WorldWideScience

Sample records for safety design requirements

  1. Safety of Nuclear Power Plants: Design. Specific Safety Requirements

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  2. Safety requirements applicable to the SMART design

    Seul, Kwang Won; Kim, Wee Kyong; Kim, Hho Jung

    1999-01-01

    The 330 MW thermal power of integral reactor, named SMART (System integrated Modular Advanced ReacTor), is under development at KAERI for seawater desalination application and electricity generation. The final product of nuclear desalination plant (NDP) is electricity and fresh water. Thus, in addition to the protection of the public around the plant facility from the possible release of radioactive materials, the fresh water should be prevented from radioactivity contamination. In this study, to ensure the safety of SMART reactor in the early stage of design development, the safety requirements applicable to the SMART design were investigated, based on the current regulatory requirements for the existing NPPs and the advanced light water reactor (LWR) designs. The interface requirements related to the desalination facility were also investigated, based on the recent IAEA research activities pertaining to the NDP. As a result, it was found that the current regulatory requirements and guidance for the existing NPPs and advanced LWR designs are applicable to the SMART design and its safety evaluation. However, the safety requirements related to the SMART-specific design and the desalination plant are needed to develop in the future to assure the safety of the SMART reactor

  3. Safety design requirements for safety systems and components of JSFR

    Kubo, Shigenobu; Shimakawa, Yoshio; Yamano, Hidemasa; Kotake, Shoji

    2011-01-01

    Safety design requirements for JSFR were summarized taking the development targets of the FaCT project and design feature of JSFR into account. The related safety principle and requirements for Monju, CRBRP, PRISM, SPX, LWRs, IAEA standards, goals of GIF, basic principle of INPRO etc. were also taken into account so that the safety design requirements can be a next-generation global standard. The development targets for safety and reliability are set based on those of FaCT, namely, ensuring safety and reliability equal to future LWR and related fuel cycle facilities. In order to achieve these targets, the defence-in-depth concept is used as the basic safety design principle. General features of the safety design requirements are 1) Achievement of higher reliability, 2) Achievement of higher inspectability and maintainability, 3) Introduction of passive safety features, 4) Reduction of operator action needs, 5) Design consideration against Beyond Design Basis Events, 6) In-Vessel Retention of degraded core materials, 7) Prevention and mitigation against sodium chemical reactions, and 8) Design against external events. The current specific requirements for each system and component are summarized taking the basic design concept of JSFR into account, which is an advanced loop-type large-output power plant with a mixed-oxide-fuelled core. (author)

  4. Safety of nuclear power plants: Design. Safety requirements

    2000-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  5. Safety of nuclear power plants: Design. Safety requirements

    2004-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  6. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Chinese Ed.)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  7. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Ed.)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  8. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Ed.)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  9. Safety Design Approach for the Development of Safety Requirements for Design of Commercial HTGR

    Ohashi, Hirofumi; Sato, Hiroyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Nishihara, Tetsuo; Yan, Xing; Sakaba, Nariaki; Kunitomi, Kazuhiko

    2014-01-01

    The research committee on “Safety requirements for HTGR design” was established in 2013 under the Atomic Energy Society of Japan to develop the draft safety requirements for the design of commercial High Temperature Gas-cooled Reactors (HTGRs), which incorporate the HTGR safety features demonstrated using the High Temperature Engineering Test Reactor (HTTR), lessons learned from the accident of Fukushima Daiichi Nuclear Power Station and requirements for the integration of the hydrogen production plants. The safety design approach for the commercial HTGRs which is a basement of the safety requirements is determined prior to the development of the safety requirements. The safety design approaches for the commercial HTGRs are to confine the radioactive materials within the coated fuel particles not only during normal operation but also during accident conditions, and the integrity of the coated fuel particles and other requiring physical barriers are protected by the inherent and passive safety features. This paper describes the main topics of the research committee, the safety design approaches and the safety functions of the commercial HTGRs determined in the research committee. (author)

  10. Safety design guides for seismic requirements for CANDU 9

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide for seismic requirements for CANDU 9 describes the seismic design philosophy, defines the applicable earthquakes and identifies the structures and systems requiring seismic qualification to ensure that the essential safety function can be adequately satisfied following earthquake. The detailed requirements for structures, systems and components which must be seismically qualified are specified in the Appendix. The change status of the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 1 fig., (Author) .new

  11. Design requirements of communication architecture of SMART safety system

    Park, H. Y.; Kim, D. H.; Sin, Y. C.; Lee, J. Y.

    2001-01-01

    To develop the communication network architecture of safety system of SMART, the evaluation elements for reliability and performance factors are extracted from commercial networks and classified the required-level by importance. A predictable determinacy, status and fixed based architecture, separation and isolation from other systems, high reliability, verification and validation are introduced as the essential requirements of safety system communication network. Based on the suggested requirements, optical cable, star topology, synchronous transmission, point-to-point physical link, connection-oriented logical link, MAC (medium access control) with fixed allocation are selected as the design elements. The proposed architecture will be applied as basic communication network architecture of SMART safety system

  12. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Spanish Edition)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  13. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  14. Safety research needs for Russian-designed reactors. Requirements situation

    Brown, R. Allan; Holmstrom, Heikki; Reocreux, Michel; Schulz, Helmut; Liesch, Klaus; Santarossa, Giampiero; Hayamizu, Yoshitaka; Asmolov, Vladimir; Bolshov, Leonid; Strizhov, Valerii; Bougaenko, Sergei; Nikitin, Yuri N.; Proklov, Vladimir; Potapov, Alexandre; Kinnersly, Stephen R.; Voronin, Leonid M.; Honekamp, John R.; Frescura, Gianni M.; Maki, Nobuo; Reig, Javier; ); Bekjord, Eric S.; Rosinger, Herbert E.

    1998-01-01

    integrity must be verified, and material property data bases extended. - VVER severe accident research should focus on validation of codes for accident management procedures, and on extension and qualification of an appropriate data base for materials properties and their interactions. - RBMK thermal-hydraulic research is needed to improve the technical basis for further development of RBMK safety criteria. - Assessment of the integrity of the RBMK primary coolant circuit, and especially the fuel channel, requires urgent research. Methods of assessing RBMK pressure boundary integrity must be verified, and material property data bases extended. - RBMK severe accident research should focus on prevention of accidents and Accident Management for cases of loss of heat sink and Beyond Design-Basis Loss-of-Coolant Accidents. For these purposes, simple physical models and parametric codes need development and should be systematically used in plant specific analysis. Recommendations; - A Safety Research Strategic Plan should be developed. Such a plan sets goals, defines products, and describes when and how work will be done, including determination of research priorities. - Key players, including regulators, operators, plant designers and researchers should be involved in developing and implementing this plan and its execution and applying the results. - International cooperation in safety research should be encouraged for purposes of improving quality, preventing technical isolation and cost sharing. - New approaches, such as technical fora for specific technical topics, should be established to make safety research information in OECD countries available to researchers working on the safety of Russian-designed reactors

  15. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Edition)

    2017-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  16. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    2016-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  17. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Edition)

    2017-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  18. Small nuclear reactor safety design requirements for autonomous operation

    Kozier, K.S.; Kupca, S.

    1997-01-01

    Small nuclear power reactors offer compelling safety advantages in terms of the limited consequences that can arise from major accident events and the enhanced ability to use reliable, passive means to eliminate their occurrence by design. Accordingly, for some small reactor designs featuring a high degree of safety autonomy, it may be-possible to delineate a ''safety envelope'' for a given set of reactor circumstances within which safe reactor operation can be guaranteed without outside intervention for time periods of practical significance (i.e., days or weeks). The capability to operate a small reactor without the need for highly skilled technical staff permanently present, but with continuous remote monitoring, would aid the economic case for small reactors, simplify their use in remote regions and enhance safety by limiting the potential for accidents initiated by inappropriate operator action. This paper considers some of the technical design options and issues associated with the use of small power reactors in an autonomous mode for limited periods. The focus is on systems that are suitable for a variety of applications, producing steam for electricity generation, district heating, water desalination and/or marine propulsion. Near-term prospects at low power levels favour the use of pressurized, light-water-cooled reactor designs, among which those having an integral core arrangement appear to offer cost and passive-safety advantages. Small integral pressurized water reactors have been studied in many countries, including the test operation of prototype systems. (author)

  19. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition); Bezopasnost' atomnykh ehlektrostantsij: proektirovanie. Konkretnye trebovaniya bezopasnosti

    NONE

    2012-04-15

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  20. Safety and environmental requirements and design targets for TIBER-II

    Piet, S.J.

    1987-09-01

    A consistent set of safety and environmental requirements and design targets was proposed and adopted for the TIBER-II (Tokamak Ignition/Burn Experimental Reactor) design effort. TIBER-II is the most recent US version of a fusion experimental test reactor (ETR). These safety and environmental design targets were one contribution of the Fusion Safety Program in the TIBER-II design effort. The other contribution, safety analyses, is documented in the TIBER-II design report. The TIBER-II approach, described here, concentrated on logical development of, first, a complete and consistent set of safety and environmental requirements that are likely appropriate for an ETR, and, second, an initial set of design targets to guide TIBER-II. Because of limited time in the TIBER-II design effort, the iterative process only included one iteration - one set of targets and one design. Future ETR design efforts should therefore build on these design targets and the associated safety analyses. 29 refs., 5 figs., 3 tabs

  1. Safety requirements in the design of research reactors: A Canadian perspective

    Lee, A.G.; Langman, V.J.

    2000-01-01

    In Canada, the formal development of safety requirements for the design of research reactors in general began under an inter-organizational Small Reactor Criteria Committee. This committee developed safety and licensing criteria for use by several small reactor projects in their licensing discussions with the Atomic Energy Control Board. The small reactor projects or facilities represented included the MAPLE-X10 reactor, the proposed SES-10 heating reactor and its prototype, the SDR reactor at the Whiteshell Laboratories, the Korea Multipurpose Research Reactor (a.k.a., HANARO) in Korea, the SCORE project, and the McMaster University Nuclear Reactor. The top level set of criteria which form a safety philosophy and serve as a framework for more detailed developments was presented at an IAEA Conference in 1989. AECL continued this work to develop safety principles and design criteria for new small reactors. The first major application of this work has been to the design, safety analysis and licensing of the MAPLE 1 and 2 reactors for the MDS Nordion Medical Isotope Reactor Project. This paper provides an overview of the safety principles and design criteria. Examples of an implementation of these safety principles and design criteria are drawn from the work to design the MAPLE 1 and 2 reactors. (author)

  2. Safety Design Requirements for The Interior Architecture of Scientific Research Laboratories

    ElDib, A.A.

    2014-01-01

    The paper discusses one of the primary objectives of interior architecture design of research laboratories (specially those using radioactive materials) where it should provide a safe, accessible environment for laboratory personnel to conduct their work. A secondary objective is to allow for maximum flexibility for safe research. Therefore, health and safety hazards must be anticipated and carefully evaluated so that protective measures can be incorporated into the interior architectural design of these facilities wherever possible. The interior architecture requirements discussed in this paper illustrate some of the basic health and safety design features required for new and remodeled laboratories.The paper discusses one of the primary objectives of interior architecture design of research laboratories (specially those using radioactive materials) where it should provide a safe, accessible environment for laboratory personnel to conduct their work. A secondary objective is to allow for maximum flexibility for safe research. Therefore, health and safety hazards must be anticipated and carefully evaluated so that protective measures can be incorporated into the interior architectural design of these facilities wherever possible. The interior architecture requirements discussed in this paper illustrate some of the basic health and safety design features required for new and remodeled laboratories.

  3. Safety design

    Kunitomi, Kazuhiko; Shiozawa, Shusaku

    2004-01-01

    JAERI established the safety design philosophy of the HTTR based on that of current reactors such as LWR in Japan, considering inherent safety features of the HTTR. The strategy of defense in depth was implemented so that the safety engineering functions such as control of reactivity, removal of residual heat and confinement of fission products shall be well performed to ensure safety. However, unlike the LWR, the inherent design features of the high-temperature gas-cooled reactor (HTGR) enables the HTTR meet stringent regulatory criteria without much dependence on active safety systems. On the other hand, the safety in an accident typical to the HTGR such as the depressurization accident initiated by a primary pipe rupture shall be ensured. The safety design philosophy of the HTTR considers these unique features appropriately and is expected to be the basis for future Japanese HTGRs. This paper describes the safety design philosophy and safety evaluation procedure of the HTTR especially focusing on unique considerations to the HTTR. Also, experiences obtained from an HTTR safety review and R and D needs for establishing the safety philosophy for the future HTGRs are reported

  4. Linking Safety Analysis to Safety Requirements

    Hansen, Kirsten Mark

    Software for safety critical systems must deal with the hazards identified by safety analysistechniques: Fault trees, event trees,and cause consequence diagrams can be interpreted as safety requirements and used in the design activity. We propose that the safety analysis and the system design use...

  5. A Review of Safety and Design Requirements of the Artificial Pancreas

    Blauw, Helga; Keith-Hynes, Patrick; Koops, Robin; DeVries, J. Hans

    2016-01-01

    As clinical studies with artificial pancreas systems for automated blood glucose control in patients with type 1 diabetes move to unsupervised real-life settings, product development will be a focus of companies over the coming years. Directions or requirements regarding safety in the design of an

  6. Safety of Research Reactors. Safety Requirements

    2010-01-01

    The main objective of this Safety Requirements publication is to provide a basis for safety and a basis for safety assessment for all stages in the lifetime of a research reactor. Another objective is to establish requirements on aspects relating to regulatory control, the management of safety, site evaluation, design, operation and decommissioning. Technical and administrative requirements for the safety of research reactors are established in accordance with these objectives. This Safety Requirements publication is intended for use by organizations engaged in the site evaluation, design, manufacturing, construction, operation and decommissioning of research reactors as well as by regulatory bodies

  7. A Review of Safety and Design Requirements of the Artificial Pancreas.

    Blauw, Helga; Keith-Hynes, Patrick; Koops, Robin; DeVries, J Hans

    2016-11-01

    As clinical studies with artificial pancreas systems for automated blood glucose control in patients with type 1 diabetes move to unsupervised real-life settings, product development will be a focus of companies over the coming years. Directions or requirements regarding safety in the design of an artificial pancreas are, however, lacking. This review aims to provide an overview and discussion of safety and design requirements of the artificial pancreas. We performed a structured literature search based on three search components-type 1 diabetes, artificial pancreas, and safety or design-and extended the discussion with our own experiences in developing artificial pancreas systems. The main hazards of the artificial pancreas are over- and under-dosing of insulin and, in case of a bi-hormonal system, of glucagon or other hormones. For each component of an artificial pancreas and for the complete system we identified safety issues related to these hazards and proposed control measures. Prerequisites that enable the control algorithms to provide safe closed-loop control are accurate and reliable input of glucose values, assured hormone delivery and an efficient user interface. In addition, the system configuration has important implications for safety, as close cooperation and data exchange between the different components is essential.

  8. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Spanish Edition); Seguridad de las centrales nucleares: Diseno. Requisitos de seguridad especificos

    NONE

    2012-04-15

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  9. Considerations on the Application of the IAEA Safety Requirements for the Design of Nuclear Power Plants

    2016-05-01

    Revised to take into consideration findings from the Fukushima Daiichi nuclear power plant accident, IAEA Safety Standards Series No. SSR-2/1 (Rev. 1), Safety of Nuclear Power Plants: Design, has introduced some new concepts with respect to the earlier safety standard published in the year 2000. The preparation of SSR-2/1 (Rev. 1) was carried out with constant and intense involvement of IAEA Member States, but some new requirements, because of the novelty of the concepts introduced and the complexity of the issues, are not always interpreted in a unique way. The IAEA is confident that a complete clarification and a full understanding of the new requirements will be available when the supporting safety guides for design and safety assessment of nuclear power plants are prepared. The IAEA expects that the effort devoted to the preparation of this publication, which received input and comments from several Member States and experts, will also facilitate and harmonize the preparation or revision of these supporting standards

  10. Structural Design Requirements and Factors of Safety for Spaceflight Hardware: For Human Spaceflight. Revision A

    Bernstein, Karen S.; Kujala, Rod; Fogt, Vince; Romine, Paul

    2011-01-01

    This document establishes the structural requirements for human-rated spaceflight hardware including launch vehicles, spacecraft and payloads. These requirements are applicable to Government Furnished Equipment activities as well as all related contractor, subcontractor and commercial efforts. These requirements are not imposed on systems other than human-rated spacecraft, such as ground test articles, but may be tailored for use in specific cases where it is prudent to do so such as for personnel safety or when assets are at risk. The requirements in this document are focused on design rather than verification. Implementation of the requirements is expected to be described in a Structural Verification Plan (SVP), which should describe the verification of each structural item for the applicable requirements. The SVP may also document unique verifications that meet or exceed these requirements with NASA Technical Authority approval.

  11. Plant design and layout of the different buildings with respect to safety, operational and maintenance requirements

    Linder, C.

    1981-01-01

    Design and layout of the buildings of a nuclear power plant are governed by the safety requirements regarding nearby population as called for by government regulations as well as by operational and maintenance requirements called for by the power utilities in order to assure smooth operation and easy service conditions. The lecture will focus on the different functional circumstances to be considered, their relative importance, criteria to be applied, pertinent regulations etc. and also give examples on the solutions to the above requirements. Main topics to be covered will be those circumstances that impose the highest demands on the civil engineering layout and design: airplane impact, earthquake, loss of coolant accident, pipe whipping, fuel cask transfer, annual overhaul, leak detection etc. (orig./RW)

  12. Study of In-Pile test facility for fast reactor safety research: performance requirements and design features

    Nonaka, N.; Kawatta, N.; Niwa, H.; Kondo, S.; Maeda, K

    1996-12-31

    This paper describes a program and the main design features of a new in-pile safety facility SERAPH planned for future fast reactor safety research. The current status of R and D on technical developments in relation to the research objectives and performance requirements to the facility design is given.

  13. The development of safety requirements

    Jorel, M.

    2009-01-01

    This document describes the safety approach followed in France for the design of nuclear reactors. This safety approach is based on safety principles from which stem safety requirements that set limiting values for specific parameters. The improvements in computerized simulation, the use of more adequate new materials, a better knowledge of the concerned physical processes, the changes in the reactor operations (higher discharge burnups for instance) have to be taken into account for the definition of safety criteria and the setting of limiting values. The developments of the safety criteria linked to the risks of cladding failure and loss of primary coolant are presented. (A.C.)

  14. Safety Requirements / Design Criteria for SFR. Lessons Learned from the Fukushima Dai-ichi Accident

    Yllera, Javier

    2013-01-01

    After the Fukushima event (March 2011) the IAEA has started an action to review and revise, if necessary, all Safety Standards to take into consideration the lessons learned from the accident. The Safety Standards that need to be revised have been identified. A Prioritization Approach has been established: The first priority is to review safety guides applicable for NPPs and spent fuel storage with focus on the measures for the prevention and mitigation of severe accident due to external hazards - ● Regulatory framework, Safety assessment, Management system, Radiation protection and Emergency Preparedness and response; ● Sitting, Design, Operation of NPPs ● Decommissioning and Waste Management. Original sources for lessons learned: IAE fact Finding Mission, Japan´s report to the Ministerial Conference, INSAG Report, etc. Later, other lesson sources considered

  15. Plant design and layout of the different buildings with respect to safety, operational and maintenance requirements

    Liebich, H.

    1981-01-01

    The descriptions and pictures in this lecture show that the arrangement of the buildings and the location of components and systems are based on proven ideas with the aim to fulfil safety, operational and maintenance requirements also from the point of view of plant layout. (orig.)

  16. Range Flight Safety Requirements

    Loftin, Charles E.; Hudson, Sandra M.

    2018-01-01

    The purpose of this NASA Technical Standard is to provide the technical requirements for the NPR 8715.5, Range Flight Safety Program, in regards to protection of the public, the NASA workforce, and property as it pertains to risk analysis, Flight Safety Systems (FSS), and range flight operations. This standard is approved for use by NASA Headquarters and NASA Centers, including Component Facilities and Technical and Service Support Centers, and may be cited in contract, program, and other Agency documents as a technical requirement. This standard may also apply to the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements to the extent specified or referenced in their contracts, grants, or agreements, when these organizations conduct or participate in missions that involve range flight operations as defined by NPR 8715.5.1.2.2 In this standard, all mandatory actions (i.e., requirements) are denoted by statements containing the term “shall.”1.3 TailoringTailoring of this standard for application to a specific program or project shall be formally documented as part of program or project requirements and approved by the responsible Technical Authority in accordance with NPR 8715.3, NASA General Safety Program Requirements.

  17. Cognitive Connected Vehicle Information System Design Requirement for Safety: Role of Bayesian Artificial Intelligence

    Ata Khan

    2013-04-01

    Full Text Available Intelligent transportation systems (ITS are gaining acceptance around the world and the connected vehicle component of ITS is recognized as a high priority research and development area in many technologically advanced countries. Connected vehicles are expected to have the capability of safe, efficient and eco-driving operations whether these are under human control or in the adaptive machine control mode of operations. The race is on to design the capability to operate in connected traffic environment. The operational requirements can be met with cognitive vehicle design features made possible by advances in artificial intelligence-supported methodology, improved understanding of human factors, and advances in communication technology. This paper describes cognitive features and their information system requirements. The architecture of an information system is presented that supports the features of the cognitive connected vehicle. For better focus, information processing capabilities are specified and the role of Bayesian artificial intelligence is defined for data fusion. Example applications illustrate the role of information systems in integrating intelligent technology, Bayesian artificial intelligence, and abstracted human factors. Concluding remarks highlight the role of the information system and Bayesian artificial intelligence in the design of a new generation of cognitive connected vehicle.

  18. Safety of Research Reactors. Specific Safety Requirements (French Edition)

    2017-01-01

    This Safety Requirements publication establishes requirements for all main areas of safety for research reactors, with particular emphasis on requirements for design and operation. It explains the safety objectives and concepts that form the basis for safety and safety assessment for all stages in the lifetime of a research reactor. Technical and administrative requirements for the safety of new research reactors are established in accordance with these objectives and concepts, and they are to be applied to the extent practicable for existing research reactors. The safety requirements established in this publication for the management of safety and regulatory supervision apply to site evaluation, design, manufacturing, construction, commissioning, operation (including utilization and modification), and planning for decommissioning of research reactors (including critical assemblies and subcritical assemblies). The publication is intended for use by regulatory bodies and other organizations with responsibilities in these areas and in safety analysis, verification and review, and the provision of technical support.

  19. Evaluation of the Ventilation and Air Cleaning System Design Concepts for Safety Requirements during Fire Conditions in Nuclear Applications

    Rashad, S.; El-Fawal, M.; Kandil, M.

    2013-01-01

    The ventilation and air cleaning system in the nuclear or radiological installations is one of the essential nuclear safety concerns. It is responsible for confining the radioactive materials involved behind suitable barriers during normal and abnormal conditions. It must be designed to prevent the release of harmful products (radioactive gases, or airborne radioactive materials) from the system or facility, impacting the public or workers, and doing environmental damage. There are two important safety functions common to all ventilation and air cleaning system in nuclear facilities. They are: a) the requirements to maintain the pressure of the ventilated volume below that of surrounding, relatively non-active areas, in order to inhibit the spread of contamination during normal and abnormal conditions, and b) the need to treat the ventilated gas so as to minimize the release of any radioactive or toxic materials. Keeping the two important safety functions is achieved by applying the fire protection for the ventilation system to achieve safety and adequate protection in nuclear applications facilities during fire and accidental criticality conditions.The main purpose of this research is to assist ventilation engineers and experts in nuclear installations for safe operation and maintaining ventilation and air cleaning system during fire accident in nuclear facilities. The research focuses on fire prevention and protection of the ventilation systems in nuclear facilities. High-Efficiency particulate air (HEPA) filters are extremely susceptible to damage when exposed to the effects of fire, smoke, and water; it is the intent of this research to provide the designer with the experience gained over the years from hard lessons learned in protecting HEPA filters from fire. It describes briefly and evaluates the design safety features, constituents and working conditions of ventilation and air cleaning system in nuclear and radioactive industry.This paper provides and

  20. Design safety improvements of Kozloduy NPP to meet the modern safety requirements towards the old generation PWR

    Hinovski, M.P.; Sabinov, S.

    2001-01-01

    Activities related to safety improvement of Kozloduy NPP units, started at the end of 1970s included seismic resistance upgrading, fire safety improvement, reliable heat final absorber etc. During the last 10 years the approach was systematized and improved. Units 1 to 4 are of great interest; therefore here we will discuss these units only. As a result of studies and analyses performed at the end of the 1980s and the beginning of the 1990s, problems related to the safety were identified and complex of technical measures was developed and planned. A considerable part of these measures has already been implemented, and the rest will be performed during the next years. Activities were performed by stages, and at the moment the last stage is under way. It shall be finished by the year 2003. The number of the measures is quite large to describe them here in full scope -- during the first stage of the safety program (1991-1993) were developed and analyzed more than 4200 documents and more than 160 measures were executed. During the second and third stages more than 300 important improvements were realized. In the frame of the program, financed by EBRD, 10 new systems with great importance were implemented and 8 systems were significantly modified. The main measures are described below. (author)

  1. Regulatory requirements for radiation safety in the design of a new Finish NPP

    Alm-Lytz, Kirsi; Vilkamo, Olli [Radiation and Nuclear Safety Authority, STUK, PO Box 14, Laippatie 4, 00881 Helsinki (Finland)

    2004-07-01

    There are two operating nuclear power plants in Finland, two BWR units at Olkiluoto site and two PWR units at Loviisa site. These reactors were commissioned between 1977 and 1981. The total electricity capacity in Finland is about 15 GW. In 2003, nuclear power plants generated one fourth of Finland's electricity. Despite of the diversity of the electricity generation methods, Finland is highly dependent on imported energy. Electricity consumption is estimated to increase and the demand for extra capacity has been estimated at about 2500-3000 MW by 2010. It should also be taken into account that a considerable proportion of the production capacity constructed in the 1970's must be replaced with production capacity of new power plants in the near future. In practice, the climate politics commitments made by Finland exclude coal power. Therefore, the capacity can be increased significantly only by natural gas, nuclear power and biofuels. The paper presents the following issues: Licensing a new nuclear power plant in Finland; FIN5 Project at STUK; Work planning and a tool for requirement management; Radiation safety related YVL guides; Collective dose target; On-site habitability during accident situation. Habitability was evaluated on the basis of the calculated dose rate levels, the occupancy times and the dose limits. Radiation hazard was classified into three parts, i.e., possible direct radiation from the containment, air contamination and systems carrying radioactive air or water. The results showed that direct radiation from the containment is generally adequately shielded but penetrations and hatches have to be separately analysed and the radiation dose levels near them are usually rather high. Skyshine radiation from the reactor containment is a special feature at the Loviisa NPP and the nearby area outside the buildings might have very limited access for the first hours after the accident. The skyshine effect is not usually relevant hazard in

  2. The regulatory requirements, design bases, researches and assessments in the field of Ukrainian NPP's seismic safety

    Mykolaychuk, O.; Mayboroda, O.; Krytskyy, V.; Karnaukhov, O.

    2001-01-01

    State Nuclear Regulatory Authority of Ukraine (SNRA) pays large attention to problem of nuclear installations seismic stability. As a result the seismic design regulatory guides is revised, additional seismic researches of NPP sites are conducted, seismic reassessment of NPP designs were begun. The experts involved address all seismic related factors under close contact with the staff of NPP, design institutes and research organizations. This document takes stock on the situation and the research programs. (author)

  3. Special features of the safety concept and design requirements applied for Angra-2 and 3

    Anon.

    1980-01-01

    The special features and requirements which have been applied by NUCLEN (Nuclebras Engenharia S/A) for Angra 2 and Angra 3 and which depart somewhat from the KWU (Kraftwerk Union) standard plant, are presented. (E.G.) [pt

  4. Cognitive Connected Vehicle Information System Design Requirement for Safety: Role of Bayesian Artificial Intelligence

    Ata Khan

    2013-01-01

    Intelligent transportation systems (ITS) are gaining acceptance around the world and the connected vehicle component of ITS is recognized as a high priority research and development area in many technologically advanced countries. Connected vehicles are expected to have the capability of safe, efficient and eco-driving operations whether these are under human control or in the adaptive machine control mode of operations. The race is on to design the capability to operate in connected traffic ...

  5. Safety of nuclear power plants: Operation. Safety requirements

    2004-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  6. Safety of nuclear power plants: Operation. Safety requirements

    2003-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  7. Safety of nuclear power plants: Operation. Safety requirements

    2000-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations; to be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; and to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  8. Panel 1: Safety design criteria

    Yllera, Javier

    2013-01-01

    There is general consensus in the nuclear community, and more after the Fukushima accident, that the deployment of nuclear energy has to be done at the highest levels of nuclear safety and that safety cannot be compromised by other factors. It is well understood that reactors that are being licensed and the new generations of reactors that will be constructed in the future will need to reach higher safety levels than the existing ones. Several countries and international organizations or international groups are launching initiatives to harmonise safety goals, safety requirements, safety objectives, regulations, criteria or safety reference levels. There are differences in the meanings of these terms and the working approaches, but the overall purpose is the same: to specify how new plants can be safer. In this context, the IAEA has an statutory function for developing international nuclear safety standards. The IAEA safety standards are per se not mandatory for IAEA Member States. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA’s standards for use in their national regulations in different ways. The IAEA Safety Standards represent international consensus on what must constitute a high level of safety for nuclear installations. In the area of NPP design, IAEA safety standards that are published are intended to apply primarily to new plants. It might not be practicable to apply all the requirements to plants that are already in operation. In addition, the focus is primarily on plants with water cooled reactors

  9. Nuclear data for fission reactor core design and safety analysis: Requirements and status of accuracy of nuclear data

    Rowlands, J.L.

    1984-01-01

    The types of nuclear data required for fission reactor design and safety analysis, and the ways in which the data are represented and approximated for use in reactor calculations, are summarised first. The relative importance of different items of nuclear data in the prediction of reactor parameters is described and ways of investigating the accuracy of these data by evaluating related integral measurements are discussed. The use of sensitivity analysis, together with estimates of the uncertainties in nuclear data and relevant integral measurements, in assessing the accuracy of prediction of reactor parameters is described. The inverse procedure for deciding nuclear data requirements from the target accuracies for prediction of reactor parameters follows on from this. The need for assessments of the uncertainties in nuclear data evaluations and the form of the uncertainty information is discussed. The status of the accuracies of predictions and nuclear data requirements are then summarised. The reactor parameters considered include: (a) Criticality conditions, conversion and burn-up effects. (b) Energy production and deposition, decay heating, irradiation damage, dosimetry and induced radioactivity. (c) Kinetics characteristics and control, including temperature, power and coolant density coefficients, delayed neutrons and control absorbers. (author)

  10. Cold vacuum drying facility design requirements

    IRWIN, J.J.

    1999-01-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified

  11. Cold vacuum drying facility design requirements

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  12. Integrated Safety in Design

    Schultz, Casper Siebken; Jørgensen, Kirsten

    2014-01-01

    An on-going research project investigates the inclusion of health and safety considerations in the design phase as a means to achieve a higher level of health and safety in the construction industry. Moreover, the approach is coupled to the overall quality efforts. Two architectural firms and two...... consulting engineering firms are project participants. The hypothesis is that health and safety problems in execution can be prevented through better planning in the early stages of the construction processes and that accidents are prevented by providing safety. In the first stage of the research project...... a theoretical framework is developed from a combination of existing literature on health and safety and a mapping of existing practices based on interviews in all four companies. The interviews revealed that the basic knowledge on OHS among architects and engineers is limited. Also currently designers typically...

  13. EC6 safety design improvements

    Yu, S.; Lee, A.G.; Soulard, M. [Candu Energy Inc., Mississauga, ON (Canada)

    2014-07-01

    The Enhanced CANDU 6 (EC6) builds on the proven high performance design such as the Qinshan CANDU 6 reactor, and has made improvements to safety, operational performance, and has incorporated extensive operational feedback. Completion of all three phases of the pre-licensing design review by the Canadian Regulator - the Canadian Nuclear Safety Commission has provided a higher level of assurance that the EC6 reference design has taken modern regulatory requirements and expectations into account and further confirmed that there are no fundamental barriers to licensing the EC6 design in Canada. The EC6 design is based on the defence-in-depth principles in INSAG-10 and provides further safety features that address the lessons learned from Fukushima. With these safety features, the EC6 design has strengthened accident prevention as the first priority in the defence-in-depth strategy, as outlined in INSAG-10. As well, the EC6 design has incorporated further mitigation measures to provide additional protection of the public and the environment if the preventive measures fail. The EC6 design has an appropriate combination of inherent, passive safety characteristics, engineered features and administrative safety measures to effectively prevent and mitigate severe accident progressions. A strong contributor to the robustness and redundancy of CANDU design is the two-group separation philosophy. This ensures a high degree of independence between safety systems as well as physical separation and functional independence in how fundamental safety functions are provided. This paper will describe the following safety features based on the application of defence-in-depth and design approach to prevent beyond design basis events progressing to severe accidents and to mitigate the consequences if it occurs: Improved steam generator heat sink via a more reliable emergency heat removal system; Increased time before manual field actions are required via enhanced capacity of

  14. Safety of nuclear fuel cycle facilities. Safety requirements

    2008-01-01

    This publication covers the broad scope of requirements for fuel cycle facilities that, in light of the experience and present state of technology, must be satisfied to ensure safety for the lifetime of the facility. Topics of specific reference include aspects of nuclear fuel generation, storage, reprocessing and disposal. Contents: 1. Introduction; 2. The safety objective, concepts and safety principles; 3. Legal framework and regulatory supervision; 4. The management system and verification of safety; 5. Siting of the facility; 6. Design of the facility; 7. Construction of the facility; 8. Commissioning of the facility; 9. Operation of the facility; 10. Decommissioning of the facility; Appendix I: Requirements specific to uranium fuel fabrication facilities; Appendix II: Requirements specific to mixed oxide fuel fabrication facilities; Appendix III: Requirements specific to conversion facilities and enrichment facilities

  15. Safety and design limits

    Shishkov, L. K.; Gorbaev, V. A.; Tsyganov, S. V.

    2007-01-01

    The paper touches upon the issues of NPP safety ensuring at the stage of fuel load design and operation by applying special limitations for a series of parameters, that is, design limits. Two following approaches are compared: the one used by west specialists for the PWR reactor and the Russian approach employed for the WWER reactor. The closeness of approaches is established, differences that are mainly peculiarities of terms are noted (Authors)

  16. Traceability of Software Safety Requirements in Legacy Safety Critical Systems

    Hill, Janice L.

    2007-01-01

    How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?

  17. Design provisions for safety

    Birkhofer, A.

    1983-01-01

    Design provisions for safety of nuclear power plants are based on a well balanced concept: the public is protected against a release of radioactive material by multiple barriers. These barriers are protected according to a 'defence-in-depth' principle. The reactor safety concept is primarily aimed at the prevention of accidents, especially fuel damage. Additionally, measures for consequence limitation are provided in order to prevent a severe release of radioactivity to the environment. However, it is difficult to judge the overall effectiveness of such devices. In a comprehensive safety analysis it has to be shown that the protection systems and safeguards work with sufficient reliability in the event of an accident. For the reliability assessment deterministic criteria (single failure, redundancy, fail-safe, demand for diversity) play an important role. Increasing efforts have been made to assess reliability quantitatively by means of probabilistic methods. It is now usual to perform reliability analyses of essential systems of nuclear power plants in the course of licensing procedures. As an additional level of emergency measures for a further reduction of hazards a reasonable amount of accident information has to be transferred. Operational experience may be considered as an important feedback to the design of plant safety features. Operator training has to include, besides skill in performing of operating procedures, the training of a flexible response to different accident situations. Experience has shown that the design provisions for safety could prevent dangerous release of the radioactive material to the environment after an accident has occurred. For future developments of reactor safety, extensive analyses of operating experience are of great importance. The main goal should be to enhance the reliability of measures for accident prevention, which prevent the core from meltdown or other damages

  18. Metrics design for safety assessment

    Luo, Yaping; van den Brand, M.G.J.

    2016-01-01

    Context:In the safety domain, safety assessment is used to show that safety-critical systems meet the required safety objectives. This process is also referred to as safety assurance and certification. During this procedure, safety standards are used as development guidelines to keep the risk at an

  19. Requirements of safety and reliability

    Franzen, L.F.

    1977-01-01

    The safety strategy for nuclear power plants is characterized by the fact that the high level of safety was attained not as a result of experience, but on the basis of preventive accident analyses and the findings derived from such analyses. Although, in these accident analyses, the deterministic approach is predominant it is supplemented by reliability analyses. The accidents analyzed in nuclear licensing procedures cover a wide spectrum from minor incidents to the design basis accidents which determine the design of the safety devices. The initial and boundary conditions, which are essential for accident analyses, and the determination of the loads occuring in various states during regular operation and in accidents flow into the design of the individual systems and components. The inevitable residual risk and its origins are discussed. (orig./HP) [de

  20. Engineering design guidelines for nuclear criticality safety

    Waltz, W.R.

    1988-08-01

    This document provides general engineering design guidelines specific to nuclear criticality safety for a facility where the potential for a criticality accident exists. The guide is applicable to the design of new SRP/SRL facilities and to major modifications Of existing facilities. The document is intended an: A guide for persons actively engaged in the design process. A resource document for persons charged with design review for adequacy relative to criticality safety. A resource document for facility operating personnel. The guide defines six basic criticality safety design objectives and provides information to assist in accomplishing each objective. The guide in intended to supplement the design requirements relating to criticality safety contained in applicable Department of Energy (DOE) documents. The scope of the guide is limited to engineering design guidelines associated with criticality safety and does not include other areas of the design process, such as: criticality safety analytical methods and modeling, nor requirements for control of the design process

  1. Requirements to be taken into account when designing safety-related mechanical components conveying or containing pressurized fluid and classified as level 2 or 3

    1984-12-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to specify the requirements to be taken into account when designing mechanical components conveying or containing pressurized fluid and which are in safety class 2 or 3

  2. Development of safety and regulatory requirements for Korean next generation reactor - Development of human factors design review guidelines (II)

    Lee, Jung Woon; Oh, In Suk; Lee, Hyun Chul; Cheon, Se Woo [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-02-01

    The objective of this study is to develop human factors engineering program review guidelines and alarm system review guidelines in order to resolve the two major technical issues: '25. Human Factors Engineering Program Review Model' and '26. Review Criteria for Human Factors Aspects of Advanced Controls and Instrumentation', which are related to the development of human factors safety regulation guides being performed by KINS. For the development of human factors program review guidelines, we made a Korean version of NUREG-0711 and added our comments by considering Korean regulatory situation and the characteristics of the KNGR design, and reviewing the reference documents of NURGE-0711. We also computerized the Korean version of NUREG-0711, additional comments, and selected portion of the reference documents for the developer of safety regulation guides at KINS to see the contents comparatively at a glance and use them easily. For the development of alarm system design review guidelines, we made a Korean version of NUREG/CR-6105, which was published by NRC in 1994 as a guideline document for the human factors review of alarm systems. Then we updated the guidelines by reviewing the literature related to alarm design that published after 1994. 12 refs., 11 figs., 2 tabs. (Author)

  3. Development of safety and regulatory requirements for Korean next generation reactor - Development of human factors design review guidelines (II)

    Lee, Jung Woon; Oh, In Suk; Lee, Hyun Chul; Cheon, Se Woo [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-02-01

    The objective of this study is to develop human factors engineering program review guidelines and alarm system review guidelines in order to resolve the two major technical issues: '25. Human Factors Engineering Program Review Model' and '26. Review Criteria for Human Factors Aspects of Advanced Controls and Instrumentation', which are related to the development of human factors safety regulation guides being performed by KINS. For the development of human factors program review guidelines, we made a Korean version of NUREG-0711 and added our comments by considering Korean regulatory situation and the characteristics of the KNGR design, and reviewing the reference documents of NURGE-0711. We also computerized the Korean version of NUREG-0711, additional comments, and selected portion of the reference documents for the developer of safety regulation guides at KINS to see the contents comparatively at a glance and use them easily. For the development of alarm system design review guidelines, we made a Korean version of NUREG/CR-6105, which was published by NRC in 1994 as a guideline document for the human factors review of alarm systems. Then we updated the guidelines by reviewing the literature related to alarm design that published after 1994. 12 refs., 11 figs., 2 tabs. (Author)

  4. Tool-based requirement traceability between requirement and design artifacts

    Turban, Bernhard

    2013-01-01

    Processes for developing safety-critical systems impose special demands on ensuring requirements traceability. Achieving valuable traceability information, however, is especially difficult concerning the transition from requirements to design. Bernhard Turban analyzes systems and software engineering theories cross-cutting the issue (embedded systems development, systems engineering, software engineering, requirements engineering and management, design theory and processes for safety-critical systems). As a solution, the author proposes a new tool approach to support designers in their thinkin

  5. IEEE standard requirements for reliability analysis in the design and operation of safety systems for nuclear power generating stations

    Anon.

    1976-01-01

    The purpose of this standard is to provide uniform, minimum acceptable requirements for the performance of reliability analyses for safety-related systems found in nuclear-power generating stations, but not to define the need for an analysis. The need for reliability analysis has been identified in other standards which expand the requirements of regulations (e.g., IEEE Std 379-1972 (ANSI N41.2-1972), ''Guide for the Application of the Single-Failure Criterion to Nuclear Power Generating Station Protection System,'' which describes the application of the single-failure criterion). IEEE Std 352-1975, ''Guide for General Principles of Reliability Analysis of Nuclear Power Generating Station Protection Systems,'' provides guidance in the application and use of reliability techniques referred to in this standard

  6. Requirements to be taken into account in the design, qualification startup and operation of electrical equipment for safety-related electrical systems

    1985-07-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to provide the rules to be respected in order that safety-related electrical systems can perform its function under plausible operating conditions

  7. Requirements for Space Settlement Design

    Gale, Anita E.; Edwards, Richard P.

    2004-02-01

    When large space settlements are finally built, inevitably the customers who pay for them will start the process by specifying requirements with a Request for Proposal (RFP). Although we are decades away from seeing the first of these documents, some of their contents can be anticipated now, and provide insight into the variety of elements that must be researched and developed before space settlements can happen. Space Settlement Design Competitions for High School students present design challenges in the form of RFPs, which predict basic requirements for space settlement attributes in the future, including structural features, infrastructure, living conveniences, computers, business areas, and safety. These requirements are generically summarized, and unique requirements are noted for specific space settlement locations and applications.

  8. Nuclear fuels with high burnup: safety requirements

    Phuc Tran Dai

    2016-01-01

    Vietnam authorities foresees to build 3 reactors from Russian design (VVER AES 2006) by 2030. In order to prepare the preliminary report on safety analysis the Vietnamese Agency for Radioprotection and Safety has launched an investigation on the behaviour of nuclear fuels at high burnups (up to 60 GWj/tU) that will be those of the new plants. This study deals mainly with the behaviour of the fuel assemblies in case of loss of coolant (LOCA). It appears that for an average burnup of 50 GWj/tU and for the advanced design of the fuel assembly (cladding and materials) safety requirements are fulfilled. For an average burnup of 60 GWj/tU, a list of issues remains to be assessed, among which the impact of clad bursting or the hydrogen embrittlement of the advanced zirconium alloys. (A.C.)

  9. Safety design guide for safety related systems for CANDU 9

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of); Wright, A.C.D. [Atomic Energy of Canada Ltd., Toronto (Canada)

    1996-03-01

    In general, two types of safety related systems and structures exist in the nuclear plant; The one is a systems and structures which perform safety functions during the normal operation of the plant, and the other is a systems and structures which perform safety functions to mitigate events caused by failure of the normally operating systems or by naturally occurring phenomena. In this safety design guide, these systems are identified in detail, and the major events for which the safety functions are required and the major safety requirements are identified in the list. As the probabilistic safety assessments are completed during the course of the project, additions or deletions to the list may be justified. 3 tabs. (Author) .new.

  10. Safety design guide for safety related systems for CANDU 9

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    In general, two types of safety related systems and structures exist in the nuclear plant; The one is a systems and structures which perform safety functions during the normal operation of the plant, and the other is a systems and structures which perform safety functions to mitigate events caused by failure of the normally operating systems or by naturally occurring phenomena. In this safety design guide, these systems are identified in detail, and the major events for which the safety functions are required and the major safety requirements are identified in the list. As the probabilistic safety assessments are completed during the course of the project, additions or deletions to the list may be justified. 3 tabs. (Author) .new

  11. Discussion of important safety requirements for new nuclear power plants

    Zhang Lin; Jia Xiang; Yan Tianwen; Li Wenhong; Li Chun

    2014-01-01

    This paper presents the analysis of several important safety requirements and improvement direction. Technical view of security goals on site safety evaluation, internal and external events fortification, serious accident prevention and mitigation, as well as the core, containment system and instrument control system design and engineering optimization, and etc are indicated. It will be useful for new plant design, construction and safety improvement. (authors)

  12. Safety of magnetic fusion facilities: Requirements

    1996-05-01

    This Standard identifies safety requirements for magnetic fusion facilities. Safety functions are used to define outcomes that must be achieved to ensure that exposures to radiation, hazardous materials, or other hazards are maintained within acceptable limits. Requirements applicable to magnetic fusion facilities have been derived from Federal law, policy, and other documents. In addition to specific safety requirements, broad direction is given in the form of safety principles that are to be implemented and within which safety can be achieved

  13. 49 CFR 229.206 - Design requirements.

    2010-10-01

    ...-climber, emergency egress, emergency interior lighting, and interior configuration design requirements set... 49 Transportation 4 2010-10-01 2010-10-01 false Design requirements. 229.206 Section 229.206..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design...

  14. Appendix C: safety design rationale

    Ghose, S.

    1985-01-01

    A brief discussion of the rationale for safety design of fusion plants is presented in the main text. Further detail safety considerations are presented in this appendix in the form of charts and tables. The author present some of the major safety criteria and other criteria used in blanket selection here

  15. Design requirements for the new reactor

    Koski, S.

    2005-01-01

    This presentation deals with the safety related design requirements specified for the new nuclear power plant to be built in Finland (FINS). The legislation, codes and standards, on which the design requirements are based, can be arranged into a hierarchical pyramid as follows: The safety related design criteria are based on the three uppermost hierarchical levels: Finnish legislation (e.g. decisions of the State Council) Basic Regulations (75-INSAG-3, USNRC General Design Criteria) Process oriented nuclear documents (YVL- guides or corresponding US/German rules). The European Utility Requirements (EUR) document was used as the starting point for the writing of the design requirements document. The structure and headlines of EUR could be kept, but in many cases the contents had to be deleted and rewritten to correspond to the requirement level of the above codes and standards. This was the case, for example, with the requirements concerning safety classification or application of failure criteria. In the presentation, the most important safety related design criteria are reviewed, with an emphasis on those requirements which exceed the requirement level applied on the existing plant units. Some hints are also given on the main differences between Finnish and international safety requirements. (orig.)

  16. System Design and the Safety Basis

    Ellingson, Darrel

    2008-01-01

    The objective of this paper is to present the Bechtel Jacobs Company, LLC (BJC) Lessons Learned for system design as it relates to safety basis documentation. BJC has had to reconcile incomplete or outdated system description information with current facility safety basis for a number of situations in recent months. This paper has relevance in multiple topical areas including documented safety analysis, decontamination and decommissioning (D and D), safety basis (SB) implementation, safety and design integration, potential inadequacy of the safety analysis (PISA), technical safety requirements (TSR), and unreviewed safety questions. BJC learned that nuclear safety compliance relies on adequate and well documented system design information. A number of PIS As and TSR violations occurred due to inadequate or erroneous system design information. As a corrective action, BJC assessed the occurrences caused by systems design-safety basis interface problems. Safety systems reviewed included the Molten Salt Reactor Experiment (MSRE) Fluorination System, K-1065 fire alarm system, and the K-25 Radiation Criticality Accident Alarm System. The conclusion was that an inadequate knowledge of system design could result in continuous non-compliance issues relating to nuclear safety. This was especially true with older facilities that lacked current as-built drawings coupled with the loss of 'historical knowledge' as personnel retired or moved on in their careers. Walkdown of systems and the updating of drawings are imperative for nuclear safety compliance. System design integration with safety basis has relevance in the Department of Energy (DOE) complex. This paper presents the BJC Lessons Learned in this area. It will be of benefit to DOE contractors that manage and operate an aging population of nuclear facilities

  17. Philosophy and safety requirements for land-based nuclear installations

    Kellermann, Otto

    1978-01-01

    The main ideas of safety philosophy for land-based nuclear installations are presented together with their background of protection goals. Today's requirements for design and quality assurance are deductively shown. Finally a proposition is made for a new balancing of safety philosophy according to the high safety level that nuclear installations have reached

  18. Leadership and Management for Safety. General Safety Requirements (Spanish Edition)

    2017-01-01

    his Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  19. Leadership and Management for Safety. General Safety Requirements (French Edition)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  20. Leadership and Management for Safety. General Safety Requirements (Arabic Edition)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  1. Leadership and Management for Safety. General Safety Requirements (Chinese Edition)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  2. Leadership and Management for Safety. General Safety Requirements

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factor, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations (registrants and licensees) and other organizations concerned with facilities and activities that give rise to radiation risks

  3. Design requirement on HYPER blanket fuel assembly

    Hwang, Woan; Lee, B. O.; Nam, C.; Ryu, W. S.; Lee, B. S.; Park, W. S.

    2000-07-01

    This document describes design requirements which are needed for designing the blanket assembly of the HYPER as design guidance. The blanket assembly of the HYPER consists of blanket fuel rods, mounting rail, spacer, upper nozzle with handling socket, bottom nozzle with mounting rail and skeleton structure. The blanket fuel rod consists of top end plug, bottom end plug with key way, blanket fuel slug, and cladding. In the assembly, the rods are in a triangular pitch array. This report contains functional requirements, performance and operational requirements, interfacing systems requirements, core restraint and interface requirements, design limits and strength requirements, system configuration and essential feature requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements for the blanket fuel assembly of the HYPER

  4. Radiological safety by design

    Gundaker, W.E.

    1977-01-01

    Under the Radiation Control for Health and Safety Act enacted by the U.S. Congress in 1968, the Food and Drug Administration's Bureau of Radiological Health may prescribe performance standards for products that emit radiation. A description is given of the development of these standards and outlines the administrative procedures by which they are enforced. (author)

  5. Supplement to safety analysis report. 306-W building operations safety requirement

    Richey, C.R.

    1979-08-01

    The operations safety requirements (OSRs) presented in this report define the conditions, safe boundaries, and management control needed for safely conducting operations with radioactive materials in the Pacific Northwest Laboratory (PNL) 306-W building. The safety requirements are organized in five sections. Safety limits are safety-related process variables that are observable and measurable. Limiting conditions cover: equipment and technical conditions and characteristics of the facility and operations necessary for continued safe operation. Surveillance requirements prescribe the requirements for checking systems and components that are essential to safety. Equipment design controls require that changes to process equipment and systems be independently checked and approved to assure that the changes will have no adverse effect on safety. Administrative controls describe and discuss the organization and administrative systems and procedures to be used for safe operation of the facility. Details of the implementation of the operations safety requirements are prescribed by internal PNL documents such as criticality safety specifications and radiation work procedures

  6. Operating experience and systems analysis at Trillo NPP: A program intended for systematic review of plant safety systems to assess design basis requirements compliance

    Vega, R. de la

    1996-01-01

    The program was defined to apply to all plant safety systems and/or systems included in plant Technical Specifications. The goal of the program was to ensure, by systematic design, construction, and commissioning review, the adequacy of safety systems, structures and components to fulfill their safety functions. Also, as a result of the program, it was established that a complete, unambiguous, systematic, design basis definition shall take place. And finally, a complete documental review of the plant design shall result from the program execution

  7. The designing of launch vehicles with liquid propulsion engines ensuring fire, explosion and environmental safety requirements of worked-off stages

    Trushlyakov, V.; Shatrov, Ya.; Sujmenbaev, B.; Baranov, D.

    2017-02-01

    The paper addresses the problem of the launch vehicles (LV) with main liquid propulsion engines launch technogenic impact in different environment areas. Therefore, as the study subjects were chosen the worked-off stages (WS) with unused propellant residues in tanks, the cosmodrome ecological monitoring system, the worked-off stage design and construction solutions development system and the unified system with the "WS+the cosmodrome ecological monitoring system+design and construction solutions development system" feedback allowing to form the optimal ways of the WS design and construction parameters variations for its fire and explosion hazard management in different areas of the environment. It is demonstrated that the fire hazard effects of propellant residues in WS tanks increase the ecosystem disorder level for the Vostochny cosmodrome impact area ecosystem. Applying the system analysis, the proposals on the selection of technologies, schematic and WS design and construction solutions aimed to the fire and explosion safety improvement during the LV worked-off stages with the main liquid propulsion engines operation were formulated. Among them are the following: firstly, the unused propellant residues in tanks convective gasification based on the hot gas (heat carrier) supply in WS tanks after main liquid propulsion engines cutoff is proposed as the basic technology; secondly, the obtained unused propellant residues in WS tanks gasification products (evaporated propellant residues + pressurizing agent + heat carrier) are used for WS stabilization and orientation while descending trajectory moving. The applying of the proposed technologies allows providing fire and explosion safety requirements of LV with main liquid propulsion engines practically.

  8. OSHA and Experimental Safety Design.

    Sichak, Stephen, Jr.

    1983-01-01

    Suggests that a governmental agency, most likely Occupational Safety and Health Administration (OSHA) be considered in the safety design stage of any experiment. Focusing on OSHA's role, discusses such topics as occupational health hazards of toxic chemicals in laboratories, occupational exposure to benzene, and role/regulations of other agencies.…

  9. Regulatory requirements on accident management and emergency preparedness - concept of nuclear and radiation safety during beyond-design-basis accidents

    Yanke, R.

    2002-01-01

    Actual practice the and proposals for further activities in the field of Accident Management (AM) in the member countries of the Co-operation Forum of WWER regulators and in Western countries have been assessed. Further the results of the last working group on AM , the overview of interactions of severe accident research and the regulatory positions in various countries, IAEA reports, practice in Switzerland and Finland, were taken into consideration. From this information, the working group derived recommendations on Accident Management. The general proposals correspond to the present state of the art on AM. They do not describe the whole spectra of recommendations on AM for NPPs with WWER reactors. A basis for the implementation of an AM program is given, which could be extended in a follow-up working group. The developments and research concerning AM have to be continued. The positions of various countries with regard to the 'Interactions of severe accident research and the regulatory positions' are given. On the basis of the working group proposals, the WWER regulators could set regulatory requirements and support further developments of AM strategies, making use of the benefits of common features of NPPs with WWER reactors. Concerted actions in the field of AM between the WWER regulators would bundle the development of a unified concept of recommendations and speed up the implementation of AM measures in order to minimise the risks involved in nuclear power generation

  10. Risk based limits for Operational Safety Requirements

    Cappucci, A.J. Jr.

    1993-01-01

    OSR limits are designed to protect the assumptions made in the facility safety analysis in order to preserve the safety envelope during facility operation. Normally, limits are set based on ''worst case conditions'' without regard to the likelihood (frequency) of a credible event occurring. In special cases where the accident analyses are based on ''time at risk'' arguments, it may be desirable to control the time at which the facility is at risk. A methodology has been developed to use OSR limits to control the source terms and the times these source terms would be available, thus controlling the acceptable risk to a nuclear process facility. The methodology defines a new term ''gram-days''. This term represents the area under a source term (inventory) vs time curve which represents the risk to the facility. Using the concept of gram-days (normalized to one year) allows the use of an accounting scheme to control the risk under the inventory vs time curve. The methodology results in at least three OSR limits: (1) control of the maximum inventory or source term, (2) control of the maximum gram-days for the period based on a source term weighted average, and (3) control of the maximum gram-days at the individual source term levels. Basing OSR limits on risk based safety analysis is feasible, and a basis for development of risk based limits is defensible. However, monitoring inventories and the frequencies required to maintain facility operation within the safety envelope may be complex and time consuming

  11. Conceptual design of safety instrumentation for PFBR

    Muralikrishna, G.; Seshadri, U.; Raghavan, K.

    1996-01-01

    Instrumentation systems enable monitoring of the process which in turn enables control and shutdown of the process as per the requirements. Safety Instrumentation due to its vital importance has a stringent role and this needs to be designed methodically. This paper presents the details of the conceptual design for PFBR. (author). 4 figs, 3 tabs

  12. Preliminary safety design analysis of KALIMER

    Suk, Soo Dong; Kwon, Y. M.; Kim, K. D. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    The national long-term R and D program updated in 1997 requires Korea Atomic Energy Research Institute(KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self consistent design meeting a set of the major safety design requirements for accident prevention. Some of current emphasis include those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve supporting R and D programs of substance. This document first introduces a set of safety design requirements and accident evaluation criteria established for the conceptual design of KALIMER and then summarizes some of the preliminary results of engineering and design analyses performed for the safety of KALIMER. 19 refs., 19 figs., 6 tabs. (Author)

  13. ALS beamline design requirements: A guide for beamline designers

    NONE

    1996-06-01

    This manual is written as a guide for researchers in designing beamlines and endstations acceptable for use at the ALS. It contains guidelines and policies related to personnel safety and equipment and vacuum protection. All equipment and procedures must ultimately satisfy the safety requirements set aside in the Lawrence Berkeley National Laboratory (LBNL) Health and Safety Manual (PUB-3000) which is available from the ALS User Office or on the World WideWeb from the LBNL Homepage (http:// www.lbl.gov).

  14. Technical safety requirements control level verification

    STEWART, J.L.

    1999-01-01

    A Technical Safety Requirement (TSR) control level verification process was developed for the Tank Waste Remediation System (TWRS) TSRs at the Hanford Site in Richland, WA, at the direction of the US. Department of Energy, Richland Operations Office (RL). The objective of the effort was to develop a process to ensure that the TWRS TSR controls are designated and managed at the appropriate levels as Safety Limits (SLs), Limiting Control Settings (LCSs), Limiting Conditions for Operation (LCOs), Administrative Controls (ACs), or Design Features. The TSR control level verification process was developed and implemented by a team of contractor personnel with the participation of Fluor Daniel Hanford, Inc. (FDH), the Project Hanford Management Contract (PHMC) integrating contractor, and RL representatives. The team was composed of individuals with the following experience base: nuclear safety analysis; licensing; nuclear industry and DOE-complex TSR preparation/review experience; tank farm operations; FDH policy and compliance; and RL-TWRS oversight. Each TSR control level designation was completed utilizing TSR control logic diagrams and TSR criteria checklists based on DOE Orders, Standards, Contractor TSR policy, and other guidance. The control logic diagrams and criteria checklists were reviewed and modified by team members during team meetings. The TSR control level verification process was used to systematically evaluate 12 LCOs, 22 AC programs, and approximately 100 program key elements identified in the TWRS TSR document. The verification of each TSR control required a team consensus. Based on the results of the process, refinements were identified and the TWRS TSRs were modified as appropriate. A final report documenting key assumptions and the control level designation for each TSR control was prepared and is maintained on file for future reference. The results of the process were used as a reference in the RL review of the final TWRS TSRs and control suite. RL

  15. Technical safety requirements control level verification; TOPICAL

    STEWART, J.L.

    1999-01-01

    A Technical Safety Requirement (TSR) control level verification process was developed for the Tank Waste Remediation System (TWRS) TSRs at the Hanford Site in Richland, WA, at the direction of the US. Department of Energy, Richland Operations Office (RL). The objective of the effort was to develop a process to ensure that the TWRS TSR controls are designated and managed at the appropriate levels as Safety Limits (SLs), Limiting Control Settings (LCSs), Limiting Conditions for Operation (LCOs), Administrative Controls (ACs), or Design Features. The TSR control level verification process was developed and implemented by a team of contractor personnel with the participation of Fluor Daniel Hanford, Inc. (FDH), the Project Hanford Management Contract (PHMC) integrating contractor, and RL representatives. The team was composed of individuals with the following experience base: nuclear safety analysis; licensing; nuclear industry and DOE-complex TSR preparation/review experience; tank farm operations; FDH policy and compliance; and RL-TWRS oversight. Each TSR control level designation was completed utilizing TSR control logic diagrams and TSR criteria checklists based on DOE Orders, Standards, Contractor TSR policy, and other guidance. The control logic diagrams and criteria checklists were reviewed and modified by team members during team meetings. The TSR control level verification process was used to systematically evaluate 12 LCOs, 22 AC programs, and approximately 100 program key elements identified in the TWRS TSR document. The verification of each TSR control required a team consensus. Based on the results of the process, refinements were identified and the TWRS TSRs were modified as appropriate. A final report documenting key assumptions and the control level designation for each TSR control was prepared and is maintained on file for future reference. The results of the process were used as a reference in the RL review of the final TWRS TSRs and control suite. RL

  16. NUCLEAR SAFETY DESIGN BASES FOR LICENSE APPLICATION

    Garrett, R.J.

    2005-01-01

    The purpose of this report is to identify and document the nuclear safety design requirements that are specific to structures, systems, and components (SSCs) of the repository that are important to safety (ITS) during the preclosure period and to support the preclosure safety analysis and the license application for the high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. The scope of this report includes the assignment of nuclear safety design requirements to SSCs that are ITS and does not include the assignment of design requirements to SSCs or natural or engineered barriers that are important to waste isolation (ITWI). These requirements are used as input for the design of the SSCs that are ITS such that the preclosure performance objectives of 10 CFR 63.111 [DIRS 156605] are met. The natural or engineered barriers that are important to meeting the postclosure performance objectives of 10 CFR 63.113 [DIRS 156605] are identified as ITWI. Although a structure, system, or component (SSC) that is ITS may also be ITWI, this report is only concerned with providing the nuclear safety requirements for SSCs that are ITS to prevent or mitigate event sequences during the repository preclosure period

  17. Nuclear Safety Design Base for License Application

    R.J. Garrett

    2005-01-01

    The purpose of this report is to identify and document the nuclear safety design requirements that are specific to structures, systems, and components (SSCs) of the repository that are important to safety (ITS) during the preclosure period and to support the preclosure safety analysis and the license application for the high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. The scope of this report includes the assignment of nuclear safety design requirements to SSCs that are ITS and does not include the assignment of design requirements to SSCs or natural or engineered barriers that are important to waste isolation (ITWI). These requirements are used as input for the design of the SSCs that are ITS such that the preclosure performance objectives of 10 CFR 63.111(b) [DIRS 173273] are met. The natural or engineered barriers that are important to meeting the postclosure performance objectives of 10 CFR 63.113(b) and (c) [DIRS 173273] are identified as ITWI. Although a structure, system, or component (SSC) that is ITS may also be ITWI, this report is only concerned with providing the nuclear safety requirements for SSCs that are ITS to prevent or mitigate event sequences during the repository preclosure period

  18. Disposal of Radioactive Waste. Specific Safety Requirements

    2011-01-01

    This publication establishes requirements applicable to all types of radioactive waste disposal facility. It is linked to the fundamental safety principles for each disposal option and establishes a set of strategic requirements that must be in place before facilities are developed. Consideration is also given to the safety of existing facilities developed prior to the establishment of present day standards. The requirements will be complemented by Safety Guides that will provide guidance on good practice for meeting the requirements for different types of waste disposal facility. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Safety requirements for planning for the disposal of radioactive waste; 4. Requirements for the development, operation and closure of a disposal facility; 5. Assurance of safety; 6. Existing disposal facilities; Appendices.

  19. Radiation safety requirements for radionuclide laboratories

    1993-01-01

    In accordance with the section 26 of the Finnish Radiation Act (592/91) the safety requirements to be taken into account in planning laboratories and other premises, which affect safety in the use of radioactive materials, are confirmed by the Finnish Centre for Radiation and Nuclear Safety. The guide specifies the requirements for laboratories and storage rooms in which radioactive materials are used or stored as unsealed sources. There are also some general instructions concerning work procedures in a radionuclide laboratory

  20. LABORATORY DESIGN CONSIDERATIONS FOR SAFETY.

    National Safety Council, Chicago, IL. Campus Safety Association.

    THIS SET OF CONSIDERATIONS HAS BEEN PREPARED TO PROVIDE PERSONS WORKING ON THE DESIGN OF NEW OR REMODELED LABORATORY FACILITIES WITH A SUITABLE REFERENCE GUIDE TO DESIGN SAFETY. THERE IS NO DISTINCTION BETWEEN TYPES OF LABORATORY AND THE EMPHASIS IS ON GIVING GUIDES AND ALTERNATIVES RATHER THAN DETAILED SPECIFICATIONS. AREAS COVERED INCLUDE--(1)…

  1. PHWR safety: design, siting and construction

    Sharma, V.K.

    2002-01-01

    In all activities associated with NPPs viz. siting, design, construction, commissioning and operation, safety is given overriding importance. The safety design principles of PHWRs are based on defence-in-depth approach, physical and functional separation between process and safety systems and also among various safety systems, redundancy to meet single failure criteria and postulation of a number of design basis events for which the plant must be designed. Apart from engineered safety systems, PHWRs have inherent characteristics which contribute to safety. In siting of a NPP, it is required to ensure that the given site does not pose undue radiological hazard to public and the environment both during normal operation as well as during and following an accident condition. For this purpose, all site related external events, both natural and man induced, are assessed for their effect on the plant and are considered as part of the design basis. Possible radiological impact of the NPP on environment and surrounding population is assessed and ensured to be within acceptable limits. During construction phase, it is essential that the NPP be built in accordance with design intent and with required quality of workmanship to ensure that the NPP will remain safe during all states of operation. This is achieved through careful execution and QA activities encompassing all aspects of component fabrication at manufacturer works, civil construction, site erection, assembly, and commissioning. Future trends in nuclear safety will continue to be based on existing principles which have proved to be sound. These will be further strengthened by features such as increasing use of passive means of performing safety functions and a more explicit treatment of severe accidents. (author)

  2. Site evaluation for nuclear installations. Safety requirements

    2003-01-01

    This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Siting, which was issued in 1988 as Safety Series No. 50-C-S (Rev. 1). It takes account of developments relating to site evaluations for nuclear installations since the Code on Siting was last revised. These developments include the issuing of the Safety Fundamentals publication on The Safety of Nuclear Installations, and the revision of various safety standards and other publications relating to safety. Requirements for site evaluation are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear installations. It is recognized that there are steady advances in technology and scientific knowledge, in nuclear safety and in what is considered adequate protection. Safety requirements change with these advances and this publication reflects the present consensus among States. This Safety Requirements publication was prepared under the IAEA programme on safety standards for nuclear installations. It establishes requirements and provides criteria for ensuring safety in site evaluation for nuclear installations. The Safety Guides on site evaluation listed in the references provide recommendations on how to meet the requirements established in this Safety Requirements publication. The objective of this publication is to establish the requirements for the elements of a site evaluation for a nuclear installation so as to characterize fully the site specific conditions pertinent to the safety of a nuclear installation. The purpose is to establish requirements for criteria, to be applied as appropriate to site and site-installation interaction in operational states and accident conditions, including those that could lead to emergency measures for: (a) Defining the extent of information on a proposed site to be presented by the applicant; (b) Evaluating a proposed site to ensure that the site

  3. SGHWR safety design and evaluation

    Smith, D.R.; Merrett, D.J.; Ward, D.A.

    1977-01-01

    The paper discusses the characteristic features of the S.G.H.W.R. and identifies the single channel concept as of considerable importance. The unique feature of the design is the provision of individual spray cooling E.C.C.S. to each channel. This spray cooling occupies a prominent position in the main line safety arguments. The reliance on this form of spray cooling leads to provision of a comprehensive E.C.C.S. system of high reliability. Duplicate systems with diverse power and water sources cover the complete pressure range to give very high confidence that spray cooling is available in all major L.O.C.A.s. On the other hand hydraulic analysis of the blowdown phase demonstrates that significant convective flow is available as an alternative/supplementary cooling regime for most faults. The reactor shutdown mechanisms have also been duplicated and will be designed to high reliabilities to give surety of reactor trip in all credible faults. The comparative performance of the two systems is considered. Extent of diversity and redundancy in trip parameters is also discussed. A feature of channel concept is that the pipe sizes can be made relatively small thus restricting rates of blowdown, and the paper discusses effects of this upon long term cooling and flooding arguments. The quantities of pipework in the primary circuit introduce considerations of integrity and the paper goes on to list the measures introduced to improve segregation and protection of individual sections of the plant so that the extent of possible L.O.C.A.s is minimised. The achievement of high standards of reliability by use of in-service inspection is covered, with particular reference to the steam drums. The impact of these inspection requirements upon the very low man-rem exposures required by U.K. utilities is also included. Finally, it is noted that the provision of containment in common with other L.W.R. practice also provides a valuable engineered safety feature. The principles of

  4. The role of probabilistic safety assessment in the design

    Green, A.; Ingham, E.L.

    1989-01-01

    The use of probabilistic safety assessment (PSA) for Heysham 2 and Torness marked a major change in the design approach to nuclear safety within the U.K. Design Safety Guidelines incorporating probabilistic safety targets required that design justification would necessitate explicit consideration of the consequence of accidents in relation to their frequency. The paper discusses these safety targets and their implications, the integration of PSA into the design process and an outline of the methodology. The influence of PSA on the design is discussed together with its role in the overall demonstration of reactor safety. (author)

  5. HTR-PM Safety requirement and Licensing experience

    Li Fu; Zhang Zuoyi; Dong Yujie; Wu Zongxin; Sun Yuliang

    2014-01-01

    HTR-PM is a 200MWe modular pebble bed high temperature reactor demonstration plant which is being built in Shidao Bay, Weihai, Shandong, China. The main design parameters of HTR-PM were fixed in 2006, the basic design was completed in 2008. The review of Preliminary Safety Analysis Report (PSAR) of HTR-PM was started in April 2008, completed in September 2009. In general, HTR- PM design complies with the current safety requirement for nuclear power plant in China, no special standards are developed for modular HTR. Anyway, Chinese Nuclear Safety Authority, together with the designers, developed some dedicated design criteria for key systems and components and published the guideline for the review of safety analysis report of HTR-PM, based on the experiences from licensing of HTR-10 and new development of nuclear safety. The probabilistic safety goal for HTR-PM was also defined by the safety authority. The review of HTR-PM PSAR lasted for one and a half years, with 3 dialogues meetings and 8 topics meetings, with more than 2000 worksheets and answer sheets. The heavily discussed topics during the PSAR review process included: the requirement for the sub-atmospheric ventilation system, the utilization of PSA in design process, the scope of beyond design basis accidents, the requirement for the qualification of TRISO coating particle fuel, and etc. Because of the characteristics of first of a kind for the demonstration plant, the safety authority emphasized the requirement for the experiment and validation, the PSAR was licensed with certain licensing conditions. The whole licensing process was under control, and was re-evaluated again after Fukushima accident to be shown that the design of HTR-PM complies with current safety requirement. This is a good example for how to license a new reactor. (author)

  6. Disposal of Radioactive Waste. Specific Safety Requirements (Spanish Edition)

    2012-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  7. Meeting the maglev system's safety requirements

    Pierick, K

    1983-12-01

    The author shows how the safety requirements of the maglev track system derive from the general legal conditions for the safety of tracked transport. It is described how their compliance beyond the so-called ''development-accompanying'' and ''acceptance-preparatory'' safety work can be assured for the Transrapid test layout (TVE) now building in Emsland and also for later application as public transport system in Germany within the meaning of the General Railway Act.

  8. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    2010-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  9. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    2009-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  10. Public requirement to demonstrate safety

    Green, P.

    1991-01-01

    To many working within Government or industry, public concern over the disposal of radioactive waste is misplaced and has arisen out of an irrational and unscientific fear of technology, or even science in general. Members of the public, it is argued, are concerned because they do not understand the size of the risk in question. From the industry's point of view, the risk arising from the disposal of radioactive waste is ''negligible when compared to other everyday risks of life. Furthermore, any public exposure that may arise, either soon after closure of a facility or in the far future would comply with internationally accepted safety standards. In this context, the continuing concern over disposal of radioactive waste is viewed as evidence of the irrational and unscientific attitude of the public. The assessment and regulation of risk from waste disposal therefore is presented as a purely scientific question. Some of these issues are examined and public concern is shown not to be irrational but to be based upon legitimate questions over current waste management policy. An important question is not just ''how safe is safe, but who decides and how?''. (Author)

  11. A comparison of the difference of requirements between functional safety and nuclear safety controllers

    Chen, C.K.; Lee, C.L.; Shyu, S.S. [Inst. of Nuclear Energy Research, Taoyuan, Taiwan (China)

    2014-07-01

    In order to establish self-reliant capabilities of nuclear I&C systems in Taiwan, Taiwan's Nuclear I&C System (TNICS) project had been established by Institute of Nuclear Energy Research (INER). A Triple Modular Redundant (TMR) safety controller (SCS-2000) has been completed and gone through the IEC 61508 Safety Integrity Level 3 (SIL3) certification of Functional Safety for industries. Based on the certification processes, the difference of requirements between Functional Safety and Nuclear Safety controllers in term of hardware and software are addressed in this study. Besides, the measures used to determine and verify the reliability of the safety control system design are presented. (author)

  12. General design safety principles for nuclear power plants

    1986-01-01

    This Safety Guide provides the safety principles and the approach that have been used to implement the Code in the Safety Guides. These safety principles and the approach are tied closely to the safety analyses needed to assist the design process, and are used to verify the adequacy of nuclear power plant designs. This Guide also provides a framework for the use of other design Safety Guides. However, although it explains the principles on which the other Safety Guides are based, the requirements for specific applications of these principles are mostly found in the other Guides

  13. Disposal of Radioactive Waste. Specific Safety Requirements

    2011-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt... standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  14. DESIGN PACKAGE 1E SYSTEM SAFETY ANALYSIS

    M. Salem

    1995-06-23

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1E, Surface Facilities, (for a list of design items included in the package 1E system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1E structures/systems/components(S/S/Cs) in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions.

  15. Generic Safety Requirements for Developing Safe Insulin Pump Software

    Zhang, Yi; Jetley, Raoul; Jones, Paul L; Ray, Arnab

    2011-01-01

    Background The authors previously introduced a highly abstract generic insulin infusion pump (GIIP) model that identified common features and hazards shared by most insulin pumps on the market. The aim of this article is to extend our previous work on the GIIP model by articulating safety requirements that address the identified GIIP hazards. These safety requirements can be validated by manufacturers, and may ultimately serve as a safety reference for insulin pump software. Together, these two publications can serve as a basis for discussing insulin pump safety in the diabetes community. Methods In our previous work, we established a generic insulin pump architecture that abstracts functions common to many insulin pumps currently on the market and near-future pump designs. We then carried out a preliminary hazard analysis based on this architecture that included consultations with many domain experts. Further consultation with domain experts resulted in the safety requirements used in the modeling work presented in this article. Results Generic safety requirements for the GIIP model are presented, as appropriate, in parameterized format to accommodate clinical practices or specific insulin pump criteria important to safe device performance. Conclusions We believe that there is considerable value in having the diabetes, academic, and manufacturing communities consider and discuss these generic safety requirements. We hope that the communities will extend and revise them, make them more representative and comprehensive, experiment with them, and use them as a means for assessing the safety of insulin pump software designs. One potential use of these requirements is to integrate them into model-based engineering (MBE) software development methods. We believe, based on our experiences, that implementing safety requirements using MBE methods holds promise in reducing design/implementation flaws in insulin pump development and evolutionary processes, therefore improving

  16. Effective safety training program design

    Chilton, D.A.; Lombardo, G.J.; Pater, R.F.

    1991-01-01

    Changes in the oil industry require new strategies to reduce costs and retain valuable employees. Training is a potentially powerful tool for changing the culture of an organization, resulting in improved safety awareness, lower-risk behaviors and ultimately, statistical improvements. Too often, safety training falters, especially when applied to pervasive, long-standing problems. Stepping, Handling and Lifting injuries (SHL) more commonly known as back injuries and slips, trips and falls have plagued mankind throughout the ages. They are also a major problem throughout the petroleum industry. Although not as widely publicized as other immediately-fatal accidents, injuries from stepping, materials handling, and lifting are among the leading causes of employee suffering, lost time and diminished productivity throughout the industry. Traditional approaches have not turned the tide of these widespread injuries. a systematic safety training program, developed by Anadrill Schlumberger with the input of new training technology, has the potential to simultaneously reduce costs, preserve employee safety, and increase morale. This paper: reviews the components of an example safety training program, and illustrates how a systematic approach to safety training can make a positive impact on Stepping, Handling and Lifting injuries

  17. Quality assurance requirements for the computer software and safety analyses

    Husarecek, J.

    1992-01-01

    The requirements are given as placed on the development, procurement, maintenance, and application of software for the creation or processing of data during the design, construction, operation, repair, maintenance and safety-related upgrading of nuclear power plants. The verification and validation processes are highlighted, and the requirements put on the software documentation are outlined. The general quality assurance principles applied to safety analyses are characterized. (J.B.). 1 ref

  18. Canister Storage Building (CSB) Technical Safety Requirements

    KRAHN, D.E.

    2000-01-01

    The purpose of this section is to explain the meaning of logical connectors with specific examples. Logical connectors are used in Technical Safety Requirements (TSRs) to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in TSRs are AND and OR. The physical arrangement of these connectors constitutes logical conventions with specific meanings

  19. Advanced gas cooled reactors - Designing for safety

    Keen, Barry A.

    1990-01-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme

  20. Advanced gas cooled reactors - Designing for safety

    Keen, Barry A [Engineering Development Unit, NNC Limited, Booths Hall, Knutsford, Cheshire (United Kingdom)

    1990-07-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme.

  1. TWRS safety SSCs: Requirements and characteristics

    Smith-Fewell, M.A.

    1997-01-01

    Safety Systems, Structures, and Components (SSCs) have been identified from hazard and accident analyses. These analyses were performed to support the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR) and Basis for Interim Operation (BID). The text identifies and evaluates the SSCs and their supporting SSCs to show that they either prevent the occurrence of the accident or mitigate the consequences of the accident to below the acceptance guidelines. The requirements for the SSCs to fulfill these tasks are described

  2. Multinational Design Evaluation Programme (MDEP) - Safety Goals

    Vaughan, G.J.

    2011-01-01

    One of the aims of the NEA's Multinational Design Evaluation Programme (MDEP) is to work towards greater harmonisation of regulatory requirements. To achieve this aim, it is necessary that there is a degree of convergence on the safety goals that are required to be met by designers and operators. The term 'safety goals' is defined to cover all health and safety requirements which must be met: these may be deterministic rules and/or probabilistic targets. They should cover the safety of workers, public and the environment in line with the IAEA's Basic Safety Objective; encompassing safety in normal operation through to severe accidents. MDEP is also interested in how its work can be extended to future reactors, which may use significantly different technology to the almost ubiquitous LWRs used today and in the next generation, building on the close co-operation within MDEP between the regulators who are currently engaged in constructing or carrying out design reviews on new designs. For two designs this work has involved several regulators sharing their safety assessments and in some cases issuing statements on issues that need to be addressed. Work is also progressing towards joint regulatory position statements on specific assessment areas. Harmonisation of safety goals will enhance the cooperation between regulators as further developments in design and technology occur. All regulators have safety goals, but these are expressed in many different ways and exercises in comparing them frequently are done at a very low level eg specific temperatures in the reactor vessel of a specific reactor type. The differences in the requirements from different regulators are difficult to resolve as the goals are derived using different principles and assumptions and are often for a specific technology. Therefore a different approach is being investigated, starting with the top-level safety goals and try to derive a structure and means of deriving lower tier

  3. Neural Net Safety Monitor Design

    Larson, Richard R.

    2007-01-01

    tunable metrics for the FL are (1) window size, (2) drift rate, and (3) persistence counter. Ultimate range limits are also included in case the NN command should drift slowly to a limit value that would cause the FL to be defeated. The FL has proven to work as intended. Both high-g transients and excessive structural loads are controlled with NN hard-over commands. This presentation discusses the FL design features and presents test cases. Simulation runs are included to illustrate the dramatic improvement made to the control of NN hard-over effects. A mission control room display from a flight playback is presented to illustrate the neural net fault display representation. The FL is very adaptable to various requirements and is independent of flight condition. It should be considered as a cost-effective safety monitor to control single-string inputs in general.

  4. Geological disposal of radioactive waste. Safety requirements

    2006-01-01

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  5. Code on the safety of nuclear power plants: Design

    1988-01-01

    This Code is a compilation of nuclear safety principles aimed at defining the essential requirements necessary to ensure nuclear safety. These requirements are applicable to structures, systems and components, and procedures important to safety in nuclear power plants embodying thermal neutron reactors, with emphasis on what safety requirements shall be met rather than on specifying how these requirements can be met. It forms part of the Agency's programme for establishing Codes and Safety Guides relating to land based stationary thermal neutron power plants. The document should be used by organizations designing, manufacturing, constructing and operating nuclear power plants as well as by regulatory bodies

  6. Safety aspects and shield design of a Poton irradiator

    Mehta, S.K.; Nayak, A.R.; Bongirwar, D.R.; Modi, R.K.; Ramkumar, M.S.

    1998-01-01

    An irradiation plant, POTON, for irradiation of potatoes and onions is being set up at Nashik. Shield design and safety features of this plant incorporate some novel and innovative features like a compact cell, curved cell boundaries for smooth conveyor movement though the cell labyrinth and conform to ICRP and AERB design safety requirements. The safety features include multiple safety interlocks, audio-visual alarms, scram switches and trip wire for avoiding accidental exposures. (author)

  7. Fire safety requirements for electrical cables towards nuclear reactor safety

    Raju, M.R.

    2002-01-01

    Full text: Electrical power supply forms a very important part of any nuclear reactor. Power supplies have been categorized in to class I, II, III and IV from reliability point. The safety related equipment are provided with highly reliable power supply to achieve the safety of very high order. Vast network of cables in a nuclear reactor are grouped and segregated to ensure availability of power to at least one group under all anticipated occurrences. Since fire can result in failures leading to unavailability of power caused by common cause, both passive and active fire protection methods are adopted in addition to fire detection system. The paper describes the requirement for passive fire protection to electrical cables viz. fire barrier and fire breaks. The paper gives an account of the tests required to standardize the products. Fire safety implementation for cables in research reactors is described

  8. Regulatory Safety Requirements for Operating Nuclear Installations

    Gubela, W.

    2017-01-01

    The National Nuclear Regulator (NNR) is established in terms of the National Nuclear Regulator Act (Act No 47 of 1999) and its mandate and authority are conferred through sections 5 and 7 of this Act, setting out the NNR's objectives and functions, which include exercising regulatory control over siting, design, construction etc of nuclear installations through the granting of nuclear authorisations. The NNR's responsibilities embrace all those actions aimed at providing the public with confidence and assurance that the risks arising from the production of nuclear energy remain within acceptable safety limits -> Therefore: Set fundamental safety standards, conducting pro-active safety assessments, determining licence conditions and obtaining assurance of compliance. The promotional aspects of nuclear activities in South Africa are legislated by the Nuclear Energy Act (Act No 46 of 1999). The NNR approach to regulations of nuclear safety and security take into consideration, amongst others, the potential hazards associated with the facility or activity, safety related programmes, the importance of the authorisation holder's safety related processes as well as the need to exercise regulatory control over the technical aspects such as of the design and operation of a nuclear facility in ensuring nuclear safety and security. South Africa does not have national nuclear industry codes and standards. The NNR is therefore non-prescriptive as it comes to the use of industry codes and standards. Regulatory framework (current) provide for the protection of persons, property, and environment against nuclear damage, through Licensing Process: Safety standards; Safety assessment; Authorisation and conditions of authorisation; Public participation process; Compliance assurance; Enforcement

  9. Safety of Nuclear Fuel Cycle Facilities. Safety Requirements (Arabic Edition)

    2015-01-01

    This publication covers the broad scope of requirements for fuel cycle facilities that, in light of the experience and present state of technology, must be satisfied to ensure safety for the lifetime of the facility. Topics of specific relevance include aspects of nuclear fuel generation, storage, reprocessing and disposal

  10. Safety design guides for fire protection for CANDU 9

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide establishes design requirements to ensure the radiological risk to the public due to fire is acceptable and operating personnel are adequately protected from the hazards of fires. This safety design guide also specifies the safety criteria for fire protection to be applied to mitigate fires and recommends the fire protection program to be established to initiate, coordinate and document the design activities associated with fire protection. The requirements for fire protection outlined in this safety design guide shall be satisfied in the design stage and the change status of the regulatory requirements, code and standards should be traced and incorporated into this safety design guide accordingly. 1 fig., (Author) .new

  11. Radiation shielding and safety design

    Lee, Yong Ouk; Gil, C. S.; Cho, Y. S.; Kim, D. H.; Kim, H. I.; Kim, J. W.; Lee, C. W.; Kim, K. Y.; Kim, B. H. [KAERI, Daejeon (Korea, Republic of)

    2011-07-15

    A benchmarking for the test facility, evaluations of the prompt radiation fields, evaluation of the induced activities in the facility, and estimation of the radiological impact on the environment were performed in this study. and the radiation safety analysis report for nuclear licensing was written based on this study. In the benchmark calculation, the neutron spectra was measured in the 20 Mev test facility and the measurements were compared with the computational results to verify the calculation system. In the evaluation of the prompt radiation fields, the shielding design for 100 MeV target rooms, evaluations of the leakage doses from the accidents and skyshine analysis were performed. The evaluation of the induced activities were performed for the coolant, inside air, structural materials, soil and ground-water. At last, the radiation safety analysis report was written based on results from these studies

  12. Development of ABWR-2 and its safety design

    Takafumi, Anegawa; Kenji, Tateiwa

    2002-01-01

    This paper reports the current status of development project on ABWR-II, a next generation reactor design based on ABWR, and its safety design. This project was initiated over a decade ago and has completed three phases to date. In Phase I (1991-92), basic design requirements were discussed and several plant concepts were studied. In Phase II (1993-95), key design features were selected in order to establish a reference reactor concept. In Phase III (1996-2000), based on the reference reactor concept, modifications and improvements were made to fulfill the design requirements. By adopting large electric output (1 700 MW), large fuel bundle, modified ECCS, and passive heat removal systems, among other design features, we achieved a design concept capable of increasing both economic competitiveness and safety performance. Main focus of this paper will be on the safety design, safety performance, and further research needs related to safety. (authors)

  13. ARIES-AT safety design and analysis

    Petti, D.A. [Idaho National Engineering and Environmental Laboratory, Fusion Safety Program, P.O. Box 1625, Idaho Falls, ID 83415 (United States)]. E-mail: David.Petti@inl.gov; Merrill, B.J. [Idaho National Engineering and Environmental Laboratory, Fusion Safety Program, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Moore, R.L. [Idaho National Engineering and Environmental Laboratory, Fusion Safety Program, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Longhurst, G.R. [Idaho National Engineering and Environmental Laboratory, Fusion Safety Program, P.O. Box 1625, Idaho Falls, ID 83415 (United States); El-Guebaly, L. [Fusion Technology Institute, 1500 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706 (United States); Mogahed, E. [Fusion Technology Institute, 1500 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706 (United States); Henderson, D. [Fusion Technology Institute, 1500 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706 (United States); Wilson, P. [Fusion Technology Institute, 1500 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706 (United States); Abdou, A. [Fusion Technology Institute, 1500 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2006-01-15

    ARIES-AT is a 1000 MWe conceptual fusion power plant design with a very low projected cost of electricity. The design contains many innovative features to improve both the physics and engineering performance of the system. From the safety and environmental perspective, there is greater depth to the overall analysis than in past ARIES studies. For ARIES-AT, the overall spectrum of off-normal events to be examined has been broadened. They include conventional loss of coolant and loss of flow events, an ex-vessel loss of coolant, and in-vessel off-normal events that mobilize in-vessel inventories (e.g., tritium and tokamak dust) and bypass primary confinement such as a loss of vacuum and an in-vessel loss of coolant with bypass. This broader examination of accidents improves the robustness of the design from the safety perspective and gives additional confidence that the facility can meet the no-evacuation requirement under average weather conditions. We also provide a systematic assessment of the design to address key safety functions such as confinement, decay heat removal, and chemical energy control. In the area of waste management, both the volume of the component and its hazard are used to classify the waste. In comparison to previous ARIES designs, the overall waste volume is less because of the compact design.

  14. Design of concrete structures important to safety of nuclear facilities

    2001-10-01

    Civil engineering structures in nuclear installations form an important feature having implications to safety performance of these installations. The objective and minimum requirements for the design of civil engineering buildings/structures to be fulfilled to provide adequate assurance for safety of nuclear installations in India (such as pressurised heavy water reactor and related systems) are specified in the Safety standard for civil engineering structures important to safety of nuclear facilities. This standard is written by AERB to specify guidelines for implementation of the above civil engineering safety standard in the design of concrete structures important to safety

  15. International standardization of safety requirements for fast reactors

    2011-06-01

    Japan Atomic Energy Agency (JAEA) is conducting the FaCT (Fast Reactor Cycle Technology Development) project in cooperation with Japan Atomic Power Company (JAPC) and Mitsubishi FBR systems inc. (MFBR), where an advanced loop-type fast reactor named JSFR (Japan Sodium-cooled Fast Reactor) is being developed. It is important to develop software technologies (a safety guideline, safety design criteria, safety design standards etc.) of FBRs as well as hardware ones (a reactor plant itself) in order to address prospective worldwide utilization of FBR technology. Therefore, it is expected to establish a rational safety guideline applicable to the JSFR and harmonized with national nuclear-safety regulations as well, including Japan, the United States and the European Union. This report presents domestic and international status of safety guideline development for sodium-cooled fast reactors (SFRs), results of comparative study for safety requirements provided in existing documents and a proposal for safety requirements of future SFRs with a roadmap for their refinement and worldwide utilization. (author)

  16. Safety design of Qinshan Nuclear Power Plant

    Ouyang Yu; Zhang Lian; Du Shenghua; Zhao Jiayu

    1984-01-01

    Safety issues have been greatly emphasized through the design of the Qinshan Nuclear Power Plant. Reasonable safety margine has been taken into account in the plant design parameters, the design incorporated various safeguard systems, such as engineering safety feature systems, safety protection systems and the features to resist natural catastrophes, e. g. earthquake, hurricanes, tide and so on. Preliminary safety analysis and environmental effect assessment have been done and anti-accident provisions and emergency policy were carefully considered. Qinshan Nuclear Power Plant safety related systems are designed in accordance with the common international standards established in the late 70's, as well as the existing engineering standard of China

  17. Basic design requirements for indigenous irradiator

    Anwar Abd Rahman; Rosli Darmawan; Mohd Arif Hamzah; Fadil Ismail; Muhd Nor Atan

    2007-01-01

    Most of the irradiators owned by Nuclear Malaysia are imported from other countries. The irradiators are used for various applications such as Research and Development, agriculture and industry. There is a plan to develop locally made multi-purpose gamma irradiator in 9th Malaysia Plan which equipped with better safety features. This paper will discuss the basic requirements for the design of the irradiator. (Author)

  18. Safety and security aspects in design of digital safety I and C in nuclear power plants

    Ding, Yongjian; Waedt, Karl

    2016-01-01

    The paper describes a safety objective oriented systematic design approach of digital (computerized) safety I and C in modern nuclear power plants which considers the plant safety requirements as well as cybersecurity needs. The defence in depth philosophy is applied by using different defence lines in the I and C architecture and protection zones in the plant IT environment.

  19. Safety and security aspects in design of digital safety I and C in nuclear power plants

    Ding, Yongjian [University of Applied Sciences Magdeburg-Stendal, Magdeburg (Germany). Inst. of Electrical Engineering; Waedt, Karl [Areva GmbH, Erlangen (Germany). PEAS-G

    2016-05-15

    The paper describes a safety objective oriented systematic design approach of digital (computerized) safety I and C in modern nuclear power plants which considers the plant safety requirements as well as cybersecurity needs. The defence in depth philosophy is applied by using different defence lines in the I and C architecture and protection zones in the plant IT environment.

  20. SAFETY BASIS DESIGN DEVELOPMENT CHALLENGES IMECE2007-42747

    RYAN GW

    2007-01-01

    'Designing in Safety' is a desired part of the development of any new potentially hazardous system, process, or facility. It is a required part of nuclear safety activities as specified in the U.S. Department of Energy (DOE) Order 420.B, Facility Safety. This order addresses the design of nuclear related facilities developed under federal regulation IOCFR830, Nuclear Safety Management. IOCFR830 requires that safety basis documentation be provided to identify how nuclear safety is being adequately addressed as a condition for system operation (e.g., the safety basis). To support the development of the safety basis, a safety analysis is performed. Although the concept of developing a design that addresses 'Safety is simple, the execution can be complex and challenging. This paper addresses those complexities and challenges for the design activity of a system to treat sludge, a corrosion product of spent nuclear fuel, at DOE's Hanford Site in Washington State. The system being developed is referred to as the Sludge Treatment Project (STP). This paper describes the portion of the safety analysis that addresses the selection of design basis events using the experience gained from the STP and the development of design requirements for safety features associated with those events. Specifically, the paper describes the safety design process and the application of the process for two types of potential design basis accidents associated with the operation of the system, (1) flashing spray leaks and (2) splash and splatter leaks. Also presented are the technical challenges that are being addressed to develop effective safety features to deal with these design basis accidents

  1. SAFETY BASIS DESIGN DEVELOPMENT CHALLENGES IMECE2007-42747

    RYAN GW

    2007-09-24

    'Designing in Safety' is a desired part of the development of any new potentially hazardous system, process, or facility. It is a required part of nuclear safety activities as specified in the U.S. Department of Energy (DOE) Order 420.B, Facility Safety. This order addresses the design of nuclear related facilities developed under federal regulation IOCFR830, Nuclear Safety Management. IOCFR830 requires that safety basis documentation be provided to identify how nuclear safety is being adequately addressed as a condition for system operation (e.g., the safety basis). To support the development of the safety basis, a safety analysis is performed. Although the concept of developing a design that addresses 'Safety is simple, the execution can be complex and challenging. This paper addresses those complexities and challenges for the design activity of a system to treat sludge, a corrosion product of spent nuclear fuel, at DOE's Hanford Site in Washington State. The system being developed is referred to as the Sludge Treatment Project (STP). This paper describes the portion of the safety analysis that addresses the selection of design basis events using the experience gained from the STP and the development of design requirements for safety features associated with those events. Specifically, the paper describes the safety design process and the application of the process for two types of potential design basis accidents associated with the operation of the system, (1) flashing spray leaks and (2) splash and splatter leaks. Also presented are the technical challenges that are being addressed to develop effective safety features to deal with these design basis accidents.

  2. Specification of advanced safety modeling requirements (Rev. 0)

    Fanning, T. H.; Tautges, T. J.

    2008-01-01

    The U.S. Department of Energy's Global Nuclear Energy Partnership has lead to renewed interest in liquid-metal-cooled fast reactors for the purpose of closing the nuclear fuel cycle and making more efficient use of future repository capacity. However, the U.S. has not designed or constructed a fast reactor in nearly 30 years. Accurate, high-fidelity, whole-plant dynamics safety simulations will play a crucial role by providing confidence that component and system designs will satisfy established design limits and safety margins under a wide variety of operational, design basis, and beyond design basis transient conditions. Current modeling capabilities for fast reactor safety analyses have resulted from several hundred person-years of code development effort supported by experimental validation. The broad spectrum of mechanistic and phenomenological models that have been developed represent an enormous amount of institutional knowledge that needs to be maintained. Complicating this, the existing code architectures for safety modeling evolved from programming practices of the 1970s. This has lead to monolithic applications with interdependent data models which require significant knowledge of the complexities of the entire code in order for each component to be maintained. In order to develop an advanced fast reactor safety modeling capability, the limitations of the existing code architecture must be overcome while preserving the capabilities that already exist. To accomplish this, a set of advanced safety modeling requirements is defined, based on modern programming practices, that focuses on modular development within a flexible coupling framework. An approach for integrating the existing capabilities of the SAS4A/SASSYS-1 fast reactor safety analysis code into the SHARP framework is provided in order to preserve existing capabilities while providing a smooth transition to advanced modeling capabilities. In doing this, the advanced fast reactor safety models will

  3. Safety requirements for the Pu carriers

    Mishima, H.

    1993-01-01

    Ministry of Transport of Japan has now set about studying requirements for Pu carriers to ensure safety. It was first studied what the basic concept of safe carriage of Pu should be, and the basic ideas have been worked out. Next the requirements for the Pu carriers were studied based on the above. There are at present no international requirements of construction and equipment for the nuclear-material carriers, but MOT of Japan has so far required special construction and equipment for the nuclear-material carriers which carry a large amount of radioactive material, such as spent fuel or low level radioactive waste, corresponding to the level of the respective potential hazard. The requirements of construction and equipment of the Pu carriers have been established considering the difference in heat generation between Pu and spent fuel, physical protection, and so forth, in addition to the above basic concept. (J.P.N.)

  4. Crewed Space Vehicle Battery Safety Requirements

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  5. Nuclear safety review requirements for launch approval

    Sholtis, J.A. Jr.; Winchester, R.O.

    1992-01-01

    Use of nuclear power systems in space requires approval which is preceded by extensive safety analysis and review. This careful study allows an informed risk-benefit decision at the highest level of our government. This paper describes the process as it has historically been applied to U.S. isotopic power systems. The Ulysses mission, launched in October 1990, is used to illustrate the process. Expected variations to deal with reactor-power systems are explained

  6. Recommended general safety requirements for nuclear power plants

    1983-06-01

    This report presents recommendations for a set of general safety requirements that could form the basis for the licensing of nuclear power plants by the Atomic Energy Control Board. In addition to a number of recommended deterministic requirements the report includes criteria for the acceptability of the design of such plants based upon the calculated probability and consequence (in terms of predicted radiation dose to members of the public) of potential fault sequences. The report also contains a historical review of nuclear safety principles and practices in Canada

  7. Safety related requirements on future nuclear power plants

    Niehaus, F.

    1991-01-01

    Nuclear power has the potential to significantly contribute to the future energy supply. However, this requires continuous improvements in nuclear safety. Technological advancements and implementation of safety culture will achieve a safety level for future reactors of the present generation of a probability of core-melt of less than 10 -5 per year, and less than 10 -6 per year for large releases of radioactive materials. There are older reactors which do not comply with present safety thinking. The paper reviews findings of a recent design review of WWER 440/230 plants. Advanced evolutionary designs might be capable of reducing the probability of significant off-site releases to less than 10 -7 per year. For such reactors there are inherent limitations to increase safety further due to the human element, complexity of design and capability of the containment function. Therefore, revolutionary designs are being explored with the aim of eliminating the potential for off-site releases. In this context it seems to be advisable to explore concepts where the ultimate safety barrier is the fuel itself. (orig.) [de

  8. Requirements Engineering for Software Integrity and Safety

    Leveson, Nancy G.

    2002-01-01

    Requirements flaws are the most common cause of errors and software-related accidents in operational software. Most aerospace firms list requirements as one of their most important outstanding software development problems and all of the recent, NASA spacecraft losses related to software (including the highly publicized Mars Program failures) can be traced to requirements flaws. In light of these facts, it is surprising that relatively little research is devoted to requirements in contrast with other software engineering topics. The research proposed built on our previous work. including both criteria for determining whether a requirements specification is acceptably complete and a new approach to structuring system specifications called Intent Specifications. This grant was to fund basic research on how these ideas could be extended to leverage innovative approaches to the problems of (1) reducing the impact of changing requirements, (2) finding requirements specification flaws early through formal and informal analysis, and (3) avoiding common flaws entirely through appropriate requirements specification language design.

  9. A new approach to determine the environmental qualification requirements for the safety related equipment

    Hasnaoui, C.; Parent, G.

    2000-01-01

    The objective of the environmental qualification of safety related equipment is to ensure that the plant defense-in-depth is not compromised by common mode failures following design basis accidents with a harsh environment. A new approach based on safety functions has been developed to determine what safety-related equipment is required to function during and after a design basis accident, as well as their environmental qualification requirements. The main feature of this approach is to use auxiliary safety functions established from safety requirements as credited in the safety analyses. This approach is undertaken in three steps: identification of the auxiliary safety functions of each main safety function; determination of the main equipment groups required for each auxiliary safety function; and review of the safety analyses for design basis accidents in order to determine the credited auxiliary safety functions and their mission times for each accident scenario. Some of the benefits of the proposed approach for the determination of the safety environmental qualification requirements are: a systematic approach for the review of safety analyses based on a safety function check list, and the insurance, with the availability of the safety functions, that Gentilly-2 defense-in-depth would not be compromised by design basis accidents with a harsh environment. (author)

  10. Steam generator design requirements for ACR-1000

    Subash, S.; Hau, K.

    2006-01-01

    Atomic Energy of Canada Limited (AECL) has developed the ACR-1000 (Advanced CANDU Reactor-1000 ) to meet market expectations for enhanced safety of plant operation, high capacity factor, low operating cost, increased operating life, simple component replacement, reduced capital cost, and shorter construction schedule. The ACR-1000 design is based on the use of horizontal fuel channels surrounded by a heavy water moderator, the same feature as in all CANDU reactors. The major innovation in the ACR-1000 is the use of low enriched uranium fuel, and light water as the coolant, which circulates in the fuel channels. This results in a compact reactor core design and a reduction of heavy water inventory, both contributing to a significant decrease in capital cost per MWe produced. The ACR-1000 plant is a two-unit, integrated plant with each unit having a nominal gross output of about 1165 MWe with a net output of approximately 1085 MWe. The plant design is adaptable to a single unit configuration, if required. This paper focuses on the technical considerations that went into developing some of the important design requirements for the steam generators for the ACR-1000 plant and how these requirements are specified in the Technical Specification, which is the governing document for the steam generator (SG) detail design. Layout of these SGs in the plant is briefly described and their impacts on the SG design. (author)

  11. Design requirement on KALIMER control rod assembly duct

    Hwang, W.; Kang, H. Y.; Nam, C.; Kim, J. O.; Kim, Y. J.

    1998-03-01

    This document establishes the design guidelines which are needs for designing the control rod assembly duct of the KALIMER as design requirements. it describes control rod assembly duct of the KALIMER and its requirements that includes functional requirements, performance requirements, interfacing systems, design limits and strength requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. The control rod system consists of three parts, which are drive mechanism, drive-line, and absorber bundle. This report deals with the absorber bundle and its outer duct only because the others are beyond the scope of fuel system design. The guidelines for design requirements intend to be used for an improved design of the control rod assembly duct of the KALIMER. (author). 19 refs

  12. Design requirement on KALIMER control rod assembly duct

    Hwang, W.; Kang, H. Y.; Nam, C.; Kim, J. O.; Kim, Y. J

    1998-03-01

    This document establishes the design guidelines which are needs for designing the control rod assembly duct of the KALIMER as design requirements. it describes control rod assembly duct of the KALIMER and its requirements that includes functional requirements, performance requirements, interfacing systems, design limits and strength requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. The control rod system consists of three parts, which are drive mechanism, drive-line, and absorber bundle. This report deals with the absorber bundle and its outer duct only because the others are beyond the scope of fuel system design. The guidelines for design requirements intend to be used for an improved design of the control rod assembly duct of the KALIMER. (author). 19 refs.

  13. Predisposal management of radioactive waste. General safety requirements. Pt. 5

    2009-01-01

    The objective of this Safety Requirements publication is to establish, the requirements that must be satisfied in the predisposal management of radioactive waste. This publication sets out the objectives, criteria and requirements for the protection of human health and the environment that apply to the siting, design, construction, commissioning, operation and shutdown of facilities for the predisposal management of radioactive waste, and the requirements that must be met to ensure the safety of such facilities and activities. This Safety Requirements publication applies to the predisposal management of radioactive waste of all types and covers all the steps in its management from its generation up to its disposal, including its processing (pretreatment, treatment and conditioning), storage and transport. Such waste may arise from the commissioning, operation and decommissioning of nuclear facilities; the use of radionuclides in medicine, industry, agriculture, research and education; the processing of materials that contain naturally occurring radionuclides; and the remediation of contaminated areas. The introduction of the document (Section 1) informs about its objective, scope and structure. The protection of human health and the environment is considered in Section 2 of this publication. Section 3 establishes requirements for the responsibilities associated with the predisposal management of radioactive waste. Requirements for the principal approaches to and the elements of the predisposal management of radioactive waste are established in Section 4. Section 5 establishes requirements for the safe development and operation of predisposal radioactive waste management facilities and safe conduct of activities. The Annex presents a discussion of the consistency of the safety requirements established in this publication with the fundamental safety principles

  14. ARIES-RS safety design and analysis

    Steiner, D.; El-Guebaly, L.; Herring, S.; Khater, H.; Mogahed, E.; Thayer, R.; Tillack, M.S.

    1997-01-01

    The ARIES-RS safety design and analysis focused on achieving two objectives: (1) The avoidance of sheltering or evacuation in the event of an accident; and (2) the generation of only low-level waste, no greater than Class C. The ARIES-RS baseline design employs V-4Cr-4Ti as the blanket structural material and a low activation ferritic steel in the reflector and shield. In the event of a LOCA, the baseline design first wall maximum temperature falls in the range of 1100-1200 C. For this temperature range, the hazard assessment indicates that the dose at the site boundary will be less than 1 rem per year. Thus, no sheltering or evacuation would be required in the event of a LOCA. Although the baseline design satisfies the first safety objective noted above, a first wall maximum temperature of ∝1100-1200 C would likely compromise the integrity of the vanadium blanket structure and would require blanket replacement following such a temperature excursion. To avoid this situation, a modified blanket design incorporating supplemental heat removal is also proposed. Preliminary analysis of this modified design suggests that the first wall maximum temperature can be kept below the temperature range of concern, ∝1000-1100 C, in the event of a LOCA. When the ferritic steel used in the reflector and shield is one reduced in Ir and Ag impurities, all in-vessel components qualify for near-surface shallow land burial as Class C low-level waste. (orig.)

  15. Development of photovoltaic array and module safety requirements

    1982-01-01

    Safety requirements for photovoltaic module and panel designs and configurations likely to be used in residential, intermediate, and large-scale applications were identified and developed. The National Electrical Code and Building Codes were reviewed with respect to present provisions which may be considered to affect the design of photovoltaic modules. Limited testing, primarily in the roof fire resistance field was conducted. Additional studies and further investigations led to the development of a proposed standard for safety for flat-plate photovoltaic modules and panels. Additional work covered the initial investigation of conceptual approaches and temporary deployment, for concept verification purposes, of a differential dc ground-fault detection circuit suitable as a part of a photovoltaic array safety system.

  16. Test design requirements for overcoring stress measurements

    Stickney, R.G.

    1985-12-01

    This document establishes the test design requirements for a series of overcoring stress measurements to be performed in the Exploratory Shaft Facility. The stress measurements will be made to determine the in situ state of stress within the candidate repository horizon and to determine the magnitude and distribution of the stresses induced by the mined openings of the facility. The overcoring technique involves the measurement of strain (or deformation) in a volume of rock as the stress acting on the rock volume is relieved. This document presents an overview of the measurements, including objectives and rationale for the measurements. A description of the measurements is included. The support requirements are identified as are constraints for the design of the measurements. Discussions on Quality Assurance and Safety are also included in the document. 13 refs

  17. UK experience of safety requirements for thermal reactor stations

    Matthews, R.R.; Dale, G.C.; Tweedy, J.N.

    1977-01-01

    The paper summarises the development of safety requirements since the first of the Generating Boards' Magnox reactors commenced operation in 1962 and includes A.G.R. safety together with the preparation of S.G.H.W.R. design safety criteria. It outlines the basic principles originally adopted and shows how safety assessment is a continuing process throughout the life of a reactor. Some description is given of the continuous effort over the years to obtain increased safety margins for existing and new reactors, taking into account the construction and operating experience, experimental information, and more sophisticated computer-aided design techniques which have become available. The main safeguards against risks arising from the Generating Boards' reactors are the achievement of high standards of design, construction and operation, in conjunction with comprehensive fault analyses to ensure that adequate protective equipment is provided. The most important analyses refer to faults which can lead to excessive fuel element temperatures arising from an increase in power or a reduction in cooling capacity. They include the possibility of unintended control rod withdrawal at power or at start-up, coolant flow failure, pressure circuit failure, loss of boiler feed water, and failure of electric power. The paper reviews the protective equipment, and the policy for reactor safety assessments which include application of maximum credible accident philosophy and later the limited use of reliability and probability methods. Some of the Generating Boards' reactors are now more than half way through their planned working lives and during this time safety protective equipment has occasionally been brought into operation, often for spurious reasons. The general performance, of safety equipment is reviewed particularly for incidents such as main turbo-alternator trip, circulator failure, fuel element failures and other similar events, and some problems which have given rise to

  18. Safety and regulatory requirements of nuclear power plants

    Kumar, S.V.; Bhardwaj, S.A.

    2000-01-01

    A pre-requisite for a nuclear power program in any country is well established national safety and regulatory requirements. These have evolved for nuclear power plants in India with participation of the regulatory body, utility, research and development (R and D) organizations and educational institutions. Prevailing international practices provided a useful base to develop those applicable to specific system designs for nuclear power plants in India. Their effectiveness has been demonstrated in planned activities of building up the nuclear power program as well as with unplanned activities, like those due to safety related incidents etc. (author)

  19. Safety criteria for design of nuclear power plants

    1997-01-01

    In Finland the general safety requirements for nuclear power plants are presented in the Council of State Decision (395/91). In this guide, safety principles which supplement the Council of State Decision and which are to be used in the design of nuclear power plants are defined

  20. Safety in the design of production lines

    Dyhrberg, Mette Bang; Broberg, Ole; Jacobsen, Peter

    2006-01-01

    This paper is a case study report on how safety considerations were handled in the process of redesigning a production line. The design process was characterized as a specification and negotiation process between engineers from the company and the supplier organization. The new production line...... in the specification material nor in their face-to-face meetings with the supplier. Safety aspects were not part of their work practice. On this basis, it was suggested that formal guidelines or procedures for integrating safety in the design of production lines would have no effect. Instead, the researchers set up...... became safer, but not as a result of any intentional plan to integrate safety aspects into the design process. Instead, the supplier’s design of a new piece of equipment had a higher built-in safety level. The engineering team in the company was aware of the importance of safety aspects neither...

  1. Design safety improvements of Kozloduy NPP

    Hinovski, I.

    1999-01-01

    Design safety improvements of Kozloduy NPP, discussed in detail, are concerned with: primary circuit integrity; reactor pressure vessel integrity; primary coolant piping integrity; primary coolant overpressure protection; leak before break status; design basis accidents and transients; severe accident analysis; improvements of safety and support systems; containment/confinement leak tightness and strength; seismic safety improvements; WWER-1000 control rod insertion; upgrading and modernization of Units 5 and 6; Year 2000 problem

  2. Fire Safety Design of Wood Structures

    Hertz, Kristian Dahl

    2006-01-01

    Lecture Notes on Fire Safety Design of Wood Structures including charring of wood and load bearing capacity of beams, columns, and connections.......Lecture Notes on Fire Safety Design of Wood Structures including charring of wood and load bearing capacity of beams, columns, and connections....

  3. Safety design guides for containment extension for CANDU 9

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide for containment extension describes the containment isolation philosophy and containment extension requirements. The metal extensions and components falling within the scope of ASME Section III are classified in accordance with the CAN/CSA-N285.0 and CAN/CSA-N285.3. The special consideration for the leak monitoring capability, seismic qualification and inspection requirements for containment extensions, etc., are defined in this design guide. In addition, the containment isolation systems are defined and summarized schematically in appendix A. The change status of the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. (Author) .new

  4. 78 FR 46560 - Pipeline Safety: Class Location Requirements

    2013-08-01

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... class location requirements for gas transmission pipelines. Section 5 of the Pipeline Safety, Regulatory... and, with respect to gas transmission pipeline facilities, whether applying IMP requirements to...

  5. NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion

    Marshall, A.C.; Lee, J.H.; McCulloch, W.H.; Sawyer, J.C. Jr.; Bari, R.A.; Brown, N.W.; Cullingford, H.S.; Hardy, A.C.; Remp, K.; Sholtis, J.A.

    1992-01-01

    An Interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top- level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed

  6. Directives and general design requirements for a small PWR

    Arrieta, L.A.

    1992-08-01

    A proposal of directives and general requirements for the development of a small PWR conceptual design is presented. These directives address the main safety, performance and economic design aspects. The purpose is to use this work as a base for a wide discussion, involving all project participants, culminating with the definition of the final directives and general requirements. (author)

  7. Conception of transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel of power reactors, which meets the requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism

    Il'kaev, R.I.; Matveev, V.Z.; Morenko, A.I.; Shapovalov, V.I.; Semenov, A.G.; Sergeyev, V.M.; Orlov, V.K.; Shatalov, V.V.; Gotovchikov, V.T.; Seredenko, V.A.; Haire, Jonathan M.; Forsberg, C.W.

    2004-01-01

    The report is devoted to the problem of creation of a new generation of multi-purpose universal transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel (SNF) of power reactors, which meets all requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism. Meeting all IAEA requirements in terms of safety both in normal operation conditions and accidents, as well as increased stability of transport cask (TC) with SNF under the conditions of beyond-design-basis accidents and acts of terrorism has been achieved in the design of multi-purpose universal TC due to the use of DU (depleted uranium) in it. At that, it is suggested to use DU in TC, which acts as effective gamma shield and constructional material in the form of both metallic depleted uranium and metal-ceramic mixture (cermet), based on stainless or carbon steel and DU dioxide. The metal in the cermet is chosen to optimize cask performance. The use of DU in the design of multi-purpose universal TC enables getting maximum load of the container for spent nuclear fuel when meeting IAEA requirements in terms of safety and providing increased stability of the container with SNF under conditions of beyond-design-basis accident and acts of terrorism

  8. Conception of transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel of power reactors, which meets the requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism

    Il' kaev, R.I.; Matveev, V.Z.; Morenko, A.I.; Shapovalov, V.I. [Russian Federal Nuclear Center - All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation); Semenov, A.G.; Sergeyev, V.M.; Orlov, V.K. [All-Russian Research Inst. of Inorganic Materials, Moscow (Russian Federation); Shatalov, V.V.; Gotovchikov, V.T.; Seredenko, V.A. [All-Russian Research Inst. of Applied Chemistry, Moscow (Russian Federation); Haire, Jonathan M.; Forsberg, C.W. [Oak Ridge National Lab., Oak Ridge (United States)

    2004-07-01

    The report is devoted to the problem of creation of a new generation of multi-purpose universal transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel (SNF) of power reactors, which meets all requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism. Meeting all IAEA requirements in terms of safety both in normal operation conditions and accidents, as well as increased stability of transport cask (TC) with SNF under the conditions of beyond-design-basis accidents and acts of terrorism has been achieved in the design of multi-purpose universal TC due to the use of DU (depleted uranium) in it. At that, it is suggested to use DU in TC, which acts as effective gamma shield and constructional material in the form of both metallic depleted uranium and metal-ceramic mixture (cermet), based on stainless or carbon steel and DU dioxide. The metal in the cermet is chosen to optimize cask performance. The use of DU in the design of multi-purpose universal TC enables getting maximum load of the container for spent nuclear fuel when meeting IAEA requirements in terms of safety and providing increased stability of the container with SNF under conditions of beyond-design-basis accident and acts of terrorism.

  9. Specification of advanced safety modeling requirements (Rev. 0).

    Fanning, T. H.; Tautges, T. J.

    2008-06-30

    The U.S. Department of Energy's Global Nuclear Energy Partnership has lead to renewed interest in liquid-metal-cooled fast reactors for the purpose of closing the nuclear fuel cycle and making more efficient use of future repository capacity. However, the U.S. has not designed or constructed a fast reactor in nearly 30 years. Accurate, high-fidelity, whole-plant dynamics safety simulations will play a crucial role by providing confidence that component and system designs will satisfy established design limits and safety margins under a wide variety of operational, design basis, and beyond design basis transient conditions. Current modeling capabilities for fast reactor safety analyses have resulted from several hundred person-years of code development effort supported by experimental validation. The broad spectrum of mechanistic and phenomenological models that have been developed represent an enormous amount of institutional knowledge that needs to be maintained. Complicating this, the existing code architectures for safety modeling evolved from programming practices of the 1970s. This has lead to monolithic applications with interdependent data models which require significant knowledge of the complexities of the entire code in order for each component to be maintained. In order to develop an advanced fast reactor safety modeling capability, the limitations of the existing code architecture must be overcome while preserving the capabilities that already exist. To accomplish this, a set of advanced safety modeling requirements is defined, based on modern programming practices, that focuses on modular development within a flexible coupling framework. An approach for integrating the existing capabilities of the SAS4A/SASSYS-1 fast reactor safety analysis code into the SHARP framework is provided in order to preserve existing capabilities while providing a smooth transition to advanced modeling capabilities. In doing this, the advanced fast reactor safety models

  10. Safety design guides for environmental qualification for CANDU 9

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide describes the safety philosophy and requirements for the environmental qualification of safety related systems and components for CANDU 9. The environmental qualification program identifies the equipments to be qualified and conditions to be used for qualification and provides comprehensive set of documentation to ensure that the qualification is complete and can be maintained for the life of the plant. A summary of the system, components and structures requiring environmental qualification is provided in the table for the guidance of the system design, and this table will be subject to change or confirmation by the environmental qualification program. Also, plant ares subject to harsh environment is provided in the figure. The change status of the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 1 tab., 5 figs. (Author) .new

  11. Discussion on several important safety requirements for the new nuclear power plant

    Yan Tianwen; Li Jigen; Zhang Lin; Feng Youcai; Jia Xiang; Li Wenhong

    2013-01-01

    Post the Fukushima nuclear accident, the Chinese government raised higher safety goals and safety requirements for the new nuclear power plant to be constructed. The paper expounded the important indicators of safety requirements and the aspects of safety modification that had been developed for the new NPPs. It also discussed and analyzed the main fields required by the new NPPs safety requirements in the safety goals, safety evaluation of sites, defenses of internal and external events, severe accident prevention and mitigation, design of reactor core, containment system and I and C system, and optimization of engineering measure, which gave some references to the design, construction and safety modifications of new NPPs in China. (authors)

  12. Safety performance of preliminary KALIMER conceptual design

    Hahn Dohee; Kim Kyoungdoo; Kwon Youngmin; Chang Wonpyo; Suk Soodong [Korea atomic Energy Resarch Inst., Taejon (Korea)

    1999-07-01

    The Korea Atomic Energy Research Institute (KAERI) is developing KALIMER (Korea Advanced Liquid Metal Reactor), which is a sodium cooled, 150 MWe pool-type reactor. The safety design of KALIMER emphasizes accident prevention by using passive processes, which can be accomplished by the safety design objectives including the utilization of inherent safety features. In order to assess the effectiveness of the inherent safety features in achieving the safety design objectives, a preliminary evaluation of ATWS performance for the KALIMER design has been performed with SSC-K code, which is a modified version of SSC-L code. KAERI's modification of the code includes development of reactivity feedback models for the core and a pool model for KALIMER reactor vessel. This paper describes the models for control rod driveline expansion, gas expansion module and the thermal hydraulic model for reactor pool and the results of preliminary analyses for unprotected loss of flow and loss o heat sink. (author)

  13. Safety performance of preliminary KALIMER conceptual design

    Hahn Dohee; Kim Kyoungdoo; Kwon Youngmin; Chang Wonpyo; Suk Soodong

    1999-01-01

    The Korea Atomic Energy Research Institute (KAERI) is developing KALIMER (Korea Advanced Liquid Metal Reactor), which is a sodium cooled, 150 MWe pool-type reactor. The safety design of KALIMER emphasizes accident prevention by using passive processes, which can be accomplished by the safety design objectives including the utilization of inherent safety features. In order to assess the effectiveness of the inherent safety features in achieving the safety design objectives, a preliminary evaluation of ATWS performance for the KALIMER design has been performed with SSC-K code, which is a modified version of SSC-L code. KAERI's modification of the code includes development of reactivity feedback models for the core and a pool model for KALIMER reactor vessel. This paper describes the models for control rod driveline expansion, gas expansion module and the thermal hydraulic model for reactor pool and the results of preliminary analyses for unprotected loss of flow and loss o heat sink. (author)

  14. EPR meets the next generation PWR safety requirements

    Bouteille, Francois; Czech, Juergen; Sloan, Sandra

    2006-01-01

    At the origin was the common decision in 1989 of Framatome and Siemens to cooperate to design a Nuclear Island which meets the future needs of utilities. EDF and a group of main German Utilities joined this effort in 1991 and from that point were completely involved in the progress of the work. Compliance of the EPR with the European Utility Requirements (EUR) was verified to ensure a large acceptability of the design by other participating utilities. In addition, the entire process was backed up to the end of 1998 by the French and the German Safety Authorities which engaged into a long-lasting cooperation to define common requirements applicable to future Nuclear Power Plants. Upon signature of the Olkiluoto 3 contract, STUK, the Finnish safety and radiation authority, began reviewing the design of the EPR. Upon the favorable recommendation of STUK, the Finnish government delivered a Construction License for the Olkiluoto 3 NPP on February 17, 2005. Following the positive conclusion of the political debate in France with regard to nuclear energy, EDF will also submit a request to start the construction of an EPR on the Flamanville site. In the US, the first steps in view of a Design Certification by the NRC have been taken. These three independent decisions make the EPR the leading first generation 3+ design under construction. Important safety functions are assured by separate systems in a straightforward operating mode. Four separate, redundant trains for all safety systems are installed in four separate layout division for which a strict separation is ensured so that common mode failure, for example due to internal hazards, can be ruled out. A reduction in common mode failure potential is also obtained by design rules ensuring the systematic application of functional diversity. A four train-redundancy for the major safety systems provides flexibility in adapting the design to maintenance requirements, thus contributing to reduce the outage duration. Additional

  15. Safety design guides for grouping and separation for CANDU 9

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of); Wright, A C.D. [Atomic Energy of Canada Ltd., Toronto (Canada)

    1996-03-01

    This safety design guide for grouping and separation describes the philosophy of physical and functional separation for systems, structures and components in CANDU 9 plants and provides the requirements for the implementation of the philosophy in the detailed plant design. The separation of the safety systems is to ensure that common cause events and functional interconnections between systems do not impair the capability to perform the required safety functions for accident conditions. The separation requirements are also applied to the design by grouping the plant systems into two basic groups. Group 1 includes the power production systems and Group 2 includes the safety related systems required for the mitigation of serious process failure. The Group 2 is further separated into subgroups to ensure that events that could cause failure of a special safety system in one subgroup can be mitigated by the other subgroup. The change status for the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 2 tabs., 6 figs. (Author) .new.

  16. Safety design guides for grouping and separation for CANDU 9

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide for grouping and separation describes the philosophy of physical and functional separation for systems, structures and components in CANDU 9 plants and provides the requirements for the implementation of the philosophy in the detailed plant design. The separation of the safety systems is to ensure that common cause events and functional interconnections between systems do not impair the capability to perform the required safety functions for accident conditions. The separation requirements are also applied to the design by grouping the plant systems into two basic groups. Group 1 includes the power production systems and Group 2 includes the safety related systems required for the mitigation of serious process failure. The Group 2 is further separated into subgroups to ensure that events that could cause failure of a special safety system in one subgroup can be mitigated by the other subgroup. The change status for the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 2 tabs., 6 figs. (Author) .new

  17. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    2009-01-01

    ) Facilities where the mining and processing of radioactive ores (such as ores of uranium and thorium) are carried out. 'Activities' includes: (a) production, use, import and export of radiation sources for industrial, research, medical and other purposes; (b) transport of radioactive material; (c) decommissioning and dismantling of facilities and the closure of repositories for radioactive waste; (d) close-out of facilities where the mining and processing of radioactive ore was carried out; (e) activities for radioactive waste management such as the discharge of effluents; (f) remediation of sites affected by residues from past activities. Safety assessment plays an important role throughout the lifetime of the facility or activity whenever decisions on safety issues are made by the designers, the constructors, the manufacturers, the operating organization or the regulatory body. Stages in the lifetime of a facility or activity where a safety assessment is carried out, updated and used by the designers, the operating organization and the regulatory body include: (a) site evaluation for the facility or activity; (b) development of the design; (c) construction of the facility or implementation of the activity; (d) commissioning of the facility or activity; (e) commencement of operation of the facility or conduct of the activity; (f) normal operation of the facility or normal conduct of the activity; (g) modification of the design or operation; (h) periodic safety reviews; (i) life extension of the facility beyond its original design life; (j) changes in ownership or management of the facility; (k) decommissioning and dismantling of a facility; (l) closure of a repository for the disposal of radioactive waste and the post-closure phase; (m) remediation of a site and release from regulatory control. The publication is structured as follows: An introduction is followed by Section 2 which provides the basis for requiring a safety assessment to be carried out, derived from the

  18. Safety assessment for facilities and activities. General safety requirements. Pt. 4

    2009-01-01

    ) Facilities where the mining and processing of radioactive ores (such as ores of uranium and thorium) are carried out. 'Activities' includes: (a) production, use, import and export of radiation sources for industrial, research, medical and other purposes; (b) transport of radioactive material; (c) decommissioning and dismantling of facilities and the closure of repositories for radioactive waste; (d) close-out of facilities where the mining and processing of radioactive ore was carried out; (e) activities for radioactive waste management such as the discharge of effluents; (f) remediation of sites affected by residues from past activities. Safety assessment plays an important role throughout the lifetime of the facility or activity whenever decisions on safety issues are made by the designers, the constructors, the manufacturers, the operating organization or the regulatory body. Stages in the lifetime of a facility or activity where a safety assessment is carried out, updated and used by the designers, the operating organization and the regulatory body include: (a) site evaluation for the facility or activity; (b) development of the design; (c) construction of the facility or implementation of the activity; (d) commissioning of the facility or activity; (e) commencement of operation of the facility or conduct of the activity; (f) normal operation of the facility or normal conduct of the activity; (g) modification of the design or operation; (h) periodic safety reviews;(i) life extension of the facility beyond its original design life; (j) changes in ownership or management of the facility; (k) decommissioning and dismantling of a facility; (l) closure of a repository for the disposal of radioactive waste and the post-closure phase; (m) remediation of a site and release from regulatory control. The publication is structured as follows: An introduction is followed by Section 2 which provides the basis for requiring a safety assessment to be carried out, derived from the

  19. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    2010-01-01

    ) Facilities where the mining and processing of radioactive ores (such as ores of uranium and thorium) are carried out. 'Activities' includes: (a) production, use, import and export of radiation sources for industrial, research, medical and other purposes; (b) transport of radioactive material; (c) decommissioning and dismantling of facilities and the closure of repositories for radioactive waste; (d) close-out of facilities where the mining and processing of radioactive ore was carried out; (e) activities for radioactive waste management such as the discharge of effluents; (f) remediation of sites affected by residues from past activities. Safety assessment plays an important role throughout the lifetime of the facility or activity whenever decisions on safety issues are made by the designers, the constructors, the manufacturers, the operating organization or the regulatory body. Stages in the lifetime of a facility or activity where a safety assessment is carried out, updated and used by the designers, the operating organization and the regulatory body include: (a) site evaluation for the facility or activity; (b) development of the design; (c) construction of the facility or implementation of the activity; (d) commissioning of the facility or activity; (e) commencement of operation of the facility or conduct of the activity; (f) normal operation of the facility or normal conduct of the activity; (g) modification of the design or operation; (h) periodic safety reviews; (i) life extension of the facility beyond its original design life; (j) changes in ownership or management of the facility; (k) decommissioning and dismantling of a facility; (l) closure of a repository for the disposal of radioactive waste and the post-closure phase; (m) remediation of a site and release from regulatory control. The publication is structured as follows: An introduction is followed by Section 2 which provides the basis for requiring a safety assessment to be carried out, derived from the

  20. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    2009-01-01

    installed; (i) Facilities where the mining and processing of radioactive ores (such as ores of uranium and thorium) are carried out. 'Activities' includes: (a) production, use, import and export of radiation sources for industrial, research, medical and other purposes; (b) transport of radioactive material; (c) decommissioning and dismantling of facilities and the closure of repositories for radioactive waste; (d) close-out of facilities where the mining and processing of radioactive ore was carried out; (e) activities for radioactive waste management such as the discharge of effluents; (f) remediation of sites affected by residues from past activities. Safety assessment plays an important role throughout the lifetime of the facility or activity whenever decisions on safety issues are made by the designers, the constructors, the manufacturers, the operating organization or the regulatory body. Stages in the lifetime of a facility or activity where a safety assessment is carried out, updated and used by the designers, the operating organization and the regulatory body include: (a) site evaluation for the facility or activity; (b) development of the design; (c) construction of the facility or implementation of the activity; (d) commissioning of the facility or activity; (e) commencement of operation of the facility or conduct of the activity; (f) normal operation of the facility or normal conduct of the activity; (g) modification of the design or operation; (h) periodic safety reviews;(i) life extension of the facility beyond its original design life; (j) changes in ownership or management of the facility; (k) decommissioning and dismantling of a facility; (l) closure of a repository for the disposal of radioactive waste and the post-closure phase; (m) remediation of a site and release from regulatory control. The publication is structured as follows: An introduction is followed by Section 2 which provides the basis for requiring a safety assessment to be carried out, derived

  1. Status of safety issues at licensed power plants: TMI action plan requirements, unresolved safety issues, generic safety issues

    1991-12-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, a program was established whereby an annual NUREG report would be published on the status of licensee implementation and NRC verification of safety issues in major NRC requirements areas. This information was compiled and reported in three NUREG volumes. Volume 1, published in March 1991, addressed the status of of Three Mile Island (TMI) Action Plan Requirements. Volume 2, published in May 1991, addressed the status of unresolved safety issues (USIs). Volume 3, published in June 1991, addressed the implementation and verification status of generic safety issues (GSIs). This annual NUREG report combines these volumes into a single report and provides updated information as of September 30, 1991. The data contained in these NUREG reports are a product of the NRC's Safety Issues Management System (SIMS) database, which is maintained by the Project Management Staff in the Office of Nuclear Reactor Regulation and by NRC regional personnel. This report is to provide a comprehensive description of the implementation and verification status of TMI Action Plan Requirements, safety issues designated as USIs, and GSIs that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. An additional purpose of this NUREG report is to serve as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues up until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees

  2. Code on the safety of nuclear research reactors: Design

    1992-01-01

    The main objective of this publication is to provide a safety basis for the design of a research reactor and for the assessment of the design. Another objective is to cover certain aspects related to regulatory supervision, siting and quality assurance, as far as these are related to activities for the design of a research reactor. These objectives are expressed in terms of requirements and recommendations for the design of research reactors. Emphasis is placed on the safety requirements that shall be met rather than on ways in which they can be met. The requirements and recommendations may form the foundation necessary for a Member State to develop specific regulations and safety criteria for its research reactor programme.

  3. Long term safety requirements and safety indicators for the assessment of underground radioactive waste repositories

    Vovk, Ivan

    1998-01-01

    This presentation defines: waste disposal, safety issues, risk estimation; describes the integrated waste disposal process including quality assurance program. Related to actinides inventory it shows the main results of calculated activity obtained by deterministic estimation. It includes the Radioactive Waste Safety Standards and requirements; features related to site, design and waste package characteristics, as technical long term safety criteria for radioactive waste disposal facilities. Fundamental concern regarding the safety of radioactive waste disposal systems is their radiological impact on human beings and the environment. Safety requirements and criteria for judging the level of safety of such systems have been developed and there is a consensus among the international community on their basis within the well-established system of radiological protection. So far, however, little experience has been gained in applying long term safety criteria to actual disposal systems; consequently, there is an international debate on the most appropriate nature and form of the criteria to be used, taking into account the uncertainties involved. Emerging from the debate is the increasing conviction that the combined use of a variety of indicators would be advantageous in addressing the issue of reasonable assurance in the different time frames involved and in supporting the safety case for any particular repository concept. Indicators including risk, dose, radionuclide concentration, transit time, toxicity indices, fluxes at different points within the system, and barrier performance have all been identified as potentially relevant. Dose and risk are the indicators generally seen as most fundamental, as they seek directly to describe the radiological impact of a disposal system, and these are the ones that have been incorporated into most national standards to date. There are, however, certain problems in applying them. Application of a variety of different indicators

  4. GENERAL CONSIDERATIONS ON REGULATIONS AND SAFETY REQUIREMENTS FOR QUADRICYCLES

    Ana Pavlovic

    2015-12-01

    Full Text Available In recent years, a new class of compact vehicles has been emerging and wide-spreading all around Europe: the quadricycle. These four-wheeled motor vehicles, originally derived from motorcycles, are a small and fuel-efficient mean of transportation used in rural or urban areas as an alternative to motorbikes or city cars. In some countries, they are also endorsed by local authorities and institutions which support small and environmentally-friendly vehicles. In this paper, several general considerations on quadricycles will be provided including the vehicle classification, evolution of regulations (as homologation, driver licence, emissions, etc, technical characteristics, safety requirements, most relevant investigations, and other additional useful information (e.g. references, links. It represents an important and actual topic of investigation for designers and manufacturers considering that the new EU regulation on the approval and market surveillance of quadricycles will soon enter in force providing conclusive requirements for functional safety environmental protection of these promising vehicles.

  5. Recommended safety objectives, principles and requirements for mini-reactors

    1991-05-01

    Canadian and international publications containing objectives, principles and requirements for the safety of nuclear facilities in general and nuclear power plants in particular have been reviewed for their relevance to mini-reactors. Most of the individual recommendations, sometimes with minor wording changes, are applicable to mini-reactors. However, some prescriptive requirements for the shutdown, emergency core cooling and containment systems of power reactors are considered inappropriate for mini-reactors. The Advisory Committee on Nuclear Safety favours a generally non-prescriptive approach whereby the applicant for a mini-reactor license is free to propose any means of satisfying the fundamental objectives, but must convince the regulatory agency to that effect. To do so, a probabilistic safety assessment (PSA) would be the favoured procedure. A generic PSA for all mini-reactors of the same design would be acceptable. Notwithstanding this non-prescriptive approach, the ACNS considers that it would be prudent to require the existence of at least one independent shutdown system and two physically independent locations from which the reactor can be shut down and the shutdown condition monitored, and to require provision for an assumed loss of integrity of the primary cooling system's boundary unless convincing arguments to the contrary are presented. The ACNS endorses in general the objectives and fundamental principles proposed by the interorganizational Small Reactor Criteria working group, and intends to review and comment on the documents on specific applications to be issued by that working group

  6. Safety design of SNR-300

    Traube, K.

    1976-01-01

    The joint German-Belgian-Dutch loop-type 300 MW(e) LMFBR prototype is being constructed at Kalkar on the lower Rhine in Germany. Among the many arguments put forward in defense of SNR-300, that of acquiring licensing exprience has proven to be of major importance to the international breeder scene. The severity of the licensing procedures and of the safety standards imposed are unique in several respects, including timing: generally growing scepticism towards nuclear power increased severity of the licensing practice; organizational features: the procedure and criteria developed for commercial light water reactors have been applied without exemptions. This relates to the commercial-type contract under which SNR-300 is being built for private utilities by a private company; and German nuclear safety standards, known worldwide to be most stringent. The following three important areas are discussed in which SNR-300 decidedly deviates from its forerunners: protection against the hypothetical core disruptive accident (HCDA), protection against external events, and provisions for in-service inspection

  7. Tank Farms Technical Safety Requirements. Volume 1 and 2

    CASH, R.J.

    2000-01-01

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR)

  8. Tank Farms Technical Safety Requirements [VOL 1 and 2

    CASH, R.J.

    2000-12-28

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR).

  9. Nuclear safety cooperation for Soviet designed reactors

    Reisman, A.W.; Horak, W.C.

    1995-01-01

    The nuclear accident at the Chernobyl nuclear power plant in 1986 first alerted the West to the significant safety risks of Soviet designed reactors. Five years later, this concern was reaffirmed when the IAEA, as a result of a review by an international team of nuclear safety experts, announced that it did not believe the Kozloduy nuclear power plants in Bulgaria could be operated safely. To address these safety concerns, the G-7 summit in Munich in July 1992 outlined a five point program to address the safety problems of Soviet Designed Reactors: operational safety improvement; near-term technical improvements to plants based on safety assessment; enhancing regulatory regimes; examination of the scope for replacing less safe plants by the development of alternative energy sources and the more efficient use of energy; and upgrading of the plants of more recent design. As of early 1994, over 20 countries and international organizations have pledged hundreds of millions of dollars in financial assistance to improve safety. This paper summarizes these assistance efforts for Soviet designed reactors, draws lessons learned from these activities, and offers some options for better addressing these concerns

  10. Safety requirements for a nuclear power plant electric power system

    Fouad, L F; Shinaishin, M A

    1988-06-15

    This work aims at identifying the safety requirements for the electric power system in a typical nuclear power plant, in view of the UNSRC and the IAEA. Description of a typical system is provided, followed by a presentation of the scope of the information required for safety evaluation of the system design and performance. The acceptance and design criteria that must be met as being specified by both regulatory systems, are compared. Means of implementation of such criteria as being described in the USNRC regulatory guides and branch technical positions on one hand and in the IAEA safety guides on the other hand are investigated. It is concluded that the IAEA regulations address the problems that may be faced with in countries having varying grid sizes ranging from large stable to small potentially unstable ones; and that they put emphasis on the onsite standby power supply. Also, in this respect the Americans identify the grid as the preferred power supply to the plant auxiliaries, while the IAEA leaves the possibility that the preferred power supply could be either the grid or the unit main generator depending on the reliability of each. Therefore, it is found that it is particularly necessary in this area of electric power supplies to deal with the IAEA and the American sets of regulations as if each complements and not supplements the other. (author)

  11. Safety requirements and safety experience of nuclear facilities in the Federal Republic of Germany

    Schnurer, H.L.

    1977-01-01

    Peaceful use of nuclear energy within the F.R.G. is rapidly growing. The Energy Programme of the Federal Government forecasts a capacity of up to 50.000 MW in 1985. Whereas most of this capacity will be of the LWR-Type, other activities are related to LMFBR - and HTGR - development, nuclear ships, and facilities of the nuclear fuel cycle. Safety of nuclear energy is the pacemaker for the realization of nuclear programmes and projects. Due to a very high population - and industrialisation density, safety has the priority before economical aspects. Safety requirements are therefore extremely stringent, which will be shown for the legal, the technical as well as for the organizational area. They apply for each nuclear facility, its site and the nuclear energy system as a whole. Regulatory procedures differ from many other countries, assigning executive power to state authorities, which are supervised by the Federal Government. Another particularity of the regulatory process is the large scope of involvement of independent experts within the licensing procedures. The developement of national safety requirements in different countries generates a necessity to collaborate and harmonize safety and radiation protection measures, at least for facilities in border areas, to adopt international standards and to assist nuclear developing countries. However, different nationally, regional or local situations might raise problems. Safety experience with nuclear facilities can be concluded from the positive construction and operation experience, including also a few accidents and incidents and the conclusions, which have been drawn for the respective factilities and others of similar design. Another tool for safety assessments will be risk analyses, which are under development by German experts. Final, a scope of future problems and developments shows, that safety of nuclear installations - which has reached a high performance - nevertheless imposes further tasks to be solved

  12. Review of design criteria and safety analysis of safety class electric building for fuel test loop

    Kim, J. Y.

    1998-02-01

    Steady state fuel test loop will be equipped in HANARO to obtain the development and betterment of advanced fuel and materials through the irradiation tests. HANARO fuel test loop was designed for CANDU and PWR fuel testing. Safety related system of Fuel Test Loop such as emergency cooling water system, component cooling water system, safety ventilation system, high energy line break mitigation system and remote control room was required 1E class electric supply to meet the safety operation in accordance with related code. Therefore, FTL electric building was designed to construction and install the related equipment based on seismic category I. The objective of this study is to review the design criteria and analysis the safety function of safety class electric building for fuel test loop, and this results will become guidance for the irradiation testing in future. (author). 10 refs., 6 tabs., 30 figs.

  13. Meeting up-to-date safety requirements in the Russian NPP projects

    Tepkyan, G. O.; Yashkin, A. V.

    2014-01-01

    Safety features in Russian NPP designs are implemented by the combination of active and passive safety systems • Russian NPP designs are in compliance with up-to-date international and European safety requirements and refer to Generation III+ • Russian state-of-the-art designs have already implemented some design solutions, which take into account “post-Fukushima” requirements. Russian NPP design principles have been approved during the European discussions in spring 2012, including the IAEA extraordinary session addressed to Fukushima NPP accident

  14. Review on JMTR safety design for LEU core conversion

    Komori, Yoshihiro; Yokokawa, Makoto; Saruta, Toru; Inada, Seiji; Sakurai, Fumio; Yamamoto, Katsumune; Oyamada, Rokuro; Saito, Minoru

    1993-12-01

    Safety of the JMTR was fully reviewed for the core conversion to low enriched uranium fuel. Fundamental policies for the JMTR safety design were reconsidered based on the examination guide for safety design of test and research reactors, and safety of the JMTR was confirmed. This report describes the safety design of the JMTR from the viewpoint of major functions for reactor safety. (author)

  15. Regulatory requirements and administrative practice in safety of nuclear installations

    Servant, J.

    1977-01-01

    This paper reviews the current situation of the France regulatory rules and procedures dealing with the safety of the main nuclear facilities and, more broadly, the nuclear security. First, the author outlines the policy of the French administration which requires that the licensee responsible for an installation has to demonstrate that all possible measures are taken to ensure a sufficient level of safety, from the early stage of the project to the end of the operation of the plant. Thus, the administration performs the assessment on a case-by-case basis, of the safety of each installation before granting a nuclear license. On the other hand, the administration settles overall safety requirements for specific categories of installations or components, which determine the ultimate safety performances, but avoid, as far as possible, to detail the technical specifications to be applied in order to comply with these goals. This approach, which allows the designers and the licensees to rely upon sound codes and standards, gains the advantage of a great flexibility without imparing the nuclear safety. The author outlines the licensing progress for the main categories of installations: nuclear power plants of the PWR type, fast breeders, uranium isotope separation plants, and irradiated fuel processing plants. Emphasis is placed on the most noteworthy points: standardization of projects, specific risks of each site, problems of advanced type reactors, etc... The development of the technical regulations is presented with emphasis on the importance of an internationally concerned action within the nuclear international community. The second part of this paper describes the France operating experience of nuclear installations from the safety point of view. Especially, the author examines the technical and administrative utilization of data from safety significant incidents in reactors and plants, and the results of the control performed by the nuclear installations

  16. Design aspects of safety critical instrumentation of nuclear installations

    Swaminathan, P. [Electronics Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)]. E-mail: swamy@igcar.ernet.in

    2005-07-01

    Safety critical instrumentation systems ensure safe shutdown/configuration of the nuclear installation when process status exceeds the safety threshold limits. Design requirements for safety critical instrumentation such as functional and electrical independence, fail-safe design, and architecture to ensure the specified unsafe failure rate and safe failure rate, human machine interface (HMI), etc., are explained with examples. Different fault tolerant architectures like 1/2, 2/2, 2/3 hot stand-by are compared for safety critical instrumentation. For embedded systems, software quality assurance is detailed both during design phase and O and M phase. Different software development models such as waterfall model and spiral model are explained with examples. The error distribution in embedded system is detailed. The usage of formal method is outlined to reduce the specification error. The guidelines for coding of application software are outlined. The interface problems of safety critical instrumentation with sensors, actuators, other computer systems, etc., are detailed with examples. Testability and maintainability shall be taken into account during design phase. Online diagnostics for safety critical instrumentation is detailed with examples. Salient details of design guides from Atomic Energy Regulatory Board, International Atomic Energy Agency and standards from IEEE, BIS are given towards the design of safety critical instrumentation systems. (author)

  17. Design aspects of safety critical instrumentation of nuclear installations

    Swaminathan, P.

    2005-01-01

    Safety critical instrumentation systems ensure safe shutdown/configuration of the nuclear installation when process status exceeds the safety threshold limits. Design requirements for safety critical instrumentation such as functional and electrical independence, fail-safe design, and architecture to ensure the specified unsafe failure rate and safe failure rate, human machine interface (HMI), etc., are explained with examples. Different fault tolerant architectures like 1/2, 2/2, 2/3 hot stand-by are compared for safety critical instrumentation. For embedded systems, software quality assurance is detailed both during design phase and O and M phase. Different software development models such as waterfall model and spiral model are explained with examples. The error distribution in embedded system is detailed. The usage of formal method is outlined to reduce the specification error. The guidelines for coding of application software are outlined. The interface problems of safety critical instrumentation with sensors, actuators, other computer systems, etc., are detailed with examples. Testability and maintainability shall be taken into account during design phase. Online diagnostics for safety critical instrumentation is detailed with examples. Salient details of design guides from Atomic Energy Regulatory Board, International Atomic Energy Agency and standards from IEEE, BIS are given towards the design of safety critical instrumentation systems. (author)

  18. Design requirement for electrical system of an advanced research reactor

    Jung, Hoan Sung; Kim, H. K.; Kim, Y. K.; Wu, J. S.; Ryu, J. S.

    2004-12-01

    An advanced research reactor is being designed since 2002 and the conceptual design has been completed this year for the several types of core. Also the fuel was designed for the potential cores. But the process system, the I and C system, and the electrical system design are under pre-conceptual stage. The conceptual design for those systems will be developed in the next year. Design requirements for the electrical system set up to develop conceptual design. The same goals as reactor design - enhance safety, reliability, economy, were applied for the development of the requirements. Also the experience of HANARO design and operation was based on. The design requirements for the power distribution, standby power supply, and raceway system will be used for the conceptual design of electrical system

  19. Design requirement for electrical system of an advanced research reactor

    Jung, Hoan Sung; Kim, H. K.; Kim, Y. K.; Wu, J. S.; Ryu, J. S

    2004-12-01

    An advanced research reactor is being designed since 2002 and the conceptual design has been completed this year for the several types of core. Also the fuel was designed for the potential cores. But the process system, the I and C system, and the electrical system design are under pre-conceptual stage. The conceptual design for those systems will be developed in the next year. Design requirements for the electrical system set up to develop conceptual design. The same goals as reactor design - enhance safety, reliability, economy, were applied for the development of the requirements. Also the experience of HANARO design and operation was based on. The design requirements for the power distribution, standby power supply, and raceway system will be used for the conceptual design of electrical system.

  20. Safety design philosophy of Mitsubishi PWRs

    Hakata, T.; Kitamura, T.

    1993-01-01

    The basic safety design philosophy of Mitsubishi pressurized water reactors (PWRs) is discussed and compared with the British PWR. PWR plants are designed in accordance with the Japanese regulatory guidelines which are similar to American and International Atomic Energy Agency (IAEA) safety criteria and are based on defence-in-depth principles. The high reliability of nuclear power plants is especially emphasized in Mitsubishi PWRs, and this has been demonstrated by the good operating experience of PWR plants in Japan. The safety system designs of six key items, which were discussed in the recent review of overseas designs by British utilities, are addressed to show the difference in the design philosophy between the United Kingdom and Japan. (Author)

  1. Safety culture in design. Final report

    Macchi, L.; Pietikaeinen, E.; Liinasuo, M.; Savioja, P.; Reiman, T.; Wahlstroem, M.; Kahlbom, U.; Rollenhagen, C.

    2013-04-01

    In this report we approach design from a safety culture approach As this research area is new and understudied, we take a wide scope on the issue. Different theoretical perspectives that can be taken when improving safety of the design process are considered in this report. We suggest that in the design context the concept of safety culture should be expanded from an organizational level to the level of the network of organizations involved in the design activity. The implication of approaching the design process from a safety culture perspective are discussed and the results of the empirical part of the research are presented. In the interview study in Finland and Sweden we identified challenges and opportunities in the design process from safety culture perspective. Also, a small part of the interview study concentrated on state of the art human factors engineering (HFE) practices in Finland and the results relating to that are presented. This report provide a basis for future development of systematic good design practices and for providing guidelines that can lead to safe and robust technical solutions. (Author)

  2. Safety culture in design. Final report

    Macchi, L.; Pietikaeinen, E.; Liinasuo, M.; Savioja, P.; Reiman, T.; Wahlstroem, M. [VTT Technical Research Centre of Finland, Espoo (Finland); Kahlbom, U. [Risk Pilot AB, Stockholm (Sweden); Rollenhagen, C. [Vattenfall, Stockholm, (Sweden)

    2013-04-15

    In this report we approach design from a safety culture approach As this research area is new and understudied, we take a wide scope on the issue. Different theoretical perspectives that can be taken when improving safety of the design process are considered in this report. We suggest that in the design context the concept of safety culture should be expanded from an organizational level to the level of the network of organizations involved in the design activity. The implication of approaching the design process from a safety culture perspective are discussed and the results of the empirical part of the research are presented. In the interview study in Finland and Sweden we identified challenges and opportunities in the design process from safety culture perspective. Also, a small part of the interview study concentrated on state of the art human factors engineering (HFE) practices in Finland and the results relating to that are presented. This report provide a basis for future development of systematic good design practices and for providing guidelines that can lead to safe and robust technical solutions. (Author)

  3. Requirements on the provisional safety analyses and technical comparison of safety measures

    2010-04-01

    decide on the provision of a design license for a repository site for SMA and another one for HAA, or for a common site for both SMA and HAA. The present report concerns the second step and recapitulates the assertions of SGT on the provisional safety analyses and on the safety technical comparison. It establishes the specific requirements of the Swiss Federal Nuclear Safety Inspectorate (ENSI) on provisional safety and the safety technical comparison. Further, it defines the extent and content of the safety technical documentation necessary for step 2

  4. Report of the working group 'Regulatory requirements on AM - Concept of nuclear and radiation safety during beyond-design-basis accidents'

    Bobaly, P.

    2001-01-01

    The developed working group report contains the following main paragraphs: legal basis and basis for regulatory requirements for on-site and off-site Accident Management (AM), regulatory requirements or recommendations for on-site AM and for emergency preparedness, background information concerning the implementation and review of an AM program as a basis for an AM guideline. Overview about AM/SAM implementation in member countries of the SAMINE project; measure and candidates for high level actions based upon US SAMG; interactions of severe accident research and the regulatory positions, relationship between different components of an accident management programme are also given

  5. Interaction between periodic in-service inspection requirements and design

    Prot, A.C.; Saglio, R.

    1979-03-01

    After reviewing the requirements specific of periodic In-Service Inspection related to safety problems, especially for the pressure vessels, and taking into account the experience gained with several PWR reactors, the authors show these requirements could lead to modify the primary circuit design

  6. The main requirements of the International Basic Safety Standards

    Webb, G.A.M.

    1998-01-01

    The main requirements of the new international basic safety standards are discussed, including such topics as health effects of ionizing radiations, the revision of basic safety standards, the requirements for radiation protection practices, the requirements for intervention,and the field of regulatory infrastructures. (A.K.)

  7. Safety design guide for pipe rupture protection for CANDU 9

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide for pipe rupture protection identifies high-energy systems in which pipe ruptures must be postulated to occur, as well as systems that must be protected from the dynamic effects of such ruptures. Dynamic effects considered in this SDG consist of pipe whip (including missiles generated by pipe ruptures, if any) and jet impingement, Requirements for protection against the dynamic effects of a postulated pipe rupture and method of protection of essential structures, systems and components are specified for these effects. The change status for the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 2 tabs., 5 refs. (Author) .new

  8. Site safety requirements for high level waste disposal

    Chen Weiming; Wang Ju

    2006-01-01

    This paper outlines the content, status and trend of site safety requirements of International Atomic Energy Agency, America, France, Sweden, Finland and Japan. Site safety requirements are usually represented as advantageous vis-a-vis disadvantagous conditions, and potential advantage vis-a-vis disadvantage conditions, respectively in aspects of geohydrology, geochemistry, lithology, climate and human intrusion etc. Study framework and steps of site safety requirements for China are discussed under the view of systems science. (authors)

  9. Waste Encapsulation and Storage Facility interim operational safety requirements

    Covey, L I

    2000-01-01

    The Interim Operational Safety Requirements (IOSRs) for the Waste Encapsulation and Storage Facility (WESF) define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt and inspection of cesium and strontium capsules from private irradiators; decontamination of the capsules and equipment; surveillance of the stored capsules; and maintenance activities. Controls required for public safety, significant defense-in-depth, significant worker safety, and for maintaining radiological consequences below risk evaluation guidelines (EGs) are included.

  10. Safety considerations in the design of PFBR

    Vaidyanathan, G.; Om Pal Singh; Govindarajan, S.; Chellapandi, P.; Chetal, S.C.; Shankar Singh, R.; Bhoje, S.B.

    1996-01-01

    Prototype Fast Breeder Reactor (PFBR) is a 500 MWe reactor under design in India. The overall safety approach adopted is based on the defence-in-depth principle. Design features have been incorporated to minimize occurrence of unsafe conditions. A plant protection system comprising reliable core monitoring to detect the off-normal condition, a reliable shutdown system to ensure safe shutdown and a passive decay heat removal system are provided. Containment is provided to prevent any release of radioactivity to the environment in case of failure of the protective devices. This paper provides a brief outline of the safety considerations in the design of PFBR. (author). 5 refs, 1 tab

  11. Safety-related requirements for photovoltaic modules and arrays

    Levins, A.; Smoot, A.; Wagner, R.

    1984-01-01

    Safety requirements for photovoltaic module and panel designs and configurations for residential, intermediate, and large scale applications are investigated. Concepts for safety systems, where each system is a collection of subsystems which together address the total anticipated hazard situation, are described. Descriptions of hardware, and system usefulness and viability are included. A comparison of these systems, as against the provisions of the 1984 National Electrical Code covering photovoltaic systems is made. A discussion of the Underwriters Laboratory UL investigation of the photovoltaic module evaluated to the provisions of the proposed UL standard for plat plate photovoltaic modules and panels is included. Grounding systems, their basis and nature, and the advantages and disadvantages of each are described. The meaning of frame grounding, circuit groundings, and the type of circuit ground are covered.

  12. Design review report for modifications to RMCS safety class equipment

    Corbett, J.E.

    1997-01-01

    This report documents the completion of the formal design review for modifications to the Rotary Mode Core Sampling (RMCS) safety class equipment. These modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to approve the Engineering Change Notices affecting safety class equipment used in the RMCS system. The conclusion reached by the review committee was that these changes are acceptable

  13. Design review report for modifications to RMCS safety class equipment

    Corbett, J.E.

    1997-05-30

    This report documents the completion of the formal design review for modifications to the Rotary Mode Core Sampling (RMCS) safety class equipment. These modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to approve the Engineering Change Notices affecting safety class equipment used in the RMCS system. The conclusion reached by the review committee was that these changes are acceptable.

  14. Evaluation and qualification of novel control techniques with safety requirements

    Gossner, S.; Wach, D.

    1985-01-01

    The paper discusses the questions related to the assessment and qualification of new I and C-systems. The tasks of nuclear power plant I and Cs as well as the efficiency of the new techniques are reflected. Problems with application of new I and Cs and the state of application in Germany and abroad are addressed. Starting from the essential differencies between conventional and new I and C-systems it is evaluated, if and in which way existing safety requirements can be met and to what extent new requirements need to be formulated. An overall concept has to be developed comprising the definition of graded requirement profiles for design and qualification. Associated qualification procedures and tools have to be adapted, developed and tuned upon each other. (orig./HP) [de

  15. Design for safety: theoretical framework of the safety aspect of BIM system to determine the safety index

    Ai Lin Evelyn Teo

    2016-12-01

    Full Text Available Despite the safety improvement drive that has been implemented in the construction industry in Singapore for many years, the industry continues to report the highest number of workplace fatalities, compared to other industries. The purpose of this paper is to discuss the theoretical framework of the safety aspect of a proposed BIM System to determine a Safety Index. An online questionnaire survey was conducted to ascertain the current workplace safety and health situation in the construction industry and explore how BIM can be used to improve safety performance in the industry. A safety hazard library was developed based on the main contributors to fatal accidents in the construction industry, determined from the formal records and existing literature, and a series of discussions with representatives from the Workplace Safety and Health Institute (WSH Institute in Singapore. The results from the survey suggested that the majority of the firms have implemented the necessary policies, programmes and procedures on Workplace Safety and Health (WSH practices. However, BIM is still not widely applied or explored beyond the mandatory requirement that building plans should be submitted to the authorities for approval in BIM format. This paper presents a discussion of the safety aspect of the Intelligent Productivity and Safety System (IPASS developed in the study. IPASS is an intelligent system incorporating the buildable design concept, theory on the detection, prevention and control of hazards, and the Construction Safety Audit Scoring System (ConSASS. The system is based on the premise that safety should be considered at the design stage, and BIM can be an effective tool to facilitate the efforts to enhance safety performance. IPASS allows users to analyse and monitor key aspects of the safety performance of the project before the project starts and as the project progresses.

  16. Cold vacuum drying facility design requirements

    Irwin, J.J.

    1997-09-24

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  17. Cold vacuum drying facility design requirements

    Irwin, J.J.

    1997-01-01

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility

  18. Investigation on regulatory requirements for radiation safety management

    Han, Eun Ok; Choi, Yoon Seok; Cho, Dae Hyung

    2013-01-01

    NRC recognizes that efficient management of radiation safety plan is an important factor to achieve radiation safety service. In case of Korea, the contents to perform the actual radiation safety management are legally contained in radiation safety management reports based on the Nuclear Safety Act. It is to prioritize the importance of safety regulations in each sector in accordance with the current situation of radiation and radioactive isotopes-used industry and to provide a basis for deriving safety requirements and safety regulations system maintenance by the priority of radiation safety management regulations. It would be helpful to achieve regulations to conform to reality based on international standards if consistent safety requirements is developed for domestic users, national standards and international standards on the basis of the results of questions answered by radiation safety managers, who lead on-site radiation safety management, about the priority of important factors in radioactive sources use, sales, production, moving user companies, to check whether derived configuration requirements for radiation safety management are suitable for domestic status

  19. Safety requirements for long term operation of NPPs

    Houdre, T.; Osouf, N.; Juvin, J.-C.

    2012-01-01

    In the future, the reactors operating at present will run alongside reactors of the EPR type or their equivalent, designed for a significantly higher level of safety. This raises the question of the acceptability of continued operation of reactors beyond 40 years when there is an available technology that is safer. Two objectives are therefore imperative. First, a re-evaluation of the safety level in the light of that required of EPR type reactors or their equivalent is necessary, with proposals to bring about significant and relevant improvements to the reactors. R and D work in France and elsewhere is already indicating orientations that could lead to answers, and improvements that would provide significant reductions in release in case of severe accident are being studied. Second, strict compliance of the reactors with the applicable regulations must be demonstrated. At the same time, ageing and obsolescence of the equipment will have to be managed. Where these two points are concerned, ASN expects far-reaching proposals from the licensee. With a view to a request for continued operation beyond 40 years, ASN has referred the matter to the Advisory Committee for nuclear reactors which will meet at the end of 2011 to establish the safety requirements for reactors at their fourth ten-yearly outage. (author)

  20. Key issues on safety design basis selection and safety assessment

    An, S.; Togo, Y.

    1976-01-01

    In current fast reactor design in Japan, four design accident conditions and four design seismic conditions are adopted as the design base classifications. These are classified by the considerations on both likelihood of occurrence and the severeness of the consequences. There are several major problem areas in safety design consideration such as core accident problems which include fuel sodium interaction, fuel failure propagation and residual decay heat removal, and decay heat removal systems problems which is more or less the problem of selection of appropriate system and of assurance of high reliability of the system. In view of licensing, two kinds of accidents are postulated in evaluating the adequacy of a reactor site. The one is the ''major accident'' which is the accident to give most severe radiation hazard to the public from technical point of view. The other is the ''hypothetical accident'', induced public accident of which is severer than that of major accident. While the concept of the former is rather unique to Japanese licensing, the latter is almost equivalent to design base hypothetical accident of the US practice. In this paper, design bases selections, key safety issues and some of the licensing considerations in Japan are described

  1. Prioridades de requisitos para projeto de postos de operação de tratores quanto à ergonomia e segurança Requirement priorities for the design of tractor workplaces related to ergonomics and safety

    Paula Machado dos Santos

    2008-07-01

    Full Text Available O objetivo deste trabalho foi identificar as prioridades de requisitos de projeto, de postos de operação de tratores agrícolas do mercado nacional brasileiro, conforme as normas de ergonomia e segurança. Compuseram a amostragem os tratores agrícolas de pneus de borracha novos, com bitola externa superior a 1.150 mm, sem quaisquer alterações em suas características originais por parte do fabricante ou revendedor, em comercialização em território nacional, quanto à disposição interna dos comandos de operação, aos assentos e aos acessos dos postos de operação. Como análise comparativa dos requisitos dos clientes destas máquinas e, conseqüentemente, a hierarquização dos requisitos necessários ao projeto de postos de operação, que são atendidos pelos fabricantes de tratores agrícolas, foram utilizadas as ferramentas para o desenvolvimento de projetos diagrama de Mudge e a primeira matriz do "quality function deployment", respectivamente. As marcas de tratores agrícolas nacionais apresentam a mesma prioridade quanto ao atendimento aos requisitos de projeto de ergonomia e segurança em postos de operação. O assento representa a prioridade de maior ordem, seguido dos comandos e, em última posição, os acessos.The objective of this work was to characterize the requirement priorities for workplace design of agricultural tractors of the national market, as per standards of ergonomics and safety. The patterns were composed by agricultural new tractors rubber tires, with minimum gauge of 1,150 mm, without any alterations in their original characteristics on the part of the manufacturer or reselling, in commercialization in national territory, related to the internal disposition of the operation commands, to the seats and to the accesses of the workplaces. As comparative analysis of the customer requirements for of these machines and, consequently, the hierarchization of the necessary requirements for the project of workplaces

  2. Conceptual safety design analysis of Korea advanced liquid metal reactor

    Suk, S. D.; Park, C. K.

    1999-01-01

    The national long-term R and D program, updated in 1977, requires Korea Atomic Energy Research Institute (KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 Mwe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self-consistent design meeting a set of major safety design requirements for accident prevention. Some of the current emphasis includes those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve extensive supporting R and D programs. This paper summarizes some of the results of conceptual engineering and design analyses performed for the safety of KALIMER in the area of inherent safety, passive decay heat removal, sodium water reaction, and seismic isolation. (author)

  3. IAEA safety requirements for safety assessment of fuel cycle facilities and activities

    Jones, G.

    2013-01-01

    The IAEA's Statute authorises the Agency to establish standards of safety for protection of health and minimisation of danger to life and property. In that respect, the IAEA has established a Safety Fundamentals publication which contains ten safety principles for ensuring the protection of workers, the public and the environment from the harmful effects of ionising radiation. A number of these principles require safety assessments to be carried out as a means of evaluating compliance with safety requirements for all nuclear facilities and activities and to determine the measures that need to be taken to ensure safety. The safety assessments are required to be carried out and documented by the organisation responsible for operating the facility or conducting the activity, are to be independently verified and are to be submitted to the regulatory body as part of the licensing or authorisation process. In addition to the principles of the Safety Fundamentals, the IAEA establishes requirements that must be met to ensure the protection of people and the environment and which are governed by the principles in the Safety Fundamentals. The IAEA's Safety Requirements publication 'Safety Assessment for Facilities and Activities', establishes the safety requirements that need to be fulfilled in conducting and maintaining safety assessments for the lifetime of facilities and activities, with specific attention to defence in depth and the requirement for a graded approach to the application of these safety requirements across the wide range of fuel cycle facilities and activities. Requirements for independent verification of the safety assessment that needs to be carried out by the operating organisation, including the requirement for the safety assessment to be periodically reviewed and updated are also covered. For many fuel cycle facilities and activities, environmental impact assessments and non-radiological risk assessments will be required. The

  4. Comparative Study on Research Reactor Design Requirements between IAEA and Korea

    Chang, Won Joon; Yune, Young Gill; Song, Myung Ho; Cho, Seung Ho

    2013-01-01

    This study has identified the gaps in the safety requirements for design of research reactors of Korea comparing with those of the IAEA. The review results showed that the gaps have arisen mainly from the following aspects: - The differences in the characteristics of design and operation between power reactor and research reactor - Enhancement of the level of safety of nuclear reactor facility - Consideration of advanced safety technologies. The review results will be utilized to reflect the IAEA safety requirements for design of research reactors into those of Korea, which will contribute to enhancing the level of safety and improving the technical standards of research reactors of Korea. The IAEA safety standards encompass international consensus to strengthen the nuclear safety and to reflect the latest advancement of nuclear safety technologies. Also, they provide reliable means to ensure the effective fulfillment of obligations under the various international safety conventions. Many countries have adopted the IAEA safety standards as their national standards in nuclear regulations. Since Korea has exported research reactor technologies abroad these days and will continue to export them in the future, it is desirable to harmonize domestic safety requirements for research reactor with those of the IAEA. The KINS (Korea Institute of Nuclear Safety) has performed a review of the IAEA safety requirements for design of research reactors comparing with those of Korea. The purpose of this comparative study is to harmonize the safety requirements for the design of research reactors of Korea with those of the IAEA as a member state of the IAEA, and to encompass global efforts to enhance the nuclear safety and to reflect the latest advancement of nuclear safety technologies into the safety requirements for the design of research reactors of Korea. Design requirements for structures, systems, and components of research reactors important to safety, which are required to

  5. Development of High-Level Safety Requirements for a Pyroprocessing Facility

    Seo, Seok Jun; Jo, Woo Jin; You, Gil Sung; Choung, Won Myung; Lee, Ho Hee; Kim, Hyun Min; Jeon, Hong Rae; Ku, Jeong Hoe; Lee, Hyo Jik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Korea Atomic Energy Research Institute (KAERI) has been developing a pyroproceesing technology to reduce the waste volume and recycle some elements. The pyroprocessing includes several treatment processes which are related with not only radiological and physical but also chemical and electrochemical properties. Thus, it is of importance to establish safety design requirements considering all the aspects of those properties for a reliable pyroprocessing facility. In this study, high-level requirements are presented in terms of not only radiation protection, nuclear criticality, fire protection, and seismic safety but also confinement and chemical safety for the unique characteristics of a pyroprocessing facility. Several high-level safety design requirements such as radiation protection, nuclear criticality, fire protection, seismic, confinement, and chemical processing were presented for a pyroprocessing facility. The requirements must fulfill domestic and international safety technology standards for a nuclear facility. Furthermore, additional requirements should be considered for the unique electrochemical treatments in a pyroprocessing facility.

  6. Development of design and safety analysis supporting system for casks

    Ohsono, Katsunari; Higashino, Akira; Endoh, Shuji

    1993-01-01

    Mitsubishi heavy Industries has developed a design and safety analysis supporting system 'CADDIE' (Cask Computer Aided Design, Drawing and Integrated Evaluation System), with the following objectives: (1) Enhancement of efficiency of the design and safety analysis (2) Further advancement of design quality (3) Response to the diversification of design requirements. The features of this system are as follows: (1) The analysis model data common to analyses is established, and it is prepared automatically from the model made by CAD. (2) The input data for the analysis code is available by simple operation of conversation type from the analysis model data. (3) The analysis results are drawn out in diagrams by output generator, so as to facilitate easy observation. (4) The data of material properties, fuel assembly data, etc. required for the analyses are made available as a data base. (J.P.N.)

  7. High-Speed Maglev Trains; German Safety Requirements

    1991-12-31

    This document is a translation of technology-specific safety requirements developed : for the German Transrapid Maglev technology. These requirements were developed by a : working group composed of representatives of German Federal Railways (DB), Tes...

  8. Design requirements for new nuclear reactor facilities in Canada

    Shim, S.; Ohn, M.; Harwood, C.

    2012-01-01

    The Canadian Nuclear Safety Commission (CNSC) has been establishing the regulatory framework for the efficient and effective licensing of new nuclear reactor facilities. This regulatory framework includes the documentation of the requirements for the design and safety analysis of new nuclear reactor facilities, regardless of size. For this purpose, the CNSC has published the design and safety analysis requirements in the following two sets of regulatory documents: 1. RD-337, Design of New Nuclear Power Plants and RD-310, Safety Analysis for Nuclear Power Plants; and 2. RD-367, Design of Small Reactor Facilities and RD-308, Deterministic Safety Analysis for Small Reactor Facilities. These regulatory documents have been modernized to document past practices and experience and to be consistent with national and international standards. These regulatory documents provide the requirements for the design and safety analysis at a high level presented in a hierarchical structure. These documents were developed in a technology neutral approach so that they can be applicable for a wide variety of water cooled reactor facilities. This paper highlights two particular aspects of these regulatory documents: The use of a graded approach to make the documents applicable for a wide variety of nuclear reactor facilities including nuclear power plants (NPPs) and small reactor facilities; and, Design requirements that are new and different from past Canadian practices. Finally, this paper presents some of the proposed changes in RD-337 to implement specific details of the recommendations of the CNSC Fukushima Task Force Report. Major changes were not needed as the 2008 version of RD-337 already contained requirements to address most of the lessons learned from the Fukushima event of March 2011. (author)

  9. Environmental, health, and safety by design

    Soklow, R.G.

    1999-01-01

    Solar Turbines Incorporated created a self-directed work team, the Safety and Environmental Awareness (SEA) Team that initiated a company wide effort to raise employee awareness to promote integrating responsible environmental, health, and safety practices into product design, manufacturing, and services. Environmental, health, and safety issues influence how all businesses operate around the world. Companies choose to operate in an environmentally responsible manner because it not only benefits employees and the communities where they live, it also benefits the business when superior performance results in a competitive advantage. Solar surveyed gas turbines users to identify their top environmental and safety concerns and issues. The authors asked about various environmental and safety aspects of their equipment. Results from the survey has helped engineering and design focus efforts so that future products and product improvements assist customers in meeting their regulatory obligations and social responsibilities. Air pollution has historically been one of the most important environmental issues facing customers, because pollutant emissions greatly influence equipment choices and operation flexibility. There are other environmental, health and safety issues: sustainable fire suppression choices, start systems, hazardous materials use and ability to recycle materials, package accessibility, noise and product take back issues

  10. Engineered barrier systems (EBS): design requirements and constraints

    2004-01-01

    A joint NEA-EC workshop entitled 'Engineered Barrier Systems: Design Requirements and Constraints' was organised in Turku, Finland on 26-29 August 2003 and hosted by Posiva Oy. The main objectives of the workshop were to promote interaction and collaboration among experts responsible for engineering design and safety assessment in order to develop a greater understanding of how to achieve the integration needed for the successful design of engineered barrier systems, and to clarify the role that an EBS can play in the overall safety case for a repository. These proceedings present the outcomes of this workshop. (author)

  11. The Canadian Nuclear Safety Commission's financial guarantee requirements

    Ferch, R.

    2006-01-01

    The Nuclear Safety and Control Act gives the Canadian Nuclear Safety Commission (CNSC) the legal authority to require licensees to provide financial guarantees in order to meet the purposes of the Act. CNSC policy and guidance with regard to financial guarantees is outlined, and the current status of financial guarantee requirements as applied to various CNSC licensees is described. (author)

  12. Risk allocation approach to reactor safety design and evaluation

    Gokcek, O.; Temme, M.I.; Derby, S.L.

    1978-01-01

    This paper describes a risk allocation technique used for determining nuclear power plant design reliability requirements. The concept of risk allocation-optimum choice of safety function reliabilities under a maximum risk constraint - is described. An example of risk allocation is presented to demonstrate the application of the methodology

  13. Nonfunctional requirements in systems analysis and design

    Adams, Kevin MacG

    2015-01-01

    This book will help readers gain a solid understanding of non-functional requirements inherent in systems design endeavors. It contains essential information for those who design, use, and maintain complex engineered systems, including experienced designers, teachers of design, system stakeholders, and practicing engineers. Coverage approaches non-functional requirements in a novel way by presenting a framework of four systems concerns into which the 27 major non-functional requirements fall: sustainment, design, adaptation, and viability. Within this model, the text proceeds to define each non-functional requirement, to specify how each is treated as an element of the system design process, and to develop an associated metric for their evaluation. Systems are designed to meet specific functional needs. Because non-functional requirements are not directly related to tasks that satisfy these proposed needs, designers and stakeholders often fail to recognize the importance of such attributes as availability, su...

  14. Decommissioning of Facilities. General Safety Requirements. Pt. 6

    NONE

    2014-07-15

    Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning.

  15. Decommissioning of Facilities. General Safety Requirements. Pt. 6 (Spanish Edition)

    2017-01-01

    Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning.

  16. Decommissioning of Facilities. General Safety Requirements. Pt. 6 (Russian Edition)

    2015-01-01

    Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning

  17. Safety design features of the IRIS

    2009-01-01

    The International Reactor Innovative and Secure (IRIS) is an advanced, integral, light water cooled reactor of medium generating capacity (335 MW(e)), that features an integral reactor vessel containing all the reactor primary system components, including steam generators, coolant pumps, pressurizer and heaters, and control rod drive mechanisms; in addition to the typical core, internals, control rods and neutron reflector. This integral configuration allows for the use of a small, high design pressure, spherical steel containment which results in a significant reduction in the size of the nuclear island. Other IRIS innovations include a simplified passive safety system concept and equipment features that derive from the 'safety-by-design' philosophy. This design approach allows for elimination of certain accident initiators at the design stage, or when outright elimination is not possible, decreases accident consequences and/or their probability of occurrence. Major design characteristics of the IRIS are given. As part of the IRIS pre-application licensing review by the U.S. Nuclear Regulatory Commission (NRC), the IRIS design team has developed a test plan that will provide the necessary data for safety analysis computer model verification, as well as for verifying the manufacturing feasibility, operability, and durability of new component designs

  18. Design of an Active Automotive Safety System

    Y. Wang

    2013-07-01

    Full Text Available With the development of the national economy, the people's standard of living got corresponding improvement, cars has been one of the indispensable traffic tools in many families. An active safety system is proposed, which can real-time detect the vehicle's running status and judge the security status of the vehicle. The system, which takes single-chip microcomputer as the controlling core and combines with millimeter-wave and ultrasonic distance measurement technology, can detect the distance from vehicle to vehicle and judge the security status of the vehicle. The hardware composition of the system and the data acquiring circuit are proposed, the mathematic model for different situation is established, and the controlling algorithm is completed. This system can accurately measure speed and distance between vehicles; the active safety control system can meet the relevant data measurement and transmission requirement; and can meet the functional requirement of the active safety control system

  19. Working Towards Unified Safety Design Criteria for Modular High Temperature Gas-cooled Reactor Designs

    Reitsma, Frederik; Silady, Fred; Kunitomi, Kazuhiko

    2014-01-01

    The Nuclear Power Development Section of the IAEA recently received approval for a Coordinated Research Project (CRP) to investigate and make proposals on modular High Temperature Gas-cooled Reactor (HTGR) Safety design criteria. It is expected that these criteria would consider past experience and existing safety standards in the light of modular HTGR material and design characteristics to propose safety design criteria. It will consider the deterministic and risk-informed safety design standards that apply to the wide spectrum of Off- normal events under development worldwide for existing and planned HTGRs. The CRP would also take into account lessons from the Fukushima Daiichi accident, clarifying the safety approach and safety evaluation criteria for design and beyond design basis events, including those events that can affect multiple reactor modules and/or are dependent on the application proximate to the plant site. (e. g., industrial process steam/heat). The logical flow of criteria is from the fundamental inherent safety characteristics of modular HTGRs and associated expected performance characteristics, to the safety functions required to ensure those characteristics during the wide spectrum of Off-normal events, and finally to specific criteria related to those functions. This is detailed in the paper with specific examples included of how it may be applied. The results of the CRP will be made available to the member states and HTGR community. (author)

  20. Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems

    Lutz, Robyn R.

    1993-01-01

    This paper analyzes the root causes of safety-related software errors in safety-critical, embedded systems. The results show that software errors identified as potentially hazardous to the system tend to be produced by different error mechanisms than non- safety-related software errors. Safety-related software errors are shown to arise most commonly from (1) discrepancies between the documented requirements specifications and the requirements needed for correct functioning of the system and (2) misunderstandings of the software's interface with the rest of the system. The paper uses these results to identify methods by which requirements errors can be prevented. The goal is to reduce safety-related software errors and to enhance the safety of complex, embedded systems.

  1. Research reactors: design, safety requirements and applications

    Hassan, Abobaker Mohammed Rahmtalla

    2014-09-01

    There are two types of reactors: research reactors or power reactors. The difference between the research reactor and energy reactor is that the research reactor has working temperature and fuel less than the power reactor. The research reactors cooling uses light or heavy water and also research reactors need reflector of graphite or beryllium to reduce the loss of neutrons from the reactor core. Research reactors are used for research training as well as testing of materials and the production of radioisotopes for medical uses and for industrial application. The difference is also that the research reactor smaller in terms of capacity than that of power plant. Research reactors produce radioactive isotopes are not used for energy production, the power plant generates electrical energy. In the world there are more than 284 reactor research in 56 countries, operates as source of neutron for scientific research. Among the incidents related to nuclear reactors leak radiation partial reactor which took place in three mile island nuclear near pennsylvania in 1979, due to result of the loss of control of the fission reaction, which led to the explosion emitting hug amounts of radiation. However, there was control of radiation inside the building, and so no occurred then, another accident that lead to radiation leakage similar in nuclear power plant Chernobyl in Russia in 1986, has led to deaths of 4000 people and exposing hundreds of thousands to radiation, and can continue to be effect of harmful radiation to affect future generations. (author)

  2. Operating safety requirements for the intermediate level liquid waste system

    1980-07-01

    The operation of the Intermediate Level Liquid Waste (ILW) System, which is described in the Final Safety Analysis, consists of two types of operations, namely: (1) the operation of a tank farm which involves the storage and transportation through pipelines of various radioactive liquids; and (2) concentration of the radioactive liquids by evaporation including rejection of the decontaminated condensate to the Waste Treatment Plant and retention of the concentrate. The following safety requirements in regard to these operations are presented: safety limits and limiting control settings; limiting conditions for operation; and surveillance requirements. Staffing requirements, reporting requirements, and steps to be taken in the event of an abnormal occurrence are also described

  3. Nuclear safety requirements for operation licensing of Egyptian research reactors

    Ahmed, E.E.M.; Rahman, F.A.

    2000-01-01

    From the view of responsibility for health and nuclear safety, this work creates a framework for the application of nuclear regulatory rules to ensure safe operation for the sake of obtaining or maintaining operation licensing for nuclear research reactors. It has been performed according to the recommendations of the IAEA for research reactor safety regulations which clearly states that the scope of the application should include all research reactors being designed, constructed, commissioned, operated, modified or decommissioned. From that concept, the present work establishes a model structure and a computer logic program for a regulatory licensing system (RLS code). It applies both the regulatory inspection and enforcement regulatory rules on the different licensing process stages. The present established RLS code is then applied to the Egyptian Research Reactors, namely; the first ET-RR-1, which was constructed and still operating since 1961, and the second MPR research reactor (ET-RR-2) which is now in the preliminary operation stage. The results showed that for the ET-RR-1 reactor, all operational activities, including maintenance, in-service inspection, renewal, modification and experiments should meet the appropriate regulatory compliance action program. Also, the results showed that for the new MPR research reactor (ET-RR-2), all commissioning and operational stages should also meet the regulatory inspection and enforcement action program of the operational licensing safety requirements. (author)

  4. Evaluation of safety, an unavoidable requirement in the applications of ionizing radiations

    Jova Sed, Luis Andres

    2013-01-01

    The safety assessments should be conducted as a means to evaluate compliance with safety requirements (and thus the application of fundamental safety principles) for all facilities and activities in order to determine the measures to be taken to ensure safety. It is an essential tool in decision making. For long time we have linked the safety assessment to nuclear facilities and not to all practices involving the use of ionizing radiation in daily life. However, the main purpose of the safety assessment is to determine if it has reached an appropriate level of safety for an installation or activity and if it has fulfilled the objectives of safety and basic safety criteria set by the designer, operating organization and the regulatory body under the protection and safety requirements set out in the International Basic safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. This paper presents some criteria and personal experiences with the new international recommendations on this subject and its practical application in the region and demonstrates the importance of this requirement. Reflects the need to train personnel of the operator and the regulatory body in the proportional application of this requirement in practice with ionizing radiation

  5. Safety of research reactors (Design and Operation)

    Dirar, H. M.

    2012-06-01

    The primary objective of this thesis is to conduct a comprehensive up-to-date literature review on the current status of safety of research reactor both in design and operation providing the future trends in safety of research reactors. Data and technical information of variety selected historical research reactors were thoroughly reviewed and evaluated, furthermore illustrations of the material of fuel, control rods, shielding, moderators and coolants used were discussed. Insight study of some historical research reactors was carried with considering sample cases such as Chicago Pile-1, F-1 reactor, Chalk River Laboratories,. The National Research Experimental Reactor and others. The current status of research reactors and their geographical distribution, reactor category and utilization is also covered. Examples of some recent advanced reactors were studied like safety barriers of HANARO of Korea including safety doors of the hall and building entrance and finger print identification which prevent the reactor from sabotage. On the basis of the results of this research, it is apparent that a high quality of safety of nuclear reactors can be attained by achieving enough robust construction, designing components of high levels of efficiency, replacing the compounds of the reactor in order to avoid corrosion and degradation with age, coupled with experienced scientists and technical staffs to operate nuclear research facilities.(Author)

  6. Operational and safety requirement of radiation facility

    Zulkafli Ghazali

    2007-01-01

    Gamma and electron irradiation facilities are the most common industrial sources of ionizing radiation. They have been used for medical, industrial and research purposes since the 1950s. Currently there are more than 160 gamma irradiation facilities and over 600 electron beam facilities in operation worldwide. These facilities are either used for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, or the eradication of insect infestation. Irradiation with electron beam, gamma ray or ultra violet light can also destroy complex organic contaminants in both liquid and gaseous waste. EB systems are replacing traditional chemical sterilization methods in the medical supply industry. The ultra-violet curing facility, however, has found more industrial application in printing and furniture industries. Gamma and electron beam facilities produce very high dose rates during irradiation, and thus there is a potential of accidental exposure in the irradiation chamber which can be lethal within minutes. Although, the safety record of this industry has been relatively very good, there have been fatalities recorded in Italy (1975), Norway (1982), El Salvador (1989) and Israel (1990). Precautions against uncontrolled entry into irradiation chamber must therefore be taken. This is especially so in the case of gamma irradiation facilities those contain large amounts of radioactivity. If the mechanism for retracting the source is damaged, the source may remain exposed. This paper will, to certain extent, describe safety procedure and system being installed at ALURTRON, Nuclear Malaysia to eliminate accidental exposure of electron beam irradiation. (author)

  7. DART - for design basis justification and safety related information management

    Billington, A.; Blondiaux, P.; Boucau, J.; Cantineau, B.; Doumont, C.; Mared, A.

    2000-01-01

    DART is the acronym for Design Analysis Re-engineering Tool. It embodies a systematic and integrated approach to NPP safety re-assessment and configuration management, that makes use of Reverse Failure Mode and Effect Analysis in conjunction with a state-of-the-art relational database and a standardized data format, to permit long-term management of plant safety related information. The plant design is reviewed in a step-by-step logical fashion by constructing fault trees that identify the link between undesired consequences and their causes. Each failure cause identified in a fault tree is addressed by defining functional requirements, which are in turn addressed by documenting the specific manner in which the plant complies with the requirement. The database can be used to generate up-to-date plant safety related documents, including: SAR, Systems Descriptions, Technical Specifications and plant procedures. The approach is open-minded by nature and therefore is not regulatory driven, however the plant licensing basis will also be reviewed and documented within the same database such that a Regulatory Conformance Program may be integrated with the other safety documentation. This methodology can thus reconstitute the plant design bases in a comprehensive and systematic way, while allowing to uncover weaknesses in design. The original feature of the DART methodology is that it links all the safety related documents together, facilitating the evaluation of the safety impact resulting from any plant modification. Due to its capability to retrieve the basic justifications of the plant design, it is also a useful tool for training the young generation of plant personnel. The DART methodology has been developed for application to units 2, 3 and 4 at Vattenfall's Ringhals site in Sweden. It may be applied to any nuclear power plant or industrial facility where public safety is a concern. (author)

  8. DART - for design basis justification and safety related information management

    Billington, A.; Blondiaux, B.; Boucau, J.; Cantineau, B.; Mared, A.

    2001-01-01

    DART is the acronym for Design Analysis Re-Engineering Tool. It embodies a systematic and integrated approach to NPP safety re-assessment and configuration management, that makes use of Reverse Failure Mode and Effect Analysis in conjunction with a state-of-the-art relational database and a standardized data format, to permit long-term management of plant safety related information. The plant design is reviewed in a step-by-step logical fashion by constructing fault trees that identify the link between undesired consequences and their causes. Each failure cause identified in a fault tree is addressed by defining functional requirements, which are in turn addressed by documenting the specific manner in which the plant complies with the requirement. The database can then be used to generate up-to-date plant safety related documents, including: SAR, Systems Descriptions, Technical Specifications and plant procedures. The approach is open-minded by nature and therefore is not regulatory driven, however the plant licensing basis will also be reviewed and documented within the same database such that a Regulatory Conformance Program may be integrated with the other safety documentation. This methodology can thus reconstitute the plant design bases in a comprehensive and systematic way, while allowing to uncover weaknesses in design. The original feature of the DART methodology is that it links all the safety related documents together, facilitating the evaluation of the safety impact resulting from any plant modification. Due to its capability to retrieve the basic justifications of the plant design, it is also a useful tool for training the young generation of plant personnel. The DART methodology has been developed for application to units 2, 3 and 4 at Vattenfall's Ringhals site in Sweden. It may be applied to any nuclear power plant or industrial facility where public safety is a concern. (author)

  9. Romania - NPP PLiM Between Regulatory Requirement / Oversight and Operator Safety / Financial Interest

    Goicea, Lucian

    2012-01-01

    Cernavoda Unit 1 PLiM started in the first third of its design life, to develop as regulatory requirements of the components of standards and programmes and to benefit by earlier implementation of the measures for achieving maximum operating life. CNCAN regulatory present approach on the utility PLiM combines the regulatory requirements on management system, ageing management provisions of periodic safety review, detailed technical requirements of ageing programmes and different techniques focusing only on safety issues. (author)

  10. Radiation safety requirements for radionuclide laboratories

    2000-01-01

    The guide lays down the requirements for laboratories and storage rooms in which radioactive substances are used or stored as unsealed sources. In addition, some general instructions concerning work in radionuclide laboratories are set out

  11. Radiation safety requirements for radionuclide laboratories

    NONE

    2000-07-01

    The guide lays down the requirements for laboratories and storage rooms in which radioactive substances are used or stored as unsealed sources. In addition, some general instructions concerning work in radionuclide laboratories are set out.

  12. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements (French Edition)

    2016-01-01

    This publication describes the requirements to be met to ensure the safe operation of nuclear power plants. It takes into account developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  13. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements

    2016-01-01

    This publication describes the requirements to be met to ensure the safe operation of nuclear power plants. It takes into account developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication

  14. AP1000 Containment Design and Safety Assessment

    Wright, Richard F.; Ofstun, Richard P.; Bachere, Sebastien

    2002-01-01

    The AP1000 is an up-rated version of the AP600 passive plant design that recently received final design certification from the US NRC. Like AP600, the AP1000 is a two-loop, pressurized water reactor featuring passive core cooling and passive containment safety systems. One key safety feature of the AP1000 is the passive containment cooling system which maintains containment integrity in the event of a design basis accident. This system utilizes a high strength, steel containment vessel inside a concrete shield building. In the event of a pipe break inside containment, a high pressure signal actuates valves which allow water to drain from a storage tank atop the shield building. Water is applied to the top of the containment shell, and evaporates, thereby removing heat. An air flow path is formed between the shield building and the containment to aid in the evaporation and is exhausted through a chimney at the top of the shield building. Extensive testing and analysis of this system was performed as part of the AP600 design certification process. The AP1000 containment has been designed to provide increased safety margin despite the increased reactor power. The containment volume was increased to accommodate the larger steam generators, and to provide increased margin for containment pressure response to design basis events. The containment design pressure was increased from AP600 by increasing the shell thickness and by utilizing high strength steel. The passive containment cooling system water capacity has been increased and the water application rate has been scaled to the higher decay heat level. The net result is higher margins to the containment design pressure limit than were calculated for AP600 for all design basis events. (authors)

  15. Safety design analyses of Korea Advanced Liquid Metal Reactor

    Suk, S.D.; Park, C.K.

    2000-01-01

    The national long-term R and D program updated in 1997 requires Korea Atomic Energy Research Institute (KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self consistent design meeting a set of the major safety design requirements for accident prevention. Some of current emphasis include those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve supporting R and D programs of substance. This paper summarizes some of the results of engineering and design analyses performed for the safety of KALIMER. (author)

  16. Current trends in codal requirements for safety in operation of nuclear power plants

    Srivasista, K.; Shah, Y.K.; Gupta, S.K.

    2006-01-01

    The Code of practice on safety in nuclear power plant operation states the requirements to be met during operation of a nuclear power plant for assuring safety. Among various stages of authorization, regulatory body issues authorization for operation of a nuclear power plant, monitors and enforces regulatory requirements. The responsible organization shall have overall responsibility and the plant management shall have the primary responsibility for ensuring safe and efficient operation of its nuclear power plants. A set of codal requirements covering technical and administrative aspects are mandatory for the plant management to implement to ensure that the nuclear power plant is operated in accordance with the design intent. Requirements on operating procedures and instructions establish operation and maintenance, inspection and testing of the plant in a planned and systematic way. The requirements on emergency preparedness programme establish with a reasonable assurance that, in the event of an emergency situation, appropriate measures can be taken to mitigate the consequences. Commissioning requirements verify performance criteria during commissioning to ensure that the design intent and QA requirements are met. Several modifications in systems important to safety required during operation of a nuclear power plant are regulated. However new operational codal requirements arising out of periodic safety review, operational experience feedback, life management, probabilistic safety assessment, physical security, safety convention and obligations and decommissioning are not covered in the present code of practice for safety in nuclear power plant operation. Codal provisions on 'Review by operating organization on aspects of design having implications on operability' are also required to be addressed. The merits in developing such a methodology include acceptance of the design by operating organization, ensuring maintainability, proper layout etc. in the new designs

  17. Requirement and prospect of nuclear data activities for nuclear safety

    Kimura, Itsuro

    2000-01-01

    Owing to continuous efforts by the members of JNDC (Japanese Nuclear Data Committee) and Nuclear Data Center in JAERI (Japan Atomic Energy Research Institute), several superb evaluated nuclear data files, such as JENDL, FP (fission product) yields and decay heat, have been compiled in Japan and opened to the world. However, they are seldom adopted in safety design and safety evaluation of light water reactors and are hardly found in related safety regulatory guidelines and standards except the decay heat. In this report, shown are a few examples of presently used nuclear data in the safety design and the safety evaluation of PWRs (pressurized water reactors) and so forth. And then, several procedures are recommended in order to enhance more utilization of Japanese evaluated nuclear data files for nuclear safety. (author)

  18. OSHA safety requirements for hazardous chemicals in the workplace.

    Dohms, J

    1992-01-01

    This article outlines the Occupational Safety and Health Administration (OSHA) requirements set forth by the Hazard Communication Standard, which has been in effect for the healthcare industry since 1987. Administrators who have not taken concrete steps to address employee health and safety issues relating to hazardous chemicals are encouraged to do so to avoid the potential of large fines for cited violations. While some states administer their own occupational safety and health programs, they must adopt standards and enforce requirements that are at least as effective as federal requirements.

  19. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    KRAHN, D.E.

    2000-01-01

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt of multi-canister overpacks (MCOs) containing spent nuclear fuel. removal of free water from the MCOs using the cold vacuum drying process, and inerting and testing of the MCOs before transport to the Canister Storage Building. Controls required for public safety, significant defense in depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included

  20. Test design requirements: Thermal conductivity probe testing

    Heath, R.E.

    1985-01-01

    This document establishes the test design requirements for development of a thermal conductivity probe test. The thermal conductivity probe determines in situ thermal conductivity using a line source transient heat conduction analysis. This document presents the rationale for thermal conductivity measurement using a thermal conductivity probe. A general test description is included. Support requirements along with design constraints are detailed to allow simple design of the thermal conductivity probe and test. The schedule and delivery requirements of the responsible test designer are also included. 7 refs., 1 fig

  1. 41 CFR 128-1.8006 - Seismic Safety Program requirements.

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Seismic Safety Program requirements. 128-1.8006 Section 128-1.8006 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF JUSTICE 1-INTRODUCTION 1.80-Seismic Safety Program...

  2. Safety assessment requirements for onsite transfers of radioactive material

    Opperman, E.K.; Jackson, E.J.; Eggers, A.G.

    1992-05-01

    This document contains the requirements for developing a safety assessment document for an onsite package containing radioactive material. It also provides format and content guidance to establish uniformity in the safety assessment documentation and to ensure completeness of the information provided

  3. Different design approaches to structural fire safety

    Giuliani, Luisa; Budny, I.

    2013-01-01

    -priori evaluate which design is the safest or the most economical one: a punctual analysis of the different aspects and a comparison of the resulting designs is therefore of interest and is presented in this paper with reference to the case study considered.The third approach refers instead to a performance......-based fire design of the structure(PBFD), where safety goals are explicitly defined and a deeper knowledge of the structural response to fire effects can be achieved, for example with the avail of finite element analyses (FEA). On the other hand, designers can’t follow established procedures when undertaking...... such advanced investigations, which are generally quite complex ones, due to the presence of material degradation and large displacements induced by fire, as well as the possible triggering of local mechanism in the system. An example of advanced investigations for fire design is given in the paper...

  4. Safety and design impact of hurricane Andrew

    Guey, Ching N.

    2004-01-01

    Turkey Point completed the IPE in June of 1991. Hurricane Andrew landed at Turkey Point on August 24, 1992. Although the safety related systems, components and structures were not damaged by the Hurricane Andrew, certain nonsafety related components and the neighboring fossil plant sustained noticeable damage. Among the major components that were nonsafety related but would affect the PRA of the plant included the service water pumps and the high tower. This paper discusses the safety and design impact of Hurricane Andrew on Turkey Point Nuclear Power Plant. The risk of hurricanes on the interim and evolving plant configurations are briefly described. The risk of the plant from internal events as a result of damage incurred during Hurricane Andrew are discussed. The design change as the result of Hurricane Andrew and its impact on the PRA are presented. (author)

  5. Safety assessment in plant layout design using indexing approach: Implementing inherent safety perspective

    Tugnoli, Alessandro; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio

    2008-01-01

    The design of layout plans requires adequate assessment tools for the quantification of safety performance. The general focus of the present work is to introduce an inherent safety perspective at different points of the layout design process. In particular, index approaches for safety assessment and decision-making in the early stages of layout design are developed and discussed in this two-part contribution. Part 1 (accompanying paper) of the current work presents an integrated index approach for safety assessment of early plant layout. In the present paper (Part 2), an index for evaluation of the hazard related to the potential of domino effects is developed. The index considers the actual consequences of possible escalation scenarios and scores or ranks the subsequent accident propagation potential. The effects of inherent and passive protection measures are also assessed. The result is a rapid quantification of domino hazard potential that can provide substantial support for choices in the early stages of layout design. Additionally, a case study concerning selection among various layout options is presented and analyzed. The case study demonstrates the use and applicability of the indices developed in both parts of the current work and highlights the value of introducing inherent safety features early in layout design

  6. Design of marine structures with improved safety for environment

    Klanac, Alan; Varsta, Petri

    2011-01-01

    The paper describes a method for design of marine structures with increased safety for environment, considering also the required investment costs as well as the aspects of risk distribution onto the maritime stakeholders. Practically, the paper seeks to answer what is the optimal amount that should be invested into certain safety measure for any given vessel. Due to the uneven distribution of risk, as well as the differing impact of costs emerging from safety improvements, stakeholders experience conflicting ranking of alternatives. To solve this multi-stakeholder decision-making problem, in which each stakeholder is a decision-maker, the method applies concepts of group decision-making theory, namely the Game Theory. The method fosters axiomatic definition of the optimum solution, arguing that the solution, or the final selected design, should satisfy the non-dominance, efficiency, and fairness. These three are thoroughly discussed in terms of structural design, especially the latter. Considering the coupling of environmental risk and structural design, the method also builds on the preference structure of four maritime stakeholders: yards, owners, oil receivers and the public, who either share the risks or directly influence structural design. Method is presented on a practical study of structural design of a tanker with a crashworthy side structure that is capable of reducing the risk of collision. The outcome of this study outlines a number of possibilities for successful improvement of tanker safety that can benefit, concurrently, all maritime stakeholders.

  7. Safety issues relating to the design of fusion power facilities

    Stasko, R.R.; Wong, K.Y.; Russell, S.B.

    1986-06-01

    In order to make fusion power a viable future source of energy, it will be necessary to ensure that the cost of power for fusion electric generation is competitive with advanced fission concepts. In addition, fusion power will have to live up to its original promise of being a more radiologically benign technology than fission, and be able to demonstrate excellent operational safety performance. These two requirements are interrelated, since the selection of an appropriate safety philosophy early in the design phase could greatly reduce or eliminate the capital costs of elaborate safety related and protective sytems. This paper will briefly overview a few of the key safety issues presently recognized as critical to the ultimate achievement of licensable, environmentally safe and socially acceptable fusion power facilities. 12 refs

  8. Guide for reviewing safety analysis reports for packaging: Review of quality assurance requirements

    Moon, D.W.

    1988-10-01

    This review section describes quality assurance requirements applying to design, purchase, fabrication, handling, shipping, storing, cleaning, assembly, inspection, testing, operation, maintenance, repair, and modification of components of packaging which are important to safety. The design effort, operation's plans, and quality assurance requirements should be integrated to achieve a system in which the independent QA program is not overly stringent and the application of QA requirements is commensurate with safety significance. The reviewer must verify that the applicant's QA section in the SARP contains package-specific QA information required by DOE Orders and federal regulations that demonstrate compliance. 8 refs

  9. New requirements on safety of nuclear power plants according to the IAEA safety standards

    Misak, J.

    2005-01-01

    In this presentation author presents new requirements on safety of nuclear power plants according to the IAEA safety standards. It is concluded that: - New set of IAEA Safety Standards is close to completion: around 40 standards for NPPs; - Different interpretation of IAEA Safety Standards at present: best world practices instead of previous 'minimum common denominator'; - A number of safety improvements required for NPPs; - Requirements related to BDBAs and severe accidents are the most demanding due to degradation of barriers: hardware modifications and accident management; - Large variety between countries in implementation of accident management programmes: from minimum to major hardware modifications; -Distinction between existing and new NPPs is essential from the point of view of the requirements; WWER 440 reactors have potential to reflect IAEA Safety Standards for existing NPPs; relatively low reactor power offers broader possibilities

  10. Fuel Supply Shutdown Facility Interim Operational Safety Requirements

    BENECKE, M.W.

    2000-01-01

    The Interim Operational Safety Requirements for the Fuel Supply Shutdown (FSS) Facility define acceptable conditions, safe boundaries, bases thereof, and management of administrative controls to ensure safe operation of the facility

  11. Requirements of radiation protection and safety for nuclear medicine services

    1989-01-01

    The requirements of radiation protection and safety for nuclear medicine services are established. The norms is applied to activities related to the radiopharmaceuticals for therapeutics and 'in vivo' diagnostics purposes. (M.C.K.) [pt

  12. Understand the Design Requirement in Companies

    Li, Xuemeng; Ahmed-Kristensen, Saeema

    2015-01-01

    requirements can lead to inappropriate products (Hall, et al., 2002). Understanding the nature of design requirements and the sources, from where they can or should be generated, is critical to before developing methods and processes to support this process. Requirement Engineering research, originated from...

  13. Integrating Safeguards and Security with Safety into Design

    Bean, Robert S.; Hockert, John W.; Hebditch, David J.

    2009-01-01

    There is a need to minimize security risks, proliferation hazards, and safety risks in the design of new nuclear facilities in a global environment of nuclear power expansion, while improving the synergy of major design features and raising operational efficiency. In 2008, the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) launched the Next Generation Safeguards Initiative (NGSI) covering many safeguards areas. One of these, launched by NNSA with support of the DOE Office of Nuclear Energy, was a multi-laboratory project, led by the Idaho National Laboratory (INL), to develop safeguards by design. The proposed Safeguards-by-Design (SBD) process has been developed as a structured approach to ensure the timely, efficient, and cost effective integration of international safeguards and other nonproliferation barriers with national material control and accountability, physical security, and safety objectives into the overall design process for the nuclear facility lifecycle. A graded, iterative process was developed to integrate these areas throughout the project phases. It identified activities, deliverables, interfaces, and hold points covering both domestic regulatory requirements and international safeguards using the DOE regulatory environment as exemplar to provide a framework and guidance for project management and integration of safety with security during design. Further work, reported in this paper, created a generalized SBD process which could also be employed within the licensed nuclear industry and internationally for design of new facilities. Several tools for integrating safeguards, safety, and security into design are discussed here. SBD appears complementary to the EFCOG TROSSI process for security and safety integration created in 2006, which focuses on standardized upgrades to enable existing DOE facilities to meet a more severe design basis threat. A collaborative approach is suggested.

  14. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements (Arabic Edition)

    2017-01-01

    This publication is a revision of IAEA Safety Standards Series No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe commissioning, operation, and transition from operation to decommissioning of nuclear power plants. Over recent years there have been developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis review and risk informed decision making processes. It became necessary to revise the IAEA’s Safety Requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications, initiated in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan, revealed no significant areas of weakness but resulted in a small set of amendments to strengthen the requirements and facilitate their implementation. These are contained in the present publication.

  15. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements

    2017-01-01

    This publication is a revision of IAEA Safety Standards Series No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe commissioning, operation, and transition from operation to decommissioning of nuclear power plants. Over recent years there have been developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis review and risk informed decision making processes. It became necessary to revise the IAEA’s Safety Requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications, initiated in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan, revealed no significant areas of weakness but resulted in a small set of amendments to strengthen the requirements and facilitate their implementation. These are contained in the present publication.

  16. Requirements to be met by a safety philosophy

    Hahn, L.

    1990-01-01

    The author's assessment of the use of safety philosophies is that, since 'safety philosophers' still are not certain whether a safety philosophy ought to be applicable to just one, particular technology, or rather to a variety of different technologies, there is reason to state that the required ethical, philosophical and political foundations to build a safety philosophy on are still missing. And this, the author presumes, is one of the reasons why our society to a far extent is incapable of acting, faced not only with the nuclear issue, but also with the present and future ecological challenge. (orig./DG) [de

  17. Design requirement on KALIMER blanket fuel assembly duct

    Hwang, Woan; Kang, H. Y.; Nam, C.; Kim, J. O.

    1998-03-01

    This document describes design requirements which are needed for designing the blanket fuel assembly duct of the KALIMER as design guidance. The blanket fuel assembly duct of the KALIMER consists of fuel rods, mounting rail, nosepiece, duct with pad, handling socket with pad. Blanket fuel rod consists of top end plug, bottom end plug with solid ferritic-martensitic steel rod and key way blanket fuel slug, cladding, and wire wrap. In the assembly, the rods are in a triangular pitch array, and the rod bundle is attached to the nosepiece with mounting rails. The bottom end of the assembly duct is formed by a long nosepiece which provides the lower restraint function and the paths for coolant inlet. This report contains functional requirements, performance and operational requirements, interfacing systems requirements, core restraint and interface requirements, design limits and strength requirements, system configuration and essential feature requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. (author). 20 refs., 4 figs

  18. Criticality safety and facility design considerations

    Waltz, W.R.

    1991-06-01

    Operations with fissile material introduce the risk of a criticality accident that may be lethal to nearby personnel. In addition, concerns over criticality safety can result in substantial delays and shutdown of facility operations. For these reasons, it is clear that the prevention of a nuclear criticality accident should play a major role in the design of a nuclear facility. The emphasis of this report will be placed on engineering design considerations in the prevention of criticality. The discussion will not include other important aspects, such as the physics of calculating limits nor criticality alarm systems

  19. Safety in the ARIES Tokamak Design Study

    Herring, J.S.; Wong, C.P.-C.; Cheng, E.T.; Grotz, S.

    1989-01-01

    Safety is one of the primary goals of the ARIES Tokamak Design Study. Public safety goals are the achievement passive safety which is demonstrable in tests that could precede operation and the assurance that releases from accidents be passively limited such that no evacuation plan in necessary. Strategies for safety of the plant investment are factory fabrication, short construction times and a design such that no off-normal operational transient results in damage which could not be repaired in routine maintenance. ARIES-I, the first of three 'visions' of potential tokamak reactors, will use He at 5 MPa as a blanket coolant and SiC/composite ceramic for the first wall and blanket materials. Both the coolant and the structural material were chosen for their low activation, both in the short term after accidents and for long term waste management. The breeder, Li 4 SiO 4 , was also chosen for low activation. Contemporary plasma physics and aggressive technology are used in ARIES-I, which results in very high toroidal fields (24 T maximum at the coil). The stored TF energy will be about 130 GJ. A central concern is the safe discharge of this stored energy under electrical fault conditions and prevention of a failure in the magnet set from propagating into systems containing radioactive inventories. The TF coil system consists of 16 coils, each containing two separate windings powered by two independent power supplies. Arcs and shorts between the two power supply systems and across individual windings have been modeled. In addition, delay or failure in circuit breaker opening has been modeled. The safety impacts of LOCA, LOFA and disruptive events have also been evaluated. 8 refs., 4 figs., 7 tabs

  20. Design and qualification of HPD based designs for safety systems

    Sharma, Mukesh Kr.; Chavan, Madhavi A.; Sawhney, Pratibha A.; Mohanty, Ashutos; John, Ajith K.; Ganesh, G.

    2014-01-01

    Field Programmable Gate Arrays (FPGA) and Complex Programmable Logic Devices (CPLD) are increasingly being used in C and I system of NPPs. The function of such an integrated circuit is not defined by the supplier of the physical component or micro-electronic technology but by the C and I designer. The hardware subsystems implemented in these devices typically use Hardware Description Language (HDL) like VHDL or Verilog to describe the functionality at the design entry level. These circuits are commonly known as 'HDL-Programmed Devices', (HPD). RCnD has developed a set of hardware boards to be used in next generation C and I systems. The boards have been designed based on present day technology and components. The intelligence of these boards has been implemented in HPDs (FPGA/CPLD) using VHDL. Since these boards are used in the safety and safety related systems, they have undergone a rigorous V and V process and qualification tests. This paper discusses the design attributes and qualification of these HPD based designs for nuclear class safety systems. (author)

  1. IEEE standard for design qualification of safety systems equipment used in nuclear power generating stations

    Anon.

    1980-01-01

    This standard is written to serve as a general standard for qualification of all types of safety systems equipment, mechanical and instrumentation as well as electrical. It also establishes principles and procedures to be followed in preparing specific safety systems equipment standards. Guidance for qualifying specific safety systems equipment may be found in various specific equipment qualification standards that are now available or are being prepared. It is required that safety systems equipment in nuclear power generating stations meet or exceed its performance requirements throughout its installed life. This is accomplished by a disciplined program of design qualification and quality assurance of design, production, installation, maintenance and surveillance. This standard is for the design qualification section of the program only. Design qualification is intended to demonstrate the capability of the equipment design to perform its safety function(s) over the expected range of normal, abnormal, design basis event, post design basis event, and in-service test conditions. Inherent to design qualification is the requirement for demonstration, within limitations afforded by established technical state-of-the-art, that in-service aging throughout the qualified life established for the equipment will not degrade safety systems equipment from its original design condition to the point where it cannot perform its required safety function(s), upon demand. The above requirement reflects the primary role of design qualification to provide reasonable assurance that design- and age-related common failure modes will not occur during performance of safety function(s) under postulated service conditions

  2. Analysis of effect of safety classification on DCS design in nuclear power plants

    Gou Guokai; Li Guomin; Wang Qunfeng

    2011-01-01

    By analyzing the safety classification for the systems and functions of nuclear power plants based on the general design requirements for nuclear power plants, especially the requirement of availability and reliability of I and C systems, the characteristics of modem DCS technology and I and C products currently applied in nuclear power field are interpreted. According to the requirements on the safety operation of nuclear power plants and the regulations for safety audit, the effect of different safety classifications on DCS design in nuclear power plants is analyzed, by considering the actual design process of different DCS solutions in the nuclear power plants under construction. (authors)

  3. Systems engineering requirements impacting MHTGR circulator design

    Chi, H.W.; Baccaglini, G.M.; Potter, R.C.; Shenoy, A.S.

    1988-01-01

    At the initiation of the MHTGR program, an important task involved translating the plant users' requirements into design conditions. This was particularly true in the case of the heat transport and shutdown cooling systems since these embody many components. This paper addresses the two helium circulators in these systems. An integrated approach is being used in the development of design and design documentation for the MHTGR plant. It is an organized and systematic development of plant functions and requirements, determined by top-down design, performance, and cost trade-off studies and analyses, to define the overall plant systems, subsystems, components, and human actions. These studies, that led to the identification of the major design parameters for the two circulators, are discussed in this paper. This includes the performance information, steady state and transient data, and the various interface requirements. The design of the circulators used in the MHTGR is presented. (author). 1 ref., 17 figs

  4. Analysis of regulatory requirement for beyond design basis events of SMART

    Kim, W. S.; Seol, K. W.

    2000-01-01

    To enhance the safety of SMART reactor, safety and regulatory requirements associated with beyond design basis events (beyond BDE), which were developed and applied to advanced light water reactor designs, were analyzed along with a design status of passive reactor. And, based on these requirements, their applicability on the SMART design was evaluated. In the design aspect, severe accident prevention and mitigation features, containment performance, and accident management were analyzed. The evaluation results show that the requirement related to beyond DBE such as ATWS, loss of residual heat removal during shutdown operation, station blackout, fire, inter-system LOCA, and well-known events from severe accident phenomena is applicable to the SMART design. However, comprehensive approach against beyond DBE is not yet provided in the SMART design, and then it is required to designate and analyze the beyond DBE-related features. This study is expected to contribute to efforts to improve plant safety and to establish regulatory requirements for safety review

  5. Correct safety requirements during the life cycle of heating plants; Korrekta saekerhetskrav under vaermeanlaeggningars livscykel

    Tegehall, Jan; Hedberg, Johan [Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-10-15

    The safety of old steam boilers or hot water generators is in principle based on electromechanical components which are generally easy to understand. The use of safety-PLC is a new and flexible way to design a safe system. A programmable system offers more degrees of freedom and consequently new problems may arise. As a result, new standards which use the Safety Integrity Level (SIL) concept for the level of safety have been elaborated. The goal is to define a way of working to handle requirements on safety in control systems of heat and power plants. SIL-requirements are relatively new within the domain and there is a need for guidance to be able to follow the requirements. The target of this report is the people who work with safety questions during new construction, reconstruction, or modification of furnace plants. In the work, the Pressure Equipment Directive, 97/23/EC, as well as standards which use the SIL concept have been studied. Additionally, standards for water-tube boilers have been studied. The focus has been on the safety systems (safety functions) which are used in water-tube boilers for heat and power plants; other systems, which are parts of these boilers, have not been considered. Guidance has been given for the aforementioned standards as well as safety requirements specification and risk analysis. An old hot water generator and a relatively new steam boiler have been used as case studies. The design principles and safety functions of the furnaces have been described. During the risk analysis important hazards were identified. A method for performing a risk analysis has been described and the appropriate content of a safety requirements specification has been defined. If a heat or power plant is constructed, modified, or reconstructed, a safety life cycle shall be followed. The purpose of the safety life cycle is to plan, describe, document, perform, check, test, and validate that everything is correctly done. The components of the safety

  6. Safety features of the MAPLE-X10 reactor design

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-09-01

    The MAPLE-X10 reactor is a D 2 0-reflected, H 2 0-cooled and -moderated pool-type reactor under construction at the Chalk River Nuclear Laboratories. This 10-MW reactor will produce key medical and industrial radio-isotopes such as 99 Mo, 125 I, and 192 Ir. As the prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor since standards for the licensing of new research reactors have not been developed yet by the licensing authority in Canada

  7. Request from nuclear fuel cycle and criticality safety design

    Hamasaki, Manabu; Sakashita, Kiichiro; Natsume, Toshihiro

    2005-01-01

    The quality and reliability of criticality safety design of nuclear fuel cycle systems such as fuel fabrication facilities, fuel reprocessing facilities, storage systems of various forms of nuclear materials or transportation casks have been largely dependent on the quality of criticality safety analyses using qualified criticality calculation code systems and reliable nuclear data sets. In this report, we summarize the characteristics of the nuclear fuel cycle systems and the perspective of the requirements for the nuclear data, with brief comments on the recent issue about spent fuel disposal. (author)

  8. Safety features of the MAPLE-X10 reactor design

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-01-01

    This paper reports on the MAPLE-X10 reactor D 2 O-reflected, H 2 O-cooled and -moderated pool- type reactor, under construction at the Chalk River Nuclear Laboratories. This 10-MW will produce key medical and industrial radioisotopes such as 99 Mo, 125 I, and 192 Ir. The prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor as standards for the licensing of new research reactors have not been developed by the licensing authority in Canada

  9. Supplemental design requirements document, Project W026

    Weidert, J.R.

    1993-01-01

    This document supplements and extends the Functional Design Criteria, SP-W026-FDC-001, for the Waste Receiving and Processing Facility (WRAP), Module 1. It provides additional detailed requirements, summarizes key Westinghouse Hanford Company design guidance, and establishes baseline technical agreements to be used in definitive design of the WRAP-1 facility. Revision 3 of the Supplemental Design Requirements Document has been assigned an Impact Level of 3ESQ based on the content of the entire revision. The actual changes made from Revision 2 have an Impact Level of 3S and the basis for these changes was previously reviewed and approved per WHC correspondence No. 9355770

  10. Laser safety in design of near-infrared scanning LIDARs

    Zhu, X.; Elgin, D.

    2015-05-01

    3D LIDARs (Light Detection and Ranging) with 1.5μm nanosecond pulse lasers have been increasingly used in different applications. The main reason for their popularity is that these LIDARs have high performance while at the same time can be made eye-safe. Because the laser hazard effect on eyes or skin at this wavelength region (industrial mining applications. We have incorporated the laser safety requirements in the LIDAR design and conducted laser safety analysis for different operational scenarios. While 1.5μm is normally said to be the eye-safe wavelength, in reality a high performance 3D LIDAR needs high pulse energy, small beam size and high pulse repetition frequency (PRF) to achieve long range, high resolution and high density images. The resulting radiant exposure of its stationary beam could be many times higher than the limit for a Class 1 laser device. Without carefully choosing laser and scanning parameters, including field-of-view, scan speed and pattern, a scanning LIDAR can't be eye- or skin-safe based only on its wavelength. This paper discusses the laser safety considerations in the design of eye-safe scanning LIDARs, including laser pulse energy, PRF, beam size and scanning parameters in two basic designs of scanning mechanisms, i.e. galvanometer based scanner and Risley prism based scanner. The laser safety is discussed in terms of device classification, nominal ocular hazard distance (NOHD) and safety glasses optical density (OD).

  11. Reactivity requirements and safety systems for heavy water reactors

    Kati, S.L.; Rustagi, R.S.

    1977-01-01

    The natural uranium fuelled pressurised heavy water reactors are currently being installed in India. In the design of nuclear reactors, adequate attention has to be given to the safety systems. In recent years, several design modifications having bearing on safety, in the reactor processes, protective and containment systems have been made. These have resulted either from new trends in safety and reliability standards or as a result of feed-back from operating reactors of this type. The significant areas of modifications that have been introduced in the design of Indian PHWR's are: sophisticated theoretical modelling of reactor accidents, reactivity control, two independent fast acting systems, full double containment and improved post-accident depressurisation and building clean-up. This paper brings out the evolution of design of safety systems for heavy water reactors. A short review of safety systems which have been used in different heavy water reactors, of varying sizes, has been made. In particular, the safety systems selected for the latest 235 MWe twin reactor unit station in Narora, in Northern India, have been discussed in detail. Research and Development efforts made in this connection are discussed. The experience of design and operation of the systems in Rajasthan and Kalpakkam reactors has also been outlined

  12. Evolution of general design requirements for french pressurized water reactors

    Gros, G.; Jalouneix, J.; Rollinger, F.

    1988-10-01

    The design of French pressurized water reactors is based first on deterministic principles, using the well-known defense in depth concept. This safety approach, basically reflected current American practice at that time, which consisted notably in designing engineered safeguard systems capable of limiting the consequences of accidents assumed to be credible despite the preventive measures taken. Further reflections have led to complete this approach, resulting in modifications to regulatory practice, mainly related to better practical assimilation of the problems arising during plant unit operation and reactor control after an accident and to the determination to enhance the overall consistency of the safety approach. As regards system redundancy, it should be noted that common cause failures can result in the total loss of a redundant system. System redundancy aspects will be dealt with in Chapter 2. As regards study of design basis accidents, attention was focused on the human intervention stage following automatic activation of protection and safeguard systems. This resulted, for all plant units, in the revision of operating procedures, accompanied by examination of the means required for their implementation. These subjects will be discussed in Chapter 3. Finally, as regards equipment classification, the range of equipment subjected to particular requirements, formerly limited to design basis safety classified equipment, was enlarged to include important for safety equipment. This subject will be dealt with in Chapter 5

  13. Breeder design for enhanced performance and safety characteristics

    Fischer, G.J.; Atefi, B.; Yang, J.W.; Galperin, A.; Segev, M.

    1980-01-01

    A fast breeder reactor design has been created which offers a considerably extended fuel cycle and excellent performance characteristics. An example of a core designed to operate on a ten-year fuel cycle is described in some detail. Use of metal fuel along with a moderator such as beryllium oxide dispersed throughout the core provides both design flexibility and safety advantages such as a strong Doppler feedback and limited sodium void reactivity gain. Local power variations are small for the entire cycle; control requirements are also modest, and fuel cycle costs are low

  14. The enhancement of Ignalina NPP in design and operational safety

    Negrivoda, G.

    1999-01-01

    Enhancement of Ignalina NPP design include: core design improvements; fuel channel integrity (multiple pressure tube rupture); improvements of shutdown systems; improvements of instrumentation and control devices; containment strength and tightness; design basis accident analysis; improvements of safety and support systems; seismic safety enhancement; Year 2000 project; cracks in pipes. Enhancement of operational safety includes: quality assurance; configuration management; safety management and safety culture; emergency operating procedures; training and full scope simulator; in-service inspection; fire protection and ageing monitoring and management

  15. Requirements Engineering and Design Technology Report

    Ganska, Ralph

    1995-01-01

    This report reviews the STSC's recommendations for the selection and usage of software engineering products aimed at the requirements analysis and high-level design portions of the software lifecycle...

  16. User requirements in the area of safety of innovative nuclear reactors and fuel cycle installations

    Kuczera, B.; Juhn, P.E.; Fukuda, K.; )

    2002-01-01

    Full text: Against the background of already existing IAEA and INSAC publications in the area of safety, in the framework of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) a set of user requirements for the safety of future nuclear installations has been established. Five top-level requirements are expected to apply to any type of innovative design. They should foster an increased level of safety that is transparent to and fully accepted by the general public. The approach to future reactor safety includes two complementary strategies: increased emphasis on inherent safety characteristics and enhancement of defense in depth. As compared to existing plants, the effectiveness of preventing measures should be highly enhanced, resulting in fewer mitigation measures. The targets and possible approaches of each of the five levels of defense developed for innovative reactor designs are outlined in the paper

  17. Design of integrated passive safety system (IPSS) for ultimate passive safety of nuclear power plants

    Chang, Soon Heung; Kim, Sang Ho; Choi, Jae Young

    2013-01-01

    Highlights: • We newly propose the design concept of integrated passive safety system (IPSS). • It has five safety functions for decay heat removal and severe accident mitigation. • Simulations for IPSS show that core melt does not occur in accidents with SBO. • IPSS can achieve the passive in-vessel retention and ex-vessel cooling strategy. • The applicability of IPSS is high due to the installation outside the containment. -- Abstract: The design concept of integrated passive safety system (IPSS) which can perform various passive safety functions is proposed in this paper. It has the various functions of passive decay heat removal system, passive safety injection system, passive containment cooling system, passive in-vessel retention and cavity flooding system, and filtered venting system with containment pressure control. The objectives of this paper are to propose the conceptual design of an IPSS and to estimate the design characters of the IPSS with accident simulations using MARS code. Some functions of the IPSS are newly proposed and the other functions are reviewed with the integration of the functions. Consequently, all of the functions are modified and integrated for simplicity of the design in preparation for beyond design based accidents (BDBAs) focused on a station black out (SBO). The simulation results with the IPSS show that the decay heat can be sufficiently removed in accidents that occur with a SBO. Also, the molten core can be retained in a vessel via the passive in-vessel retention strategy of the IPSS. The actual application potential of the IPSS is high, as numerous strong design characters are evaluated. The installation of the IPSS into the original design of a nuclear power plant requires minimal design change using the current penetrations of the containment. The functions are integrated in one or two large tanks outside the containment. Furthermore, the operation time of the IPSS can be increased by refilling coolant from the

  18. Status of safety issues at licensed power plants: TMI Action Plan requirements, unresolved safety issues, generic safety issues, other multiplant action issues

    1992-12-01

    This report is to provide a comprehensive description of the implementation and verification status of Three Mile Island (TMI) Action Plan requirements, safety issues designated as Unresolved Safety Issues (USIs), Generic Safety Issues(GSIs), and other Multiplant Actions (MPAs) that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. An additional purpose of this NUREG report is to serve as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues up until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees

  19. Radiation safety requirements for training of users of diagnostic X ...

    Background. Globally, the aim of requirements regarding the use and ownership of diagnostic medical X-ray equipment is to limit radiation by abiding by the 'as low as reasonably achievable' (ALARA) principle. The ignorance of radiographers with regard to radiation safety requirements, however, is currently a cause of ...

  20. Introduction of the Amendment of IAEA Safety Requirements Reflected Lessons Learned from Fukushima Nuclear Accident

    Ahn, Sang-Kyu; Ahn, Hyung-Joon; Kim, Sun-Hae; Cheong, Jae-Hak [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The following five Safety Requirements publications were amended: Governmental, Legal and Regulatory Framework for Safety (GSR Part 1, 2010), Site Evaluation for Nuclear Installations (NS-R-3, 2003), Safety of Nuclear Power Plants: Design (SSR-2/1, 2012), Safety of Nuclear Power Plants: Commissioning and Operation (SSR-2/2, 2011), and Safety Assessment for Facilities and Activities (GSR Part 4, 2009). Figure 1 shows IAEA Safety Standards Categories Major amendments of five Safety Requirements publications were introduced and analyzed in this study. The five IAEA safety requirements publications which are GSR Part 1 and 4, NS-R-3 and SSR-2/1 and 2, were amended to reflect the lesson learned from the Fukushima accident and other operating experiences. Specially, 36 provisions were modified and the new 29 provision with 1 requirement (No. 67: Emergency response facilities on the site) of the SSR-2/1 were established. Since the Fukushima accident happened, a new word, design extension conditions (DECs) which cover substantially the beyond design basis accidents (BDBA), including severe accident conditions, was created and more elaborated by the world nuclear experts. Design extension conditions could include conditions in events without significant fuel degradation and conditions with core melting. Figure 2 shows the range of the DECs. The amendment of the five IAEA safety requirements publications are focused at the prevention of initiating events, which would lead to the DECs, and mitigation of the consequences of DECs by the enhanced defense in depth principle. The following examples of the IAEA requirements to prevent the initiating events are: margins for withstanding external events; margins for avoiding cliff edge effects; safety assessment for multiple facilities or activities at a single site; safety assessment in cases where resources at a facility are shared; consideration of the potential occurrence of events in combination; establishing levels of hazard

  1. Safety principles and design management of Chashma Nuclear Power Plant

    Geng Qirui; Cheng Pingdong

    1997-01-01

    The basic safety consideration and detailed design principles in the design of Chashma Nuclear Power Plant is elaborated. The management within the frame setting up by 'safety culture' and 'quality culture'

  2. Safety Requirements and Modern Technical Requirements in Human Information Systems in Amman Hotels

    Farouq Ahmad Alazzam; Sattam Rakan Allahawiah; Mohammad Nayef Alsarayreh; Kafa Hmoud Abdallah al Nawaiseh

    2015-01-01

    This study aimed to demonstrate the availability of Safety requirements and modern technical requirements in human information systems in Amman hotels. an the most important results of this study is the availability of security and safety requirements in human information systems In Amman hotels and The adequacy of the information that it provided .and show that all departments are not connected by appropriate and effective communication networks in adequate form . Also sophisticated operatin...

  3. Defence-in-depth and development of safety requirements for advanced nuclear reactors

    Carnino, A.; Gasparini, M.

    2002-01-01

    The paper addresses a general approach for the preparation of the design safety requirements using the IAEA Safety Objectives and the strategy of defence-in-depth. It proposes a general method (top-down approach) to prepare safety requirements for a given kind of reactor using the IAEA requirements for nuclear power plants as a starting point through a critical interpretation and application of the strategy of defence-in-depth. The IAEA has recently developed a general methodology for screening the defence-in-depth of nuclear power plants starting from the fundamental safety objectives as proposed in the IAEA Safety Fundamentals. This methodology may provide a useful tool for the preparation of safety requirements for the design and operation of any kind of reactor. Currently the IAEA is preparing the technical basis for the development of safety requirements for Modular High Temperature Gas Reactors, with the aim of showing the viability of the method. A draft TECDOC has been prepared and circulated among several experts for comments. This paper is largely based on the content of the draft TECDOC. (authors)

  4. Design, fabrication and erection of steel structures important to safety of nuclear facilities

    2001-10-01

    Civil engineering structures in nuclear installations form an important feature having implications to safety performance of these installations. The objective and minimum requirements for the design of civil engineering buildings/structures to be fulfilled to provide adequate assurance for safety of nuclear installations in India (such as pressurised heavy water reactor and related systems) are specified in the Safety Standard for Civil Engineering Structures Important to Safety of Nuclear Facilities. This standard is written by AERB to specify guidelines for implementation of the above civil engineering safety standard in the design, fabrication and erection of steel structures important to safety

  5. GT-MHR design, performance, and safety

    Neylan, A.J.; Shenoy, A.; Silady, F.A.; Dunn, T.D.

    1994-11-01

    The Gas Turbine-Modular Helium Reactor (GT-MHR) is the result of coupling the evolution of a low power density passively safe modular reactor with key technology developments in the U.S. during the last decade: large industrial gas turbines; large active magnetic bearings; and compact, highly effective plate-fin heat exchangers. This is accomplished through the unique use of the Brayton cycle to produce electricity with the helium as primary coolant from the reactor directly driving the gas turbine electrical generator. This cycle can achieve a high net efficiency in the range of 45% to 48%. In the design of the GT-MHR the desirable inherent characteristics of the inert helium coolant, graphite core, and the coated fuel particles are supplemented with specific design features such as passive heat removal to achieve the safety objective of not disturbing the normal day-to-day activities of the public even for beyond design basis rare accidents. Each GT-MHR plant consists of four modules. The GT-MHR module components are contained within steel pressure vessels: a reactor vessel, a power conversion vessel, and a connecting cross vessel. All vessels are sited underground in a concrete silo, which serves as an independent vented low pressure containment structure. By capitalizing on industrial and aerospace gas turbine development, highly effective heat exchanger designs, and inherent gas cooled reactor temperature characteristics, the passively safe GT-MHR provides a sound technical, monetary, and environmental basis for new nuclear power generating capacity. This paper provides an update on the status of the design, which has been under development on the US-DOE program since February 1993. An assessment of plant performance and safety is also included

  6. [Safety culture: definition, models and design].

    Pfaff, Holger; Hammer, Antje; Ernstmann, Nicole; Kowalski, Christoph; Ommen, Oliver

    2009-01-01

    Safety culture is a multi-dimensional phenomenon. Safety culture of a healthcare organization is high if it has a common stock in knowledge, values and symbols in regard to patients' safety. The article intends to define safety culture in the first step and, in the second step, demonstrate the effects of safety culture. We present the model of safety behaviour and show how safety culture can affect behaviour and produce safe behaviour. In the third step we will look at the causes of safety culture and present the safety-culture-model. The main hypothesis of this model is that the safety culture of a healthcare organization strongly depends on its communication culture and its social capital. Finally, we will investigate how the safety culture of a healthcare organization can be improved. Based on the safety culture model six measures to improve safety culture will be presented.

  7. SAFETY IN THE DESIGN OF SCIENCE LABORATORIES AND BUILDING CODES.

    HOROWITZ, HAROLD

    THE DESIGN OF COLLEGE AND UNIVERSITY BUILDINGS USED FOR SCIENTIFIC RESEARCH AND EDUCATION IS DISCUSSED IN TERMS OF LABORATORY SAFETY AND BUILDING CODES AND REGULATIONS. MAJOR TOPIC AREAS ARE--(1) SAFETY RELATED DESIGN FEATURES OF SCIENCE LABORATORIES, (2) LABORATORY SAFETY AND BUILDING CODES, AND (3) EVIDENCE OF UNSAFE DESIGN. EXAMPLES EMPHASIZE…

  8. System design for shaft safety and productivity

    Owen, D.; Parsons, R.; Ward, R.

    1988-03-01

    The aim of this paper is to describe the process of designing a system to improve safety and productivity in shafts. The objectives and constraints for the design were set out in official reports following a shaft accident at Markham Colliery in 1973. The problems to be solved were: to enable the shaftsmen to transfer the existing statutory code of signals efficiently from, or on top of, a conveyance anywhere in the shaft to the winding engineman and banksman at the surface: to detect the existence of slack rope or to detect that conditions have arisen that slack rope could be created and transmit this information to where action can be taken; and to allow conversations between winding engineman, banksman and shaftsman making allowances for the high level of acoustic noise in shafts. The approach adopted for slack rope monitoring was to monitor the tension in the cage suspension gear, thus measuring a first order effect. The three problems have a common element: information must be transferred through the shaft. This particular problem was solved with guided radio, using the winding rope as the transmission medium. The radio signal is coupled into the winding rope by means of fixed toroid encircling it at the cage and fixed magnetic antennas at the surface. The design of a digital transmission system for signalling and tension data is discussed. The 'top down' modular approach used in the design enabled full advantage to be taken of the opportunities for building a more reliable, safer and flexible system presented by technologies new to the shaft environment. The resultant system, the Safecom Shaft Signalling Communication and Winder Safety Monitoring System type S100, is in regular use at over 20 installations. 3 refs., 4 figs., 1 tab.

  9. The Management System for Facilities and Activities. Safety Requirements

    2011-01-01

    This publication establishes requirements for management systems that integrate safety, health, security, quality assurance and environmental objectives. A successful management system ensures that nuclear safety matters are not dealt with in isolation but are considered within the context of all these objectives. The aim of this publication is to assist Member States in establishing and implementing effective management systems that integrate all aspects of managing nuclear facilities and activities in a coherent manner. It details the planned and systematic actions necessary to provide adequate confidence that all these requirements are satisfied. Contents: 1. Introduction; 2. Management system; 3. Management responsibility; 4. Resource management; 5. Process implementation; 6. Measurement, assessment and improvement.

  10. Design of Safety Injection Tanks Using Axiomatic Design and TRIZ

    Heo, Gyunyoung [Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701 (Korea, Republic of); Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2008-07-01

    Design can be categorized into two steps: 'synthesis' and 'analysis'. While synthesis is the process of decision-making on design parameters, analysis is the process of optimizing the parameters selected. It is known from experience that the mistakes made in the synthesis process are hardly corrected in the analysis process. 'Systematic synthesis' is, therefore, easy to overlook but an important topic. 'Systematic' is interpreted as 'minimizing' uncertainty and subjectivity. This paper will introduce the design product achieved by using Axiomatic Design (AD) and TRIZ (Theory of Inventive Problem Solving romanized acronym for Russian), which is a new design of Safety Injection Tank (SIT). In designing a large-capacity SIT which should play an important role in mitigating the large break loss of coolant accidents, there are three issues: 1) the excessively large plenum for pressurized nitrogen gas; 2) the difficulties maintaining the high initial injection flow rate; and 3) the non-condensable nitrogen gas in the coolant. This study proposes a conceptual idea for SITs that are pressurized by the chemical reaction of solid propellants. The AD theory and the principles of TRIZ enable new approach in problem-solving for those three issues in an innovative way. The paper made an effort to clarify the systematic synthesis process to reach the final design solution. (authors)

  11. Design of Safety Injection Tanks Using Axiomatic Design and TRIZ

    Heo, Gyunyoung; Jeong, Yong Hoon

    2008-01-01

    Design can be categorized into two steps: 'synthesis' and 'analysis'. While synthesis is the process of decision-making on design parameters, analysis is the process of optimizing the parameters selected. It is known from experience that the mistakes made in the synthesis process are hardly corrected in the analysis process. 'Systematic synthesis' is, therefore, easy to overlook but an important topic. 'Systematic' is interpreted as 'minimizing' uncertainty and subjectivity. This paper will introduce the design product achieved by using Axiomatic Design (AD) and TRIZ (Theory of Inventive Problem Solving romanized acronym for Russian), which is a new design of Safety Injection Tank (SIT). In designing a large-capacity SIT which should play an important role in mitigating the large break loss of coolant accidents, there are three issues: 1) the excessively large plenum for pressurized nitrogen gas; 2) the difficulties maintaining the high initial injection flow rate; and 3) the non-condensable nitrogen gas in the coolant. This study proposes a conceptual idea for SITs that are pressurized by the chemical reaction of solid propellants. The AD theory and the principles of TRIZ enable new approach in problem-solving for those three issues in an innovative way. The paper made an effort to clarify the systematic synthesis process to reach the final design solution. (authors)

  12. Design of the reactor coolant system and associated systems in nuclear power plants. Safety guide

    2008-01-01

    This Safety Guide was prepared under the IAEA programme for establishing safety standards for nuclear power plants. The basic requirements for the design of safety systems for nuclear power plants are established in the Safety Requirements publication, Safety Standards Series No. NS-R-1 on Safety of Nuclear Power Plants: Design, which it supplements. This Safety Guide describes how the requirements for the design of the reactor coolant system (RCS) and associated systems in nuclear power plants should be met. 1.2. This publication is a revision and combination of two previous Safety Guides, Safety Series No. 50-SG-D6 on Ultimate Heat Sink and Directly Associated Heat Transport Systems for Nuclear Power Plants (1981), and Safety Series No. 50-SG-D13 on Reactor Coolant and Associated Systems in Nuclear Power Plants (1986), which are superseded by this new Safety Guide. 1.3. The revision takes account of developments in the design of the RCS and associated systems in nuclear power plants since the earlier Safety Guides were published in 1981 and 1986, respectively. The other objectives of the revision are to ensure consistency with Ref., issued in 2000, and to update the technical content. In addition, an appendix on pressurized heavy water reactors (PHWRs) has been included

  13. Design and safety of the Sizewell pressurized water reactor

    Marshall, W.

    1983-01-01

    The Central Electricity Generating Board propose to build a pressurized water reactor at Sizewell in Suffolk. The PWR Task Force was set up in June 1981 to provide a communications centre for developing firm design proposals for this reactor. These were to follow the Standardized Nuclear Unit Power Plant System designed by Bechtel for the Westinghouse nuclear steam supply system for reactors built in the United States. Changes were required to the design to accommodate, for example, the use of two turbine generators and to satisfy British safety requirements. Differences exist between the British and American licensing procedures. In the UK the statutory responsibility for the safety of a nuclear power station rests unambiguously with the Generating Boards. In the U.S.A. the Nuclear Regulatory Commission issues detailed written instructions, which must be followed precisely. Much of the debate on the safety of nuclear power focuses on the risks of big nuclear accidents. It is necessary to explain to the public what, in a balanced perspective, the risks of accidents actually are. The long-term consequences can be presented in terms of reduction in life expectancy, increased chance of cancer or the equivalent pattern of compulsory cigarette smoking. (author)

  14. Safety integrity requirements for computer based I ampersand C systems

    Thuy, N.N.Q.; Ficheux-Vapne, F.

    1997-01-01

    In order to take into account increasingly demanding functional requirements, many instrumentation and control (I ampersand C) systems in nuclear power plants are implemented with computers. In order to ensure the required safety integrity of such equipment, i.e., to ensure that they satisfactorily perform the required safety functions under all stated conditions and within stated periods of time, requirements applicable to these equipment and to their life cycle need to be expressed and followed. On the other hand, the experience of the last years has led EDF (Electricite de France) and its partners to consider three classes of systems and equipment, according to their importance to safety. In the EPR project (European Pressurized water Reactor), these classes are labeled E1A, E1B and E2. The objective of this paper is to present the outline of the work currently done in the framework of the ETC-I (EPR Technical Code for I ampersand C) regarding safety integrity requirements applicable to each of the three classes. 4 refs., 2 figs

  15. Change in requirements during the design process

    Sudin, Mohd Nizam Bin; Ahmed-Kristensen, Saeema

    2011-01-01

    Specification is an integral part of the product development process. Frequently, more than a single version of a specification is produced due to changes in requirements. These changes are often necessary to ensure the scope of the design problem is as clear as possible. However, the negative...... on a pre-defined coding scheme. The results of the study shows that change in requirements were initiated by internal stakeholders through analysis and evaluation activities during the design process, meanwhile external stakeholders were requested changes during the meeting with consultant. All...

  16. Towards Requirements in Systems Engineering for Aerospace IVHM Design

    Saxena, Abhinav; Roychoudhury, Indranil; Lin, Wei; Goebel, Kai

    2013-01-01

    Health management (HM) technologies have been employed for safety critical system for decades, but a coherent systematic process to integrate HM into the system design is not yet clear. Consequently, in most cases, health management resorts to be an after-thought or 'band-aid' solution. Moreover, limited guidance exists for carrying out systems engineering (SE) on the subject of writing requirements for designs with integrated vehicle health management (IVHM). It is well accepted that requirements are key to developing a successful IVHM system right from the concept stage to development, verification, utilization, and support. However, writing requirements for systems with IVHM capability have unique challenges that require the designers to look beyond their own domains and consider the constraints and specifications of other interlinked systems. In this paper we look at various stages in the SE process and identify activities specific to IVHM design and development. More importantly, several relevant questions are posed that system engineers must address at various design and development stages. Addressing these questions should provide some guidance to systems engineers towards writing IVHM related requirements to ensure that appropriate IVHM functions are built into the system design.

  17. A series of student design projects for improving and modernizing safety helmets

    Beurden, van K.M.M. (Karin); Boer, de J. (Johannes); Stilma, M. (Margot); Teeuw, W.B. (Wouter)

    2014-01-01

    The Saxion Research Centre for Design and Technology employs many students during research projects. This paper discusses a series of student design projects on safety helmets in the Safety@Work project. At construction sites workers are required to wear personal protective equipment during their

  18. Analysis and design on airport safety information management system

    Yan Lin

    2017-01-01

    Full Text Available Airport safety information management system is the foundation of implementing safety operation, risk control, safety performance monitor, and safety management decision for the airport. The paper puts forward the architecture of airport safety information management system based on B/S model, focuses on safety information processing flow, designs the functional modules and proposes the supporting conditions for system operation. The system construction is helpful to perfecting the long effect mechanism driven by safety information, continually increasing airport safety management level and control proficiency.

  19. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1, Revision 1 (Chinese Edition)

    2016-01-01

    This publication establishes requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  20. Fuel supply shutdown facility interim operational safety requirements

    Besser, R.L.; Brehm, J.R.; Benecke, M.W.; Remaize, J.A.

    1995-01-01

    These Interim Operational Safety Requirements (IOSR) for the Fuel Supply Shutdown (FSS) facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls to ensure safe operation. The IOSRs apply to the fuel material storage buildings in various modes (operation, storage, surveillance)

  1. Impact of New Radiation Safety Standards on Licensing Requirements of Nuclear Power Plant

    Strohal, P.; Subasic, D.; Valcic, I.

    1996-01-01

    As the outcomes of the newly introduced safety philosophies, new and more strict safety design requirements for nuclear installation are expected to be introduced. New in-depth defence measures should be incorporated into the design and operation procedure for a nuclear installation, to compensate for potential failures in protection or safety measures. The new requirements will also apply to licensing of NPP's operation as well as to licensing of nuclear sites, especially for radioactive waste disposal sites. This paper intends to give an overview of possible impacts of new internationally agreed basic safety standards with respect to NPP and related technologies. Recently issued new basic safety standards for radiation protection are introducing some new safety principles which may have essential impact on future licensing requirements regarding nuclear power plants and radioactive waste installations. These new standards recognize exposures under normal conditions ('practices') and intervention conditions. The term interventions describes the human activities that seek to reduce the existing radiation exposure or existing likelihood of incurring exposure which is not part of a controlled practice. The other new development in safety standards is the introduction of so called potential exposure based on the experience gained from a number of radiation accidents. This exposure is not expected to be delivered with certainty but it may result from an accident at a source or owing to an event or sequence of events of a probabilistic nature, including equipment failures and operating errors. (author)

  2. Safety Evaluation of Kartini Reactor Based on Instrumentation System Design

    Tjipta Suhaemi; Djen Djen Dj; Itjeu K; Johnny S; Setyono

    2003-01-01

    The safety of Kartini reactor has been evaluated based on instrumentation system aspect. The Kartini reactor is designed by BATAN. Design power of the reactor is 250 kW, but it is currently operated at 100 kW. Instrumentation and control system function is to monitor and control the reactor operation. Instrumentation and control system consists of safety system, start-up and automatic power control, and process information system. The linear power channel and logarithmic power channel are used for measuring power. There are 3 types of control rod for controlling the power, i.e. safety rod, shim rod, and regulating rod. The trip and interlock system are used for safety. There are instrumentation equipment used for measuring radiation exposure, flow rate, temperature and conductivity of fluid The system of Kartini reactor has been developed by introducing a process information system, start-up system, and automatic power control. It is concluded that the instrumentation of Kartini reactor has followed the requirement and standard of IAEA. (author)

  3. Safety requirements to the operation of hydropower plants; Sicherheit beim Betrieb von Wasserkraftwerken

    Lux, Reinhard [Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse (BG ETEM), Koeln (Germany)

    2011-07-01

    Employers have to take into account various safety and health requirements relating to the design, construction, operation and maintenance of hydropower plants. Especially the diversity of the hydropower plant components requires the consideration of different safety and health aspects. In 2011 the ''Fachausschuss Elektrotechnik'' (expert committee electro-technics) of the institution for statutory accident insurance and prevention presented a new ''BG-Information'' dealing with ''Safe methods operating hydropower plants''. The following article gives an introduction into the conception and the essential requirements of this new BG-Information. (orig.)

  4. Safety assessment in plant layout design using indexing approach: Implementing inherent safety perspective

    Tugnoli, Alessandro; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio

    2008-01-01

    Layout planning plays a key role in the inherent safety performance of process plants since this design feature controls the possibility of accidental chain-events and the magnitude of possible consequences. A lack of suitable methods to promote the effective implementation of inherent safety in layout design calls for the development of new techniques and methods. In the present paper, a safety assessment approach suitable for layout design in the critical early phase is proposed. The concept of inherent safety is implemented within this safety assessment; the approach is based on an integrated assessment of inherent safety guideword applicability within the constraints typically present in layout design. Application of these guidewords is evaluated along with unit hazards and control devices to quantitatively map the safety performance of different layout options. Moreover, the economic aspects related to safety and inherent safety are evaluated by the method. Specific sub-indices are developed within the integrated safety assessment system to analyze and quantify the hazard related to domino effects. The proposed approach is quick in application, auditable and shares a common framework applicable in other phases of the design lifecycle (e.g. process design). The present work is divided in two parts: Part 1 (current paper) presents the application of inherent safety guidelines in layout design and the index method for safety assessment; Part 2 (accompanying paper) describes the domino hazard sub-index and demonstrates the proposed approach with a case study, thus evidencing the introduction of inherent safety features in layout design

  5. Review of nuclear piping seismic design requirements

    Slagis, G.C.; Moore, S.E.

    1994-01-01

    Modern-day nuclear plant piping systems are designed with a large number of seismic supports and snubbers that may be detrimental to plant reliability. Experimental tests have demonstrated the inherent ruggedness of ductile steel piping for seismic loading. Present methods to predict seismic loads on piping are based on linear-elastic analysis methods with low damping. These methods overpredict the seismic response of ductile steel pipe. Section III of the ASME Boiler and Pressure Vessel Code stresses limits for piping systems that are based on considerations of static loads and hence are overly conservative. Appropriate stress limits for seismic loads on piping should be incorporated into the code to allow more flexible piping designs. The existing requirements and methods for seismic design of piping systems, including inherent conservations, are explained to provide a technical foundation for modifications to those requirements. 30 refs., 5 figs., 3 tabs

  6. Safety design and evaluation policy for future FBRs in Japan

    Aizawa, Kiyoto

    1991-01-01

    The safety policy for fast breeder reactors (FBRs) has gradually matured in accordance with the development of FBRs. The safety assessment of the Japanese prototype FBR, Monju during the licensing process accelerated the maturity and the integration of knowledge and databases. Results are expected to be reflected in the establishment of the safety design and evaluation policy for FBRs. Although the methodologies and safety policies developed for LWRs are applicable in principle to future FBRs, it is neither rational nor realistic to treat safety only with these policies. It is recommended that one should develop the methodologies and safety policies starting from understanding of the inherent safety characteristics of FBR's through safety research, plant operating experience and design work. In the last few years, some technical committees were organized in Japan and have discussed key safety issues which are specific to FBRs in order to provide preparatory reports and to establish safety standards and guidelines for future commercial FBRs. (author)

  7. Safety Design Criteria of Indian Sodium Cooled Fast Reactors

    Pillai, P.; Chellapandi, P.; Chetal, S.C.; Vasudeva Rao, P.R.

    2013-01-01

    • Important feedback has been gained through the design and safety review of PFBR. • The safety criteria document prepared by AERB and IGCAR would provide important input to prepare the dedicated document for the Sodium cooled Fast Reactors at the national and international level. • A common approach with regard to safety, among countries pursuing fast reactor program, is desirable. • Sharing knowledge and experimental facilities on collaborative basis. • Evolution of strong safety criteria – fundamental to assure safety

  8. Chemical Hazards and Safety Issues in Fusion Safety Design

    Cadwallader, L.C.

    2003-01-01

    Radiological inventory releases have dominated accident consequences for fusion; these consequences are important to analyze and are generally the most severe result of a fusion facility accident event. However, the advent of, or plan for, large-scale usage of some toxic materials poses the additional hazard of chemical exposure from an accident event. Examples of toxic chemicals are beryllium for magnetic fusion and fluorine for laser fusion. Therefore, chemical exposure consequences must also be addressed in fusion safety assessment. This paper provides guidance for fusion safety analysis. US Department of Energy (DOE) chemical safety assessment practices for workers and the public are reviewed. The US Environmental Protection Agency (EPA) has published some guidance on public exposure to releases of mixtures of chemicals, this guidance has been used to create an initial guideline for treating mixed radiological and toxicological releases in fusion; for example, tritiated hazardous dust from a tokamak vacuum vessel. There is no convenient means to judge the hazard severity of exposure to mixed materials. The chemical fate of mixed material constituents must be reviewed to determine if there is a separate or combined radiological and toxicological carcinogenesis, or if other health threats exist with radiological carcinogenesis. Recommendations are made for fusion facility chemical safety evaluation and safety guidance for protecting the public from chemical releases, since such levels are not specifically identified in the DOE fusion safety standard

  9. Advanced Neutron Sources: Plant Design Requirements

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW th , heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS

  10. Technical Safety Requirements for the Gamma Irradiation Facility (GIF)

    Mahn, J A E M J G

    2003-01-01

    This document provides the Technical Safety Requirements (TSR) for the Sandia National Laboratories Gamma Irradiation Facility (GIF). The TSR is a compilation of requirements that define the conditions, the safe boundaries, and the administrative controls necessary to ensure the safe operation of a nuclear facility and to reduce the potential risk to the public and facility workers from uncontrolled releases of radioactive or other hazardous materials. These requirements constitute an agreement between DOE and Sandia National Laboratories management regarding the safe operation of the Gamma Irradiation Facility.

  11. Design requirements for the SWIFT instrument

    Rahnama, P; McDade, I; Shepherd, G; Gault, W

    2013-01-01

    The Stratospheric Wind Interferometer for Transport studies (SWIFT) instrument is a proposed limb-viewing satellite instrument that employs the method of Doppler Michelson interferometry to measure stratospheric wind velocities and ozone densities in the altitude range of 15–45 km. The values of the main instrument parameters including filter system parameters and Michelson interferometer parameters are derived using simulations and analyses. The system design requirements for the instrument and spacecraft are presented and discussed. Some of the retrieval-imposed design requirements are also discussed. Critical design issues are identified. The design optimization process is described. The sensitivity of wind measurements to instrument characteristics is investigated including the impact on critical design issues. Using sensitivity analyses, the instrument parameters were iteratively optimized in order to meet the science objectives. It is shown that wind measurements are sensitive to the thermal sensitivity of the instrument components, especially the narrow filter and the Michelson interferometer. The optimized values of the main system parameters including Michelson interferometer optical path difference, instrument visibility, instrument responsivity and knowledge of spacecraft velocity are reported. This work also shows that the filter thermal drift and the Michelson thermal drift are two main technical risks. (paper)

  12. Development of the switch requirements and architecture of a safety data communication system

    Jeong, K.I.; Lee, J.K.; Park, H.Y.; Koo, I.S.

    2004-12-01

    In accordance with digitalising the Instrumentation and Control(I and C) systems in the integral reactor, a communication network is required for effective information exchanges between the different equipment, an enhancement of the design flexibility, a simple installation and cost reduction. Generally, a communication network consists of a topology, the protocol, a communication medium, an interconnection device, etc. In this report, the development methods of switch and the architecture of a Safety Data Communication System(SDCS) are investigated and analyzed. In this report, the design requirements for switch are presented, which are the essential requirements to develop the switch in a SDCS of the SMART-P. To establish these requirements, the evaluation and analysis of the design and implementation method of the COTS switches, the architecture of SDCS and the design requirements of a SDCS were performed. At the detail design stage, these requirements will be used for the top-tier requirements, especially the design target and design basis. To develop the detail design requirements in the future, more quantitative and qualitative analyses are required. In the case of selecting the COTS switch and developing the switch, these requirements will also be used for the evaluation guide

  13. Development of the switch requirements and architecture of a safety data communication system

    Jeong, K.I.; Lee, J.K.; Park, H.Y.; Koo, I.S

    2004-12-01

    In accordance with digitalising the Instrumentation and Control(I and C) systems in the integral reactor, a communication network is required for effective information exchanges between the different equipment, an enhancement of the design flexibility, a simple installation and cost reduction. Generally, a communication network consists of a topology, the protocol, a communication medium, an interconnection device, etc. In this report, the development methods of switch and the architecture of a Safety Data Communication System(SDCS) are investigated and analyzed. In this report, the design requirements for switch are presented, which are the essential requirements to develop the switch in a SDCS of the SMART-P. To establish these requirements, the evaluation and analysis of the design and implementation method of the COTS switches, the architecture of SDCS and the design requirements of a SDCS were performed. At the detail design stage, these requirements will be used for the top-tier requirements, especially the design target and design basis. To develop the detail design requirements in the future, more quantitative and qualitative analyses are required. In the case of selecting the COTS switch and developing the switch, these requirements will also be used for the evaluation guide.

  14. Mitigating construction safety risks using prevention through design.

    Gangolells, Marta; Casals, Miquel; Forcada, Núria; Roca, Xavier; Fuertes, Alba

    2010-04-01

    Research and practice have demonstrated that decisions made prior to work at construction sites can influence construction worker safety. However, it has also been argued that most architects and design engineers possess neither the knowledge of construction safety nor the knowledge of construction processes necessary to effectively perform Construction Hazards Prevention through Design (CHPtD). This paper introduces a quantitative methodology that supports designers by providing a way to evaluate the safety-related performance of residential construction designs using a risk analysis-based approach. The methodology compares the overall safety risk level of various construction designs and ranks the significance of the various safety risks of each of these designs. The methodology also compares the absolute importance of a particular safety risk in various construction designs. Because the methodology identifies the relevance of each safety risk at a particular site prior to the construction stage, significant risks are highlighted in advance. Thus, a range of measures for mitigating safety risks can then be implemented during on-site construction. The methodology is specially worthwhile for designers, who can compare construction techniques and systems during the design phase and determine the corresponding level of safety risk without their creative talents being restricted. By using this methodology, construction companies can improve their on-site safety performance. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Westinghouse Hanford Company safety analysis reports and technical safety requirements upgrade program

    Busche, D.M.

    1995-09-01

    During Fiscal Year 1992, the US Department of Energy, Richland Operations Office (RL) separately transmitted the following US Department of Energy (DOE) Orders to Westinghouse Hanford Company (WHC) for compliance: DOE 5480.21, ''Unreviewed Safety Questions,'' DOE 5480.22, ''Technical Safety Requirements,'' and DOE 5480.23, ''Nuclear Safety Analysis Reports.'' WHC has proceeded with its impact assessment and implementation process for the Orders. The Orders are closely-related and contain some requirements that are either identical, similar, or logically-related. Consequently, WHC has developed a strategy calling for an integrated implementation of the three Orders. The strategy is comprised of three primary objectives, namely: Obtain DOE approval of a single list of DOE-owned and WHC-managed Nuclear Facilities, Establish and/or upgrade the ''Safety Basis'' for each Nuclear Facility, and Establish a functional Unreviewed Safety Question (USQ) process to govern the management and preservation of the Safety Basis for each Nuclear Facility. WHC has developed policy-revision and facility-specific implementation plans to accomplish near-term tasks associated with the above strategic objectives. This plan, which as originally submitted in August 1993 and approved, provided an interpretation of the new DOE Nuclear Facility definition and an initial list of WHC-managed Nuclear Facilities. For each current existing Nuclear Facility, existing Safety Basis documents are identified and the plan/status is provided for the ISB. Plans for upgrading SARs and developing TSRs will be provided after issuance of the corresponding Rules

  16. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1

    NONE

    2010-09-15

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered.

  17. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1 (Arabic Edition)

    NONE

    2010-09-15

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered.

  18. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1 (Spanish Edition)

    2010-01-01

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered

  19. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1 (French Edition)

    2010-01-01

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered

  20. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1 (Chinese Edition)

    2010-01-01

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered

  1. Modeling of requirement specification for safety critical real time computer system using formal mathematical specifications

    Sankar, Bindu; Sasidhar Rao, B.; Ilango Sambasivam, S.; Swaminathan, P.

    2002-01-01

    Full text: Real time computer systems are increasingly used for safety critical supervision and control of nuclear reactors. Typical application areas are supervision of reactor core against coolant flow blockage, supervision of clad hot spot, supervision of undesirable power excursion, power control and control logic for fuel handling systems. The most frequent cause of fault in safety critical real time computer system is traced to fuzziness in requirement specification. To ensure the specified safety, it is necessary to model the requirement specification of safety critical real time computer systems using formal mathematical methods. Modeling eliminates the fuzziness in the requirement specification and also helps to prepare the verification and validation schemes. Test data can be easily designed from the model of the requirement specification. Z and B are the popular languages used for modeling the requirement specification. A typical safety critical real time computer system for supervising the reactor core of prototype fast breeder reactor (PFBR) against flow blockage is taken as case study. Modeling techniques and the actual model are explained in detail. The advantages of modeling for ensuring the safety are summarized

  2. Relevant safety issues in designing the HTR-10 reactor

    Sun Yuliang; Xu Yuanghui

    2001-01-01

    The HTR-10 is a 10 MWth pebble bed high temperature gas cooled reactor being constructed as a research facility at the Institute of Nuclear Energy Technology. This paper discusses design issues of the HTR-10 which are related to safety. It addresses the safety criteria used in the development and assessment of the design, the safety important systems, and the safety classification of components. It also summarises the results of safety analysis, including the approach used for the radioactive source term, as well as the approach to containment design. (author)

  3. Safety approach to the selection of design criteria for the CRBRP reactor refueling system

    Meisl, C.J.; Berg, G.E.; Sharkey, N.F.

    1979-01-01

    The selection of safety design criteria for Liquid Metal Fast Breeder Reactor (LMFBR) refueling systems required the extrapolation of regulations and guidelines intended for Light Water Reactor refueling systems and was encumbered by the lack of benefit from a commercially licensed predecessor other than Fermi. The overall approach and underlying logic are described for developing safety design criteria for the reactor refueling system (RRS) of the Clinch River Breeder Reactor Plant (CRBRP). The complete selection process used to establish the criteria is presented, from the definition of safety functions to the finalization of safety design criteria in the appropriate documents. The process steps are illustrated by examples

  4. Proposal for a technology-neutral safety approach for new reactor designs

    2007-09-01

    Many states are considering an expansion of their nuclear power generation programmes. Many of the technologies and concepts are new and innovative. The current design and licensing rules are applicable to mostly large water reactors and there are no accepted rules in place for design, safety assessment and licensing for new innovative nuclear power plants. This TECDOC proposes a (new) safety approach and a methodology to generate technology-neutral (i.e. independent of reactor technology) safety requirements and a 'safe design' for advanced and innovative reactors. The experience gained in decades of design and licensing, combined with the development of risk-based concepts, has provided insights that will form the basis for new safety rules and requirements. Many lessons learned acknowledge the importance of such concepts as safety goals and defence in depth and the benefits of integrating risk insights early in an iterative design process. A new safety approach will incorporate many of the new developments in these concepts. For example, the probabilistic elements of defence in depth will help define the cumulative provisions to compensate for uncertainty and incompleteness of our knowledge of accident initiation and progression. This TECDOC also identifies areas of work, which will require further definition, research and development and guidance on application. This publication is to be used as a guide to developing a new technology-neutral safety approach, and as a guide in the application of methodologies to define the safety requirements for an innovative reactor designs. The method proposes an integration of deterministic and probabilistic considerations with established principles and concepts such as safety goals and defence in depth. The TECDOC recommends that the structure of the new technology-neutral main pillars for the design and licensing of innovative nuclear reactors be developed following a top-down approach to reflect a newer risk-informed and

  5. Considerations in the development of safety requirements for innovative reactors: Application to modular high temperature gas cooled reactors

    2003-08-01

    Member States of the IAEA have frequently requested this organization to assess, at the conceptual stage, the safety of the design of nuclear reactors that rely on a variety of technologies and are of a high degree of innovation. However, to date, for advanced and innovative reactors and for reactors with characteristics that are different from those of existing light water reactors, widely accepted design standards and rules do not exist. This TECDOC is an outcome of the efforts deployed by the IAEA to develop a general approach for assessing the safety of the design of advanced and innovative reactors, and of all reactors in general including research reactors, with characteristics that differ from those of light water reactors. This publication puts forward a method for safety assessment that is based on the well established and accepted principle of defence in depth. The need to develop a general approach for assessing the safety of the design of reactors that applies to all kinds of advanced reactors was emphasized by the request to the IAEA by South Africa to review the safety of the South African pebble bed modular reactor. This reactor, as other modular high temperature gas cooled reactors (MHTGRs), adopts very specific design features such as the use of coated particle fuel. The characteristics of the fuel deeply affect the design and the safety of the plant, thereby posing several challenges to traditional safety assessment methods and to the application of existing safety requirements that have been developed primarily for water reactors. In this TECDOC, the MHTGR has been selected as a case study to demonstrate the viability of the method proposed. The approach presented is based on an extended interpretation of the concept of defence in depth and its link with the general safety objectives and fundamental safety functions as set out in 'Safety of Nuclear Power Plants: Design', IAEA Safety Standards No. NS-R.1, issued by the IAEA in 2000. The objective

  6. Incorporation of Safety into Design Process : A Systems Engineering Perspective

    Rajabalinejad, M.

    2018-01-01

    This paper suggests integrating the best safety practices with the design process. This integration enriches the exploration experience for designers and adds extra values and competitor advantages for customers. The paper introduces the safety cube for combining common blocks for design, hazard

  7. Design trade-offs in view of safety considerations

    Saji, G.; Kishida, K.; Inoue, T.

    1978-01-01

    In view of resolving conflicting demands of cost, safety, flexibility of operation and design margins, safety design of various plant systems is discussed referring to their weight on construction costs. An influence of hypothetical core disruptive accident (HCDA) and loss of piping integrity (LOPI) on plant design and thus on construction materials is discussed, in optimising future commercial FBR plants. (author)

  8. DARHT: INTEGRATION OF AUTHORIZATION BASIS REQUIREMENTS AND WORKER SAFETY

    MC CLURE, D. A.; NELSON, C. A.; BOUDRIE, R. L.

    2001-01-01

    This document describes the results of consensus agreements reached by the DARHT Safety Planning Team during the development of the update of the DARHT Safety Analysis Document (SAD). The SAD is one of the Authorization Basis (AB) Documents required by the Department prior to granting approval to operate the DARHT Facility. The DARHT Safety Planning Team is lead by Mr. Joel A. Baca of the Department of Energy Albuquerque Operations Office (DOE/AL). Team membership is drawn from the Department of Energy Albuquerque Operations Office, the Department of Energy Los Alamos Area Office (DOE/LAAO), and several divisions of the Los Alamos National Laboratory. Revision 1 of the DARHT SAD had been written as part of the process for gaining approval to operate the Phase 1 (First Axis) Accelerator. Early in the planning stage for the required update of the SAD for the approval to operate both Phase 1 and Phase 2 (First Axis and Second Axis) DARHT Accelerator, it was discovered that a conflict existed between the Laboratory approach to describing the management of facility and worker safety

  9. MarFS-Requirements-Design-Configuration-Admin

    Kettering, Brett Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Grider, Gary Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-08

    This document will be organized into sections that are defined by the requirements for a file system that presents a near-POSIX (Portable Operating System Interface) interface to the user, but whose data is stored in whatever form is most efficient for the type of data being stored. After defining the requirement the design for meeting the requirement will be explained. Finally there will be sections on configuring and administering this file system. More and more, data dominates the computing world. There is a “sea” of data out there in many different formats that needs to be managed and used. “Mar” means “sea” in Spanish. Thus, this product is dubbed MarFS, a file system for a sea of data.

  10. Requirements and international co-operation in nuclear safety for evolutionary light water reactors

    Carnino, A.

    1999-01-01

    The principles of safety are now well known and implemented world-wide, leading to a situation of harmonisation in accordance with the Convention on Nuclear Safety. Future reactors are expected not only to meet current requirements but to go beyond the safety level presently accepted. To this end, technical safety requirements, as defined by the IAEA document Safety Fundamentals, need be duly considered in the design, the risks to workers and population must be decreased, a stable, transparent and objective regulatory process, including an international harmonisation with respect to licensing of new reactors, must be developed, and the issue of public acceptance must be addressed. Well-performing existing installations are seen as a prerequisite for an improved public acceptability; there should be no major accidents, the results from safety performance indicators must be unquestionable, and compliance with internationally harmonised criteria is essential. Economical competitiveness is another factor that influences the acceptability; the costs for constructing the plant, for its operation and maintenance, for the fuel cycle, and for the final decommissioning are of paramount importance. Plant simplification, longer fuel cycles, life extension are appealing options, but safety will have first priority. The IAEA can play an important role in this field, by providing peer reviews by teams of international experts and assistance to Member States on the use of its safety standards. (author)

  11. Legal requirements concerning the technical safety of nuclear installations

    Nolte, R.

    1984-01-01

    A short survey on nuclear risks and the nuclear safety conception is followed by the attempted clear definition of the semantic import of section 7, sub-section (2), No. 3 of the Atomic Energy Act. There are first beginnings of a concretization of the state-of-the-art in science and technology, i.e. all kinds of sub-legislative regulations such as the regulations of the Radiation Protection Ordinance which show scientific substance, guidelines issued by the Ministers, as well as codes for practice set up by various technical bodies and standardization associations, all of which are designed to compensate for this loop hole in the legislation. This study goes to examine to what extent administration and jurisdiction may take into account such codes of practice for the concretization of the legal requirements, and whether they are even binding on those executing the law. Only the respective regulations of the Radiation Protection Ordinance have a binding effect. All other guidelines and codes of practice are not legally binding per se, nor are they capable of being legally permitted by being referred to in terms of legal norms or by the self-commitment of those executing the law. Any attempt of using them, as the basis of a prime facie evidence or as an anticipating expertise, at least evidentarily for the concretization will have to fail owing to their evaluating character and to the fact that they may interfere in sociological conflict. An exception may be a case where a clear distinction can be made as to what extent the contents of such codes of practice is related to scientific and technological findings or to decisions based on evaluations. In such a case, a prima facil evicdence for the conformity of the regulation in question with the state-of-the-art in science and technology may be considered, which would easy the concretization of Art. 7 II Section 3 of the Atomic Law. (orig./HSCH) [de

  12. Cascade Distillation System Design for Safety and Mission Assurance

    Sarguisingh, Miriam; Callahan, Michael R.; Okon, Shira

    2015-01-01

    Per the NASA Human Health, Life Support and Habitation System Technology Area 06 report "crewed missions venturing beyond Low-Earth Orbit (LEO) will require technologies with improved reliability, reduced mass, self-sufficiency, and minimal logistical needs as an emergency or quick-return option will not be feasible".1 To meet this need, the development team of the second generation Cascade Distillation System (CDS 2.0) chose a development approach that explicitly incorporate consideration of safety, mission assurance, and autonomy. The CDS 2.0 preliminary design focused on establishing a functional baseline that meets the CDS core capabilities and performance. The critical design phase is now focused on incorporating features through a deliberative process of establishing the systems failure modes and effects, identifying mitigation strategies, and evaluating the merit of the proposed actions through analysis and test. This paper details results of this effort on the CDS 2.0 design.

  13. Review of the Safety Design Approaches in Sodium Fast Reactors

    Suk, Soo Dong; Lee, Yong Bum

    2009-12-01

    The principle of the Defense in depth is essential in securing the safety of nuclear power plants, that is, to prevent cores-damaging severs accidents and to minimize the radiological consequences of the accidents 'as low as possible' (ALARA). One of the major design features of sodium fast reactors (SFRs) is that it has a large amount of sodium in the reactor vessel, providing a large heat capacity, such that it is feasible to contain the consequences of sever core damaging accidents in the vessel and primary system boundary. Containment of a severe accident in the primary system boundary, that is called in-vessel retention(IVR), is not a licensing requirement but set up as a design goal in most of the SFR design in the context of risk minimization. The objective of this report is to broadly review and compare the approaches and efforts made in the some of the major SFR designs of the US, Europe and Japan to prevent severe accidents and mitigate their consequences should they occur. Specifically, the subjects described in this report include design criteria or requirements, accident categorization and acceptance criteria, design features to prevent and contain severs accidents

  14. Responsibility for the Violation of Ecological Safety Requirements

    Selivanovskaya, J. I.; Gilmutdinova, I.

    2018-01-01

    The article deals with the problems of responsibility for the violation of ecological safety requirements from the point of view of sustainable development of the state. Such types of responsibility as property, disciplinary, financial, administrative and criminal responsibility in the area are analysed. Suggestions on the improvement of legislation are put forward. Among other things it is suggested to introduce criminal sanctions against legal bodies (enterprises) for ecological crimes with punishments in the form of fines, suspension or discontinuation of activities.

  15. Status of safety issues at licensed power plants: TMI Action Plan requirements; unresolved safety issues; generic safety issues; other multiplant action issues

    1993-12-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, the NRC established a program for publishing an annual report on the status of licensee implementation and NRC verification of safety issues in major NRC requirements areas. This information was initially compiled and reported in three NUREG-series volumes. Volume 1, published in March 1991, addressed the status of Three Mile Island (TMI) Action Plan Requirements. Volume 2, published in May 1991, addressed the status of unresolved safety issues (USIs). Volume 3, published in June 1991, addressed the implementation and verification status of generic safety issues (GSIs). The first annual supplement, which combined these volumes into a single report and presented updated information as of September 30, 1991, was published in December 1991. The second annual supplement, which provided updated information as of September 30, 1992, was published in December 1992. Supplement 2 also provided the status of licensee implementation and NRC verification of other multiplant action (MPA) issues not related to TMI Action Plan requirements, USIs, or GSIs. This third annual NUREG report, Supplement 3, presents updated information as of September 30, 1993. This report gives a comprehensive description of the implementation and verification status of TMI Action Plan requirements, safety issues designated as USIs, GSIs, and other MPAs that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. Additionally, this report serves as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees

  16. Status of safety issues at licensed power plants: TMI Action Plan requirements, unresolved safety issues, generic safety issues, other multiplant action issues. Supplement 4

    1994-12-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, the NRC established a program for publishing an annual report on the status of licensee implementation and NRC verification of safety issues in major NRC requirements areas. This information was initially compiled and reported in three NUREG-series volumes. Volume 1, published in March 1991, addressed the status of Three Mile Island (TMI) Action Plan Requirements. Volume 2, published in May 1991, addressed the status of unresolved safety issues (USIs). Volume 3, published in June 1991, addressed the implementation and verification status of generic safety issues (GSIs). The first annual supplement, which combined these volumes into a single report and presented updated information as of September 30, 1991, was published in December 1991. The second annual supplement, which provided updated information as of September 30, 1992, was published in December 1992. Supplement 2 also provided the status of licensee implementation and NRC verification of other multiplant action (MPA) issues not related to TMI Action Plan requirements, USIs, or GSIs. Supplement 3 gives status as of September 30, 1993. This annual report, Supplement 4, presents updated information as of September 30, 1994. This report gives a comprehensive description of the implementation and verification status of TMI Action Plan requirements, safety issues designated as USIs, GSIs, and other MPAs that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. Additionally, this report serves as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees

  17. Future CANDU nuclear power plant design requirements document executive summary

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; S. A. Usmani

    1996-03-01

    The future CANDU Requirements Document (FCRED) describes a clear and complete statement of utility requirements for the next generation of CANDU nuclear power plants including those in Korea. The requirements are based on proven technology of PHWR experience and are intended to be consistent with those specified in the current international requirement documents. Furthermore, these integrated set of design requirements, incorporate utility input to the extent currently available and assure a simple, robust and more forgiving design that enhances the performance and safety. The FCRED addresses the entire plant, including the nuclear steam supply system and the balance of the plant, up to the interface with the utility grid at the distribution side of the circuit breakers which connect the switchyard to the transmission lines. Requirements for processing of low level radioactive waste at the plant site and spent fuel storage requirements are included in the FCRED. Off-site waste disposal is beyond the scope of the FCRED. 2 tabs., 1 fig. (Author) .new

  18. Small Column Ion Exchange Design and Safety Strategy

    Huff, T.; Rios-Armstrong, M.; Edwards, R.; Herman, D.

    2011-01-01

    Small Column Ion Exchange (SCIX) is a transformational technology originally developed by the Department of Energy (DOE) Environmental Management (EM-30) office and is now being deployed at the Savannah River Site (SRS) to significantly increase overall salt processing capacity and accelerate the Liquid Waste System life-cycle. The process combines strontium and actinide removal using Monosodium Titanate (MST), Rotary Microfiltration, and cesium removal using Crystalline Silicotitanate (CST, specifically UOP IONSIV(reg s ign)IE-911 ion exchanger) to create a low level waste stream to be disposed in grout and a high level waste stream to be vitrified. The process also includes preparation of the streams for disposal, e.g., grinding of the loaded CST material. These waste processing components are technically mature and flowsheet integration studies are being performed including glass formulations studies, application specific thermal modeling, and mixing studies. The deployment program includes design and fabrication of the Rotary Microfilter (RMF) assembly, ion-exchange columns (IXCs), and grinder module, utilizing an integrated system safety design approach. The design concept is to install the process inside an existing waste tank, Tank 41H. The process consists of a feed pump with a set of four RMFs, two IXCs, a media grinder, three Submersible Mixer Pumps (SMPs), and all supporting infrastructure including media receipt and preparation facilities. The design addresses MST mixing to achieve the required strontium and actinide removal and to prevent future retrieval problems. CST achieves very high cesium loadings (up to 1,100 curies per gallon (Ci/gal) bed volume). The design addresses the hazards associated with this material including heat management (in column and in-tank), as detailed in the thermal modeling. The CST must be size reduced for compatibility with downstream processes. The design addresses material transport into and out of the grinder and

  19. Improved safety features in the design of Alto Lazio NPP

    Bava, G.; Cianciolo, T.; Del Nero, G.

    1988-01-01

    The ALTO LAZIO Nuclear Power Plant, two 1000Mwe units, is a BWR 6/MARK III located about 100 km north of Rome, on the Tyrrhenian Sea Coasts. The construction of the plant started in 1978, but it has recently been stopped by a Government decision following a national referendum, when the units were about 70% completed. This paper is mainly intended to illustrate the major safety features which have been implemented as result of specific requirements issued by the safety authority (ENEA DISP) during the construction permit stage or the subsequent licensing process. One of the tools used to identify the need for design modifications has been a comprehensive reliability analysis of safety system: in the paper the methods used and the major results obtained by this study are briefly presented. Also, the approach used in the investigation of severe accidents and major applications in the area of plant design and emergency procedures are briefly discussed; furthermore the trend toward a simpler mitigation concept is described

  20. Codes, standards, and requirements for DOE facilities: natural phenomena design

    Webb, A.B.

    1985-01-01

    The basic requirements for codes, standards, and requirements are found in DOE Orders 5480.1A, 5480.4, and 6430.1. The type of DOE facility to be built and the hazards which it presents will determine the criteria to be applied for natural phenomena design. Mandatory criteria are established in the DOE orders for certain designs but more often recommended guidance is given. National codes and standards form a great body of experience from which the project engineer may draw. Examples of three kinds of facilities and the applicable codes and standards are discussed. The safety program planning approach to project management used at Westinghouse Hanford is outlined. 5 figures, 2 tables

  1. Robot-Assisted Fracture Surgery: Surgical Requirements and System Design.

    Georgilas, Ioannis; Dagnino, Giulio; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2018-03-09

    The design of medical devices is a complex and crucial process to ensure patient safety. It has been shown that improperly designed devices lead to errors and associated accidents and costs. A key element for a successful design is incorporating the views of the primary and secondary stakeholders early in the development process. They provide insights into current practice and point out specific issues with the current processes and equipment in use. This work presents how information from a user-study conducted in the early stages of the RAFS (Robot Assisted Fracture Surgery) project informed the subsequent development and testing of the system. The user needs were captured using qualitative methods and converted to operational, functional, and non-functional requirements based on the methods derived from product design and development. This work presents how the requirements inform a new workflow for intra-articular joint fracture reduction using a robotic system. It is also shown how the various elements of the system are developed to explicitly address one or more of the requirements identified, and how intermediate verification tests are conducted to ensure conformity. Finally, a validation test in the form of a cadaveric trial confirms the ability of the designed system to satisfy the aims set by the original research question and the needs of the users.

  2. 47 CFR 80.305 - Watch requirements of the Communications Act and the Safety Convention.

    2010-10-01

    ... and the Safety Convention. 80.305 Section 80.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Ship Station Safety Watches § 80.305 Watch requirements of the Communications Act and the Safety...

  3. Electrical design requirements for electrode boilers for nuclear plants

    Kempker, M.J.

    1979-01-01

    Medium-voltage steam electrode boilers, in the 20- to 50-MW range, have become an attractive alternative to comparable fossil-fueled boilers as a source of auxiliary steam during the startup and normal shutdown of nuclear power plants. The electrode boiler represents a favorable option because of environmental, fire protection, and licensing considerations. However, this electrical option brings some difficult design problems for which solutions are required in order to integrate the electrode boiler into the plant low resistance grounded power system. These considerations include the effects of an unbalanced electrode boiler on the performance of polyphase induction motors, boiler grounding for personnel safety, boiler neutral grounding, and ground relaying

  4. Probabilistic safety analysis of DC power supply requirements for nuclear power plants. Technical report

    Baranowsky, P.W.; Kolaczkowski, A.M.; Fedele, M.A.

    1981-04-01

    A probabilistic safety assessment was performed as part of the Nuclear Regulatory Commission generic safety task A-30, Adequacy of Safety Related DC Power Supplies. Event and fault tree analysis techniques were used to determine the relative contribution of DC power related accident sequences to the total core damage probability due to shutdown cooling failures. It was found that a potentially large DC power contribution could be substantially reduced by augmenting the minimum design and operational requirements. Recommendations included (1) requiring DC power divisional independence, (2) improved test, maintenance, and surveillance, and (3) requiring core cooling capability be maintained following the loss of one DC power bus and a single failure in another system

  5. Basic national requirements for safe design, construction and operation

    Franzen, L.F.

    1980-01-01

    Nuclear power plants have to be save. Vendors and utilities operating such plants, are convinced that their plants meet this requirement. Who, however, is establishing the safety requirements to be met by those manufacturing and operating nuclear power plants. What are the mechanisms to control whether the features provided assure the required safety level. Who controls whether the required and planned safety features are really provided. Who is eventually responsible for assuring safety after commissioning of a nuclear power plant. These fundamental questions being raised in many discussions on safety and environmental protection are dealt with in the following sections: (1) Fundamental safety requirements on nuclear power plants, in which such items as risk, legal bases and licensing procedure are discussed, (2) Surveillance during construction, in which safety analysis report, siting, safety evaluation, document examination, quality assurance, and commissioning testing are dealt with, (3) Operating tests and conditions in which recurrent inspections, environmental protection during operation, investigation of abnormal occurences and backfitting requirements as reviewed, and (4) Safety philosophy and safety policy to conclude this presentation. The German approach to nuclear safety serves as an example for an effective way of assuring safe nuclear power. (orig.)

  6. Seismic design and performance of nuclear safety related RC structures based on new seismic design principle

    Murugan, R.; Sivathanu Pillai, C.; Chattopadhyaya, S.; Sundaramurthy, C.

    2011-01-01

    Full text: Seismic design of safety related Reinforced Concrete (RC) structures of Nuclear power plants (NPP) in India as per the present AERB codal procedures tries to ensure predominantly elastic behaviour under OBE so that the features of Nuclear Power Plant (NPP) necessary for continued safe operation are designed to remain functional and prevent accident (collapse) of NPP under SSE for which certain Structures, Systems and Components (SSCs) those are necessary to ensure the capability to shut down the reactor safely, are designed to remain functional. While the seismic design principles of non safety related structures as per Indian code (IS 1893-2002) are ensuring elastic behaviour under DBE and inelastic behaviour under MCE by utilizing ductility and energy dissipation capacity of the structure effectively. The design principle of AERB code is ensuring elastic behaviour under OBE and is not enlightening much inference about the overall structural behaviour under SSE (only ensuring the capability of certain SSCs required for safe shutdown of reactor). Various buildings and structures of Indian Nuclear power plant are classified from the basis of associated safety functions in a descending order in according with their roles in preventions and mitigation of an accident or support functions for prevention. This paper covers a comprehensive seismic analysis and design methodology based on the AERB codal provisions followed for safety related RC structure taking Diesel Generator Building of PFBR as a case study and study and investigates its performance under OBE and SSE by carrying out Non-linear static Pushover analysis. Based on the analysis, observed variations, recommendations are given for getting the desired performance level so as to implement performance based design in the future NPP design

  7. Meeting the next generation PWR safety requirements: The EPR Reactor

    Salhi, Othman

    2008-01-01

    The development process pursued the harmonization of technical solutions and the integration of all the lessons learned from earlier nuclear plants built by both vendors. As far as safety more specifically is concerned, the basic choice for the EPR was to adopt an evolutionary approach based on experience feedback from the reactors built by Areva, which at the time already amounted to nearly 100. This philosophy makes today's Areva EPR the natural descendant of the most advanced French N4 and German Konvoi power reactors currently in operation. EPR design choices affecting safety were motivated by a continuous quest for higher levels of safety. A two-fold approach was followed: 1. improvement of the measures aimed at further reducing the already very low probability of core melt 2. incorporation of measures aimed at further limiting the consequences of a severe accident, in the knowledge that its probability of occurrence has been considerably reduced. Through its filiations with French N4 and German Konvoi power reactors, the EPR benefits from the uninterrupted, evolutionary innovation process that has supported the development of PWRs since their introduction into the market place. This is especially true for safety where the EPR brings a unique combination of both tried and tested and innovative features that further improve the prevention of severe accidents and their mitigation

  8. Basic Block of Pipelined ADC Design Requirements

    V. Kledrowetz

    2011-04-01

    Full Text Available The paper describes design requirements of a basic stage (called MDAC - Multiplying Digital-to- Analog Converter of a pipelined ADC. There exist error sources such as finite DC gain of opamp, capacitor mismatch, thermal noise, etc., arising when the switched capacitor (SC technique and CMOS technology are used. These non-idealities are explained and their influences on overall parameters of a pipelined ADC are studied. The pipelined ADC including non-idealities was modeled in MATLAB - Simulink simulation environment.

  9. Hazard analysis & safety requirements for small drone operations : to what extent do popular drones embed safety?

    Plioutsias, Anastasios; Karanikas, Nektarios; Chatzimichailidou, Maria Mikela

    2018-01-01

    Currently, published risk analyses for drones refer mainly to commercial systems, use data from civil aviation, and are based on probabilistic approaches without suggesting an inclusive list of hazards and respective requirements. Within this context, this paper presents: (1) a set of safety

  10. Requirements and Designs for Mars Rover RTGs

    Schock, Alfred; Shirbacheh, M; Sankarankandath, V

    2012-01-19

    The current-generation RTGs (both GPHS and MOD) are designed for operation in a vacuum environment. The multifoil thermal insulation used in those RTGs only functions well in a good vacuum. Current RTGs are designed to operate with an inert cover gas before launch, and to be vented to space vacuum after launch. Both RTGs are sealed with a large number of metallic C-rings. Those seals are adequate for retaining the inert-gas overpressure during short-term launch operations, but would not be adequate to prevent intrusion of the Martian atmospheric gases during long-term operations there. Therefore, for the Mars Rover application, those RTGs just be modified to prevent the buildup of significant pressures of Mars atmosphere or of helium (from alpha decay of the fuel). In addition, a Mars Rover RTG needs to withstand a long-term dynamic environment that is much more severe than that seen by an RTG on an orbiting spacecraft or on a stationary planetary lander. This paper describes a typical Rover mission, its requirements, the environment it imposes on the RTG, and a design approach for making the RTG operable in such an environment. Specific RTG designs for various thermoelectric element alternatives are presented.; Reference CID #9268 and CID #9276.

  11. Technical Safety Requirements for the Waste Storage Facilities May 2014

    Laycak, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  12. Technical Safety Requirements for the Waste Storage Facilities May 2014

    Laycak, D. T.

    2014-01-01

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  13. Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project

    Duckwitz, Noel

    2011-01-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets,' safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, 'Facility Safety,' and the expectations of DOE-STD-1189-2008, 'Integration of Safety into the Design Process,' provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  14. Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project

    Duckwitz, Noel

    2011-01-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets,' safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, 'Facility Safety,' and the expectations of DOE-STD-1189-2008, 'Integration of Safety into the Design Process,' provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  15. Two psig service requires proper design concepts

    Veraa, G.S.

    1991-01-01

    This paper reports that Washington Gas (WG) established a 2 psig house line delivery system in the late 1980s to compete with electric utilities and recapture its share of the natural gas market. A trend away from installing natural gas in new housing required WG to improve construction materials, develop cost-cutting techniques and provide new regulators and metering to convince builders of the advantages of natural gas systems. WG serves approximately 650,000 customers in Washington D.C. and the surrounding counties in Virginia and Maryland. Over the last few years, WG has been adding about 20,000 new customers per year. In the 1970s when natural gas was in short supply, a moratorium was imposed on new customers. When the moratorium was finally lifted in the late 1970s, the electric utilities had captured most of the new housing energy market. Innovative marketing efforts were needed to win market share and compete with the electric utilities, but several factors combined to inhibit new gas sales. First, builders had grown accustomed to specifying electric heat pumps for house heating and had a certain amount of resistance to change. Although market research indicated that new home buyers preferred natural gas, many builders did not want to deal with another utility. Also, gas piping increased construction costs. Traditional gas house piping is rigid black pipe which is cut and fit on the job. The right angle turns limit where the pipe can be run, making it labor intensive to install. Safety was another important consideration. Normally, an internal relief valve provides sufficient over-pressure protection in the event of a regulator full-valve failure. The 2 psig delivery pressure required a review of what type of over-pressure protection should be provided

  16. Design of agricultural product quality safety retrospective supervision system of Jiangsu province

    Wang, Kun

    2017-08-01

    In store and supermarkets to consumers can trace back agricultural products through the electronic province card to query their origin, planting, processing, packaging, testing and other important information and found that the problems. Quality and safety issues can identify the responsibility of the problem. This paper designs a retroactive supervision system for the quality and safety of agricultural products in Jiangsu Province. Based on the analysis of agricultural production and business process, the goal of Jiangsu agricultural product quality safety traceability system construction is established, and the specific functional requirements and non-functioning requirements of the retroactive system are analyzed, and the target is specified for the specific construction of the retroactive system. The design of the quality and safety traceability system in Jiangsu province contains the design of the overall design, the trace code design and the system function module.

  17. [Storage of plant protection products in farms: minimum safety requirements].

    Dutto, Moreno; Alfonzo, Santo; Rubbiani, Maristella

    2012-01-01

    Failure to comply with requirements for proper storage and use of pesticides in farms can be extremely hazardous and the risk of accidents involving farm workers, other persons and even animals is high. There are still wide differences in the interpretation of the concept of "securing or making safe", by workers in this sector. One of the critical points detected, particularly in the fruit sector, is the establishment of an adequate storage site for plant protection products. The definition of "safe storage of pesticides" is still unclear despite the recent enactment of Legislative Decree 81/2008 regulating health and work safety in Italy. In addition, there are no national guidelines setting clear minimum criteria for storage of plant protection products in farms. The authors, on the basis of their professional experience and through analysis of recent legislation, establish certain minimum safety standards for storage of pesticides in farms.

  18. Assessment of the impact of dipped guideways on urban rail transit systems: Ventilation and safety requirements

    1982-01-01

    The ventilation and fire safety requirements for subway tunnels with dipped profiles between stations as compared to subway tunnels with level profiles were evaluated. This evaluation is based upon computer simulations of a train fire emergency condition. Each of the tunnel configurations evaluated was developed from characteristics that are representative of modern transit systems. The results of the study indicate that: (1) The level tunnel system required about 10% more station cooling than dipped tunnel systems in order to meet design requirements; and (2) The emergency ventilation requirements are greater with dipped tunnel systems than with level tunnel systems.

  19. Health and Safety Audit Design Manual

    Ternes, Mark P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Langley, Brandon R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Accawi, Gina K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Malhotra, Mini [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-01

    The Health and Safety Audit is an electronic audit tool developed by the Oak Ridge National Laboratory to assist in the identification and selection of health and safety measures when a home is being weatherized (i.e., receiving home energy upgrades), especially as part of the US Department of Energy (DOE) Weatherization Assistance Program, or during home energy-efficiency retrofit or remodeling jobs. The audit is specifically applicable to existing single-family homes (including mobile homes), and is generally applicable to individual dwelling units in low-rise multifamily buildings. The health and safety issues covered in the audit are grouped in nine categories: mold and moisture, lead, radon, asbestos, formaldehyde and volatile organic compounds (VOCs), combustion, pest infestation, safety, and ventilation. Development of the audit was supported by the US Department of Housing and Urban Development Office of Healthy Homes and Lead Hazard Control and the DOE Weatherization Assistance Program.

  20. The approaches of safety design and safety evaluation at HTTR (High Temperature Engineering Test Reactor)

    Iigaki, Kazuhiko; Saikusa, Akio; Sawahata, Hiroaki; Shinozaki, Masayuki; Tochio, Daisuke; Honma, Fumitaka; Tachibana, Yukio; Iyoku, Tatsuo; Kawasaki, Kozo; Baba, Osamu

    2006-06-01

    Gas Cooled Reactor has long history of nuclear development, and High Temperature Gas Cooled Reactor (HTGR) has been expected that it can be supply high temperature energy to chemical industry and to power generation from the points of view of the safety, the efficiency, the environment and the economy. The HTGR design is tried to installed passive safety equipment. The current licensing review guideline was made for a Low Water Reactor (LWR) on safety evaluation therefore if it would be directly utilized in the HTGR it needs the special consideration for the HTGR. This paper describes that investigation result of the safety design and the safety evaluation traditions for the HTGR, comparison the safety design and safety evaluation feature for the HTGT with it's the LWR, and reflection for next HTGR based on HTTR operational experiment. (author)

  1. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    2004-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  2. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    2000-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  3. Design of reactor containment systems for nuclear power plants. Safety guide

    2008-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. It is a revision of the Safety Guide on Design of the Reactor Containment Systems in Nuclear Power Plants (Safety Series No. 50-Sg-D1) issued in 1985 and supplements the Safety Requirements publication on Safety of Nuclear Power Plants: Design. The present Safety Guide was prepared on the basis of a systematic review of the relevant publications, including the Safety of Nuclear Power Plants: Design, the Safety fundamentals publication on The Safety of Nuclear Installations, Safety Guides, INSAG Reports, a Technical Report and other publications covering the safety of nuclear power plants. 1.2. The confinement of radioactive material in a nuclear plant, including the control of discharges and the minimization of releases, is a fundamental safety function to be ensured in normal operational modes, for anticipated operational occurrences, in design basis accidents and, to the extent practicable, in selected beyond design basis accidents. In accordance with the concept of defence in depth, this fundamental safety function is achieved by means of several barriers and levels of defence. In most designs, the third and fourth levels of defence are achieved mainly by means of a strong structure enveloping the nuclear reactor. This structure is called the 'containment structure' or simply the 'containment'. This definition also applies to double wall containments. 1.3. The containment structure also protects the reactor against external events and provides radiation shielding in operational states and accident conditions. The containment structure and its associated systems with the functions of isolation, energy management, and control of radionuclides and combustible gases are referred to as the containment systems

  4. Design of reactor containment systems for nuclear power plants. Safety guide

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. It is a revision of the Safety Guide on Design of the Reactor Containment Systems in Nuclear Power Plants (Safety Series No. 50-Sg-D1) issued in 1985 and supplements the Safety Requirements publication on Safety of Nuclear Power Plants: Design. The present Safety Guide was prepared on the basis of a systematic review of the relevant publications, including the Safety of Nuclear Power Plants: Design, the Safety fundamentals publication on The Safety of Nuclear Installations, Safety Guides, INSAG Reports, a Technical Report and other publications covering the safety of nuclear power plants. 1.2. The confinement of radioactive material in a nuclear plant, including the control of discharges and the minimization of releases, is a fundamental safety function to be ensured in normal operational modes, for anticipated operational occurrences, in design basis accidents and, to the extent practicable, in selected beyond design basis accidents. In accordance with the concept of defence in depth, this fundamental safety function is achieved by means of several barriers and levels of defence. In most designs, the third and fourth levels of defence are achieved mainly by means of a strong structure enveloping the nuclear reactor. This structure is called the 'containment structure' or simply the 'containment'. This definition also applies to double wall containments. 1.3. The containment structure also protects the reactor against external events and provides radiation shielding in operational states and accident conditions. The containment structure and its associated systems with the functions of isolation, energy management, and control of radionuclides and combustible gases are referred to as the containment systems

  5. TIBER II/ETR final design report: Volume 3, 5.0 Radiation safety and environment; 6.0 Physics and technology R and D needs

    Lee, J.D.

    1987-09-01

    This paper discusses the design of the TIBER II Tokamak. This particular volume discusses: safety and environmental requirements and design targets; accident analyses; personnel safety and maintenance exposure; effluent control; waste management and decommissioning; safety considerations in building design; and safety and environmental conclusions and recommendations

  6. Distinctive safety aspects of the CANDU-PHW reactor design

    Kugler, G.

    1980-01-01

    Two lectures are presented in this report. They were prepared in response to a request from IAEA to provide information on the 'Special characteristics of the safety analysis of heavy water reactors' to delegates from member states attending the Interregional Training Course on Safety Analysis Review, held at Karlsruhe, November 19 to December 20, 1979. The CANDU-PHW reactor is used as a model for discussion. The first lecture describes the distinctive features of the CANDU reactor and how they impact on reactor safety. In the second lecture the Canadian safety philosophy, the safety design objective, and other selected topics on reactor safety analysis are discussed. The material in this report was selected with a view to assisting those not familiar with the CANDU heavy water reactor design in evaluating the distinctive safety aspects of these reactors. (auth)

  7. Safety design of the international fusion materials irradiation facility (IFMIF)

    Konishi, Satoshi; Yamaki, Daiju; Katsuta, Hiroji; Moeslang, Anton; Jameson, R.A.; Martone, Marcello; Shannon, T.E.

    1997-11-01

    In the Conceptual Design Activity of the IFMIF, major subsystems, as well as the entire facility is carefully designed to satisfy the safety requirements for any possible construction sites. Each subsystem is qualitatively analyzed to identify possible hazards to the workers, public and environments using Failure Mode and Effect Analysis (FMEA). The results are reflected in the design and operation procedure. Shielding of radiation, particularly neutron around the test cell is one of the most important issue in normal operation. Radiation due to beam halo and activation is a hazard for operation personnel in the accelerator system. For the maintenance, remote handling technology is designed to be applied in various facilities of the IFMIF. Lithium loop and target system hold the majority of the radioactive material in the facility. Tritium and beryllium-7 are generated by the nuclear reaction during operation and thus needed to be removed continuously. They are also the potential hazards of airborne source in off-normal events. Minimization of inventory, separation and immobilization, and multiple confinement are considered in the design. Generation of radioactive waste is anticipated to be minor, but waste treatment systems for gas, liquid and solid wastes are designed to minimize the environmental impact. Lithium leak followed by a fire is a major concern, and extensive prevention plan is made in the target design. One of the design option considered is composed of; primary enclosure of the lithium loop, secondary containment filled with positive pressure argon, and an air tight lithium cell made of concrete with a steel lining. This study will report some technical issues considered in the design of IFMIF. It was concluded that the IFMIF can be designed and constructed to meet or exceed current safely standards for workers, public and the environment with existing technology and reasonable construction cost. (J.P.N.)

  8. Design aspects of radiological safety in nuclear facilities

    Patkulkar, D.S.; Purohit, R.G.; Tripathi, R.M.

    2014-01-01

    In order to keep operational performance of a nuclear facility high and to keep occupational and public exposure ALARA, radiological safety provisions must be reviewed at the time of facility design. Deficiency in design culminates in deteriorated system performance and non adherence to safety standards and could sometimes result in radiological incident. Important radiological aspects relevant to safety were compiled based on operating experiences, design deficiencies brought out from past nuclear incidents, experience gained during maintenance, participation in design review of upcoming nuclear facilities and radiological emergency preparedness

  9. Recent developments in the IAEA safety standards: design and operation of nuclear power plants

    Saito, Takehiko

    2004-01-01

    The IAEA has been publishing a wide variety of safety standards for nuclear and radiation related facilities and activities since 1978. In 1996, a more rigorously structured approach for the preparation and review of its safety standards was introduced. Currently, based on the approach, revision of most of the standards is in completion or near completion. The latest versions of the Safety Requirements for ''Design'' and ''Operation'' of nuclear power plants were respectively published in 2000. Currently, along with this revision of the Safety Requirements, many Safety Guides have been revised. In order to clarify the complicated revision procedure, an example of the entire revision process for a Safety Guide is provided. Through actual example of the revision process, enormous amount of work involved in the revision work is clearly indicated. The current status of all of the Safety Standards for Design and that for Operation of nuclear power plants are summarized. Summary of other IAEA safety standards currently revised and available related IAEA publications, together with information on the IAEA Web Site from where these documents can be downloaded, is also provided. The standards are reviewed to determine whether revision (or new issue) is necessary in five years following publication. The IAEA safety standards will continue to be updated through comprehensive and structured approach, collaboration of many experts of the world, and reflecting good practices of the world. The IAEA safety standards will serve to provide high level of safety assurance. (author)

  10. The actual development of European aviation safety requirements in aviation medicine: prospects of future EASA requirements.

    Siedenburg, J

    2009-04-01

    Common Rules for Aviation Safety had been developed under the aegis of the Joint Aviation Authorities in the 1990s. In 2002 the Basic Regulation 1592/2002 was the founding document of a new entity, the European Aviation Safety Agency. Areas of activity were Certification and Maintenance of aircraft. On 18 March the new Basic Regulation 216/2008, repealing the original Basic Regulation was published and applicable from 08 April on. The included Essential Requirements extended the competencies of EASA inter alia to Pilot Licensing and Flight Operations. The future aeromedical requirements will be included as Annex II in another Implementing Regulation on Personnel Licensing. The detailed provisions will be published as guidance material. The proposals for these provisions have been published on 05 June 2008 as NPA 2008- 17c. After public consultation, processing of comments and final adoption the new proposals may be applicable form the second half of 2009 on. A transition period of four year will apply. Whereas the provisions are based on Joint Aviation Requirement-Flight Crew Licensing (JAR-FCL) 3, a new Light Aircraft Pilot Licence (LAPL) project and the details of the associated medical certification regarding general practitioners will be something new in aviation medicine. This paper consists of 6 sections. The introduction outlines the idea of international aviation safety. The second section describes the development of the Joint Aviation Authorities (JAA), the first step to common rules for aviation safety in Europe. The third section encompasses a major change as next step: the foundation of the European Aviation Safety Agency (EASA) and the development of its rules. In the following section provides an outline of the new medical requirements. Section five emphasizes the new concept of a Leisure Pilot Licence. The last section gives an outlook on ongoing rulemaking activities and the opportunities of the public to participate in them.

  11. Safety requirements and feedback of commonly used material handling equipment

    Pathak, M.K.

    2009-01-01

    Different types of cranes, hoists, chain pulley blocks are the most commonly used material handling equipment in industry along with attachments like chains, wire rope slings, d-shackles, etc. These equipment are used at work for transferring loads from one place to another and attachments are used for anchoring, fixing or supporting the load. Selection of the correct equipment, identification of the equipment planning of material handling operation, examination/testing of the equipment, education and training of the persons engaged in operation of the material handling equipment can reduce the risks to safety of people in workplace. Different safety systems like boom angle indicator, overload tripping device, limit switches, etc. should be available in the cranes for their safe use. Safety requirement for safe operation of material handling equipment with emphasis on different cranes and attachments particularly wire rope slings and chain slings have been brought out in this paper. An attempt has also been made to bring out common nature of deficiencies observed during regulatory inspection carried out by AERB. (author)

  12. Request for Naval Reactors Comment on Proposed PROMETHEUS Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to Jet Propulsion Laboratory

    D. Kokkinos

    2005-01-01

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory

  13. Design Requirements for Designing Responsive Modular Manufacturing Systems

    Jørgensen, Steffen; Madsen, Ole; Nielsen, Kjeld

    2011-01-01

    Customers demand the newest technologies, newest designs, the ability to customise, high quality, and all this at a low cost. These are trends which challenge the traditional way of operating manufacturing companies, especially in regard to product development and manufacturing. Research...... the needed flexibility and responsiveness, but such systems are not yet fully achieved. From related theory it is known that achieving modular benefits depend on the modular architecture; a modular architecture which must be developed according to the customer needs. This makes production needs a design...... requirement in order to achieve responsiveness and other benefits of modular manufacturing systems (MMS). Due to the complex and interrelated nature of a production system and its surroundings these production needs are complex to identify. This paper presents an analysis framework for identification...

  14. 78 FR 65427 - Pipeline Safety: Reminder of Requirements for Liquefied Petroleum Gas and Utility Liquefied...

    2013-10-31

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2013-0097] Pipeline Safety: Reminder of Requirements for Liquefied Petroleum Gas and Utility Liquefied Petroleum Gas Pipeline Systems AGENCY: Pipeline and Hazardous Materials Safety Administration...

  15. A proposal for safety design philosophy of HTGR for coupling hydrogen production plant

    Sato, Hiroyuki; Ohashi, Hirofumi; Tazawa, Yujiro; Imai, Yoshiyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Kunitomi, Kazuhiko

    2013-06-01

    Japan Atomic Energy Agency (JAEA) has been conducting research and development for hydrogen production utilizing heat from High Temperature Gas-cooled Reactors (HTGRs). Towards the realization of nuclear hydrogen production, coupled hydrogen production plants should not be treated as an extension of a nuclear plant in order to open the door for the entry of non-nuclear industries as well as assuring reactor safety against postulated abnormal events initiated in the hydrogen production plants. Since hydrogen production plant utilizing nuclear heat has never been built in the world, little attention has been given to the establishment of a safety design for such system including the High Temperature engineering Test Reactor (HTTR). In the present study, requirements in order to design, construct and operate hydrogen production plants under conventional chemical plant standards are identified. In addition, design considerations for safety design of nuclear facility are suggested. Furthermore, feasibility of proposed safety design and design considerations are evaluated. (author)

  16. Supervision of nuclear safety - IAEA requirements, accepted solutions, trends

    Jurkowski, M.

    2007-01-01

    Ten principles of the nuclear safety, based on the IAEA's standards are presented. Convention on Nuclear Safety recommends for nuclear safety landscape, the control transparency, culture safety, legal framework and knowledge preservation. Examples of solutions accepted in France, Finland, and Czech Republic are discussed. New trends in safety fundamentals and Integration Regulatory Review are presented

  17. Technical Safety Requirements for the B695 Segment

    Laycak, D

    2008-09-11

    This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment (LLNL 2007). The analysis presented there determined that the B695 Segment is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment are shown in the B695 Segment DSA. Activities typically conducted in the B695 Segment include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive, mixed, and hazardous waste. Operations specific to the SWPA include sorting and segregating waste, lab-packing, sampling, and crushing empty drums that previously contained waste. Furthermore, a Waste Packaging Unit will be permitted to treat hazardous and mixed waste. RHWM generally processes LLW with no, or extremely low, concentrations of transuranics (i.e., much less than 100 n

  18. Technical Safety Requirements for the B695 Segment

    Laycak, D.

    2008-01-01

    This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment (LLNL 2007). The analysis presented there determined that the B695 Segment is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment are shown in the B695 Segment DSA. Activities typically conducted in the B695 Segment include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive, mixed, and hazardous waste. Operations specific to the SWPA include sorting and segregating waste, lab-packing, sampling, and crushing empty drums that previously contained waste. Furthermore, a Waste Packaging Unit will be permitted to treat hazardous and mixed waste. RHWM generally processes LLW with no, or extremely low, concentrations of transuranics (i.e., much less than 100 n

  19. Impact of ITER liquid metal design options on safety level and licensing - Sweden

    Harfors, C.; Devell, L.; Johansson, Kjell; Lundell, B.; Rolandsson, S.

    1993-01-01

    The safety level and licensability of five design options for ITER coolant, breeding material and structural material are assessed, with emphasis on some specified accident scenarios. The safety level is assessed in terms of barrier requirements and the feasibility to construct and qualify such a barrier. The licensability in Sweden of each design option is assessed based on the indicated safety level and on a judgement of the technical feasibility to construct and qualify the ITER tokamak itself, based on the selected design option. 20 refs

  20. Advanced Neutron Source: Plant Design Requirements

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS

  1. Design requirements, operation and maintenance of gas-cooled reactors

    1989-06-01

    At the invitation of the Government of the USA the Technical Committee Meeting on Design Requirements, Operation and Maintenance of Gas-Cooled Reactors, was held in San Diego on September 21-23, 1988, in tandem with the GCRA Conference. Both meetings attracted a large contingent of foreign participants. Approximately 100 delegates from 18 different countries participated in the Technical Committee meeting. The meeting was divided into three sessions: Gas-cooled reactor user requirement (8 papers); Gas-cooled reactor improvements to facilitate operation and maintenance (10 papers) and Safety, environmental impacts and waste disposal (5 papers). A separate abstract was prepared for each of these 23 papers. Refs, figs and tabs

  2. Test design requirements: Canister-scale heater test

    Schauer, M.I.; Craig, P.A.; Stickney, R.G.

    1986-03-01

    This document establishes the Test Design Requirements for the design of a canister scale heater test to be performed in the Exploratory Shaft test facility. The purpose of the test is to obtain thermomechanical rock mass response data for use in validation of the numerical models. The canister scale heater test is a full scale simulation of a high-level nuclear waste container in a prototypic emplacement borehole. Electric heaters are used to simulate the heat loads expected in an actual waste container. This document presents an overview of the test including objectives and justification for the test. A description of the test as it is presently envisioned is included. Discussions on Quality Assurance and Safety are also included in the document. 12 refs., 1 fig

  3. Does unbelted safety requirement affect protection for belted occupants?

    Hu, Jingwen; Klinich, Kathleen D; Manary, Miriam A; Flannagan, Carol A C; Narayanaswamy, Prabha; Reed, Matthew P; Andreen, Margaret; Neal, Mark; Lin, Chin-Hsu

    2017-05-29

    Federal regulations in the United States require vehicles to meet occupant performance requirements with unbelted test dummies. Removing the test requirements with unbelted occupants might encourage the deployment of seat belt interlocks and allow restraint optimization to focus on belted occupants. The objective of this study is to compare the performance of restraint systems optimized for belted-only occupants with those optimized for both belted and unbelted occupants using computer simulations and field crash data analyses. In this study, 2 validated finite element (FE) vehicle/occupant models (a midsize sedan and a midsize SUV) were selected. Restraint design optimizations under standardized crash conditions (U.S.-NCAP and FMVSS 208) with and without unbelted requirements were conducted using Hybrid III (HIII) small female and midsize male anthropomorphic test devices (ATDs) in both vehicles on both driver and right front passenger positions. A total of 10 to 12 design parameters were varied in each optimization using a combination of response surface method (RSM) and genetic algorithm. To evaluate the field performance of restraints optimized with and without unbelted requirements, 55 frontal crash conditions covering a greater variety of crash types than those in the standardized crashes were selected. A total of 1,760 FE simulations were conducted for the field performance evaluation. Frontal crashes in the NASS-CDS database from 2002 to 2012 were used to develop injury risk curves and to provide the baseline performance of current restraint system and estimate the injury risk change by removing the unbelted requirement. Unbelted requirements do not affect the optimal seat belt and airbag design parameters in 3 out of 4 vehicle/occupant position conditions, except for the SUV passenger side. Overall, compared to the optimal designs with unbelted requirements, optimal designs without unbelted requirements generated the same or lower total injury risks for

  4. Qualification of Simulation Software for Safety Assessment of Sodium Cooled Fast Reactors. Requirements and Recommendations

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sieger, Matt [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moe, Wayne [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); HolbrookINL, Mark [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    The goal of this review is to enable application of codes or software packages for safety assessment of advanced sodium-cooled fast reactor (SFR) designs. To address near-term programmatic needs, the authors have focused on two objectives. First, the authors have focused on identification of requirements for software QA that must be satisfied to enable the application of software to future safety analyses. Second, the authors have collected best practices applied by other code development teams to minimize cost and time of initial code qualification activities and to recommend a path to the stated goal.

  5. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Chinese Edition)

    2014-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  6. Radiation protection and safety of radiation sources: International basic safety standards. General safety requirements. Pt. 3 (French Edition)

    2016-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  7. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Arabic Edition)

    2015-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  8. Design Requirements of an Advanced HANARO Reactor Core Cooling System

    Park, Yong Chul; Ryu, Jeong Soo

    2007-12-01

    An advanced HANARO Reactor (AHR) is an open-tank-type and generates thermal power of 20 MW and is under conceptual design phase for developing it. The thermal power is including a core fission heat, a temporary stored fuel heat in the pool, a pump heat and a neutron reflecting heat in the reflector vessel of the reactor. In order to remove the heat load, the reactor core cooling system is composed of a primary cooling system, a primary cooling water purification system and a reflector cooling system. The primary cooling system must remove the heat load including the core fission heat, the temporary stored fuel heat in the pool and the pump heat. The purification system must maintain the quality of the primary cooling water. And the reflector cooling system must remove the neutron reflecting heat in the reflector vessel of the reactor and maintain the quality of the reflector. In this study, the design requirement of each system has been carried out using a design methodology of the HANARO within a permissible range of safety. And those requirements are written by english intend to use design data for exporting the research reactor

  9. Radiation protection aspects in the design of nuclear power plants. Safety guide

    2008-01-01

    . The IAEA takes seriously the enduring challenge for users and regulators everywhere: that of ensuring a high level of safety in the use of nuclear materials and radiation sources around the world. Their continuing utilization for the benefit of humankind must be managed in a safe manner, and the IAEA safety standards are designed to facilitate the achievement of that goal. This Safety Guide has been prepared as a part of the IAEA programme on safety standards for nuclear power plants. It includes recommendations on how to satisfy the requirements established in the Safety Requirements publication on the Safety of Nuclear Power Plants: Design. It addresses the provisions that should be made in the design of nuclear power plants in order to protect site personnel, the public and the environment against radiological hazards for operational states, decommissioning and accident conditions. The recommendations on radiation protection provided in this Safety Guide are consistent with the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), which were jointly sponsored by the Food and Agriculture Organization of the United Nations (FAO), the IAEA, the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO). This Safety Guide supersedes Safety Series No. 50-SG-D9, Design Aspects of Radiation Protection for Nuclear Power Plants, published in 1985. Effective radiation protection is a combination of good design, high quality construction and proper operation. Procedures that address the radiation protection aspects of operation are covered in the Safety Guide on Radiation Protection and Radioactive Waste Management in the operation of Nuclear Power Plants

  10. Radiation protection aspects of design for nuclear power plants. Safety guide

    2005-01-01

    . The IAEA takes seriously the enduring challenge for users and regulators everywhere: that of ensuring a high level of safety in the use of nuclear materials and radiation sources around the world. Their continuing utilization for the benefit of humankind must be managed in a safe manner, and the IAEA safety standards are designed to facilitate the achievement of that goal. This Safety Guide has been prepared as a part of the IAEA programme on safety standards for nuclear power plants. It includes recommendations on how to satisfy the requirements established in the Safety Requirements publication on the Safety of Nuclear Power Plants: Design. It addresses the provisions that should be made in the design of nuclear power plants in order to protect site personnel, the public and the environment against radiological hazards for operational states, decommissioning and accident conditions. The recommendations on radiation protection provided in this Safety Guide are consistent with the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), which were jointly sponsored by the Food and Agriculture Organization of the United Nations (FAO), the IAEA, the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO). This Safety Guide supersedes Safety Series No. 50-SG-D9, Design Aspects of Radiation Protection for Nuclear Power Plants, published in 1985. Effective radiation protection is a combination of good design, high quality construction and proper operation. Procedures that address the radiation protection aspects of operation are covered in the Safety Guide on Radiation Protection and Radioactive Waste Management in the operation of Nuclear Power Plants

  11. Differences in safety margins between nuclear and conventional design standards with regards to seismic hazard definition and design criteria

    Elgohary, M.; Saudy, A.; Orbovic, N.; Dejan, D.

    2006-01-01

    With the surging interest in new build nuclear all over the world and a permanent interest in earthquake resistance of nuclear plants, there is a need to quantify the safety margins in nuclear buildings design in comparison to conventional buildings in order to increase the public confidence in the safety of nuclear power plants. Nuclear (CAN3-N289 series) and conventional (NBCC 2005) seismic standards have different approaches regarding the design of civil structures. The origin of the differences lays in the safety philosophy behind the seismic nuclear and conventional standards. Conventional seismic codes contain the minimal requirement destined primarily to safeguard against major structural failure and loss of life. It doesn't limit damage to a certain acceptable degree or maintain function. Nuclear seismic code requires that structures, systems and components important to safety, withstand the effects of earthquakes. The requirement states that for equipment important to safety, both integrity and functionality should be ascertained. The seismic hazard is generally defined on the basis of the annual probability of exceedence (return period). There is a major difference on the return period and the confidence level for design earthquakes between the conventional and the nuclear seismic standards. The seismic design criteria of conventional structures are based on the use of Force Modification Factors to take into account the energy dissipation by incursion in non-elastic domain and the reserve of strength. The use of such factors to lower intentionally the seismic input is consistent with the safety philosophy of the conventional seismic standard which is the 'non collapse' rather than the integrity and/or the operability of the structures or components. Nuclear seismic standard requires that the structure remain in the elastic domain; energy dissipation by incursion in non-elastic domain is not allowed for design basis earthquake conditions. This is

  12. Safety design for machine tools and installation

    Lee, Myung Jae; Lee, Jong Hyung

    1986-01-01

    Recently, there occur many damages and disasters due to mistakes in designing, and the author has attempted measures for effective prevention of damages. For this purpose, the author collected the theses on accidents due to poor designs and their measures. Many accidents are blamed for their poor designs as their causes. The way to prevent mistakes in designing is to keep in file the cases of such accidents for a system to be ready for use whenever needed. (Author)

  13. 42 CFR 3.210 - Required disclosure of patient safety work product to the Secretary.

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Required disclosure of patient safety work product... HUMAN SERVICES GENERAL PROVISIONS PATIENT SAFETY ORGANIZATIONS AND PATIENT SAFETY WORK PRODUCT Confidentiality and Privilege Protections of Patient Safety Work Product § 3.210 Required disclosure of patient...

  14. Technical safety requirements for the Annular Core Research Reactor Facility (ACRRF)

    Boldt, K.R.; Morris, F.M.; Talley, D.G.; McCrory, F.M.

    1998-01-01

    The Technical Safety Requirements (TSR) document is prepared and issued in compliance with DOE Order 5480.22, Technical Safety Requirements. The bases for the TSR are established in the ACRRF Safety Analysis Report issued in compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports. The TSR identifies the operational conditions, boundaries, and administrative controls for the safe operation of the facility

  15. ELFR: The European Lead Fast Reactor. Design, Safety Approach and Safety Characteristics

    Alemberti, Alessandro

    2012-01-01

    • In the framework of the LEADER project, the safety approach for a Lead cooled fast reactor has been defined and, in particular, all the possible challenges to the main safety functions and their mechanisms have been specified, in order to better define the needed provisions. • On the basis of the above and taking into account the results of the safety analyses performed during previous project (ELSY), a reference configuration of the ELFR plant has been consolidated, by improving and updating the plant design features. In particular, the emerged safety concerns have been analyzed in the LEADER project and a new set of design options and safety provisions have been proposed. • The combination of favourable Lead coolant inherent characteristics and plant design features, specifically developed to face identified challenges, resulted in a very robust and forgiving design, even in very extreme conditions, as a Fukushima-like scenario

  16. Generic radiation safety design for SSRL synchrotron radiation beamlines

    Liu, James C. [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)]. E-mail: james@slac.stanford.edu; Fasso, Alberto [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)

    2006-12-15

    To allow for a conservative, simple, uniform, consistent, efficient radiation safety design for all SSRL beamlines, a generic approach has been developed, considering both synchrotron radiation (SR) and gas bremsstrahlung (GB) hazards. To develop the methodology and rules needed for generic beamline design, analytic models, the STAC8 code, and the FLUKA Monte Carlo code were used to pre-calculate sets of curves and tables that can be looked up for each beamline safety design. Conservative beam parameters and standard targets and geometries were used in the calculations. This paper presents the SPEAR3 beamline parameters that were considered in the design, the safety design considerations, and the main pre-calculated results that are needed for generic shielding design. In the end, the rules and practices for generic SSRL beamline design are summarized.

  17. Protection against internal fires and explosions in the design of nuclear power plants. Safety guide

    2004-01-01

    Experience of the past two decades in the operation of nuclear power plants and modern analysis techniques confirm that fire may be a real threat to nuclear safety and should receive adequate attention from the beginning of the design process throughout the life of the plant. Within the framework of the NUSS programme, a Safety Guide on fire protection had therefore been developed to enlarge on the general requirements given in the Code. Since its first publication in 1979, there has been considerable development in protection technology and analysis methods and after the Chernobyl accident it was decided to revise the existing Guide. This Safety Guide supplements the requirements established in Safety of Nuclear Power Plants: Design. It supersedes Safety Series No. 50-SG-D2 (Rev. 1), Fire Protection in Nuclear Power Plants: A Safety Guide, issued in 1992.The present Safety Guide is intended to advise designers, safety assessors and regulators on the concept of fire protection in the design of nuclear power plants and on recommended ways of implementing the concept in some detail in practice

  18. Standards for radiation protection instrumentation: design of safety standards and testing procedures

    Meissner, Frank

    2008-01-01

    This paper describes by means of examples the role of safety standards for radiation protection and the testing and qualification procedures. The development and qualification of radiation protection instrumentation is a significant part of the work of TUV NORD SysTec, an independent expert organisation in Germany. The German Nuclear Safety Standards Commission (KTA) establishes regulations in the field of nuclear safety. The examples presented may be of importance for governments and nuclear safety authorities, for nuclear operators and for manufacturers worldwide. They demonstrate the advantage of standards in the design of radiation protection instrumentation for new power plants, in the upgrade of existing instrumentation to nuclear safety standards or in the application of safety standards to newly developed equipment. Furthermore, they show how authorities may proceed when safety standards for radiation protection instrumentation are not yet established or require actualization. (author)

  19. Designing continuous safety improvement within chemical industrial areas

    Reniers, G.L.L.; Ale, B. J.M.; Dullaert, W.; Soudan, K.

    This article provides support in organizing and implementing novel concepts for enhancing safety on a cluster level of chemical plants. The paper elaborates the requirements for integrating Safety Management Systems of chemical plants situated within a so-called chemical cluster. Recommendations of

  20. Design of Vertical Wall Caisson Breakwaters using Partial Safety Factors

    Burcharth, H. F.; Sørensen, John Dalsgaard

    1999-01-01

    The paper presents a new system for implementation of target reliability in caisson breakwater designs by means of partial safety factors. The development of the system is explained, and tables of partial safety factors are presented for important overall stability failure modes related to caisson...

  1. Use of safety experience feedback to design new nuclear units

    Lange, D.; Crochon, J.P.

    1985-06-01

    For the designer, and about safety, the experience feedback can take place in 3 fields: the operating experience feedback (incidents analysis), the ''study'' experience feedback (improvement of justification and evolution of safety considerations), and the fabrication experience feedback. Some examples are presented for each field [fr

  2. Technical Safety Requirements for the Waste Storage Facilities

    Larson, H L

    2007-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  3. Technical Safety Requirements for the Waste Storage Facilities

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  4. Safety considerations in the design of the fusion engineering device

    Barrett, R.J.

    1983-01-01

    Safety considerations play a significant role in the design of a near-term Fusion Engineering Device (FED). For the safety of the general public and the plant workers, the radiation environment caused by the reacting plasma and the potential release of tritium fuel are the dominant considerations. The U.S. Department of Energy (DOE) regulations and guidelines for radiation protection have been reviewed and are being applied to the device design. Direct radiation protection is provided by the device shield and the reactor building walls. Radiation from the activated device components and the tritium fuel is to be controlled with shielding, contamination control, and ventilation. The potential release of tritium from the plant has influenced the selection of reactor building and plant designs and specifications. The safety of the plant workers is affected primarily by the radiation from the activated device components and from plasma chamber debris. The highly activated device components make it necessary to design many of the maintenance activities in the reactor building for totally remote operation. The hot cell facility has evolved as a totally remote maintenance facility due to the high radiation levels of the device components. Safety considerations have had substantial impacts on the design of FED. Several examples of safety-related design impacts are discussed in the paper. Feasible solutions have been identified for all outstanding safety-related items, and additional optimization of these solutions is anticipated in future design studies

  5. Preparedness and response for a nuclear or radiological emergency. Safety requirements

    2004-01-01

    industrial, agricultural, medical, research and teaching applications. Facilities using radiation or radioactive material. And satellites and radiothermal generators using radiation sources or reactors. The requirements also cover emergencies arising from radiation sources of an unknown or untraceable origin. The requirements apply to actions in preparedness and response for emergencies involving hazards associated with ionizing radiation only. The requirements do not apply to preparedness or response for emergencies involving hazards associated with non-ionizing radiation such as microwave, ultraviolet or infrared radiation. The IAEA has issued Safety Fundamentals publications relating to nuclear installations and to radioactive waste management. In addition, the IAEA has issued Safety Series and Safety Standards Series publications that have established requirements relating to emergency preparedness for the safe use of radiation sources, the transport of radioactive material, legal and governmental infrastructure, the design and operation of nuclear power plants, and the design and operation of research reactors. This Safety Requirements publication incorporates, elaborates on, augments and structures all the requirements for emergency preparedness and response established in these previously issued safety standards. To this effect some requirements established in these other safety standards have been incorporated as quotations in this publication (revised text is shown in square brackets and omissions are indicated by ellipses). In other cases footnotes state where related requirements have been established

  6. Meeting Human Reliability Requirements through Human Factors Design, Testing, and Modeling

    R. L. Boring

    2007-06-01

    In the design of novel systems, it is important for the human factors engineer to work in parallel with the human reliability analyst to arrive at the safest achievable design that meets design team safety goals and certification or regulatory requirements. This paper introduces the System Development Safety Triptych, a checklist of considerations for the interplay of human factors and human reliability through design, testing, and modeling in product development. This paper also explores three phases of safe system development, corresponding to the conception, design, and implementation of a system.

  7. External Events Excluding Earthquakes in the Design of Nuclear Power Plants. Safety Guide

    2008-01-01

    This Safety Guide provides recommendations and guidance on design for the protection of nuclear power plants from the effects of external events (excluding earthquakes), i.e. events that originate either off the site or within the boundaries of the site but from sources that are not directly involved in the operational states of the nuclear power plant units. In addition, it provides recommendations on engineering related matters in order to comply with the safety objectives and requirements established in the IAEA Safety Requirements publication, Safety of Nuclear Power Plants: Design. It is also applicable to the design and safety assessment of items important to the safety of land based stationary nuclear power plants with water cooled reactors. Contents: 1. Introduction; 2. Application of safety criteria to the design; 3. Design basis for external events; 4. Aircraft crash; 5. External fire; 6. Explosions; 7. Asphyxiant and toxic gases; 8. Corrosive and radioactive gases and liquids; 9. Electromagnetic interference; 10. Floods; 11. Extreme winds; 12. Extreme meteorological conditions; 13. Biological phenomena; 14. Volcanism; 15. Collisions of floating bodies with water intakes and UHS components; Annex I: Aircraft crashes; Annex II: Detonation and deflagration; Annex III: Toxicity limits.

  8. Creating a Culture of Patient Safety through Innovative Hospital Design

    Reiling, John G

    2005-01-01

    When SynergyHealth, St. Joseph's Hospital of West Bend, Wisconsin, decided to relocate and build an 82-bed acute care facility, they recognized the opportunity to design a hospital that focused on patient safety...

  9. PSA in design of passive/active safety reactors

    Sato, T.; Tanabe, A.; Kondo, S.

    1995-01-01

    PSAs in the design of advanced reactors are applied mainly in level 1 PSA areas. However, even in level 1 PSA, there are certain areas where special care must be taken depending on plant design concepts. This paper identifies these areas both for passive and active safety reactor concepts. For example, 'long-term PSA' and shutdown PSA are very important for a passive safety reactor concept from the standpoint of effectiveness of a grace period and passive safety systems. External events are also important for an active safety reactor concept. These kinds of special PSAs are difficult to conduct precisely in a conceptual design stage. This paper shows methods of conducting these kinds of special PSAs simply and conveniently and the use of acquired insights for the design of advanced reactors. This paper also clarifies the meaning or definition of a grace period from the standpoint of PSA

  10. Core design with respect to the safety concept

    Kollmar, W.

    1981-01-01

    In the present paper the following topics are dealt with: Principles of reactor core design and optimization, fuel management and safety concept for higher cycles and results of risk analyses (e.g. rod ejection, steam line break etc.) (RW)

  11. Safety design integrated in the building delivery system

    Jørgensen, Kirsten

    2013-01-01

    . The purpose of this article is to demonstrate how safety and health can be integrated in the design phases integrated in the management delivery systems within construction, The method for the research was to go through the building delivery system step by step and create a normative description of what, when......In construction, it is important to view safety and health as an integrated part of the way that “designers” are working. The designers cowers architects, constructors, engineers and others who carry out their consulting services in the design phase of a construction project. The philosophy...... and how to fully integrate safety in each part of the process. The result is a concept and guideline including control forms for how to integrate safety design in the Building Delivery System plus what to do and when. The concept has been tested in an educational context. The practical value...

  12. Safety requirements and radiological protection for ore installations

    2003-06-01

    This norm establishes the safety and radiological protection requirements for mining installations which manipulates, process and storing ores, raw materials, steriles, slags and wastes containing radionuclides of the uranium and thorium natural series, simultaneously or separated, and which can cause undue exposures to the public and workers, at anytime of the functioning or pos operational stage. This norm applies to the mining installations activities, suspended or which have ceased their activities before the issue date of this norm, destined to the mining, physical, chemical and metallurgical processing, and the industrialization of raw materials and residues containing associated radionuclides from the natural series of uranium and thorium, including the stages of implantation, operation and decommissioning of the installation

  13. Designing the safety of healthcare. Participation of ergonomics to the design of cooperative systems in radiotherapy.

    Munoz, Maria Isabel; Bouldi, Nadia; Barcellini, Flore; Nascimento, Adelaide

    2012-01-01

    This communication deals with the involvement of ergonomists in a research-action design process of a software platform in radiotherapy. The goal of the design project is to enhance patient safety by designing a workflow software that supports cooperation between professionals producing treatment in radiotherapy. The general framework of our approach is the ergonomics management of a design process, which is based in activity analysis and grounded in participatory design. Two fields are concerned by the present action: a design environment which is a participatory design process that involves software designers, caregivers as future users and ergonomists; and a reference real work setting in radiotherapy. Observations, semi-structured interviews and participatory workshops allow the characterization of activity in radiotherapy dealing with uses of cooperative tools, sources of variability and non-ruled strategies to manage the variability of the situations. This production of knowledge about work searches to enhance the articulation between technocentric and anthropocentric approaches, and helps in clarifying design requirements. An issue of this research-action is to develop a framework to define the parameters of the workflow tool, and the conditions of its deployment.

  14. Radiological safety design considerations for fusion research experiments

    Crase, K.W.; Singh, M.S.

    1979-01-01

    A wide variety of fusion research experiments are in the planning or construction stages. Two such experiments, the Nova Laser Fusion Facility and the Mirror Fusion Test Facility (MFTF), are currently under construction at Lawrence Livermore Laboratory. Although the plasma chamber vault for MFTF and the Nova target room will have thick concrete walls and roofs, the radiation safety problems are made complex by the numerous requirements for shield wall penetrations. This paper addresses radiation safety considerations for the MFTF and Nova experiments, and the need for integrated safety considerations and safety technology development during the planning stages of fusion experiments

  15. Tornado-resistance design for the nuclear safety structure of Qinshan Nuclear Power Plant

    Xia Zufeng.

    1987-01-01

    The primary design consideration of anti-tornado of the nuclear safety structure of Qinshan Nuclear Power Plant is briefly presented. It mainly includes estimating the probability of tornado arising in the site, ascertaining the design requirments of the anti-tornado structures and deciding the tornado load acted on the structures

  16. A new safety approach in the design of fast reactors

    Neuhold, R.J.; Marchaterre, J.F.; Waltar, A.E.

    1987-01-01

    A new approach to achieving fast reactor safety goals is becoming really apparent in the US Fast Reactor Program. Whereas the ''defense is best'' philosophy still prevails, there has been a tangible shift toward emphasizing passive mechanisms to protect the reactor and provide public safety---rather than relying on add-on active, engineered safety systems. This paper reviews the technical basis for this new safety approach and provides discussion on its implementation in current US liquid metal-cooled reactor designs. 4 refs., 4 figs

  17. Safety principles and design criteria for nuclear power stations

    Gazit, M.

    1982-01-01

    The criteria and safety principles for the design of nuclear power stations are presented from the viewpoint of a nuclear engineer. The design, construction and operation of nuclear power stations should be carried out according to these criteria and safety principles to ensure, to a reasonable degree, that the likelihood of release of radioactivity as a result of component failure or human error should be minimized. (author)

  18. A Design Theory for Requirements Mining Systems

    Meth, Hendrik

    2013-01-01

    Software requirements are often communicated in unstructured text documents, which need to be analyzed in order to identify and classify individual needs. This process is referred to as requirements mining in the context of this thesis. It is known to be time-consuming and error-prone when performed manually by a requirements engineer. Thus, there is a demand to support requirements mining through information technology. However, little research has been conducted to conceptualize theoretical...

  19. Design of plant safety model in plant enterprise engineering environment

    Gabbar, Hossam A.; Suzuki, Kazuhiko; Shimada, Yukiyasu

    2001-01-01

    Plant enterprise engineering environment (PEEE) is an approach aiming to manage the plant through its lifecycle. In such environment, safety is considered as the common objective for all activities throughout the plant lifecycle. One approach to achieve plant safety is to embed safety aspects within each function and activity within such environment. One ideal way to enable safety aspects within each automated function is through modeling. This paper proposes a theoretical approach to design plant safety model as integrated with the plant lifecycle model within such environment. Object-oriented modeling approach is used to construct the plant safety model using OO CASE tool on the basis of unified modeling language (UML). Multiple views are defined for plant objects to express static, dynamic, and functional semantics of these objects. Process safety aspects are mapped to each model element and inherited from design to operation stage, as it is naturally embedded within plant's objects. By developing and realizing the plant safety model, safer plant operation can be achieved and plant safety can be assured

  20. Novel modular natural circulation BWR design and safety evaluation

    Ishii, Mamoru; Shi, Shanbin; Yang, Won Sik; Wu, Zeyun; Rassame, Somboon; Liu, Yang

    2015-01-01

    Highlights: • Introduction of BWR-type natural circulation small modular reactor preliminary design (NMR-50). • Design of long fuel cycle length for the NMR-50. • Design of double passive safety systems for the NMR-50. • RELAP5 analyses of design basis accidents for the NMR-50. - Abstract: The Purdue NMR (Novel Modular Reactor) represents a BWR-type small modular reactor with a significantly reduced reactor pressure vessel (RPV) height. Specifically, it has one third the height of a conventional BWR RPV with an electrical output of 50 MWe. The preliminary design of the NMR-50 including reactor, fuel cycle, and safety systems is described and discussed. The improved neutronics design of the NMR-50 extends the fuel cycle length up to 10 years. The NMR-50 is designed with double passive engineering safety system, which is intended to withstand a prolonged station black out with loss of ultimate heat sink accident such as experienced at Fukushima. In order to evaluate the safety features of the NMR-50, two representative design basis accidents, i.e. main steam line break (MSLB) and bottom drain line break (BDLB), are simulated by using the best-estimate thermal–hydraulic code RELAP5. The RPV water inventory, containment pressure, and the performance of engineering safety systems are investigated for about 33 h after the initiation of the accidents

  1. Safety design concept and analysis for the upgrading JRR-3

    Onishi, N.; Isshiki, M.; Takahashi, H.; Takayanagi, M.

    1990-01-01

    The Research Reactor No.3 (JRR-3) is under reconstruction for upgrading. This paper describes the safety design concepts of the architectural and engineering design, anticipated operational transients and accident conditions which are the postulated initiating events for the safety evaluation, and the safety criteria of the upgraded JRR-3. The safety criteria are defined taking into account those of Light Water Reactors and the characteristics of the research reactor. Using the example of the safety analysis, this paper describes analytical results of a reactivity insertion by removal of in-core irradiation samples, a pipeline break at the primary coolant loop and flow blockage to a coolant channel, which are the severest postulated initiating events of the JRR-3

  2. Safety considerations in next step fusion design and beyond

    Holland, D.F.

    1990-01-01

    Recent U.S. and international design studies provide insights into the potential safety and environmental advantages of fusion as well as the development needed to realize this potential. We in the Fusion Safety Program at EG ampersand G Idaho have analyzed the Compact Ignition Tokamak (CIT), the International Thermonuclear Engineering Reactor (ITER), and the Advanced Reactor Innovative Engineering Study (ARIES). I have reviewed these three designs to determine issues related to meeting the safety and the environmental goals that guide fusion development in the U.S. The paper lists safety and environmental issues that are generic to fusion and approaches to favorably resolve each issue. The technical developments that have the highest potential of contributing to improving the safety and environmental attractiveness of fusion are identified and discussed. These developments are in the areas of low-activation materials, plasma- facing components, and plasma physics relating to off-normal plasma events and tritium burn-up. 8 refs., 7 tabs

  3. Safety design study of fast breeder reactors in Japan

    Miura, M.; Inagaki, T.

    1992-01-01

    This paper reports on two fast breeder reactor (FBR) concepts, the tank type and the loop type, that have been studied as possible reactor designs to be used for a demonstration FBR (DFBR). The basic principle fo the DFBR design is to ensure plant safety through a defense-in-depth methodology. Improvements in the seismic and thermal stress designs have been attempted for both reactor concepts. The system design study strives to maximize the reliability of the safety-related systems and to rationalize commercialization of the plant

  4. Performance and safety design of the advanced liquid metal reactor

    Berglund, R.C.; Magee, P.M.; Boardman, C.E.; Gyorey, G.L.

    1991-01-01

    The Advanced Liquid Metal Reactor (ALMR) program led by General Electric is developing, under U.S. Department of Energy sponsorship, a conceptual design for an advanced sodium-cooled liquid metal reactor plant. This design is intended to improve the already excellent level of plant safety achieved by the nuclear power industry while at the same time providing significant reductions in plant construction and operating costs. In this paper, the plant design and performance are reviewed, with emphasis on the ALMR's unique passive design safety features and its capability to utilize as fuel the actinides in LWR spent fuel

  5. European passive plant program preliminary safety analyses to support system design

    Saiu, Gianfranco; Barucca, Luciana; King, K.J.

    1999-01-01

    In 1994, a group of European Utilities, together with Westinghouse and its Industrial Partner GENESI (an Italian consortium including ANSALDO and FIAT), initiated a program designated EPP (European Passive Plant) to evaluate Westinghouse Passive Nuclear Plant Technology for application in Europe. In the Phase 1 of the European Passive Plant Program which was completed in 1996, a 1000 MWe passive plant reference design (EP1000) was established which conforms to the European Utility Requirements (EUR) and is expected to meet the European Safety Authorities requirements. Phase 2 of the program was initiated in 1997 with the objective of developing the Nuclear Island design details and performing supporting analyses to start development of Safety Case Report (SCR) for submittal to European Licensing Authorities. The first part of Phase 2, 'Design Definition' phase (Phase 2A) was completed at the end of 1998, the main efforts being design definition of key systems and structures, development of the Nuclear Island layout, and performing preliminary safety analyses to support design efforts. Incorporation of the EUR has been a key design requirement for the EP1000 form the beginning of the program. Detailed design solutions to meet the EUR have been defined and the safety approach has also been developed based on the EUR guidelines. The present paper describes the EP1000 approach to safety analysis and, in particular, to the Design Extension Conditions that, according to the EUR, represent the preferred method for giving consideration to the Complex Sequences and Severe Accidents at the design stage without including them in the design bases conditions. Preliminary results of some DEC analyses and an overview of the probabilistic safety assessment (PSA) are also presented. (author)

  6. Advanced Test Reactor Safety Basis Upgrade Lessons Learned Relative to Design Basis Verification and Safety Basis Management

    G. L. Sharp; R. T. McCracken

    2004-01-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The reactor also provides other irradiation services such as radioisotope production. The ATR and its support facilities are located at the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL). An audit conducted by the Department of Energy's Office of Independent Oversight and Performance Assurance (DOE OA) raised concerns that design conditions at the ATR were not adequately analyzed in the safety analysis and that legacy design basis management practices had the potential to further impact safe operation of the facility.1 The concerns identified by the audit team, and issues raised during additional reviews performed by ATR safety analysts, were evaluated through the unreviewed safety question process resulting in shutdown of the ATR for more than three months while these concerns were resolved. Past management of the ATR safety basis, relative to facility design basis management and change control, led to concerns that discrepancies in the safety basis may have developed. Although not required by DOE orders or regulations, not performing design basis verification in conjunction with development of the 10 CFR 830 Subpart B upgraded safety basis allowed these potential weaknesses to be carried forward. Configuration management and a clear definition of the existing facility design basis have a direct relation to developing and maintaining a high quality safety basis which properly identifies and mitigates all hazards and postulated accident conditions. These relations and the impact of past safety basis management practices have been reviewed in order to identify lessons learned from the safety basis upgrade process and appropriate actions to resolve possible concerns with respect to the current ATR safety

  7. Regulatory framework and safety requirements for new (gen III) reactors

    Mourlon, Sophie

    2014-01-01

    Sophie Mourlon, ASN Deputy General Director, described the international process to enhance safety between local safety authorities through organizations such as WENRA. Then she explained to the participants the regulatory issues for the next generation of NPPs

  8. Special safety requirements applied to Brazilian nuclear power plant

    Lepecki, W.P.S.; Hamel, H.J.E.; Koenig, N.; Vieira, P.C.R.; Fritzsche, J.C.

    1981-01-01

    Some safety aspects of the Angra 2 and 3 nuclear power plants are presented. An analysis of the civil and mechanical project of these nuclear power plant having in view a safety analysis is done. (E.G.) [pt

  9. Graphical symbols -- Safety colours and safety signs -- Part 1: Design principles for safety signs in workplaces and public areas

    International Organization for Standardization. Geneva

    2002-01-01

    This International Standard establishes the safety identification colours and design principles for safety signs to be used in workplaces and in public areas for the purpose of accident prevention, fire protection, health hazard information and emergency evacuation. It also establishes the basic principles to be applied when developing standards containing safety signs. This part of ISO 3864 is applicable to workplaces and all locations and all sectors where safety-related questions may be posed. However, it is not applicable to the signalling used for guiding rail, road, river, maritime and air traffic and, generally speaking, to those sectors subject to a regulation which may differ.

  10. A PLC generic requirements and specification for safety-related applications in nuclear power plants

    Han, Jea Bok; Lee, C. K.; Lee, D. Y.

    2001-12-01

    This report presents the requirements and specification to be applied to the generic qualification of programmable Logic Controller(PLC), which is being developed as part of the KNICS project, 'Development of the Digital Reactor Safety Systems' of which purpose is the application to safety-related instrumentation and control systems in nuclear power plants. This report defines the essential and critical characteristics that shall be included as part of a PLC design for safety-related application. The characteristics include performance, reliability, accuracy, the overall response time from an input to the PLC exceeding it trip condition to the resulting outputs, and the specification of processors and memories in digital controller. It also specifies the quality assurance process for software development, dealing with executive software, firmware, application software tools for developing the application software, and human machine interface(HMI). In addition, this report reviews the published standards and guidelines that are required for the PLC development and the quality assurance processes such as environment requirements, seismic withstand requirements, EMI/RFI withstand requirements, and isolation test

  11. 29 CFR 1910.36 - Design and construction requirements for exit routes.

    2010-07-01

    ... construction requirements for exit routes. (a) Basic requirements. Exit routes must meet the following design... your workplace, consult NFPA 101-2000, Life Safety Code. (c) Exit discharge. (1) Each exit discharge... route must be adequate. (1) Exit routes must support the maximum permitted occupant load for each floor...

  12. Technical Safety Requirements for the Waste Storage Facilities

    Laycak, D.T.

    2010-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting

  13. Technical Safety Requirements for the Waste Storage Facilities

    Laycak, D T

    2008-06-16

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas

  14. Preliminary safety analysis for key design features of KALIMER

    Hahn, D. H.; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, S. O.; Lee, Y. B.; Jeong, K. S

    2000-07-01

    KAERI is currently developing the conceptual design of a liquid metal reactor, KALIMER(Korea Advanced Liquid Metal Reactor) under the long-term nuclear R and D program. In this report, descriptions of the KALIMER safety design features and safety analyses results for selected ATWS accidents are presented. First, the basic approach to achieve the safety goal is introduced in chapter 1, and the safety evaluation procedure for the KALIMER design is described in chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events. In chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure design performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram(ATWS) have been performed to investigate the KALIMER system response to the events. They are categorized as bounding events(BEs) because of their low probability of occurrence. In chapter 4, the design of the KALIMER containment dome and the results of its performance analysis are presented. The designs of the existing LMR containment and the KALIMER containment dome have been compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core kinetics and hydraulic behavior during HCDA in chapter 5. Mathematical formulations have been developed in the framework of the modified bethe-tait method, and scoping analyses have been performed for the KALIMER core behavior during super-prompt critical excursions.

  15. 1972 preliminary safety analysis report based on a conceptual design of a proposed repository in Kansas

    Blomeke, J.O.

    1977-08-01

    This preliminary safety analysis report is based on a proposed Federal Repository at Lyons, Kansas, for receiving, handling, and depositing radioactive solid wastes in bedded salt during the remainder of this century. The safety analysis applies to a hypothetical site in central Kansas identical to the Lyons site, except that it is free of nearby salt solution-mining operations and bore holes that cannot be plugged to Repository specifications. This PSAR contains much information that also appears in the conceptual design report. Much of the geological-hydrological information was gathered in the Lyons area. This report is organized in 16 sections: considerations leading to the proposed Repository, design requirements and criteria, a description of the Lyons site and its environs, land improvements, support facilities, utilities, different impacts of Repository operations, safety analysis, design confirmation program, operational management, requirements for eventually decommissioning the facility, design criteria for protection from severe natural events, and the proposed program of experimental investigations

  16. 1972 preliminary safety analysis report based on a conceptual design of a proposed repository in Kansas

    Blomeke, J.O.

    1977-08-01

    This preliminary safety analysis report is based on a proposed Federal Repository at Lyons, Kansas, for receiving, handling, and depositing radioactive solid wastes in bedded salt during the remainder of this century. The safety analysis applies to a hypothetical site in central Kansas identical to the Lyons site, except that it is free of nearby salt solution-mining operations and bore holes that cannot be plugged to Repository specifications. This PSAR contains much information that also appears in the conceptual design report. Much of the geological-hydrological information was gathered in the Lyons area. This report is organized in 16 sections: considerations leading to the proposed Repository, design requirements and criteria, a description of the Lyons site and its environs, land improvements, support facilities, utilities, different impacts of Repository operations, safety analysis, design confirmation program, operational management, requirements for eventually decommissioning the facility, design criteria for protection from severe natural events, and the proposed program of experimental investigations. (DLC)

  17. A closed-loop based framework for design requirement management

    Zhang, Zhinan; Li, Xuemeng; Liu, Zelin

    2014-01-01

    management from product lifecycle, and requirement and requirement management lifecycle views. This paper highlights the importance of requirement lifecycle management and aims at closing the requirement information loop in product lifecycle. Then, it addresses the requirement management in engineering...... design field with focusing on the dynamics nature and incomplete nature of requirements. Finally, a closed-loop based framework is proposed for requirement management in engineering design....

  18. Design of the reactor coolant system and associated systems in nuclear power plants. Safety guide (Spanish Edition)

    2010-01-01

    This Safety Guide was prepared under the IAEA programme for establishing safety standards for nuclear power plants. The basic requirements for the design of safety systems for nuclear power plants are established in the Safety Requirements publication, Safety Standards Series No. NS-R-1 on Safety of Nuclear Power Plants: Design, which it supplements. This Safety Guide describes how the requirements for the design of the reactor coolant system (RCS) and associated systems in nuclear power plants should be met. This publication is a revision and combination of two previous Safety Guides, Safety Series No. 50-SG-D6 on Ultimate Heat Sink and Directly Associated Heat Transport Systems for Nuclear Power Plants (1982), and Safety Series No. 50-SG-D13 on Reactor Coolant and Associated Systems in Nuclear Power Plants (1987), which are superseded by this new Safety Guide. The revision takes account of developments in the design of the RCS and associated systems in nuclear power plants since the earlier Safety Guides were published in 1982 and 1987, respectively. The other objectives of the revision are to ensure consistency with Ref., issued in 2004, and to update the technical content. In addition, an appendix on pressurized heavy water reactors (PHWRs) has been included.

  19. Safety requirement of the nuclear power plants, after TMI-2 accident and their possible implementation on Bushehr NPP

    Mirhabibi, N.; Tochai, M.T.M.; Ashrafi, A.; Farnoudi, E.

    1985-01-01

    Based on the lessons learned from the TMI-2 accident and other research and developments, many improvements have been required for the design, manufacturing and operation of nuclear power plants in recent years. These requirements have already been implemented to the plants in operation and considered as new safety requirements for new plants. In the present paper these requirements and their possible implementation on Bushehr NPP are discussed. (Author)

  20. Design an optimum safety policy for personnel safety management - A system dynamic approach

    Balaji, P.

    2014-01-01

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making

  1. Design an optimum safety policy for personnel safety management - A system dynamic approach

    Balaji, P. [The Glocal University, Mirzapur Pole, Delhi- Yamuntori Highway, Saharanpur 2470001 (India)

    2014-10-06

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  2. Design an optimum safety policy for personnel safety management - A system dynamic approach

    Balaji, P.

    2014-10-01

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  3. Nuclear design and technical development required for ISER plant

    Yokoyama, Takashi; Yamano, Naoki.

    1987-01-01

    The report outlines some results of a study carried out by the ISER (intrinsically safe and economical reactor) Investigation Group. In particular, nuclear design concepts are examined in relation to the fuel cycle. Discussion is also made on technical development efforts to be made for realizing an ISER. Calculation of some basic nuclear design parameters is performed and results are used to examine the reactor core and fuel for ISER. As a result, it is indicated that a high-burnup type reactor core should be used on a 4.5-batch replacement, 15 EFPM (effective full power month) scheme to optimize an ISER. For technical development, consideration is made on various tests to be performed with an experimental reactor, called ISER-E, as well as other tests to provide basic data required for demonstrating the inherent safety of ISER. The study also deals with the possibility of the application of currently available light water reactor techniques to experiments with a critical assembly, non-nuclear test loop, and the experimental reactor ISER-E. It is revealed that many of the required experiments can be carried out by using test facilities and light water reactor techniques which are currently, or will be readily, available. It is stressed that international cooperation is necessary to accomplish these tests. (Nogami, K.)

  4. Designer's requirements for evaluation of sustainability

    Bey, Niki; Lenau, Torben Anker

    1998-01-01

    Today, sustainability of products is often evaluated on the basis of assessments of their environmental performance. Established means for this purpose are formal Life Cycle Assessment (LCA) methods. Designers have an essential influence on product design and are therefore one target group for life...... cycle-based evaluation methods. However, the application of LCA in the design process, when for example different materials and manufacturing processes have to be selected, is difficult. This is, among other things, because only a few designers have a deeper background in this area and even simplified...... LCAs involve calculations with a relatively high accuracy. Most LCA methods do therefore not qualify as hands-on tool for utilisation by typical designers.In this context, the authors raise the question, whether a largely simplified LCA-method which is exclusively based on energy considerations can...

  5. Investigational new drug safety reporting requirements for human drug and biological products and safety reporting requirements for bioavailability and bioequivalence studies in humans. Final rule.

    2010-09-29

    The Food and Drug Administration (FDA) is amending its regulations governing safety reporting requirements for human drug and biological products subject to an investigational new drug application (IND). The final rule codifies the agency's expectations for timely review, evaluation, and submission of relevant and useful safety information and implements internationally harmonized definitions and reporting standards. The revisions will improve the utility of IND safety reports, reduce the number of reports that do not contribute in a meaningful way to the developing safety profile of the drug, expedite FDA's review of critical safety information, better protect human subjects enrolled in clinical trials, subject bioavailability and bioequivalence studies to safety reporting requirements, promote a consistent approach to safety reporting internationally, and enable the agency to better protect and promote public health.

  6. What Isn't Working and New Requirements. The Need to Harmonize Safety and Security Requirements

    Flory, D.

    2011-01-01

    The year 2011 marks the 50th anniversary of the first IAEA regulations governing the transport of radioactive material. However transport safety at the IAEA obviously predates this, since the regulations took time to develop. In 1957, GC. 1/1 already states: 'The Agency should undertake studies with a view to the establishment of regulations relating to the international transportation of radioactive materials. ...'. And goes further: 'The transport of radioisotopes and radiation sources has brought to light many problems and involves the need for uniform packaging and shipping regulations ... facilitate the acceptance of such materials by sea and air carriers'. This conference reiterates the challenge given then through the sub-title 'The next fifty years - Creating a Safe, Secure and Sustainable Framework'. Looking back, we can see that the sustainable framework was a goal in 1957, where radioactive material could be transported should it be desired. Since these early days we have added to safety the need to ensure security. However we still see the same calls today to eradicate denial of shipment, which might suggest we have not progressed. But the picture today is very different - we have today well established requirements for safe transport of radioactive material, and the recommendations for security in transport are coming of age for all radioactive materials. The outstanding issue would seem to be harmonisation, not just between safety and security in IAEA documents, but also harmonisation between Member States.

  7. JET-ISX-B beryllium limiter experiment safety analysis report and operational safety requirements

    Edmonds, P.H.

    1985-09-01

    An experiment to evaluate the suitability of beryllium as a limiter material has been completed on the ISX-B tokamak. The experiment consisted of two phases: (1) the initial operation and characterization in the ISX experiment, and a period of continued operation to the specified surface fluence (10 22 atoms/cm 2 ) of hydrogen ions; and (2) the disassembly, decontamination, or disposal of the ISX facility. During these two phases of the project, the possibility existed for beryllium and/or beryllium oxide powder to be produced inside the vacuum vessel. Beryllium dust is a highly toxic material, and extensive precautions are required to prevent the release of the beryllium into the experimental work area and to prevent the contamination of personnel working on the device. Details of the health hazards associated with beryllium and the appropriate precautions are presented. Also described in appendixes to this report are the various operational safety requirements for the project

  8. Early Engagement of Safety and Mission Assurance Expertise Using Systems Engineering Tools: A Risk-Based Approach to Early Identification of Safety and Assurance Requirements

    Darpel, Scott; Beckman, Sean

    2016-01-01

    Decades of systems engineering practice have demonstrated that the earlier the identification of requirements occurs, the lower the chance that costly redesigns will needed later in the project life cycle. A better understanding of all requirements can also improve the likelihood of a design's success. Significant effort has been put into developing tools and practices that facilitate requirements determination, including those that are part of the model-based systems engineering (MBSE) paradigm. These efforts have yielded improvements in requirements definition, but have thus far focused on a design's performance needs. The identification of safety & mission assurance (S&MA) related requirements, in comparison, can occur after preliminary designs are already established, yielding forced redesigns. Engaging S&MA expertise at an earlier stage, facilitated by the use of MBSE tools, and focused on actual project risk, can yield the same type of design life cycle improvements that have been realized in technical and performance requirements.

  9. Impact of Passive Safety on FHR Instrumentation Systems Design and Classification

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled high-temperature reactors (FHRs) will rely more extensively on passive safety than earlier reactor classes. 10CFR50 Appendix A, General Design Criteria for Nuclear Power Plants, establishes minimum design requirements to provide reasonable assurance of adequate safety. 10CFR50.69, Risk-Informed Categorization and Treatment of Structures, Systems and Components for Nuclear Power Reactors, provides guidance on how the safety significance of systems, structures, and components (SSCs) should be reflected in their regulatory treatment. The Nuclear Energy Institute (NEI) has provided 10 CFR 50.69 SSC Categorization Guideline (NEI-00-04) that factors in probabilistic risk assessment (PRA) model insights, as well as deterministic insights, through an integrated decision-making panel. Employing the PRA to inform deterministic requirements enables an appropriately balanced, technically sound categorization to be established. No FHR currently has an adequate PRA or set of design basis accidents to enable establishing the safety classification of its SSCs. While all SSCs used to comply with the general design criteria (GDCs) will be safety related, the intent is to limit the instrumentation risk significance through effective design and reliance on inherent passive safety characteristics. For example, FHRs have no safety-significant temperature threshold phenomena, thus enabling the primary and reserve reactivity control systems required by GDC 26 to be passively, thermally triggered at temperatures well below those for which core or primary coolant boundary damage would occur. Moreover, the passive thermal triggering of the primary and reserve shutdown systems may relegate the control rod drive motors to the control system, substantially decreasing the amount of safety-significant wiring needed. Similarly, FHR decay heat removal systems are intended to be running continuously to minimize the amount of safety-significant instrumentation needed to initiate

  10. Safe-by-Design : from Safety to Responsibility

    van de Poel, I.R.; Robaey, Z.H.

    2017-01-01

    Safe-by-design (SbD) aims at addressing safety issues already during the R&D and design phases of new technologies. SbD has increasingly become popular in the last few years for addressing the risks of emerging technologies like nanotechnology and synthetic biology. We ask to what extent SbD

  11. Safety parameter display system (SPDS) for Russian-designed NPPs

    Anikanov, S.S.; Catullo, W.J.; Pelusi, J.L.

    1997-01-01

    As part of the programs aimed at improving the safety of Russian-designed reactors, the US DoE has sponsored a project of providing a safety parameter display system (SPDS) for nuclear power plants with such reactors. The present paper is focused mostly on the system architecture design features of SPDS systems for WWER-1000 and RBMK-1000 reactors. The function and the operating modes of the SPDS are outlined, and a description of the display system is given. The system architecture and system design of both an integrated and a stand-alone IandC system is explained. (A.K.)

  12. Planning and architectural safety considerations in designing nuclear power plants

    Konsowa, Ahmed A.

    2009-01-01

    To achieve optimum safety and to avoid possible hazards in nuclear power plants, considering architectural design fundamentals and all operating precautions is mandatory. There are some planning and architectural precautions should be considered to achieve a high quality design and construction of nuclear power plant with optimum safety. This paper highlights predicted hazards like fire, terrorism, aircraft crash attacks, adversaries, intruders, and earthquakes, proposing protective actions against these hazards that vary from preventing danger to evacuating and sheltering people in-place. For instance; using safeguards program to protect against sabotage, theft, and diversion. Also, site and building well design focusing on escape pathways, emergency exits, and evacuation zones, and the safety procedures such as; evacuation exercises and sheltering processes according to different emergency classifications. In addition, this paper mentions some important codes and regulations that control nuclear power plants design, and assessment methods that evaluate probable risks. (author)

  13. Design of a Construction Safety Training System using Contextual Design Methodology

    Baldev, Darshan H.

    2006-01-01

    In the U.S., the majority of construction companies are small companies with 10 or fewer employees (BLS, 2004). The fatality rate in the construction industry is high, indicating a need for implementing safety training to a greater extent. This research addresses two main goals: to make recommendations and design a safety training system for small construction companies, and to use Contextual Design to design the training system. Contextual Design was developed by Holtzblatt (Beyer and Holtzb...

  14. The Sources and Methods of Engineering Design Requirement

    Li, Xuemeng; Zhang, Zhinan; Ahmed-Kristensen, Saeema

    2014-01-01

    to be defined in a new context. This paper focuses on understanding the design requirement sources at the requirement elicitation phase. It aims at proposing an improved design requirement source classification considering emerging markets and presenting current methods for eliciting requirement for each source...

  15. Reliability Improved Design for a Safety System Channel

    Oh, Eung Se; Kim, Yun Goo

    2016-01-01

    Nowadays, these systems are implemented with a same platform type, such as a qualified programmable logic controller (PLC). The platform intensively uses digital communication with fiber-optic links to reduce cabling costs and to achieve effective signal isolation. These communication interface and redundancies within a channel increase the complexness of an overall system design. This paper proposes a simpler channel architecture design to reduce the complexity and to enhance overall channel reliability. Simplified safety channel configuration is proposed and the failure probabilities are compared with baseline safety channel configuration using an estimated generic value. The simplified channel configuration achieves 40 percent failure reduction compare to baseline safety channel configuration. If this configuration can be implemented within a processor module, overall safety channel reliability is increase and costs of fabrication and maintenance will be greatly reduced

  16. Reliability Improved Design for a Safety System Channel

    Oh, Eung Se; Kim, Yun Goo [KHNP, Daejeon (Korea, Republic of)

    2016-05-15

    Nowadays, these systems are implemented with a same platform type, such as a qualified programmable logic controller (PLC). The platform intensively uses digital communication with fiber-optic links to reduce cabling costs and to achieve effective signal isolation. These communication interface and redundancies within a channel increase the complexness of an overall system design. This paper proposes a simpler channel architecture design to reduce the complexity and to enhance overall channel reliability. Simplified safety channel configuration is proposed and the failure probabilities are compared with baseline safety channel configuration using an estimated generic value. The simplified channel configuration achieves 40 percent failure reduction compare to baseline safety channel configuration. If this configuration can be implemented within a processor module, overall safety channel reliability is increase and costs of fabrication and maintenance will be greatly reduced.

  17. Safety research needs for Russian-designed reactors

    1998-01-01

    In June 1995, an OECD Support Group was set up to perform a broad study of the safety research needs of Russian-designed reactors. This Support Group was endorsed by the CSNI. The Support Group, which is composed of senior experts on safety research from several OECD countries and from Russia, prepared this Report. The Group reviewed the safety research performed to support Russian-designed reactors and set down its views on future needs. The review concentrates on the following main topics: Thermal-Hydraulics/Plant Transients for VVERs; Integrity of Equipment and Structures for VVERs; Severe Accidents for VVERs; Operational Safety Issues; Thermal-Hydraulics/Plant Transients for RBMKs; Integrity of Equipment and Structures for RBMKs; Severe Accidents for RBMKs. (K.A.)

  18. Advanced analysis and design for fire safety of steel structures

    Li, Guoqiang

    2013-01-01

    Advanced Analysis and Design for Fire Safety of Steel Structures systematically presents the latest findings on behaviours of steel structural components in a fire, such as the catenary actions of restrained steel beams, the design methods for restrained steel columns, and the membrane actions of concrete floor slabs with steel decks. Using a systematic description of structural fire safety engineering principles, the authors illustrate the important difference between behaviours of an isolated structural element and the restrained component in a complete structure under fire conditions. The book will be an essential resource for structural engineers who wish to improve their understanding of steel buildings exposed to fires. It is also an ideal textbook for introductory courses in fire safety for master’s degree programs in structural engineering, and is excellent reading material for final-year undergraduate students in civil engineering and fire safety engineering. Furthermore, it successfully bridges th...

  19. Data concentrator requirements for a safety parameter display system

    Brewer, C.R.

    1983-01-01

    To comply with NUREG 0696 several nuclear plants are being fitted with new facilities and data systems; specifically a Technical Support Center (TSC), Operational Support Center (OSC), Emergency Operational Facility (EOF), and Backup Safety Parameter Display System (SPDS), Emergency Response Computer System (ERCS) and Nuclear Data Link (NDL). The TSC, OSC, and EOF are physical locations while the SPDS, ERCS, and NDL are Systems. The SPDS and ERCS are usually separate and independent systems, however, they may share a common front end data acquisition system that acquires and sends SPDS related data to both the SPDS and to the ERCS. In the situation just described an SPDS system must depend upon input data from a source that is SPDS host computer independent. To achieve this independence the front end data acquisition system may employ a concept of intelligent distributed processing. This concept essentially takes functional capabilities that were once found only in realtime host computers and distributes it to front end data acquisition systems. Thus by expanding the functionality of the data acquisition system in a manner that provides more capability, independence from the computer vendor, links to multiple computer systems, processing power and redundancy, the concept of a data concentrator evolved. This paper will define this new distributed functionality, and its related requirements. It will also examine different system configuration approaches

  20. Regulatory considerations for computational requirements for nuclear criticality safety

    Bidinger, G.H.

    1995-01-01

    As part of its safety mission, the U.S. Nuclear Regulatory Commission (NRC) approves the use of computational methods as part of the demonstration of nuclear criticality safety. While each NRC office has different criteria for accepting computational methods for nuclear criticality safety results, the Office of Nuclear Materials Safety and Safeguards (NMSS) approves the use of specific computational methods and methodologies for nuclear criticality safety analyses by specific companies (licensees or consultants). By contrast, the Office of Nuclear Reactor Regulation approves codes for general use. Historically, computational methods progressed from empirical methods to one-dimensional diffusion and discrete ordinates transport calculations and then to three-dimensional Monte Carlo transport calculations. With the advent of faster computational ability, three-dimensional diffusion and discrete ordinates transport calculations are gaining favor. With the proper user controls, NMSS has accepted any and all of these methods for demonstrations of nuclear criticality safety

  1. Outline of the requirements of application of computer based instrumentation and control systems in the systems important to safety on Bohunice NPPs

    Bacurik, J.

    1997-01-01

    The most important regulatory requirements and issues are described related to the review, evaluation and assessment of computer-based safety-related IandC systems, with emphasis on safety instrumentation and control. These aspects include safety classification and categorization of IandC, ranking of applicable codes and standards, design evaluation on the system level, and software assessment. (author)

  2. Safety aspects of designs for future light water reactors (evolutionary reactors)

    1993-07-01

    The main purpose of this document is to describe the major innovations of proposed designs of future light water reactors, to describe specific safety characteristics and safety analysis methodologies, and to give a general overview of the most important safety aspects related to future reactors. The reactors considered in this report are limited to those intended for fixed station electrical power production, excluding most revolutionary concepts. More in depth discussion is devoted to those designs that are in a more advanced state of completion and have been more extensively described and analysed in the open literature. Other designs will be briefly described, as evidence of the large spectrum of new proposals. Some designs are similar; others implement unique features and require specific discussion (not all aspects of designs with unique features are fully discussed in this document). 131 refs, 22 figs

  3. Ecological Design of Cooperative Human-Machine Interfaces for Safety of Intelligent Transport Systems

    Orekhov Aleksandr

    2016-01-01

    Full Text Available The paper describes research results in the domain of cooperative intelligent transport systems. The requirements for human-machine interface considering safety issue of for intelligent transport systems (ITSare analyzed. Profiling of the requirements to cooperative human-machine interface (CHMI for such systems including requirements to usability and safety is based on a set of standards for ITSs. An approach and design technique of cooperative human-machine interface for ITSs are suggested. The architecture of cloud-based CHMI for intelligent transport systems has been developed. The prototype of software system CHMI4ITSis described.

  4. Conducting organizational safety reviews - requirements, methods and experience

    Reiman, T.; Oedewald, P.; Wahlstroem, B.; Rollenhagen, C.; Kahlbom, U.

    2008-03-01

    Organizational safety reviews are part of the safety management process of power plants. They are typically performed after major reorganizations, significant incidents or according to specified review programs. Organizational reviews can also be a part of a benchmarking between organizations that aims to improve work practices. Thus, they are important instruments in proactive safety management and safety culture. Most methods that have been used for organizational reviews are based more on practical considerations than a sound scientific theory of how various organizational or technical issues influence safety. Review practices and methods also vary considerably. The objective of this research is to promote understanding on approaches used in organizational safety reviews as well as to initiate discussion on criteria and methods of organizational assessment. The research identified a set of issues that need to be taken into account when planning and conducting organizational safety reviews. Examples of the issues are definition of appropriate criteria for evaluation, the expertise needed in the assessment and the organizational motivation for conducting the assessment. The study indicates that organizational safety assessments involve plenty of issues and situations where choices have to be made regarding what is considered valid information and a balance has to be struck between focus on various organizational phenomena. It is very important that these choices are based on a sound theoretical framework and that these choices can later be evaluated together with the assessment findings. The research concludes that at its best, the organizational safety reviews can be utilised as a source of information concerning the changing vulnerabilities and the actual safety performance of the organization. In order to do this, certain basic organizational phenomena and assessment issues have to be acknowledged and considered. The research concludes with recommendations on

  5. Conducting organizational safety reviews - requirements, methods and experience

    Reiman, T.; Oedewald, P.; Wahlstroem, B. [Technical Research Centre of Finland, VTT (Finland); Rollenhagen, C. [Royal Institute of Technology, KTH, (Sweden); Kahlbom, U. [RiskPilot (Sweden)

    2008-03-15

    Organizational safety reviews are part of the safety management process of power plants. They are typically performed after major reorganizations, significant incidents or according to specified review programs. Organizational reviews can also be a part of a benchmarking between organizations that aims to improve work practices. Thus, they are important instruments in proactive safety management and safety culture. Most methods that have been used for organizational reviews are based more on practical considerations than a sound scientific theory of how various organizational or technical issues influence safety. Review practices and methods also vary considerably. The objective of this research is to promote understanding on approaches used in organizational safety reviews as well as to initiate discussion on criteria and methods of organizational assessment. The research identified a set of issues that need to be taken into account when planning and conducting organizational safety reviews. Examples of the issues are definition of appropriate criteria for evaluation, the expertise needed in the assessment and the organizational motivation for conducting the assessment. The study indicates that organizational safety assessments involve plenty of issues and situations where choices have to be made regarding what is considered valid information and a balance has to be struck between focus on various organizational phenomena. It is very important that these choices are based on a sound theoretical framework and that these choices can later be evaluated together with the assessment findings. The research concludes that at its best, the organizational safety reviews can be utilised as a source of information concerning the changing vulnerabilities and the actual safety performance of the organization. In order to do this, certain basic organizational phenomena and assessment issues have to be acknowledged and considered. The research concludes with recommendations on

  6. SAFR: a marriage of safety and innovation in LMR design

    Lancet, R.T.; Mills, J.C.

    1985-01-01

    The Sodium Advanced Fast Reactor (SAFR) is a natural evolution of earlier designs, given the current economic and licensing environment. Stringent safety and economic goals have been established for the SAFR plant. This paper describes how these goals are being satisfied, with the primary emphasis being placed on safety. The top level safety goals are: (a) to provide inherently safe responses to all credible events (b) to minimize the potential for severe accidents, and (c) to eliminate the need for evacuation, (d) limited financial risk, (e) assured investment protection, (f) minimum development risk, (g) high capacity factor, (h) long plant life, and (i) low personnel radiation exposure

  7. Knowledge-based support system for requirement elaboration in design

    Furuta, Kazuo; Kondo, Shunsuke

    1994-01-01

    Design requirements are the seeds of every design activity, but elicitation and formalization of them are not easy tasks. This paper proposes a method to support designers in such requirement elaboration process with a computer. In this method the cognitive work space of designers is modeled by abstraction and structural hierarchies, and supporting functions of knowledge-based requirement elaboration, requirement classification and assessment of contentment status of requirements are provided on this framework. A prototype system was developed and tested using fast breeder reactor design. (author)

  8. Modeling Programs Increase Aircraft Design Safety

    2012-01-01

    Flutter may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition. Consider the case of the Lockheed L-188 Electra Turboprop, an airliner that first took to the skies in 1957. Two years later, an Electra plummeted to the ground en route from Houston to Dallas. Within another year, a second Electra crashed. In both cases, all crew and passengers died. Lockheed engineers were at a loss as to why the planes wings were tearing off in midair. For an answer, the company turned to NASA s Transonic Dynamics Tunnel (TDT) at Langley Research Center. At the time, the newly renovated wind tunnel offered engineers the capability of testing aeroelastic qualities in aircraft flying at transonic speeds near or just below the speed of sound. (Aeroelasticity is the interaction between aerodynamic forces and the structural dynamics of an aircraft or other structure.) Through round-the-clock testing in the TDT, NASA and industry researchers discovered the cause: flutter. Flutter occurs when aerodynamic forces acting on a wing cause it to vibrate. As the aircraft moves faster, certain conditions can cause that vibration to multiply and feed off itself, building to greater amplitudes until the flutter causes severe damage or even the destruction of the aircraft. Flutter can impact other structures as well. Famous film footage of the Tacoma Narrows Bridge in Washington in 1940 shows the main span of the bridge collapsing after strong winds generated powerful flutter forces. In the Electra s case, faulty engine mounts allowed a type of flutter known as whirl flutter, generated by the spinning propellers, to transfer to the wings, causing them to vibrate violently enough to tear off. Thanks to the NASA testing, Lockheed was able to correct the Electra s design flaws that led to the flutter conditions and return the

  9. Safety design features for current UK advanced gas-cooled reactors

    Yellowlees, J. M.; Cobb, E. C. [Nuclear Power Co. (Risley) Ltd. (UK)

    1981-01-15

    The nuclear power stations planned for Heysham II and Torness will each have twin 660 MW(e) Advanced Gas-cooled Reactors (AGR) based on the design of those which have been operating at Hinkley Point 'B' and Hunterston 'B' since 1976. This paper has described the way in which the shutdown and cooling systems for the Heysham II and Torness AGRs have been selected in order to meet current UK safety requirements. Fault tree analyses have been used to identify the credible fault sequences, the probabilities of which have been calculated. By this means the relative importance of the various protective systems has been established and redundancy and reliability requirements identified. This systematic approach has led to a balanced design giving protection over the complete spectrum of fault sequences. Current safety requirements for thermal reactors in the UK and particular requirements in the design of the Heysham II and Torness reactors are discussed.

  10. Safety design features for current UK advanced gas-cooled reactors

    Yellowlees, J.M.; Cobb, E.C.

    1981-01-01

    The nuclear power stations planned for Heysham II and Torness will each have twin 660 MW(e) Advanced Gas-cooled Reactors (AGR) based on the design of those which have been operating at Hinkley Point 'B' and Hunterston 'B' since 1976. This paper has described the way in which the shutdown and cooling systems for the Heysham II and Torness AGRs have been selected in order to meet current UK safety requirements. Fault tree analyses have been used to identify the credible fault sequences, the probabilities of which have been calculated. By this means the relative importance of the various protective systems has been established and redundancy and reliability requirements identified. This systematic approach has led to a balanced design giving protection over the complete spectrum of fault sequences. Current safety requirements for thermal reactors in the UK and particular requirements in the design of the Heysham II and Torness reactors are discussed

  11. Radiation safety design of super KEKB factory

    Sanami, Toshiya

    2015-01-01

    The SuperKEKB factory, which was scheduled to start operation early 2015, is an electron-positron collider designed to produce an 80x10"3"4-1/cm"2/s luminosity, which is 40 times greater than the KEKB factory. Built to investigate CP violation and 'new physics' beyond the Standard Model, the facility consists of a 7-GeV electron/3.5-GeV positron linac, a 1.1- GeV positron damping ring, beam transport, and a 7-GeV electron/4-GeV positron collider. To meet this level of luminosity, the collider will be operated with a small beam size and a large crossing angle at the interaction point. According to particle tracking simulations, beam losses under these conditions will be 35 times more than those previously operated. To help optimise shielding configurations, leakage radiation and induced activity are estimated through empirical equations and detailed Monte-Carlo simulations using MARS15 code for the interaction region, beam halo collimators, emergency pathways, ducts, forward direction tunnels, and positron production target. Examples of shielding strategies are presented to reduce both leakage dose and airborne activity for several locations in the facility. (authors)

  12. Technical basis for the ITER final design report, cost review and safety analysis (FDR)

    NONE

    1998-12-01

    The ITER final design report, cost review and safety analysis (FDR) is the 4th major milestone, representing the progress made in the ITER Engineering Design Activities. With the approval of the Detailed Design Report (DDR), the design work was concentrated on the requirements of operation, with only relatively minor changes to design concepts of major components. The FDR is the culmination of almost 6 years collaborative design and supporting technical work by the ITER Joint Central Team and Home Teams under the terms of the ITER EDA Agreement. Refs, figs, tabs

  13. Technical basis for the ITER final design report, cost review and safety analysis (FDR)

    1998-01-01

    The ITER final design report, cost review and safety analysis (FDR) is the 4th major milestone, representing the progress made in the ITER Engineering Design Activities. With the approval of the Detailed Design Report (DDR), the design work was concentrated on the requirements of operation, with only relatively minor changes to design concepts of major components. The FDR is the culmination of almost 6 years collaborative design and supporting technical work by the ITER Joint Central Team and Home Teams under the terms of the ITER EDA Agreement

  14. Regulatory requirements for demonstration of the achieved safety level at the Mochovce NPP before commissioning

    Lipar, M.

    1997-01-01

    A review of regulatory requirements for demonstration of the achieved safety level at the Mochovce NPP before commissioning is given. It contains licensing steps in Slovakia during commissioning; Status and methodology of Mochovce safety analysis report; Mochovce NPP safety enhancement program; Regulatory body policy towards Mochovce NPP safety enhancement; Recent development in Mochovce pre-operational safety enhancement program review and assessment process; Licensing steps in Slovakia during commissioning

  15. Safety design integrated in the Building Delivery System

    Jørgensen, Kirsten

    2012-01-01

    phases of the building delivery system by using the principle of the lean construction modelling. The method for the research was to go through the lean construction building delivery system step by step and create a normative description of what to do, when to do and how to do to fully integration...... of safety in each process. The group of participants who created the description had a high experience in a combination of research, safety and health in general and especial in construction and knowledge of the lean construction processes both from the clients perspective as well as from the designers...... and the consultants. The result is a concept and guideline including control schemes for how to integrate safety design in the lean construction building delivery system including what to do and when. The concept has been tested in an educational context and found useful by the designers. The practical value...

  16. Safety Culture: A Requirement for New Business Models — Lessons Learned from Other High Risk Industries

    Kecklund, L.

    2016-01-01

    Technical development and changes on global markets affects all high risk industries creating opportunities as well as risks related to the achievement of safety and business goals. Changes in legal and regulatory frameworks as well as in market demands create a need for major changes. Several high risk industries are facing a situation where they have to develop new business models. Within the transportation domain, e.g., aviation and railways, there is a growing concern related to how the new business models may affects safety issues. New business models in aviation and railways include extensive use of outsourcing and subcontractors to reduce costs resulting in, e.g., negative changes in working conditions, work hours, employment conditions and high turnover rates. The energy sector also faces pressures to create new business models for transition to renewable energy production to comply with new legal and regulatory requirements and to make best use of new reactor designs. In addition, large scale phase out and decommissioning of nuclear facilities have to be managed by the nuclear industry. Some negative effects of new business models have already arisen within the transportation domain, e.g., the negative effects of extensive outsourcing and subcontractor use. In the railway domain the infrastructure manager is required by European and national regulations to assure that all subcontractors are working according to the requirements in the infrastructure managers SMS (Safety Management System). More than ten levels of subcontracts can be working in a major infrastructure project making the system highly complex and thus difficult to control. In the aviation domain, tightly coupled interacting computer networks supplying airport services, as well as air traffic control, are managed and maintained by several different companies creating numerous interfaces which must be managed by the SMS. There are examples where a business model with several low

  17. Resolution of thermal-hydraulic safety and licensing issues for the system 80+trademark design

    Carpentino, S.E.; Ritterbusch, S.E.; Schneider, R.E.

    1995-01-01

    The System 80+ trademark Standard Design is an evolutionary Advanced Light Water Reactor (ALWR) with a generating capacity of 3931 MWt (1350 MWe). The Final Design Approval (FDA) for this design was issued by the Nuclear Regulatory Commission (NRC) in July 1994. The design certification by the NRC is anticipated by the end of 1995 or early 1996. NRC review of the System 80+ design has involved several new safety issues never before addressed in a regulatory atmosphere. In addition, conformance with the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) required that the System 80+ plant address nuclear industry concerns with regard to design, construction, operation and maintenance of nuclear power plants. A large number of these issues/concerns deals with previously unresolved generic thermal-hydraulic safety issues and severe accident prevention and mitigation. This paper discusses the thermal-hydraulic analyses and evaluations performed for the System 80+ design to resolve safety and licensing issues relevant to both the Nuclear Stream Supply System (NSSS) and containment designs. For the NSSS design, the Safety Depressurization System mitigation capability and resolution of the boron dilution concern are described. Examples of containment design issues dealing with containment shell strength, robustness of the reactor cavity walls and hydrogen mixing under severe accident conditions are also provided. Finally, the overall approach used in the application of NRC's new (NUREG-1465) radiological source term for System 80+ evaluation is described. The robustness of the System 80+ containment design to withstand severe accident consequences was demonstrated through detailed thermal-hydraulic analyses and evaluations. This advanced design to shown to meet NRC severe accident policy goals and ALWR URD requirements without any special design features and unnecessary costs

  18. Resolution of thermal-hydraulic safety and licensing issues for the system 80+{sup {trademark}} design

    Carpentino, S.E.; Ritterbusch, S.E.; Schneider, R.E. [ABB-Combustion Engineering, Windsor, CT (United States)] [and others

    1995-09-01

    The System 80+{sup {trademark}} Standard Design is an evolutionary Advanced Light Water Reactor (ALWR) with a generating capacity of 3931 MWt (1350 MWe). The Final Design Approval (FDA) for this design was issued by the Nuclear Regulatory Commission (NRC) in July 1994. The design certification by the NRC is anticipated by the end of 1995 or early 1996. NRC review of the System 80+ design has involved several new safety issues never before addressed in a regulatory atmosphere. In addition, conformance with the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) required that the System 80+ plant address nuclear industry concerns with regard to design, construction, operation and maintenance of nuclear power plants. A large number of these issues/concerns deals with previously unresolved generic thermal-hydraulic safety issues and severe accident prevention and mitigation. This paper discusses the thermal-hydraulic analyses and evaluations performed for the System 80+ design to resolve safety and licensing issues relevant to both the Nuclear Stream Supply System (NSSS) and containment designs. For the NSSS design, the Safety Depressurization System mitigation capability and resolution of the boron dilution concern are described. Examples of containment design issues dealing with containment shell strength, robustness of the reactor cavity walls and hydrogen mixing under severe accident conditions are also provided. Finally, the overall approach used in the application of NRC`s new (NUREG-1465) radiological source term for System 80+ evaluation is described. The robustness of the System 80+ containment design to withstand severe accident consequences was demonstrated through detailed thermal-hydraulic analyses and evaluations. This advanced design to shown to meet NRC severe accident policy goals and ALWR URD requirements without any special design features and unnecessary costs.

  19. Safety requirements and options for a large size fast neutron reactor

    Cogne, F.; Megy, J.; Robert, E.; Benmergui, A.; Villeneuve, J.

    1977-01-01

    Starting from the experience gained in the safety evaluation of the PHENIX reactor, and from results already obtained in the safety studies on fast neutron reactors, the French regulatory bodies have defined since 1973 what could be the requirements and the recommendations in the matter of safety for the first large size ''prototype'' fast neutron power plant of 1200 MWe. Those requirements and recommendations, while not being compulsory due to the evolution of this type of reactors, will be used as a basis for the technical regulation that will be established in France in this field. They define particularly the care to be taken in the following areas which are essential for safety: the protection systems, the primary coolant system, the prevention of accidents at the core level, the measures to be taken with regard to the whole core accident and to the containment, the protection against sodium fires, and the design as a function of external aggressions. In applying these recommendations, the CREYS-MALVILLE plant designers have tried to achieve redundancy in the safety related systems and have justified the safety of the design with regard to the various involved phenomena. In particular, the extensive research made at the levels of the fuel and of the core instrumentation makes it possible to achieve the best defence to avoid the development of core accidents. The overall examination of the measures taken, from the standpoint of prevention and surveyance as well as from the standpoint of means of action led the French regulatory bodies to propose the construction permit of the CREYS MALVILLE plant, provided that additional examinations by the regulatory bodies be made during the construction of the plant on some technological aspects not fully clarified at the authorization time. The conservatism of the corresponding requirements should be demonstrated prior to the commissioning of the power plant. To pursue a programme on reactors of this type, or even more

  20. Radiation safety design for SSRL storage ring

    Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)]. E-mail: khater1@llnl.gov; Liu, James [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Fasso, Alberto [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2006-12-15

    In 2003, the Stanford Synchrotron Radiation Laboratory (SSRL) had upgraded its storage ring to a 3rd generation storage ring (SPEAR3). SPEAR3 is deigned to operate at 500-mA stored beam current and 3-GeV energy. The 234-m circumference SPEAR3 ring utilizes 60-cm-thick concrete lateral walls, 30-cm-thick concrete roof, as well as 60- or 90-cm-thick concrete ratchet walls. A total of 3.5x10{sup 15}e{sup -}/y will be injected into the ring with an injection power of 4W and an injection efficiency of 75%. Normal beam losses occur due to both injection and stored beam operations in the total of 20 low loss as well as 3 high loss limiting apertures. During the 6-min injection period, an instantaneous power loss of 0.05W occurs at each low loss aperture. When averaged over the operational year, the loss of both the injection and the stored beams is equivalent to an average loss of 2mW at each low loss aperture. On the other hand, the average losses in the high loss apertures are 16mW for the injection septum, 47mW for the beam abort dump, and 13mW for the ring stoppers. The shielding requirements for losses in the new ring were based on a generic approach that used both FLUKA Monte Carlo particle generation and transport code and empirical computer codes and formulae.