathematical nature. We also propose another Integrated Environment (IE) for the design and implementation of safety-critical systems. In this study, a nuclear FED-style design specification and analysis (NuFDS) approach was proposed for PLC based safety-critical systems. The NuFDS approach is suggested in a straightforward manner for the effective and formal specification and analysis of software designs. Accordingly, the proposed NuFDS approach comprises one technique for specifying the software design and another for analyzing the software design. In addition, with the NuFDS approach, we can analyze the safety of software on the basis of fault tree synthesis. To analyze the design phase more effectively, we propose a technique of fault tree synthesis, along with a universal fault tree template for the architecture modules of nuclear software. Various tools have been needed to make software V and V more convenient. We therefore developed four kinds of computer-aided software engineering tools that could be used in accordance with the software's life cycle to

  18. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  19. Criticality Safety Evaluation of Hanford Site High-Level Waste Storage Tanks

    International Nuclear Information System (INIS)

    ROGERS, C.A.

    2000-01-01

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions

  20. Integrating Quality and Safety Competencies to Improve Outcomes: Application in Infusion Therapy Practice.

    Science.gov (United States)

    Sherwood, Gwen; Nickel, Barbara

    Despite intense scrutiny and process improvement initiatives, patient harm continues to occur in health care with alarming frequency. The Quality and Safety Education for Nursing (QSEN) project provides a roadmap to transform nursing by integrating 6 competencies: patient-centered care, teamwork and collaboration, evidence-based practice, quality improvement, safety, and informatics. As front-line caregivers, nurses encounter inherent risks in their daily work. Infusion therapy is high risk with multiple potential risks for patient harm. This study examines individual and system application of the QSEN competencies and the Infusion Nurses Society's 2016 Infusion Therapy Standards of Practice in the improvement of patient outcomes.

  1. The condition and the dynamics of changes of regional energetic safety level

    OpenAIRE

    Anatoliy Myzin; Aleksey Kalina; Andrey Kozitsyn; Pavel Pykhov

    2006-01-01

    On the basis of indicative analysis method use, the dynamic processes of changes of energetic safety condition of federal districts and subjects of Russian Federation for last 5 years are investigated. The results of diagnosing safety levels for separate indicators, their blocks and the results of situation evaluation as a whole are discussed. The comparison of regions’ energetic safety condition is given, the causes of crisis situations appearance are discovered, and on this basis the sugg...

  2. Macro-level safety analysis of pedestrian crashes in Shanghai, China.

    Science.gov (United States)

    Wang, Xuesong; Yang, Junguang; Lee, Chris; Ji, Zhuoran; You, Shikai

    2016-11-01

    Pedestrian safety has become one of the most important issues in the field of traffic safety. This study aims at investigating the association between pedestrian crash frequency and various predictor variables including roadway, socio-economic, and land-use features. The relationships were modeled using the data from 263 Traffic Analysis Zones (TAZs) within the urban area of Shanghai - the largest city in China. Since spatial correlation exists among the zonal-level data, Bayesian Conditional Autoregressive (CAR) models with seven different spatial weight features (i.e. (a) 0-1 first order, adjacency-based, (b) common boundary-length-based, (c) geometric centroid-distance-based, (d) crash-weighted centroid-distance-based, (e) land use type, adjacency-based, (f) land use intensity, adjacency-based, and (g) geometric centroid-distance-order) were developed to characterize the spatial correlations among TAZs. Model results indicated that the geometric centroid-distance-order spatial weight feature, which was introduced in macro-level safety analysis for the first time, outperformed all the other spatial weight features. Population was used as the surrogate for pedestrian exposure, and had a positive effect on pedestrian crashes. Other significant factors included length of major arterials, length of minor arterials, road density, average intersection spacing, percentage of 3-legged intersections, and area of TAZ. Pedestrian crashes were higher in TAZs with medium land use intensity than in TAZs with low and high land use intensity. Thus, higher priority should be given to TAZs with medium land use intensity to improve pedestrian safety. Overall, these findings can help transportation planners and managers understand the characteristics of pedestrian crashes and improve pedestrian safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Guidelines for the Review of Research Reactor Safety: Revised Edition. Reference Document for IAEA Integrated Safety Assessment of Research Reactors (INSARR)

    International Nuclear Information System (INIS)

    2013-01-01

    The Integrated Safety Assessment of Research Reactors (INSARR) is an IAEA safety review service available to Member States with the objective of supporting them in ensuring and enhancing the safety of their research reactors. This service consists of performing a comprehensive peer review and an assessment of the safety of the respective research reactor. The reviews are based on IAEA safety standards and on the provisions of the Code of Conduct on the Safety of Research Reactors. The INSARR can benefit both the operating organizations and the regulatory bodies of the requesting Member States, and can include new research reactors under design or operating research reactors, including those which are under a Project and Supply Agreement with the IAEA. The first IAEA safety evaluation of a research reactor operated by a Member State was completed in October 1959 and involved the Swiss 20 MW DIORIT research reactor. Since then, and in accordance with its programme on research reactor safety, the IAEA has conducted safety review missions in its Member States to enhance the safety of their research reactor facilities through the application of the Code of Conduct on the Safety of Research Reactors and the relevant IAEA safety standards. About 320 missions in 51 Member States were undertaken between 1972 and 2012. The INSARR missions and other limited scope safety review missions are conducted following the guidelines presented in this publication, which is a revision of Guidelines for the Review of Research Reactor Safety (IAEA Services Series No. 1), published in December 1997. This publication details those IAEA safety standards and guidance publications relevant to the safety of research reactors that have been revised or published since 1997. The purpose of this publication is to give guidance on the preparation, implementation, reporting and follow-up of safety review missions. It is also intended to be of assistance to operators and regulators in conducting

  4. Verkeersveiligheid in Nederland.Nationaal overzicht ten behoeve van de OECD-group S1 on Concepts and Methodologies for Integrated Safety Programmes.

    NARCIS (Netherlands)

    Paar, H.G.

    1983-01-01

    Since 1974 traffic safety policy in the Netherlands has been coordinated by one department of the national government. For research on traffic safety there is a central integrating institute, the Dutch institute for road safety research SWOV. In 1975 a management policy for traffic safety was

  5. Development and assessment of best estimate integrated safety analysis code

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Lee, Young Jin; Hwang, Moon Kyu

    2007-03-01

    Improvement of the integrated safety analysis code MARS3.0 has been carried out and a multi-D safety analysis application system has been established. Iterative matrix solver and parallel processing algorithm have been introduced, and a LINUX version has been generated to enable MARS to run in cluster PCs. MARS variables and sub-routines have been reformed and modularised to simplify code maintenance. Model uncertainty analyses have been performed for THTF, FLECHT, NEPTUN, and LOFT experiments as well as APR1400 plant. Participations in international cooperation research projects such as OECD BEMUSE, SETH, PKL, BFBT, and TMI-2 have been actively pursued as part of code assessment efforts. The assessment, evaluation and experimental data obtained through international cooperation projects have been registered and maintained in the T/H Databank. Multi-D analyses of APR1400 LBLOCA, DVI Break, SLB, and SGTR have been carried out as a part of application efforts in multi-D safety analysis. GUI based 3D input generator has been developed for user convenience. Operation of the MARS Users Group (MUG) was continued and through MUG, the technology has been transferred to 24 organisations. A set of 4 volumes of user manuals has been compiled and the correction reports for the code errors reported during MARS development have been published

  6. Development and assessment of best estimate integrated safety analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bub Dong; Lee, Young Jin; Hwang, Moon Kyu (and others)

    2007-03-15

    Improvement of the integrated safety analysis code MARS3.0 has been carried out and a multi-D safety analysis application system has been established. Iterative matrix solver and parallel processing algorithm have been introduced, and a LINUX version has been generated to enable MARS to run in cluster PCs. MARS variables and sub-routines have been reformed and modularised to simplify code maintenance. Model uncertainty analyses have been performed for THTF, FLECHT, NEPTUN, and LOFT experiments as well as APR1400 plant. Participations in international cooperation research projects such as OECD BEMUSE, SETH, PKL, BFBT, and TMI-2 have been actively pursued as part of code assessment efforts. The assessment, evaluation and experimental data obtained through international cooperation projects have been registered and maintained in the T/H Databank. Multi-D analyses of APR1400 LBLOCA, DVI Break, SLB, and SGTR have been carried out as a part of application efforts in multi-D safety analysis. GUI based 3D input generator has been developed for user convenience. Operation of the MARS Users Group (MUG) was continued and through MUG, the technology has been transferred to 24 organisations. A set of 4 volumes of user manuals has been compiled and the correction reports for the code errors reported during MARS development have been published.

  7. Incorporation of occupational health and safety in cleaner production projects in South Africa

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2002-01-01

    The purpose of this research is to reveal ways in which occupational health and safety can be integrated in environmental cleaner production projects. Of particular interest are those cleaner production projects that are run by the Danish government's environmental assistance agency, Danced......, in South Africa.The study explores two main avenues of integration. First, integrating through better planning, focussing at the tools and procedures in use by Danced for project management -- integrating occupational health and safety into the project specification, so to speak.Second, integrating...... occupational health and safety into the environmental activities that take place at company level. Two ways of doing so are explored, the main distinction being company size. For large companies, integration of management systems may be attractive. For small companies, integration into a less formal network...

  8. Radiation safety infrastructure in developing countries: a proactive approach for integrated and continuous improvement

    International Nuclear Information System (INIS)

    Mrabit, Khammar

    2008-01-01

    The International Atomic Energy Agency (the Agency) is authorized, by its statute, to establish or adopt safety standards for the protection of health and minimization of danger to life and property, and to provide for their application to its own operations as well as to operations under its control or supervision. The Agency has been assisting, since the mid 1960 's, its Member States through mainly its Technical Cooperation Programme (TCP) to improve their national radiation safety infrastructures. However up to the early nineties, assistance was specific and mostly ad hoc and did not systematically utilize an integrated and harmonized approach to achieving effective and sustainable national radiation safety infrastructures in Member States. An unprecedented and integrated international cooperative effort was launched by the Agency in 1994 to establish and/or upgrade the national radiation safety infrastructure in more than 90 countries within the framework of its TCP through the so-called Model project on upgrading radiation protection infrastructure. In this project proactive co-operation with Member States was used in striving towards achieving an effective and sustainable radiation safety infrastructure, compatible with the International basic safety standards for protection against ionizing radiation and for the safety of radiation sources (the BSS) and related standards. Extension to include compatibility with the guidance of the Code of Conduct on the Safety and Security of Radioactive Sources occurred towards the end of the Model Project in December 2004, and with the more recent ensuing follow up projects that started in 2005. The Model Project started with 5 countries in 1994 and finished with 91 countries in 2004. Up to the end of 2007 more than one hundred Member States had been participating in follow up projects covering six themes - namely: legislative and regulatory infrastructure; occupational radiation protection; radiation protection in

  9. Integrated deterministic and probabilistic safety assessment: Concepts, challenges, research directions

    International Nuclear Information System (INIS)

    Zio, Enrico

    2014-01-01

    Highlights: • IDPSA contributes to robust risk-informed decision making in nuclear safety. • IDPSA considers time-dependent interactions among component failures and system process. • Also, IDPSA considers time-dependent interactions among control and operator actions. • Computational efficiency by advanced Monte Carlo and meta-modelling simulations. • Efficient post-processing of IDPSA output by clustering and data mining. - Abstract: Integrated deterministic and probabilistic safety assessment (IDPSA) is conceived as a way to analyze the evolution of accident scenarios in complex dynamic systems, like nuclear, aerospace and process ones, accounting for the mutual interactions between the failure and recovery of system components, the evolving physical processes, the control and operator actions, the software and firmware. In spite of the potential offered by IDPSA, several challenges need to be effectively addressed for its development and practical deployment. In this paper, we give an overview of these and discuss the related implications in terms of research perspectives

  10. Integrated deterministic and probabilistic safety assessment: Concepts, challenges, research directions

    Energy Technology Data Exchange (ETDEWEB)

    Zio, Enrico, E-mail: enrico.zio@ecp.fr [Ecole Centrale Paris and Supelec, Chair on System Science and the Energetic Challenge, European Foundation for New Energy – Electricite de France (EDF), Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2014-12-15

    Highlights: • IDPSA contributes to robust risk-informed decision making in nuclear safety. • IDPSA considers time-dependent interactions among component failures and system process. • Also, IDPSA considers time-dependent interactions among control and operator actions. • Computational efficiency by advanced Monte Carlo and meta-modelling simulations. • Efficient post-processing of IDPSA output by clustering and data mining. - Abstract: Integrated deterministic and probabilistic safety assessment (IDPSA) is conceived as a way to analyze the evolution of accident scenarios in complex dynamic systems, like nuclear, aerospace and process ones, accounting for the mutual interactions between the failure and recovery of system components, the evolving physical processes, the control and operator actions, the software and firmware. In spite of the potential offered by IDPSA, several challenges need to be effectively addressed for its development and practical deployment. In this paper, we give an overview of these and discuss the related implications in terms of research perspectives.

  11. Ontology-supported research on vaccine efficacy, safety and integrative biological networks.

    Science.gov (United States)

    He, Yongqun

    2014-07-01

    While vaccine efficacy and safety research has dramatically progressed with the methods of in silico prediction and data mining, many challenges still exist. A formal ontology is a human- and computer-interpretable set of terms and relations that represent entities in a specific domain and how these terms relate to each other. Several community-based ontologies (including Vaccine Ontology, Ontology of Adverse Events and Ontology of Vaccine Adverse Events) have been developed to support vaccine and adverse event representation, classification, data integration, literature mining of host-vaccine interaction networks, and analysis of vaccine adverse events. The author further proposes minimal vaccine information standards and their ontology representations, ontology-based linked open vaccine data and meta-analysis, an integrative One Network ('OneNet') Theory of Life, and ontology-based approaches to study and apply the OneNet theory. In the Big Data era, these proposed strategies provide a novel framework for advanced data integration and analysis of fundamental biological networks including vaccine immune mechanisms.

  12. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  13. A proposal of safety indicators aggregation to assess the safety management effectiveness of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Jose Antonio B.; Saldanha, Pedro L.C. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao-Geral de Reatores e Ciclo Combustivel], e-mail: jantonio@cnen.gov.br, e-mail: saldanha@cnen.gov.br; Melo, Paulo F.F. Frutuoso e [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: frutuoso@con.ufrj.br

    2009-07-01

    Safety management has changed with the evolution of management methods, named Quality Systems, moving from Quality Control, where the focus was the product, passing through Quality Assurance, which takes care of the whole manufacturing process and reaching the Total Quality Management, where policies and goals are established. Nowadays, there is a trend towards Management Systems, which integrate all different aspects related to the management of an organization (safety, environment, security, quality, costs and, etc), but it is necessary to have features to establish and assure that safety overrides the remaining aspects. The most usual way to reach this goal is to establish a policy where safety is a priority, but its implementation and the assessment of its effectiveness are no so simple. Nuclear power plants usually have over a hundred safety indicators in many processes dedicated to prevent and detect problems, although a lot of them do not evaluate these indicators in an integrated manner or point out degradation trends of organizational aspects, which can affect the plant safety. This work develops an aggregation of proactive and reactive safety indicators in order to evaluate the effectiveness of nuclear power plant safety management and to detect, at early stages, signs of process degradation or activities used to establish, maintain and assure safety conditions. The aggregation integrates indicators of the usual processes and is based on the manner the management activities have been developed in the last decades, that is: Planning, Doing, Checking and Acting - known as PDCA cycle - plus a fifth element related to the capability of those who perform safety activities. The proposed aggregation is in accordance to Brazilian standards and international recommendations and constitutes a friendly link between the top management level and the daily aspects of the organization. (author)

  14. A proposal of safety indicators aggregation to assess the safety management effectiveness of nuclear power plants

    International Nuclear Information System (INIS)

    Carvalho, Jose Antonio B.; Saldanha, Pedro L.C.; Melo, Paulo F.F. Frutuoso e

    2009-01-01

    Safety management has changed with the evolution of management methods, named Quality Systems, moving from Quality Control, where the focus was the product, passing through Quality Assurance, which takes care of the whole manufacturing process and reaching the Total Quality Management, where policies and goals are established. Nowadays, there is a trend towards Management Systems, which integrate all different aspects related to the management of an organization (safety, environment, security, quality, costs and, etc), but it is necessary to have features to establish and assure that safety overrides the remaining aspects. The most usual way to reach this goal is to establish a policy where safety is a priority, but its implementation and the assessment of its effectiveness are no so simple. Nuclear power plants usually have over a hundred safety indicators in many processes dedicated to prevent and detect problems, although a lot of them do not evaluate these indicators in an integrated manner or point out degradation trends of organizational aspects, which can affect the plant safety. This work develops an aggregation of proactive and reactive safety indicators in order to evaluate the effectiveness of nuclear power plant safety management and to detect, at early stages, signs of process degradation or activities used to establish, maintain and assure safety conditions. The aggregation integrates indicators of the usual processes and is based on the manner the management activities have been developed in the last decades, that is: Planning, Doing, Checking and Acting - known as PDCA cycle - plus a fifth element related to the capability of those who perform safety activities. The proposed aggregation is in accordance to Brazilian standards and international recommendations and constitutes a friendly link between the top management level and the daily aspects of the organization. (author)

  15. Integrated vehicle-based safety systems (IVBSS) : light vehicle platform field operational test data analysis plan.

    Science.gov (United States)

    2009-12-22

    This document presents the University of Michigan Transportation Research Institutes plan to : perform analysis of data collected from the light vehicle platform field operational test of the : Integrated Vehicle-Based Safety Systems (IVBSS) progr...

  16. Integrated vehicle-based safety systems (IVBSS) : heavy truck platform field operational test data analysis plan.

    Science.gov (United States)

    2009-11-23

    This document presents the University of Michigan Transportation Research Institutes plan to perform : analysis of data collected from the heavy truck platform field operational test of the Integrated Vehicle- : Based Safety Systems (IVBSS) progra...

  17. Leadership and Management for Safety. General Safety Requirements

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factor, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations (registrants and licensees) and other organizations concerned with facilities and activities that give rise to radiation risks

  18. Scenario Development Workshop Synopsis. Integration Group for the Safety Case - June 2015

    International Nuclear Information System (INIS)

    Smith, Paul; Voinis, Sylvie; Griffault, Lise; De Meredieu, Jean; Kwong, Gloria; ); Van Luik, Abraham; Bailey, Lucy; Capouet, Manuel; Depaus, Christophe; Makino, Hitoshi; Leigh, Christi; Kirkes, Ross; Leino, Jaakko; Niemeyer, Matthias; Wolf, Jens; Watson, Sarah; Franke, Bettina; Ilett, Doug; Pastina, Barbara; Weetjens, Eef

    2016-03-01

    Scenario development and selection describes the collection and organisation of the scientific and technical information relevant to the potential paths of evolution of a radioactive waste disposal facility (repository) that is necessary to assess its long-term performance and safety. In 1999, the NEA held its first workshop on scenario development in Madrid, Spain, with the objective to review the methods for developing scenarios in safety assessments and their application. Since then, the process of scenario development and analysis for the disposal of radioactive waste has changed and, in 2015, the NEA Integration Group for the Safety Case (IGSC) held a second workshop on this topic at its offices in Paris to further evaluate the experience acquired in developing scenarios since 1999. To prepare for this workshop, the IGSC also launched a survey in 2014 to gather the latest scenario development and uncertainty management strategies used in IGSC member countries. The purposes of the workshop were to (i) provide a forum to review and discuss methods for scenario development and their contribution to the development of recent safety cases (since the 1999 workshop); (ii) examine the latest methods and compare their scope, consistency and function within the overall safety assessment process, based on practical experience of applications; and (iii) provide a basis for producing the present report summarising the current status of scenario methodologies, identifying where sufficient methods exist and any outstanding problem areas. This report provides an overview of the state of the art in scenario development related to the long-term safety of geological repositories for radioactive waste. In particular, it discusses how potential scenarios are developed in safety assessments of radioactive waste that contains long-lived radionuclides. Safety assessment is the process of quantitatively and qualitatively evaluating the safety of a repository, often in support of a

  19. Development of integrated D/B system for the safety-related structures in nuclear power plant

    International Nuclear Information System (INIS)

    Cho, M. S.; Song, Y. C.; Lee, J. S.; Choi, W. S.

    2002-01-01

    The integrated D/B system is developed for digitalizing the history of the safety-related structures of nuclear power plant. It have 5 database which are consist of Generals, Structural and Design, Materials, Construction, Aging and repair information D/B. For efficient operation of the system, we are to set up the outline of the system, find out data field for target structures, and develop utilities. Utilities will be the aging and repair data management program, the close examination management program, the data search engine with various options which help users to find the information quickly, and the data management program restoring, updating and exchanging input data. Development of the integrated D/B system of the safety-related structures will contribute to management of the structures of nuclear power plant with advanced technology

  20. Integrated Plant Safety Assessment, Systematic Evaluation Program, Palisades Plant (Docket No. 50-255)

    International Nuclear Information System (INIS)

    1983-11-01

    This report documents the review completed under the SEP for those issues that required refined engineering evaluations or the continuation of ongoing evaluations after the Final IPSAR for the Palisades Plant was issued. The review has provided for (1) an assessment of the significance of differences between current technical positions on selected safety issues and those that existed when the Palisades Plant was licensed, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety when the supplement to the Final IPSAR and the Safety Evaluation Report for converting the license from a provisional to a full-term license have been issued. The Final IPSAR and its supplement will form part of the bases for considering the conversion of the provisional operating license to a full-term operating license

  1. Integrated risk management of safety and development on transportation corridors

    International Nuclear Information System (INIS)

    Thekdi, Shital A.; Lambert, James H.

    2015-01-01

    Prioritization of investments to protect safety and performance of multi-regional transportation networks from adjacent land development is a key concern for infrastructure agencies, land developers, and other stakeholders. Despite ample literature describing relationships between transportation and land use, no evidence-based methods exist for monitoring corridor needs on a large scale. Risk analysis is essential to the preservation of system safety and capacity, including avoidance of costly retrofits, regret, and belated action. This paper introduces the Corridor Trace Analysis (CTA) for prioritizing corridor segments that are vulnerable to adjacent land development. The method integrates several components: (i) estimation of likelihood of adjacent land development, using influence diagram and rule-based modeling, (ii) characterization of access point density using geospatial methods, and (iii) plural-model evaluation of corridors, monitoring indices of land development likelihood, access point densities, and traffic volumes. The results inform deployment of options that include closing access points, restricting development, and negotiation of agencies and developers. The CTA method is demonstrated on a region encompassing 6000 centerline miles (about 10,000 km) of transportation corridors. The method will be of interest to managers investing in safety and performance of infrastructure systems, balancing safety, financial, and other criteria of concern for diverse stakeholders. - Highlights: • The Corridor Trace Analysis (CTA) method for prioritizing transportation corridors. • The CTA method studies corridors vulnerable to adjacent land development. • The CTA method quantifies the influence of risk scenarios on agency priorities. • The CTA method is demonstrated on 6000 miles of critical transportation corridor

  2. Integrated plant safety assessment. Systematic evaluation program, Big Rock Point Plant (Docket No. 50-155). Final report

    International Nuclear Information System (INIS)

    1984-05-01

    The Systematic Evaluation Program was initiated in February 1977 by the U.S. Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety when the supplement to the Final Integrated Plant Safety Assessment Report has been issued. This report documents the review of the Big Rock Point Plant, which is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. It also addresses a majority of the pending licensing actions for Big Rock Point, which include TMI Action Plan requirements and implementation criteria for resolved generic issues. Equipment and procedural changes have been identified as a result of the review

  3. Fracture mechanics characteristics and associated safety margins for integrity assessment; Bruchmechanische Kennwerte und zugeordnete Sicherheitsfaktoren bei Integritaetsanalysen

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Schuler, X.; Stumpfrock, L.; Silcher, H. [Stuttgart Univ. (DE). Materialpruefungsanstalt (MPA)

    2008-07-01

    Within the integrity assessment of components and structural members of plants safety margins have to be applied, whose magnitude depend on several factors. Important factors influencing the magnitude of the safety margins are as for instance: Material behaviour (ductile / brittle behaviour), the event to be considered (local deformation / fracture), possible consequences of failure (human health, environmental damage, economic consequences) and many others. One important factor also is the fact, how precisely and reliably the appropriate material characteristics can be determined and how precisely and reliably the components behaviour can be predicted and assessed by means of this material characteristic. In contemporary safety assessment procedures by means of fracture mechanics evaluation tools (e.g. [1]) a concept of partial safety margins is proposed for application. The basic idea with this procedure is that only those sources of uncertainty have to be considered, which are relevant or may be relevant for the structure to be considered. For this purpose each source of possible uncertainty has to be quantified individually, finally only those singular safety margins are superimposed to a total safety margin which are relevant. The more the uncertainties have to be taken into account, the total safety margin to be applied, consequently will be larger. If some sources of uncertainty can be eliminated totally or can be minimized (for instance by a more reliable calculational procedure of the component loading or by more precise material characteristics), the total safety margin can be reduced. In this contribution the different procedures for the definition of safety margins within the integrity assessment by means of fracture mechanics procedures will be discussed. (orig.)

  4. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    OpenAIRE

    Hwang Bae; Dong Eok Kim; Sung-Uk Ryu; Sung-Jae Yi; Hyun-Sik Park

    2017-01-01

    Three small-break loss-of-coolant accident (SBLOCA) tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor), i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are s...

  5. Pilot-benchmarking of the WENRA safety reference levels for the spent fuel intermediate storage facility Ahaus

    International Nuclear Information System (INIS)

    Lorenz, Bernd; Roeder, Markus; Brandt, Klaus-Dieter

    2008-01-01

    Full text: The Western European Nuclear Regulator's Association (WENRA) has 2007 issued the draft of the 'Waste and Spent Fuel Storage Safety Reference Levels'. The objective of WENRA is to strive for a harmonized safety level of nuclear facilities within the European Community and these Reference Levels are a benchmark method to demonstrate the achieved level for the regulatory system and the implementation as well. Safety Reference Levels exist at the moment for Reactor Safety, Waste Storage and Decommissioning in different stages of development. ENISS, the European Nuclear Installations Safety Standards Initiative, a FORATOM based special organisation of nuclear operators, has discussed these Safety Reference Levels very intensively with WENRA and the agreement was to make a implementation benchmark-exercise for the storage facilities before the authorities finally agree on the Reference Levels. This benchmark was scheduled for the year 2008. Because of the special situation in Germany where a large number of storage facilities is in operation the German authorities felt that it would be useful to initiate a Pilot-Benchmark to get first results on the feasibility of the Reference Levels and the burden imposed to authorities and operators by these benchmark-exercises. GNS, a subsidiary company of the utilities, agreed to step into this process on a voluntary basis with its storage facility for spent fuel in Ahaus. The exercise was done in a very efficient way and in good co-operation between the authorities, local and federal, and the operator. The results in terms of safety assessments have been very satisfactory showing the high degree of safety. Although the facility was for the first time licensed already in 1987 the compliance with nearly all Reference Levels from 2007 could be demonstrated. It became also clear that newer facilities would fulfil the desired safety standard too. Nevertheless, in spite of the good results the exercise revealed some weak

  6. A Framework for an Integrated Risk Informed Decision Making Process. INSAG-25. A Report by the International Nuclear Safety Group

    International Nuclear Information System (INIS)

    2014-01-01

    There is general international agreement, as reflected in various IAEA Safety Standards on nuclear reactor design and operation, that both deterministic and probabilistic analyses contribute to reactor safety by providing insights, perspective, comprehension and balance. Accordingly, the integration of deterministic and probabilistic analyses is increasing to support design, safety evaluation and operations. Additionally, application of these approaches to physical security is now being considered by several Member States. Deterministic and probabilistic analyses yield outputs that are complementary to each other. There is thus a need to use a structured framework for consideration of deterministic and probabilistic techniques and findings. In this process, it is appropriate to encourage a balance between deterministic approaches, probabilistic analyses and other factors (see Section 3) in order to achieve an integrated decision making process that serves in an optimal fashion to ensure nuclear reactor safety. This report presents such a framework - a framework that is termed 'integrated risk informed decision making' (IRIDM). While the details of IRIDM methods may change with better understanding of the subject, the framework presented in this report is expected to apply for the foreseeable future. IRIDM depends on the integration of a wide variety of information, insights and perspectives, as well as the commitment of designers, operators and regulatory authorities ers, operators and regulatory authorities to use risk information in their decisions. This report thus focuses on key IRIDM aspects, as well considerations that bear on their application which should be taken into account in order to arrive at sound risk informed decisions. This report is intended to be in harmony with the IAEA Safety Standards and various INSAG reports relating to safety assessment and verification, and seeks to convey an appropriate approach to enhance nuclear reactor safety

  7. A Framework for an Integrated Risk Informed Decision Making Process. INSAG-25. A Report by the International Nuclear Safety Group

    International Nuclear Information System (INIS)

    2011-01-01

    There is general international agreement, as reflected in various IAEA Safety Standards on nuclear reactor design and operation, that both deterministic and probabilistic analyses contribute to reactor safety by providing insights, perspective, comprehension and balance. Accordingly, the integration of deterministic and probabilistic analyses is increasing to support design, safety evaluation and operations. Additionally, application of these approaches to physical security is now being considered by several Member States. Deterministic and probabilistic analyses yield outputs that are complementary to each other. There is thus a need to use a structured framework for consideration of deterministic and probabilistic techniques and findings. In this process, it is appropriate to encourage a balance between deterministic approaches, probabilistic analyses and other factors (see Section 3) in order to achieve an integrated decision making process that serves in an optimal fashion to ensure nuclear reactor safety. This report presents such a framework - a framework that is termed 'integrated risk informed decision making' (IRIDM). While the details of IRIDM methods may change with better understanding of the subject, the framework presented in this report is expected to apply for the foreseeable future. IRIDM depends on the integration of a wide variety of information, insights and perspectives, as well as the commitment of designers, operators and regulatory authorities to use risk information in their decisions. This report thus focuses on key IRIDM aspects, as well considerations that bear on their application which should be taken into account in order to arrive at sound risk informed decisions. This report is intended to be in harmony with the IAEA Safety Standards and various INSAG reports relating to safety assessment and verification, and seeks to convey an appropriate approach to enhance nuclear reactor safety

  8. Integrated at the neighbourhood level

    DEFF Research Database (Denmark)

    Putri, Prathiwi Widyatmi

    2017-01-01

    Cities in the Global South are generally vast due to urban sprawl. They are characterised by a varying level of density, and enclaves of informal settlements. Within this context, this article addresses the limits of large-scale and centralised water systems. It seeks to understand, qualitatively......-spatial characteristics of local communities can be accommodated. Smaller-scale development intervention also means stimulating creativity in planning and policy-making processes to address water-infrastructure needs at local levels and opens possibilities for integrating water-infrastructures with public space....... Such a decentralised approach matters to improve the overall socio-spatial quality of a neighbourhood, however it requires, in parallel, new institutional mechanisms to provide a coherent water and environmental management system at the urban level. This article argues for a synergy of two axes: the water sector...

  9. Probabilistic calibration of safety coefficients for flawed components in nuclear engineering

    International Nuclear Information System (INIS)

    Ardillon, E.; Pitner, P.; Barthelet, B.; Remond, A.

    1996-01-01

    The rules that are currently under application to verify the acceptance of flaws in nuclear components rely on deterministic criteria supposed to ensure the safe operating of plants. The interest of having a precise and reliable method to evaluate the safety margins and the integrity of components led Electricite de France to launch an approach to link directly safety coefficients with safety levels. This paper presents a probabilistic methodology to calibrate safety coefficients in relation to reliability target values. The proposed calibration procedure applies to the case of a ferritic flawed pipe using the R6 procedure for assessing the integrity of the structure. (authors). 5 refs., 5 figs

  10. Probabilistic calibration of safety coefficients for flawed components in nuclear engineering

    International Nuclear Information System (INIS)

    Ardillon, E.; Pitner, P.; Barthelet, B.; Remond, A.

    1995-01-01

    The current rules applied to verify the flaws acceptance in nuclear components rely on deterministic criteria supposed to ensure the plant safe operation. The interest in have a precise and reliable method to evaluate the safety margins and the integrity of components led Electricite de France to launch an approach to link directly safety coefficients with safety levels. This paper presents a probabilistic methodology to calibrate safety coefficients in relation do reliability target values. The proposed calibration procedure applies to the case of a ferritic flawed pipe using the R 6 procedure for assessing the structure integrity. (author). 5 refs., 5 figs., 1 tab

  11. Multilevel Safety Climate and Safety Performance in the Construction Industry: Development and Validation of a Top-Down Mechanism

    Directory of Open Access Journals (Sweden)

    Ran Gao

    2016-11-01

    Full Text Available The character of construction projects exposes front-line workers to dangers and accidents. Safety climate has been confirmed to be a predictor of safety performance in the construction industry. This study aims to explore the underlying mechanisms of the relationship between multilevel safety climate and safety performance. An integrated model was developed to study how particular safety climate factors of one level affect those of other levels, and then affect safety performance from the top down. A questionnaire survey was administered on six construction sites in Vietnam. A total of 1030 valid questionnaires were collected from this survey. Approximately half of the data were used to conduct exploratory factor analysis (EFA and the remaining data were submitted to structural equation modeling (SEM. Top management commitment (TMC and supervisors’ expectation (SE were identified as factors to represent organizational safety climate (OSC and supervisor safety climate (SSC, respectively, and coworkers’ caring and communication (CCC and coworkers’ role models (CRM were identified as factors to denote coworker safety climate (CSC. SEM results show that OSC factor is positively related to SSC factor and CSC factors significantly. SSC factor could partially mediate the relationship between OSC factor and CSC factors, as well as the relationship between OSC factor and safety performance. CSC factors partially mediate the relationship between OSC factor and safety performance, and the relationship between SSC factor and safety performance. The findings imply that a positive safety culture should be established both at the organizational level and the group level. Efforts from all top management, supervisors, and coworkers should be provided to improve safety performance in the construction industry.

  12. Multilevel Safety Climate and Safety Performance in the Construction Industry: Development and Validation of a Top-Down Mechanism.

    Science.gov (United States)

    Gao, Ran; Chan, Albert P C; Utama, Wahyudi P; Zahoor, Hafiz

    2016-11-08

    The character of construction projects exposes front-line workers to dangers and accidents. Safety climate has been confirmed to be a predictor of safety performance in the construction industry. This study aims to explore the underlying mechanisms of the relationship between multilevel safety climate and safety performance. An integrated model was developed to study how particular safety climate factors of one level affect those of other levels, and then affect safety performance from the top down. A questionnaire survey was administered on six construction sites in Vietnam. A total of 1030 valid questionnaires were collected from this survey. Approximately half of the data were used to conduct exploratory factor analysis (EFA) and the remaining data were submitted to structural equation modeling (SEM). Top management commitment (TMC) and supervisors' expectation (SE) were identified as factors to represent organizational safety climate (OSC) and supervisor safety climate (SSC), respectively, and coworkers' caring and communication (CCC) and coworkers' role models (CRM) were identified as factors to denote coworker safety climate (CSC). SEM results show that OSC factor is positively related to SSC factor and CSC factors significantly. SSC factor could partially mediate the relationship between OSC factor and CSC factors, as well as the relationship between OSC factor and safety performance. CSC factors partially mediate the relationship between OSC factor and safety performance, and the relationship between SSC factor and safety performance. The findings imply that a positive safety culture should be established both at the organizational level and the group level. Efforts from all top management, supervisors, and coworkers should be provided to improve safety performance in the construction industry.

  13. AN ADVANCED TOOL FOR APPLIED INTEGRATED SAFETY MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Potts, T. Todd; Hylko, James M.; Douglas, Terence A.

    2003-02-27

    WESKEM, LLC's Environmental, Safety and Health (ES&H) Department had previously assessed that a lack of consistency, poor communication and using antiquated communication tools could result in varying operating practices, as well as a failure to capture and disseminate appropriate Integrated Safety Management (ISM) information. To address these issues, the ES&H Department established an Activity Hazard Review (AHR)/Activity Hazard Analysis (AHA) process for systematically identifying, assessing, and controlling hazards associated with project work activities during work planning and execution. Depending on the scope of a project, information from field walkdowns and table-top meetings are collected on an AHR form. The AHA then documents the potential failure and consequence scenarios for a particular hazard. Also, the AHA recommends whether the type of mitigation appears appropriate or whether additional controls should be implemented. Since the application is web based, the information is captured into a single system and organized according to the >200 work activities already recorded in the database. Using the streamlined AHA method improved cycle time from over four hours to an average of one hour, allowing more time to analyze unique hazards and develop appropriate controls. Also, the enhanced configuration control created a readily available AHA library to research and utilize along with standardizing hazard analysis and control selection across four separate work sites located in Kentucky and Tennessee. The AHR/AHA system provides an applied example of how the ISM concept evolved into a standardized field-deployed tool yielding considerable efficiency gains in project planning and resource utilization. Employee safety is preserved through detailed planning that now requires only a portion of the time previously necessary. The available resources can then be applied to implementing appropriate engineering, administrative and personal protective equipment

  14. Fluor Daniel Hanford Inc. integrated safety management system phase 1 verification final report

    International Nuclear Information System (INIS)

    PARSONS, J.E.

    1999-01-01

    The purpose of this review is to verify the adequacy of documentation as submitted to the Approval Authority by Fluor Daniel Hanford, Inc. (FDH). This review is not only a review of the Integrated Safety Management System (ISMS) System Description documentation, but is also a review of the procedures, policies, and manuals of practice used to implement safety management in an environment of organizational restructuring. The FDH ISMS should support the Hanford Strategic Plan (DOE-RL 1996) to safely clean up and manage the site's legacy waste; deploy science and technology while incorporating the ISMS theme to ''Do work safely''; and protect human health and the environment

  15. System-level integration of active silicon photonic biosensors

    Science.gov (United States)

    Laplatine, L.; Al'Mrayat, O.; Luan, E.; Fang, C.; Rezaiezadeh, S.; Ratner, D. M.; Cheung, K.; Dattner, Y.; Chrostowski, L.

    2017-02-01

    Biosensors based on silicon photonic integrated circuits have attracted a growing interest in recent years. The use of sub-micron silicon waveguides to propagate near-infrared light allows for the drastic reduction of the optical system size, while increasing its complexity and sensitivity. Using silicon as the propagating medium also leverages the fabrication capabilities of CMOS foundries, which offer low-cost mass production. Researchers have deeply investigated photonic sensor devices, such as ring resonators, interferometers and photonic crystals, but the practical integration of silicon photonic biochips as part of a complete system has received less attention. Herein, we present a practical system-level architecture which can be employed to integrate the aforementioned photonic biosensors. We describe a system based on 1 mm2 dies that integrate germanium photodetectors and a single light coupling device. The die are embedded into a 16x16 mm2 epoxy package to enable microfluidic and electrical integration. First, we demonstrate a simple process to mimic Fan-Out Wafer-level-Packaging, which enables low-cost mass production. We then characterize the photodetectors in the photovoltaic mode, which exhibit high sensitivity at low optical power. Finally, we present a new grating coupler concept to relax the lateral alignment tolerance down to +/- 50 μm at 1-dB (80%) power penalty, which should permit non-experts to use the biochips in a"plug-and-play" style. The system-level integration demonstrated in this study paves the way towards the mass production of low-cost and highly sensitive biosensors, and can facilitate their wide adoption for biomedical and agro-environmental applications.

  16. Progress in the High Level Trigger Integration

    CERN Multimedia

    Cristobal Padilla

    2007-01-01

    During the week from March 19th to March 23rd, the DAQ/HLT group performed another of its technical runs. On this occasion the focus was on integrating the Level 2 and Event Filter triggers, with a much fuller integration of HLT components than had been done previously. For the first time this included complete trigger slices, with a menu to run the selection algorithms for muons, electrons, jets and taus at the Level-2 and Event Filter levels. This Technical run again used the "Pre-Series" system (a vertical slice prototype of the DAQ/HLT system, see the ATLAS e-news January issue for details). Simulated events, provided by our colleagues working in the streaming tests, were pre-loaded into the ROS (Read Out System) nodes. These are the PC's where the data from the detector is stored after coming out of the front-end electronics, the "first part of the TDAQ system" and the interface to the detectors. These events used a realistic beam interaction mixture and had been subjected to a Level-1 selection. The...

  17. Standard model for the safety analysis report of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    1980-02-01

    This norm establishes the Standard Model for the Safety Analysis Report of Nuclear Fuel Reprocessing Plants, comprehending the presentation format, the detailing level of the minimum information required by the CNEN for evaluation the requests of Construction License or Operation Authorization, in accordance with the legislation in force. This regulation applies to the following basic reports: Preliminary Safety Analysis Report - PSAR, integrating part of the requirement of Construction License; and Final Safety Analysis Report (FSAR) which is the integrating part of the requirement for Operation Authorization

  18. Integrated Delivery of Quality, Safety and Environment through Road Sector Procurement: The Case of Public Sector Agencies in Ghana

    Directory of Open Access Journals (Sweden)

    Abdul-Majeed Mahamadu

    2015-01-01

    Full Text Available Poor quality, safety and environmental (QSE performance within Ghana's road sector has been cited as a major challenge in the procurement of infrastructure. This study evaluates the applicability and level of integrated consideration of QSE in the delivery of roads through procurement by public sector agencies in Ghana. Integrated delivery is explored on the basis of theoretical and empirical evidence of an existing synergistic relationship among QSE in the management and delivery of projects. A mixed methodological design was adopted to investigate two public road agencies through a questionnaire survey and interviews of technical staff with procurement responsibilities. This was done concurrently with soliciting professional perspectives on the subject. Procurement is widely regarded as paramount to the delivery of better QSE in the Ghana road sector. However, the level of synergistic consideration is low, which is attributable to an over-reliance on traditional procurement arrangements as a result of non-supportive local procurement regulatory frameworks. It is further established that a general lack of know-how and experience in the use of modern and integrated procurement arrangements prevent effective management and realisation of QSE beyond the current focus on time and cost through procurement processes within public road sector agencies.

  19. Derivation methods for clearance levels and safety assessments for very low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Okoshi, Minoru

    2001-01-01

    The clearance level was evaluated by the dose of concrete and metal when they would be recycled and reused from shallow land burial of radioactive facilities. The state of waste after clearance is not specified, so that we studied large scale of exposure pathways. The parameter values used for safety assessment were determined as the average values under the consideration of natural and social environment in Japan. Propriety of these values was confirmed by a probability analysis. On the safety assessment of very low-level waste disposal facility, the disposer pathway and parameters were determined under the consideration of special site conditions (natural and social environment) and properties of waste. However, the same exposure pathway of them used the same model for external (exposure by sky shine' s ray) and internal exposure. The calculation results of estimated pathway showed 1.2x10 -5 mSv/y the largest dose for the external exposure pathway by sky shine's ray. (S.Y.)

  20. Technology Integration Support Levels for In-Service Teachers

    Science.gov (United States)

    Williams, Mable Evans

    2017-01-01

    In-service teachers across the globe are expected to integrate technology in their respective instructional content area. The purpose of this qualitative study was to explore the perceptions of in-service teachers concerning building-level support for technology integration. Participants in the study were asked to participate in semi-structured…

  1. Integration of Active and Passive Safety Technologies--A Method to Study and Estimate Field Capability.

    Science.gov (United States)

    Hu, Jingwen; Flannagan, Carol A; Bao, Shan; McCoy, Robert W; Siasoco, Kevin M; Barbat, Saeed

    2015-11-01

    The objective of this study is to develop a method that uses a combination of field data analysis, naturalistic driving data analysis, and computational simulations to explore the potential injury reduction capabilities of integrating passive and active safety systems in frontal impact conditions. For the purposes of this study, the active safety system is actually a driver assist (DA) feature that has the potential to reduce delta-V prior to a crash, in frontal or other crash scenarios. A field data analysis was first conducted to estimate the delta-V distribution change based on an assumption of 20% crash avoidance resulting from a pre-crash braking DA feature. Analysis of changes in driver head location during 470 hard braking events in a naturalistic driving study found that drivers' head positions were mostly in the center position before the braking onset, while the percentage of time drivers leaning forward or backward increased significantly after the braking onset. Parametric studies with a total of 4800 MADYMO simulations showed that both delta-V and occupant pre-crash posture had pronounced effects on occupant injury risks and on the optimal restraint designs. By combining the results for the delta-V and head position distribution changes, a weighted average of injury risk reduction of 17% and 48% was predicted by the 50th percentile Anthropomorphic Test Device (ATD) model and human body model, respectively, with the assumption that the restraint system can adapt to the specific delta-V and pre-crash posture. This study demonstrated the potential for further reducing occupant injury risk in frontal crashes by the integration of a passive safety system with a DA feature. Future analyses considering more vehicle models, various crash conditions, and variations of occupant characteristics, such as age, gender, weight, and height, are necessary to further investigate the potential capability of integrating passive and DA or active safety systems.

  2. Pedestrian safety management using the risk-based approach

    Directory of Open Access Journals (Sweden)

    Romanowska Aleksandra

    2017-01-01

    Full Text Available The paper presents a concept of a multi-level pedestrian safety management system. Three management levels are distinguished: strategic, tactical and operational. The basis for the proposed approach to pedestrian safety management is a risk-based method. In the approach the elements of behavioural and systemic theories were used, allowing for the development of a formalised and repeatable procedure integrating the phases of risk assessment and response to the hazards of road crashes involving pedestrians. Key to the method are tools supporting pedestrian safety management. According to the risk management approach, the tools can be divided into two groups: tools supporting risk assessment and tools supporting risk response. In the paper attention is paid to selected tools supporting risk assessment, with particular emphasis on the methods for estimating forecasted pedestrian safety measures (at strategic, national and regional level and identification of particularly dangerous locations in terms of pedestrian safety at tactical (regional and local and operational level. The proposed pedestrian safety management methods and tools can support road administration in making rational decisions in terms of road safety, safety of road infrastructure, crash elimination measures or reducing the consequences suffered by road users (particularly pedestrians as a result of road crashes.

  3. Experience in the development and practical use of working control levels for radiation safety

    International Nuclear Information System (INIS)

    Epishin, A.V.

    1981-01-01

    The experience of development and practical use of working control levels (WCL) of radiation safety in the Gorky region, is discussed. WCL are introduced by ''Radiation Safety Guides'' (RSG-76) and have great practical importance. Regional control levels of radiation safety are determined for certain types of operations implying radioactive hazard and differentiated according to the types of sources applied and types of operation. Dose rates, radioactive contamination of operating surfaces, skin, air and waste water are subject to normalization. Limits of individual radiation doses specified according to operation categories are included. 10 tables of regional WCL indices are developed [ru

  4. Regulatory review of probabilistic safety assessment (PSA) Level 2

    International Nuclear Information System (INIS)

    2001-07-01

    Probabilistic safety assessment (PSA) is increasingly being used as part of the decision making process to assess the level of safety of nuclear power plants. The methodologies in use are maturing and the insights gained from the PSAs are being used along with those from deterministic analysis. Many regulatory authorities consider the current state of the art in PSA to be sufficiently well developed for results to be used centrally in the regulatory decision making process-referred to as risk informed regulation. For these applications to be successful, it will be necessary for the regulatory authority to have a high degree of confidence in the PSA. However, at the 1994 IAEA Technical Committee Meeting on Use of PSA in the Regulatory Process and at the OECD Nuclear Energy Agency Committee for Nuclear Regulatory Activities (CNRA) 'Special Issues' meeting in 1997 on Review Procedures and Criteria for Different Regulatory Applications of PSA, it was recognized that formal regulatory review guidance for PSA did not exist. The senior regulators noted that there was a need to produce some international guidance for reviewing PSAs to establish an agreed basis for assessing whether important technological and methodological issues in PSAs are treated adequately and to verify that conclusions reached are appropriate. In 1997, the IAEA and OECD Nuclear Energy Agency agreed to produce, in cooperation, guidance on Regulatory Review of PSA. This led to the publication of IAEA-TECDOC-1135 on the Regulatory Review of Probabilistic Safety Assessment (PSA) Level 1, which gives advice for the review of Level 1 PSA for initiating events occurring at power plants. This TECDOC extends the coverage to address the regulatory review of Level 2 PSA.These publications are intended to provide guidance to regulatory authorities on how to review the PSA for a nuclear power plant to gain confidence that it has been carried out to an acceptable level of quality so that it can be used as the

  5. High level issues in reliability quantification of safety-critical software

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2012-01-01

    For the purpose of developing a consensus method for the reliability assessment of safety-critical digital instrumentation and control systems in nuclear power plants, several high level issues in reliability assessment of the safety-critical software based on Bayesian belief network modeling and statistical testing are discussed. Related to the Bayesian belief network modeling, the relation between the assessment approach and the sources of evidence, the relation between qualitative evidence and quantitative evidence, how to consider qualitative evidence, and the cause-consequence relation are discussed. Related to the statistical testing, the need of the consideration of context-specific software failure probabilities and the inability to perform a huge number of tests in the real world are discussed. The discussions in this paper are expected to provide a common basis for future discussions on the reliability assessment of safety-critical software. (author)

  6. Regulatory requirements for demonstration of the achieved safety level at the Mochovce NPP before commissioning

    International Nuclear Information System (INIS)

    Lipar, M.

    1997-01-01

    A review of regulatory requirements for demonstration of the achieved safety level at the Mochovce NPP before commissioning is given. It contains licensing steps in Slovakia during commissioning; Status and methodology of Mochovce safety analysis report; Mochovce NPP safety enhancement program; Regulatory body policy towards Mochovce NPP safety enhancement; Recent development in Mochovce pre-operational safety enhancement program review and assessment process; Licensing steps in Slovakia during commissioning

  7. An Integrated Intervention for Increasing Clinical Nurses’ Knowledge of HIV/AIDS-Related Occupational Safety

    Directory of Open Access Journals (Sweden)

    Liping He

    2016-11-01

    Full Text Available Background: Approximately 35 new HIV (Human Immunodeficiency Virus, HIV cases and at least 1000 serious infections are transmitted annually to health care workers. In China, HIV prevalence is increasing and nursing personnel are encountering these individuals more than in the past. Contaminated needle-stick injuries represent a significant occupational burden for nurses. Evidence suggests that nurses in China may not fully understand HIV/AIDS (Acquired immunodeficiency syndrome, AIDS and HIV-related occupational safety. At this time, universal protection precautions are not strictly implemented in Chinese hospitals. Lack of training may place nurses at risk for occupational exposure to blood-borne pathogens. Objectives: To assess the effectiveness of integrated interventions on nurses’ knowledge improvement about reducing the risk of occupationally acquired HIV infection. Methods: We audited integrated interventions using 300 questionnaires collected from nurses at the Affiliated Hospital of Xiangnan University, a public polyclinic in Hunan Province. The intervention studied was multifaceted and included appropriate and targeted training content for hospital, department and individual levels. After three months of occupational safety integrated interventions, 234 participants who completed the program were assessed. Results: Of the subjects studied, 94.3% (283/300 were injured one or more times by medical sharp instruments or splashed by body fluids in the last year and 95.3% considered their risk of occupational exposure high or very high. After the intervention, awareness of HIV/AIDS-related knowledge improved significantly (χ2 = 86.34, p = 0.00, and correct answers increased from 67.9% to 82.34%. Correct answers regarding risk perception were significantly different between pre-test (54.4% and post-test (66.6% (χ2 = 73.2, p = 0.00. When coming into contact with patient body fluids and blood only 24.0% of subjects used gloves regularly

  8. Management concepts and safety applications for nuclear fuel facilities

    International Nuclear Information System (INIS)

    Eisner, H.; Scotti, R.S.

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities

  9. Management concepts and safety applications for nuclear fuel facilities

    Energy Technology Data Exchange (ETDEWEB)

    Eisner, H.; Scotti, R.S. [George Washington Univ., Washington, DC (United States). School of Engineering and Applied Science; Delicate, W.S. [KEVRIC Co., Inc., Silver Spring, MD (United States)

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities.

  10. [B-BS and occupational health and safety management systems].

    Science.gov (United States)

    Bacchetta, Adriano Paolo

    2010-01-01

    The objective of a SGSL is the "prevention" agreement as approach of "pro-active" toward the safety at work through the construction of an integrated managerial system in synergic an dynamic way with the business organization, according to continuous improvement principles. Nevertheless the adoption of a SGSL, not could guarantee by itself the obtainment of the full effectiveness than projected and every individual's adhesion to it, must guarantee it's personal involvement in proactive way, so that to succeed to actual really how much hypothesized to systemic level to increase the safety in firm. The objective of a behavioral safety process that comes to be integrated in a SGSL, it has the purpose to succeed in implementing in firm a process of cultural change that raises the workers social group fundamental safety value, producing an ample and full involvement of all in the activities of safety at work development. SGSL = Occupational Health and Safety Management System.

  11. Integrated management system implementation strategy for PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Phongsakorn Prak Tom; Shaharum Ramli; Mohamad Azman Che Mat Isa; Shahirah Abdul Rahman; Mohd Zaid Mohamed; Mat Zin Mat Husin; Nurfazila Husain; Mohamad Puad Abu

    2012-01-01

    Integrated Management System (IMS) designed to fulfil the requirements integrates safety, health, environmental, security, quality and economic elements. PUSPATI TRIGA Reactor (RTP) is currently implementing the Quality Assurance Program (QAP) and looking toward implementation of IMS. This paper discussed the implementation strategy of IMS for RTP. There are nine steps of IMS implementation strategy. In implementation of IMS, Gantt chart is useful project management tool in managing the project frame work. IMS is intended as a tool to enable the continuous development of safety culture and achieve higher safety levels. (author)

  12. Integrated occupational safety and health management solutions and industrial cases

    CERN Document Server

    Häkkinen, Kari; Niskanen, Toivo

    2015-01-01

    Maximizing reader insights into a new movement toward leadership approaches that are collaborated and shared,  and which views Occupational Safety and Health (OSH) and performance excellence within the wider examination of leadership relationships and practices, this book argues that these relationships and processes are so central to the establishment of OSH functioning that studying them warrants a broad, cross-disciplinary, multiple method analysis. Exploring the complexity of leadership by the impact that contexts (e.g., national and organizational culture) may have on leaders, this book discusses the related literature, then moves forward to show how a more comprehensive practical approach to Occupational Safety and Health and performance excellence can function on levels pertaining to events, individuals, groups, and organizations. This book proposes that greater clarity in understanding leadership in Occupational Safety and Health and performance excellence can be developed from addressing two fundame...

  13. Integrating risk management and safety culture in a framework for risk informed decision making

    International Nuclear Information System (INIS)

    Nelson, W.R.

    2009-01-01

    Operators and regulators of nuclear power plants agree on the importance of maintaining safety and controlling accident risks. Effective safety and risk management requires treatment of both technical and organizational components. Probabilistic Risk Assessment (PRA) provides tools for technical risk management. However, organizational factors are not treated in PRA, but are addressed using different approaches. To bring both components together, a framework of Risk Informed Decision Making (RIDM) is needed. The objective tree structure of the International Atomic Energy Agency (IAEA) is a promising approach to combine both elements. Effective collaboration involving regulatory and industry groups is needed to accomplish the integration. (author)

  14. NuSEE: an integrated environment of software specification and V and V for PLC based safety-critical systems

    International Nuclear Information System (INIS)

    Koo, Seo Ryong; Seong, Poong Hyun; Yoo, Jun Beom; Cha, Sung Deok; Youn, Cheong; Han, Hyun Chul

    2006-01-01

    As the use of digital systems becomes more prevalent, adequate techniques for software specification and analysis have become increasingly important in Nuclear Power Plant (NPP) safety-critical systems. Additionally, the importance of software Verification and Validation (V and V) based on adequate specification has received greater emphasis in view of improving software quality. For thorough V and V of safety-critical systems, V and V should be performed throughout the software lifecycle. However, systematic V and V is difficult as it involves many manual-oriented tasks. Tool support is needed in order to more conveniently perform software V and V. In response, we developed four kinds of Computer Aided Software Engineering (CASE) tools to support system specification for a formal-based analysis according to the software lifecycle. In this work, we achieved optimized integration of each tool. The toolset, NuSEE, is an integrated environment for software specification and V and V for PLC based safety-critical systems. In accordance with the software lifecycle, NuSEE consists of NuSISRT for the concept phase, NuSRS for the requirements phase, NuSDS for the design phase and NuSCM for configuration management. It is believed that after further development our integrated environment will be a unique and promising software specification and analysis toolset that will support the entire software lifecycle for the development of PLC based NPP safety-critical systems

  15. A comparison of integrated safety analysis and probabilistic risk assessment

    International Nuclear Information System (INIS)

    Damon, Dennis R.; Mattern, Kevin S.

    2013-01-01

    The U.S. Nuclear Regulatory Commission conducted a comparison of two standard tools for risk informing the regulatory process, namely, the Probabilistic Risk Assessment (PRA) and the Integrated Safety Analysis (ISA). PRA is a calculation of risk metrics, such as Large Early Release Frequency (LERF), and has been used to assess the safety of all commercial power reactors. ISA is an analysis required for fuel cycle facilities (FCFs) licensed to possess potentially critical quantities of special nuclear material. A PRA is usually more detailed and uses more refined models and data than an ISA, in order to obtain reasonable quantitative estimates of risk. PRA is considered fully quantitative, while most ISAs are typically only partially quantitative. The extension of PRA methodology to augment or supplant ISAs in FCFs has long been considered. However, fuel cycle facilities have a wide variety of possible accident consequences, rather than a few surrogates like LERF or core damage as used for reactors. It has been noted that a fuel cycle PRA could be used to better focus attention on the most risk-significant structures, systems, components, and operator actions. ISA and PRA both identify accident sequences; however, their treatment is quite different. ISA's identify accidents that lead to high or intermediate consequences, as defined in 10 Code of Federal Regulations (CFR) 70, and develop a set of Items Relied on For Safety (IROFS) to assure adherence to performance criteria. PRAs identify potential accident scenarios and estimate their frequency and consequences to obtain risk metrics. It is acceptable for ISAs to provide bounding evaluations of accident consequences and likelihoods in order to establish acceptable safety; but PRA applications usually require a reasonable quantitative estimate, and often obtain metrics of uncertainty. This paper provides the background, features, and methodology associated with the PRA and ISA. The differences between the

  16. Integrating model checking with HiP-HOPS in model-based safety analysis

    International Nuclear Information System (INIS)

    Sharvia, Septavera; Papadopoulos, Yiannis

    2015-01-01

    The ability to perform an effective and robust safety analysis on the design of modern safety–critical systems is crucial. Model-based safety analysis (MBSA) has been introduced in recent years to support the assessment of complex system design by focusing on the system model as the central artefact, and by automating the synthesis and analysis of failure-extended models. Model checking and failure logic synthesis and analysis (FLSA) are two prominent MBSA paradigms. Extensive research has placed emphasis on the development of these techniques, but discussion on their integration remains limited. In this paper, we propose a technique in which model checking and Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) – an advanced FLSA technique – can be applied synergistically with benefit for the MBSA process. The application of the technique is illustrated through an example of a brake-by-wire system. - Highlights: • We propose technique to integrate HiP-HOPS and model checking. • State machines can be systematically constructed from HiP-HOPS. • The strengths of different MBSA techniques are combined. • Demonstrated through modeling and analysis of brake-by-wire system. • Root cause analysis is automated and system dynamic behaviors analyzed and verified

  17. Safety and protection aspects of the management of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Candes, P.; Pradel, J.

    1977-01-01

    Appropriate consideration is given in France to safety and protection problems to be solved from production up to the final disposal of high-level radioactive wastes. The first stage of this work consisted in emphasizing the various technical options. Different strategies appear to be possible, taking into account the technical, political and psychological difficulties. This results in evaluating the safety problems to be solved in the framework of those strategies. In this field the main safety and protection principles do not differ from those applying to other nuclear facilities. Nevertheless, the factor of time is in most cases quite different (thousands or millions of years). The question is then raised of evaluating the importance to be given to very remote consequences, both at philosophical and at scientific levels. As a first result of these considerations, the application of the barrier concept is recommended. This concept is familiar to safety specialists. Different barriers, for which particular problems are listed and evaluated, are defined. Another result with regard to radiation protection principles is to consider that if safety provisions should lead to as efficient a containment of radioactive products as possible, it would not be realistic to consider such a containment as absolute, in particular for disposal lasting anything up to thousands of years. It is therefore assumed that a limited radioactivity transfer should be taken into account, and its consequences for the environment and man calculated. This is especially true in the study of an appropriate site for final storage, and the study should necessarily include a detailed investigation of the retention characteristics of soil layers, and the implementation of appropriate models giving a sufficiently accurate evaluation of the consequences of transfers, including those related to the effect of various elements after their arrival into the biosphere. The authors review the different

  18. Integrated maintenance planning in manufacturing systems

    CERN Document Server

    Al-Turki, Umar M; Yilbas, Bekir Sami; Sahin, Ahmet Ziyaettin

    2014-01-01

    This book introduces the concept of integrated planning for maintenance and production taken into account quality and safety for high global socio-economic impact. It provides insight into the planning process at a global level starting from the business level and ending with the operational level where the plan is implemented and controlled.

  19. Fluor Daniel Hanford Inc. integrated safety management system phase 1 verification final report

    Energy Technology Data Exchange (ETDEWEB)

    PARSONS, J.E.

    1999-10-28

    The purpose of this review is to verify the adequacy of documentation as submitted to the Approval Authority by Fluor Daniel Hanford, Inc. (FDH). This review is not only a review of the Integrated Safety Management System (ISMS) System Description documentation, but is also a review of the procedures, policies, and manuals of practice used to implement safety management in an environment of organizational restructuring. The FDH ISMS should support the Hanford Strategic Plan (DOE-RL 1996) to safely clean up and manage the site's legacy waste; deploy science and technology while incorporating the ISMS theme to ''Do work safely''; and protect human health and the environment.

  20. From organizational integration to clinical integration: analysis of the path between one level of integration to another using official documents

    Science.gov (United States)

    Mandza, Matey; Gagnon, Dominique; Carrier, Sébastien; Belzile, Louise; Demers, Louis

    2010-01-01

    Purpose Services’ integration comprises organizational, normative, economic, informational and clinical dimensions. Since 2004, the province of Quebec has devoted significant efforts to unify the governance of the main health and social care organizations of its various territories. Notwithstanding the uniformity of the national plan’s prescription, the territorial integration modalities greatly vary across the province. Theory This research is based upon a conceptual model of integration that comprises six components: inter-organizational partnership, case management, standardized assessment, a single entry point, a standardized service planning tool and a shared clinical file. Methods We conducted an embedded case study in six contrasted sites in terms of their level of integration. All documents prescribing the implementation of integration were retrieved and analyzed. Results and conclusions The analyzed documents demonstrate a growing local appropriation of the current integrative reform. Interestingly however, no link seems to exist between the quality of local prescriptions and the level of integration achieved in each site. This finding leads us to hypothesize that the variable quality of the operational accompaniment offered to implement these prescriptions is a variable in play.

  1. Safety evaluation of socket weld integrity in nuclear piping

    International Nuclear Information System (INIS)

    Choi, Y.H.; Kim, H.J.; Choi, S.Y.; Kim, Y.J.; Kim, Y.J.

    2004-01-01

    The purposes of this paper are to evaluate the integrity of socket weld in nuclear piping and prepare the technical basis for a new guideline on radiographic testing (RT) for the socket weld. Recently, the integrity of the socket weld is regarded as a safety concern in nuclear power plants because lots of failures and leaks have been reported in the socket weld. The root causes of the socket weld failure are known as unanticipated loadings such as vibration or thermal fatigue and improper weld joint during construction. The ASME Code sec. III requires 1/16 inch gap between the pipe and fitting in the socket weld. Many failure cases, however, showed that the gap requirement was not satisfied. The Code also requires magnetic particle examination (MT) or liquid penetration examination (PT) on the socket weld, but not radiographic examination (RT). It means that it is not easy to examine the 1/16 inch gap in the socket weld by using the NDE methods currently required in the Code. In this paper, the effects of the requirements in the ASME Code sec. III on the socket weld integrity were evaluated by using finite element method. The crack behavior in the socket weld was also investigated under vibration event in nuclear power plants. The results showed that the socket weld was very susceptible to the vibration if the requirements in ASME Code were not satisfied. The constraint between the pipe and fitting due to the contact significantly affects the integrity of the socket weld. This paper also suggests a new guideline on the RT for the socket weld during construction stage in nuclear power plants. (orig.)

  2. Development of the Mathematical Model of Integrated Management System for an Airline

    Directory of Open Access Journals (Sweden)

    Bogdane Ruta

    2016-12-01

    Full Text Available At the present stage of airline development the most effective way to increase safety is to introduce a systematic approach to the management of the organization. The creation of a single integrated management system including the combination of resources will make it possible to maintain the necessary level of quality of aviation services with safety as a key indicator. The article offers a model of such an integrated management system for medium level airlines.

  3. Knowledge, attitudes and practices of food handlers in food safety: An integrative review.

    Science.gov (United States)

    Zanin, Laís Mariano; da Cunha, Diogo Thimoteo; de Rosso, Veridiana Vera; Capriles, Vanessa Dias; Stedefeldt, Elke

    2017-10-01

    This study presents an overview of the relationship between knowledge, attitudes and practices (KAP) of food handlers with training in food safety, in addition to proposing reflections on the training of food handlers, considering its responsibility for food safety and health of consumers. The review was based on the integrative method. The descriptors used were: (food handler), (knowledge, attitudes and practice) and (training). Six databases were searched, 253 articles were consulted and 36 original articles were included. Fifty per cent of the articles pointed that there was no proper translation of knowledge into attitudes/practices or attitudes into practices after training. Knowledge, attitudes and practices of food handlers are important for identifying how efficient training in food safety is allowing prioritize actions in planning training. The evaluation of KAP is the first step to understand the food handler's point of view. After this evaluation other diagnostic strategies become necessary to enhance this understanding. Copyright © 2017. Published by Elsevier Ltd.

  4. Patient safety in maternal healthcare at secondary and tertiary level facilities in Delhi, India

    Directory of Open Access Journals (Sweden)

    Chandrakant Lahariya

    2015-01-01

    Full Text Available Background: There is insufficient information on causes of unsafe care at facility levels in India. This study was conducted to understand the challenges in government hospitals in ensuring patient safety and to propose solutions to improve patient care. Materials and Methods: Desk review, in-depth interviews, and focused group discussions were conducted between January and March 2014. Healthcare providers and nodal persons for patient safety in Gynecology and Obstetrics Departments of government health facilities from Delhi state of India were included. Data were analyzed using qualitative research methods and presented adopting the "health system approach." Results: The patient safety was a major concern among healthcare providers. The key challenges identified were scarcity of resources, overcrowding at health facilities, poor communications, patient handovers, delay in referrals, and the limited continuity of care. Systematic attention on the training of care providers involved in service delivery, prescription audits, peer reviews, facility level capacity building plan, additional financial resources, leadership by institutional heads and policy makers were suggested as possible solutions. Conclusions: There is increasing awareness and understanding about challenges in patient safety. The available local information could be used for selection, designing, and implementation of measures to improve patient safety at facility levels. A systematic and sustained approach with attention on all functions of health systems could be beneficial. Patient safety could be used as an entry point to improve the quality of health care services in India.

  5. Development of IFC based fire safety assesment tools

    DEFF Research Database (Denmark)

    Taciuc, Anca; Karlshøj, Jan; Dederichs, Anne

    2016-01-01

    Due to the impact that the fire safety design has on the building's layout and on other complementary systems, as installations, it is important during the conceptual design stage to evaluate continuously the safety level in the building. In case that the task is carried out too late, additional...... changes need to be implemented, involving supplementary work and costs with negative impact on the client. The aim of this project is to create a set of automatic compliance checking rules for prescriptive design and to develop a web application tool for performance based design that retrieves data from...... Building Information Models (BIM) to evacuate the safety level in the building during the conceptual design stage. The findings show that the developed tools can be useful in AEC industry. Integrating BIM from conceptual design stage for analyzing the fire safety level can ensure precision in further...

  6. Integrated approach to knowledge acquisition and safety management of complex plants with emphasis on human factors

    International Nuclear Information System (INIS)

    Kosmowski, K.T.

    1998-01-01

    In this paper an integrated approach to the knowledge acquisition and safety management of complex industrial plants is proposed and outlined. The plant is considered within a man-technology-environment (MTE) system. The knowledge acquisition is aimed at the consequent reliability evaluation of human factor and probabilistic modeling of the plant. Properly structured initial knowledge is updated in life-time of the plant. The data and knowledge concerning the topology of safety related systems and their functions are created in a graphical CAD system and are object oriented. Safety oriented monitoring of the plant includes abnormal situations due to external and internal disturbances, failures of hard/software components and failures of human factor. The operation and safety related evidence is accumulated in special data bases. Data/knowledge bases are designed in such a way to support effectively the reliability and safety management of the plant. (author)

  7. Application of an integrated PC-based neutronics code system to criticality safety

    International Nuclear Information System (INIS)

    Briggs, J.B.; Nigg, D.W.

    1991-01-01

    An integrated system of neutronics and radiation transport software suitable for operation in an IBM PC-class environment has been under development at the Idaho National Engineering Laboratory (INEL) for the past four years. Four modules within the system are particularly useful for criticality safety applications. Using the neutronics portion of the integrated code system, effective neutron multiplication values (k eff values) have been calculated for a variety of benchmark critical experiments for metal systems (Plutonium and Uranium), Aqueous Systems (Plutonium and Uranium) and LWR fuel rod arrays. A description of the codes and methods used in the analysis and the results of the benchmark critical experiments are presented in this paper. In general, excellent agreement was found between calculated and experimental results. (Author)

  8. Main factors determining the KNP units 5 and 6 safety level according to the PSA level 1 result

    International Nuclear Information System (INIS)

    Manchev, B.; Marinova, B.; Nenkova, B.

    2004-01-01

    The Probabilistic Safety Analysis (PSA) is a powerful tool for ascertainment of the safety level reached at nuclear power plants operation. The results of PSA determine very clearly the functions, systems, equipment or operator actions that have to be improved in order to increase the plant safety level as a whole. The present report presents the main results of the last upgraded revision of PSA level 1 of units 5 and 6 of KNPP. The objective of the report is to lay emphasis on the factors determining the result obtained, i.e. to demonstrate the scopes whose improvement leads to an increase of the safety level reached at the units power operation. In the frame of the study presented the following categories of initiating events are included: Internal initiating events; Initiating events result of internal fires; Initiating events result of seismic action; Floods. Only the reactor core is considered as a source of radioactive contamination. Only initiating events related to the reactor work on power are analyzed. Unit 5 of KNPP is accepted as a basic unit for the study. All modifications and design changes implemented up to year 2000 are taken into account. The results of PSA level 1 for units 5 and 6 of KNPP covering the risk of internal initiators are presented. The assessment of the core damage due to internal initiators is based on the analysis of 18 groups of initiating events. 932 consequences and two groups of initial events are identified, leading to core damage. As a result of the quantitative calculation, over 15000 minimal cuts for the core damage are obtained. The first 80 cuts bear over 75% of the frequency obtained, and the first 700 cuts bear over 90%. Distribution of the core damage frequency by different groups of initiators is presented in tables and diagrams. A comparison of the result obtained for the reactor core damage of KNPP units 5 and 6 with assessment obtained for similar power plants is presented. The data for different NPPs are taken

  9. CANDU safety management in Pakistan. A status report

    Energy Technology Data Exchange (ETDEWEB)

    Mazhar Hasan, S; Badshah Hussain, S; Mirza, K F; Siddiqui, Z H [Karachi Nuclear Power Plant (KANUPP) (Pakistan)

    1997-12-01

    The overall safety performance of KANUPP against these requirements has been quite good over the past 25 years. But the phenomena of equipment aging, equipment absolescence and evolution of nuclear safety standards, faced by all older NPPs, were aggravated for KANUPP by complete technological isolation from the vendor country for more than 14 years, When it became possible following international attention in 1990, an IAEA sponsored project titled `Safe Operation of KANUPP (SOK)` was started to assess and ensure compliance to the contemporary internationally acceptable level of safety, leading to a prioritized and Integrated Safety Review Master Plan (ISARMAP) implemented under the supervision of an international Steering Committee. Fortunately, the work done so far has indicated good overall equipment condition, effective obsolescence measures, adequate operational safety practices, and adequate design safety using up-to-date analytical methods. Further detailed analyses and improvements are continuing, to avoid the future potential for an unacceptable level of safety. Difficulties in applying modern safety design standards to backfits are common to older NPPs. 13 refs.

  10. CANDU safety management in Pakistan. A status report

    International Nuclear Information System (INIS)

    Mazhar Hasan, S.; Badshah Hussain, S.; Mirza, K.F.; Siddiqui, Z.H.

    1997-01-01

    The overall safety performance of KANUPP against these requirements has been quite good over the past 25 years. But the phenomena of equipment aging, equipment absolescence and evolution of nuclear safety standards, faced by all older NPPs, were aggravated for KANUPP by complete technological isolation from the vendor country for more than 14 years, When it became possible following international attention in 1990, an IAEA sponsored project titled 'Safe Operation of KANUPP (SOK)' was started to assess and ensure compliance to the contemporary internationally acceptable level of safety, leading to a prioritized and Integrated Safety Review Master Plan (ISARMAP) implemented under the supervision of an international Steering Committee. Fortunately, the work done so far has indicated good overall equipment condition, effective obsolescence measures, adequate operational safety practices, and adequate design safety using up-to-date analytical methods. Further detailed analyses and improvements are continuing, to avoid the future potential for an unacceptable level of safety. Difficulties in applying modern safety design standards to backfits are common to older NPPs. 13 refs

  11. Argentinean integrated small reactor design and scale economy analysis of integrated reactor

    International Nuclear Information System (INIS)

    Florido, P. C.; Bergallo, J. E.; Ishida, M. V.

    2000-01-01

    This paper describes the design of CAREM, which is Argentinean integrated small reactor project and the scale economy analysis results of integrated reactor. CAREM project consists on the development, design and construction of a small nuclear power plant. CAREM is an advanced reactor conceived with new generation design solutions and standing on the large experience accumulated in the safe operation of Light Water Reactors. The CAREM is an indirect cycle reactor with some distinctive and characteristic features that greatly simplify the reactor and also contribute to a highly level of safety: integrated primary cooling system, self pressurized, primary cooling by natural circulation and safety system relying on passive features. For a fully doupled economic evaluation of integrated reactors done by IREP (Integrated Reactor Evaluation Program) code transferred to IAEA, CAREM have been used as a reference point. The results shows that integrated reactors become competitive with power larger than 200MWe with Argentinean cheapest electricity option. Due to reactor pressure vessel construction limit, low pressure drop steam generator are used to reach power output of 200MWe for natural circulation. For forced circulation, 300MWe can be achieved. (author)

  12. Revamping occupational safety and health training: Integrating andragogical principles for the adult learner

    Directory of Open Access Journals (Sweden)

    Alex Albert

    2013-09-01

    Full Text Available Despite attempts to improve safety performance, the construction industry continues to account for a disproportionate rate of injuries. A large proportion of these injuries occur because workers are unable to recognize and respond to hazards in dynamic and unpredictable environments. Unrecognized hazards expose workers to unanticipated risks and can lead to catastrophic accidents. In order to enhance hazard recognition skills, employers often put new and experienced workers through formal hazard recognition training programs. Unfortunately, current training programs primarily rely on instructor-centric pedagogical approaches, which are insensitive to the adult learning process. In order to ensure effective adult learning, training programs must integrate learner-centric andragogical principles to improve engagement and retention in adult trainees. This paper aims to discuss training program elements that can potentially accelerate the adult learning process while improving safety knowledge retention. To this end, the researchers reviewed relevant literature on the cognitive processes of adult learning, essential components of effectual training programs and developed a reliable framework for the training and transfer of safety knowledge. A case example of successfully using the framework is also presented. The results of the study will provide safety trainers and construction professionals with valuable information on developing effective hazard recognition and receptor training programs, with the goal of improving construction safety performance.

  13. Leadership and Management for Safety. General Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  14. Leadership and Management for Safety. General Safety Requirements (Chinese Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  15. Leadership and Management for Safety. General Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  16. Leadership and Management for Safety. General Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    his Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  17. Does lean management improve patient safety culture? An extensive evaluation of safety culture in a radiotherapy institute.

    Science.gov (United States)

    Simons, Pascale A M; Houben, Ruud; Vlayen, Annemie; Hellings, Johan; Pijls-Johannesma, Madelon; Marneffe, Wim; Vandijck, Dominique

    2015-02-01

    The importance of a safety culture to maximize safety is no longer questioned. However, achieving sustainable culture improvements are less evident. Evidence is growing for a multifaceted approach, where multiple safety interventions are combined. Lean management is such an integral approach to improve safety, quality and efficiency and therefore, could be expected to improve the safety culture. This paper presents the effects of lean management activities on the patient safety culture in a radiotherapy institute. Patient safety culture was evaluated over a three year period using triangulation of methodologies. Two surveys were distributed three times, workshops were performed twice, data from an incident reporting system (IRS) was monitored and results were explored using structured interviews with professionals. Averages, chi-square, logistical and multi-level regression were used for analysis. The workshops showed no changes in safety culture, whereas the surveys showed improvements on six out of twelve dimensions of safety climate. The intention to report incidents not reaching patient-level decreased in accordance with the decreasing number of reports in the IRS. However, the intention to take action in order to prevent future incidents improved (factorial survey presented β: 1.19 with p: 0.01). Due to increased problem solving and improvements in equipment, the number of incidents decreased. Although the intention to report incidents not reaching patient-level decreased, employees experienced sustained safety awareness and an increased intention to structurally improve. The patient safety culture improved due to the lean activities combined with an organizational restructure, and actual patient safety outcomes might have improved as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Integrated Employee Occupational Health and Organizational-Level Registered Nurse Outcomes.

    Science.gov (United States)

    Mohr, David C; Schult, Tamara; Eaton, Jennifer Lipkowitz; Awosika, Ebi; McPhaul, Kathleen M

    2016-05-01

    The study examined organizational culture, structural supports, and employee health program integration influence on registered nurse (RN) outcomes. An organizational health survey, employee health clinical operations survey, employee attitudes survey, and administration data were collected. Multivariate regression models examined outcomes of sick leave, leave without pay, voluntary turnover, intention to leave, and organizational culture using 122 medical centers. Lower staffing ratios were associated with greater sick leave, higher turnover, and intention to leave. Safety climate was favorably associated with each of the five outcomes. Both onsite employee occupational health services and a robust health promotion program were associated with more positive organizational culture perceptions. Findings highlight the positive influence of integrating employee health and health promotion services on organizational health outcomes. Attention to promoting employee health may benefit organizations in multiple, synergistic ways.

  19. Swiss-Slovak cooperation program: a training strategy for safety analyses

    International Nuclear Information System (INIS)

    Husarcek, J.

    2000-01-01

    During the 1996-1999 period, a new training strategy for safety analyses was implemented at the Slovak Nuclear Regulatory Authority (UJD) within the Swiss-Slovak cooperation programme in nuclear safety (SWISSLOVAK). The SWISSLOVAK project involved the recruitment, training, and integration of the newly established team into UJD's organizational structure. The training strategy consisted primarily of the following two elements: a) Probabilistic Safety Analysis (PSA) applications (regulatory review and technical evaluation of Level-1/Level-2 PSAs; PSA-based operational events analysis, PSA applications to assessment of Technical Specifications; and PSA-based hardware and/or procedure modifications) and b) Deterministic accident analyses (analysis of accidents and regulatory review of licensee Safety Analysis Reports; analysis of severe accidents/radiological releases and the potential impact of the containment and engineered safety systems, including the development of technical bases for emergency response planning; and application of deterministic methods for evaluation of accident management strategies/procedure modifications). The paper discusses the specific aspects of the training strategy performed at UJD in both the probabilistic and deterministic areas. The integration of team into UJD's organizational structure is described and examples of contributions of the team to UJD's statutory responsibilities are provided. (author)

  20. Testing for Level Shifts in Fractionally Integrated Processes: a State Space Approach

    DEFF Research Database (Denmark)

    Monache, Davide Delle; Grassi, Stefano; Santucci de Magistris, Paolo

    Short memory models contaminated by level shifts have similar long-memory features as fractionally integrated processes. This makes hard to verify whether the true data generating process is a pure fractionally integrated process when employing standard estimation methods based on the autocorrela......Short memory models contaminated by level shifts have similar long-memory features as fractionally integrated processes. This makes hard to verify whether the true data generating process is a pure fractionally integrated process when employing standard estimation methods based...... on the autocorrelation function or the periodogram. In this paper, we propose a robust testing procedure, based on an encompassing parametric specification that allows to disentangle the level shifts from the fractionally integrated component. The estimation is carried out on the basis of a state-space methodology...... and it leads to a robust estimate of the fractional integration parameter also in presence of level shifts. Once the memory parameter is correctly estimated, we use the KPSS test for presence of level shift. The Monte Carlo simulations show how this approach produces unbiased estimates of the memory parameter...

  1. Measuring and managing safety at Wahleach Dam

    International Nuclear Information System (INIS)

    Salmon, G. M.; Cattanach, J. D.; Hartford, D. N. D.

    1996-01-01

    Safety improvements recently implemented at the Wahleach Dam were described as one of the first instances in international dam safety practice where risk concepts have been used in conjunction with acceptable risk criteria to evaluate safety of a dam relative to required level of safety. Erosion was identified as the greatest threat to the safety of the dam. In addressing the deficiencies B.C. Hydro formulated a process which advocates a balanced level of safety,i.e. the probability of failure multiplied by the consequences of failure, integrated over a range of initiators. If the risk posed by the dam is lower than a 'tolerable' risk, the dam is considered to be safe enough. In the case of the Wahleach Dam, the inflow design flood (IDF) was selected to be about one half of the probable maximum flow (PMF), hence it was more likely than not that the spillway could pass floods up to and including the PMF. By accepting the determined level of risk, expenditures of several million dollars for design and construction of dam safety improvements were made redundant. Another byproduct of this new concept of risk assessment was the establishment of improved life safety protection by means of an early warning system for severe floods through the downstream community and emergency authorities. 3 refs., 5 tabs

  2. APMS: An Integrated Set of Tools for Measuring Safety

    Science.gov (United States)

    Statler, Irving C.; Reynard, William D. (Technical Monitor)

    1996-01-01

    This is a report of work in progress. In it, I summarize the status of the research and development of the Aviation Performance Measuring System (APMS) for managing, processing, and analyzing digital flight-recorded data. The objectives of the NASA-FAA APMS research project are to establish a sound scientific and technological basis for flight-data analysis, to define an open and flexible architecture for flight-data-analysis systems, and to articulate guidelines for a standardized database structure on which to continue to build future flight-data-analysis extensions. APMS will offer to the air transport community an open, voluntary standard for flight-data-analysis software, a standard that will help to ensure suitable functionality, and data interchangeability, among competing software programs. APMS will develop and document the methodologies, algorithms, and procedures for data management and analyses to enable users to easily interpret the implications regarding safety and efficiency of operations. APMS does not entail the implementation of a nationwide flight-data-collection system. It is intended to provide technical tools to ease the large-scale implementation of flight-data analyses at both the air-carrier and the national-airspace levels in support of their Flight Operations and Quality Assurance (FOQA) Programs and Advanced Qualifications Programs (AQP). APMS cannot meet its objectives unless it develops tools that go substantially beyond the capabilities of the current commercially available software and supporting analytic methods that are mainly designed to count special events. These existing capabilities, while of proven value, were created primarily with the needs of air crews in mind. APMS tools must serve the needs of the government and air carriers, as well as air crews, to fully support the FOQA and AQP programs. They must be able to derive knowledge not only through the analysis of single flights (special-event detection), but through

  3. Seismic test for safety evaluation of low level radioactive wastes containers

    International Nuclear Information System (INIS)

    Ohoka, Makoto; Horikiri, Morito

    1998-08-01

    Seismic safety of three-piled container system used in Tokai reprocessing center was confirmed by seismic test and computational analysis. Two types of container were evaluated, for low level noninflammable radioactive solid wastes, and for used filters wrapped by large plastic bags. Seismic integrity of three-piled containers was confirmed by evaluating response characteristics such as acceleration and displacement under the design earthquake condition S1, which is the maximum earthquake expected at the stored site during the storage time. Computational dynamic analysis was also performed, and several conclusions described below were made. (1) Response characteristics of the bottom board and the side board were different. The number of pile did not affect the response characteristics of the bottom board of each container. They behaved as a rigid body. (2) The response of the side board was larger than that of the bottom board. (3) The response depended on the direction in each board, either side or bottom. The response acceleration became larger to the seismic wave perpendicular to the plane which has the entrance for fork lift and the radioactive warning mark. (4) The maximum horizontal response displacement under the S1 seismic wave was approximately 10 mm. It is so small that it does not affect the seismic safety. (5) The stoppers to prevent fall down had no influence to the response acceleration. (6) There was no fall down to the S1 seismic wave and 2 times of S1 seismic wave, which was the maximum input condition of the test. (7) The response of the bottom board of the containers, which are main elements of fall down, had good agreements both in the test and in the computational analysis. (author)

  4. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hwang; Ryu, Sung Uk; Yi, Sung Jae; Park, Hyun Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Dong Eok [Dept. of Precision Mechanical Engineering, Kyungpook National University, Sangju (Korea, Republic of)

    2017-08-15

    Three small-break loss-of-coolant accident (SBLOCA) tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor), i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  5. 76 FR 22944 - Pipeline Safety: Notice of Public Webinars on Implementation of Distribution Integrity Management...

    Science.gov (United States)

    2011-04-25

    ... oversight program and operating conditions as well as the evolutionary process that distribution system... 20590. Hand Delivery: Docket Management System, Room W12-140, on the ground floor of the West Building... PHMSA-2011-0084] Pipeline Safety: Notice of Public Webinars on Implementation of Distribution Integrity...

  6. The aspect of personnel metal attitude in the production safety

    International Nuclear Information System (INIS)

    Joyosukarto, Priyanto M.

    2002-01-01

    The occurrence of an accident could always be traced to component/system failures and/or human error. The two factors are closely related to competency of the personnel's involved, in which mental attitude is a decisive factor. Furthermore mental attitude could be viewed as an element of Safety (S) Culture. Consequently, S. Culture could might created or at lea ts, be enhanced by the introduction of appropriate values, norms, as well as attitudes. The ABC and TBC of safety norm have been discussed briefly. Whereas mental attitude has been defined and discussed in detail and graded into six levels, namely: attending, responding, complying, accepting, preferring, and integrating. To assure highest level of safety, personnel must achieve integrating level of attitude, in the sense that he would merely do an action on the basis of safety values and/or norms prevailing in the system, not due to external pressure. Furthermore, considering the work as a physical and an emotional activity resulting in stress and strain on the body, Karate exercises have been promoted as an alternative for enhancing mental attitude by means of reducing personnel vulnerability to strain and stress. This method is accomplished by exploiting Roux's Low of conditioning effect and by implementation of an in-depth understanding on the spiritual aspect of Karate. It is concluded that in the field of production safety, there is a positive correlation between Karate, mental attitude, competence, performance, quality, and safety

  7. FUNMIG Integrated Project results and conclusions from a safety case perspective

    International Nuclear Information System (INIS)

    Schwyn, B.; Wersin, P.; Rüedi, J.; Schneider, J.; Altmann, S.; Missana, T.; Noseck, U.

    2012-01-01

    The scope of the FUNMIG Integrated Project (IP) was to improve the knowledge base on biogeochemical processes in the geosphere which are relevant for the safety of radioactive waste repositories. An important part of this project involved the interaction between data producers (research) and data users (radioactive waste management organisations in Europe). The aim thereof was to foster the benefits of the research work for performance assessment (PA), and in a broader sense, for the safety case of radioactive waste repositories. For this purpose a specifically adapted procedure was elaborated. Thus, relevant features, events and processes (FEPs) for the three host rock types, clay, crystalline and salt, were taken from internationally accepted catalogues and mapped onto each of the 108 research tasks conducted during the FUNMIG project by a standardised procedure. The main outcome thereof was a host-rock specific tool (Task Evaluation Table) in which the relevance and benefits of the research results were evaluated both from the PA and research perspective. Virtually all generated data within FUNMIG are related to the safety-relevant FEP-groups “transport mechanisms” and “retardation”. Generally speaking, much of the work within FUNMIG helped to support and to increase confidence in the simplified PA transport and retardation models used for calculating radionuclide (RN) transport through the host rock. Some of the studies on retardation processes (e.g. coupled sorption-redox processes at the mineral–water interface) yielded valuable data for all three rock types dealt within the IP. However, most of the studies provided improved insight regarding host-rock specific features and processes, the majority of this work being dedicated to clay-rich and crystalline host rocks. For both of these host rock types, FUNMIG has significantly contributed to improving understanding on a conceptual level, both by providing new experimental data at different spatial

  8. 10 CFR Appendix A to Subpart B of... - General Statement of Safety Basis Policy

    Science.gov (United States)

    2010-01-01

    ... at all levels. Performing work in accordance with the safety basis for a nuclear facility is the..., safety, and health into work planning and execution (48 CFR 970.5223-1, Integration of Environment, Safety and Health into Work Planning and Execution) and the DEAR clause on laws, regulations, and DOE...

  9. Using Groupware to Gather and Analyze Intelligence in a Public Setting: Development of Integral Safety Plans in an Electronic Meeting

    NARCIS (Netherlands)

    Rouwette, E.A.J.A.; Vennix, J.A.M.; Vriens, D.J.

    2003-01-01

    This chapter focuses on the use of groupware to support local governments in activities in the intelligence cycle. Local governments in The Netherlands have a central role in developing integral safety plans for their district. However, in the implementation of safety plans the contribution of

  10. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  11. Safety and reliability of automatization software

    Energy Technology Data Exchange (ETDEWEB)

    Kapp, K; Daum, R [Karlsruhe Univ. (TH) (Germany, F.R.). Lehrstuhl fuer Angewandte Informatik, Transport- und Verkehrssysteme

    1979-02-01

    Automated technical systems have to meet very high requirements concerning safety, security and reliability. Today, modern computers, especially microcomputers, are used as integral parts of those systems. In consequence computer programs must work in a safe and reliable mannter. Methods are discussed which allow to construct safe and reliable software for automatic systems such as reactor protection systems and to prove that the safety requirements are met. As a result it is shown that only the method of total software diversification can satisfy all safety requirements at tolerable cost. In order to achieve a high degree of reliability, structured and modular programming in context with high level programming languages are recommended.

  12. Role of calibration, validation, and relevance in multi-level uncertainty integration

    International Nuclear Information System (INIS)

    Li, Chenzhao; Mahadevan, Sankaran

    2016-01-01

    Calibration of model parameters is an essential step in predicting the response of a complicated system, but the lack of data at the system level makes it impossible to conduct this quantification directly. In such a situation, system model parameters are estimated using tests at lower levels of complexity which share the same model parameters with the system. For such a multi-level problem, this paper proposes a methodology to quantify the uncertainty in the system level prediction by integrating calibration, validation and sensitivity analysis at different levels. The proposed approach considers the validity of the models used for parameter estimation at lower levels, as well as the relevance at the lower level to the prediction at the system level. The model validity is evaluated using a model reliability metric, and models with multivariate output are considered. The relevance is quantified by comparing Sobol indices at the lower level and system level, thus measuring the extent to which a lower level test represents the characteristics of the system so that the calibration results can be reliably used in the system level. Finally the results of calibration, validation and relevance analysis are integrated in a roll-up method to predict the system output. - Highlights: • Relevance analysis to quantify the closeness of two models. • Stochastic model reliability metric to integrate multiple validation experiments. • Extend the model reliability metric to deal with multivariate output. • Roll-up formula to integrate calibration, validation, and relevance.

  13. Annual plan of research on safety techniques against low level radioactive wastes, FY1994-FY1999

    International Nuclear Information System (INIS)

    1994-01-01

    The safety research on the disposal of low level radioactive waste has been promoted based on the annual plan decided by the committee on radiative waste safety regulation of the Nuclear Safety Commission. Hereafter, the disposal of low level radioactive waste in ocean is never selected. As to the subjects of the safety research which should be carried out for five years from 1994, the necessity, the contents of research, the organs that carry out the research and so on were deliberated, and the results are made into the annual plan, therefore, it is reported. The way of thinking on the safety research, the contents for which efforts should be exerted as the safety research, and the matters to which attention should be paid are shown. As for the annual plan of safety research, the necessity and the outline of the safety research on the disposal in strata, the concrete subjects and their contents, and the necessity and the outline of the safety research on the reuse, the concrete subjects and their contents are reported. The radioactive waste is those produced by the operation of nuclear reactor facilities, those containing TRU nuclides and RI waste. (K.I.)

  14. Mainstreaming road safety in the regional integration of the East ...

    African Journals Online (AJOL)

    The East African Community (EAC) comprising of five states: Burundi, Kenya, Rwanda, Tanzania and Uganda bear a disproportionate burden of the global public health burden for road traffic injuries (RTIs). In response to this, each state has devised its own road safety measures, but not at the EAC level. This paper aims to ...

  15. Safety during sea transport of radioactive materials. Probabilistic safety analysis of package fro sea surface fire accident

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Obara, Isonori; Akutsu, Yukio; Aritomi, Masanori

    2000-01-01

    The ships carrying irradiated nuclear fuel, plutonium and high level radioactive wastes(INF materials) are designed to keep integrity of packaging based on the various safety and fireproof measures, even if the ship encounters a maritime fire accident. However, granted that the frequency is very low, realistic severe accidents should be evaluated. In this paper, probabilistic safety assessment method is applied to evaluate safety margin for severe sea fire accidents using event tree analysis. Based on our separate studies, the severest scenario was estimated as follows; an INF transport ship collides with oil tanker and induces a sea surface fire. Probability data such as ship's collision, oil leakage, ignition, escape from fire region, operations of cask cooling system and water flooding systems were also introduced from above mentioned studies. The results indicate that the probability of which packages cannot keep their integrity during the sea surface fire accident is very low and sea transport of INF materials is carried out very safely. (author)

  16. Environmental safety evaluation in test sea disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    1979-01-01

    The study results on the environmental safety in the test sea disposal of low-level wastes by Subcommittee on Radioactive Waste Safety Technology in Nuclear Safety Commission are given in connection with the test disposal of radioactive wastes into sea reported by the Nuclear Safety Bureau. The Subcommittee concludes that the effect of the test disposal of radioactive wastes into sea on the environment is extremely small. The contents are as follows. The full text of the report; attached data, (1) prediction of the concentrations of radioactive nuclides in sea, (2) calculation of the concentrations of radioactive nuclides in marine life with biological paths, and (3) estimation of exposure dose in general people; references (1) radiation exposure of the personnel engaged in sea disposal, (2) the effect of a sea disaster during ocean transport. (J.P.N.)

  17. ARE METHODS USED TO INTEGRATE STANDARDIZED MANAGEMENT SYSTEMS A CONDITIONING FACTOR OF THE LEVEL OF INTEGRATION? AN EMPIRICAL STUDY

    Directory of Open Access Journals (Sweden)

    Merce Bernardo

    2011-09-01

    Full Text Available Organizations are increasingly implementing multiple Management System Standards (M SSs and considering managing the related Management Systems (MSs as a single system.The aim of this paper is to analyze if methods us ed to integrate standardized MSs condition the level of integration of those MSs. A descriptive methodology has been applied to 343 Spanish organizations registered to, at least, ISO 9001 and ISO 14001. Seven groups of these organizations using different combinations of methods have been analyzed Results show that these organizations have a high level of integration of their MSs. The most common method used, was the process map. Organizations using a combination of different methods achieve higher levels of integration than those using a single method. However, no evidence has been found to confirm the relationship between the method used and the integration level achieved.

  18. Transformational and passive leadership as cross-level moderators of the relationships between safety knowledge, safety motivation, and safety participation.

    Science.gov (United States)

    Jiang, Lixin; Probst, Tahira M

    2016-06-01

    While safety knowledge and safety motivation are well-established predictors of safety participation, less is known about the impact of leadership styles on these relationships. The purpose of the current study was to examine whether the positive relationships between safety knowledge and motivation and safety participation are contingent on transformational and passive forms of safety leadership. Using multilevel modeling with a sample of 171 employees nested in 40 workgroups, we found that transformational safety leadership strengthened the safety knowledge-participation relationship, whereas passive leadership weakened the safety motivation-participation relationship. Under low transformational leadership, safety motivation was not related to safety participation; under high passive leadership, safety knowledge was not related to safety participation. These results are discussed in light of organizational efforts to increase safety-related citizenship behaviors. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.

  19. CAREM: an innovative-integrated PWR

    International Nuclear Information System (INIS)

    Mazzi, R.

    2005-01-01

    A promising future in view of the increasing worldwide acknowledgment of the Nuclear Power as a bulk-environmentally friendly energy source is envisaged; nevertheless the widespread concerns about nuclear safety means the uppermost challenge to the nuclear designers to achieve massive public acceptance of NPP. CAREM is an Argentine project aimed to achieve the development, design and construction of an innovative, small and integrated Nuclear Power Plant (NPP). The reactor has an indirect cycle with some distinctive features that greatly simplify the design, and also contributes to a higher safety level. Some of the design highlight are: integrated primary cooling system, primary cooling by natural circulation, self-pressurised primary system and safety systems relying on passive features. The innovative solutions are embraced in the 'CAREM Concept' aimed to enhance safety by using simpler and more reliable solutions to tackle major safety design challenges of the nuclear generation industry. The goal is achieved by drastically reducing the conceivable list of initiating events jointly with a large primary water/power ratio that results in spontaneous slow and mild transients even after most severe system or component failure. In addition all Safety Systems are also based on simple and reliable solutions that increase sharply the overall plant reliability at reduced costs. The concept has been engineering developed for the CAREM 25 (prototype, 100 MWth, 27 MWe) considered an appropriate size to display the performance related with the reactor core cooling and safety systems. This module while not cost effective if compared with major sized NPP's installation and operating cost, results appropriate for applications such as supplying domestic or industrial electricity and/or steam (i.e. for a water demineralising plant) at isolated or difficult to access, mid size, populations. A promising market is envisaged for the evolution of the CAREM Concept towards higher

  20. Results from an Integrated Safety Analysis of Urelumab, an Agonist Anti-CD137 Monoclonal Antibody

    DEFF Research Database (Denmark)

    Segal, Neil H; Logan, Theodore F; Hodi, F Stephen

    2017-01-01

    Purpose: Urelumab is an agonist antibody to CD137 with potential application as an immuno-oncology therapeutic. Data were analyzed to assess safety, tolerability, and pharmacodynamic activity of urelumab, including the dose selected for ongoing development in patients with advanced solid tumors...... and lymphoma.Experimental Design: A total of 346 patients with advanced cancers who had progressed after standard treatment received at least one dose of urelumab in one of three dose-escalation, monotherapy studies. Urelumab was administered at doses ranging from 0.1 to 15 mg/kg. Safety analyses included...... the most common treatment-related AEs, and was associated with immunologic and pharmacodynamic activity demonstrated by the induction of IFN-inducible genes and cytokines.Conclusions: Integrated evaluation of urelumab safety data showed significant transaminitis was strongly associated with doses of ≥1 mg...

  1. Correlation between safety climate and contractor safety assessment programs in construction.

    Science.gov (United States)

    Sparer, Emily H; Murphy, Lauren A; Taylor, Kathryn M; Dennerlein, Jack T

    2013-12-01

    Contractor safety assessment programs (CSAPs) measure safety performance by integrating multiple data sources together; however, the relationship between these measures of safety performance and safety climate within the construction industry is unknown. Four hundred and one construction workers employed by 68 companies on 26 sites and 11 safety managers employed by 11 companies completed brief surveys containing a nine-item safety climate scale developed for the construction industry. CSAP scores from ConstructSecure, Inc., an online CSAP database, classified these 68 companies as high or low scorers, with the median score of the sample population as the threshold. Spearman rank correlations evaluated the association between the CSAP score and the safety climate score at the individual level, as well as with various grouping methodologies. In addition, Spearman correlations evaluated the comparison between manager-assessed safety climate and worker-assessed safety climate. There were no statistically significant differences between safety climate scores reported by workers in the high and low CSAP groups. There were, at best, weak correlations between workers' safety climate scores and the company CSAP scores, with marginal statistical significance with two groupings of the data. There were also no significant differences between the manager-assessed safety climate and the worker-assessed safety climate scores. A CSAP safety performance score does not appear to capture safety climate, as measured in this study. The nature of safety climate in construction is complex, which may be reflective of the challenges in measuring safety climate within this industry. Am. J. Ind. Med. 56:1463-1472, 2013. © 2013 Wiley Periodicals, Inc. © 2013 Wiley Periodicals, Inc.

  2. Chemical Approach to Biological Safety: Molecular-Level Control of an Integrated Zinc Finger Nuclease

    DEFF Research Database (Denmark)

    Németh, Eszter; Asaka, Masamitsu N; Kato, Kohsuke

    2018-01-01

    circular dichroism spectroscopy, and nano-electrospray ionisation mass spectrometry. In situ intramolecular activation of the nuclease domain was observed, resulting in specific cleavage of DNA with moderate activity. This study represents a new approach to AN design through integrated nucleases consisting......Application of artificial nucleases (ANs) in genome editing is still hindered by their cytotoxicity related to off-target cleavages. This problem can be targeted by regulation of the nuclease domain. Here, we provide an experimental survey of computationally designed integrated zinc finger...... nucleases, constructed by linking the inactivated catalytic centre and the allosteric activator sequence of the colicin E7 nuclease domain to the two opposite termini of a zinc finger array. DNA specificity and metal binding were confirmed by electrophoretic mobility shift assays, synchrotron radiation...

  3. Operational safety assessment of underground test facilities for mined geologic waste disposal

    International Nuclear Information System (INIS)

    Elder, H.K.

    1993-01-01

    This paper describes the operational safety assessment for the underground facilities for the exploratory studies facility (ESF) at the Yucca Mountain Project. The systematic identification and evaluation of hazards related to the ESF is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach based on the analysis of potential accidents was used since radiological safety analysis was not required. The risk assessment summarized credible accident scenarios and the design provides mitigation of the risks to a level that the facility can be constructed and operated with an adequate level of safety. The risk assessment also provides reasonable assurance that all identifiable major accident scenarios have been reviewed and design mitigation features provided to ensure an adequate level of safety

  4. Evaluation on safety issues of SMART

    International Nuclear Information System (INIS)

    Kim, W. S.; Seol, K. W.; Yoon, Y. K.; Lee, J. H.

    2001-01-01

    Safety issues on the SMART were evaluated in the light of the compliance with the Ministerial Ordinance of Technical Requirements applying to Nuclear Installations, which was recently revised. Evaluation concludes that regulatory requirements associated with following items have to be developed as the licensing criteria for the SMART: (1) proving the safety of design or materials different form existing reactors; (2) coping with beyond design basis accidents; (3) rulemaking on the safety of reactor safeguard vessel ; (4) ensuring integrity of steam generator tubes; and (5) classifying equipment based on their safety significance. Appropriate actions including implementation of new requirements under development should be taken for safety issues such as diversity of reactivity control and in-service inspection of steam generator tubes that are not complied with the current Technical Requirements. Safety level of the SMART design will be evaluated further by the more detailed assessment according to the Technical Requirements, and additional safety issues will be identified and resolved, if it necessary

  5. Nuclear safety culture and integrated risk management

    International Nuclear Information System (INIS)

    Joksimovich, V.; Orvis, D.D.

    1993-01-01

    A primary focus of nuclear safety is the prevention of large releases of radioactivity in the case of low-probability severe accidents. An analysis of the anatomy of nuclear (Chernobyl, Three Mile Island Unit 2) and nonnuclear (Challenger, Bhopal, Piper Alpha, etc.) severe accidents yields four broad categories of root causes: human (operating crew response), machine (design with its basic flaws), media (natural phenomena, operational considerations, political environment, commercial pressures, etc.)-providing triggering events, and management (basic organizational safety culture flaws). A strong management can minimize the contributions of humans, machines, and media to the risk arising from the operation of hazardous facilities. One way that management can have a powerful positive influence is through the establishment of a proper safety culture. The term safety culture is used as defined by the International Atomic Energy Agency's International Safety Advisory Group

  6. Relationship between general safety requirements and safety culture in the improvement of safe operation of I.N.R. TRIGA reactor facilities

    International Nuclear Information System (INIS)

    Ciocanescu, M.; Preda, M.; Chiritescu, M.; Dumitru, M.

    1996-01-01

    Acquiring of the basic principles of ''safety culture'' by a large number of profesionals in the nuclear field drew the attention of the decision factors in the INR managerial structure, who decided to promote certain practical actions at each level in order to improve nuclear safety. Starting from the ''Republican Standards for Nuclear Safety'' issued by CSEN in 1975, where general safety criteria are defined for nuclear reactors and NPPs, the specialists at the TRIGA reactor originated and implemented a coherent and secure system to ensure nuclear safety over all steps of nuclear activities: research, conception, execution, commissioning and operation. This system has been continuosly corrected so that now it is completely integrated in a modern safety system. The paper presents the way in which a modern system for nuclear safety at the TRIGA reactor has been implemented and developed, in accordance to specific criteria and requirements imposed by related National Regulations and with the principles of safety culture. Starting from the definition of specific responsabilities, there are presented the internal stipulations and practical actions at all levels in order to enhance nuclear safety. (orig.)

  7. Integral consideration of integrated management systems

    International Nuclear Information System (INIS)

    Frauenknecht, Stefan; Schmitz, Hans

    2010-01-01

    Aim of the project for the NPPs Kruemmel and Brunsbuettel (Vattenfall) is the integral view of the business process as basis for the implementation and operation of management systems in the domains quality, safety and environment. The authors describe the integral view of the business processes in the frame of integrated management systems with the focus nuclear safety, lessons learned in the past, the concept of a process-based controlling system and experiences from the practical realization.

  8. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Directory of Open Access Journals (Sweden)

    Hwang Bae

    2017-08-01

    Full Text Available Three small-break loss-of-coolant accident (SBLOCA tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor, i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  9. Integrating scientific results for a post-closure safety demonstration

    International Nuclear Information System (INIS)

    Taylor, E.C.; Ramspott, L.D.; Sinnock, S.; Sprecher, W.M.

    1994-01-01

    The U.S. Department of Energy (DOE) is developing a nuclear waste management system that will accept high-level radioactive waste, transport it, store it, and ultimately emplace it in a deep geologic repository. The key activity now is determining whether Yucca Mountain, Nevada is suitable as a site for the repository. If so, the crucial technological advance will be the demonstration that disposal of nuclear waste will be safe for thousands of years after closure. Recent regulatory, legal, and scientific developments imply that the safety demonstration must be simple. The scientific developments taken together support a simple set of hypotheses that constitute a post-closure safety argument for a repository at Yucca Mountain. If the understanding of Yucca Mountain hydrology presented in the Site Characterization Plan proves correct, then these hypotheses might be confirmed by combining results of Surface-Based Testing with early testing results in the Exploratory Studies Facility

  10. Integral test facilities for validation of the performance of passive safety systems and natural circulation

    International Nuclear Information System (INIS)

    Choi, J. H.

    2010-10-01

    Passive safety systems are becoming an important component in advanced reactor designs. This has led to an international interest in examining natural circulation phenomena as this may play an important role in the operation of these passive safety systems. Understanding reactor system behaviour is a challenging process due to the complex interactions between components and associated phenomena. Properly scaled integral test facilities can be used to explore these complex interactions. In addition, system analysis computer codes can be used as predictive tools in understanding the complex reactor system behaviour. However, before the application of system analysis computer codes for reactor design, it is capability in making predictions needs to be validated against the experimental data from a properly scaled integral test facility. The IAEA has organized a coordinated research project (CRP) on natural circulation phenomena, modeling and reliability of passive systems that utilize natural circulation. This paper is a part of research results from this CRP and describes representative international integral test facilities that can be used for data collection for reactor types in which natural circulation may play an important role. Example experiments were described along with the analyses of these example cases in order to examine the ability of system codes to model the phenomena that are occurring in the test facilities. (Author)

  11. Cultural Humility and Hospital Safety Culture.

    Science.gov (United States)

    Hook, Joshua N; Boan, David; Davis, Don E; Aten, Jamie D; Ruiz, John M; Maryon, Thomas

    2016-12-01

    Hospital safety culture is an integral part of providing high quality care for patients, as well as promoting a safe and healthy environment for healthcare workers. In this article, we explore the extent to which cultural humility, which involves openness to cultural diverse individuals and groups, is related to hospital safety culture. A sample of 2011 hospital employees from four hospitals completed measures of organizational cultural humility and hospital safety culture. Higher perceptions of organizational cultural humility were associated with higher levels of general perceptions of hospital safety, as well as more positive ratings on non-punitive response to error (i.e., mistakes of staff are not held against them), handoffs and transitions, and organizational learning. The cultural humility of one's organization may be an important factor to help improve hospital safety culture. We conclude by discussing potential directions for future research.

  12. Management of health and safety in the organization of worktime at the local level.

    Science.gov (United States)

    Jeppesen, H J; Bøggild, H

    1998-01-01

    This study examined the consideration of health and safety issues in the local process of organizing worktime within the framework of regulations. The study encompassed all 7 hospitals in one region of Denmark. Twenty-three semi-structured interviews were carried out with 2 representatives from the different parties involved (management, cooperation committees, health and safety committees from each hospital, and 2 local unions). Furthermore, a questionnaire was sent to all 114 wards with day and night duty. The response rate was 84%. Data were collected on alterations in worktime schedules, responsibilities, reasons for the present design of schedules, and use of inspection reports. The organization of worktime takes place in single wards without external interference and without guidelines other than the minimum standards set in regulations. At the ward level, management and employees were united in a mutual desire for flexibility, despite the fact that regulations were not always followed. No interaction was found in the management of health and safety factors between the parties concerned at different levels. The demands for flexibility in combination with the absence of guidelines and the missing dynamics between the parties involved imply that the handling of health and safety issues in the organization of worktime may be accidental and unsystematic. In order to consider the health and safety of night and shift workers within the framework of regulations, a clarification of responsibilities, operational levels, and cooperation is required between the parties concerned.

  13. The World Health Organization's water safety plan is much more than just an integrated drinking water quality management plan.

    Science.gov (United States)

    Viljoen, F C

    2010-01-01

    South Africa is a country of contrasts with far ranging variations in climate, precipitation rates, cultures, demographics, housing levels, education, wealth and skills levels. These differences have an impact on water services delivery as do expectations, affordability and available resources. Although South Africa has made much progress in supplying drinking water, the same cannot be said regarding water quality throughout the country. A concerted effort is currently underway to correct this situation and as part of this drive, water safety plans (WSP) are promoted. Rand Water, the largest water services provider in South Africa, used the World Health Organization (WHO) WSP framework as a guide for the development of its own WSP which was implemented in 2003. Through the process of implementation, Rand Water found the WHO WSP to be much more than just another integrated quality system.

  14. WWER-1000 steam generator integrity. A publication of the extrabudgetary programme on the safety of WWER and RBMK nuclear power plants

    International Nuclear Information System (INIS)

    1997-07-01

    Programme was initiated by IAEA in 1990 with the aim to assist the countries of Central and Eastern Europe and former Soviet Union in evaluating the safety of their first generation WWER-440/230 nuclear power plants. The main objectives were: to identify major design and operational safety issues; to establish international consensus on priorities for safety improvements; and to provide assistance in the review of the competence and and adequacy of safety improvement programs. The scope was extended in 1992 ro include RBMK, WWER-440/312 and WWER-1000 plants in operation and under construction. Based on the operational experience of more than 90 reactor years of WWER-1000 NPPs having 80 steam generators in operation or under construction the steam generator integrity was recognized as an important issue of high safety concern. The purpose of this report is to integrate available information on the issue of WWER-1000 steam generator integrity with the focus on the steam generator cold collector damage in particular. This information covers the status of stem generators at operating plants, cause analysis of collector cracking, the damage mechanisms involved, operational aspects and corrective measures developed and implemented. Consideration is given to material, design and fabrication related aspects, operational conditions, system solutions, and in-service inspection. Detailed conclusions and recommendations are provided for each of these aspects

  15. Generic safety evaluation report regarding integrity of BWR scram system piping

    International Nuclear Information System (INIS)

    1981-08-01

    Safety concerns associated with postulated pipe breaks in the boiling water reactor (BWR) scram system were identified during the staff's continuing investigation of the Browns Ferry Unit 3 control rod partial insertion failure on June 28, 1980. This report includes an evaluation of the licensing basis for the BWR scram discharge volume (SDV) piping and an assessment of the potential for the SDV piping to fail while in service. A discussion of the means available for mitigation an unlikely SDV system failure is provided. Generic recommendations are made to improve mitigation capability and ensure that system integrity is maintained in service

  16. PANDA: A Multipurpose Integral Test Facility for LWR Safety Investigations

    International Nuclear Information System (INIS)

    Paladino, D.; Dreier, J.

    2012-01-01

    The PANDA facility is a large scale, multicompartmental thermal hydraulic facility suited for investigations related to the safety of current and advanced LWRs. The facility is multipurpose, and the applications cover integral containment response tests, component tests, primary system tests, and separate effect tests. Experimental investigations carried on in the PANDA facility have been embedded in international projects, most of which under the auspices of the EU and OECD and with the support of a large number of organizations (regulatory bodies, technical dupport organizations, national laboratories, electric utilities, industries) worldwide. The paper provides an overview of the research programs performed in the PANDA facility in relation to BWR containment systems and those planned for PWR containment systems.

  17. Environment, Safety, Health, and Quality Plan for the Buried Waste Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Walker, S.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. This document describes the Environment, Safety, Health, and Quality requirements for conducting BWID activities at the Idaho National Engineering Laboratory. Topics discussed in this report, as they apply to BWID operations, include Federal, State of Idaho, and Environmental Protection Agency regulations, Health and Safety Plans, Quality Program Plans, Data Quality Objectives, and training and job hazard analysis. Finally, a discussion is given on CERCLA criteria and System and Performance audits as they apply to the BWID Program

  18. Integrating environmental management into food safety and food packaging in Malaysia: review of the food regulation 1985

    Science.gov (United States)

    Nordin, N. H.; Hara, H.; Kaida, N.

    2017-05-01

    Food safety is an important issue that is related to public safety to prevent the toxicity threats of the food. Management through legal approach has been used in Malaysia as one of the predominant approaches to manage the environment. In this regard, the Food Regulation 1985 has been one of the mechanisms of environmental management through legal approach in controlling the safety of packaged food in food packaging industry in Malaysia. The present study aims to analyse and to explain the implementation of the Food Regulation 1985 in controlling the safety of packaged food in Malaysia and to integrate the concept of environmental management into the food safety issue. Qualitative analysis on the regulation document revealed that there are two main themes, general and specific, while their seven sub themes are included harmful packages, safety packages, reuse packages, polyvinyl chloride (PVC), alcoholic bottle, toys, money and others and iron powder. The implementation of the Food Regulation 1985 in controlling the safety of packaged food should not be regarded solely for regulation purposes but should be further developed for a broader sense of food safety from overcoming the food poisoning.

  19. Macro-level integrated renewable energy production schemes for sustainable development

    International Nuclear Information System (INIS)

    Subhadra, Bobban G.

    2011-01-01

    The production of renewable clean energy is a prime necessity for the sustainable future existence of our planet. However, because of the resource-intensive nature, and other challenges associated with these new generation renewable energy sources, novel industrial frameworks need to be co-developed. Integrated renewable energy production schemes with foundations on resource sharing, carbon neutrality, energy-efficient design, source reduction, green processing plan, anthropogenic use of waste resources for the production green energy along with the production of raw material for allied food and chemical industries is imperative for the sustainable development of this sector especially in an emission-constrained future industrial scenario. To attain these objectives, the scope of hybrid renewable production systems and integrated renewable energy industrial ecology is briefly described. Further, the principles of Integrated Renewable Energy Park (IREP) approach, an example for macro-level energy production, and its benefits and global applications are also explored. - Research highlights: → Discusses the need for macro-level renewable energy production schemes. → Scope of hybrid and integrated industrial ecology for renewable energy production. → Integrated Renewable Energy Parks (IREPs): A macro-level energy production scheme. → Discusses the principle foundations and global applications of IREPs. → Describes the significance of IREPs in the carbon-neutral future business arena.

  20. Study on systematic integration technology of design and safety assessment for HLW geological disposal. 2. Research document

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Fukui, Hiroshi; Sagawa, Hiroshi; Matsunaga, Kenichi; Ito, Takaya; Kohanawa, Osamu; Kuwayama, Yuki

    2003-02-01

    The present study was carried out relating to basic design of the Geological Disposal Technology Integration System' that will be systematized as knowledge base for design analysis and safety assessment of HLW geological disposal system by integrating organically and hierarchically various technical information in three study field. The key conclusions are summarized as follows: (1) As referring to the current performance assessment report, the technical information for R and D program of HLW geological disposal system was systematized hierarchically based on summarized information in a suitable form between the work flow (work item) and processes/characteristic flow (process item). (2) As the result of the systematized technical information, database structure and system functions necessary for development and construction to the computer system were clarified in order to secure the relation between technical information and data set for assessment of HLW geological disposal system. (3) The control procedure for execution of various analysis code used by design and safety assessment in HLW geological disposal study was arranged possibility in construction of 'Geological Disposal Technology Integration System' after investigating the distributed computing technology. (author)

  1. Temporal integration of loudness as a function of level

    DEFF Research Database (Denmark)

    Florentine, Mary; Buus, Søren; Poulsen, Torben

    1996-01-01

    Absolute thresholds were measured for 5-, 30-, and 200-ms stimuli using an adaptive, forced choice procedure. Temporal integration of loudness for these durations was also measured for a 1-kHz tone and for broadband noises over a range of 5-80 dB SL (noise) and 5-90 dB SL (tones). Results show...... that temporal integration (defined as the level difference between equally loud 5- and 200-ms stimuli) varies non-monotonically with level. The temporal integration is about 10-12 dB near threshold, increases to 18-19 dB when the 5-ms signal is about 56 dB SPL (tone) and 76 dB SPL (noise), decreases again...... that the growth of loudness may, at least in part, be consistent with the nonlinear input/output function of the basilar membrane....

  2. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    Energy Technology Data Exchange (ETDEWEB)

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

    2011-02-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

  3. Patient safety climate profiles across time: Strength and level of safety climate associated with a quality improvement program in Switzerland—A cross-sectional survey study

    Science.gov (United States)

    Mascherek, Anna C.

    2017-01-01

    Safety Climate has been acknowledged as an unspecific factor influencing patient safety. However, studies rarely provide in-depth analysis of climate data. As a helpful approach, the concept of “climate strength” has been proposed. In the present study we tested the hypotheses that even if safety climate remains stable on mean-level across time, differences might be evident in strength or shape. The data of two hospitals participating in a large national quality improvement program were analysed for differences in climate profiles at two measurement occasions. We analysed differences on mean-level, differences in percent problematic response, agreement within groups, and frequency histograms in two large hospitals in Switzerland at two measurement occasions (2013 and 2015) applying the Safety Climate Survey. In total, survey responses of 1193 individuals were included in the analyses. Overall, small but significant differences on mean-level of safety climate emerged for some subgroups. Also, although agreement was strong at both time-points within groups, tendencies of divergence or consensus were present in both hospitals. Depending on subgroup and analyses chosen, differences were more or less pronounced. The present study illustrated that taking several measures into account and describing safety climate from different perspectives is necessary in order to fully understand differences and trends within groups and to develop interventions addressing the needs of different groups more precisely. PMID:28753633

  4. US Department of Energy, Richland Operations Office Integrated Safety Management System Program Description

    International Nuclear Information System (INIS)

    SHOOP, D.S.

    2000-01-01

    The purpose of this Integrated Safety Management System (ISMS) Program Description (PD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This PD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this PD contains some information on contractor processes and procedures which then require RL approval or oversight

  5. Bridging the Gap: A Framework and Strategies for Integrating the Quality and Safety Mission of Teaching Hospitals and Graduate Medical Education.

    Science.gov (United States)

    Tess, Anjala; Vidyarthi, Arpana; Yang, Julius; Myers, Jennifer S

    2015-09-01

    Integrating the quality and safety mission of teaching hospitals and graduate medical education (GME) is a necessary step to provide the next generation of physicians with the knowledge, skills, and attitudes they need to participate in health system improvement. Although many teaching hospital and health system leaders have made substantial efforts to improve the quality of patient care, few have fully included residents and fellows, who deliver a large portion of that care, in their efforts. Despite expectations related to the engagement of these trainees in health care quality improvement and patient safety outlined by the Accreditation Council for Graduate Medical Education in the Clinical Learning Environment Review program, a structure for approaching this integration has not been described.In this article, the authors present a framework that they hope will assist teaching hospitals in integrating residents and fellows into their quality and safety efforts and in fostering a positive clinical learning environment for education and patient care. The authors define the six essential elements of this framework-organizational culture, teaching hospital-GME alignment, infrastructure, curricular resources, faculty development, and interprofessional collaboration. They then describe the organizational characteristics required for each element and offer concrete strategies to achieve integration. This framework is meant to be a starting point for the development of robust national models of infrastructure, alignment, and collaboration between GME and health care quality and safety leaders at teaching hospitals.

  6. Framework for Integrating Safety, Operations, Security, and Safeguards in the Design and Operation of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Darby, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Horak, Karl Emanuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaChance, Jeffrey L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tolk, Keith Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitehead, Donnie Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2007-10-01

    The US is currently on the brink of a nuclear renaissance that will result in near-term construction of new nuclear power plants. In addition, the Department of Energy’s (DOE) ambitious new Global Nuclear Energy Partnership (GNEP) program includes facilities for reprocessing spent nuclear fuel and reactors for transmuting safeguards material. The use of nuclear power and material has inherent safety, security, and safeguards (SSS) concerns that can impact the operation of the facilities. Recent concern over terrorist attacks and nuclear proliferation led to an increased emphasis on security and safeguard issues as well as the more traditional safety emphasis. To meet both domestic and international requirements, nuclear facilities include specific SSS measures that are identified and evaluated through the use of detailed analysis techniques. In the past, these individual assessments have not been integrated, which led to inefficient and costly design and operational requirements. This report provides a framework for a new paradigm where safety, operations, security, and safeguards (SOSS) are integrated into the design and operation of a new facility to decrease cost and increase effectiveness. Although the focus of this framework is on new nuclear facilities, most of the concepts could be applied to any new, high-risk facility.

  7. Translational safety biomarkers of colonic barrier integrity in the rat.

    Science.gov (United States)

    Erkens, Tim; Bueters, Ruud; van Heerden, Marjolein; Cuyckens, Filip; Vreeken, Rob; Goeminne, Nick; Lammens, Lieve

    2018-05-20

    The intestinal barrier controls intestinal permeability, and its disruption has been associated with multiple diseases. Therefore, preclinical safety biomarkers monitoring barrier integrity are essential during the development of drugs targeting the intestines, particularly if starting treatment early after onset of disease. Classical toxicology endpoints are not sensitive enough and therefore our objective was to identify non-invasive markers enabling early in vivo detection of colonic barrier perturbation. Male Sprague-Dawley rats were dosed intracolonically via the rectum, using sodium caprate or ibuprofen as tool compounds to alter barrier integrity. Several potentially translational biomarkers and probe molecules related to permeability, inflammation or tissue damage were evaluated, using various analytical platforms, including immunoassays, targeted metabolomics and highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry. Several markers were identified that allow early in vivo detection of colonic barrier integrity changes, before histopathological evidence of tissue damage. The most promising permeability markers identified were plasma fluorescein isothiocyanate-dextran 4000 and a lactulose/mannitol/sucralose mixture in urine. These markers showed maximum increases over 100-fold or approximately 10-50-fold, respectively. Intracolonic administration of the above probe molecules outperformed oral administration and inflammatory or other biomarkers, such as α 2 -macroglobulin, calprotectin, cytokines, prostaglandins and a panel of metabolic molecules to identify early and subtle changes in barrier integrity. However, optimal timing of probe administration and sample collection is important for all markers evaluated. Inclusion of these probe molecules in preclinical toxicity studies might aid in risk assessment and the design of a clinical biomarker plan, as several of these markers have translational potential. Copyright © 2018 John

  8. RBMK fuel channel integrity. A publication of the extrabudgetary programme on the safety of WWER and RBMK nuclear power plants

    International Nuclear Information System (INIS)

    1999-01-01

    The fuel channel integrity in the RBMK NPPs is an issue of high safety concern. To date, three single fuel channel ruptures have occurred. Fuel channel rupture results in release of radioactivity to the reactor cavity and may lead to a release of radioactivity to the environment if the confinement safety system does not function properly. A multiple fuel channel rupture exceeding the venting capacity of the reactor cavity overpressure protection system poses a major impact on the plant safety. Further, due to incorrect prediction at the design stage the gas gap between the fuel channel pressure tube and the graphite blocks closes after approximately 17 years of plant operation. There is no safety justification available for the continued plant operation in this condition and the reactors are being retubed to avoid operation in this out of design condition, which may have negative impact on the fuel channel integrity. The loss of the mechanical integrity of fuel channel pressure tubes is a major safety concern for RBMK reactors since it may lead to overpressurization of the reactor cavity and consequently develop into a severe accident. In this report, information on the main design features of the RBMK reactor related to the fuel channel integrity is given. Further, detailed information on the fuel channel pressure tube and the graphite blocks with respect to their design, manufacture, in-service inspection, operating experience, ageing behaviour including degradation mechanisms is discussed in detail. The behaviour of the system fuel channel-graphite core including the corrective actions developed and implemented is discussed. Both normal operating conditions and accident conditions are addressed, considering also the gas gap closure process and its impact. The report also covers the fuel channel ducts. It is concluded in the report that for RBMK-1000 reactors and the adopted retubing strategy, limited local gas gap closure occurs at the time of pressure tube

  9. Development of System Model for Level 1 Probabilistic Safety Assessment of TRIGA PUSPATI Reactor

    International Nuclear Information System (INIS)

    Tom, P.P; Mazleha Maskin; Ahmad Hassan Sallehudin Mohd Sarif; Faizal Mohamed; Mohd Fazli Zakaria; Shaharum Ramli; Muhamad Puad Abu

    2014-01-01

    Nuclear safety is a very big issue in the world. As a consequence of the accident at Fukushima, Japan, most of the reactors in the world have been reviewed their safety of the reactors including also research reactors. To develop Level 1 Probabilistic Safety Assessment (PSA) of TRIGA PUSPATI Reactor (RTP), three organizations are involved; Nuclear Malaysia, AELB and UKM. PSA methodology is a logical, deductive technique which specifies an undesired top event and uses fault trees and event trees to model the various parallel and sequential combinations of failures that might lead to an undesired event. Fault Trees (FT) methodology is use in developing of system models. At the lowest level, the Basic Events (BE) of the fault trees (components failure and human errors) are assigned probability distributions. In this study, Risk Spectrum software used to construct the fault trees and analyze the system models. The results of system models analysis such as core damage frequency (CDF), minimum cut set (MCS) and common cause failure (CCF) uses to support decision making for upgrading or modification of the RTP?s safety system. (author)

  10. Annual plan of research on safety techniques against low level radioactive wastes, 1984-1988

    International Nuclear Information System (INIS)

    1984-01-01

    The establishment of the countermeasures for treating and disposing radioactive wastes has become an important subject for promoting the utilization of atomic energy. Especially as to low level radioactive wastes, the cumulative quantity has reached about 460,000 in terms of 200 l drums as of the end of March, 1983, and accompanying the development of the utilization of atomic energy, its rapid increase is expected. So far, as for the disposal of low level radioactive wastes, the research and development and the preparation of safety criteria and safety evaluation techniques have been carried out, following the basic policy of the Atomic Energy Commission to execute land disposal and ocean disposal in combination, first to make the test disposal after preliminary safety evaluation, and to shift to the full scale disposal based on the results. The annual plan was decided on July 22, 1983, and the first revision was carried out this time, therefore, it is reported here. The basic policy of establishing this annual plan, and the annual plan for safety technique research are described. (Kako, I.)

  11. Safer Systems: A NextGen Aviation Safety Strategic Goal

    Science.gov (United States)

    Darr, Stephen T.; Ricks, Wendell R.; Lemos, Katherine A.

    2008-01-01

    The Joint Planning and Development Office (JPDO), is charged by Congress with developing the concepts and plans for the Next Generation Air Transportation System (NextGen). The National Aviation Safety Strategic Plan (NASSP), developed by the Safety Working Group of the JPDO, focuses on establishing the goals, objectives, and strategies needed to realize the safety objectives of the NextGen Integrated Plan. The three goal areas of the NASSP are Safer Practices, Safer Systems, and Safer Worldwide. Safer Practices emphasizes an integrated, systematic approach to safety risk management through implementation of formalized Safety Management Systems (SMS) that incorporate safety data analysis processes, and the enhancement of methods for ensuring safety is an inherent characteristic of NextGen. Safer Systems emphasizes implementation of safety-enhancing technologies, which will improve safety for human-centered interfaces and enhance the safety of airborne and ground-based systems. Safer Worldwide encourages coordinating the adoption of the safer practices and safer systems technologies, policies and procedures worldwide, such that the maximum level of safety is achieved across air transportation system boundaries. This paper introduces the NASSP and its development, and focuses on the Safer Systems elements of the NASSP, which incorporates three objectives for NextGen systems: 1) provide risk reducing system interfaces, 2) provide safety enhancements for airborne systems, and 3) provide safety enhancements for ground-based systems. The goal of this paper is to expose avionics and air traffic management system developers to NASSP objectives and Safer Systems strategies.

  12. One safety critical indicators model for regulatory actions on nuclear power plants based on a level 1 PSA

    International Nuclear Information System (INIS)

    Araujo, Jefferson Borges

    2006-03-01

    This study presents a general methodology to the establishment, selection and use of safety indicators for a two loop PWR plant, as Angra 1. The study performed identifies areas considered critical for the plant operational safety. For each of these areas, strategic sub-areas are defined. For each strategic sub-area, specific safety indicators are defined. These proposed Safety Indicators are based on the contribution to risk considering a quantitative risk analysis. For each safety indicator, a goal, a bounded interval and proper bases are developed, to allow for a clear and comprehensive individual behavior evaluation. Additionally, an integrated evaluation of the indicators, using expert systems, was done to obtain an overview of the plant general safety. This methodology can be used for identifying situations where the plant safety is challenged, by giving a general overview of the plant operational condition. Additionally, this study can also identify eventual room for improvements by generating suggestions and recommendations, as a complement for regulatory actions and inspections, focusing resources on eventual existing weaknesses, in order to increase or maintain a high pattern of operational safety. (author)

  13. [Management, quality of health and occupational safety and hospital organization: is integration possible?].

    Science.gov (United States)

    Corrao, Carmela Romana Natalina

    2011-01-01

    The evolution of the national and European legislation has progressively transformed the working environments into organized environments. Specific models for its management are being proposed, which should be integrated into general management strategies. In the case of hospitals this integration should consider the peculiar organizational complexity, where the management of the occupational risk needs to be integrated with clinical risk management and economic risk management. Resources management should also consider that Occupational Medicine has not a direct monetary benefit for the organisation, but only indirect health consequences in terms of reduction of accidents and occupational diseases. The deep and simultaneous analysis of the current general management systems and the current management methods of occupational safety and health protection allows one to hyphotesise a possible integration between them. For both of them the Top Management is the main responsible of the quality management strategies and the use of specific documents in the managerial process, such as the document of risks evaluation in the occupational management and the quality manual in the general management, is of paramount importance. An integrated management has also the scope to pursue a particular kind of quality management, where ethics and job satisfaction are innovative, as established by recent European guidelines, management systems and national legislations.

  14. Safety Lead Optimization and Candidate Identification: Integrating New Technologies into Decision-Making.

    Science.gov (United States)

    Dambach, Donna M; Misner, Dinah; Brock, Mathew; Fullerton, Aaron; Proctor, William; Maher, Jonathan; Lee, Dong; Ford, Kevin; Diaz, Dolores

    2016-04-18

    Discovery toxicology focuses on the identification of the most promising drug candidates through the development and implementation of lead optimization strategies and hypothesis-driven investigation of issues that enable rational and informed decision-making. The major goals are to [a] identify and progress the drug candidate with the best overall drug safety profile for a therapeutic area, [b] remove the most toxic drugs from the portfolio prior to entry into humans to reduce clinical attrition due to toxicity, and [c] establish a well-characterized hazard and translational risk profile to enable clinical trial designs. This is accomplished through a framework that balances the multiple considerations to identify a drug candidate with the overall best drug characteristics and provides a cogent understanding of mechanisms of toxicity. The framework components include establishing a target candidate profile for each program that defines the qualities of a successful candidate based on the intended therapeutic area, including the risk tolerance for liabilities; evaluating potential liabilities that may result from engaging the therapeutic target (pharmacology-mediated or on-target) and that are chemical structure-mediated (off-target); and characterizing identified liabilities. Lead optimization and investigation relies upon the integrated use of a variety of technologies and models (in silico, in vitro, and in vivo) that have achieved a sufficient level of qualification or validation to provide confidence in their use. We describe the strategic applications of various nonclinical models (established and new) for a holistic and integrated risk assessment that is used for rational decision-making. While this review focuses on strategies for small molecules, the overall concepts, approaches, and technologies are generally applicable to biotherapeutics.

  15. Integrated Management System Incorporating Quality Management and Management of Environment, Health and Occupational Safety

    International Nuclear Information System (INIS)

    Manchev, B.; Nenkova, B.; Tomov, E.

    2012-01-01

    Risk Engineering Ltd is a Bulgarian private company founded in 1990 to provide engineering and consulting services applicable to each and every field of the energy sector. Since its establishment Risk Engineering Ltd develops, implement and apply a System for quality assurance, certified for the first time by BVQI (now Bureau Veritas Certification) in 1999 for conformity with the standard ISO 9001:1994. Later on, in connection with the revision of the standards of ISO 9000 series and introduction of the standard ISO 9001:2000 a Quality Management System in conformity with the standard ISO 9001:2000 was developed, introduced and certified. At present, Risk Engineering Ltd has got developed, documented, introduced and certified by Lloyd's Register Quality Assurance (LRQA) Quality Management System in compliance with ISO 9001:2008 on the process approach basis. On this basis and including the requirements of the ISO 14001:2004 (regarding the environment) and OHSAS 18001:2007 (regarding the health and occupational safety), Risk Engineering Ltd has developed and introduced Integrated Management System aim at achieving and demonstrating good results regarding protection of the environment, health and occupational safety. The processes under control by the Integrated Management System and applicable at the company are divided in two general types: A) Management processes: Strategic management and Management of the human resources. B) Processes describing the main activities: design/development process; project management; management of industrial projects and technical infrastructure project; construction, installation, repair and operation of power industry facilities; commercial activities and marketing; investigation of energy efficiency of industrial systems and certification of buildings regarding energy efficiency; consulting activity in the field of industry and energy as well as consultant in accordance with the Law of the Spatial Planning; management of the

  16. Integrated plant safety assessment, Systematic Evaluation Program: Dresden Nuclear Power Station, Unit 2 (Docket No. 50-237)

    International Nuclear Information System (INIS)

    1989-10-01

    The US Nuclear Regulatory Commission (NRC) has prepared Supplement 1 to the final Integrated Plant Safety Assessment Report (IPSAR) (NUREG-0823), under the scope of the Systematic Evaluation Program (SEP), for the Commonwealth Edison Company (CECo) Dresden Nuclear Power Station, Unit 2 located in Grundy County, Illinois. The NRC initiated the SEP to provide the framework for reviewing the design of older operating nuclear reactor plants to reconfirm and document their safety. This report documents the review completed by means of the SEP for those issues that required refined engineering evaluations or the continuation of ongoing evaluations subsequent to issuing the final IPSAR for Dresden Unit 2. The review was provided for (1) an assessment of the significance of differences between current technical positions on selected issues and those that existed when Dresden Unit 2 was licensed, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. The final IPSAR and this supplement forms part of the bases for considering the conversion of the existing provisional operating license to a full-term operating license. 83 refs., 9 tabs

  17. Does the concept of safety culture help or hinder systems thinking in safety?

    Science.gov (United States)

    Reiman, Teemu; Rollenhagen, Carl

    2014-07-01

    The concept of safety culture has become established in safety management applications in all major safety-critical domains. The idea that safety culture somehow represents a "systemic view" on safety is seldom explicitly spoken out, but nevertheless seem to linger behind many safety culture discourses. However, in this paper we argue that the "new" contribution to safety management from safety culture never really became integrated with classical engineering principles and concepts. This integration would have been necessary for the development of a more genuine systems-oriented view on safety; e.g. a conception of safety in which human, technological, organisational and cultural factors are understood as mutually interacting elements. Without of this integration, researchers and the users of the various tools and methods associated with safety culture have sometimes fostered a belief that "safety culture" in fact represents such a systemic view about safety. This belief is, however, not backed up by theoretical or empirical evidence. It is true that safety culture, at least in some sense, represents a holistic term-a totality of factors that include human, organisational and technological aspects. However, the departure for such safety culture models is still human and organisational factors rather than technology (or safety) itself. The aim of this paper is to critically review the various uses of the concept of safety culture as representing a systemic view on safety. The article will take a look at the concepts of culture and safety culture based on previous studies, and outlines in more detail the theoretical challenges in safety culture as a systems concept. The paper also presents recommendations on how to make safety culture more systemic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Use of safety management practices for improving project performance.

    Science.gov (United States)

    Cheng, Eddie W L; Kelly, Stephen; Ryan, Neal

    2015-01-01

    Although site safety has long been a key research topic in the construction field, there is a lack of literature studying safety management practices (SMPs). The current research, therefore, aims to test the effect of SMPs on project performance. An empirical study was conducted in Hong Kong and the data collected were analysed with multiple regression analysis. Results suggest that 3 of the 15 SMPs, which were 'safety committee at project/site level', 'written safety policy', and 'safety training scheme' explained the variance in project performance significantly. Discussion about the impact of these three SMPs on construction was provided. Assuring safe construction should be an integral part of a construction project plan.

  19. B Plant low level waste system integrity assessment report

    International Nuclear Information System (INIS)

    Walter, E.J.

    1995-09-01

    This document provides the report of the integrity assessment activities for the B Plant low level waste system. The assessment activities were in response to requirements of the Washington State Dangerous Waste Regulations, Washington Administrative Code (WAC), 173-303-640. This integrity assessment report supports compliance with Hanford Federal Facility Agreement and Consent Order interim milestone target action M-32-07-T03

  20. Do we see how they perceive risk? An integrated analysis of risk perception and its effect on workplace safety behavior.

    Science.gov (United States)

    Xia, Nini; Wang, Xueqing; Griffin, Mark A; Wu, Chunlin; Liu, Bingsheng

    2017-09-01

    While risk perception is a key factor influencing safety behavior, the academia lacks specific attention to the ways that workers perceive risk, and thus little is known about the mechanisms through which different risk perceptions influence safety behavior. Most previous research in the workplace safety domain argues that people tend to perceive risk based on rational formulations of risk criticality. However, individuals' emotions can be also useful in understanding their perceptions. Therefore, this research employs an integrated analysis concerning the rational and emotional perspectives. Specifically, it was expected that the identified three rational ways of perceiving risk, i.e., perceived probability, severity, and negative utility, would influence the direct emotional risk perception. Furthermore, these four risk perceptions were all expected to positively but differently influence safety behavior. The hypotheses were tested using a sample of 120 construction workers. It was found that all the three rational risk perceptions significantly influenced workers' direct perception of risk that is mainly based on emotions. Furthermore, safety behavior among workers relied mainly on emotional perception but not rational calculations of risk. This research contributes to workplace safety research by highlighting the importance of integrating the emotional assessment of risk, especially when workers' risk perception and behavior are concerned. Suggested avenues for improving safety behavior through improvement in risk perception include being aware of the possibility of different ways of perceiving risk, promoting experience sharing and accident simulation, and uncovering risk information. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. SAFETY ANALYSIS APPROACH TO TANK 241-SY-101 REMEDIATION ACTIVITIES

    International Nuclear Information System (INIS)

    RYAN, G.W.

    2000-01-01

    An Unreviewed Safety Question was declared related to the unexplained waste surface level growth in high-level radioactive waste storage Tank 241-SY-101 at the Hanford Site in Richland, Washington. Because the waste surface level in Tank 241-SY-101 was growing in a manner inconsistent with previous behavior, the following issues of concern were recognized: (1) The continually rising surface level had the potential to reach physical encumbrances or limits within the tank (e.g., instrumentation, cameras, established Authorization Basis limits, and the double containment boundary) and the potential to significantly change the consequences of previously analyzed accidents (e.g., flammable gas deflagrations). (2) The presence of new hazards because of significant quantities of flammable gas retained in the crust (e.g., crust collapse gas-release events). (3) The potential to inhibit information gathering related to the existing hazards in the tank (e.g., unable to determine surface level to assess the potential for large gas releases). In response to this situation, a Contractor Project Team, which included Department of Energy representation, was formed to constructively address the issue. The team was responsible for developing and evaluating remediation options and executing the chosen option for remediating the surface level rise issue for Tank 241-SY-101. From an Authorization Basis perspective, the following important aspects will be discussed in this paper: (1) The integrated nature of the Project Team. The team consisted of all the organizations necessary to ensure that the time available to remediate Tank 241-SY-101 was effectively used. Most notable is the connectivity of the Nuclear Safety and Licensing organization with the Engineering, Design, and Operations organizations. (2) The ability of the safety analysis support to adjust to and address evolving Project Team goals and dynamic tank conditions. (3) Due to the urgency to mitigate this developing issue

  2. Nuclear safety

    International Nuclear Information System (INIS)

    Tarride, Bruno

    2015-10-01

    The author proposes an overview of methods and concepts used in the nuclear industry, at the design level as well as at the exploitation level, to ensure an acceptable safety level, notably in the case of nuclear reactors. He first addresses the general objectives of nuclear safety and the notion of acceptable risk: definition and organisation of nuclear safety (relationships between safety authorities and operators), notion of acceptable risk, deterministic safety approach and main safety principles (safety functions and confinement barriers, concept of defence in depth). Then, the author addresses the safety approach at the design level: studies of operational situations, studies of internal and external aggressions, safety report, design principles for important-for-safety systems (failure criterion, redundancy, failure prevention, safety classification). The next part addresses safety during exploitation and general exploitation rules: definition of the operation domain and of its limits, periodic controls and tests, management in case of incidents, accidents or aggressions

  3. The Interface Between Safety and Security at Nuclear Power Plants. INSAG-24. A report by the International Nuclear Safety Group (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This publication seeks to provide a better understanding of the interface between safety and security at nuclear power plants and to discuss the means to achieve both objectives in an optimal fashion. It provides information in a background chapter on the existing relevant documentation, discusses the expectations for administrative arrangements at different levels, surveys certain common principles, and suggests general solutions that can help ensure an integrated approach. Conclusions are drawn and high level recommendations are proposed with the goal of maximizing the protection of the public, property, society and the environment through an improved and strengthened interface between safety and security

  4. Cultural safety as an ethic of care: a praxiological process.

    Science.gov (United States)

    McEldowney, Rose; Connor, Margaret J

    2011-10-01

    New writings broadening the construct of cultural safety, a construct initiated in Aotearoa New Zealand, are beginning to appear in the literature. Therefore, it is considered timely to integrate these writings and advance the construct into a new theoretical model. The new model reconfigures the constructs of cultural safety and cultural competence as an ethic of care informed by a postmodern perspective. Central to the new model are three interwoven, co-occurring components: an ethic of care, which unfolds within a praxiological process shaped by the context. Context is expanded through identifying the three concepts of relationality, generic competence, and collectivity, which are integral to each client-nurse encounter. The competence associated with cultural safety as an ethic of care is always in the process of development. Clients and nurses engage in a dialogue to establish the level of cultural safety achieved at given points in a care trajectory.

  5. Road safety performance indicators : country profiles. SafetyNet, Building the European Road Safety Observatory, Workpackage 3, Deliverable 3.7b.

    NARCIS (Netherlands)

    Riguelle, F. Eksler, V. Holló, P. Morsink, P. Gent, A. van Gitelman, V. Assum, T. & Rackliff, L.

    2009-01-01

    The EC 6th Framework Integrated Project SafetyNet aims to accelerate the availability and use of harmonised road safety data in Europe. Having such data available throughout Europe would be tremendously beneficial for road safety, since it would enable the evaluation of road safety measures, the

  6. Integrated software system for low level waste management

    International Nuclear Information System (INIS)

    Worku, G.

    1995-01-01

    In the continually changing and uncertain world of low level waste management, many generators in the US are faced with the prospect of having to store their waste on site for the indefinite future. This consequently increases the set of tasks performed by the generators in the areas of packaging, characterizing, classifying, screening (if a set of acceptance criteria applies), and managing the inventory for the duration of onsite storage. When disposal sites become available, it is expected that the work will require re-evaluating the waste packages, including possible re-processing, re-packaging, or re-classifying in preparation for shipment for disposal under the regulatory requirements of the time. In this day and age, when there is wide use of computers and computer literacy is at high levels, an important waste management tool would be an integrated software system that aids waste management personnel in conducting these tasks quickly and accurately. It has become evident that such an integrated radwaste management software system offers great benefits to radwaste generators both in the US and other countries. This paper discusses one such approach to integrated radwaste management utilizing some globally accepted radiological assessment software applications

  7. Integrating teamwork, clinician occupational well-being and patient safety - development of a conceptual framework based on a systematic review.

    Science.gov (United States)

    Welp, Annalena; Manser, Tanja

    2016-07-19

    There is growing evidence that teamwork in hospitals is related to both patient outcomes and clinician occupational well-being. Furthermore, clinician well-being is associated with patient safety. Despite considerable research activity, few studies include all three concepts, and their interrelations have not yet been investigated systematically. To advance our understanding of these potentially complex interrelations we propose an integrative framework taking into account current evidence and research gaps identified in a systematic review. We conducted a literature search in six major databases (Medline, PsycArticles, PsycInfo, Psyndex, ScienceDirect, and Web of Knowledge). Inclusion criteria were: peer reviewed papers published between January 2000 and June 2015 investigating a statistical relationship between at least two of the three concepts; teamwork, patient safety, and clinician occupational well-being in hospital settings, including practicing nurses and physicians. We assessed methodological quality using a standardized rating system and qualitatively appraised and extracted relevant data, such as instruments, analyses and outcomes. The 98 studies included in this review were highly diverse regarding quality, methodology and outcomes. We found support for the existence of independent associations between teamwork, clinician occupational well-being and patient safety. However, we identified several conceptual and methodological limitations. The main barrier to advancing our understanding of the causal relationships between teamwork, clinician well-being and patient safety is the lack of an integrative, theory-based, and methodologically thorough approach investigating the three concepts simultaneously and longitudinally. Based on psychological theory and our findings, we developed an integrative framework that addresses these limitations and proposes mechanisms by which these concepts might be linked. Knowledge about the mechanisms underlying the

  8. A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests

    International Nuclear Information System (INIS)

    Thien, Mike G.; Barnes, Steve M.

    2013-01-01

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described

  9. Analysis of cold leg LOCA with failed HPSI by means of integrated safety assessment methodology

    International Nuclear Information System (INIS)

    Gonzalez-Cadelo, J.; Queral, C.; Montero-Mayorga, J.

    2014-01-01

    Highlights: • Results of ISA for considered sequences endorse EOPs guidance in an original way. • ISA allows to obtain accurate available times for accident management actions. • RCP-trip adequacy and available time for beginning depressurization are evaluated. • ISA minimizes the necessity of expert judgment to perform safety assessment. - Abstract: The integrated safety assessment (ISA) methodology, developed by the Spanish Nuclear Safety Council (CSN), has been applied to a thermal–hydraulic analysis of cold leg LOCA sequences with unavailable High Pressure Injection System in a Westinghouse 3-loop PWR. This analysis has been performed with TRACE 5.0 patch 1 code. ISA methodology allows obtaining the Damage Domain (the region of space of parameters where a safety limit is exceeded) as a function of uncertain parameters (break area) and operator actuation times, and provides to the analyst useful information about the impact of these uncertain parameters in safety concerns. In this work two main issues have been analyzed: the effect of reactor coolant pump trip and the available time for beginning of secondary-side depressurization. The main conclusions are that present Emergency Operating Procedures (EOPs) are adequate for managing this kind of sequences and the ISA methodology is able to take into account time delays and parameter uncertainties

  10. Design safety improvements of Kozloduy NPP

    International Nuclear Information System (INIS)

    Hinovski, I.

    1999-01-01

    Design safety improvements of Kozloduy NPP, discussed in detail, are concerned with: primary circuit integrity; reactor pressure vessel integrity; primary coolant piping integrity; primary coolant overpressure protection; leak before break status; design basis accidents and transients; severe accident analysis; improvements of safety and support systems; containment/confinement leak tightness and strength; seismic safety improvements; WWER-1000 control rod insertion; upgrading and modernization of Units 5 and 6; Year 2000 problem

  11. The application of integrated safety management principles to the Tritium Extraction Facility project

    International Nuclear Information System (INIS)

    Hickman, M.O.; Viviano, R.R.

    2000-01-01

    The DOE has developed a program that is accomplishing a heightened safety posture across the complex. The Integrated Safety Management (ISM) System (ISMS) program utilizes five core functions and seven guiding principles as the basis for implementation. The core functions define the work scope, analyze the hazards, develop and implement hazard controls, perform the work, and provide feedback for improvement. The guiding principles include line management responsibility, clear roles and responsibilities, competence per responsibilities, identification of safety standards/requirements, tailored hazard control, balanced priorities, and operations authorization. There exists an unspecified eighth principle, that is, worker involvement. A program requiring the direct involvement of the employees who are actually performing the work has been shown to be quite an effective method of communicating safety requirements, controlling work in a safe manner, and reducing safety violations and injuries. The Tritium Extraction Facility (TEF) projects, a component of the DOE's Commercial Light Water Reactor Tritium Production program, has taken the ISM principles and core functions and applied them to the project's design. The task of the design team is to design a facility and systems that will meet the production requirements of the DOE tritium mission as well as a design that minimizes the workers' exposure to adverse safety situations and hazards/hazardous materials. During the development of the preliminary design for the TEF, design teams consisted of not only designers but also personnel who had operational experience in the existing tritium and personnel who had operational experience in the existing tritium and personnel who had specialized experience from across the DOE complex. This design team reviewed multiple documents associated with the TEF operation in order to identify and document the hazards associated with the tritium process. These documents include hazards

  12. The Integrated Multi-Level Bilingual Teaching of "Social Research Methods"

    Science.gov (United States)

    Zhu, Yanhan; Ye, Jian

    2012-01-01

    "Social Research Methods," as a methodology course, combines theories and practices closely. Based on the synergy theory, this paper tries to establish an integrated multi-level bilingual teaching mode. Starting from the transformation of teaching concepts, we should integrate interactions, experiences, and researches together and focus…

  13. Passive Decay Heat Removal Strategy of Integrated Passive Safety System (IPSS) for SBO-combined Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Ho; Chang, Soon Heung; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The weak points of nuclear safety would be in outmoded nuclear power plants like the Fukushima reactors. One of the systems for the safety enhancement is integrated passive safety system (IPSS) proposed after the Fukushima accidents. It has the five functions for the prevention and mitigation of a severe accident. Passive decay heat removal (PDHR) strategy using IPSS is proposed for coping with SBO-combined accidents in this paper. The two systems for removing decay heat before core-melt were applied in the strategy. The accidents were simulated by MARS code. The reference reactor was OPR1000, specifically Ulchin-3 and 4. The accidents included loss-of-coolant accidents (LOCA) because the coolant losses could be occurred in the SBO condition. The examples were the stuck open of PSV, the abnormal open of SDV and the leakage of RCP seal water. Also, as LOCAs with the failure of active safety injection systems were considered, various LOCAs were simulated in SBO. Based on the thermal hydraulic analysis, the probabilistic safety analysis was carried out for the PDHR strategy to estimate the safety enhancement in terms of the variation of core damage frequency. AIMS-PSA developed by KAERI was used for calculating CDF of the plant. The IPSS was applied in the PDHR strategy which was developed in order to cope with the SBO-combined accidents. The estimation for initiating SGGI or PSIS was based on the pressure in RCS. The simulations for accidents showed that the decay heat could be removed for the safety duration time in SBO. The increase of safety duration time from the strategy provides the increase of time for the restoration of AC power.

  14. The application of the Appropriate Level of Protection (ALOP) and Food Safety Objective (FSO) concepts in food safety management, using Listeria monocytogenes in deli meats as a case study

    NARCIS (Netherlands)

    Gkogka, E.; Reij, M.W.; Gorris, L.G.M.; Zwietering, M.H.

    2011-01-01

    To establish a link between governmental food safety control and operational food safety management, the concepts of the Appropriate Level of Protection (ALOP) and the Food Safety Objective (FSO) have been suggested by international bodies as a means of making food safety control transparent and

  15. Integration of the advanced transparency framework to advanced nuclear systems : enhancing Safety, Operations, Security and Safeguards (SOSS)

    International Nuclear Information System (INIS)

    Mendez, Carmen Margarita; Rochau, Gary Eugene; Cleary, Virginia D.

    2008-01-01

    The advent of the nuclear renaissance gives rise to a concern for the effective design of nuclear fuel cycle systems that are safe, secure, nonproliferating and cost-effective. We propose to integrate the monitoring of the four major factors of nuclear facilities by focusing on the interactions between Safeguards, Operations, Security, and Safety (SOSS). We proposed to develop a framework that monitors process information continuously and can demonstrate the ability to enhance safety, operations, security, and safeguards by measuring and reducing relevant SOSS risks, thus ensuring the safe and legitimate use of the nuclear fuel cycle facility. A real-time comparison between expected and observed operations provides the foundation for the calculation of SOSS risk. The automation of new nuclear facilities requiring minimal manual operation provides an opportunity to utilize the abundance of process information for monitoring SOSS risk. A framework that monitors process information continuously can lead to greater transparency of nuclear fuel cycle activities and can demonstrate the ability to enhance the safety, operations, security and safeguards associated with the functioning of the nuclear fuel cycle facility. Sandia National Laboratories (SNL) has developed a risk algorithm for safeguards and is in the process of demonstrating the ability to monitor operational signals in real-time though a cooperative research project with the Japan Atomic Energy Agency (JAEA). The risk algorithms for safety, operations and security are under development. The next stage of this work will be to integrate the four algorithms into a single framework

  16. Improving safety through an integrated approach for advanced control room development

    International Nuclear Information System (INIS)

    Haugset, K.; Berg, O.; Bologna, S.; Foerdestroemmen, N.T.; Kvalem, J.; Nelson, W.R.; Yamane, N.

    1992-01-01

    With the fast development of computer technology, the potential exists for improving operational safety of nuclear plants by using advanced operator tools in the control room. Specific systems are being introduced, such as systems for alarm handling, failure detection, disturbance diagnosis, procedural advice and others, often based on process modeling techniques or expert system technology. To ensure a maximum benefit from the new technology, a careful integration of the various systems must, however, take place, resulting in a well coordinated interface between the operator and the process. The OECD Halden Reactor Project has started the development of an Integrated Surveillance And Control System (ISACS). The basis for the activity is the experience at Halden in developing specific Computerized Operator Support Systems (COSSs), and the activity around the experimental control room HAMMLAB where detailed validations of operator tools have been performed for a number of years. The first goal in the ISACS project is to have a first, limited prototype in operation at the end of 1990. Validation experiments will follow. (orig.)

  17. Improving safety through an integrated approach for advanced control room development

    International Nuclear Information System (INIS)

    Haugset, K.; Berg, O.; Foerdestroemmen, N.T.; Kvalem, J.; Nelson, W.R.

    1990-01-01

    With the fast development of computer technology, the potential exists for improving operational safety of nuclear plants by using advanced operator tools in the control room. Specific systems are being introduced, such as systems for alarm handling, failure detection, disturbance diagnosis, procedural advice and others, often based on process modeling techniques or expert system technology. To ensure a maximum benefit from the new technology, a careful integration of the various systems must, however, take place, resulting in a well coordinated interface between the operator and the process. The OECD Halden Reactor Project has started the development of an Integrated Surveillance And Control System (ISACS). The basis for the activity is the experience at Halden in developing specific Computerized Operator Support Systems (COSSs), and the activity around the experimental control room HAMMLAB where detailed validations of operator tools have been performed for a number of years. The first goal in the ISACS project is to have a first, limited prototype in operation at the end of 1990. Validation experiments will follow

  18. An integrated framework for cost- benefit analysis in road safety projects using AHP method

    Directory of Open Access Journals (Sweden)

    Mahsa Mohamadian

    2011-10-01

    Full Text Available Cost benefit analysis (CBA is a useful tool for investment decision-making from economic point of view. When the decision involves conflicting goals, the multi-attribute analysis approach is more capable; because there are some social and environmental criteria that cannot be valued or monetized by cost benefit analysis. The complex nature of decision-making in road safety normally makes it difficult to reach a single alternative solution that can satisfy all decision-making problems. Generally, the application of multi-attribute analysis in road sector is promising; however, the applications are in preliminary stage. Some multi-attribute analysis techniques, such as analytic hierarchy process (AHP have been widely used in practice. This paper presents an integrated framework with CBA and AHP methods to select proper alternative in road safety projects. The proposed model of this paper is implemented for a case study of improving a road to reduce the accidents in Iran. The framework is used as an aid to cost benefit tool in road safety projects.

  19. Module Testing Techniques for Nuclear Safety Critical Software Using LDRA Testing Tool

    International Nuclear Information System (INIS)

    Moon, Kwon-Ki; Kim, Do-Yeon; Chang, Hoon-Seon; Chang, Young-Woo; Yun, Jae-Hee; Park, Jee-Duck; Kim, Jae-Hack

    2006-01-01

    The safety critical software in the I and C systems of nuclear power plants requires high functional integrity and reliability. To achieve those requirement goals, the safety critical software should be verified and tested according to related codes and standards through verification and validation (V and V) activities. The safety critical software testing is performed at various stages during the development of the software, and is generally classified as three major activities: module testing, system integration testing, and system validation testing. Module testing involves the evaluation of module level functions of hardware and software. System integration testing investigates the characteristics of a collection of modules and aims at establishing their correct interactions. System validation testing demonstrates that the complete system satisfies its functional requirements. In order to generate reliable software and reduce high maintenance cost, it is important that software testing is carried out at module level. Module testing for the nuclear safety critical software has rarely been performed by formal and proven testing tools because of its various constraints. LDRA testing tool is a widely used and proven tool set that provides powerful source code testing and analysis facilities for the V and V of general purpose software and safety critical software. Use of the tool set is indispensable where software is required to be reliable and as error-free as possible, and its use brings in substantial time and cost savings, and efficiency

  20. Study on safety of a nuclear ship having an integral marine water reactor. Intelligent information database program concerned with thermal-hydraulic characteristics

    International Nuclear Information System (INIS)

    Inasaka, Fujio; Nariai, Hideki; Kobayashi, Michiyuki; Murata, Hiroyuki; Aya, Izuo

    2001-01-01

    As a high economical marine reactor with sufficient safety functions, an integrated type marine water reactor has been considered most promising. At the National Maritime Research Institute, a series of the experimental studies on the thermal-hydraulic characteristics of an integrated/passive-safety type marine water reactor such as the flow boiling of a helical-coil type steam generator, natural circulation of primary water under a ship rolling motion and flashing-condensation oscillation phenomena in pool water has been conducted. This current study aims at making use of the safety analysis or evaluation of a future marine water reactor by developing an intelligent information database program concerned with the thermal-hydraulic characteristics of an integral/passive-safety reactor on the basis of the above-mentioned valuable experimental knowledge. Since the program was created as a Windows application using the Visual Basic, it is available to the public and can be easily installed in the operating system. Main functions of the program are as follows: (1) steady state flow boiling analysis and determination of stability limit for any helical-coil type once-through steam generator design. (2) analysis and comparison with the flow boiling data, (3) reference and graphic display of the experimental data, (4) indication of the knowledge information such as analysis method and results of the study. The program will be useful for the design of not only the future integrated type marine water reactor but also the small sized water reactor. (author)