WorldWideScience

Sample records for safety cleanout project

  1. Quality assurance program plan for 324 Building B-Cell safety cleanout project (BCCP)

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the 324 Building B-Cell Safety Cleanout Project (BCCP). This QAPP is responsive to the Westinghouse Hanford Company Quality Assurance Program and Implementation Plan, WHC-SP-1131, for 10 CFR 830.120, Nuclear Safety Management, Quality Assurance Requirements; and DOE Order 5700.6C, Quality Assurance. This QAPP supersedes PNNL PNL-MA-70 QAP Quality Assurance Plan No. WTC-050 Rev. 2, issue date May 3, 1996. This QAPP has been developed specifically for the BCCP. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP). These activities include all aspects of decontaminating B-Cell and project related operations within the 324 Building as it relates to the specific activities of this project. General facility activities (i.e. 324 Building Operations) are covered in the Building 324 QAPP. In addition, this QAPP supports the related quality assurance activities addressed in CM-2-14, Hazardous Material Packaging and Shipping, and HSRCM-1, Hanford Site Radiological Control Manual, The 324 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a B and W Hanford Company (BWHC) managed facility. During this transition process existing, PNNL procedures and documents will be utilized until replaced by BWHC procedures and documents. These documents conform to the requirements found in PNL-MA-70, Quality Assurance Manual and PNL-MA-8 1, Hazardous Materials Shipping Manual. The Quality Assurance Program Index (QAPI) contained in Table 1 provides a matrix which shows how project activities relate to 10 CFR 83 0.120 and 5700.6C criteria. Quality Assurance program requirements will be addressed separate from the requirements specified in this document. Other Hanford Site organizations/companies may be

  2. Review of alternative residual contamination guides for the 324 Building B-Cell Cleanout Project. Phase 1

    International Nuclear Information System (INIS)

    Vargo, G.J.; Durham, J.S.; Brackenbush, L.W.

    1995-09-01

    This report provides a proposed residual contamination guide (RCG) for the 324 Building B-Cell Cleanout Project, Phase 1, at the Hanford Site. The RCG is expressed as a fraction of the amount of highly dispersible radioactive material that would result in offsite doses equal to the Pacific Northwest Laboratory radiological risk guidelines following the worst credible accident scenario for release of the holdup material. The proposed RCG is 10 -1 to 10 -2 of the PNL radiological risk guidelines. As part of the development of the RCG, a number of factors were considered. These include the need to provide an appropriate level of flexibility for other activities within the 324 Building that could contribute to the facility's overall radiological risk, uncertainties inherent in safety analyses, and the possible contribution of other 300 Area facilities to overall radiological risk. Because of these factors and the nature of the cleanout project, the RCG is expressed as a range rather than a point value. This report also provides guidance on determining conformance to the RCG, including inspection and measurement techniques, quality assurance requirements, and consideration of uncertainty

  3. A global cleanout project

    International Nuclear Information System (INIS)

    Edlow, J.; Gruber, G.

    2004-01-01

    Once upon a time there was a great dream of a atomic age for mankind. The technically advanced nations of the world promised amazing opportunities for all and promoted their materials and equipment often by supplying them throughout the world in the race to gain market share. For a time, the dream was fulfilled, as many countries embraced the new technologies initially for research and later for medical, power and even transport opportunities. In due course, the demand subsided and in some countries has even been reversed with plans to terminate outdated or unneeded facilities. This brings up the issue of nuclear waste disposal. It was not until post 'Sept 11', that the US and other countries and NGOs began to seriously think about the larger implications of terrorist use of 'Dirty Bombs'. This has led to the potential of a wider program aimed at the possible return of a larger amount of 'abandoned' materials. Thus the 'GLOBAL CLEANOUT PROJECT' was borne. Many in the nuclear fuel cycle will have a stake in this and can play a role in an international community to deal with the issue and it has to be started now. (author)

  4. 40 CFR 262.213 - Laboratory clean-outs.

    Science.gov (United States)

    2010-07-01

    ... eligible academic entity is not required to count a hazardous waste that is an unused commercial chemical..., subpart C) generated solely during the laboratory clean-out toward its hazardous waste generator status... out, the date the laboratory clean-out begins and ends, and the volume of hazardous waste generated...

  5. Drug residues recovered in feed after various feedlot mixer truck cleanout procedures.

    Science.gov (United States)

    Van Donkersgoed, Joyce; Sit, Dan; Gibbons, Nicole; Ramogida, Caterina; Hendrick, Steve

    2010-01-01

    A study was conducted to determine the effectiveness of two methods of equipment cleanout, sequencing or flushing, for reducing drug carryover in feedlot mixer trucks. Feed samples were collected from total mixed rations before and after various feed mixer equipment cleanout procedures. Medicated rations contained either 11 ppm of tylosin or 166 or 331 ppm of chlortetracycline. There were no differences between sequencing and flushing or between flushing with dry barley and flushing with barley silage in the median proportion of drug recovered in the next ration. A larger drug reduction was achieved using flush material at a volume of 10 versus 5% of the mixer capacity and mixing the flush material for 3 versus 4 min. Regardless of the drug or prescription concentrations in the total mixed rations or the equipment cleanout procedure used, concentrations of chlortetracycline and tylosin recovered were very low.

  6. 24 CFR 3280.606 - Traps and cleanouts.

    Science.gov (United States)

    2010-04-01

    ... vertical distance from a trap to the fixture outlet shall not exceed 24 inches. (9) Installation. (i) Grade... system cannot be cleaned through fixtures, drains, or vents. Cleanouts shall also be provided when... any section of drain piping which does not have the required minimum slope of 1/4 inch per foot grade...

  7. Global nuclear cleanout initiative 2004

    International Nuclear Information System (INIS)

    Edlow, J.; Gruber, G.

    2004-01-01

    Full text: During more than 50 years of Atoms for Peace programmes nuclear materials were spread out worldwide. Stranded nuclear materials from nuclear research are left over without any safe back-end solution. 'Dirty Bombs' or so-called 'Radioactive Dispersal Devices (RDD)' are no longer science fiction since the world experienced the 9/11 attack. Governmental, NGO's and private industry organizations having discussed Global Nuclear Cleanout since then and start to take actions. The US Department of Energy (DOE) has announced to establish a dedicated organization in cooperation with IAEA and start the 'Global Threat Reduction Initiative (GTRI)'. The US government will allocate to that program USD 450 M over the next 10 years. Besides the historical development the paper will focus on the progress of the different initiatives and perspectives to threat reduction. (author)

  8. B Plant cleanout and stabilization program update

    International Nuclear Information System (INIS)

    Gehrke, J.W.

    1994-01-01

    The B Plant Cleanout and Stabilization Program Update FY1993 committed to an annual update document. The Cleanout and Stabilization Program (CSP) plan, Reference 1, remains as the best source of detailed discussion of CSP work and continues to be valid. The CSP presented a five year plan that left a number of plant systems operational to support WESF (Waste Encapsulation and Storage Facility) capsule storage. It is now apparent that the transition of B Plant to a long-term surveillance and maintenance mode (LTS and M) will be necessary to complete B Plant deactivation. To accomplish the LTS and M mode for B Plant, WESF will need to be physically isolated to allow stand alone operation for many years beyond the anticipated B Plant deactivation. B Plant has processed large quantities (> 100 megacuries) of cesium-137 and strontium-90. Residual radioactive contamination from this processing is in many forms and locations in B Plant. The plant design incorporates many features for radiological containment and confinement and systems to prevent the exposure of plant personnel and the public to excessive radiation. To minimize or reduce the radiological hazard wherever possible this program includes activities in four areas: Prevent Migration of Contamination; Stabilize Major Radioactive Source Terms; characterize Radioactive Source Terms; and Reduce Radiation Dose Rates. This document will describe work that is need to meet current goals and objectives and work that has changed, been completed, ore redirected. A systems engineering approach to defining this mission was initiated in FY1994 that will also be addressed in this document

  9. Project implementation plan: ASTD remote deployment

    International Nuclear Information System (INIS)

    CRASS, D.W.

    1999-01-01

    This document is the project implementation plan for the ASTD Remote Deployment Project. The Plan identifies the roles and responsibilities for the project and defines the integration between the ASTD Project and the B-Cell Cleanout Project

  10. Impact of Poultry Litter Cake, Cleanout, and Bedding following Chemical Amendments on Soil C and N Mineralization

    Directory of Open Access Journals (Sweden)

    Dexter B. Watts

    2012-01-01

    Full Text Available Poultry litter is a great alternative N source for crop production. However, recent poultry litter management changes, and increased chemical amendment use may impact its N availability. Thus, research was initiated to evaluate the effect that broiler cake and total cleanout litter amended with chemical additives have on C and N mineralization. A 35-day incubation study was carried out on a Hartsells fine sandy loam (fine-loamy, siliceous, subactive, thermic Typic Hapludults soil common to the USA Appalachian Plateau region. Three poultry litter components (broiler cake, total cleanout, and bedding material from a broiler house were evaluated and compared to a soil control. Chemical amendments lime (CaCO3, gypsum (CaSO4, aluminum sulfate (AlSO4, and ferrous sulfate (FeSO4 were added to the poultry litter components to determine their impact on C and N mineralization. Litter component additions increased soil C mineralization in the order of broiler cake > total cleanout > bedding > soil control. Although a greater concentration of organic C was observed in the bedding, broiler cake mineralized the most C, which can be attributed to differences in the C : N ratio between treatments. Chemical amendment in addition to the manured soil also impacted C mineralization, with AlSO4 generally decreasing mineralization. Nitrogen mineralization was also significantly affected by poultry litter component applications. Broiler cake addition increased N availability followed by total cleanout compared to soil control, while the bedding resulted in net N immobilization. Chemical amendments impacted N mineralization primarily in the broiler cake amended soil where all chemical amendments decreased mineralization compared to the no chemical amendment treatment. This short-term study (35-day incubation indicates that N availability to crops may be different depending on the poultry litter component used for fertilization and chemical amendment use which could

  11. Optimization of Operation Parameters for Helical Flow Cleanout with Supercritical CO2 in Horizontal Wells Using Back-Propagation Artificial Neural Network.

    Science.gov (United States)

    Song, Xianzhi; Peng, Chi; Li, Gensheng; He, Zhenguo; Wang, Haizhu

    2016-01-01

    Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells.

  12. Optimization of Operation Parameters for Helical Flow Cleanout with Supercritical CO2 in Horizontal Wells Using Back-Propagation Artificial Neural Network.

    Directory of Open Access Journals (Sweden)

    Xianzhi Song

    Full Text Available Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2 as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in

  13. Results of potential exposure assessments during the maintenance and cleanout of deposition equipment

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, E., E-mail: eric.zimmermann@cea.fr; Derrough, S.; Locatelli, D.; Durand, C.; Fromaget, J. L.; Lefranc, E.; Ravanel, X.; Garrione, J. [Nanosafety Platform, CEA, DRT (France)

    2012-10-15

    This study is a compilation of results obtained during the cleanout of deposition equipment such as chemical vapor deposition or physical vapor deposition The measurement campaigns aimed to evaluate the potential exposure to nanoaerosols in the occupational environment and were conducted in the workspace. The characterization of aerosols includes measurements of the concentration using condensation particle counters and measurements of the size distribution using fast mobility particle sizer, scanning mobility particle sizer, and electrical low pressure impactor (ELPI). Particles were sampled using collection membranes placed on the ELPIs stages. The samples were analyzed with an SEM-EDS to provide information including size, shape, agglomeration state, and the chemical composition of the particles. The majority of the time, no emission of nanoparticles (NPs) was measured during the use of the molecular deposition equipment or when opening the chambers, mainly due to the enclosed processes. On the other hand, the maintenance of the equipment, and especially the cleanout step, could induce high concentrations of NPs in the workplace following certain processes. Values of around 1 million particles/cm{sup 3} were detected with a size distribution including a high concentration of particles around 10 nm.

  14. Cleanout and decontamination of radiochemical hot cells

    International Nuclear Information System (INIS)

    Surma, J.E.; Holton, L.K. Jr.; Katayama, Y.B.; Gose, J.E.; Haun, F.E.; Dierks, R.D.

    1990-01-01

    The Pacific Northwest Laboratory is developing and employing advanced remote and contact technologies in cleaning out and decontaminating six radiochemical hot cells at Hanford under the Department of Energy's Surplus Facilities Management Program. The program is using a series of remote and contact decontamination techniques to reduce costs and to significantly lower radiation doses to workers. Refurbishment of the cover blocks above the air lock trench reduced radiation exposure in the air lock and cleanout and decontamination of an analytical cell achieved a reduction in radioactive contamination. Nuclear Regulatory Commission-approved Type B burial boxes are also being used to reduce waste disposal costs and radiation doses. PNL is currently decommissioning its pilot-scale radioactive liquid-fed ceramic melter. Special tools have been developed and are being used to accomplish the world's first such effort. 4 refs., 5 figs

  15. Radioactive Air Emissions Notice of Construction (NOC) for the 300 Area Process Sewer Cleanout

    International Nuclear Information System (INIS)

    MENARD, N.M.

    2000-01-01

    This document serves as a NOC pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct pursuant to 40 Code of Federal Regulations (CFR) 61.07, for the cleanout of sections of the 300 Area PS. Approval of the NOC will allow the pressure washing of certain pipe sections, the sump in the TEDF lift station, and the cleaning of PS 16 of the 300 Area PS that contains low levels of radioactivity. Section 15.0 of this NOC discusses the estimated total effective dose equivalent (TEDE) to the offsite maximally exposed individual (MEI) resulting from the unabated emissions from these cleaning activities. Using the currently approved unit dose conversion factors in HNF-3602, the estimated potential TEDE to the MEI resulting from the unabated, fugitive emissions from cleanout of the 300 Area PS is 4.70 E-05 millirem (mrem) per year. This dose was derived by conservatively estimating the doses from both the pressure washing and the use of the Guzzler(trademark) for removal of the liquid/soil mixture, as described in Section 5.0. and adding these doses together

  16. Spent Fuel and Waste Management Activities for Cleanout of the 105 F Fuel Storage Basin at Hanford

    International Nuclear Information System (INIS)

    Morton, M. R.; Rodovsky, T. J.; Day, R. S.

    2002-01-01

    Clean-out of the F Reactor fuel storage basin (FSB) by the Environmental Restoration Contractor (ERC) is an element of the FSB decontamination and decommissioning and is required to complete interim safe storage (ISS) of the F Reactor. Following reactor shutdown and in preparation for a deactivation layaway action in 1970, the water level in the F Reactor FSB was reduced to approximately 0.6 m (2 ft) over the floor. Basin components and other miscellaneous items were left or placed in the FSB. The item placement was performed with a sense of finality, and no attempt was made to place the items in an orderly manner. The F Reactor FSB was then filled to grade level with 6 m (20 ft) of local surface material (essentially a fine sand). The reactor FSB backfill cleanout involves the potential removal of spent nuclear fuel (SNF) that may have been left in the basin unintentionally. Based on previous cleanout of four water-filled FSBs with similar designs (i.e., the B, C, D, and DR FSBs in the 1980s), it was estimated that up to five SNF elements could be discovered in the F Reactor FSB (1). In reality, a total of 10 SNF elements have been found in the first 25% of the F Reactor FSB excavation. This paper discusses the technical and programmatic challenges of performing this decommissioning effort with some of the controls needed for SNF management. The paper also highlights how many various technologies were married into a complete package to address the issue at hand and show how no one tool could be used to complete the job; but by combining the use of multiple tools, progress is being made

  17. N Area Final Project Program Plan

    International Nuclear Information System (INIS)

    Day, R.S.; Duncan, G.M; Trent, S.J.

    1998-07-01

    The N Area Final Project Program Plan is issued for information and use by the U.S. Department of Energy (DOE), the Environmental Restoration Contractor (ERC) for the Hanford Site, and other parties that require workscope knowledge for the deactivation of N Reactor facilities and remediation of the 100-N Area. This revision to the program plan contains the updated critical path schedule to deactivate N Reactor and its supporting facilities, cleanout of the N Reactor Fuel Storage Basin (105-N Basin), and remediate the 100-N Area. This document reflects notable changes in the deactivation plan for N Reactor, including changes in deactivation status, the N Basin cleanout task, and 100-N Area remediation

  18. Silver removal process development for the MEO cleanout

    International Nuclear Information System (INIS)

    Hsu, P.C.; Chiba, Z.; Schumacher, B.J.; Murguia, L.C.; Adamson, M.G.

    1996-02-01

    The Mediated Electrochemical Oxidation (MEO) system is an aqueous process which treats low-level mixed wastes by oxidizing the organic components of he waste into carbon dioxide and water. As MEO system continues to run, dissolved ash and radionuclides slowly accumulate in the anolyte and must be removed to maintain process efficiency. At such time, all of the anolyte is pumped into a still feed tank, and the silver ions need to be removed before sending the solution to a thin-film evaporator for further concentration. The efficiency of removing silver ions in the solution needs to be high enough such that the residual silver sent to Final Forms would be less than 1% wt. The purpose of this work is to develop an efficient process to remove silver ions during the MEO cleanout and to demonstrate the capability of centrifugation for separating small silver chloride particles from the solution. This development work includes lab scale experiments and bench scale tests. This report summarizes the results

  19. CSER 90-006, addendum 1: Criticality safety control for source term reduction project in the scrubber glovebox of Building 232-Z. Revision 1

    International Nuclear Information System (INIS)

    Hess, A.L.

    1995-01-01

    This Criticality Safety Evaluation Report addendum extends the coverage of the original CSER (90-006) about dismantling the ductwork in 232-Z to include cleanout of the Scrubber Glovebox, with an estimated residual Pu holdup of less than 200 grams. For conservatism and containment considerations, the provisions about waste packaging and water exclusion from the original work are retained, even though it is not credible for the Scrubber Pu content to be made critical with water added (NDA gives about 1/3 a minimum critical mass)

  20. Impact of Poultry Litter Cake, Cleanout, and Bedding following Chemical Amendments on Soil C and N Mineralization

    OpenAIRE

    Watts, Dexter B.; Smith, Katy E.; Torbert, H. A.

    2012-01-01

    Poultry litter is a great alternative N source for crop production. However, recent poultry litter management changes, and increased chemical amendment use may impact its N availability. Thus, research was initiated to evaluate the effect that broiler cake and total cleanout litter amended with chemical additives have on C and N mineralization. A 35-day incubation study was carried out on a Hartsells fine sandy loam (fine-loamy, siliceous, subactive, thermic Typic Hapludults) soil common to t...

  1. Nuclear safety project

    International Nuclear Information System (INIS)

    1982-06-01

    The Annual Report 1981 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1981 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on - work completed - results obtained - plans for future work. This report was compiled by the project management. (orig.) [de

  2. Nuclear safety project

    International Nuclear Information System (INIS)

    1984-11-01

    The semiannual progress report 1984/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1984 in the nuclear safety field by KfK institutes and departements and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics work performed, results obtained and plans for future work. This report was compiled by the project management. (orig./RW) [de

  3. Project Nuclear Safety

    International Nuclear Information System (INIS)

    1981-11-01

    The semiannual progress report 1981/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1981 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics, work performed, results obtained, plans for future work. This report was compiled by the project management. (orig.) [de

  4. 324 and 325 Building Hot Cell Cleanout Program: Air lock cover block refurbishment

    International Nuclear Information System (INIS)

    Katayama, Y.B.; Holton, L.K. Jr.; Gale, R.M.

    1989-05-01

    The high-density concrete cover blocks shielding the pipe trench in the hot-cell air lock of the 324 Building Radiochemical Engineering Cells had accumulated fixed radioactivity ranging from 1100 to 22, 000 mrad/hr. A corresponding increase in the radiation exposure to personnel entering the air lock, together with ALARA concerns, led to the removal of the contaminated concrete surface with a hydraulic spaller and the emplacement of a stainless steel covering over a layer of grout. The resultant saving in radiation exposure is estimated to be 7200 mrad for personnel completing burial box runs for the 324 and 325 Building Hot Cell Cleanout Program. Radiation exposure to all staff members entering the air lock is now at least 50% lower. 3 refs., 22 figs., 1 tab

  5. Effective Safety Management in Construction Project

    Science.gov (United States)

    Othman, I.; Shafiq, Nasir; Nuruddin, M. F.

    2017-12-01

    Effective safety management is one of the serious problems in the construction industry worldwide, especially in large-scale construction projects. There have been significant reductions in the number and the rate of injury over the last 20 years. Nevertheless, construction remains as one of the high risk industry. The purpose of this study is to examine safety management in the Malaysian construction industry, as well as to highlight the importance of construction safety management. The industry has contributed significantly to the economic growth of the country. However, when construction safety management is not implemented systematically, accidents will happen and this can affect the economic growth of the country. This study put the safety management in construction project as one of the important elements to project performance and success. The study emphasize on awareness and the factors that lead to the safety cases in construction project.

  6. Study of system safety evaluation on LTO of national project. NISA safety research project on system safety of nuclear power plants

    International Nuclear Information System (INIS)

    Takizawa, Masayuki; Sekimura, Naoto; Miyano, Hiroshi; Aoyama, Katsunobu

    2012-01-01

    Japanese safety regulatory body, that is, Nuclear and Industrial Safety Agency (NISA) started a 5-year national safety research project as 'the first stage' from 2006 FY to 2010 FY whose objective is 'Improve the technical information basis in order to utilize knowledge as well as information related to ageing management and maintenance of NPPs. Fukushima disaster happened in March 2011, and the priority of research needs for ageing management dramatically changed in Japan. The second-stage national project started in October 2011 with the concept of 'system safety' of NNPs where not only ageing management on degradation phenomena of important components but also safety management on total plant systems are paid attention to. The second-stage project is so called 'Japanese Ageing Management Program for System Safety (JAMPSS)'. (author)

  7. National Ignition Facility Project Site Safety Program

    International Nuclear Information System (INIS)

    Dun, C

    2003-01-01

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES and H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES and H requirements are consistent with the ''LLNL ES and H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B

  8. Enhancing Safety Culture in Complex Nuclear Industry Projects

    International Nuclear Information System (INIS)

    Gotcheva, N.

    2016-01-01

    This paper presents an on-going research project “Management principles and safety culture in complex projects” (MAPS), supported by the Finnish Research Programme on Nuclear Power Plant Safety 2015-2018. The project aims at enhancing safety culture and nuclear safety by supporting high quality execution of complex projects in the nuclear industry. Safety-critical industries are facing new challenges, related to increased outsourcing and complexity in technology, work tasks and organizational structures (Milch and Laumann, 2016). In the nuclear industry, new build projects, as well as modernisation projects are temporary undertakings often carried out by networks of companies. Some companies may have little experience in the nuclear industry practices or consideration of specific national regulatory requirements. In large multinational subcontractor networks, the challenge for assuring nuclear safety arises partly from the need to ensure that safety and quality requirements are adequately understood and fulfilled by each partner. Deficient project management practices and unsatisfactory nuclear safety culture in project networks have been recognised as contributing factors to these challenges (INPO, 2010). Prior evidence indicated that many recent major projects have experienced schedule, quality and financial challenges both in the nuclear industry (STUK, 2011) and in the non-nuclear domain (Ahola et al., 2014; Brady and Davies, 2010). Since project delays and quality issues have been perceived mainly as economic problems, project management issues remain largely understudied in safety research. However, safety cannot be separated from other performance aspects if a systemic view is applied. Schedule and quality challenges may reflect deficiencies in coordination, knowledge and competence, distribution of roles and responsibilities or attitudes among the project participants. It is increasingly understood that the performance of the project network in all

  9. Nuclear Safety Project

    International Nuclear Information System (INIS)

    1978-11-01

    The 13th semi-annual report 1/78 is a description of work within the Nuclear Safety Project performed in the first six months of 1978 in the nuclear safety field by KFK institutes and departments and by external institutions on behalf of KfK. It includes for each individual research activity short summaries on - work completed, - essential results, - plans for the near future. (orig./RW) [de

  10. Nuclear Safety Project

    International Nuclear Information System (INIS)

    1983-12-01

    The semiannual progress report 1983/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1983 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics work performed, results obtained and plans for future work. (orig./RW) [de

  11. Nuclear safety project

    International Nuclear Information System (INIS)

    Anon.

    1980-11-01

    The 17th semi-annual report 1980/1 is a description of work within the Nuclear Safety Project performed in the first six months of 1980 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics - work performed, results obtained, plans for future work. (orig.) [de

  12. 324 and 325 Building hot cell cleanout program: Decontamination of C-Cell

    International Nuclear Information System (INIS)

    Katayama, Y.B.; Holton, L.K. Jr.

    1989-10-01

    During FY 1989 the decontamination of C-Cell of Hanford's 324 Building was completed as part of the 324 and 325 Building Hot Cell Cleanout Program sponsored by the DOE Nuclear Energy's Surplus Facilities Management Program. The decontamination effort was completed using a series of remote and contact decontamination techniques. Initial radiation readings in C-Cell averaged 50 rad/hr and were reduced remotely to less than 200 mrad/hr using an alkaline foam cleaner followed by a 5000-psi water flush. Contact decontamination was then permissible using ultra high-pressure water, at 36,000 psi, further reducing the average radiation level in the cell to less than 86 mrem/hr. The approach used in decontaminating C-Cell resulted in a savings in radiation exposure of 87% and a cost savings of 39% compared to a hands-on procedure used in A-Cell, 324 Building in 1987. The radiation dose and the costs to achieve a 244-fold reduction in radiation contamination were 1.65 mrem per ft 2 and $96 per ft 2 of cell surface area. 14 figs., 4 tabs

  13. Project safety studies - nuclear waste management (PSE)

    International Nuclear Information System (INIS)

    1981-10-01

    The project 'Safety Studies-Nuclear Waste Management' (PSE) is a research project performed by order of the Federal Minister for Research and Technology, the general purpose of which is to deepen and ensure the understanding of the safety aspects of the nuclear waste management and to prepare a risk analysis which will have to be established in the future. Owing to this the project is part of a series of projects which serve the further development of the concept of nuclear waste management and its safety, and which are set up in such a way as to accompany the realization of that concept. This report contains the results of the first stage of the project from 1978 to mid-1981. (orig./RW) [de

  14. ELECTRICAL SAFETY IMPROVEMENT PROJECT A COMPLEX WIDE TEAMING INITIATIVE

    Energy Technology Data Exchange (ETDEWEB)

    GRAY BJ

    2007-11-26

    This paper describes the results of a year-long project, sponsored by the Energy Facility Contractors Group (EFCOG) and designed to improve overall electrical safety performance throughout Department of Energy (DOE)-owned sites and laboratories. As evidenced by focused metrics, the Project was successful primarily due to the joint commitment of contractor and DOE electrical safety experts, as well as significant support from DOE and contractor senior management. The effort was managed by an assigned project manager, using classical project-management principles that included execution of key deliverables and regular status reports to the Project sponsor. At the conclusion of the Project, the DOE not only realized measurable improvement in the safety of their workers, but also had access to valuable resources that will enable them to do the following: evaluate and improve electrical safety programs; analyze and trend electrical safety events; increase electrical safety awareness for both electrical and non-electrical workers; and participate in ongoing processes dedicated to continued improvement.

  15. Impact of Construction Health & Safety Regulations on Project ...

    African Journals Online (AJOL)

    Impact of Construction Health & Safety Regulations on Project Parameters in Nigeria: Consultants and Contractors View. ... The study recommends that better attention is given to health and safety should as a project parameter and that related practice notes and guidelines should be evolved for all project stakeholders.

  16. Nuclear Safety Project. Annual report 1983

    International Nuclear Information System (INIS)

    1984-06-01

    The annual report 1983 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1983 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work performed, results obtained and plans for future work. This report was compiled by the project management. (orig.) [de

  17. Nuclear safety project. Annual report 1985

    International Nuclear Information System (INIS)

    1986-07-01

    The annual report 1985 is a detailed description (in German language) of work within the nuclear safety project performed in 1985 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work performed, results obtained and plans for future work. This report was compiled by the project management. (orig./HP) [de

  18. Cesium legacy safety project management work plan

    International Nuclear Information System (INIS)

    Durham, J.S.

    1998-01-01

    This Management Work Plan (MWP) describes the process flow, quality assurance controls, and the Environment, Safety, and Health requirements of the Cesium Legacy Safety Project. This MWP provides an overview of the project goals and methods for repackaging the non-conforming Type W overpacks and packaging the CsCl powder and pellets. This MWP is not intended to apply to other activities associated with the CsCl Legacy Safety Program (i.e., clean out of South Cell)

  19. NASA's Aviation Safety and Modeling Project

    Science.gov (United States)

    Chidester, Thomas R.; Statler, Irving C.

    2006-01-01

    The Aviation Safety Monitoring and Modeling (ASMM) Project of NASA's Aviation Safety program is cultivating sources of data and developing automated computer hardware and software to facilitate efficient, comprehensive, and accurate analyses of the data collected from large, heterogeneous databases throughout the national aviation system. The ASMM addresses the need to provide means for increasing safety by enabling the identification and correcting of predisposing conditions that could lead to accidents or to incidents that pose aviation risks. A major component of the ASMM Project is the Aviation Performance Measuring System (APMS), which is developing the next generation of software tools for analyzing and interpreting flight data.

  20. Use of safety management practices for improving project performance.

    Science.gov (United States)

    Cheng, Eddie W L; Kelly, Stephen; Ryan, Neal

    2015-01-01

    Although site safety has long been a key research topic in the construction field, there is a lack of literature studying safety management practices (SMPs). The current research, therefore, aims to test the effect of SMPs on project performance. An empirical study was conducted in Hong Kong and the data collected were analysed with multiple regression analysis. Results suggest that 3 of the 15 SMPs, which were 'safety committee at project/site level', 'written safety policy', and 'safety training scheme' explained the variance in project performance significantly. Discussion about the impact of these three SMPs on construction was provided. Assuring safe construction should be an integral part of a construction project plan.

  1. Outline of criticality safety research project

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Suzaki, Takenori; Takeshita, Isao; Miyoshi, Yoshinori; Nakajima, Ken; Sakurai, Satoshi; Yanagisawa, Hiroshi

    1987-01-01

    As the power generation capacity of LWRs in Japan increased, the establishment and development of nuclear fuel cycle have become the important subject. Conforming to the safety research project of the nation, the Japan Atomic Energy Research Institute has advanced the project of constructing a new research facility, that is, Nuclear Fuel Cycle Engineering Research Facility (NUCEF). In this facility, it is planned to carry out the research on criticality safety, upgraded reprocessing techniques, and the treatment and disposal of transuranium element wastes. In this paper, the subjects of criticality safety research and the research carried out with a criticality safety experiment facility which is expected to be installed in the NUCEF are briefly reported. The experimental data obtained from the criticality safety handbooks and published literatures in foreign countries are short of the data on the mixture of low enriched uranium and plutonium which is treated in the reprocessing of spent fuel from LWRs. The acquisition of the criticality data for various forms of fuel, the elucidation of the scenario of criticality accidents, and the soundness of the confinement system for gaseous fission products and plutonium are the main subjects. The Static Criticality Safety Facility, Transient Criticality Safety Facility and pulse column system are the main facilities. (Kako, I.)

  2. UMTRA Project environmental, health, and safety plan

    International Nuclear Information System (INIS)

    1989-02-01

    The basic health and safety requirements established in this plan are designed to provide guidelines to be applied at all Uranium Mill Tailings Remedial Action (UMTRA) Project sites. Specific restrictions are given where necessary. However, an attempt has been made to provide guidelines which are generic in nature, and will allow for evaluation of site-specific conditions. Health and safety personnel are expected to exercise professional judgment when interpreting these guidelines to ensure the health and safety of project personnel and the general population. This UMTRA Project Environmental, Health, and Safety (EH ampersand S) Plan specifies the basic Federal health and safety standards and special DOE requirements applicable to this program. In addition, responsibilities in carrying out this plan are delineated. Some guidance on program requirements and radiation control and monitoring is also included. An Environmental, Health, and Safety Plan shall be developed as part of the remedial action plan for each mill site and associated disposal site. Special conditions at the site which may present potential health hazards will be described, and special areas that should should be addressed by the Remedial Action Contractor (RAC) will be indicated. Site-specific EH ampersand S concerns will be addressed by special contract conditions in RAC subcontracts. 2 tabs

  3. Understanding lean & safety projects: analysis of case studies

    Directory of Open Access Journals (Sweden)

    Maria Crema

    2017-12-01

    Full Text Available Facing the current socio-economic contingency while guaranteeing a high level of care quality is particularly challenging in the field of healthcare. Through an integrated adoption of emerging managerial solutions, projects that allow organizations to achieve both efficiency and patient safety improvements could be implemented, thereby transposing policy directives towards a safer and more sustainable healthcare system. Therefore, the purpose of this paper is to investigate the features of Lean & Safety (L&S projects. Three Health Lean Management (HLM projects that had unexpected patient safety results were selected from the same region. Differences and similarities among the cases have been highlighted and interesting points of evidence have been noted. Despite the fact that the projects were pursuing similar objectives and benefiting from comparable support, the obtained changes had direct impact on patient safety enhancement in the cases that involved the front-office processes, and an indirect impact on patient safely for the L&S project that focused on back-office activities. The implementation processes and the Information and Communication Technologies (ICT adoption of the cases are also different.

  4. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  5. MATHEMATICAL APPARATUS FOR KNOWLEDGE BASE PROJECT MANAGEMENT OF OCCUPATIONAL SAFETY

    Directory of Open Access Journals (Sweden)

    Валентина Николаевна ПУРИЧ

    2015-05-01

    Full Text Available The occupational safety project (OSP management is aimed onto a rational choice implementation. With respect to the subjectivity of management goals the project selection is considered as a minimum formalization level information process, The proposed project selection model relies upon the enterprise’s occupational and industrial safety assessment using fuzzy logic and linguistic variables based on occupational safety knowledge base.

  6. Criticality safety benchmark evaluation project: Recovering the past

    Energy Technology Data Exchange (ETDEWEB)

    Trumble, E.F.

    1997-06-01

    A very brief summary of the Criticality Safety Benchmark Evaluation Project of the Westinghouse Savannah River Company is provided in this paper. The purpose of the project is to provide a source of evaluated criticality safety experiments in an easily usable format. Another project goal is to search for any experiments that may have been lost or contain discrepancies, and to determine if they can be used. Results of evaluated experiments are being published as US DOE handbooks.

  7. Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Bougaenko, S.E.; Kraev, A.E.; Hill, D.L.; Braun, J.C.; Klickman, A.E.

    1998-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project

  8. Relational approach in managing construction project safety: a social capital perspective.

    Science.gov (United States)

    Koh, Tas Yong; Rowlinson, Steve

    2012-09-01

    Existing initiatives in the management of construction project safety are largely based on normative compliance and error prevention, a risk management approach. Although advantageous, these approaches are not wholly successful in further lowering accident rates. A major limitation lies with the approaches' lack of emphasis on the social and team processes inherent in construction project settings. We advance the enquiry by invoking the concept of social capital and project organisational processes, and their impacts on project safety performance. Because social capital is a primordial concept and affects project participants' interactions, its impact on project safety performance is hypothesised to be indirect, i.e. the impact of social capital on safety performance is mediated by organisational processes in adaptation and cooperation. A questionnaire survey was conducted within Hong Kong construction industry to test the hypotheses. 376 usable responses were received and used for analyses. The results reveal that, while the structural dimension is not significant, the mediational thesis is generally supported with the cognitive and relational dimensions affecting project participants' adaptation and cooperation, and the latter two processes affect safety performance. However, the cognitive dimension also directly affects safety performance. The implications of these results for project safety management are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Assessment of Contributions to Patient Safety Knowledge by the Agency for Healthcare Research and Quality-Funded Patient Safety Projects

    Science.gov (United States)

    Sorbero, Melony E S; Ricci, Karen A; Lovejoy, Susan; Haviland, Amelia M; Smith, Linda; Bradley, Lily A; Hiatt, Liisa; Farley, Donna O

    2009-01-01

    Objective To characterize the activities of projects funded in Agency for Healthcare Research and Quality (AHRQ)' patient safety portfolio and assess their aggregate potential to contribute to knowledge development. Data Sources Information abstracted from proposals for projects funded in AHRQ' patient safety portfolio, information on safety practices from the AHRQ Evidence Report on Patient Safety Practices, and products produced by the projects. Study Design This represented one part of the process evaluation conducted as part of a longitudinal evaluation based on the Context–Input–Process–Product model. Principal Findings The 234 projects funded through AHRQ' patient safety portfolio examined a wide variety of patient safety issues and extended their work beyond the hospital setting to less studied parts of the health care system. Many of the projects implemented and tested practices for which the patient safety evidence report identified a need for additional evidence. The funded projects also generated a substantial body of new patient safety knowledge through a growing number of journal articles and other products. Conclusions The projects funded in AHRQ' patient safety portfolio have the potential to make substantial contributions to the knowledge base on patient safety. The full value of this new knowledge remains to be confirmed through the synthesis of results. PMID:21456108

  10. The International Criticality Safety Benchmark Evaluation Project

    International Nuclear Information System (INIS)

    Briggs, B. J.; Dean, V. F.; Pesic, M. P.

    2001-01-01

    In order to properly manage the risk of a nuclear criticality accident, it is important to establish the conditions for which such an accident becomes possible for any activity involving fissile material. Only when this information is known is it possible to establish the likelihood of actually achieving such conditions. It is therefore important that criticality safety analysts have confidence in the accuracy of their calculations. Confidence in analytical results can only be gained through comparison of those results with experimental data. The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the US Department of Energy. The project was managed through the Idaho National Engineering and Environmental Laboratory (INEEL), but involved nationally known criticality safety experts from Los Alamos National Laboratory, Lawrence Livermore National Laboratory, Savannah River Technology Center, Oak Ridge National Laboratory and the Y-12 Plant, Hanford, Argonne National Laboratory, and the Rocky Flats Plant. An International Criticality Safety Data Exchange component was added to the project during 1994 and the project became what is currently known as the International Criticality Safety Benchmark Evaluation Project (ICSBEP). Representatives from the United Kingdom, France, Japan, the Russian Federation, Hungary, Kazakhstan, Korea, Slovenia, Yugoslavia, Spain, and Israel are now participating on the project In December of 1994, the ICSBEP became an official activity of the Organization for Economic Cooperation and Development - Nuclear Energy Agency's (OECD-NEA) Nuclear Science Committee. The United States currently remains the lead country, providing most of the administrative support. The purpose of the ICSBEP is to: (1) identify and evaluate a comprehensive set of critical benchmark data; (2) verify the data, to the extent possible, by reviewing original and subsequently revised documentation, and by talking with the

  11. Safety culture and subcontractor network governance in a complex safety critical project

    International Nuclear Information System (INIS)

    Oedewald, Pia; Gotcheva, Nadezhda

    2015-01-01

    In safety critical industries many activities are currently carried out by subcontractor networks. Nevertheless, there are few studies where the core dimensions of resilience would have been studied in safety critical network activities. This paper claims that engineering resilience into a system is largely about steering the development of culture of the system towards better ability to anticipate, monitor, respond and learn. Thus, safety culture literature has relevance in resilience engineering field. This paper analyzes practical and theoretical challenges in applying the concept of safety culture in a complex, dynamic network of subcontractors involved in the construction of a new nuclear power plant in Finland, Olkiluoto 3. The concept of safety culture is in focus since it is widely used in nuclear industry and bridges the scientific and practical interests. This paper approaches subcontractor networks as complex systems. However, the management model of the Olkiluoto 3 project is to a large degree a traditional top-down hierarchy, which creates a mismatch between the management approach and the characteristics of the system to be managed. New insights were drawn from network governance studies. - Highlights: • We studied a relevant topical subject safety culture in nuclear new build project. • We integrated safety science challenges and network governance studies. • We produced practicable insights in managing safety of subcontractor networks

  12. Nuclear Safety Project - annual report 1980

    International Nuclear Information System (INIS)

    1981-08-01

    The Annual Report 1980 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1980 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work completed, essential results, plans for the near future. (orig./RW) [de

  13. Krsko periodic safety review project prioritization process

    International Nuclear Information System (INIS)

    Basic, I.; Vrbanic, I.; Spiler, J.; Lambright, J.

    2004-01-01

    Definition of a Krsko Periodic Safety Review (PSR) project is a comprehensive safety review of a plant after last ten years of operation. The objective is a verification by means of a comprehensive review using current methods that Krsko NPP remains safety when judged against current safety objectives and practices and that adequate arrangements are in place to maintain plant safety. This objective encompasses the three main criteria or goals: confirmation that the plant is as safe as originally intended, determination if there are any structures, systems or components that could limit the life of the plant in the foreseeable future, and comparison the plant against modern safety standards and to identify where improvements would be beneficial at justifiable cost. Krsko PSR project is structured in the three phases: Phase 1: Preparation of Detailed 10-years PSR Program, Phase 2: Performing of 10-years PSR Program and preparing of associated documents (2001-2003), and Phase 3: Implementation of the prioritized compensatory measures and modifications (development of associated EEAR, DMP, etc.) after agreement with the SNSA on the design, procedures and time-scales (2004-2008). This paper presents the NEK PSR results of work performed under Phase 2 focused on the ranking of safety issues and prioritization of corrective measures needed for establishing an efficient action plan. Safety issues were identified in Phase 2 during the following review processes: Periodic Safety Review (PSR) task; Krsko NPP Regulatory Compliance Program (RCP) review; Westinghouse Owner Group (WOG) catalog items screening/review; SNSA recommendations (including IAEA RAMP mission suggestions/recommendations).(author)

  14. Project safety as a sustainable competitive advantage.

    Science.gov (United States)

    Rechenthin, David

    2004-01-01

    To be consistently profitable, a construction company must complete projects in scope, on schedule, and on budget. At the same time, the nature of the often high-risk work performed by construction companies can result in high accident rates. Clients and other stakeholders are placing increasing pressure on companies to decrease those accident rates. Clients routinely demand copies of safety plans and evidence of past results at the "pre-qualification" or "request for proposal" stages of the procurement process. Are high accident rates and the associated costs just a part of business? Companies that deliver on scope, schedule, and budget have a competitive advantage. Is it possible for projects with low accident rates to use it as a competitive advantage? Is the value added by safety just a temporary or parity issue, or does a successful safety program offer significant advantage to the company and the client? This article concludes that in the case of a high-risk industry, such as the construction industry, an organization with a successful safety program can promote safety performance as a sustainable competitive advantage. It is a choice the company can make.

  15. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    International Nuclear Information System (INIS)

    GERBER MS

    2007-01-01

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site

  16. Light water reactor safety research project

    International Nuclear Information System (INIS)

    Markoczy, G.; Aksan, S.N.; Behringer, K.; Prodan, M.; Stierli, F.; Ullrich, G.

    1980-07-01

    The research and development activities for the safety of Light Water Power Reactors carried out 1979 at the Swiss Federal Institute for Reactor Research are described. Considerations concerning the necessity, objectives and size of the Safety Research Project are presented, followed by a detailed discussion of the activities in the five tasks of the program, covering fracture mechanics and nondestructive testing, thermal-hydraulics, reactor noise analysis and pressure vessel steel surveillance. (Auth.)

  17. Practice and innovation on safety management of Haiyang Nuclear Power Project

    International Nuclear Information System (INIS)

    Wei Guohu

    2011-01-01

    From the perspective of owner, this article has introduced the safety management model and practice of Haiyang Nuclear Power Project, one of AP1000 Self-reliance Program supporting projects of China. And the article has summarized characteristics of the safety management of Haiyang Project for reference and communication with nuclear or other projects. (author)

  18. Overview of DOE/ONS criticality safety projects

    International Nuclear Information System (INIS)

    Barber, R.W.; Brown, B.P.; Hopper, C.M.

    1985-01-01

    The evolution of Federal involvement with nuclear criticality safety has traversed through the 1940's and early 1950's with the Manhattan Engineering District, the 1950's and 1960's with the Atomic Energy Commission, the early 1970's with the Energy Research and Development Administration, and the late 1970's to date with the US Department of Energy. The importance of nuclear criticality safety has been maintained throughout these periods; however, criticality safety has received shifting emphases in research/applications, promulgations of regulations/standards, origins of fiscal support and organization. In June 1981 the Office of Nuclear Safety was established in response to a Department of Energy study of the impact of the March 1979 Three Mile Island accident. The organizational structure of the ONS, its program for establishing and maintaining a progressive nuclear criticality safety program, and associated projects, and current history of ONS's fiscal support of program projects is presented. With the establishment of the ONS came concomitant missions to develop and maintain nuclear safety policy and requirements, to provide independent assurance that nuclear operations are performed safely, to provide resources and management for DOE responses to nuclear accidents, and to provide technical support. In the past four years, ONS has developed and initiated a continuing Department Nuclear Criticality Safety Program in such areas as communications and information, physics of criticality, knowledge of factors affecting criticality, and computational capability

  19. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    GERBER MS

    2007-12-05

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site.

  20. Safety Culture Enhancement Project. Final Report. A Field Study on Approaches to Enhancement of Safety Culture

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Andrew; Hayward, Brent (Dedale Asia Pacific, Albert Park VIC 3206 (Australia))

    2006-08-15

    This report documents a study with the objective of enhancing safety culture in the Swedish nuclear power industry. A primary objective of this study was to ensure that the latest thinking on human factors principles was being recognised and applied by nuclear power operators as a means of ensuring optimal safety performance. The initial phase of the project was conducted as a pilot study, involving the senior management group at one Swedish nuclear power-producing site. The pilot study enabled the project methodology to be validated after which it was repeated at other Swedish nuclear power industry sites, providing a broad-ranging analysis of opportunities across the industry to enhance safety culture. The introduction to this report contains an overview of safety culture, explains the background to the project and sets out the project rationale and objectives. The methodology used for understanding and analysing the important safety culture issues at each nuclear power site is then described. This section begins with a summary of the processes used in the information gathering and data analysis stage. The six components of the Management Workshops conducted at each site are then described. These workshops used a series of presentations, interactive events and group exercises to: (a) provide feedback to site managers on the safety culture and safety leadership issues identified at their site, and (b) stimulate further safety thinking and provide 'take-away' information and leadership strategies that could be applied to promote safety culture improvements. Section 3, project Findings, contains the main observations and output from the project. These include: - a brief overview of aspects of the local industry operating context that impinge on safety culture; - a summary of strengths or positive attributes observed within the safety culture of the Swedish nuclear industry; - a set of identified opportunities for further improvement; - the aggregated

  1. Safety Culture in New Build Projects

    International Nuclear Information System (INIS)

    Reiman, T.

    2016-01-01

    The concept of culture emphasises the social factors that have an effect on the way hazards are perceived, risks are evaluated, risk management is conducted, the current safety level is interpreted, and what is considered normal and what abnormal. It also contributes to defining the correct ways to behave in situations and correct ways to talk about safety, risks or uncertainty. Culture is something the company has created for itself that then has an effect on the company. This effect is not necessarily perceived by the company itself, since the members of the organization consider all things that happen according to their cultural taken-for-granted assumptions (“business as usual”). Thus, safety culture can either hinder or advance nuclear safety. This depends on what the shared values and assumptions are, and how they are in line with, and influence, the organizational structures, practices, personnel and technology. Safety culture requires constant and systematic development, monitoring and review during the entire life-cycle of a nuclear facility. The pre-operational phase sets many unique requirements for nuclear safety culture. For example, some of the organizations and individuals involved in the project may have no insight on how safety culture relates to nuclear power plants. Companies that work in the conventional industry typically associate safety with occupational safety issues, not with nuclear safety. Further, it may be unclear how the construction phase affects nuclear safety of an operating plant. When workers are asked to perform their work differently than previously (e.g., in conventional construction sites), explanation has to be given. For example, structures, systems and components may have different functions during emergency that exceed or differ from their quality requirements during normal operation. The strict quality requirements and use of certain methods and procedures, documentation requirements, etc., may seem unimportant if

  2. SNF fuel retrieval sub project safety analysis document

    International Nuclear Information System (INIS)

    BERGMANN, D.W.

    1999-01-01

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed

  3. SNF fuel retrieval sub project safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    BERGMANN, D.W.

    1999-02-24

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

  4. Safety equipment list for the 241-SY-101 RAPID mitigation project

    Energy Technology Data Exchange (ETDEWEB)

    MORRIS, K.L.

    1999-06-29

    This document provides the safety classification for the safety (safety class and safety RAPID Mitigation Project. This document is being issued as the project SEL until the supporting authorization basis documentation, this document will be superseded by the TWRS SEL (LMHC 1999), documentation istlralized. Upon implementation of the authorization basis significant) structures, systems, and components (SSCS) associated with the 241-SY-1O1 which will be updated to include the information contained herein.

  5. Safety equipment list for the 241-SY-101 RAPID mitigation project

    International Nuclear Information System (INIS)

    Morris, K.L.

    1999-01-01

    This document provides the safety classification for the safety (safety class and safety RAPID Mitigation Project. This document is being issued as the project SEL until the supporting authorization basis documentation, this document will be superseded by the TWRS SEL (LMHC 1999), documentation istlralized. Upon implementation of the authorization basis significant) structures, systems, and components (SSCS) associated with the 241-SY-1O1 which will be updated to include the information contained herein

  6. Safety Culture Enhancement Project. Final Report. A Field Study on Approaches to Enhancement of Safety Culture

    International Nuclear Information System (INIS)

    Lowe, Andrew; Hayward, Brent

    2006-08-01

    This report documents a study with the objective of enhancing safety culture in the Swedish nuclear power industry. A primary objective of this study was to ensure that the latest thinking on human factors principles was being recognised and applied by nuclear power operators as a means of ensuring optimal safety performance. The initial phase of the project was conducted as a pilot study, involving the senior management group at one Swedish nuclear power-producing site. The pilot study enabled the project methodology to be validated after which it was repeated at other Swedish nuclear power industry sites, providing a broad-ranging analysis of opportunities across the industry to enhance safety culture. The introduction to this report contains an overview of safety culture, explains the background to the project and sets out the project rationale and objectives. The methodology used for understanding and analysing the important safety culture issues at each nuclear power site is then described. This section begins with a summary of the processes used in the information gathering and data analysis stage. The six components of the Management Workshops conducted at each site are then described. These workshops used a series of presentations, interactive events and group exercises to: (a) provide feedback to site managers on the safety culture and safety leadership issues identified at their site, and (b) stimulate further safety thinking and provide 'take-away' information and leadership strategies that could be applied to promote safety culture improvements. Section 3, project Findings, contains the main observations and output from the project. These include: - a brief overview of aspects of the local industry operating context that impinge on safety culture; - a summary of strengths or positive attributes observed within the safety culture of the Swedish nuclear industry; - a set of identified opportunities for further improvement; - the aggregated results of the

  7. Nuclear Safety Project. Annual report 1986

    International Nuclear Information System (INIS)

    1987-09-01

    The annual report 1986 is a detailed description of work within the Nuclear Safety Project performed in 1986 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes individual research activities on dynamic loads and strains of reactor components under accident conditions, fuel behaviour under accident conditions, investigation and control of LWR core-meltdown accidents, improvement of fission product retention and reduction of radiation exposure, and on behaviour, impact and removal of released pollutants. (DG)

  8. 25 CFR 170.144 - What are eligible highway safety projects?

    Science.gov (United States)

    2010-04-01

    ... RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and Eligibility Highway Safety Functions... management system; (g) Education and outreach highway safety programs, such as use of child safety seats... 25 Indians 1 2010-04-01 2010-04-01 false What are eligible highway safety projects? 170.144...

  9. Annual colloquium 1976 of the project nuclear safety

    International Nuclear Information System (INIS)

    1976-11-01

    The present report gives the full text of the nine papers read during the annual colloquium 1976 of the Project Nuclear Safety at Karlsruhe Nuclear Research Centre, in which the main activities and findings of the project in 1976 are contained. (RW) [de

  10. Case study: the Argentina Road Safety Project: lessons learned for the decade of action for road safety, 2011-2020.

    Science.gov (United States)

    Raffo, Veronica; Bliss, Tony; Shotten, Marc; Sleet, David; Blanchard, Claire

    2013-12-01

    This case study of the Argentina Road Safety Project demonstrates how the application of World Bank road safety project guidelines focused on institution building can accelerate knowledge transfer, scale up investment and improve the focus on results. The case study highlights road safety as a development priority and outlines World Bank initiatives addressing the implementation of the World Report on Road Traffic Injury's recommendations and the subsequent launch of the Decade of Action for Road Safety, from 2011-2020. The case study emphasizes the vital role played by the lead agency in ensuring sustainable road safety improvements and promoting the shift to a 'Safe System' approach, which necessitated the strengthening of all elements of the road safety management system. It summarizes road safety performance and institutional initiatives in Argentina leading up to the preparation and implementation of the project. We describe the project's development objectives, financing arrangements, specific components and investment staging. Finally, we discuss its innovative features and lessons learned, and present a set of supplementary guidelines, both to assist multilateral development banks and their clients with future road safety initiatives, and to encourage better linkages between the health and transportation sectors supporting them.

  11. Expediting Clinician Adoption of Safety Practices: The UCSF Venous Access Patient Safety Interdisciplinary Education Project

    National Research Council Canada - National Science Library

    Donaldson, Nancy E; Plank, Rosemary K; Williamson, Ann; Pearl, Jeffrey; Kellogg, Jerry; Ryder, Marcia

    2005-01-01

    ...) Venous Access Device (VAD) Patient Safety Interdisciplinary Education Project was to develop a 30-hour/one clinical academic unit VAD patient safety course with the aim of expediting clinician adoption of critical concepts...

  12. Software qualification for digital safety system in KNICS project

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Lee, Dong-Young; Choi, Jong-Gyun

    2012-01-01

    In order to achieve technical self-reliance in the area of nuclear instrumentation and control, the Korea Nuclear Instrumentation and Control System (KNICS) project had been running for seven years from 2001. The safety-grade Programmable Logic Controller (PLC) and the digital safety system were developed by KNICS project. All the software of the PLC and digital safety system were developed and verified following the software development life cycle Verification and Validation (V and V) procedure. The main activities of the V and V process are preparation of software planning documentations, verification of the Software Requirement Specification (SRS), Software Design Specification (SDS) and codes, and a testing of the software components, the integrated software, and the integrated system. In addition, a software safety analysis and a software configuration management are included in the activities. For the software safety analysis at the SRS and SDS phases, the software Hazard Operability (HAZOP) was performed and then the software fault tree analysis was applied. The software fault tree analysis was applied to a part of software module with some critical defects identified by the software HAZOP in SDS phase. The software configuration management was performed using the in-house tool developed in the KNICS project. (author)

  13. A series of student design projects for improving and modernizing safety helmets

    NARCIS (Netherlands)

    Beurden, van K.M.M. (Karin); Boer, de J. (Johannes); Stilma, M. (Margot); Teeuw, W.B. (Wouter)

    2014-01-01

    The Saxion Research Centre for Design and Technology employs many students during research projects. This paper discusses a series of student design projects on safety helmets in the Safety@Work project. At construction sites workers are required to wear personal protective equipment during their

  14. Nuclear safety research project. Annual report 1995

    International Nuclear Information System (INIS)

    Hueper, R.

    1996-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report 1995 summarizes the R and D results. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status of early 1996. An abstract in English precedes each of them, whenever the respective article is written in German. (orig.) [de

  15. Radiation safety at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hoffman, R.L.

    1997-01-01

    This is a report on the Radiation Safety Program at the West Valley Demonstration Project (WVDP). This Program covers a number of activities that support high-level waste solidification, stabilization of facilities, and decontamination and decommissioning activities at the Project. The conduct of the Program provides confidence that all occupational radiation exposures received during operational tasks at the Project are within limits, standards, and program requirements, and are as low as reasonably achievable

  16. System Safety Program Plan for Project W-314, tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    Boos, K.A.

    1996-01-01

    This System Safety Program Plan (SSPP) outlines the safety analysis strategy for project W-314, ''Tank Farm Restoration and Safe Operations.'' Project W-314 will provide capital improvements to Hanford's existing Tank Farm facilities, with particular emphasis on infrastructure systems supporting safe operation of the double-shell activities related to the project's conceptual Design Phase, but is planned to be updated and maintained as a ''living document'' throughout the life of the project to reflect the current safety analysis planning for the Tank Farm Restoration and Safe Operations upgrades. This approved W-314 SSPP provides the basis for preparation/approval of all safety analysis documentation needed to support the project

  17. Main benefits from 30 years of joint projects in nuclear safety

    International Nuclear Information System (INIS)

    Thadani, Ashok; Teschendorff, Victor; Vitanza, Carlo; Hrehor, Miroslav

    2012-01-01

    One of the major achievements of the OECD Nuclear Energy Agency (NEA) is the knowledge it has helped to generate through the organisation of joint international research projects. Such projects, primarily in the areas of nuclear safety and radioactive waste management, enable interested countries, on a cost-sharing basis, to pursue research or the sharing of data with respect to particular areas or issues. Over the years, more than 30 joint projects have been conducted with wide participation of member countries. The purpose of this report is to describe the achievements of the OECD/NEA joint projects on nuclear safety research that have been carried out over the past three decades, with a particular focus on thermal-hydraulics, fuel behaviour and severe accidents. It shows that the resolution of specific safety issues in these areas has greatly benefited from the joint projects' activities and results. It also highlights the added value of international co-operation for maintaining unique experimental infrastructure, preserving skills and generating new knowledge

  18. Radiation safety for decommissioning projects

    International Nuclear Information System (INIS)

    Ross, A.C.

    1999-01-01

    Decommissioning of redundant nuclear facilities is a growth area in the UK at the present time. NUKEM Nuclear Limited is a leading-edge nuclear decommissioning and waste management contractor (with its own in-house health physics and safety department), working for a variety of clients throughout the UK nuclear industry. NUKEM Nuclear is part of the prestigious, international NUKEM group, a world-class organization specializing in nuclear engineering and utilities technologies. NUKEM Nuclear is involved in a number of large, complex decommissioning projects, both in its own right and as part of consortia. This paper explores the challenges presented by such projects and the interfaces of contractor, client and subcontractors from the point of view of a radiation protection adviser. (author)

  19. A root cause analysis project in a medication safety course.

    Science.gov (United States)

    Schafer, Jason J

    2012-08-10

    To develop, implement, and evaluate team-based root cause analysis projects as part of a required medication safety course for second-year pharmacy students. Lectures, in-class activities, and out-of-class reading assignments were used to develop students' medication safety skills and introduce them to the culture of medication safety. Students applied these skills within teams by evaluating cases of medication errors using root cause analyses. Teams also developed error prevention strategies and formally presented their findings. Student performance was assessed using a medication errors evaluation rubric. Of the 211 students who completed the course, the majority performed well on root cause analysis assignments and rated them favorably on course evaluations. Medication error evaluation and prevention was successfully introduced in a medication safety course using team-based root cause analysis projects.

  20. Substantiation of the safety in the technical project of Belene NPP

    International Nuclear Information System (INIS)

    Boyadzhiev, A.

    1990-01-01

    The chapter contains an evaluation of the safety of Belene NPP project, based on an experts study of the corresponding volume of the Technical Project documentation of the main contractor and also on other related documents. The authors state that most of the remarks are constitutive, part of them requiring additional information or research. The general explicit conclusion is that the materials on the safety substantiation provided in the project are insufficient for making final statements on the safety of the NPP and there is a need for a detailed analysis and expertise. There are 12 topical conclusion paragraphs and each of them comprises a number of remarks. Among the remarks there are some related to the reactivity coefficient values in certain modes of operation, the problem of the mechanical safety and control system efficiency, the unacceptable operation at nominal power in case of stringent safety rules enforcement, the insufficiency of the PSA, the automatic control systems and the software codes not standing up to the contemporary requirements. (R.Ts.)

  1. Developing an action-based health and safety training project in southern China.

    Science.gov (United States)

    Szudy, Betty; O'Rourke, Dara; Brown, Garrett D

    2003-01-01

    A project brought together international footwear manufacturers, labor rights groups, local contract factories, and occupational health professionals to strengthen factory health and safety programs in southern China. Steps involved in the two-year project, including needs assessment, interviews and focus groups with workers and supervisors; design and development of a participatory workshop; development of plant-wide health and safety committees in three footwear factories; and evaluation project impact, are discussed. The project significantly increased occupational safety and health knowledge, and hazards in the factories were identified and corrected. Successes and challenges faced by three functioning worker-management health and safety committees are discussed. Key elements to create effective programs with meaningful participation by workers include: 1) developing clear guidelines that enable multi-stakeholder groups to collaborate; 2) obtaining top-level management support; 3) building workers' knowledge and capacity to fully participate; 4) involving local labor rights groups and occupational professionals in support and technical assistance; and 5) connecting project goals to larger issues within a country and the global economy.

  2. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Mark D [ORNL; Christopher, Timothy W [ORNL; Oland, C Barry [ORNL

    2011-06-01

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL

  3. Gas reactor in-pile safety test project (GRIST-2)

    International Nuclear Information System (INIS)

    Kelley, A.P. Jr.; Arbtin, E.; St Pierre, R.

    1979-01-01

    Although out-of-pile tests may be expected to confirm individual phenomena models in core disruptive accident analysis codes, only in-pile tests are capable of verifying the extremely complex integrated model effects within the appropriate time phase for these accidents. For this reason, the GRIST-2 project, the purpose of which is to design and construct an in-pile helium loop capable of transient safety testing in the TREAT facility in Idaho, forms a cornerstone of the US GCFR safety program. The project organization, experiment program, facility, helium system design, and schedule which have been selected to meet the objectives are described

  4. Safety cases for the co-ordinated research project on improvement of safety assessment methodologies for near surface radioactive waste disposal facilities (ISAM)

    International Nuclear Information System (INIS)

    Kozak, M.W.; Torres-Vidal, C.; Kelly, E.; Guskov, A.; Blerk, J. van

    2002-01-01

    A Co-ordinated Research Project (CRP) has recently been completed on the Improvement of Safety Assessment Methodologies for Near-Surface Radioactive Waste Disposal Facilities (ISAM). A major aspect of the project was the use of safety cases for the practical application of safety assessment. An overview of the ISAM safety cases is given in this paper. (author)

  5. Implementing national nuclear safety plan at the preliminary stage of nuclear power project development

    International Nuclear Information System (INIS)

    Xue Yabin; Cui Shaozhang; Pan Fengguo; Zhang Lizhen; Shi Yonggang

    2014-01-01

    This study discusses the importance of nuclear power project design and engineering methods at the preliminary stage of its development on nuclear power plant's operational safety from the professional view. Specifically, we share our understanding of national nuclear safety plan's requirement on new reactor accident probability, technology, site selection, as well as building and improving nuclear safety culture and strengthening public participation, with a focus on plan's implications on preliminary stage of nuclear power project development. Last, we introduce China Huaneng Group's work on nuclear power project preliminary development and the experience accumulated during the process. By analyzing the siting philosophy of nuclear power plant and the necessity of building nuclear safety culture at the preliminary stage of nuclear power project development, this study explicates how to fully implement the nuclear safety plan's requirements at the preliminary stage of nuclear power project development. (authors)

  6. Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project

    International Nuclear Information System (INIS)

    Duckwitz, Noel

    2011-01-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets,' safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, 'Facility Safety,' and the expectations of DOE-STD-1189-2008, 'Integration of Safety into the Design Process,' provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  7. Cloud/Fog Computing System Architecture and Key Technologies for South-North Water Transfer Project Safety

    Directory of Open Access Journals (Sweden)

    Yaoling Fan

    2018-01-01

    Full Text Available In view of the real-time and distributed features of Internet of Things (IoT safety system in water conservancy engineering, this study proposed a new safety system architecture for water conservancy engineering based on cloud/fog computing and put forward a method of data reliability detection for the false alarm caused by false abnormal data from the bottom sensors. Designed for the South-North Water Transfer Project (SNWTP, the architecture integrated project safety, water quality safety, and human safety. Using IoT devices, fog computing layer was constructed between cloud server and safety detection devices in water conservancy projects. Technologies such as real-time sensing, intelligent processing, and information interconnection were developed. Therefore, accurate forecasting, accurate positioning, and efficient management were implemented as required by safety prevention of the SNWTP, and safety protection of water conservancy projects was effectively improved, and intelligential water conservancy engineering was developed.

  8. Integrated Environment and Safety and Health Management System (ISMS) Implementation Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL, R.L.

    2000-01-10

    The Integrated Environment, Safety and Health Management System (ISMS) Implementation Project Plan serves as the project document to guide the Fluor Hanford, Inc (FHI) and Major Subcontractor (MSC) participants through the steps necessary to complete the integration of environment, safety, and health into management and work practices at all levels.

  9. Integrated Environment and Safety and Health Management System (ISMS) Implementation Project Plan

    International Nuclear Information System (INIS)

    MITCHELL, R.L.

    2000-01-01

    The Integrated Environment, Safety and Health Management System (ISMS) Implementation Project Plan serves as the project document to guide the Fluor Hanford, Inc (FHI) and Major Subcontractor (MSC) participants through the steps necessary to complete the integration of environment, safety, and health into management and work practices at all levels

  10. Safety assessment and regulatory strategy for NPP I and C modernization projects

    International Nuclear Information System (INIS)

    Manners, S.; Blocquel, Ch.

    1999-10-01

    IPSN is the technical support for the French nuclear safety authority (DSIN), but also acts independently. Through our participation at this IAEA meeting we wish to further our appreciation of the industry position for I and C modernization projects. We will present some of the concerns of the safety assessor and safety authority for such projects. We hope to share our experiences and views concerning current strategies for I and C modernization and licensing from. In our experience with NPP I and C programmes, the need for modification is most often not directly linked to safety. For our safety assessment we have to identify clearly and, as far as possible, categorize the safety relevance of the specified modifications and all safety impact in its implementation. Modernization can be simply for reasons of replacement of obsolete existing equipment or it can be linked to functional evolutions; safety functions may be directly or indirectly affected. The state of the art I and C solutions proposed by today's modernization programs have many benefits, but also pose a certain number of difficulties for the safety demonstration. On the implementation side, the safety assessment for a modernization project has to take into consideration specific issues compared with that for new plant. These include interface and compatibility with the existing installation, issues relating to 'on line' installation and commissioning, as well as operational issues concerning the changeover and trail periods. A further subject for discussion concerns how our regulatory requirements apply to modernization. We must as a minima comply with the requirements of the period. To what measure must we apply current or future (under development or for future reactor designs) standards? How can we tie in with requirements and legislation for new projects? Do we make a special case for back-fits? (authors)

  11. Safety assessment and regulatory strategy for NPP I and C modernization projects

    Energy Technology Data Exchange (ETDEWEB)

    Manners, S.; Blocquel, Ch

    1999-10-01

    IPSN is the technical support for the French nuclear safety authority (DSIN), but also acts independently. Through our participation at this IAEA meeting we wish to further our appreciation of the industry position for I and C modernization projects. We will present some of the concerns of the safety assessor and safety authority for such projects. We hope to share our experiences and views concerning current strategies for I and C modernization and licensing from. In our experience with NPP I and C programmes, the need for modification is most often not directly linked to safety. For our safety assessment we have to identify clearly and, as far as possible, categorize the safety relevance of the specified modifications and all safety impact in its implementation. Modernization can be simply for reasons of replacement of obsolete existing equipment or it can be linked to functional evolutions; safety functions may be directly or indirectly affected. The state of the art I and C solutions proposed by today's modernization programs have many benefits, but also pose a certain number of difficulties for the safety demonstration. On the implementation side, the safety assessment for a modernization project has to take into consideration specific issues compared with that for new plant. These include interface and compatibility with the existing installation, issues relating to 'on line' installation and commissioning, as well as operational issues concerning the changeover and trail periods. A further subject for discussion concerns how our regulatory requirements apply to modernization. We must as a minima comply with the requirements of the period. To what measure must we apply current or future (under development or for future reactor designs) standards? How can we tie in with requirements and legislation for new projects? Do we make a special case for back-fits? (authors)

  12. Safety risk assessment using analytic hierarchy process (AHP) during planning and budgeting of construction projects.

    Science.gov (United States)

    Aminbakhsh, Saman; Gunduz, Murat; Sonmez, Rifat

    2013-09-01

    The inherent and unique risks on construction projects quite often present key challenges to contractors. Health and safety risks are among the most significant risks in construction projects since the construction industry is characterized by a relatively high injury and death rate compared to other industries. In construction project management, safety risk assessment is an important step toward identifying potential hazards and evaluating the risks associated with the hazards. Adequate prioritization of safety risks during risk assessment is crucial for planning, budgeting, and management of safety related risks. In this paper, a safety risk assessment framework is presented based on the theory of cost of safety (COS) model and the analytic hierarchy process (AHP). The main contribution of the proposed framework is that it presents a robust method for prioritization of safety risks in construction projects to create a rational budget and to set realistic goals without compromising safety. The framework provides a decision tool for the decision makers to determine the adequate accident/injury prevention investments while considering the funding limits. The proposed safety risk framework is illustrated using a real-life construction project and the advantages and limitations of the framework are discussed. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  13. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    International Nuclear Information System (INIS)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment

  14. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  15. Nordic projects in the field of nuclear safety

    International Nuclear Information System (INIS)

    Soerensen, H.C.

    1989-07-01

    This report describes the work in 1988 within the Nordic program concerning nuclear safety 1985-1989. The report has the form of a handbook meant for those in Scandinavia who are involeved in nuclear safety, and it is based on statements from the constituent subject fields of the program. The first chapter is a short summary of the work and results over the year. In the next chapter an account is given of the ongoing projects within each of the subject fields. An economic survey of the entire program and a list of the reports and articles published in 1988 is included in the publicaltion as well. Chapter 5 is a complete list of adresses comprising participants, project managers, program coordinators and members of the advirosy group. (SH)

  16. Nordic projects in the field of nuclear safety

    International Nuclear Information System (INIS)

    Soerensen, H.C.

    1988-05-01

    This report deseribes the work in 1987 within the Nordic program concerning nuclear safety 1985-1989. The report has the form of a handbook meant for those in Scandinavia who are involved in nuclear safety, and it is based on statements from the constituent subject fields of the program. The first chapter is a short summary of the work and results over the year. In the next chapter an account is given of the ongoing projects within each of the subject fields. An economic survey of the entire program and a list of the reports and articles published in 1987 is included in the publication as well. Chapter 5 is a complete list of adresses comprising participants, project managers, program coordinators and members of the advisory group. (SH) 74 refs

  17. Aviation Safety Program: Weather Accident Prevention (WxAP) Project Overview and Status

    Science.gov (United States)

    Nadell, Shari-Beth

    2003-01-01

    This paper presents a project overview and status for the Weather Accident Prevention (WxAP) aviation safety program. The topics include: 1) Weather Accident Prevention Project Background/History; 2) Project Modifications; 3) Project Accomplishments; and 4) Project's Next Steps.

  18. Neutron Assay System for Confinement Vessel Disposition

    International Nuclear Information System (INIS)

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Mayo, Douglas R.; Miko, David K.; Salazar, William R.; Stange, Sy; Valdez, Jose I.; Vigil, Georgiana M.

    2012-01-01

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the CVs. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of special nuclear material (SNM) in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of (le)100-g 239 Pu equivalent in a vessel for safeguards termination. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements.

  19. Description of data-sources used in SafetyCube, Deliverable 3.1 of the H2020 project SafetyCube (Safety CaUsation, Benefits and Efficiency).

    NARCIS (Netherlands)

    Hagström, L. Thomson, R. Hermitte, T. Weijermars, W. Bos, N. Talbot, R. Thomas, P. Dupont, E. Martensen, H. Bauer, R. Hours, M. Høye, E. Jänsch, M. Murkovic, A. Niewöhner, W. Papadimitriou, E. Pérez, C. Phan, V. Usami, D. & Vázquez-de-Prada, J.

    2017-01-01

    Safety CaUsation, Benefits and Efficiency (SafetyCube) is a European Commission supported Horizon 2020 project with the objective of developing an innovative road safety Decision Support System (DSS) that will enable policy-makers and stakeholders to select and implement the most appropriate

  20. Nuclear safety research project (PSF). 1999 annual report

    International Nuclear Information System (INIS)

    Muehl, B.

    2000-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report summarizes the R and D results of PSF during 1999. The research tasks cover three main topics: Light Water Reactor safety, innovative systems, and studies related to the transmutation of actinides. The importance of the Light Water Reactor safety, however, has decreased during the last year in favour of the transmutation of actinides. Numerous institutes of the research centre contribute to the PSF programme, as well as several external partners. The tasks are coordinated in agreement with internal and external working groups. The contributions to this report, which are either written in German or in English, correspond to the status of early/mid 2000. (orig.) [de

  1. Transport fire safety engineering in the European Union - project TRANSFEU

    Directory of Open Access Journals (Sweden)

    Jolanta Maria RADZISZEWSKA-WOLIŃSKA

    2011-01-01

    Full Text Available Article presents European Research project (of FP7-SST-2008-RTD-1 for Surface transportation TRANSFEU. Projects undertakes to deliver both a reliable toxicity measurement methodology and a holistic fire safety approach for all kind of surface transport. It bases on a harmonized Fire Safety Engineering methodology which link passive fire security with active fire security mode. This all embracing system is the key to attain optimum design solutions in respect to fire safety objectives as an alternative to the prescriptive approach. It will help in the development of innovative solutions (design and products used for the building of the surface transport which will better respect the environment.In order to reach these objectives new toxicity measurement methodology and related classification of materials, new numerical fire simulation tools, fire test methodology (laboratory and full scale and a decisive tool to optimize or explore new design in accordance to the fire safety requirements will be developed.

  2. UMTRA project office federal employee occupational safety and health program plan

    International Nuclear Information System (INIS)

    1994-06-01

    This document establishes the Federal Employee Occupational Safety and Health (FEOSH) Program for the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project Office. This program will ensure compliance with applicable requirements of DOE Order 3790.1B and DOE Albuquerque Operations Office (AL) Order 3790.lA. FEOSH Program responsibilities delegated by the DOE-AL to the UMTRA Project Office by AL Order 3790.1A also are assigned. The UMTRA Project Office has developed the UMTRA Project Environmental, Safety, and Health (ES ampersand H) Plan (DOE, 1992), which establishes the basic programmatic ES ampersand H requirements for all participants on the UMTRA Project. The ES ampersand H plan is designed primarily to cover remedial action activities at UMTRA sites and defines the ES ampersand H responsibilities of both the UMTRA Project Office and its contractors. The UMTRA FEOSH Program described herein is a subset of the overall UMTRA ES ampersand H program and covers only federal employees working on the UMTRA Project

  3. The action of the project coordinator with respect to reactor safety

    International Nuclear Information System (INIS)

    Leclercq, Jacques

    1981-01-01

    Before describing the various actions of the project coordinator (EDF) entrusted with the building of nuclear power stations, with respect to reactor safety in France, the definition of reactor safety and the various participants are mentioned first. These participants are: the Government Departments and the Experts involved (the Department of Nuclear Safety of the 'Institut de Protection et de Surete Nucleaire' forming the first technical support) and the applicant, namely the EDF. The reactor safety actions of the project coordinator are defined as from the following components: 1 - The targets laid down with respect to safety, the final objective being the protection of workers and the public against the potential dangers of the installations, principally against radiation. 2 - The safety methodology at the design stage of the power station: 'barrier' method, defence method in depth at three levels, lines of assurance method, and probabilistic method. 3 - Safety actions at the construction stage within the context of an assurance of quality programe. 4 - Safety at the trials, commissioning and operating stage, with the backing of the 'Groupe Operationnel de Demarrage (G.O.D.)' and the 'Commission d'Essais sur Site (C.E.S.)'. An initial balance sheet of the reactor safety actions for the PWR units built by the EDF is presented [fr

  4. Annual report on reactor safety research projects. Reporting period 2011. Progress report

    International Nuclear Information System (INIS)

    2011-01-01

    Within its competence for energy research the Federal Ministry of Economics and Technology (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS)mbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRSF- Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the Internet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  5. Annual report on reactor safety research projects. Reporting period 2014. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the lnternet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. lt has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  6. Annual report on reactor safety research projects. Reporting period 2013. Progress report

    International Nuclear Information System (INIS)

    2013-01-01

    Within its competence for energy research the Federal Ministry of Economics and Technology (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS)mbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRSF- Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the Internet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  7. Annual report on reactor safety research projects. Reporting period 2015. Progress report

    International Nuclear Information System (INIS)

    2015-01-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft tor Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are ·' prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the lnternet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. it has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  8. UMTRA Project: Environment, Safety, and Health Plan

    International Nuclear Information System (INIS)

    1995-02-01

    The US Department of Energy has prepared this UMTRA Project Environment, Safety, and Health (ES and H) Plan to establish the policy, implementing requirements, and guidance for the UMTRA Project. The requirements and guidance identified in this plan are designed to provide technical direction to UMTRA Project contractors to assist in the development and implementation of their ES and H plans and programs for UMTRA Project work activities. Specific requirements set forth in this UMTRA Project ES and H Plan are intended to provide uniformity to the UMTRA Project's ES and H programs for processing sites, disposal sites, and vicinity properties. In all cases, this UMTRA Project ES and H Plan is intended to be consistent with applicable standards and regulations and to provide guidance that is generic in nature and will allow for contractors' evaluation of site or contract-specific ES and H conditions. This plan specifies the basic ES and H requirements applicable to UMTRA Project ES and H programs and delineates responsibilities for carrying out this plan. DOE and contractor ES and H personnel are expected to exercise professional judgment and apply a graded approach when interpreting these guidelines, based on the risk of operations

  9. Spent Nuclear Fuel (SNF) Project Safety Basis Implementation Strategy

    International Nuclear Information System (INIS)

    TRAWINSKI, B.J.

    2000-01-01

    The objective of the Safety Basis Implementation is to ensure that implementation of activities is accomplished in order to support readiness to move spent fuel from K West Basin. Activities may be performed directly by the Safety Basis Implementation Team or they may be performed by other organizations and tracked by the Team. This strategy will focus on five key elements, (1) Administration of Safety Basis Implementation (general items), (2) Implementing documents, (3) Implementing equipment (including verification of operability), (4) Training, (5) SNF Project Technical Requirements (STRS) database system

  10. The use of living PSA in safety management, a procedure developed in the nordic project ''safety evaluation, NKS/SIK-1''

    International Nuclear Information System (INIS)

    Johanson, G.; Holmberg, J.

    1994-01-01

    The essential objective with the development of a living PSA concept is to bring the use of the plant specific PSA model out to the daily safety work to allow operational risk experience feedback and to increase the risk awareness of the intended users. This paper will present results of the Nordic project ''Safety Evaluation, NKS/SIK-1''. The SIK-1 project has defined and demonstrated the practical use of living PSA for safety evaluation and for identification of possible improvements in operational safety. Subjects discussed in this paper are dealing with the practical implementation and use of PSA to make proper safety related decisions and evaluation. (author). 24 refs, 1 fig., 1 tab

  11. 324 Building REC and HLV Tank Closure Plan

    International Nuclear Information System (INIS)

    Becker-Khaleel, B.; Schlick, K.

    1995-12-01

    This closure plan describes the activities necessary to close the 324 Radiochemical Engineering Cells (REC) and High-Level Vault (HLV) in accordance with the Washington State Dangerous Waste regulations. To provide a complete description of the activities required, the closure plan relies on information contained in the 324 Building B-Cell Safety Cleanout Project (BCCP) plans, the 324 Building REC HLV Interim Waste Management Plan (IWMP), the Project Management Plan for Nuclear Facilities Management 300 Area Compliance Program, and the 324 High Level Vault Interim Removal Action Project (project management plan [PMP]). The IWMP addresses the management of mixed waste in accordance with state and federal hazardous waste regulations. It provides a strategy for managing high-activity mixed waste in compliance with Resource Conservation and Recovery Act (RCRA) requirements or provides for an alternative management approach for the waste. The BCCP outlines the past, present, and future activities necessary for removing from B-Cell the solid waste, including mixed waste generated as a result of historical research and development (R ampersand D) activities conducted in the cell. The BCCP also includes all records and project files associated with the B-Cell cleanout. This information is referenced throughout the closure plan. The PMP sets forth the plans, organization, and systems that Pacific Northwest National Laboratory (PNNL) will use to direct and control the 324 High-Level Vault Interim Removal Action Project. This project will develop and implement a treatment strategy that will remove and stabilize the inventory of liquid waste from the 324 HLV tanks. The PMP also provides for flushing and sampling the flush solution

  12. Dissemination material template, Deliverable 2.2 of the H2020 project SafetyCube (Safety CaUsation, Benefits and Efficiency).

    NARCIS (Netherlands)

    Tros, M. & Houtenbos, M.

    2016-01-01

    Safety CaUsation, Benefits and Efficiency (SafetyCube) is a European Commission supported Horizon 2020 project with the objective of developing an innovative road safety Decision Support System (DSS) that will enable policy-makers and stakeholders to select and implement the most appropriate

  13. Project W-030 safety class upgrade summary report

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1998-01-01

    This document presents a summary of safety class criteria for the 241-AY/AZ Tank Farm primary ventilation system upgrade under Project W-030, and recommends acceptance of the system as constructed, based on a review of supporting documentation

  14. The spin project: safety and performance indicators in different time frames

    International Nuclear Information System (INIS)

    Storck, R.; Becker, D.A.

    2002-01-01

    Safety and performance indicators have been under discussion for many years in several countries and international organisations. If those indicators refer to the long term safety of the total disposal system, they are often called safety indicators. If they refer to the performance of subsystems or the total system from a more technical point of view, they are sometimes called performance indicators. The need for indicators other than dose rates derives e.g. from the long time frames involved in safety assessments of waste disposal systems and the increasing uncertainty in dose rate calculations over time due to uncertainty in evolution of the surface environment and of behaviour of man. Before introducing additional indicators into a safety case of a potential repository site, the applicability and usefulness of different indicators have to be investigated and evaluated. The systematic analysis and testing of safety and performance indicators for use in different time horizons after closure of the disposal facility is the task of the SPIN project. This is done by re-calculating four recent studies concerning repository projects in granite formations. (authors)

  15. Proceedings of the nuclear criticality technology safety project

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.G. [comp.

    1997-06-01

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings.

  16. Proceedings of the nuclear criticality technology safety project

    International Nuclear Information System (INIS)

    Sanchez, R.G.

    1997-06-01

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings

  17. The modification of main steam safety valves in Qinshan phase Ⅱ expansion project

    International Nuclear Information System (INIS)

    Chen Haiqiao

    2012-01-01

    The main steam safety valves of NPP steam system are second- class nuclear safety component. It used to limit the pressure of SG secondary side and main steam system via emitting steam into the environment. At present, the main steam safety valves have mechanical valves and assisted power valves. According to the experience of power plants at home and abroad, including Qinshan Phase Ⅱ unit 1/2 experience feedback, Qinshan Phase Ⅱ expansion project made modification on valve type, setting value and valve body. This paper introduce the characteristics of different safety valve types, the modification of main steam safety valves and the modification analysis on safety issues.security and impact on the other systems in Qinshan Phase Ⅱ expansion project. (author)

  18. KfK Nuclear Safety Project. First semiannual report 1985

    International Nuclear Information System (INIS)

    1985-11-01

    The semiannual progress report 1985/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1985 in the nuclear safety field by KfK institutes and departements and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics: work performed, results obtained and plans for future work. (orig./HP) [de

  19. Incorporation of occupational health and safety in cleaner production projects in South Africa

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2002-01-01

    The purpose of this research is to reveal ways in which occupational health and safety can be integrated in environmental cleaner production projects. Of particular interest are those cleaner production projects that are run by the Danish government's environmental assistance agency, Danced......, in South Africa.The study explores two main avenues of integration. First, integrating through better planning, focussing at the tools and procedures in use by Danced for project management -- integrating occupational health and safety into the project specification, so to speak.Second, integrating...... occupational health and safety into the environmental activities that take place at company level. Two ways of doing so are explored, the main distinction being company size. For large companies, integration of management systems may be attractive. For small companies, integration into a less formal network...

  20. JRC/IE support activities to PHARE nuclear safety programmes. Dissemination of PHARE project results

    International Nuclear Information System (INIS)

    Ranguelova, V.; Pla, P.; Rieg, C.; Bieth, M.

    2005-01-01

    Nuclear safety in Europe is one of European Union's primary concerns, therefore the European Union decided to take a prominent role to help the New Independent States and countries of Central and Eastern Europe to ensure the safety of their nuclear reactors. The European Union TACIS and PHARE programmes in nuclear safety have been undertaken since 1990. The European Commission's Directorate General External Relations (EC DG RELEX) and, Directorate General Europe Aid Co-operation Office (EC DG AIDCO), are responsible for programming and management of implementation of TACIS projects. Directorate General Enlargement (EC DG ELARG) is responsible for programming PHARE programmes, but implementation of most projects has been decentralised since 1999 budget year to the Beneficiary countries. DG ELARG acts as backstopping for the relevant EC Delegations. In these activities, the TSSTP Unit at the JRC/IE in Petten, The Netherlands, is a technical and scientific adviser of DG RELEX and DG AIDCO and provides support to DG ELARG for very specific technical issues. Several PHARE projects aiming at improving nuclear safety have been successfully implemented for a number of plants from Central and Eastern Europe. In some cases major safety issues have been addressed by means of multi-country projects and results have been disseminated to the rest of the nuclear community. Although a lot of information has been exchanged at a bilateral level, further effort is needed to collect the project results in a systematic way and make them available by means of the internet. At present the TSSTP Unit is implementing two projects for dissemination of PHARE project results. This activity will take a better advantage of today's communication technologies and ensure the management of the acquired knowledge through preservation and user-friendly access and retrieval of the project results. The paper provides an outline of the TSSTP Unit relevant knowledge preservation initiative, a description

  1. MODELS AND METHODS OF SAFETY-ORIENTED PROJECT MANAGEMENT OF DEVELOPMENT OF COMPLEX SYSTEMS: METHODOLOGICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Олег Богданович ЗАЧКО

    2016-03-01

    Full Text Available The methods and models of safety-oriented project management of the development of complex systems are proposed resulting from the convergence of existing approaches in project management in contrast to the mechanism of value-oriented management. A cognitive model of safety oriented project management of the development of complex systems is developed, which provides a synergistic effect that is to move the system from the original (pre condition in an optimal one from the viewpoint of life safety - post-project state. The approach of assessment the project complexity is proposed, which consists in taking into account the seasonal component of a time characteristic of life cycles of complex organizational and technical systems with occupancy. This enabled to take into account the seasonal component in simulation models of life cycle of the product operation in complex organizational and technical system, modeling the critical points of operation of systems with occupancy, which forms a new methodology for safety-oriented management of projects, programs and portfolios of projects with the formalization of the elements of complexity.

  2. Implementing an interprofessional patient safety learning initiative: insights from participants, project leads and steering committee members.

    Science.gov (United States)

    Jeffs, Lianne; Abramovich, Ilona Alex; Hayes, Chris; Smith, Orla; Tregunno, Deborah; Chan, Wai-Hin; Reeves, Scott

    2013-11-01

    Effective teamwork and interprofessional collaboration are vital for healthcare quality and safety; however, challenges persist in creating interprofessional teamwork and resilient professional teams. A study was undertaken to delineate perceptions of individuals involved with the implementation of an interprofessional patient safety competency-based intervention and intervention participants. The study employed a qualitative study design that triangulated data from interviews with six steering committee members and five members of the project team who developed and monitored the intervention and six focus groups with clinical team members who participated in the intervention and implemented local patient safety projects within a large teaching hospital in Canada. Our study findings reveal that healthcare professionals and support staff acquired patient safety competencies in an interprofessional context that can result in improved patient and work flow processes. However, key challenges exist including managing projects amidst competing priorities, lacking physician engagement and sustaining projects. Our findings point to leaders to provide opportunities for healthcare teams to engage in interprofessional teamwork and patient safety projects to improve quality of patient care. Further research efforts should examine the sustainability of interprofessional safety projects and how leaders can more fully engage the participation of all professions, specifically physicians.

  3. How to communicate safety? Some reflections from European project studies

    International Nuclear Information System (INIS)

    Richardson, Philip; Galson, Daniel

    2009-12-01

    Attempts to site geological disposal facilities for radioactive waste - and associated public reactions - indicate that communicating safety and demonstrating safety are very different things. The three different approaches to stakeholder engagement undertaken in the context of the PAMINA, ARGONA and CIP projects have provided valuable insights into how risk communication processes and tools can be improved. The approaches used in these projects all involve the participation of interested stakeholders in identifying concerns and issues, which are then examined in a co-operative fashion between stakeholders and developers acting in partnership. Such approaches offer avenues for dialogue and confidence building where such channels were previously not well developed, Full results from the projects will be available in late 2009 for PAMINA and ARGONA and in early 2010 for CIP. The comments and interim insights outlined here will be developed further and incorporated in the overall project outputs, and help inform developing European policy in this area. It is already clear, however, that the approaches used in these projects offer great promise in helping to develop the trust in the institutions and organisations involved that is essential in gaining support and acceptance for the waste management activities now underway across Europe

  4. Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project

    International Nuclear Information System (INIS)

    Duckwitz, Noel

    2011-01-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets,' safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, 'Facility Safety,' and the expectations of DOE-STD-1189-2008, 'Integration of Safety into the Design Process,' provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  5. Ferrocyanide safety project ferrocyanide aging studies. Final report

    International Nuclear Information System (INIS)

    Lilga, M.A.; Hallen, R.T.; Alderson, E.V.

    1996-06-01

    This final report gives the results of the work conducted by Pacific Northwest National Laboratory (PNNL) from FY 1992 to FY 1996 on the Ferrocyanide Aging Studies, part of the Ferrocyanide Safety Project. The Ferrocyanide Safety Project was initiated as a result of concern raised about the safe storage of ferrocyanide waste intermixed with oxidants, such as nitrate and nitrite salts, in Hanford Site single-shell tanks (SSTs). In the laboratory, such mixtures can be made to undergo uncontrolled or explosive reactions by heating dry reagents to over 200 degrees C. In 1987, an Environmental Impact Statement (EIS), published by the U.S. Department of Energy (DOE), Final Environmental Impact Statement, Disposal of Hanford Defense High-Level Transuranic and Tank Waste, Hanford Site, Richland, Washington, included an environmental impact analysis of potential explosions involving ferrocyanide-nitrate mixtures. The EIS postulated that an explosion could occur during mechanical retrieval of saltcake or sludge from a ferrocyanide waste tank, and concluded that this worst-case accident could create enough energy to release radioactive material to the atmosphere through ventilation openings, exposing persons offsite to a short-term radiation dose of approximately 200 mrem. Later, in a separate study (1990), the General Accounting Office postulated a worst-case accident of one to two orders of magnitude greater than that postulated in the DOE EIS. The uncertainties regarding the safety envelope of the Hanford Site ferrocyanide waste tanks led to the declaration of the Ferrocyanide Unreviewed Safety Question (USQ) in October 1990

  6. Preliminary safety evaluation for 241-C-106 waste retrieval, project W-320

    International Nuclear Information System (INIS)

    Conner, J.C.

    1994-01-01

    This document presents the Preliminary Safety Evaluation for Project W-320, Tank 241-C-106 Waste Retrieval Sluicing System (WRSS). The US DOE has been mandated to develop plans for response to safety issues associated with the waste storage tanks at the Hanford Site, and to report the progress of implementing those plans to Congress. The objectives of Project W-230 are to design, fabricate, develop, test, and operate a new retrieval system capable of removing a minimum of about 75% of the high-heat waste contained in C-106. It is anticipated that sluicing operations can remove enough waste to reduce the remaining radiogenic heat load to levels low enough to resolve the high-heat safety issue as well as allow closure of the tank safety issue

  7. International Criticality Safety Benchmark Evaluation Project (ICSBEP) - ICSBEP 2015 Handbook

    International Nuclear Information System (INIS)

    Bess, John D.

    2015-01-01

    The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the United States Department of Energy (DOE). The project quickly became an international effort as scientists from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) became an official activity of the Nuclear Energy Agency (NEA) in 1995. This handbook contains criticality safety benchmark specifications that have been derived from experiments performed at various critical facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculation techniques used to establish minimum subcritical margins for operations with fissile material and to determine criticality alarm requirements and placement. Many of the specifications are also useful for nuclear data testing. Example calculations are presented; however, these calculations do not constitute a validation of the codes or cross-section data. The evaluated criticality safety benchmark data are given in nine volumes. These volumes span approximately 69000 pages and contain 567 evaluations with benchmark specifications for 4874 critical, near-critical or subcritical configurations, 31 criticality alarm placement/shielding configurations with multiple dose points for each, and 207 configurations that have been categorised as fundamental physics measurements that are relevant to criticality safety applications. New to the handbook are benchmark specifications for neutron activation foil and thermoluminescent dosimeter measurements performed at the SILENE critical assembly in Valduc, France as part of a joint venture in 2010 between the US DOE and the French Alternative Energies and Atomic Energy Commission (CEA). A photograph of this experiment is shown on the front cover. Experiments that are found unacceptable for use as criticality safety benchmark experiments are discussed in these

  8. Overview of the NKS/RAK-1 project 'Strategies for reactor safety' and linkages to piping reliability studies

    International Nuclear Information System (INIS)

    Andersson, Kjell

    1997-01-01

    The NKS/RAK-1 project forms part of a four-year research program (1994-97) in the Nordic countries. The general objective of NKS/RAK-1 project is to explore strategies for reactor safety: to investigate and evaluate the safety work, to increase realism and reliability of safety analysis; and to increase the safety of nuclear installations in selected areas. The project has done extensive interview work at utilities and authorities, and analysed a number of case studies. Brief highlights and overviews of the sub-projects are presented in this paper

  9. No 2943. Project of law relative to nuclear transparency and safety

    International Nuclear Information System (INIS)

    2006-03-01

    This project of law comprises 5 titles dealing with: 1 - general dispositions: definition and scope of nuclear safety, security, radiation protection, operators liability, facilities in concern; 2 - the high nuclear safety authority: role and duties; 3 - public information in the domain of nuclear safety and radiation protection: information right of the public, local information commissions, high committee for nuclear safety transparency and information; 4 - basic nuclear facilities and transport of radioactive materials: applicable rules, police controls and measures, penal dispositions (investigations, sanctions); 5 - miscellaneous dispositions: changes made with respect to previous legislative texts. (J.S.)

  10. Safety Assessment Methodologies and Their Application in Development of Near Surface Waste Disposal Facilities--ASAM Project

    International Nuclear Information System (INIS)

    Batandjieva, B.; Metcalf, P.

    2003-01-01

    Safety of near surface disposal facilities is a primary focus and objective of stakeholders involved in radioactive waste management of low and intermediate level waste and safety assessment is an important tool contributing to the evaluation and demonstration of the overall safety of these facilities. It plays significant role in different stages of development of these facilities (site characterization, design, operation, closure) and especially for those facilities for which safety assessment has not been performed or safety has not been demonstrated yet and the future has not been decided. Safety assessments also create the basis for the safety arguments presented to nuclear regulators, public and other interested parties in respect of the safety of existing facilities, the measures to upgrade existing facilities and development of new facilities. The International Atomic Energy Agency (IAEA) has initiated a number of research coordinated projects in the field of development and improvement of approaches to safety assessment and methodologies for safety assessment of near surface disposal facilities, such as NSARS (Near Surface Radioactive Waste Disposal Safety Assessment Reliability Study) and ISAM (Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities) projects. These projects were very successful and showed that there is a need to promote the consistent application of the safety assessment methodologies and to explore approaches to regulatory review of safety assessments and safety cases in order to make safety related decisions. These objectives have been the basis of the IAEA follow up coordinated research project--ASAM (Application of Safety Assessment Methodologies for Near Surface Disposal Facilities), which will commence in November 2002 and continue for a period of three years

  11. Project SAFE. Update of the SFR-1 safety assessment. Phase 1

    International Nuclear Information System (INIS)

    Andersson, Johan; Riggare, P.; Skagius, K.

    1998-10-01

    SFR-1 is a facility for disposal of low-level radioactive operational waste from the nuclear power plants in Sweden. Low-level radioactive waste from industry, medicine, and research is also disposed in SFR-1. The facility is situated in bedrock beneath the Baltic Sea, 1 km off the coast near the Forsmark nuclear power plant. SFR-1 was built between the years 1983 and 1988. An assessment of the long-term performance of the facility was included in the vast documentation that was a part of the application for an operational license. The assessment was presented in the form of a final safety report. In the operational licence for SFR-1 it is stated that renewed safety assessments should be carried out at least each ten years. In order to meet this demand SKB has launched a special project, SAFE (Safety Assessment of Final Disposal of Operational Radioactive Waste). The aim of the project is to update the safety analysis and to prepare a safety report that will be presented to the Swedish authorities not later than year 2000. Project SAFE is divided into three phases. The first phase is a prestudy, and the results of the prestudy are given in this report. The aim of the prestudy is to identify issues where additional studies would improve the basis for the updated safety analysis as well as to suggest how these studies should be carried out. The work has been divided into six different topics, namely the inventory, the near field, the far field, the biosphere, radionuclide transport calculations and scenarios. For each topic the former safety reports and regulatory reviews are scrutinised and needs for additional work is identified. The evaluations are given in appendices covering the respective topics. The main report is a summary of the appendices with a more stringent description of the repository system and the processes that are of interest and therefore should be addressed in an updated safety assessment. However, it should be pointed out that one of the

  12. Use of OECD/NEA Data Project Products in Probabilistic Safety Assessment

    International Nuclear Information System (INIS)

    Cherkas, G.; Raducu, Gheorghe; Riznic, J.; Yalaoui, S.; Huang, Hui-Wen; Holy, Jaroslav; Holmberg, Jan-Erik; Sandberg, Jorma; Balmain, Michel; Bonnevialle, Anne-Marie; Curnier, Florence; Georgescu, Gabriel; Lanore, Jeanne-Marie; Lindner, Arndt; Fujimoto, Haruo; Ahn, Kwang-Il; Hwang, Taesuk; Jang, Seung-Cheol; Husarcek, Jan; Kovacs, Zoltan; Vazquez, Teresa; Johanson, Gunnar; Liwaang, Bo; Nyman, Ralph; Dang, Vinh; Schoen, Gerhard; Brook, Kevin; Hamblen, David; Siu, Nathan; Sturzebecher, Karl; Tobin, Margaret; Wood, Jeff; Amri, Abdallah; Breest, Axel

    2014-01-01

    The Nuclear Energy Agency (NEA)/Committee for the Safety of Nuclear Installations' (CSNI) Working Group on Risk Assessment (WGRISK) is tasked with supporting the improved use of Probabilistic Safety Assessment (PSA) in risk informed regulation and safety management through the analysis of results and the development of perspectives regarding potentially important risk contributors and associated risk reduction strategies. The task consists of the following major activities: Development, distribution, and completion of survey questionnaires; Analysis of survey questionnaire results at a task workshop; Preparation of the final task report. The main objectives of this task, as proposed by WGRISK and approved by CSNI, are the following: - Identification and characterization of the current uses of OECD data project products and data in support of PSA. In this context, the term 'products' refers to data analysis results, technical reports, and other project outputs. - Identification and characterization of technical and programmatic characteristics that either support or impede use of data project products in PSA. This includes an assessment of which PSA parameters could be potentially estimated from the various data project products and gaps between available product information and PSA data needs. - Identification of recommendations for enhancing the usefulness of data project products and the coordination between WGRISK and the data projects. This task report consists of the following sections: - Chapter 1 Provides a general overview of motivation and approach used for this task. - Chapter 2 Describes scope and objectives of the task. - Chapter 3 Provides an overview of the ICDE, FIRE, OPDE/CODAP, and COMPSIS data projects. For each project, the project objectives, project history, data collection methodology and quality assurance, project status, example PSA Applications, and information related to project participation is provided. - Chapter 4 Describes the

  13. Legacy data sharing to improve drug safety assessment: the eTOX project

    DEFF Research Database (Denmark)

    Sanz, Ferran; Pognan, François; Steger-Hartmann, Thomas

    2017-01-01

    The sharing of legacy preclinical safety data among pharmaceutical companies and its integration with other information sources offers unprecedented opportunities to improve the early assessment of drug safety. Here, we discuss the experience of the eTOX project, which was established through...

  14. Breckinridge Project, initial effort. Report VII, Volume 4. Safety and health plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The Safety and Health Plan recognizes the potential hazards associated with the Project and has been developed specifically to respond to these risks in a positive manner. Prevention, the primary objective of the Plan, starts with building safety controls into the process design and continues through engineering, construction, start-up, and operation of the Project facilities and equipment. Compliance with applicable federal, state, and local health and safety laws, regulations, and codes throughout all Project phases is required and assured. The Plan requires that each major Project phase be thoroughly reviewed and analyzed to determine that those provisions required to assure the safety and health of all employees and the public, and to prevent property and equipment losses, have been provided. The Plan requires followup on those items or situations where corrective action needs were identified to assure that the action was taken and is effective. Emphasis is placed on loss prevention. Exhibit 1 provides a breakdown of Ashland Synthetic Fuels, Inc.'s (ASFI's) Loss Prevention Program. The Plan recognizes that the varied nature of the work is such as to require the services of skilled, trained, and responsible personnel who are aware of the hazards and know that the work can be done safely, if done correctly. Good operating practice is likewise safe operating practice. Training is provided to familiarize personnel with good operational practice, the general sequence of activities, reporting requirements, and above all, the concept that each step in the operating procedures must be successfully concluded before the following step can be safely initiated. The Plan provides for periodic review and evaluation of all safety and loss prevention activities at the plant and departmental levels.

  15. The SISIFO project: Seismic Safety at High Schools

    Science.gov (United States)

    Peruzza, Laura; Barnaba, Carla; Bragato, Pier Luigi; Dusi, Alberto; Grimaz, Stefano; Malisan, Petra; Saraò, Angela; Mucciarelli, Marco

    2014-05-01

    For many years, the Italian scientific community has faced the problem of the reduction of earthquake risk using innovative educational techniques. Recent earthquakes in Italy and around the world have clearly demonstrated that seismic codes alone are not able to guarantee an effective mitigation of risk. After the tragic events of San Giuliano di Puglia (2002), where an earthquake killed 26 school children, special attention was paid in Italy to the seismic safety of schools, but mainly with respect to structural aspects. Little attention has been devoted to the possible and even significant damage to non-structural elements (collapse of ceilings, tipping of cabinets and shelving, obstruction of escape routes, etc..). Students and teachers trained on these aspects may lead to a very effective preventive vigilance. Since 2002, the project EDURISK (www.edurisk.it) proposed educational tools and training programs for schools, at primary and middle levels. More recently, a nationwide campaign aimed to adults (www.iononrischio.it) was launched with the extensive support of civil protection volounteers. There was a gap for high schools, and Project SISIFO was designed to fill this void and in particular for those schools with technical/scientific curricula. SISIFO (https://sites.google.com/site/ogssisifo/) is a multidisciplinary initiative, aimed at the diffusion of scientific culture for achieving seismic safety in schools, replicable and can be structured in training the next several years. The students, helped by their teachers and by experts from scientific institutions, followed a course on specialized training on earthquake safety. The trial began in North-East Italy, with a combination of hands-on activities for the measurement of earthquakes with low-cost instruments and lectures with experts in various disciplines, accompanied by specifically designed teaching materials, both on paper and digital format. We intend to raise teachers and students knowledge of the

  16. Patterns of patient safety culture: a complexity and arts-informed project of knowledge translation.

    Science.gov (United States)

    Mitchell, Gail J; Tregunno, Deborah; Gray, Julia; Ginsberg, Liane

    2011-01-01

    The purpose of this paper is to describe patterns of patient safety culture that emerged from an innovative collaboration among health services researchers and fine arts colleagues. The group engaged in an arts-informed knowledge translation project to produce a dramatic expression of patient safety culture research for inclusion in a symposium. Scholars have called for a deeper understanding of the complex interrelationships among structure, process and outcomes relating to patient safety. Four patterns of patient safety culture--blinding familiarity, unyielding determination, illusion of control and dismissive urgency--are described with respect to how they informed creation of an arts-informed project for knowledge translation.

  17. Specifications of the International Atomic Energy Agency's international project on safety assessment driven radioactive waste management solutions

    International Nuclear Information System (INIS)

    Ghannadi, M.; Asgharizadeh, F.; Assadi, M. R.

    2008-01-01

    Radioactive waste is produced in the generation of nuclear power and the production and use of radioactive materials in the industry, research, and medicine. The nuclear waste management facilities need to perform a safety assessment in order to ensure the safety of a facility. Nuclear safety assessment is a structured and systematic way of examining a proposed facility, process, operation and activity. In nuclear waste management point of view, safety assessment is a process which is used to evaluate the safety of radioactive waste management and disposal facilities. In this regard the International Atomic Energy Agency is planed to implement an international project with cooperation of some member states. The Safety Assessment Driving Radioactive Waste Management Solutions Project is an international programme of work to examine international approaches to safety assessment in aspects of p redisposal r adioactive waste management, including waste conditioning and storage. This study is described the rationale, common aspects, scope, objectives, work plan and anticipated outcomes of the project with refer to International Atomic Energy Agency's documents, such as International Atomic Energy Agency's Safety Standards, as well as the Safety Assessment Driving Radioactive Waste Management Solutions project reports

  18. The International Criticality Safety Benchmark Evaluation Project (ICSBEP)

    International Nuclear Information System (INIS)

    Briggs, J.B.

    2003-01-01

    The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in 1992 by the United States Department of Energy. The ICSBEP became an official activity of the Organisation for Economic Cooperation and Development (OECD) - Nuclear Energy Agency (NEA) in 1995. Representatives from the United States, United Kingdom, France, Japan, the Russian Federation, Hungary, Republic of Korea, Slovenia, Yugoslavia, Kazakhstan, Israel, Spain, and Brazil are now participating. The purpose of the ICSBEP is to identify, evaluate, verify, and formally document a comprehensive and internationally peer-reviewed set of criticality safety benchmark data. The work of the ICSBEP is published as an OECD handbook entitled 'International Handbook of Evaluated Criticality Safety Benchmark Experiments.' The 2003 Edition of the Handbook contains benchmark model specifications for 3070 critical or subcritical configurations that are intended for validating computer codes that calculate effective neutron multiplication and for testing basic nuclear data. (author)

  19. The Nordic nuclear safety program 1994-1997. Project handbook

    International Nuclear Information System (INIS)

    1997-06-01

    This is a new revision of the handbook for administrators of the Nordic reactor safety program NKS. The most important administrative functions in project management are described, which should secure a uniform management approach in all the projects. The description of the organizational scheme of the NKS and distribution of responsibilities is followed by examples of various administrative routines and document forms. In the annex the names and addresses of the staff involved in administration of the NKS program are listed. (EG)

  20. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE`s overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program.

  1. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    International Nuclear Information System (INIS)

    1994-02-01

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE's overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program

  2. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-09-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR’06 are highlighted, and the future of the two projects is discussed.

  3. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    International Nuclear Information System (INIS)

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-01-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR-06 are highlighted, and the future of the two projects is discussed

  4. Overview criteria for the environmental, safety and health evaluation of remedial action project planning

    International Nuclear Information System (INIS)

    Stenner, R.D.; Denham, D.H.

    1984-10-01

    Overview criteria (i.e., subject areas requiring review) for evaluating remedial action project plans with respect to environmental, safety and health issues were developed as part of a Department of Energy, Office of Operational Safety, technical support project. Nineteen elements were identified as criteria that should be addressed during the planning process of a remedial action (decontamination and decommissioning) project. The scope was interpreted broadly enough to include such environmental, safety and health issues as public image, legal obligation and quality assurance, as well as more obvious concerns such as those involving the direct protection of public and worker health. The nineteen elements are discussed along with suggested ways to use a data management software system to organize and report results

  5. Proceedings of the first annual Nuclear Criticality Safety Technology Project

    International Nuclear Information System (INIS)

    Rutherford, D.A.

    1994-09-01

    This document represents the published proceedings of the first annual Nuclear Criticality Safety Technology Project (NCSTP) Workshop, which took place May 12--14, 1992, in Gaithersburg, Md. The conference consisted of four sessions, each dealing with a specific aspect of nuclear criticality safety issues. The session titles were ''Criticality Code Development, Usage, and Validation,'' ''Experimental Needs, Facilities, and Measurements,'' ''Regulation, Compliance, and Their Effects on Nuclear Criticality Technology and Safety,'' and ''The Nuclear Criticality Community Response to the USDOE Regulations and Compliance Directives.'' The conference also sponsored a Working Group session, a report of the NCSTP Working Group is also presented. Individual papers have been cataloged separately

  6. International intercomparison and harmonization projects for demonstrating the safety of radioactive waste management, decommissioning and radioactive waste disposal

    International Nuclear Information System (INIS)

    Metcalf, Phil; O'Donnell, Patricio; Jova Sed, Luis; Batandjieva, Borislava; Rowat, John; Kinker, Monica

    2008-01-01

    Full text: The Joint Convention on the safety of spent fuel management and the safety of radioactive waste management and the international safety standards on radioactive waste management, decommissioning and radioactive waste disposal call for assessment and demonstration of the safety of facilities and activities; during siting, design and construction prior to operation, periodically during operation and at the end of lifetime or upon closure of a waste disposal facility. In addition, more recent revisions of the international safety standards require the development of a safety case for such facilities and activities, documentation presenting all the arguments supporting the safety of the facilities and activities covering site and engineering features, quantitative safety assessment and management systems. Guidance on meeting these safety requirements also indicates the need for a graded approach to safety assessment, with the extent and complexity of the assessment being proportional to the complexity of the activity or facility, and its propensity for radiation hazard. Safety assessment approaches and methodologies have evolved over several decades and international interest in these developments has been considerable as they can be complex and often subjective, which has led to international projects being established aimed at harmonization. The IAEA has sponsored a number of such initiatives, particularly in the area of disposal facility safety, but more recently in the areas of pre disposal waste management and decommissioning, including projects known as ISAM, ASAM, SADRWMS and DeSa. The projects have a number of common aspects including development of standardized methodological approaches, application on test cases and assessment review; they also have activity and facility specific elements. The paper presents an overview of the projects, the outcomes from the projects to date and their future direction aimed very much at practical application of

  7. RAAK PRO project: measuring safety in aviation : concept for the design of new metrics

    NARCIS (Netherlands)

    Karanikas, Nektarios; Kaspers, Steffen; Roelen, Alfred; Piric, Selma; van Aalst, Robbert; de Boer, Robert

    2017-01-01

    Following the completion of the 1st phase of the RAAK PRO project Aviation Safety Metrics, during which the researchers mapped the current practice in safety metrics and explored the validity of monotonic relationships of SMS, activity and demographic metrics with safety outcomes, this report

  8. Seismic safety margins research program. Project I SONGS 1 AFWS Project

    International Nuclear Information System (INIS)

    Chuang, T.Y.; Smith, P.D.; Dong, R.G.; Bernreuter, D.L.; Bohn, M.P.; Cummings, G.E.; Wells, J.E.

    1981-01-01

    The seismic qualification requirements of auxiliary feedwater systems (AFWS) of Pressurized Water Reactors (PWR) were developed over a number of years. These are formalized in the publication General Design Criteria (Appendix A to 10CFR50). The full recognition of the system as an engineered safety feature did not occur until publication of the Standard Review Plan (1975). Efforts to determine how to backfit seismic requirements to earlier plants has been undertaken primarily in the Systematic Evaluation Program (SEP) for a limited number of operating reactors. Nuclear Reactor Research (RES) and NRR have requested LLNL to perform a probabilistic study on the AFWS of San Onofre Nuclear Generating Station (SONGS) Unit 1 utilizing the tools developed by the Seismic Safety Margins Research Program (SSMRP). The main objectives of this project are to: identify the weak links of AFWS; compare the failure probabilities of SONGS 1 and Zion 1 AFWS: and compare the seismic responses due to different input spectra and design values

  9. Radiological safety research for nuclear excavation projects - Interoceanic canal studies

    Energy Technology Data Exchange (ETDEWEB)

    Klement, Jr, A W [U.S. Atomic Energy Commission, Las Vegas, NV (United States)

    1969-07-01

    The general radiological problems encountered in nuclear cratering and nuclear excavation projects are discussed. Procedures for assessing radiological problems in such projects are outlined. Included in the discussions are source term, meteorology, fallout prediction and ecological factors. Continuing research requirements as well as pre- and post-excavation studies are important considerations. The procedures followed in the current interoceanic canal feasibility studies provide examples of radiological safety problems, current solutions and needed research. (author)

  10. Radiological safety research for nuclear excavation projects - Interoceanic canal studies

    International Nuclear Information System (INIS)

    Klement, A.W. Jr.

    1969-01-01

    The general radiological problems encountered in nuclear cratering and nuclear excavation projects are discussed. Procedures for assessing radiological problems in such projects are outlined. Included in the discussions are source term, meteorology, fallout prediction and ecological factors. Continuing research requirements as well as pre- and post-excavation studies are important considerations. The procedures followed in the current interoceanic canal feasibility studies provide examples of radiological safety problems, current solutions and needed research. (author)

  11. Quality and Safety Assurance - Priority Task at Nuclear Power Projects Implementation

    International Nuclear Information System (INIS)

    Nenkova, B.; Manchev, B.; Tomov, E.

    2010-01-01

    Quality and safety assurance at implementation of nuclear power engineering projects is important and difficult task for realization. Many problems arise during this process, when many companies from different countries participate, with various kinds of activities and services provided. The scope of activities necessary for quality and safety assurance is therefore quite expanded and diverse. In order to increase the safety and reliability of Kozloduy NPP Plc (KNPP) Units 5 and 6, as well as to bring the units in conformity with the newest international requirements for quality and safety in the field of nuclear energy, a program for their modernization on the basis of different technical studies and assessments was implemented. The Units 5 and 6 Modernization Program of Kozloduy Nuclear Power Plant was composed of 212 modifications aimed to improve the safety, operability, and reliability of the Units. The Program was realized by stages during yearly planned outages since year 2002 to 2007, without additional outages. A major Program Objective was to extend the Units Life Time in at least 15 Years, under a continuous, safe, and reliable operation. The Modernization Program of Units 5 and 6 of the Bulgarian Nuclear Power Plant in Kozloduy was the first and for the time being the only one in the world, program in the field of nuclear power engineering, by which the full scope of recommendations for improvement of the Kozloduy NPP units was applied. The main goal of the National Electric Company, which is the Employer for the construction of new nuclear facility in Bulgaria, is after completion of all activities regarding construction of Belene NPP the plant to meet or exceed the requirements of the respective national and international quality and safety codes and standards, as well as the IAEA guidelines, as they are established. The objective of this report is to describe different aspects of the quality assurance according to the requirements of quality and

  12. Technical safety appraisal of the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    1989-09-01

    This report presents the results of one in a series of Technical Safety Appraisals (TSAs) being conducted of DOE nuclear operations by the Assistant Secretary for Environment, Safety, and Health Office of Safety Appraisals TSAs are one of the ititiatives announced by the Secretary of Energy on September 18, 1985, to enhance the DOE environment, safety and health program. This report presents the results of a TSA of the West Valley Demonstration Project (WVDP). The appraisal was conducted by a team of exerts assembled by the DOE Office of Safety Appraisal and was conducted during onsite visits of June 26-30 and July 10-21, 1989. West Valley, about 30 miles south of Buffalo, New York is the location of the only commercial nuclear fuel reprocessing facility operated in the United States. Nuclear Fuels Services, Inc. (NFS) operated the plant from 1966 to 1972 and processed about 640 metric tons of spent reactor fuel. The reprocessing operation generated about 560,000 gallons of high-level radioactive waste, which was transferred into underground tanks for storage. In 1972 NFS closed the plant and subsequently decided not to reopen it

  13. Project for the completion of a probabilistic safety analysis of an industrial irradiation

    International Nuclear Information System (INIS)

    Ferro, R.; Troncoso, M.

    1995-01-01

    The probabilistic safety analysis is a very valuable instrument in safety studies of facilities with potential risk for the personnel, population and environment. One of the possible field of use of PSA techniques in the safety studies for industrial irradiation where serious accidents have occurred. For this reason a project has been undertaken to carry out the PSA in the Irradiation Plant of Research Institute of the Food Industry, which complements the safety studies of this facility

  14. Bridging the Divide between Safety and Risk Management for your Project or Program

    Science.gov (United States)

    Lutomski, Mike

    2005-01-01

    This presentation will bridge the divide between these separate but overlapping disciplines and help explain how to use Risk Management as an effective management decision support tool that includes safety. Risk Management is an over arching communication tool used by management to prioritize and effectively mitigate potential problems before they concur. Risk Management encompasses every kind of potential problem that can occur on a program or project. Some of these are safety issues such as hazards that have a specific likelihood and consequence that need to be controlled and included to show an integrated picture of accepted) mitigated, and residual risk. Integrating safety and other assurance disciplines is paramount to accurately representing a program s or projects risk posture. Risk is made up of several components such as technical) cost, schedule, or supportability. Safety should also be a consideration for every risk. The safety component can also have an impact on the technical, cost, and schedule aspect of a given risk. The current formats used for communication of safety and risk issues are not consistent or integrated. The presentation will explore the history of these disciplines, current work to integrate them, and suggestions for integration for the future.

  15. Safety reassessment of the Paks NPP (the AGNES project)

    Energy Technology Data Exchange (ETDEWEB)

    Gado, J [Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics; Bajsz, J; Cserhati, A; Elter, J [Paksi Atomeroemue Vallalat, Paks (Hungary); Hollo, E [Energiagazdalkodasi Intezet, Budapest (Hungary); Kovacs, K [EROTERV Engineering and Contractor Co (Hungary); Maroti, L [Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics; Miko, S [Paksi Atomeroemue Vallalat, Paks (Hungary); Techy, Z [Energiagazdalkodasi Intezet, Budapest (Hungary); Vidovszky, I [Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics

    1996-12-31

    The reassessment of the Paks NPP safety according to internationally recognized criteria of the Advanced General and New Evaluation of Safety (AGNES) project is outlined. The Paks NPP consists of four WWER-440/V-213 units. The following groups of analysis have been performed: system analysis and description; analysis of design basis accidents; severe accidents analysis; level 1 probabilistic safety analysis. Postulated accidents (PA) and Anticipated Operational Occurrences (AOO) are estimated in detail for the following initiating events: increase/decrease in secondary heat removal; decrease in primary coolant inventory; increase/decrease of reactor coolant inventory; reactivity and power distribution anomalies; analysis of transients with the failure of reactor scram (ATWS); pressurized thermal shock analyses. Severe accident analysis was made for the accidents on in-vessel phase and containment phase, for radioactive release and for accident management.

  16. Safety reassessment of the Paks NPP (the AGNES project)

    International Nuclear Information System (INIS)

    Gado, J.; Hollo, E.; Kovacs, K.; Maroti, L.; Techy, Z.; Vidovszky, I.

    1995-01-01

    The reassessment of the Paks NPP safety according to internationally recognized criteria of the Advanced General and New Evaluation of Safety (AGNES) project is outlined. The Paks NPP consists of four WWER-440/V-213 units. The following groups of analysis have been performed: system analysis and description; analysis of design basis accidents; severe accidents analysis; level 1 probabilistic safety analysis. Postulated accidents (PA) and Anticipated Operational Occurrences (AOO) are estimated in detail for the following initiating events: increase/decrease in secondary heat removal; decrease in primary coolant inventory; increase/decrease of reactor coolant inventory; reactivity and power distribution anomalies; analysis of transients with the failure of reactor scram (ATWS); pressurized thermal shock analyses. Severe accident analysis was made for the accidents on in-vessel phase and containment phase, for radioactive release and for accident management

  17. Accident consequence calculations for project W-058 safety analysis

    International Nuclear Information System (INIS)

    Van Keuren, J.C.

    1997-01-01

    This document describes the calculations performed to determine the accident consequences for the W-058 safety analysis. Project W-058 is the replacement cross site transfer system (RCSTS), which is designed to transort liquid waste between the 200 W and 200 E areas. Calculations for RCSTS safety analyses used the same methods as the calculations for the Tank Waste Remediation System (TWRS) Basis for Interim Operation (BIO) and its supporting calculation notes. Revised analyses were performed for the spray and pool leak accidents since the RCSTS flows and pressures differ from those assumed in the TWRS BIO. Revision 1 of the document incorporates review comments

  18. Nordic nuclear safety research 1994-1997. Project on disposal of radioactive waste

    International Nuclear Information System (INIS)

    Broden, Karin

    1999-01-01

    This presentation describes the Nordic Nuclear Safety Research (NKS) programme, which is a scientific co-operation programme in nuclear safety, radiation protection and emergence preparedness. The purpose of the programme is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, manuals, recommendations, and other types of background material. This material is to serve decision-makers and other concerned staff members at authorities, research establishments and enterprises in the nuclear field. Three waste disposal projects under NKS are briefly described: (1) Waste characterisation, (2) Performance analysis of the engineered barrier system of the repositories for low- and intermediate-level waste, (3) Environmental impact assessment

  19. Safety research in the field of energy production. Plan for continued Nordic projects

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstroem, P E [Statens Vattenfallsverk, Stockholm (Sweden); Berg, J [Institutt for Atomenergi, Kjeller (Norway); Eckered, T [Statens Kaernkraftinspektion, Stockholm (Sweden)

    1980-01-01

    NGS, an ad hoc group of the Nordic Co-ordination Committee for Atomic Energy, has prepared this survey of proposed cooperative projects as a continuation of previous projects. New areas to be given priority are:- reactor safety, environmental effects in energy production and human reliability. Continued projects are:- quality assurance, radioactive waste and radioecology. (JIW)

  20. Safety cases for radioactive waste disposal facilities: guidance on confidence building and regulatory review IAEA-ASAM co-ordinated research project

    International Nuclear Information System (INIS)

    Ben Belfadhel, M.; Bennett, D.G.; Metcalf, P.; Nys, V.; Goldammer, W.

    2008-01-01

    The IAEA has been conducting two co-ordinated research programmes (CRPs) projects to develop and apply improved safety assessment methodologies for near-surface radioactive waste disposal facilities. The more recent of these projects, ASAM (application of safety assessment methodologies), included a Regulatory Review Working Group (RRWG) which has been working to develop guidance on how to gain confidence in safety assessments and safety cases, and on how to conduct regulatory reviews of safety assessments. This paper provides an overview of the ASAM project, focusing on the safety case and regulatory review. (authors)

  1. Designing and Developing an Effective Safety Program for a Student Project Team

    Directory of Open Access Journals (Sweden)

    John Catton

    2018-05-01

    Full Text Available In the workplace, safety must be the first priority of all employers and employees alike. In order to maintain the safety and well-being of their employees, employers must demonstrate due diligence and provide the appropriate safety training to familiarize employees with the hazards within the workplace. Although, a student “project team” is not a business, the work done by students for their respective teams is synonymous with the work done in a place of business and thus requires that similar safety precautions and training be administered to students by their team leads and faculty advisors. They take on the role of supervisors within the team dynamic. Student teams often utilize the guidelines and policies that their universities or colleges have developed in order to build a set of standard operating procedures and safety training modules. These guidelines aid in providing a base for training for the team, however, they are no substitute for training specific to the safety risks associated with the work the team is doing. In order to comply with these requirements, a full analysis of the workplace is required to be completed. A variety of safety analysis techniques need to be applied to define the hazards within the workplace and institute appropriate measures to mitigate them. In this work, a process is developed for establishing a safety training program for a student project team, utilizing systems safety management techniques and the aspect of gamification to produce incentives for students to continue developing their skills. Although, systems safety management is typically applied to the design of active safety components or systems, the techniques for identifying and mitigating hazards can be applied in the same fashion to the workplace. They allow one to analyze their workplace and determine the hazards their employees might encounter, assign appropriate hazard ratings and segregate each respective hazard by their risks. In so

  2. Experience of Hungarian model project: 'Strengthening training for operational safety at Paks NPP'

    International Nuclear Information System (INIS)

    Kiss, I.

    1998-01-01

    Training of Operational Safety at Paks NPP is described including all the features of the project including namely: description of Paks NPP, its properties and performances; reasons for establishing Hungarian Model Project, its main goals, mentioning Hungarian and IAEA experts involved in the Project, its organization, operation, budget, current status together with its short term and long term impact

  3. Bayesian-network-based safety risk analysis in construction projects

    International Nuclear Information System (INIS)

    Zhang, Limao; Wu, Xianguo; Skibniewski, Miroslaw J.; Zhong, Jingbing; Lu, Yujie

    2014-01-01

    This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical

  4. IAEA TC Project 'Strengthening safety and reliability of fuel and materials in nuclear power plants'

    International Nuclear Information System (INIS)

    Makihara, Y.

    2008-01-01

    The Regional TC Project in Europe RER9076 'Strengthening Safety and Reliability of Fuel and Materials in Nuclear Power Plants' was launched in 2003 as a four-year project and was subsequently extended in 2006 to run through 2008. The purpose of the Project is to support the Central and Eastern European countries with the necessary tools to fulfill their own fuel and material licensing needs. The main objective will be to provide quality data on fuel and materials irradiated in power reactors and in dedicated experiments carried out in material test reactors (MTRs). Within the framework of the Project, ten tasks were implemented. These included experiments performed at the test facilities in the region, training courses and workshops related to fuel safety. While several tasks are expected to be completed by the end of RER9076, some remain. It would be desirable to initiate a new RER Project from the next TC cycle (2009-2011) in order to take over RER9076 and to implement new tasks required for enhancing fuel safety in the region. (author)

  5. The Environmental Health/Home Safety Education Project: a successful and practical U.S.-Mexico border initiative.

    Science.gov (United States)

    Forster-Cox, Susan C; Mangadu, Thenral; Jacquez, Benjamín; Fullerton, Lynne

    2010-05-01

    The Environmental Health/Home Safety Education Project (Proyecto de Salud Ambiental y Seguridad en el Hogar) has been developed in response to a wide array of severe and often preventable environmental health issues occurring in and around homes on the U.S.-Mexico border. Utilizing well-trained community members, called promotoras , homes are visited and assessed for potential environmental hazards, including home fire and food safety issues. Data analyzed from project years 2002 to 2005 shows a significant impact in knowledge levels and initial behavior change among targeted participants as it relates to fire and food safety issues. Since the initiation of the project in 1999, hundreds of participants have improved their quality of life by making their homes safer. The project has proven to be sustainable, replicable, flexible, and attractive to funders.

  6. Application of project management methodology in design management of nuclear safety related structure

    International Nuclear Information System (INIS)

    Chen Mao

    2004-01-01

    This paper focuses on the application of project management methodology in the design management of Nuclear Safety Related Structure (NSRS), considering the design management features of its civil construction. Based on the experiences from the management of several projects, the project management triangle is proposed to be used in the management, to well treat the position of design interface in the project management. Some other management methods are also proposed

  7. Road safety in Poland : a contribution to the improvement of road safety in Poland in the framework of the GAMBIT project.

    NARCIS (Netherlands)

    Brouwer, M. Koornstra, M.J. Mulder, J.A.G. & Wegman, F.C.M.

    1995-01-01

    This report describes a SWOV Institute for Road Safety Research study. The study was commissioned: (1) to give a general opinion on the "GAMBIT" project contents; and (2) to express an expectation about the future traffic safety development in Poland. The SWOV contribution has been realized within

  8. Developing tools for the safety specification in risk management plans: lessons learned from a pilot project.

    Science.gov (United States)

    Cooper, Andrew J P; Lettis, Sally; Chapman, Charlotte L; Evans, Stephen J W; Waller, Patrick C; Shakir, Saad; Payvandi, Nassrin; Murray, Alison B

    2008-05-01

    Following the adoption of the ICH E2E guideline, risk management plans (RMP) defining the cumulative safety experience and identifying limitations in safety information are now required for marketing authorisation applications (MAA). A collaborative research project was conducted to gain experience with tools for presenting and evaluating data in the safety specification. This paper presents those tools found to be useful and the lessons learned from their use. Archive data from a successful MAA were utilised. Methods were assessed for demonstrating the extent of clinical safety experience, evaluating the sensitivity of the clinical trial data to detect treatment differences and identifying safety signals from adverse event and laboratory data to define the extent of safety knowledge with the drug. The extent of clinical safety experience was demonstrated by plots of patient exposure over time. Adverse event data were presented using dot plots, which display the percentages of patients with the events of interest, the odds ratio, and 95% confidence interval. Power and confidence interval plots were utilised for evaluating the sensitivity of the clinical database to detect treatment differences. Box and whisker plots were used to display laboratory data. This project enabled us to identify new evidence-based methods for presenting and evaluating clinical safety data. These methods represent an advance in the way safety data from clinical trials can be analysed and presented. This project emphasises the importance of early and comprehensive planning of the safety package, including evaluation of the use of epidemiology data.

  9. Definition of user needs and “hot topics”, Deliverable 2.1 of the H2020 project SafetyCube (Safety CaUsation, Benefits and Efficiency).

    NARCIS (Netherlands)

    Hagström, L. Thomson, R. Skogsmo, I. Houtenbos, M. Durso, C. Thomas, P. Elvik, R. & Wismans, J.

    2016-01-01

    Safety CaUsation, Benefits and Efficiency (SafetyCube) is a European Commission supported Horizon 2020 project with the objective of developing an innovative road safety Decision Support System (DSS) that will enable policymakers and stakeholders to select and implement the most appropriate

  10. I and C safety research at the OECD Halden reactor project

    International Nuclear Information System (INIS)

    Gran, B.A.

    2007-01-01

    The overall objective of the Halden Reactor Project research on software systems dependability is to contribute to the successful introduction of digital I and C systems into NPPs. When celebrating the 50 years of the Halden Project in 2008, about 100 written reports have been delivered within this research. This research covers a number of topics covering safety, reliability, validation and verification, quality assurance, risk assessment, requirement engineering, error propagation, qualitative and quantitative assessment. In the paper some activities are described, pinpointing the importance of good joint projects with organisations in the member countries

  11. The arrangement of deformation monitoring project and analysis of monitoring data of a hydropower engineering safety monitoring system

    Science.gov (United States)

    Wang, Wanshun; Chen, Zhuo; Li, Xiuwen

    2018-03-01

    The safety monitoring is very important in the operation and management of water resources and hydropower projects. It is the important means to understand the dam running status, to ensure the dam safety, to safeguard people’s life and property security, and to make full use of engineering benefits. This paper introduces the arrangement of engineering safety monitoring system based on the example of a water resource control project. The monitoring results of each monitoring project are analyzed intensively to show the operating status of the monitoring system and to provide useful reference for similar projects.

  12. Construction safety monitoring based on the project's characteristic with fuzzy logic approach

    Science.gov (United States)

    Winanda, Lila Ayu Ratna; Adi, Trijoko Wahyu; Anwar, Nadjadji; Wahyuni, Febriana Santi

    2017-11-01

    Construction workers accident is the highest number compared with other industries and falls are the main cause of fatal and serious injuries in high rise projects. Generally, construction workers accidents are caused by unsafe act and unsafe condition that can occur separately or together, thus a safety monitoring system based on influencing factors is needed to achieve zero accident in construction industry. The dynamic characteristic in construction causes high mobility for workers while doing the task, so it requires a continuously monitoring system to detect unsafe condition and to protect workers from potential hazards. In accordance with the unique nature of project, fuzzy logic approach is one of the appropriate methods for workers safety monitoring on site. In this study, the focus of discussion is based on the characteristic of construction projects in analyzing "potential hazard" and the "protection planning" to be used in accident prevention. The data have been collected from literature review, expert opinion and institution of safety and health. This data used to determine hazard identification. Then, an application model is created using Delphi programming. The process in fuzzy is divided into fuzzification, inference and defuzzification, according to the data collection. Then, the input and final output data are given back to the expert for assessment as a validation of application model. The result of the study showed that the potential hazard of construction workers accident could be analysed based on characteristic of project and protection system on site and fuzzy logic approach can be used for construction workers accident analysis. Based on case study and the feedback assessment from expert, it showed that the application model can be used as one of the safety monitoring tools.

  13. 244-AR Vault Interim Stabilization Project Plan

    International Nuclear Information System (INIS)

    LANEY, T.

    2000-01-01

    The 244-AR Vault Facility, constructed between 1966 and 1968, was designed to provide lag storage and treatment for the Plutonium-Uranium Extraction Facility (PUREX) tank farm sludges. Tank farm personnel transferred the waste from the 244-AR Vault Facility to B Plant for recovery of cesium and strontium. B Plant personnel then transferred the treatment residuals back to the tank farms for storage of the sludge and liquids. The last process operations, which transferred waste supporting the cesium/strontium recovery mission, occurred in April 1978. After the final transfer in 1978, the 244-AR facility underwent a cleanout. However, 2,271 L (600 gal) of sludge were left in Tank 004AR from an earlier transfer from Tank 241-AX-104. When the cleanout was completed, the facility was placed in a standby status. The sludge had been transferred to Tank 004AR to support Pacific Northwest National Laboratory [PNNL] vitrification work. Documentation of waste transfers suggests that a portion of the sludge may have been moved from Tank 004AR to Tank 002AR in preparation for transfer back to the AX Tank Farm; however, quantities of the sludge that were moved to Tank 002AR from that transfer must be estimated

  14. Procedures for initiation, cost-sharing and management of OECD projects in nuclear safety

    International Nuclear Information System (INIS)

    2002-01-01

    The OECD (CSNI) projects aim to produce results relevant for the safe operation of nuclear power plants through international collaborative projects. In general, the projects consist of advanced experimental programmes that are conducted at specialized facilities. At present, the following OECD (CSNI) projects are in operation: - The Halden Project, covering fuel/materials and I and C/Human Factors issues; - The Cabri Project, addressing reactivity transients on high burnup fuels; - The MASCA Project, which deals with in-vessel corium phenomena; - The OLHF Project, dealing with lower head failure mechanisms; - The SETH Project addressing thermal-hydraulics issues, started in 2001; - The MCCI Project on ex-vessel coolability and melt-concrete interaction. There are significant differences among these projects in terms of their motivation, size and scope. The Halden Project and the Cabri Water Loop Project are large undertakings where the host organisations assume full and direct responsibility for the project establishment and administration - as well as for the negotiation with relevant parties on the terms of participation. In the other cases, instead, the NEA secretariat has a more direct responsibility, conferred by the CSNI, in establishing the project technical and financial basis, as well as for its implementation and administration. The objective of this procedure is to provide a common basis for the establishment and management of the OECD projects in the area of nuclear safety. It is a follow-up of a recommendation expressed by the CSNI Bureau during its meeting in October 2001, where the procedures for the establishment and management of the OECD (CSNI) projects in nuclear safety were addressed. While this procedure attempts at defining general guidelines for project initiation, financing and management, one should bear in mind that each project has its own motivation, background and framework. Thus, some degree of flexibility in project structure

  15. The International Criticality Safety Benchmark Evaluation Project on the Internet

    International Nuclear Information System (INIS)

    Briggs, J.B.; Brennan, S.A.; Scott, L.

    2000-01-01

    The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in October 1992 by the US Department of Energy's (DOE's) defense programs and is documented in the Transactions of numerous American Nuclear Society and International Criticality Safety Conferences. The work of the ICSBEP is documented as an Organization for Economic Cooperation and Development (OECD) handbook, International Handbook of Evaluated Criticality Safety Benchmark Experiments. The ICSBEP Internet site was established in 1996 and its address is http://icsbep.inel.gov/icsbep. A copy of the ICSBEP home page is shown in Fig. 1. The ICSBEP Internet site contains the five primary links. Internal sublinks to other relevant sites are also provided within the ICSBEP Internet site. A brief description of each of the five primary ICSBEP Internet site links is given

  16. Natural Gas Vehicle Cylinder Safety, Training and Inspection Project

    Energy Technology Data Exchange (ETDEWEB)

    Hank Seiff

    2008-12-31

    Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators and training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.

  17. West Virginia peer exchange : streamlining highway safety improvement program project delivery.

    Science.gov (United States)

    2015-01-01

    The West Virginia Division of Highways (WV DOH) hosted a Peer Exchange to share information and experiences : for streamlining Highway Safety Improvement Program (HSIP) project delivery. The event was held September : 22 to 23, 2014 in Charleston, We...

  18. Study of Evaluation OSH Management System Policy Based On Safety Culture Dimensions in Construction Project

    Science.gov (United States)

    Latief, Yusuf; Armyn Machfudiyanto, Rossy; Arifuddin, Rosmariani; Mahendra Fira Setiawan, R.; Yogiswara, Yoko

    2017-07-01

    Safety Culture in the construction industry is very influential on the socio economic conditions that resulted in the country’s competitiveness. Based on the data, the accident rate of construction projects in Indonesia is very high. In the era of the Asian Economic Community (AEC) Indonesian contractor is required to improve competitiveness, one of which is the implementation of the project without zero accident. Research using primary and secondary data validated the results of the literature experts and questionnaire respondents were analyzed using methods SmartPLS, obtained pattern of relationships between dimensions of safety culture to improve the performance of Safety. The results showed that the behaviors and Cost of Safety into dimensions that significantly affect the performance of safety. an increase in visible policy-based on Regulation of Public Work and Housing No 5/PRT/M/2014 to improve to lower the accident rate.

  19. EC-funded project (HTR-L) for the definition of a European safety approach for HTR's

    International Nuclear Information System (INIS)

    Ehster, S.; Dominguez, M.T.; Coe, I.; Brinkmann, G.; Lensa, W. von; Mheen, W. van der; Alessandroni, C.; Pirson, J.

    2002-01-01

    The inherent safety features of the HTRs make events leading to severe core damage highly unlikely and constitute the main differentiating aspects compared to LWRs. While a known and stable regulatory environment has long been established for Light Water Reactors, a different approach is necessary for the licensing of HTR based power plants. Among the R and D projects funded by the European Commission for HTR reactors, the HTR-L project is dedicated to the definition of a common and coherent European safety approach and the identification of the main licensing issues for the licensing framework of the Modular HTRs. Other specific objectives of this project are : To develop a methodology to classify the accidental conditions; To define the preliminary requirements for the confinement of radioactive products and to assess the need for a 'conventional' containment structure; To establish a SSC (2) classification and to define the rules for equipment qualification; To identify the key issues that need to be addressed in the licensing process of the HTRs; To organize a workshop with the concerned Safety Authorities at the end of the project. This paper will explain the project objectives and its final expected outcomes. (author)

  20. Severe accident assessment. Results of the reactor safety research project VAHTI

    International Nuclear Information System (INIS)

    Sairanen, R.

    1997-10-01

    The report provides a summary of the publicly funded nuclear reactor safety research project Severe Accident Management (VAHTI). The project has been conducted at the Technical Research Centre of Finland (VTT) during the years 1994-96. The main objective was to assist the severe accident management programmes of the Finnish nuclear power plants. The project was divided into five work packages: (1) thermal hydraulic validation of the APROS code, (2) core melt progression within a BWR pressure vessel, (3) failure mode of the BWR pressure vessel, (4) Aerosol behaviour experiments, and (5) development of a computerized severe accident training tool

  1. Extending Occupational Health and Safety to Urban Street Vendors: Reflections From a Project in Durban, South Africa.

    Science.gov (United States)

    Alfers, Laura; Xulu, Phumzile; Dobson, Richard; Hariparsad, Sujatha

    2016-08-01

    This article focuses on an action-research project which is attempting to extend occupational health and safety to a group of street traders in Durban, South Africa, using a variety of different (and sometimes unconventional) institutional actors. The article is written from the perspective of key people who have played a role in conceptualizing and administering the project and is intended to deepen the conversation about what it means to extend occupational health to the informal economy. It explores this question through a reflection on three key project activities: the setting up of a trader-led health and safety committee, an occupational health and safety training course, and a clinical health assessment. It concludes with a discussion of the issues that emerge from the reflections of project participants, which include the need to bring occupational health and urban health into closer conversation with one another, the need to be cognizant of local "informal" politics and the impact that has on occupational health and safety interventions, and the need to create greater opportunities for occupational health and safety professionals to interact with workers in the informal economy. © The Author(s) 2016.

  2. Synthesis of the IRSN report on its analysis of the safety guidance package (DOrS) of the ASTRID reactor project. Safety guidance document for the ASTRID prototype: Referral to the GPR. Opinion related to the safety guidance document of the ASTRID reactor project. ASTRID prototype: Safety guidance document for the ASTRID prototype

    International Nuclear Information System (INIS)

    Lachaume, Jean-Luc; Niel, Jean-Christophe

    2013-01-01

    A first document indicates the improvement guidelines for the ASTRID project based on the French experience in the field of sodium-cooled fast neutron reactors, addresses the safety objectives as they are presented for the ASTRID project, discusses how the project includes a regulation and design referential, and how it addresses various aspects of the design approach (ranking and analysis of operation situations, defence in depth, use of probabilistic studies, safety classification and qualification to accidental situations, taking internal and external aggressions into account and taking severe accidents into account at the design level). It comments the guidelines related to the first two barriers, to main safety functions (control of reactivity and of reactor cooling, containment of radioactive and toxic materials), to dismantling, to R and D for safety support. A second document is a letter sent by the ASN to the GPR (permanent group of experts in charge of nuclear reactors) about the safety guidance document for the ASTRID prototype. The third document is the answer and contains comments and recommendations by this group about the content of this document, and therefore addresses the same topics as the first document. The last document defines the framework of the approach to this document

  3. Nuclear Criticality Technology and Safety Project parameter study database

    International Nuclear Information System (INIS)

    Toffer, H.; Erickson, D.G.; Samuel, T.J.; Pearson, J.S.

    1993-03-01

    A computerized, knowledge-screened, comprehensive database of the nuclear criticality safety documentation has been assembled as part of the Nuclear Criticality Technology and Safety (NCTS) Project. The database is focused on nuclear criticality parameter studies. The database has been computerized using dBASE III Plus and can be used on a personal computer or a workstation. More than 1300 documents have been reviewed by nuclear criticality specialists over the last 5 years to produce over 800 database entries. Nuclear criticality specialists will be able to access the database and retrieve information about topical parameter studies, authors, and chronology. The database places the accumulated knowledge in the nuclear criticality area over the last 50 years at the fingertips of a criticality analyst

  4. The National Program for Occupational Safety and Health in Agriculture. 1992 Project Facts.

    Science.gov (United States)

    National Inst. for Occupational Safety and Health (DHHS/PHS), Cincinnati, OH.

    This book contains information about a project instituted in 1990 by the National Institute for Occupational Safety and Health (NIOSH) to prevent work-related diseases and injuries among agricultural workers. Included are facts about 25 projects within NIOSH and 42 cooperative agreements between NIOSH and institutions in 25 states. These…

  5. Analysis of Aviation Safety Reporting System Incident Data Associated With the Technical Challenges of the Vehicle Systems Safety Technology Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This analysis was conducted to support the Vehicle Systems Safety Technology (VSST) Project of the Aviation Safety Program (AVsP) milestone VSST4.2.1.01, "Identification of VSST-Related Trends." In particular, this is a review of incident data from the NASA Aviation Safety Reporting System (ASRS). The following three VSST-related technical challenges (TCs) were the focus of the incidents searched in the ASRS database: (1) Vechicle health assurance, (2) Effective crew-system interactions and decisions in all conditions; and (3) Aircraft loss of control prevention, mitigation, and recovery.

  6. Project Aquarius. Control of radioisotopes and safety

    Energy Technology Data Exchange (ETDEWEB)

    Post, Roy G [Department of Nuclear Engineering, University of Arizona (United States)

    1970-05-15

    The potential application of nuclear explosives to the development of water resources provides real hope for substantial increases in the availability of water from our natural water supplies. A wide range, exploratory project sponsored by the United States Atomic Energy Commission, the Bureau of Reclamation, the Arizona Atomic Energy Commission, and The University of Arizona was conducted by the Hydrology and Water Resources Office, the Department of Nuclear Engineering, and various state and federal governmental agencies in exploring the potential applications of nuclear explosives for developing water resources in the State of Arizona. The primary objective of the project was of a scouting nature, a reconnaissance effort to assess the potential for Arizona. This work, Project Aquarius, is at an early state and any significant conclusions are certainly premature. Since this is a survey, detailed analyses are not justified. Our purpose is to define limiting problems and estimate our ability to solve them. We do not seek to formulate a detailed solution until the project has been defined better. In all of the plowshare activities the primary responsibility of the Atomic Energy Commission for safety and control of not only radiological but all hazards has been well defined and documented. Thus, the work here does not reflect any opinion or voice of the Atomic Energy Commission but is based on my own views and conclusions. I have referred to the work of the various laboratories, offices, and contractors of the Atomic Energy Commission.

  7. Project Aquarius. Control of radioisotopes and safety

    International Nuclear Information System (INIS)

    Post, Roy G.

    1970-01-01

    The potential application of nuclear explosives to the development of water resources provides real hope for substantial increases in the availability of water from our natural water supplies. A wide range, exploratory project sponsored by the United States Atomic Energy Commission, the Bureau of Reclamation, the Arizona Atomic Energy Commission, and The University of Arizona was conducted by the Hydrology and Water Resources Office, the Department of Nuclear Engineering, and various state and federal governmental agencies in exploring the potential applications of nuclear explosives for developing water resources in the State of Arizona. The primary objective of the project was of a scouting nature, a reconnaissance effort to assess the potential for Arizona. This work, Project Aquarius, is at an early state and any significant conclusions are certainly premature. Since this is a survey, detailed analyses are not justified. Our purpose is to define limiting problems and estimate our ability to solve them. We do not seek to formulate a detailed solution until the project has been defined better. In all of the plowshare activities the primary responsibility of the Atomic Energy Commission for safety and control of not only radiological but all hazards has been well defined and documented. Thus, the work here does not reflect any opinion or voice of the Atomic Energy Commission but is based on my own views and conclusions. I have referred to the work of the various laboratories, offices, and contractors of the Atomic Energy Commission

  8. GEOSAF Part II. Demonstration of the operational and long-term safety of geological disposal facilities for radioactive waste. IAEA international intercomparison and harmonization project

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Yumiko; Bruno, Gerard [International Atomic Energy Agency, Vienna (Austria). Vienna International Centre; Tichauer, Michael [IRSN, Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Hedberg, Bengt [Swedish Radiation Safety Authority, Stockholm (Sweden)

    2015-07-01

    International intercomparison and harmonization projects are one of the mechanisms developed by the IAEA for examining the application and use of safety standards, with a view to ensuring their effectiveness and working towards harmonization of approaches to the safety of radioactive waste management. The IAEA has organized a number of international projects on the safety of radioactive waste management; in particular on the issues related to safety demonstration for radioactive waste management facilities. In 2008, GEOSAF, Demonstration of The Operational and Long-Term Safety of Geological Disposal Facilities for Radioactive Waste, project was initiated. This project was completed in 2011 by delivering a project report focusing on the safety case for geological disposal facilities, a concept that has gained in recent years considerable prominence in the waste management area and is addressed in several international safety standards. During the course of the project, it was recognized that little work was undertaken internationally to develop a common view on the safety approach related to the operational phase of a geological disposal although long-term safety of disposal facility has been discussed for several decades. Upon completion of the first part of the GEOSAF project, it was decided to commence a follow-up project aiming at harmonizing approaches on the safety of geological disposal facilities for radioactive waste through the development of an integrated safety case covering both operational and long-term safety. The new project was named as GEOSAF Part II, which was initiated in 2012 initially as 2-year project, involving regulators and operators. GEOSAF Part II provides a forum to exchange ideas and experience on the development and review of an integrated operational and post-closure safety case for geological disposal facilities. It also aims at providing a platform for knowledge transfer. The project is of particular interest to regulatory

  9. 1998 BPA habitat projects completed within the Asotin Creek Watershed, WA; Ridge-Top to Ridge-Top Habitat Projects; 1998 BPA Completion Report - November 1999

    International Nuclear Information System (INIS)

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred forty-six projects have been implemented through the ACMWP as of 1998. Fifty-nine of these projects were funded in part through Bonneville Power Administration's 1998 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; one hundred thirty-nine pools were created with these structures. Three miles of stream benefited from riparian improvements such as fencing, vegetative plantings, and noxious weed control. Two alternative water developments were completed, providing off-stream-watering sources for livestock. 20,500 ft of upland terrace construction, seven sediment basin construction, one hundred eighty-seven acres of grass seeding, eight hundred fifty acres of direct seeding and eighteen sediment basin cleanouts were implemented to reduce sediment production and delivery to streams in the watershed

  10. Performance assessment and the safety case: Lessons from recent international projects and areas for further development

    International Nuclear Information System (INIS)

    Galson, Daniel A.; Bailey, Lucy

    2014-01-01

    The European Commission (EC) PAMINA project - Performance Assessment Methodologies in Application to Guide the Development of the Safety Case - was conducted over the period 2006-2009 and brought together 27 organisations from 10 countries. PAMINA had the aim of improving and developing a common understanding of performance assessment (PA) methodologies for disposal concepts for spent fuel and other long-lived radioactive wastes in a range of geological environments. This was followed by a Nuclear Energy Agency (NEA) sponsored project on Methods for Safety Assessment of Geological Disposal Facilities for Radioactive Waste (MeSA), which was completed in 2012. This paper presents a selection of conclusions from these projects, in the context of general understanding developed on what would constitute an acceptable safety case for a geological disposal facility, and outlines areas for further development. The paper also introduces a new project on PA that is under consideration within the context of the EC Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP). (authors)

  11. THESEUS - a research project to improve the safety standard of tank vehicles for dangerous goods

    International Nuclear Information System (INIS)

    Guenther, B.

    1992-01-01

    A research project reffered to as THESEUS was initiated by the Federal Ministry of Research and Technology of Germany. The intent of the investigation is to generate measures designed to enhance the safety standard of commercial transports of dangerous goods in tank vehicles. Hereby, the analysis of real accidents by teams within the project will provide the relevant parameters for the experimental and theoretical investigation of vehicles, tank components and safety devices. The project started in summer 1990. This paper will focus main features and the work done so far. Special consideration will be made to the failure behaviour of tank components as the authors field of activity. (orig.)

  12. 77 FR 70684 - Safety Zone; Bridge Demolition Project; Indiana Harbor Canal, East Chicago, IN

    Science.gov (United States)

    2012-11-27

    ... environmental risk to health or risk to safety that may disproportionately affect children. 10. Indian Tribal... the Cline Avenue bridge in East Chicago, IN. The Captain of the Port, Sector Lake Michigan, has determined that this demolition project will pose a significant risk to public safety and property. Such...

  13. Confinement Vessel Assay System: Calibration and Certification Report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine C. [Los Alamos National Laboratory; Bourne, Mark M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Gomez, Cipriano [Retired CMR-OPS: OPERATIONS; Mayo, Douglas R. [Los Alamos National Laboratory; Miko, David K. [Los Alamos National Laboratory; Salazar, William R. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory

    2012-07-17

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of SNM in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le} 100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The system was calibrated in three different mass regions (low, medium, and high) to cover the entire plutonium mass range that will be assayed. The low mass calibration and medium mass calibration were verified for material positioned in the center of an empty vessel. The systematic uncertainty due to position bias was estimated using an MCNPX model to simulate the response of the system to material localized at various points along the inner surface of the vessel. The background component due to cosmic ray spallation was determined by performing measurements of an empty vessel and comparing to measurements in the same location with no vessel present. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements of CVs before and after cleanout.

  14. Confinement Vessel Assay System: Calibration and Certification Report

    International Nuclear Information System (INIS)

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Gomez, Cipriano; Mayo, Douglas R.; Miko, David K.; Salazar, William R.; Stange, Sy; Vigil, Georgiana M.

    2012-01-01

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of SNM in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of (le) 100-g 239 Pu equivalent in a vessel for safeguards termination. The system was calibrated in three different mass regions (low, medium, and high) to cover the entire plutonium mass range that will be assayed. The low mass calibration and medium mass calibration were verified for material positioned in the center of an empty vessel. The systematic uncertainty due to position bias was estimated using an MCNPX model to simulate the response of the system to material localized at various points along the inner surface of the vessel. The background component due to cosmic ray spallation was determined by performing measurements of an empty vessel and comparing to measurements in the same location with no vessel present. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements of CVs before and after cleanout.

  15. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.G. [comp.

    1994-01-01

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

  16. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    International Nuclear Information System (INIS)

    Sanchez, R.G.

    1994-01-01

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda

  17. 77 FR 63732 - Safety Zone; Bridge Demolition Project; Indiana Harbor Canal, East Chicago, IN

    Science.gov (United States)

    2012-10-17

    ..., Protection of Children from Environmental Health Risks and Safety Risks. This rule is not an economically significant rule and does not create an environmental risk to health or risk to safety that may.... The Captain of the Port, Sector Lake Michigan, has determined that this demolition project will pose a...

  18. Surveys of research projects concerning nuclear facility safety, financed by the Federal Ministry for the Environment, Nature Protection and Reactor Safety, 1989. (14. annual report on SR-projects)

    International Nuclear Information System (INIS)

    1990-11-01

    Each progress report is a collection of individual reports, categorized by subject matter. They are a documentation of the contractor's progress, rendered by themselves on standardized forms, published, for the sake of general information on progress made in investigations concerning reactor safety, by the project attendance department of the GRS. The individual reports have serial numbers. Each report includes particulars of the objective, work carried out, results obtained and plans for project continuation. (orig.) [de

  19. Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges

    Science.gov (United States)

    Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.

  20. Methodology for Safety Assessment Applied to Predisposal Waste Management. Report of the Results of the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) 2004–2010)

    International Nuclear Information System (INIS)

    2015-12-01

    Report of the Results of the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) (2004–2010) The IAEA’s progamme on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) focused on approaches and mechanisms for application of safety assessment methodologies for the predisposal management of radioactive waste. The initial outcome of the SADRWMS Project was achieved through the development of flowcharts, which have since been incorporated into IAEA Safety Standards Series No. GSG-3, Safety Case and Safety Assessment for Predisposal Management of Radioactive Waste. In 2005, an initial specification was developed for the Safety Assessment Framework (SAFRAN) software tool to apply the SADRWMS flowcharts. In 2008, an in-depth application of the SAFRAN tool and the SADRWMS methodology was carried out on the predisposal management facilities of the Thailand Institute of Nuclear Technology Radioactive Waste Management Centre (TINT Facility). This publication summarizes the content and outcomes of the SADRWMS programme. The Chairman’s Report of the SADRWMS Project and the Report of the TINT test case are provided on the CD-ROM which accompanies this report

  1. Inventory of Federal energy-related environment and safety research for FY 1977. Volume II. Project listings

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    This volume contains Biomedical and Environmental Research, Environmental Control Technology Research, and Operational and Environmental Safety Research project listings. The projects are ordered numerically by log number.

  2. Ferrocyanide Safety Project Task 3 Ferrocyanide Aging Studies FY 1993 annual report

    International Nuclear Information System (INIS)

    Lilga, M.A.; Lumetta, M.R.; Schiefelbein, G.F.

    1993-10-01

    The Hanford Ferrocyanide Task Team is addressing issues involving ferrocyanide precipitates in single-shell waste storage tanks (SSTs), in particular the storage of waste in a safe manner. This Task Team, composed of researchers from Westinghouse Hanford Company (WHC), Pacific Northwest Laboratory (PNL), and outside consultants, was formed in response to the need for an updated analysis of safety questions about the Hanford ferrocyanide tanks. The Ferrocyanides Safety Project at PNL is part of the Waste Tank Safety Program led by WHC. The overall purpose of the WHC program, sponsored by the US Department of Energy's Tank Farm Project Office, is to (1) maintain the ferrocyanide tanks with minimal risk of an accident, (2) select one or more strategies to assure safe storage, and (3) close out the unreviewed safety question (USQ). This annual report gives the results of the work conducted by PNL in FY 1993 on Task 3, Ferrocyanides Aging Studies, which deals with the aging behavior of simulated ferrocyanide wastes. Aging processes include the dissolution and hydrolysis of nickel ferrocyanides in high pH aqueous solutions. Investigated were the effects of pH variation; ionic strength and sodium ion concentration; the presence of anions such as phosphate, carbonate, and nitrate; temperature; and gamma radiation on solubility of ferrocyanide materials including In-Farm-lA, Rev. 4 flowsheet-prepared Na 2 NiFe(CN) 6

  3. Specific issues, exact locations: case study of a community mapping project to improve safety in a disadvantaged community.

    Science.gov (United States)

    Qummouh, Rana; Rose, Vanessa; Hall, Pat

    2012-12-01

    Safety is a health issue and a significant concern in disadvantaged communities. This paper describes an example of community-initiated action to address perceptions of fear and safety in a suburb in south-west Sydney which led to the development of a local, community-driven research project. As a first step in developing community capacity to take action on issues of safety, a joint resident-agency group implemented a community safety mapping project to identify the extent of safety issues in the community and their exact geographical location. Two aerial maps of the suburb, measuring one metre by two metres, were placed on display at different locations for four months. Residents used coloured stickers to identify specific issues and exact locations where crime and safety were a concern. Residents identified 294 specific safety issues in the suburb, 41.9% (n=123) associated with public infrastructure, such as poor lighting and pathways, and 31.9% (n=94) associated with drug-related issues such as drug activity and discarded syringes. Good health promotion practice reflects community need. In a very practical sense, this project responded to community calls for action by mapping resident knowledge on specific safety issues and exact locations and presenting these maps to local decision makers for further action.

  4. The FORO Project on Safety Culture in Organizations, Facilities and Activities With Sources of Ionizing Radiation

    International Nuclear Information System (INIS)

    Bomben, A. M.; Ferro Fernández, R.; Arciniega Torres, J.; Ordoñez Gutiérrez, E.; Blanes Tabernero, A.; Cruz Suárez, R.; Da Silva Silveira, C.; Perera Meas, J.; Ramírez Quijada, R.; Videla Valdebenito, R.

    2016-01-01

    The aim of this paper is to present the Ibero-American Forum of Nuclear and Radiological Regulatory Authorities’ (FORO) Project on Safety Culture in organizations, facilities and activities with sources of ionizing radiation developed by experts from the Regulatory Authorities of Argentina, Brazil, Chile, Cuba, Spain, Mexico, Peru and Uruguay, under the scientific coordination of the International Atomic Energy Agency (IAEA). Taking into account that Safety Culture problems have been widely recognised as one of the major contributors to many radiological events, several international and regional initiatives are being carried out to foster and develop a strong Safety Culture. One of these initiatives is the two-year project sponsored by the FORO with the purpose to prepare a document to allow its member states understanding, promoting and achieving a higher level of Safety Culture.

  5. Surveys of research projects concerning nuclear facility safety, financed by the Bundesminister des Innern. 9th annual report on SR-projects 1984

    International Nuclear Information System (INIS)

    1985-06-01

    The FRG's Ministry of the Interior finances studies, expertises and investigations in the field of nuclear safety. The results of such work are meant to clarify questions left open concerning the execution of licensing procedures for nuclear facilities. The GRS (Reactor Safety Company) regularly provides information on the state of such studies, on the authority of the Ministry of the Interior. Each progress report is a collection of individual reports, categorized by subject matter. They are a documentation of the contractor's progress, rendered by themselves on standardized forms, published, for the sake of general information on progress made in investigations concerning reactor safety, by the project attendance department of the GRS. The individual reports have serial numbers. Each report includes particulars of the objective, work carried out, results obtained and plans for project continuation. (orig./HP) [de

  6. Nuclear emergency preparedness. Final report of the Nordic Nuclear Safety Research Project BOK-1

    DEFF Research Database (Denmark)

    Lauritzen, B.

    2002-01-01

    Final report of the Nordic Nuclear Safety Research project BOK-1. The BOK-1 project, “Nuclear Emergency Preparedness”, was carried out in 1998-2001 with participants from the Nordic and Baltic Sea regions. The project consists of six sub-projects:Laboratory measurements and quality assurance (BOK-1.......1); Mobile measurements and measurement strategies (BOK-1.2); Field measurements and data assimilation (BOK-1.3); Countermeasures in agriculture and forestry (BOK-1.4); Emergency monitoring in theNordic and Baltic Sea countries (BOK-1.5); and Nuclear exercises (BOK-1.6). For each sub-project, the project...

  7. RISMC Advanced Safety Analysis Project Plan – FY 2015 - FY 2019

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngblood, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    In this report, a project plan is developed, focused on industry applications, using Risk-Informed Safety Margin Characterization (RISMC) tools and methods applied to realistic, relevant, and current interest issues to the operating nuclear fleet. RISMC focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. This set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. The proposed plan will focus on application of the RISMC toolkit, in particular, solving realistic problems of important current issues to the nuclear industry, in collaboration with plant owners and operators to demonstrate the usefulness of these tools in decision making.

  8. Preliminary standard review guide for Environmental Restoration/Decontamination and Decommissioning safety analyses

    International Nuclear Information System (INIS)

    Ellingson, D.R.

    1993-06-01

    The review guide is based on the shared experiences, approaches, and philosophies of the Environmental Restoration/Decontamination and Decommissioning (ER/D ampersand D) subgroup members. It is presented in the form of a review guide to maximize the benefit to both the safety analyses practitioner and reviewer. The guide focuses on those challenges that tend to be unique to ER/D ampersand D cleanup activities. Some of these experiences, approaches, and philosophies may find application or be beneficial to a broader spectrum of activities such as terminal cleanout or even new operations. Challenges unique to ER/D ampersand D activities include (1) consent agreements requiring activity startup on designated dates; (2) the increased uncertainty of specific hazards; and (3) the highly variable activities covered under the broad category of ER/D ampersand D. These unique challenges are in addition to the challenges encountered in all activities; e.g., new and changing requirements and multiple interpretations. The experiences in approaches, methods, and solutions to the challenges are documented from the practitioner and reviewer's perspective, thereby providing the viewpoints on why a direction was taken and the concerns expressed. Site cleanup consent agreements with predetermined dates for restoration activity startup add the dimension of imposed punitive actions for failure to meet the date. Approval of the safety analysis is a prerequisite to startup. Actions that increase expediency are (1) assuring activity safety; (2) documenting that assurance; and (3) acquiring the necessary approvals. These actions increase the timeliness of startup and decrease the potential for punitive action. Improvement in expediency has been achieved by using safety analysis techniques to provide input to the line management decision process rather than as a review of line management decisions. Expediency is also improved by sharing the safety input and resultant decisions with

  9. Review of the Norwegian-Russian Cooperation on Safety Projects at Kola and Leningrad Nuclear Power Plants 2005 - 2009

    International Nuclear Information System (INIS)

    Mattsson, H.; Tishakov, P.

    2010-11-01

    In this report, Norwegian Radiation Protection Authority (NRPA) has reviewed the Norwegian funded projects on nuclear safety performed in the period 2005-2009 under the Norwegian Action Plan. NRPA has evaluated the progress of eight projects implemented by the Institute for Energy Technology (IFE) at Kola Nuclear Power Plant (KNPP) and Leningrad Nuclear Power Plant (LNPP). NRPA has visited the plants, inspected delivered equipment and discussed the projects implementation with relevant personnel at the plants. One of NRPA findings is that the equipment has been delivered to KNPP and LNPP, it is in regular use by competent personnel, and the equipment contributes to safety of both plants. Furthermore, the cooperation between three main project partners - IFE, LNPP and KNPP, seems to be very productive. NRPA's main conclusion is therefore that the projects have been implemented as described in IFE's project reports and that the goals are met. Furthermore, this report reviews safety levels at the KNPP and LNPP. Safety parameters at the plants indicate that the safety level has been significantly improved since early 1990s when the cooperation between Norway and Russia was initiated. Probabilistic safety assessment (PSA) values and number of INES (International Nuclear Event Scale) events, two internationally acknowledged safety parameters, indicate that the safety level has been much improved since the early 1990s when the cooperation between Norway and Russia started. Although it is clear that the Norwegian-funded projects have contributed positively to this development it is difficult to quantify the contribution. Moreover, the report also reviews the planned life-time of and the decommissioning plans for the reactors at KNPP and LNPP. Construction of new LNPP reactors has started and it is estimated that they will be operational in 2013- 2015. The license of the oldest reactor at LNPP expires in 2018 and if the new reactors are in operation by that time, it is

  10. Using historical crash data as part of traffic work zone safety planning and project management strategies.

    Science.gov (United States)

    2014-07-01

    This funding enabled the project entitled, USING HISTORICAL CRASH DATA AS PART OF TRAFFIC WORK ZONE SAFETY : PLANNING AND PROJECT MANAGEMENT STRATEGIES to address the following: : Evaluate current organizational strategies with respect to w...

  11. Practical guidelines for the registration and monitoring of serious traffic injuries, Deliverable 7.1 of the H2020 project SafetyCube (Safety CaUsation, Benefits and Efficiency).

    NARCIS (Netherlands)

    Pérez, K. Weijermars, W.A.M. Amoros, E. Bauer, R. Bos, N. Dupont, E. Filtness, A. Houwing, S. Johannsen, H. Leskovsek, B. Machata, K. Martin, JL. Nuyttens, N. Olabarria, M. Pascal, L. & Van den Berghe, W.

    2017-01-01

    Safety CaUsation, Benefits and Efficiency (SafetyCube) is a European Commission supported Horizon 2020 project. The project’s main objective is the development of an innovative road safety Decision Support System (DSS) that will enable policy-makers and stakeholders to select and implement the most

  12. Research projects into the safety of nuclear power plants. Period cover 01. January - 30. June 2017. Progress report

    International Nuclear Information System (INIS)

    2017-01-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/ Authority Support Division of GRS. The reports as of the year 2000 are available in the internet-based information system on results and data of reactor safety research (https://www.grs-fbw.de). The compilation of the reports is classified according to the topic areas of reactor safety research. The reports are arranged in sequence of their project numbers. Ilt has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  13. Growth and Expansion of the International Criticality Safety Benchmark Evaluation Project and the Newly Organized International Reactor Physics Experiment Evaluation Project

    International Nuclear Information System (INIS)

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Satori

    2007-01-01

    Since ICNC 2003, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) has continued to expand its efforts and broaden its scope. Criticality-alarm/shielding type benchmarks and fundamental physics measurements that are relevant to criticality safety applications are not only included in the scope of the project, but benchmark data are also included in the latest version of the handbook. A considerable number of improvements have been made to the searchable database, DICE and the criticality-alarm/shielding benchmarks and fundamental physics measurements have been included in the database. There were 12 countries participating on the ICSBEP in 2003. That number has increased to 18 with recent contributions of data and/or resources from Brazil, Czech Republic, Poland, India, Canada, and China. South Africa, Germany, Argentina, and Australia have been invited to participate. Since ICNC 2003, the contents of the ''International Handbook of Evaluated Criticality Safety Benchmark Experiments'' have increased from 350 evaluations (28,000 pages) containing benchmark specifications for 3070 critical or subcritical configurations to 442 evaluations (over 38,000 pages) containing benchmark specifications for 3957 critical or subcritical configurations, 23 criticality-alarm-placement/shielding configurations with multiple dose points for each, and 20 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications in the 2006 Edition of the ICSBEP Handbook. Approximately 30 new evaluations and 250 additional configurations are expected to be added to the 2007 Edition of the Handbook. Since ICNC 2003, a reactor physics counterpart to the ICSBEP, The International Reactor Physics Experiment Evaluation Project (IRPhEP) was initiated. Beginning in 1999, the IRPhEP was conducted as a pilot activity by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy Agency

  14. Nuclear emergency preparedness. Final report of the Nordic nuclear safety research project BOK-1

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, Bent [Risoe National Lab., Roskilde (Denmark)

    2002-02-01

    Final report of the Nordic Nuclear Safety Research project BOK-1. The BOK-1 project, 'Nuclear Emergency Preparedness', was carried out in 1998-2001 with participants from the Nordic and Baltic Sea regions. The project consists of six sub-projects: Laboratory measurements and quality assurance (BOK-1.1); Mobile measurements and measurement strategies (BOK-1.2); Field measurement and data assimilation (BOK-1.3); Countermeasures in agriculture and forestry (BOK-1.4); Emergency monitoring in the Nordic and Baltic Sea countries (BOK-1.5); and Nuclear exercises (BOK-1.6). For each sub-project, the project outline, objectives and organization are described and main results presented. (au)

  15. Nuclear emergency preparedness. Final report of the Nordic nuclear safety research project BOK-1

    International Nuclear Information System (INIS)

    Lauritzen, Bent

    2002-02-01

    Final report of the Nordic Nuclear Safety Research project BOK-1. The BOK-1 project, 'Nuclear Emergency Preparedness', was carried out in 1998-2001 with participants from the Nordic and Baltic Sea regions. The project consists of six sub-projects: Laboratory measurements and quality assurance (BOK-1.1); Mobile measurements and measurement strategies (BOK-1.2); Field measurement and data assimilation (BOK-1.3); Countermeasures in agriculture and forestry (BOK-1.4); Emergency monitoring in the Nordic and Baltic Sea countries (BOK-1.5); and Nuclear exercises (BOK-1.6). For each sub-project, the project outline, objectives and organization are described and main results presented. (au)

  16. GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; John D. Bess; Jim Gulliford

    2011-09-01

    Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical or subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the

  17. Reports on BMBF-sponsored research projects in the field of reactor safety. Reporting period 1 July - 31 December 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The Gesellschaft fuer Anlagen- und Reaktorsicherheit informs of the status of LWR tasks and projects on the safety of advanced reactors. Each progress report represents a compilation of individual reports about objectives, the work performed, the results, and the next steps of the works. The individual reports of quality assurance, safety of reactor component, emergency core cooling, lors of coolant, meltdown, fission product release, risk and reliability, are classified according to projects to the reactor safety research program. Another table uses the same classification system as applied in the nuclear safety index of the CEC. (DG)

  18. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the System-Wide Safety and Assurance Technologies Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2015-01-01

    The Aviation Safety Program (AvSP) System-Wide Safety and Assurance Technologies (SSAT) Project asked the AvSP Systems and Portfolio Analysis Team to identify SSAT-related trends. SSAT had four technical challenges: advance safety assurance to enable deployment of NextGen systems; automated discovery of precursors to aviation safety incidents; increasing safety of human-automation interaction by incorporating human performance, and prognostic algorithm design for safety assurance. This report reviews incident data from the NASA Aviation Safety Reporting System (ASRS) for system-component-failure- or-malfunction- (SCFM-) related and human-factor-related incidents for commercial or cargo air carriers (Part 121), commuter airlines (Part 135), and general aviation (Part 91). The data was analyzed by Federal Aviation Regulations (FAR) part, phase of flight, SCFM category, human factor category, and a variety of anomalies and results. There were 38 894 SCFM-related incidents and 83 478 human-factorrelated incidents analyzed between January 1993 and April 2011.

  19. Safety assessment methodologies and their application in development of near surface waste disposal facilities - the ASAM project

    International Nuclear Information System (INIS)

    Metcalf, P.

    2003-01-01

    The scope of ASAM project covers near surface disposal facilities for all types of low and intermediate level wastes with emphasis of the post-closure safety assessment.The objectives are to explore practical application to a range of disposal facilities for a number of purposes e.g. development of design concepts, safety re-assessment, upgrading safety and to develop practical approaches to assist regulators, operators and other experts in review of safety assessment. The task of the Co-ordination Group are: reassessment of existing facilities - use of safety assessment in decision making on selection of options (volunteer site Hungary); disused sealed sources - evaluation of disposability of disused sealed sources in near surface facilities (volunteer site Saratov, Russia); mining and minerals processing waste - evaluation of long-term safety (volunteer site pmc S. Africa). An agreement on the scope and objectives of the project are reached and the further consideration, such as human intrusion/institutional control/security; waste from oil/gas industry; very low level waste; categorization of sealed sources coordinated with other IAEA activities are outlined

  20. The IAEA research project on improvement of safety assessment methodologies for near surface disposal facilities

    International Nuclear Information System (INIS)

    Torres-Vidal, C.; Graham, D.; Batandjieva, B.

    2002-01-01

    The International Atomic Energy Agency (IAEA) Research Coordinated Project on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM) was launched in November 1997 and it has been underway for three years. The ISAM project was developed to provide a critical evaluation of the approaches and tools used in long-term safety assessment of near surface repositories. It resulted in the development of a harmonised approach and illustrated its application by way of three test cases - vault, borehole and Radon (a particular range of repository designs developed within the former Soviet Union) type repositories. As a consequence, the ISAM project had over 70 active participants and attracted considerable interest involving around 700 experts from 72 Member States. The methodology developed, the test cases, the main lessons learnt and the conclusions have been documented and will be published in the form of an IAEA TECDOC. This paper presents the work of the IAEA on improvement of safety assessment methodologies for near surface waste disposal facilities and the application of these methodologies for different purposes in the individual stages of the repository development. The paper introduces the main objectives, activities and outcome of the ISAM project and summarizes the work performed by the six working groups within the ISAM programme, i.e. Scenario Generation and Justification, Modelling, Confidence Building, Vault, Radon Type Facility and Borehole test cases. (author)

  1. Geo-scientific Information in the Radioactive Waste Management Safety Case Main Messages from the AMIGO Project

    International Nuclear Information System (INIS)

    2010-01-01

    Radioactive waste is associated with all phases of the nuclear fuel cycle as well as the use of radioactive materials in medicine, research and industry. For the most hazardous and long-lived waste, the solution being investigated worldwide is disposal in engineered repositories deep underground. The importance of geo-scientific information in selecting a site for geological disposal has long been recognised, but there has been growing acknowledgement of the broader role of this information in assessing and documenting the safety of disposal. The OECD/NEA Approaches and Methods for Integrating Geological Information in the Safety Case (AMIGO) project has demonstrated that geological data and understanding serve numerous roles in safety cases. The project, which ran from 2002 to 2008, underscored the importance of integrating geo-scientific information in the development of a disposal safety case and increasingly in the overall process of repository development, including, for example, siting decisions and ensuring the practical feasibility of repository layout and engineering. (authors)

  2. Final report of the 'Nordic thermal-hydraulic and safety network (NOTNET)' - Project

    International Nuclear Information System (INIS)

    Tuunanen, J.; Tuomainen, M.

    2005-04-01

    A Nordic network for thermal-hydraulics and nuclear safety research was started. The idea of the network is to combine the resources of different research teams in order to carry out more ambitious and extensive research programs than would be possible for the individual teams. From the very beginning, the end users of the research results have been integrated to the network. Aim of the network is to benefit the partners involved in nuclear energy in the Nordic Countries (power companies, reactor vendors, safety regulators, research units). First task within the project was to describe the resources (personnel, know-how, simulation tools, test facilities) of the various teams. Next step was to discuss with the end users about their research needs. Based on these steps, few most important research topics with defined goals were selected, and coarse road maps were prepared for reaching the targets. These road maps will be used as a starting point for planning the actual research projects in the future. The organisation and work plan for the network were established. National coordinators were appointed, as well as contact persons in each participating organisation, whether research unit or end user. This organisation scheme is valid for the short-term operation of NOTNET when only Nordic organisations take part in the work. Later on, it is possible to enlarge the network e.g. within EC framework programme. The network can now start preparing project proposals and searching funding for the first common research projects. (au)

  3. State partnership in environmental health and safety phase of Plowshare projects

    Energy Technology Data Exchange (ETDEWEB)

    Kinsman, S [California State Department of Public Health, Berkeley, CA (United States)

    1969-07-01

    When experiments on projects involving Plowshare devices are conceived, the state chosen for the project should be invited to participate in planning the health and safety aspects and be prepared to actively participate in the D-Day phase as well as the post-detonation activity. In California nuclear science technology and competence have preceded the social acceptance and use of nuclear devices for large scale Plowshare projects. However, the environmental surveillance program of the Bureau of Radiological Health in the State Department of Public Health has established an operative program which will be ready and able to function as an active participant or in a support role in environmental health phases of nuclear projects scheduled in the State. A description of our present program will be included in this paper. This will enable the attendees and readers to realize capabilities which will be activated for participation and/or support roles during Plowshare activities in the State or in a neighboring state if the need arises. (author)

  4. State partnership in environmental health and safety phase of Plowshare projects

    International Nuclear Information System (INIS)

    Kinsman, S.

    1969-01-01

    When experiments on projects involving Plowshare devices are conceived, the state chosen for the project should be invited to participate in planning the health and safety aspects and be prepared to actively participate in the D-Day phase as well as the post-detonation activity. In California nuclear science technology and competence have preceded the social acceptance and use of nuclear devices for large scale Plowshare projects. However, the environmental surveillance program of the Bureau of Radiological Health in the State Department of Public Health has established an operative program which will be ready and able to function as an active participant or in a support role in environmental health phases of nuclear projects scheduled in the State. A description of our present program will be included in this paper. This will enable the attendees and readers to realize capabilities which will be activated for participation and/or support roles during Plowshare activities in the State or in a neighboring state if the need arises. (author)

  5. Growth and Expansion of the International Criticality Safety Benchmark Evaluation Project and the Newly Organized International Reactor Physics Experiment Evaluation Project

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Satori

    2007-05-01

    Since ICNC 2003, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) has continued to expand its efforts and broaden its scope. Criticality-alarm / shielding type benchmarks and fundamental physics measurements that are relevant to criticality safety applications are not only included in the scope of the project, but benchmark data are also included in the latest version of the handbook. A considerable number of improvements have been made to the searchable database, DICE and the criticality-alarm / shielding benchmarks and fundamental physics measurements have been included in the database. There were 12 countries participating on the ICSBEP in 2003. That number has increased to 18 with recent contributions of data and/or resources from Brazil, Czech Republic, Poland, India, Canada, and China. South Africa, Germany, Argentina, and Australia have been invited to participate. Since ICNC 2003, the contents of the “International Handbook of Evaluated Criticality Safety Benchmark Experiments” have increased from 350 evaluations (28,000 pages) containing benchmark specifications for 3070 critical or subcritical configurations to 442 evaluations (over 38,000 pages) containing benchmark specifications for 3957 critical or subcritical configurations, 23 criticality-alarm-placement / shielding configurations with multiple dose points for each, and 20 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications in the 2006 Edition of the ICSBEP Handbook. Approximately 30 new evaluations and 250 additional configurations are expected to be added to the 2007 Edition of the Handbook. Since ICNC 2003, a reactor physics counterpart to the ICSBEP, The International Reactor Physics Experiment Evaluation Project (IRPhEP) was initiated. Beginning in 1999, the IRPhEP was conducted as a pilot activity by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy

  6. The NPPR Trnava participation in the NPP V-2 modernisation and safety improvement project

    International Nuclear Information System (INIS)

    Michal, V.; Losonsky, B.; Magdolen, J.

    1999-01-01

    The presented contribution deals with form, present state and results of Nuclear Power Plants Research Inst.e participation in the NPP V-2 Jaslovske Bohunice Modernization and Safety Improvement Project.(author)

  7. The application of integrated safety management principles to the Tritium Extraction Facility project

    International Nuclear Information System (INIS)

    Hickman, M.O.; Viviano, R.R.

    2000-01-01

    The DOE has developed a program that is accomplishing a heightened safety posture across the complex. The Integrated Safety Management (ISM) System (ISMS) program utilizes five core functions and seven guiding principles as the basis for implementation. The core functions define the work scope, analyze the hazards, develop and implement hazard controls, perform the work, and provide feedback for improvement. The guiding principles include line management responsibility, clear roles and responsibilities, competence per responsibilities, identification of safety standards/requirements, tailored hazard control, balanced priorities, and operations authorization. There exists an unspecified eighth principle, that is, worker involvement. A program requiring the direct involvement of the employees who are actually performing the work has been shown to be quite an effective method of communicating safety requirements, controlling work in a safe manner, and reducing safety violations and injuries. The Tritium Extraction Facility (TEF) projects, a component of the DOE's Commercial Light Water Reactor Tritium Production program, has taken the ISM principles and core functions and applied them to the project's design. The task of the design team is to design a facility and systems that will meet the production requirements of the DOE tritium mission as well as a design that minimizes the workers' exposure to adverse safety situations and hazards/hazardous materials. During the development of the preliminary design for the TEF, design teams consisted of not only designers but also personnel who had operational experience in the existing tritium and personnel who had operational experience in the existing tritium and personnel who had specialized experience from across the DOE complex. This design team reviewed multiple documents associated with the TEF operation in order to identify and document the hazards associated with the tritium process. These documents include hazards

  8. Occupational Safety and Health Program at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    L. M. Calderon

    1999-01-01

    The West Valley Nuclear Services Co. LLC (WVNS) is committed to provide a safe, clean, working environment for employees, and to implement U.S. Department of Energy (DOE) requirements affecting worker safety. The West Valley Demonstration Project (WVDP) Occupational Safety and Health Program is designed to protect the safety, health, and well-being of WVDP employees by identifying, evaluating, and controlling biological, chemical, and physical hazards in the work place. Hazards are controlled within the requirements set forth in the reference section at the end of this report. It is the intent of the WVDP Occupational Safety and Health Program to assure that each employee is provided with a safe and healthy work environment. This report shows the logical path toward ensuring employee safety in planning work at the WVDP. In general, planning work to be performed safely includes: combining requirements from specific programs such as occupational safety, industrial hygiene, radiological control, nuclear safety, fire safety, environmental protection, etc.; including WVDP employees in the safety decision-making processes; pre-planning using safety support re-sources; and integrating the safety processes into the work instructions. Safety management principles help to define the path forward for the WVDP Occupational Safety and Health Program. Roles, responsibilities, and authority of personnel stem from these ideals. WVNS and its subcontractors are guided by the following fundamental safety management principles: ''Protection of the environment, workers, and the public is the highest priority. The safety and well-being of our employees, the public, and the environment must never be compromised in the aggressive pursuit of results and accomplishment of work product. A graded approach to environment, safety, and health in design, construction, operation, maintenance, and deactivation is incorporated to ensure the protection of the workers, the public, and the environment

  9. RADON-type disposal facility safety case for the co-ordinated research project on improvement of safety assessment methodologies for near surface radioactive waste disposal facilities (ISAM)

    International Nuclear Information System (INIS)

    Guskov, A.; Batanjieva, B.; Kozak, M.W.; Torres-Vidal, C.

    2002-01-01

    The ISAM safety assessment methodology was applied to RADON-type facilities. The assessments conducted through the ISAM project were among the first conducted for these kinds of facilities. These assessments are anticipated to lead to significantly improved levels of safety in countries with such facilities. Experience gained though this RADON-type Safety Case was already used in Russia while developing national regulatory documents. (author)

  10. An integrated framework for cost- benefit analysis in road safety projects using AHP method

    Directory of Open Access Journals (Sweden)

    Mahsa Mohamadian

    2011-10-01

    Full Text Available Cost benefit analysis (CBA is a useful tool for investment decision-making from economic point of view. When the decision involves conflicting goals, the multi-attribute analysis approach is more capable; because there are some social and environmental criteria that cannot be valued or monetized by cost benefit analysis. The complex nature of decision-making in road safety normally makes it difficult to reach a single alternative solution that can satisfy all decision-making problems. Generally, the application of multi-attribute analysis in road sector is promising; however, the applications are in preliminary stage. Some multi-attribute analysis techniques, such as analytic hierarchy process (AHP have been widely used in practice. This paper presents an integrated framework with CBA and AHP methods to select proper alternative in road safety projects. The proposed model of this paper is implemented for a case study of improving a road to reduce the accidents in Iran. The framework is used as an aid to cost benefit tool in road safety projects.

  11. On integration and innovation of sino-foreign safety culture in Haiyang AP1000 Project

    International Nuclear Information System (INIS)

    Li Ruipu; Song Fengwei

    2010-01-01

    The undergoing Haiyang Nuclear Power Plant is not only introducing the top-advanced AP1000 nuclear technology, but also the mature HSE management system from U.S.A. It's very important for both sides to communicate, comprehend and acculturation of both different culture. After over 1 year discussion and practice, the experts of Westinghouse Consortium and Chinese HSE engineers have established an distinctive safety culture of AP1000 Project initially, demonstrating the followings: Exemplary actions of the expat experts and the SNPTC leaders, the high level standard HSE procedures, HSE audit, various training, HSE inspection all-around, the safety performance assessment for prospective index, JHA/JSA , emergency system, humanism rewards and punishment etc.. Haiyang SPMO has made Three-Step master plan for AP1000 project HSE Routine by analysis the site problems and the difference between Chinese and American, that is, from 2008 to 2020, when nuclear power achieve to independent, safety culture of Haiyang AP1000 will change from 'dependent' to 'independent', until the last 'interdependent'. (authors)

  12. Reports on the projects in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1977-06-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS-projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear energy plants and their systems and the further development of safety technology. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of these investigations within the series 'GRS-F-Forschrittsberichte' (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the different projects of the search program. The individual reports are prepared by the contractors themselves as a documentation of their progress in work and published by the GRS-FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of the progress in reactor safety research. Each report describes the work performed, the results and the next steps of the work. The individual reports are attached to the classification system established by the CEC (Commission of the European Communities). The GRS-F-Progress Reports also include a list of the current investigations arranged according to the projects of the BMFT-Research Program Reactor Safety. This compilation, in addition to the LWR-investigations, also contains first contributions on the safety of advanced reactors. (orig.) [de

  13. Reports on the projects in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1977-11-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS-projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear energy plants and their systems and the further development of safety technology. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of BMFT, informs continuously of the status of these investigations within the series 'GRS-F-Fortschrittsberichte' (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the different projects of the search program. The individual reports are prepared by the contractors themselves as a documentation of their progress in work and published by the GRS-FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of the progress in reactor safety research. Each report describes the work performed, the results and the next steps of the work. The individual reports are attached to the classification system established by the CEC (Commission of the European Communities). The GRS-F-Progress Reports also include a list of the current investigations arranged according to the projects of the BMFT-Research Program Reactor Safety. This compilation, in addition to the LWR-investigations, also contains first contributions on the safety of advanced reactors. (orig.) [de

  14. Reports on the projects in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1977-12-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS-projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear energy plants and their systems and the further development of safety technology. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of these investigations within the series 'GRS-F-Fortschrittsberichte' (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the different projects of the search program. The individual reports are prepared by the contractors themselves as a documentation of their progress in work and published by the GRS-FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of the progress in reactor safety research. Each report describes the work performed, the results and the next steps of the work. The individual reports are attached to the classification system established by the CEC (Commission of the European Communities). The GRS-F-Progress Reports also include a list of the current investigations arranged according to the projects of the BMFT-Research Program Reactor Safety. This compilation, in addition to the LWR-investigations, also contains first contributions on the safety of advanced reactors. (orig.) [de

  15. Technical and administrative approach for the West Valley Demonstration Project Safety Program

    International Nuclear Information System (INIS)

    Newsom, P.C.; Roberts, C.J.; Yuchien Yuan; Marchetti, S.

    1987-06-01

    The principal objective of the West Valley Demonstration Project (WVDP) is to vitrify the 2.2 million liters of high-level radioactive waste (HLW) stored at the Western New York Nuclear Service Center (WNYNSC). This simple statement of purpose, however, does not convey a sense of the complexity of the undertaking. The vitrification task is not only complex in and of itself, but requires a myriad of other activities to be accomplished on an intricate and fast paced schedule in order to support it. The West Valley Demonstration Project Act (P.L 96-368), U.S. Department of Energy Order DOE-5481.1A, Idaho Operations Office Order ID-5481.1 and standard nuclear industry practice all require that proposed systems and operations involving hazards not routinely encountered by the general public be analyzed to identify potential hazards and consequences, and to assure that reasonable measures are taken to eliminate, control, or mitigate these potential consequences. Virtually every substantive aspect of the WVDP involves hazards beyond those routinely encountered and accepted by the general public. In order to assure the safety of the public and the workers at the WVDP, a system of hazard identification, categorization, analysis and review has been established. In parallel with this system, a procedure for developing the minimum design specifications and quality assurance requirements has been developed for Project systems, components, and structures which play a role in the safety of a specific major facility or the overall Project. 29 refs., 3 figs., 6 tabs

  16. The Citizenship Safety Project: a pilot study.

    Science.gov (United States)

    Frederick, K; Barlow, J

    2006-02-01

    The Government White Paper Saving Lives: Our Healthier Nation (1999) provides a clear indication that accidents are a serious public health problem and have been targeted by the Department of Health as a key area for prevention over the next 10 years. School-based injury prevention programmes have been identified as one of the key settings for the implementation of the White Paper's heath promotion strategies. The Citizen Safety Project (CSP) is a peer-delivered injury prevention programme for Year 10 students (14-15 years) and Year 2 pupils (6-7 years). This paper summarizes the findings of a pilot study that assessed the feasibility of implementing the CSP in schools and of conducting a larger study. Working as part of their Personal Social Health Education lessons, 11 pairs (n = 22) of Year 10 students developed a project to take one accident prevention theme of their choice into a primary school to teach small groups of five or six Year 2 pupils (n = 55). A formative evaluation was conducted, based on interviews with Year 2 and Year 10 teachers (n = 2), and the diaries of Year 10 students. Knowledge of accident prevention and risk awareness was measured in Year 2 pupils using the Draw and Write technique, and impact on Year 10 students was measured using self-esteem and locus of control inventories. Using both statistical and thematic analysis the study concludes that the CSP is well accepted, improves knowledge in Year 2 pupils and boosts confidence in Year 10 students, while concurrently achieving key stage attainment targets. Implications of the study are discussed in terms of future research, as are recommendations with regard to modifications to the project.

  17. The funding of dangerous nuclear projects. Nuclear trade and safety: the role of French private banks. What are we talking about?

    International Nuclear Information System (INIS)

    Philippe, Isabelle

    2011-01-01

    Countries which export nuclear technologies, notably France, have developed mechanisms of financial support to incite private banks to finance the sale of reactors to foreign countries, notably EPRs in the case of France. After having briefly introduced this issue, and dealing with the French case, this publication indicates the concerned banks, and outlines that some of them finance nuclear projects which have been assessed by NGOs as dangerous in terms of nuclear safety. It notably presents the Angra 3 project in Brazil: its cost, its planning, its main safety problems (obsolete technology, building authorization awarded without any actual safety analysis, situation of conflict of interest for the Brazilian regulator). It also presents the Jaitapur project in India in which Areva is as well involved: costs, funding, planning, main risks (seismic risk area, safety level much lower than the one required in France, controversy on the impact study). The document finally explains why banks must not fund nuclear projects

  18. 76 FR 63988 - Pilot Project on NAFTA Trucking Provisions; Pre-Authorization Safety Audits

    Science.gov (United States)

    2011-10-14

    ...-0097] Pilot Project on NAFTA Trucking Provisions; Pre-Authorization Safety Audits AGENCY: Federal Motor... motor carriers that applied to participate in the Agency's long-haul pilot program to test and... intent to proceed with the initiation of a United States- Mexico cross-border long-haul trucking pilot...

  19. Final Hazard Classification and Auditable Safety Analysis for the 105-F Building Interim Safe Storage Project

    International Nuclear Information System (INIS)

    Rodovsky, T.J.; Bond, S.L.

    1998-07-01

    The auditable safety analysis (ASA) documents the authorization basis for the partial decommissioning and facility modifications to place the 105-F Building into interim safe storage (ISS). Placement into the ISS is consistent with the preferred alternative identified in the Record of Decision (58 FR). Modifications will reduce the potential for release and worker exposure to hazardous and radioactive materials, as well as lower surveillance and maintenance (S ampersand M) costs. This analysis includes the following: A description of the activities to be performed in the course of the 105-F Building ISS Project. An assessment of the inventory of radioactive and other hazardous materials within the 105-F Building. Identification of the hazards associated with the activities of the 105-F Building ISS Project. Identification of internally and externally initiated accident scenarios with the potential to produce significant local or offsite consequences during the 105-F Building ISS Project. Bounding evaluation of the consequences of the potentially significant accident scenarios. Hazard classification based on the bounding consequence evaluation. Associated safety function and controls, including commitments. Radiological and other employee safety and health considerations

  20. Surveys of research projects concerning nuclear facility safety financed by the Federal Ministry for the Environment, Nature Protection and Reactor Safety, 1991

    International Nuclear Information System (INIS)

    1992-09-01

    Each progress report is a collection of individual reports, categorized by subject matter. They are a documentation of the contractor's progress, rendered by themselves on standardized forms, published, for the sake of general information on progress made in investigations concerning reactor safety, by the project attendance department of the GRS. The individual reports have serial numbers. Each report includes particulars of the objective, work carried out, results obtained and plans for project continuation. (orig.) [de

  1. Surveys of research projects concerning nuclear facility safety, financed by the Federal Ministry for the Environment, Nature Protection and Reactor Safety, 1988

    International Nuclear Information System (INIS)

    1989-11-01

    Each progress report is a collection of individual reports, categorized by subject matter. They are a documentation of the contractor's progress, rendered by themselves on standardized forms, published, for the sake of general information on progress made in investigations concerning reactor safety, by the project attendance department of the GRS. The individual reports have serial numbers. Each report includes particulars of the objective, work carried out, results obtained and plans for project continuation. (orig.) [de

  2. Surveys of research projects concerning nuclear facility safety, financed by the Federal Ministry for the Environment, Nature Protection and Reactor Safety, 1987

    International Nuclear Information System (INIS)

    1988-06-01

    Each progress report is a collection of individual reports, categorized by subject matter. They are a documentation of the contractor's progress, rendered by themselves on standardized forms, published, for the sake of general information on progress made in investigations concerning reactor safety, by the project attendance department of the GRS. The individual reports have serial numbers. Each report includes particulars of the objective, work carried out, results obtained and plans for project continuation. (orig.) [de

  3. The safety of risk or the risk of safety?

    NARCIS (Netherlands)

    Suddle, S.I.; Waarts, P.H.

    2003-01-01

    Safety is nowadays one of the main items on the agenda during the planning, realisation and management of most large-scale projects, particularly in infrastructure and building projects in intensively used areas such as multiple use of land projects. It is vital that safety aspects are properly

  4. Progress report projects in the field of nuclear safety sponsered by the Federal Minister for Research and Technology

    International Nuclear Information System (INIS)

    1980-03-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS-Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear energy plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work at the GRS, within the framework of general information of the progress in reactor safety research. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC and the OECD. (orig./HP) [de

  5. 77 FR 59551 - Safety Zone, Changes to Original Rule; Boston Harbor's Rock Removal Project, Boston Inner Harbor...

    Science.gov (United States)

    2012-09-28

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0767] RIN 1625-AA00 Safety Zone, Changes to Original Rule; Boston Harbor's Rock Removal Project, Boston Inner Harbor... original provisions of that temporary final rule, but adds two additional safety zones necessary for the...

  6. TSO Study Project on Development of a Common Safety Approach in the EU for Large Evolutionary Pressurised Water Reactors

    International Nuclear Information System (INIS)

    2001-10-01

    In pursuance of the objectives of the Council Resolutions of 1975 and 1992 on the technological issues of nuclear safety, the European Commission (EC) is seeking to promote a sustained joint in-depth study on possible significant future nuclear power reactor safety cases. To that end the EC decided to support financially a study by the grouping of the European Union Technical Safety Organisations (TSOG). The general objective of the study programme was to promote, through a collaboration of European Union Technical Safety Organisations (TSOs), common views on technical safety issues related to large evolutionary PWRs in Europe, which could be ready for operation during the next decade. AVN (Belgium) (Technical project leader), AEA Technology (United Kingdom), ANPA (Italy) CIEMAT (Spain), GRS (Germany), IPSN (France), were the TSOs participating in the study which was co-ordinated by RISKAUDIT. The study focused notably on the EPR project initiated by the French and German utilities and vendors. It also considered relevant projects, even of plants of different size, developed outside the European Union in order to provide elements important for the safety characterisation and which could contribute to the credibility and confidence of EPR. It is expected that this study will constitute a significant step towards the development of a common safety approach in EU countries. The study constitutes an important step forward in the development of a common approach of the TSOs to the safety of advanced evolutionary pressurised water reactors. This goal was mainly achieved by an in-depth analysis of the key safety issues, taking into account new developments in the national technical safety objectives and in the EPR design. For this reason the Commission has decided to publish at least the present summary report containing the main outcomes of the TSO study. Confidentiality considerations unfortunately prevent the open publication of the full series of reports. (author)

  7. Nuclear safety projects 1995

    International Nuclear Information System (INIS)

    Carl-Erik Christoffersen

    1996-01-01

    Action plans for the prevention of contamination in the Arctic regions is concretized in a number of international projects. The Norwegian Radiation Protection Authority is responsible for the follow-up of 13 projects. The report describes the development of these projects in 1995

  8. Safety assessment methodologies for near surface disposal facilities. Results of a co-ordinated research project (ISAM). Volume 1: Review and enhancement of safety assessment approaches and tools. Volume 2: Test cases

    International Nuclear Information System (INIS)

    2004-07-01

    For several decades, countries have made use of near surface facilities for the disposal of low and intermediate level radioactive waste. In line with the internationally agreed principles of radioactive waste management, the safety of these facilities needs to be ensured during all stages of their lifetimes, including the post-closure period. By the mid 1990s, formal methodologies for evaluating the long term safety of such facilities had been developed, but intercomparison of these methodologies had revealed a number of discrepancies between them. Consequently, in 1997, the International Atomic Energy Agency launched a Co-ordinated Research Project (CRP) on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM). The particular objectives of the CRP were to provide a critical evaluation of the approaches and tools used in post-closure safety assessment for proposed and existing near-surface radioactive waste disposal facilities, enhance the approaches and tools used and build confidence in the approaches and tools used. The CRP ran until 2000 and resulted in the development of a harmonized assessment methodology (the ISAM project methodology), which was applied to a number of test cases. Over seventy participants from twenty-two Member States played an active role in the project and it attracted interest from around seven hundred persons involved with safety assessment in seventy-two Member States. The results of the CRP have contributed to the Action Plan on the Safety of Radioactive Waste Management which was approved by the Board of Governors and endorsed by the General Conference in September 2001. Specifically, they contribute to Action 5, which requests the IAEA Secretariat to 'develop a structured and systematic programme to ensure adequate application of the Agency's waste safety standards', by elaborating on the Safety Requirements on 'Near Surface Disposal of Radioactive Waste' (Safety Standards Series No. WS-R-1) and

  9. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    Energy Technology Data Exchange (ETDEWEB)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  10. 75 FR 47602 - Clinical Studies of Safety and Effectiveness of Orphan Products Research Project Grant (R01)

    Science.gov (United States)

    2010-08-06

    ...] Clinical Studies of Safety and Effectiveness of Orphan Products Research Project Grant (R01) AGENCY: Food... (OPD) grant program. The goal of FDA's OPD grant program is to support the clinical development of... product will be superior to the existing therapy. FDA provides grants for clinical studies on safety and...

  11. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  12. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  13. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    Science.gov (United States)

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry. © The Author(s) 2016.

  14. Criticality Safety Support to a Project Addressing SNM Legacy Items at LLNL

    International Nuclear Information System (INIS)

    Pearson, J S; Burch, J G; Dodson, K E; Huang, S T

    2005-01-01

    The programmatic, facility and criticality safety support staffs at the LLNL Plutonium Facility worked together to successfully develop and implement a project to process legacy (DNFSB Recommendation 94-1 and non-Environmental, Safety, and Health (ES and H) labeled) materials in storage. Over many years, material had accumulated in storage that lacked information to adequately characterize the material for current criticality safety controls used in the facility. Generally, the fissionable material mass information was well known, but other information such as form, impurities, internal packaging, and presence of internal moderating or reflecting materials were not well documented. In many cases, the material was excess to programmatic need, but such a determination was difficult with the little information given on MC and A labels and in the MC and A database. The material was not packaged as efficiently as possible, so it also occupied much more valuable storage space than was necessary. Although safe as stored, the inadequately characterized material posed a risk for criticality safety noncompliances if moved within the facility under current criticality safety controls. A Legacy Item Implementation Plan was developed and implemented to deal with this problem. Reasonable bounding conditions were determined for the material involved, and criticality safety evaluations were completed. Two appropriately designated glove boxes were identified and criticality safety controls were developed to safely inspect the material. Inspecting the material involved identifying containers of legacy material, followed by opening, evaluating, processing if necessary, characterizing and repackaging the material. Material from multiple containers was consolidated more efficiently thus decreasing the total number of stored items to about one half of the highest count. Current packaging requirements were implemented. Detailed characterization of the material was captured in databases

  15. Reports on research projects sponsored by the Federal Minister for Research and Technology in the field of reactor safety

    International Nuclear Information System (INIS)

    1979-03-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F - Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC European Communities and the OECD. (orig./HP) [de

  16. Waste Tank Organic Safety Project organic concentration mechanisms task. FY 1994 progress report

    International Nuclear Information System (INIS)

    Gerber, M.A.

    1994-09-01

    The Pacific Northwest Laboratory (PNL), Waste Tank Organic Safety Project is conducting research to support Westinghouse Hanford Company's (WHC) Waste Tank Safety Program, sponsored by the U.S. Department of Energy's Tank Farm Project Office. The goal of PNL's program is to provide a scientific basis for analyzing organics in Hanford's underground storage tanks (USTs) and for determining whether they are at concentrations that pose a potentially unsafe condition. Part of this research is directed toward determining what organic concentrations are safe by conducting research on organic aging mechanisms and waste energetics to assess the conditions necessary to produce an uncontrolled energy release in tanks due to reactions between the organics and the nitrate and nitrate salts in the tank wastes. The objective of the Organic Concentration Mechanisms Task is to assess the degree of localized enrichment of organics to be expected in the USTs due to concentration mechanisms. This report describes the progress of research conducted in FY 1994 on two concentration mechanisms of interest to the tank safety project: (1) permeation of a separate organic liquid phase into the interstitial spaces of the tank solids during the draining of free liquid from the tanks; and (2) concentration of organics on the surfaces of the solids due to adsorption. Three experiments were conducted to investigate permeation of air and solvent into a sludge simulant that is representative of single-shell tank sludge. The permeation behavior of air and solvent into the sludge simulant can be explained by the properties of the fluid pairs (air/supernate and solvent supernate) and the sludge. One important fluid property is the interfacial tension between the supernate and either the solvent or air. In general, the greater the interfacial tension between two fluids, the more difficult it will be for the air or solvent to displace the supernate during dewatering of the sludge

  17. Safety research plan, JFY 2013 edition

    International Nuclear Information System (INIS)

    2013-09-01

    As for the regulatory issues the governments or JNES considered necessary, JNES had updated every year 'safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. 'Safety research plan, JFY 2013 Edition' was compiled aiming at promotion of appropriate reflection and flexible application of research achievements for tacking the regulatory issues taking account of importance and urgency dependent on trend of nuclear safety regulations as well as collective management of safety research and safety survey. 5 new research projects were established with 4 unified research projects and 6 terminated research projects. Finally modified safety research areas, subjects and research projects, JFY 2013 Edition were as follows: design review of nuclear power plant (7 subjects and each subject having several research projects totaled 19), control management of nuclear power plant (one subject having 4 research projects), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 4), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 5), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 7) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 6). Safety reviews consisted of 6 projects in 3 areas extracting the regulatory issues. As for urgent research projects on the basis of the disaster at Fukushima Daiichi NPP accident, 7 research projects in 4 urgent subjects were as follows: examination for new safety regulation (4 research projects generalized in the above research projects), development of newly necessary evaluation methods (one research project generalized in the above research project), evaluation of the validity for the work for convergence at Fukushima

  18. Nordic nuclear safety research program 1994-1997. Project coordination incl. SAM-4 general information issues. Report 1996. Plans for 1997

    International Nuclear Information System (INIS)

    1997-04-01

    NKS (Nordic Nuclear Safety Research) is a cooperative body in nuclear safety, radiation protection and emergency preparedness. Its purpose is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, recommendations, manuals etc., to be used by decision makers and other concerned staff members at authorities and within the nuclear industry. This is the annual report for 1996, the third year of the fifth four-year NKS program (1994-1997). The report also contains plans for the rest of the program period, including budget proposals. The following major fields of research have been identified: reactor safety; radioactive waste; radioecology; emergency preparedness; and information issues. A total of nine projects are now under way within that framework. One project (RAK-1) is dedicated to reactor safety strategies: how to avoid serious accidents. A parallel project (RAK-2) deals with minimizing releases in case of an accident. When can an overheated reactor core still be water-cooled? What might be the consequences of the cooling? All Nordic countries have long-lived low and medium level radioactive waste that requires final disposal. One project (AFA-1) addresses that issue. Environmental impact of radioactive releases is studied in two radioecology projects. The project on marine radioecology, including sediment research (EKO-1), encompasses sampling, analysis and modeling. These are also key issues in the project on long ecological half-lives in semi-natural systems (EKO-2). The transfer of radioactive cesium and strontium in the chains soil - vegetation - sheep and mushroom - roe deer is studied, along with freshwater systems. Long-term doses to main is the ultimate output from the obtained models. Another aspect of environmental impact is emergency preparedness. A recently started project, EKO-5, addresses the issue of early planning for cleanup operations following a fallout. 'Early' in this context means within the

  19. Blood alcohol test results of motor vehicle deaths as an evaluation method for the Fairfax Alcohol Safety Action Project.

    Science.gov (United States)

    1973-01-01

    The Fairfax Alcohol Safety Action Project (ASAP) was started following the June 1971 approval of the proposal and working plan submitted to the Department of Transportation by the Highway Safety Division of Virginia. A total of $2,123,000 was allocat...

  20. Risk communication activities toward nuclear safety in Tokai: your safety is our safety

    International Nuclear Information System (INIS)

    Tsuchiya, T.

    2007-01-01

    As several decades have passed since the construction of nuclear power plants began, residents have become gradually less interested in nuclear safety. The Tokai criticality accident in 1909, however, had roused residents in Tokai-Mura to realize that they live with nuclear technology risks. To prepare a field of risk communication, the Tokai-Mura C 3 project began as a pilot research project supported by NISA. Alter the project ended, we are continuing risk. communication activities as a non-profit organisation. The most important activity of C 3 project is the citizen's inspection programme for nuclear related facilities. This programme was decided by participants who voluntarily applied to the project. The concept of the citizen's inspection programme is 'not the usual facility tours'. Participants are involved from the planning stage and continue to communicate with workers of the inspected nuclear facility. Since 2003, we have conducted six programmes for five nuclear related organisations. Participants evaluated that radiation protection measures were near good but there were some problems concerning the worker's safety and safety culture, and proposed a mixture of advice based on personal experience. Some advice was accepted and it did improve the facility's safety measures. Other suggestions were not agreed upon by nuclear organisations. The reason lies in the difference of concept between the nuclear expert's 'safety' and the citizen's 'safety'. Residents do not worry about radiation only, but also about the facility's safety as a whole including the worker's safety. They say, 'If the workers are not safe, you also are unable to protect us'. Although the disagreement remained, the participants and the nuclear industry learned much about each other. Participating citizens received a substantial amount of knowledge about the nuclear industry and its safety measures, and feel the credibility and openness of the nuclear industry. On the other hand, the nuclear

  1. Global optimization of maintenance and surveillance testing based on reliability and probabilistic safety assessment. Research project

    International Nuclear Information System (INIS)

    Martorell, S.; Serradell, V.; Munoz, A.; Sanchez, A.

    1997-01-01

    Background, objective, scope, detailed working plan and follow-up and final product of the project ''Global optimization of maintenance and surveillance testing based on reliability and probabilistic safety assessment'' are described

  2. Identifying the Critical Factors Affecting Safety Program Performance for Construction Projects within Pakistan Construction Industry

    Directory of Open Access Journals (Sweden)

    Zubair Ahmed Memon

    2013-04-01

    Full Text Available Many studies have shown that the construction industry one of the most hazardous industries with its high rates of fatalities and injuries and high financial losses incurred through work related accident. To reduce or overcome the safety issues on construction sites, different safety programs are introduced by construction firms. A questionnaire survey study was conducted to highlight the influence of the Construction Safety Factors on safety program implementation. The input from the questionnaire survey was analyzed by using AIM (Average Index Method and rank correlation test was conducted between different groups of respondents to measure the association between different groups of respondent. The finding of this study highlighted that management support is the critical factor for implementing the safety program on projects. From statistical test, it is concluded that all respondent groups were strongly in the favor of management support factor as CSF (Critical Success Factor. The findings of this study were validated on selected case studies. Results of the case studies will help to know the effect of the factors on implementing safety programs during the execution stage.

  3. Report of the 52. meeting of the Superior Council of the Nuclear Safety and Information (project)

    International Nuclear Information System (INIS)

    2000-01-01

    Since june 2000, the CSSIN (Superior Council on Nuclear Safety and Information) decided to present the meeting of its sessions, on the Internet site of the Nuclear Safety Authority. This document is the meeting project concerning the session of the 27 june 2000. The following subjects have been treated: the Blayais accident and its consequences; the Euratom Directive transposition on the workers and people protection; methodology and organization of the CSSIN concerning the civil nuclear installations and the radiation protection; actualization of the CSSIN heading in the Internet site of the Nuclear Safety Authority. (A.L.B.)

  4. West Virginia Peer Exchange : Streamlining Highway Safety Improvement Program Project Delivery - An RSPCB Peer Exchange

    Science.gov (United States)

    2014-09-01

    The West Virginia Division of Highways (WV DOH) hosted a Peer Exchange to share information and experiences for streamlining Highway Safety Improvement Program (HSIP) project delivery. The event was held September 23 to 24, 2014 in Charleston, West V...

  5. Projected Impact of Compositional Verification on Current and Future Aviation Safety Risk

    Science.gov (United States)

    Reveley, Mary S.; Withrow, Colleen A.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    The projected impact of compositional verification research conducted by the National Aeronautic and Space Administration System-Wide Safety and Assurance Technologies on aviation safety risk was assessed. Software and compositional verification was described. Traditional verification techniques have two major problems: testing at the prototype stage where error discovery can be quite costly and the inability to test for all potential interactions leaving some errors undetected until used by the end user. Increasingly complex and nondeterministic aviation systems are becoming too large for these tools to check and verify. Compositional verification is a "divide and conquer" solution to addressing increasingly larger and more complex systems. A review of compositional verification research being conducted by academia, industry, and Government agencies is provided. Forty-four aviation safety risks in the Biennial NextGen Safety Issues Survey were identified that could be impacted by compositional verification and grouped into five categories: automation design; system complexity; software, flight control, or equipment failure or malfunction; new technology or operations; and verification and validation. One capability, 1 research action, 5 operational improvements, and 13 enablers within the Federal Aviation Administration Joint Planning and Development Office Integrated Work Plan that could be addressed by compositional verification were identified.

  6. Project CHERISH (Children in Home Environments: Regulation To Improve Safety and Health). Final Report.

    Science.gov (United States)

    Grubb, Paul Dallas

    In 1990, Project CHERISH (Children in Home Environments: Regulation to Increase Safety and Health) enabled the Texas Department of Human Services to implement and evaluate several innovative strategies to strengthen regulation of family day care homes. This report contains descriptions of those strategies, an evaluation of their efficacy, and…

  7. Development of Occupational Safety and Health Requirement Management System (OSHREMS Software Using Adobe Dreamweaver CS5 for Building Construction Project

    Directory of Open Access Journals (Sweden)

    Abas Nor Haslinda

    2017-01-01

    Full Text Available The construction industry sector is considered as being risky with frequent and high accident rate. According to Social Security Organization (SOCSO, the construction accidents has arisen from time to time. Construction Industry Development Board (CIDB has developed the Safety and Health Assessment System in Construction (SHASSIC for evaluating the performance of a contractor in construction project by setting out the safety and health management and practices, however the requirement checklist provided is not comprehensive. Therefore, this study aims to develop a software system for facilitating OSH in building construction project, namely OSH requirements management system (OSHREMS, using Adobe Dreamweaver CS5 and Sublime Text as PHP editor. The results from a preliminary study which was conducted through interviews showed that, the respondents were only implementing the basic requirements that comply with legislations, with the absence of appropriate and specific guideline in ensuring occupational safety and health (OSH at the workplace. The tool will be benefits for contractors and other parties to effectively manage the OSH requirements for their projects based on project details.

  8. Final report of the 'Nordic thermal-hydraulic and safety network (NOTNET)' - Project

    Energy Technology Data Exchange (ETDEWEB)

    Tuunanen, J.; Tuomainen, M. [VTT Processes (Finland)

    2005-04-01

    A Nordic network for thermal-hydraulics and nuclear safety research was started. The idea of the network is to combine the resources of different research teams in order to carry out more ambitious and extensive research programs than would be possible for the individual teams. From the very beginning, the end users of the research results have been integrated to the network. Aim of the network is to benefit the partners involved in nuclear energy in the Nordic Countries (power companies, reactor vendors, safety regulators, research units). First task within the project was to describe the resources (personnel, know-how, simulation tools, test facilities) of the various teams. Next step was to discuss with the end users about their research needs. Based on these steps, few most important research topics with defined goals were selected, and coarse road maps were prepared for reaching the targets. These road maps will be used as a starting point for planning the actual research projects in the future. The organisation and work plan for the network were established. National coordinators were appointed, as well as contact persons in each participating organisation, whether research unit or end user. This organisation scheme is valid for the short-term operation of NOTNET when only Nordic organisations take part in the work. Later on, it is possible to enlarge the network e.g. within EC framework programme. The network can now start preparing project proposals and searching funding for the first common research projects. (au)

  9. 324 Building liquid waste handling and removal system project plan

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J.E.

    1998-07-29

    This report evaluates the modification options for handling radiological liquid waste generated during decontamination and cleanout of the 324 Building. Recent discussions indicate that the Hanford site railroad system will be closed by the end of FY 1998 necessitating the need for an alternate transfer method. The issue of handling of Radioactive Liquid Waste (RLW) from the 324 Building (assuming the 340 Facility is not available to accept the RLW) has been examined in at least two earlier engineering studies (Parsons 1997a and Hobart 1997). Each study identified a similar preferred alternative that included modifying the 324 Building RLWS to allow load-out of wastewater to a truck tanker, while making maximum use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes to the building. This alternative is accepted as the basis for further discussion presented in this study. The goal of this engineering study is to verify the path forward presented in the previous studies and assure that the selected alternative satisfies the 324 Building deactivation goals and objectives as currently described in the project management plan. This study will also evaluate options available to implement the preferred alternative and select the preferred option for implementation of the entire system. Items requiring further examination will also be identified. Finally, the study will provide a conceptual design, schedule and cost estimate for the required modifications to the 324 Building to allow removal of RLW. Attachment 5 is an excerpt from the project baseline schedule found in the Project Management Plan.

  10. Reports on research projects in the field of reactor safety sponsored by the Federal Minister for Research and Technology

    International Nuclear Information System (INIS)

    1978-09-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), der Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC Communities and the OECD. (orig./HP) 891 HP [de

  11. Reports on research projects in the field of reactor safety sponsored by the Federal Ministry for research and technology

    International Nuclear Information System (INIS)

    1979-09-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power-plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F - Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT in the near future. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC Communities and the OECD. (orig.) [de

  12. Redox processes in the safety case of deep geological repositories of radioactive wastes. Contribution of the European RECOSY Collaborative Project

    International Nuclear Information System (INIS)

    Duro, L.; Bruno, J.; Grivé, M.; Montoya, V.; Kienzler, B.; Altmaier, M.; Buckau, G.

    2014-01-01

    Highlights: • The RECOSY project produced results relevant for the Safety Case of nuclear disposal. • We classify the safety related features where RECOSY has contributed. • Redox processes effect the retention of radionuclides in all repository subsystems. - Abstract: Redox processes influence key geochemical characteristics controlling radionuclide behaviour in the near and far field of a nuclear waste repository. A sound understanding of redox related processes is therefore of high importance for developing a Safety Case, the collection of scientific, technical, administrative and managerial arguments and evidence in support of the safety of a disposal facility. This manuscript presents the contribution of the specific research on redox processes achieved within the EURATOM Collaborative Project RECOSY (REdox phenomena COntrolling SYstems) to the Safety Case of nuclear waste disposal facilities. Main objectives of RECOSY were related to the improved understanding of redox phenomena controlling the long-term release or retention of radionuclides in nuclear waste disposal and providing tools to apply the results to Performance Assessment and the Safety Case. The research developed during the project covered aspects of the near-field and the far-field aspects of the repository, including studies relevant for the rock formations considered in Europe as suitable for hosting an underground repository for radioactive wastes. It is the intention of this paper to highlight in which way the results obtained from RECOSY can feed the scientific process understanding needed for the stepwise development of the Safety Case associated with deep geological disposal of radioactive wastes

  13. Report on the projects in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1978-12-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power-plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of advanced reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F - Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of the progress in reactor safety research. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT which will appear in the near future. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC and the OECD. (orig./HP) [de

  14. Nuclear safety in perspective

    DEFF Research Database (Denmark)

    Andersson, K.; Sjöberg, B.M.D.; Lauridsen, Kurt

    2003-01-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicat-ing on the subject in society. The project, which has been built around a number of seminars, wassupported by limited research in three sub......-projects: Risk assessment Safety analysis Strategies for safety management The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems forregulatory oversight are de-scribed in the nuclear area and also, to widen the perspective, for other...

  15. Safety analyses for sodium-cooled fast reactors with pelletized and sphere-pac oxide fuels within the FP-7 European project PELGRIMM - 15386

    International Nuclear Information System (INIS)

    Maschek, W.; Andriolo, L.; Matzerath-Boccaccini, C.; Delage, F.; Parisi, C.; Del Nevo, A.; Abbate, G.; Schmitt, D.

    2015-01-01

    The European FP-7 project PELGRIMM addresses the development of Minor-Actinide (MA) bearing oxide fuel for Sodium-cooled Fast Reactors. Optionally, both MA homogeneous recycling and heterogeneous recycling is investigated with pellet and sphere-pac fuel. A first safety assessment of sphere-pac fuelled cores should be given in the Work Package 4 of the project. This assessment is in continuity with the former FP-7 CP-ESFR project. Within the CP-ESFR project the CONF2 core design has been developed characterized by a core with a large upper sodium plenum to reduce the coolant void worth. This optimized core has been chosen for the safety analyses in PELGRIMM. The task within the PELGRIMM project is thus a safety assessment of the CONF2 core loaded either with pellets or with sphere-pac fuel. The investigations started with the design of the CONF2 core with sphere-pac fuel and the determination of core safety parameters and burn-up behavior. The neutronic analyses have been performed with the MCNPX code. Variants of the CONF2 core contain up to 4% Am in the fuel. The results revealed an extended void worth (core + upper plenum) for an Am free core of 1 up to 3 dollars for the 4% Am core. Thermal-hydraulic design analyses have been performed by RELAP5-3D. The accident simulations should be performed by different codes, some of which focus on the initiation phase of the accident, as SAS4A, BELLA and the MAT5DYN code, whereas the SIMMER-III code will also deal with the later accident phases and a potential whole core melting. The codes had to be adapted to the specifics of the sphere-pac fuel, in particular to the thermal conductivity and gap conditions. Analyses showed that the safety assessment has to take into account two main phases. Starting up the core, the green fuel shows a reduced fuel thermal conductivity. After restructuring within a couple of hours, the thermal conductivity recovers and the fuel temperature decreases. The main objective of the safety analyses

  16. Lessons learned in demonstration projects regarding operational safety during final disposal of vitrified waste and spent fuel

    International Nuclear Information System (INIS)

    Filbert, Wolfgang; Herold, Philipp

    2015-01-01

    The paper summarizes the lessons learned in demonstration projects regarding operational safety during the final disposal of vitrified waste and spent fuel. The three demonstration projects for the direct disposal of vitrified waste and spent fuel are described. The first two demonstration projects concern the shaft transport of heavy payloads of up to 85 t and the emplacement operations in the mine. The third demonstration project concerns the borehole emplacement operation. Finally, open issues for the next steps up to licensing of the emplacement and disposal systems are summarized.

  17. Report on the research projects in the field of reactor safety sponsored by the Federal Minister for Research and Technology

    International Nuclear Information System (INIS)

    1978-09-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F -Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work, The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC Communities and the OECD. (orig./HP) 891 HP [de

  18. Nuclear safety in perspective

    International Nuclear Information System (INIS)

    Andersson, K.; Sjoeberg, B.M.D.; Lauridsen, K.; Wahlstroem, B.

    2002-06-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicating on the subject in society. The project, which has been built around a number of seminars, was supported by limited research in three sub-projects: 1) Risk assessment, 2) Safety analysis, and 3) Strategies for safety management. The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems for regulatory oversight are described in the nuclear area and also, to widen the perspective, for other industrial areas. Transparency and public participation are described as key elements in good risk communication, and case studies are given. Environmental Impact Assessment and Strategic Environmental Assessment are described as important overall processes within which risk communication can take place. Safety culture, safety indicators and quality systems are important concepts in the nuclear safety area are very useful, but also offer important challenges for the future. They have been subject to special attention in the project. (au)

  19. Multimegawatt Space Reactor Safety

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1989-01-01

    The Multimegawatt (MMW) Space Reactor Project supports the Strategic Defense Initiative Office requirement to provide reliable, safe, cost-effective, electrical power in the MMW range. Specifically, power may be used for neutral particle beams, free electron lasers, electromagnetic launchers, and orbital transfer vehicles. This power plant technology may also apply to the electrical power required for other uses such as deep-space probes and planetary exploration. The Multimegawatt Space Reactor Project, the Thermionic Fuel Element Verification Program, and Centaurus Program all support the Multimegawatt Space Nuclear Power Program and form an important part of the US Department of Energy's (DOE's) space and defense power systems activities. A major objective of the MMW project is the development of a reference flight system design that provides the desired levels of public safety, health protection, and special nuclear material (SNM) protection when used during its designated missions. The safety requirements for the MMW project are a hierarchy of requirements that consist of safety requirements/regulations, a safety policy, general safety criteria, safety technical specifications, safety design specifications, and the system design. This paper describes the strategy and philosophy behind the development of the safety requirements imposed upon the MMW concept developers. The safety organization, safety policy, generic safety issues, general safety criteria, and the safety technical specifications are discussed

  20. The TRAIN-project: railway safety and the train driver information environment and work situation. A summary of the main results

    Energy Technology Data Exchange (ETDEWEB)

    Kecklund, L. [MTO Psychology and Swedish National Rail Administration (Sweden); Ingre, M.; Kecklund, G.; Soederstroem, M.; Aakerstedt, T. [National Inst. for Psychosocial Factors and Health (Sweden); Lindberg, E. [Swedish National Rail Administration (Sweden); Jansson, A.; Olsson, E.; Sandblad, B. [Uppsala Univ. (Sweden). Dept. of Human-Computer Interaction; Almqvist, P. [Swedish State Railways (Sweden)

    2001-07-01

    The TRAIN project investigates traffic safety related risks, focusing in particular on the train driver work situation, use of information but also on the supporting safety organisation. It is an on-going project funded and managed by Swedish National Rail Administration and carried out by independent researchers. The project provides a multi-disciplinary investigation by use of a man-technology-organisation (MTO) perspective. Activities performed are task analysis, evaluation of the drivers use of information and interaction with the ATP system as well as analyses of stress, mental workload and work hours. Several methods are being used such as interviews, questionnaires, diaries, activity monitoring and videotapes. This paper gives an overview of the project as well as a short summary of the main results. Detailed results are presented in separate reports as started in the reference list. Some of the main results are that the drivers report severe problems concerning sleepiness on early morning shifts, problems with maintenance on vehicles, lack of information supporting the planning task as well as problems in understanding ATP functions. Two groups of drivers having a feed-back related as opposed to a feed-forward driving style could be identified. In conclusion there is a great need to perform more scientific studies of human factors and railway safety as well as to implement safety management programs including professional human factors competence in the railway industries. (orig.)

  1. Annual safety research report, JFY 2012

    International Nuclear Information System (INIS)

    2013-08-01

    As for the regulatory issues the governments or JNES considered necessary, JNES had compiled 'safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. Safety research areas, subjects and research projects were as follows: design review of nuclear power plant (5 subjects and each subject having several research projects totaled 20), control management of nuclear power plant (3 subjects and each subject having several research projects totaled 6), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 4), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 6), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 7) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 6). In addition to these 49 research projects of 18 subjects in 6 areas, JNES worked on 19 research projects of 7 subjects in added areas (specific research projects on of the disaster at Fukushima Daiichi NPP accident and other challenges JNES considered necessary) in JFY 2012. This annual safety research report summarized respective achievements and state of regulatory tools necessary for solving regulatory issues according to the safety research plan, JFY 2012 Edition as well as the situation of the reflection for the safety regulations, and also described 16 research projects of 4 subjects: examination for new safety regulation (8 research projects), development of newly necessary evaluation methods (one research project), evaluation of the validity for the work for convergence at Fukushima Daiichi NPP accident (4 research project) and horizontal development to other nuclear power plants (3 research projects), and 3 research projects of 3 subjects as other challenges. A list of JNES

  2. Analysis of Correlations between the Level of Partnering Relations and their Influence on the Time, Cost, Quality and Safety of Implementation of Construction Projects

    Directory of Open Access Journals (Sweden)

    Radziszewska-Zielina Elżbieta

    2014-11-01

    Full Text Available The present paper uses the developed model of the influence of partnering relations on the time, cost, quality and safety of implementation of construction projects. On its basis, a questionnaire has been created and a preliminary survey has been conducted. The paper presents an analysis of correlations between the level of partnering relations in the context of the partnering measures indicated in the model and their influence on the time, cost, quality and safety of implementation of construction projects. The analysis was conducted based on the data collected in 52 construction projects. The values of the Spearman rank correlation coefficient and the Pearson product-moment correlation coefficient have been calculated for the examined relations. The analysis allowed for indicating the measures of partnering whose improvement most often brings benefits with regard to the time, cost, quality and safety of implementation of construction projects. Among the 80 analysed correlations, the ones identified as strong were: 15 relations connected with the time, 8 with the cost, 5 with the quality and 1 with the safety of implementation of construction projects.

  3. The water reactor safety research project index: a description of the computerized system for its databank

    International Nuclear Information System (INIS)

    Della Loggia, E.; Primavera, R.

    1993-01-01

    The water reactor nuclear safety research project index has been published by the CEC for many years as a compilation of information on research projects relating to LWR nuclear safety. Since 1981, it has been published, alternatively with NEA (OECD), every second year. The number of contributions from research organizations in Community member countries has steadily increased and reached the level of 1 700 pages, in which more than 600 project descriptions have been collected. In 1988, for the first time, the document was produced using a computerized system developed with the assistance of the ISEI (Institute for Systems Engineering and Informatics) of JRC Ispra. The data have been stored in a computer based in Ispra. The system allows searching a preselected set of subjects through the information stored in the computer: it makes the updating of the projects description much easier and makes the retrieval of the data possible. This report presents a short description of the computerized system developed for the databank of the index. The computerized system presented in this report is structured in a quite general way and for that reason can be adapted very easily to every field where a databank needs to be constituted in order to collect extended information on several projects. (authors). 6 figs., 5 tabs., 5 refs

  4. Safety upgrading of Novi Han Repository under IAEA TC Project BUL/4/005 achievements and future plans

    International Nuclear Information System (INIS)

    Stefanova, I.

    2003-01-01

    The report presents the safety upgrading of the Novi Han Repository under the IAEA TC Project BUL/4/005. The Project covers: identification of radionuclide inventory; characterisation of the disposal vaults; site characterisation; safety assessment; upgrading of the monitoring and radiation control; selection of treatment and conditioning processes and a conceptual design for a new waste processing and storage facility and other direct measures for safety improvement. The current inventory is identified and presented in the report. Schemes of the vault for solid wastes and vault for biological wastes are given, demonstrating reinforced concrete, stainless steel lining, and hydro insulation are presented. Several studies for safety assessment are made between 1997 and 2003. The operational safety assessment for disposal in existing facilities gives the annual risk for: spilling of waste package during upload (7.58.10 -9 ); spilling of waste package in transport accident (2.90.10 -9 ); fire scenario (3.50.10 - 1 3 ); radionuclide release due to flooding or earthquake (5.05.10 -4 ). The monitoring radiation control is upgraded according to the regulatory guidance and covered the site, restricted zone (1 km) and supervised zone (5 km). The types of analyses made are: Direct measurement of the dose rate -TLD; Direct measurements of the dose rate - portable surveillance monitors; In situ gamma spectrometry; Gamma spectrometry; Gross beta, gross alpha; Liquid scintillation spectrometry. The analyses show no transfer od radionuclides to the environment. The individual radiation control shows no evidence for specific radiation pathology. The operational radiation control service premises and transport vehicles. The following is measured: gamma dose rate; beta exposure; alpha exposure; neutron radiation; contamination level. Under the development is a detailed technical design supply of equipment for characterization of waste, including hot cell for control over high level

  5. Vandellos 1 decommissioning project. Safety before, during and after

    International Nuclear Information System (INIS)

    Rodriguez, A.

    2002-01-01

    The Nuclear Power Plant of Vandellos 1, a gas-graphite reactor (GCR), started operation in the 70's after 17 years running the decommissioning process began in 1998, and is expected to finish at the end of 2002 with the level 2 of decommissioning with a practically total scope reached, except the concrete reactor vessel and its internals that will remain for another 25 years in surveillance state (dormancy) until their total dismantling. During the last four years the activities related to decontamination and disassembly of the power plant system as well as the management of all this material have been carried out. One of the last phases of the project that will be performed this year, without doubt, one of the most representative of the operative difficulty of the task is the disassembly of some buildings which are more than 80 meters high and with some structures weighing more than 3.000 t, an operation, which is spectacular in terms of volume and mass involved. However one has to keep in mind that it has been preceded by the of clearance process of all these structures to be disassembled this summer. Hundred of thousands of radiological measures will confirm with guarantee that the destination of the dismantled materials is the correct one, assuring the protection of people and the environment. This is a process which has to integrate the principles of radiological safety and industrial safety. First, it has to be guaranteed that structures and components are below the values authorised by authorities for their free release, and, secondly, that the planned sequence of the process and manoeuvres in the disassembly of these colossal structures assures safety. (author)

  6. FUNMIG Integrated Project results and conclusions from a safety case perspective

    International Nuclear Information System (INIS)

    Schwyn, B.; Wersin, P.; Rüedi, J.; Schneider, J.; Altmann, S.; Missana, T.; Noseck, U.

    2012-01-01

    The scope of the FUNMIG Integrated Project (IP) was to improve the knowledge base on biogeochemical processes in the geosphere which are relevant for the safety of radioactive waste repositories. An important part of this project involved the interaction between data producers (research) and data users (radioactive waste management organisations in Europe). The aim thereof was to foster the benefits of the research work for performance assessment (PA), and in a broader sense, for the safety case of radioactive waste repositories. For this purpose a specifically adapted procedure was elaborated. Thus, relevant features, events and processes (FEPs) for the three host rock types, clay, crystalline and salt, were taken from internationally accepted catalogues and mapped onto each of the 108 research tasks conducted during the FUNMIG project by a standardised procedure. The main outcome thereof was a host-rock specific tool (Task Evaluation Table) in which the relevance and benefits of the research results were evaluated both from the PA and research perspective. Virtually all generated data within FUNMIG are related to the safety-relevant FEP-groups “transport mechanisms” and “retardation”. Generally speaking, much of the work within FUNMIG helped to support and to increase confidence in the simplified PA transport and retardation models used for calculating radionuclide (RN) transport through the host rock. Some of the studies on retardation processes (e.g. coupled sorption-redox processes at the mineral–water interface) yielded valuable data for all three rock types dealt within the IP. However, most of the studies provided improved insight regarding host-rock specific features and processes, the majority of this work being dedicated to clay-rich and crystalline host rocks. For both of these host rock types, FUNMIG has significantly contributed to improving understanding on a conceptual level, both by providing new experimental data at different spatial

  7. Annual safety research report, JFY 2010

    International Nuclear Information System (INIS)

    2011-09-01

    In the safety infrastructure research working group report, 'the effective conducting of nuclear safety infrastructure research', published by METI in March 2010, the roles of regulatory agencies and JNES and their cooperation, and the research road map for nuclear safety regulation researches were summarized. As for the regulatory issues the governments or JNES considered necessary, JNES had compiled' safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. Safety research areas, subjects and research projects were as follows: design review of nuclear power plant (4 subjects and each subject having several research projects totaled 19), control management of nuclear power plant (3 subjects and each subject having several research projects totaled 11), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 5), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 6), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 5) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 7). In JFY 2010, JNES worked on the 53 research projects of 17 subjects in 6 areas as safety researches. This annual safety research report summarized respective achievements and stage of regulatory tools necessary for solving regulatory issues according to the safety research plan, JFY 2010 Edition as well as the situation of the reflection for the safety regulations. (T. Tanaka)

  8. Safety criteria for the future LMFBR's in France and main safety issues for the rapide 1500 project

    International Nuclear Information System (INIS)

    Justin, F.; Natta, M.; Orzoni, G.

    1985-04-01

    The main safety criteria for future LMFBR in France and the related issues for the RAPIDE 1500 project are presented and discussed. The evolutions with respect to SUPERPHENIX options and requirements are emphasized, in particular for the concerns of the prevention of core melt accidents, fuel damage limits and related required performances of the protection system, since one main option is not to consider whole core melt accidents in the containment design. One shall also point out the advantages of some mitigating features which were nevertheless added in the containment design, although without any explicit consideration for core melt accidents

  9. Industrial safety management with emphasis on construction safety

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2016-01-01

    Safety professionals, line managers, team leaders and concerned workers today eagerly discuss to find out the best safety approach for their workplace. Some research suggested that behaviour based and comprehensive ergonomics approaches lead in average reduction of injuries. This article discusses 'the science and engineering' behind improvement in industrial safety aspects particularly at construction sites through various safety approaches. A high degree of commitment to safety by the project management and rigorous and proactive measures are essential to prevent accidents at construction sites particularly in DAE units because of its sensitivity. Persistent efforts by the project management are needed for sustainable and committed safety at work place. The number of fatalities occurring from construction work in DAE units is sometimes disturbing and fall of person from height and through openings are the major causes for serious accidents

  10. YUCCA MOUNTAIN SITE CHARACTERIZATIONS PROJECT TUNNEL BORING MACHINE (TBM) SYSTEM SAFETY ANALYSIS

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of this analysis is to systematically identify and evaluate hazards related to the tunnel boring machine (TBM) used in the Exploratory Studies Facility (ESF) at the Yucca Mountain Site Characterization Project. This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. Since the TBM is an ''as built'' system, the MandO is conducting the System Safety Analysis during the construction or assembly phase of the TBM. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the TBM in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the system/subsystem/component design, (2) add safety features and capabilities to existing designs, and (3) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the TBM during normal operations, excluding hazards occurring during assembly and test of the TBM or maintenance of the TBM equipment

  11. YUCCA MOUNTAIN SITE CHARACTERIZATIONS PROJECT TUNNEL BORING MACHINE (TBM) SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1997-02-19

    The purpose of this analysis is to systematically identify and evaluate hazards related to the tunnel boring machine (TBM) used in the Exploratory Studies Facility (ESF) at the Yucca Mountain Site Characterization Project. This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. Since the TBM is an ''as built'' system, the M&O is conducting the System Safety Analysis during the construction or assembly phase of the TBM. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the TBM in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the system/subsystem/component design, (2) add safety features and capabilities to existing designs, and (3) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the TBM during normal operations, excluding hazards occurring during assembly and test of the TBM or maintenance of the TBM equipment.

  12. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the Atmospheric Environment Safety Technology Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This study analyzed aircraft incidents in the NASA Aviation Safety Reporting System (ASRS) that apply to two of the three technical challenges (TCs) in NASA's Aviation Safety Program's Atmospheric Environment Safety Technology Project. The aircraft incidents are related to airframe icing and atmospheric hazards TCs. The study reviewed incidents that listed their primary problem as weather or environment-nonweather between 1994 and 2011 for aircraft defined by Federal Aviation Regulations (FAR) Parts 121, 135, and 91. The study investigated the phases of flight, a variety of anomalies, flight conditions, and incidents by FAR part, along with other categories. The first part of the analysis focused on airframe-icing-related incidents and found 275 incidents out of 3526 weather-related incidents over the 18-yr period. The second portion of the study focused on atmospheric hazards and found 4647 incidents over the same time period. Atmospheric hazards-related incidents included a range of conditions from clear air turbulence and wake vortex, to controlled flight toward terrain, ground encounters, and incursions.

  13. Reports on the research projects in the field of reactor safety supported by the Federal Ministry of Research and Technology

    International Nuclear Information System (INIS)

    1975-03-01

    The Bundesminister fuer Forschung und Technologie (BMFT) is promoting financial plans for reactor safety research. Objective research should improve the safety of light water reactors and minimize the risk for the environment. The Forschungsbetreuung at IRS (IRS-FB) as consultants to the BMFT provides information about the research planning. In addition, information is given about the projects RS 100 and At T 85a sponsored by the Bundesminister des Innern (BMI). Individual reports will be furnished and put into standard form by the research contractors. Each report gives informations about: the work accomplished, the results produced, the outlook extension of the work. The initial report of a research project describes in addition the purpose of the work. Reports of the project 'Nuclear Safety' (PNS) have been added to those ones concerning the projects sponsored by the BMFT or the BMI. The PNS is being conducted by the Gesellschaft fuer Kernforschung mbH (GfK), Karlsruhe. IRS-F-23 is informing of the activities during the fourth quarter of 1974 (October 1st - December 31st 1974). Detailed technical information can be requested from IRS-FB. (orig.) [de

  14. Health and safety plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    This HASP describes the process for identifying the requirements, written safety documentation, and procedures for protecting personnel involved in the Isotopes Facilities Deactivation Project. Objective of this project is to place 19 former isotope production facilities at ORNL in a safe condition in anticipation of an extended period of minimum surveillance and maintenance

  15. Charged-particle beam: a safety mandate

    International Nuclear Information System (INIS)

    Young, K.C.

    1983-01-01

    The Advanced Test Accelerator (ATA) is a recent development in the field of charged particle beam research at Lawrence Livermore National Laboratory. With this experimental apparatus, researchers will characterize intense pulses of electron beams propagated through air. Inherent with the ATA concept was the potential for exposure to hazards, such as high radiation levels and hostile breathing atmospheres. The need for a comprehensive safety program was mandated; a formal system safety program was implemented during the project's conceptual phase. A project staff position was created for a safety analyst who would act as a liaison between the project staff and the safety department. Additionally, the safety analyst would be responsible for compiling various hazards analyses reports, which formed the basis of th project's Safety Analysis Report. Recommendations for safety features from the hazards analysis reports were incorporated as necessary at appropriate phases in project development rather than adding features afterwards. The safety program established for the ATA project faciliated in controlling losses and in achieving a low-level of acceptable risk

  16. Reports on the research projects in the field of reactor safety sponsored by the Federal Ministry of Science and Technology

    International Nuclear Information System (INIS)

    1975-12-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the safety program 'Reactor Safety' are sponsored by the Bundesminister fuer Forschung und Technologie (BMFT - Secretary of State for Research and Technology). Objective of this program is to continue improving the safety of LWR, in order to minimize the risk for the environment. With grant assistance from the Bundesminister des Innern (BMI - Secretary of State for Home Affairs) research contracts in the field of reactor safety are being performed. Results of these projects should contribute to resolve questions arising nuclear licensing procedures. The Forschungsbetreuung (FB - research supervision department) at the Institute for Reactor Safety (IRS), as consultants to BMFT and BMI, provides information about the progress of investigations. Individual reports will be prepared and put into standard forms by the research contractors. Each report gives information on: 1) the work accomplished, 2) the results obtained, 3) the work planned to be continued. Initial reports of research projects describe in addition the purpose of the work. A BMFT-research program on the safety of Fast Breeders (Schneller Brutreaktor - SBR) is presently under discussion. In order to define several problems, investigations included in the present compilation (RS 139, 140, 143, 162) will be previously performed. (orig.) [de

  17. Reports covering research projects in the field of reactor safety supported by the German Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1976-03-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the safety program 'Reactor Safety' are sponsored by the Bundesminister fuer Forschung und Technologie (BMFT - Secretary of State for Research and Technology). Objective of this program is to continue improving the safety of LWR, in order to minimize the risk for the environment. With grant assistance from the Bundesminister des Innern. (BMI - Secretary of State for Home Affairs) research cont racts in the field of reactor safety are being performed. Results of these projects should contribute to resolve questions arising nuclear licensing procedures. The Forschungsbetreuung (FB - research supervision department) at the Institute for Reactor Safety (IRS), as consultants to BMFT and BMI, provides information about the progress of investigations. Individual reports will be prepared and put into standard forms by the research contractors. Each report gives information on: 1) the work accomplished, 2) the results obtained, 3) the work planned to be continued. Initial reports of research projects describe in addition the purpose of the work. A BMFT-research program on the safety of Fast Breeders (Schneller Brutreaktor - SBR) is presently under discussion. In order to define several problems, investigations included in the present compilation (RS 139, 140, 143, 162) will be previously performed. (orig.) [de

  18. Reports on the research projects in the field of reactor safety sponsored by the Federal Ministry of Science and Technology

    International Nuclear Information System (INIS)

    1976-12-01

    Investigations on the safety of light water reactors (LWR) being performed in the framework of the safety program 'Reactor Safety' are sponsored by the Bundesminister fuer Forschung und Technologie (BMFT - Secretary of State for Research and Technology). Objective of this program is to continue improving the safety of LWR, in order to minimize the risk for the environment. With grant assistance from the Bundesminister des Innern (BMI - Secretary of State for Home Affairs) research contrcts in the field of reactor safety are being performed. Results of these projects should contribute to resolve questions arising nuclear licensing procedures. The Forschungsbetreuung (FB - research supervision department) at the Institute for Reactor Safety (IRS), as consultants to BMFT and BMI, provides information about the progress of investigations. Individual reports will be prepared and put into standard forms by the research contractors. Each report gives information on: 1) the work accomplished, 2) the results obtained, 3) the work planned to be continued. Initial reports of research projects describe in addition the purpose of the work. A BMFT-research program on the safety of Fast Breeders (Schneller Brutreaktor - SRB) is presently under discussion. In order to define several problems, investigations included in the present compilation (RS 139, 140, 143, 162) will be previously performed. (orig.) [de

  19. Reports on the research projects in the field of nuclear safety sponsored by the Federal Minister for Research and Technology

    International Nuclear Information System (INIS)

    1979-12-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The CRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F - Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT in the near future. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC Communities and the OECD.(orig./HP) [de

  20. Reports on the research projects in the field of nuclear safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1980-06-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS-Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS-F-Fortschrittsberichte (GRS-F-progress reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT, which will appear in the near future. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC and the OECD. (orig./HP) [de

  1. The International Science and Technology Center (ISTC) and ISTC projects related to nuclear safety. Information review

    International Nuclear Information System (INIS)

    Tocheny, Lev V.

    2003-01-01

    The ISTC is an intergovernmental organization created ten years ago by Russia, USA, EU and Japan in Moscow. The Center supports numerous science and technology projects in different areas, from biotechnologies and environmental problems to all aspects of nuclear studies, including those focused on the development of effective innovative concepts and technologies in the nuclear field, in general, and for improvement of nuclear safety, in particular. The presentation addresses some technical results of the ISTC projects as well as methods and approaches employed by the ISTC to foster close international collaboration and manage projects towards fruitful results. (author)

  2. NASA's Software Safety Standard

    Science.gov (United States)

    Ramsay, Christopher M.

    2007-01-01

    NASA relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft launched that does not have a computer on board that will provide command and control services. There have been recent incidents where software has played a role in high-profile mission failures and hazardous incidents. For example, the Mars Orbiter, Mars Polar Lander, the DART (Demonstration of Autonomous Rendezvous Technology), and MER (Mars Exploration Rover) Spirit anomalies were all caused or contributed to by software. The Mission Control Centers for the Shuttle, ISS, and unmanned programs are highly dependant on software for data displays, analysis, and mission planning. Despite this growing dependence on software control and monitoring, there has been little to no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Meanwhile, academia and private industry have been stepping forward with procedures and standards for safety critical systems and software, for example Dr. Nancy Leveson's book Safeware: System Safety and Computers. The NASA Software Safety Standard, originally published in 1997, was widely ignored due to its complexity and poor organization. It also focused on concepts rather than definite procedural requirements organized around a software project lifecycle. Led by NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard has recently undergone a significant update. This new standard provides the procedures and guidelines for evaluating a project for safety criticality and then lays out the minimum project lifecycle requirements to assure the software is created, operated, and maintained in the safest possible manner. This update of the standard clearly delineates the minimum set of software safety requirements for a project without detailing the implementation for those

  3. Status of the design and safety project for the sodium-cooled fast reactor as a generation IV nuclear energy system

    International Nuclear Information System (INIS)

    Niwa, Hajime; Fiorini, Gian-Luigi; Sim, Yoon-Sub; Lennox, Tom; Cahalan, James E.

    2005-01-01

    The Design and Safety Project Management Board (DSPMB) was established under the Sodium Cooled Fast Reactor (SFR) System Steering Committee (SSC) in the Generation IV international Forum. The DSPMB will promote collaborative R and D activities on reactor core design, and safety assessment for candidate systems, and also integrate these results together with those from other PMBs such as advanced fuel and component to a whole fast reactor system in order to develop high performance systems that will satisfy the goals of Generation IV nuclear energy systems. The DSPMB has formulated the present R and D schedules for this purpose. Two SFR concepts were proposed: a loop-type system with primarily a MOX fuel core and a pool-type system with a metal fuel core. Study of innovative systems and their evaluation will also be included. The safety project will cover both the safety assessment of the design and the preparation of the methods/tools to be used for the assessment. After a rather short viability phase, the project will move to the performance phase for development of performance data and design optimization of conceptual designs. This paper describes the schedules, work packages and tasks for the collaborative studies of the member countries. (author)

  4. Surveys of research projects concerning nuclear facility safety, financed by the Federal Ministry of the Interior

    International Nuclear Information System (INIS)

    1986-05-01

    Each progress report is a collection of individual reports, categorized by subject matter. They are a documentation of the contractor's progress, rendered by themselves on standardized forms, published, for the sake of general information on progress made in investigations concerning reactor safety, by the project attendance department of the GRS. The individual reports have serial numbers. Each report includes particulars of the objective, work carried out, results obtained and plans for project continuation. (orig./HP) [de

  5. Are automatic systems the future of motorcycle safety? A novel methodology to prioritize potential safety solutions based on their projected effectiveness.

    Science.gov (United States)

    Gil, Gustavo; Savino, Giovanni; Piantini, Simone; Baldanzini, Niccolò; Happee, Riender; Pierini, Marco

    2017-11-17

    Motorcycle riders are involved in significantly more crashes per kilometer driven than passenger car drivers. Nonetheless, the development and implementation of motorcycle safety systems lags far behind that of passenger cars. This research addresses the identification of the most effective motorcycle safety solutions in the context of different countries. A knowledge-based system of motorcycle safety (KBMS) was developed to assess the potential for various safety solutions to mitigate or avoid motorcycle crashes. First, a set of 26 common crash scenarios was identified from the analysis of multiple crash databases. Second, the relative effectiveness of 10 safety solutions was assessed for the 26 crash scenarios by a panel of experts. Third, relevant information about crashes was used to weigh the importance of each crash scenario in the region studied. The KBMS method was applied with an Italian database, with a total of more than 1 million motorcycle crashes in the period 2000-2012. When applied to the Italian context, the KBMS suggested that automatic systems designed to compensate for riders' or drivers' errors of commission or omission are the potentially most effective safety solution. The KBMS method showed an effective way to compare the potential of various safety solutions, through a scored list with the expected effectiveness of each safety solution for the region to which the crash data belong. A comparison of our results with a previous study that attempted a systematic prioritization of safety systems for motorcycles (PISa project) showed an encouraging agreement. Current results revealed that automatic systems have the greatest potential to improve motorcycle safety. Accumulating and encoding expertise in crash analysis from a range of disciplines into a scalable and reusable analytical tool, as proposed with the use of KBMS, has the potential to guide research and development of effective safety systems. As the expert assessment of the crash

  6. The Barselina Project Phase 4 Summary report. Ignalina Unit 2 Probabilistic Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Gunnar [ES-Konsult AB, Stockholm (Sweden); Hellstroem, P. [RELCON AB, Solna (Sweden); Zheltobriuch, G.; Bagdonas, A. [Ignalina Power Plant, Visaginas (Lithuania)

    1996-12-01

    The Barselina Project was initiated in the summer of 1991. The project is a multilateral co-operation between Lithuania, Russia and Sweden. The long range objective is to establish common perspectives and unified bases for assessment of severe accident risks and needs for remedial measures for the RBMK reactors. The Swedish BWR Barsebaeck is used as reference plant and the Lithuanian RBMK Ignalina as application plant. During phase 3, from March, 1993 to June, 1994, a full scope Probabilistic Safety Analysis (PSA) model of the Ignalina Nuclear Power Plant unit 2 (INPP-2) was developed to identify possible safety improvement of risk importance. The probabilistic methodology was applied on a plant specific basis for a channel type reactor of RBMK design. To increase the realism of the risk model a set of deterministic analyses were performed and plant/RBMK-specific data bases were developed and used. A general concept for analysing this type of reactor was developed. During phase 4, July 1994 to September 1996, the PSA was further developed, taking into account plant changes, improved modeling methods and extended plant information concerning dependencies (area events, dynamic effects, electrical and signal dependencies). The updated model is quantified and new results and conclusions are evaluated.

  7. MULTI-AGENT MODEL OF SAFETY MANAGEMENT IN PLANNING PROJECTS FOR THE CREATION OF OBJECTS WITH MASS STAY OF PEOPLE

    Directory of Open Access Journals (Sweden)

    Олег Богданович ЗАЧКО

    2017-03-01

    Full Text Available In today's conditions, with increasing of the scale of industrialization the Ukraine's major cities, also increases the threat of emergency situations (ES, disasters and accidents at the objects with the mass stay of people (OMSP. Inadequate level of paying attention to the exploitation of OMSP at all stages of the project lifecycle gives its tangible negative consequences. The analysis of statistics for the last 5-10 years has shown the significant growth of dynamics of mortality after emergencies on enterprises, which shows that in most cases the cause of these deaths is the lack of strict management consistency across all hierarchy management structure that is the project-oriented management, ignorance the rules of fire safety at the workplace, lack of automatic fire alarm systems and alarm systems and extinguishing, especially in the regional context. Therefore, the definition of the concept of objects with the mass stay of people using safety-oriented approach will allow them to identify and ultimately increase security at such objectsIn the article the literary analysis of the available scientific studies. Developed multi-agent safety management model in planning projects for the creation of objects with the mass stay of people.

  8. Safety standards for express roads : research in the framework of the European research project Safety Standards for Road Design and Redesign SAFESTAR, Workpackages 3.4.

    NARCIS (Netherlands)

    Hummel, T.

    1999-01-01

    The objective of the SAFESTAR project is the formulation of design standards or recommendations exclusively based on safety arguments. Workpackage 3 (WP3) of SAFESTAR, of which this report is the concluding report, should result in design recommendations for single and dual-carriageway express roads

  9. The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project

    International Nuclear Information System (INIS)

    Hopper, Calvin Mitchell

    2011-01-01

    In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT and SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT and SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National

  10. Development of a harmonized approach to safety assessment of decommissioning: Lessons learned from international experience (DeSa project)

    International Nuclear Information System (INIS)

    Percival, K.; Nokhamzon, J.-G.; Ferch, R.; Batandjieva, B.

    2006-01-01

    The number of nuclear facilities being or planned to be shutdown as they reach the end of their design life, due to accidents or other political and social factors has been increasing worldwide. This has led to an increase in the awareness of regulators and operators of the importance of development and implementation of adequate safety requirements and criteria for decommissioning of these facilities. A general requirement at international and national levels, even for new facilities to be commissioned, is the development of a decommissioning plan, which includes evaluation of potential radiological consequences to public and workers during planned and accidental decommissioning activities. Experience has been gained in the safety assessment of decommissioning at various sites with different complexities and hazard potentials. This experience shows that various approaches have been used in conducting safety assessments and that there is a need for harmonisation of these approaches and for transferring the good practice and lessons learned to other countries, in particular developing countries with limited financial and human resources. The IAEA launched an international project on Evaluation and Demonstration of Safety during Decommissioning (DeSa) in 2004 to provide a forum for exchange of lessons learned between site operators, regulators, safety assessors and other specialists in safety assessment of decommissioning of nuclear power plants, research reactors, laboratories, nuclear fuel cycle facilities, etc. This paper presents the lessons learned through the project up to date, i.e.; (i) a common approach to safety assessment is being applied worldwide with the following steps - establishment of assessment framework; description of the facility; definition of decommissioning activities; hazard identification and analysis; calculation of consequences; and analysis of results; (ii) a deterministic approach to safety assessment is most commonly applied; (iii) a

  11. Design for safety: theoretical framework of the safety aspect of BIM system to determine the safety index

    Directory of Open Access Journals (Sweden)

    Ai Lin Evelyn Teo

    2016-12-01

    Full Text Available Despite the safety improvement drive that has been implemented in the construction industry in Singapore for many years, the industry continues to report the highest number of workplace fatalities, compared to other industries. The purpose of this paper is to discuss the theoretical framework of the safety aspect of a proposed BIM System to determine a Safety Index. An online questionnaire survey was conducted to ascertain the current workplace safety and health situation in the construction industry and explore how BIM can be used to improve safety performance in the industry. A safety hazard library was developed based on the main contributors to fatal accidents in the construction industry, determined from the formal records and existing literature, and a series of discussions with representatives from the Workplace Safety and Health Institute (WSH Institute in Singapore. The results from the survey suggested that the majority of the firms have implemented the necessary policies, programmes and procedures on Workplace Safety and Health (WSH practices. However, BIM is still not widely applied or explored beyond the mandatory requirement that building plans should be submitted to the authorities for approval in BIM format. This paper presents a discussion of the safety aspect of the Intelligent Productivity and Safety System (IPASS developed in the study. IPASS is an intelligent system incorporating the buildable design concept, theory on the detection, prevention and control of hazards, and the Construction Safety Audit Scoring System (ConSASS. The system is based on the premise that safety should be considered at the design stage, and BIM can be an effective tool to facilitate the efforts to enhance safety performance. IPASS allows users to analyse and monitor key aspects of the safety performance of the project before the project starts and as the project progresses.

  12. New IAEA guidance on safety culture

    International Nuclear Information System (INIS)

    Haage, Monica; )

    2012-01-01

    Monica Haage described a project for Kozloduy Nuclear Power Plant in Bulgaria which was also funded by the Norwegian government. This project included the development of guidance documents and training on self-assessment and continuous improvement of safety culture. A draft IAEA safety culture survey was also developed as part of this project in collaboration with St Mary's University, Canada. This project was conducted in parallel with an IAEA project to develop new safety reports on safety culture self-assessment and continuous improvement. A safety report on safety culture during the pre-operational phases of NPPs has also been drafted. The IAEA approach to safety culture assessment was outlined and core principles of the approach were discussed. These include the use of several assessment methods (survey, interview, observation, focus groups, document review), and two distinct levels of analysis. The first is a descriptive analysis of the observed cultural characteristics from each assessment method and overarching themes. This is followed by a 'normative' analysis comparing what has been observed with the desirable characteristics of a strong, positive, safety culture, as defined by the IAEA safety culture framework. The application of this approach during recent Operational Safety Assessment Review Team (OSART) missions was described along with key learning points

  13. Characteristics of the safety climate in teams with world-class safety ...

    African Journals Online (AJOL)

    interact to deliver a project successfully in terms of cost .... small-scale accidents occurring at high frequency and from diverse ... the team dynamics of role players in a construction project and .... modified safety pyramid to measure the impact of the safety climate ...... Methodological Centre for Vocational Education and.

  14. Safety in offshore engineering an academic course covering safety in offshore wind

    NARCIS (Netherlands)

    Cerda Salzmann, D.J.

    2011-01-01

    Offshore projects are known for their challenging conditions, generally leading to high risks. Therefore no offshore project can go without a continuous and extensive assessment on safety issues. The Delft University of Technology is currently developing a course "Safety in Offshore Engineering"

  15. 327 Building liquid waste handling options modification project plan

    International Nuclear Information System (INIS)

    Ham, J.E.

    1998-01-01

    This report evaluates the modification options for handling radiological liquid waste (RLW) generated during decontamination and cleanout of the 327 Building. The overall objective of the 327 Facility Stabilization Project is to establish a passively safe and environmentally secure configuration of the 327 Facility. The issue of handling of RLW from the 327 Facility (assuming the 34O Facility is not available to accept the RLW) has been conceptually examined in at least two earlier engineering studies (Parsons 1997a and Hobart l997). Each study identified a similar preferred alternative that included modifying the 327 Facility RLWS handling systems to provide a truck load-out station, either within the confines of the facility or exterior to the facility. The alternatives also maximized the use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes. An issue discussed in each study involved the anticipated volume of the RLW stream. Estimates ranged between 113,550 and 387,500 liters in the earlier studies. During the development of the 324/327 Building Stabilization/Deactivation Project Management Plan, the lower estimate of approximately 113,550 liters was confirmed and has been adopted as the baseline for the 327 Facility RLW stream. The goal of this engineering study is to reevaluate the existing preferred alternative and select a new preferred alternative, if appropriate. Based on the new or confirmed preferred alternative, this study will also provide a conceptual design and cost estimate for required modifications to the 327 Facility to allow removal of RLWS and treatment of the RLW generated during deactivation

  16. Criticality Safety Lessons Learned in a Deactivation and Decommissioning Environment [A Guide for Facility and Project Managers

    Energy Technology Data Exchange (ETDEWEB)

    Nirider, L. Tom

    2003-08-06

    This document was designed as a reference and a primer for facility and project managers responsible for Deactivation and Decommissioning (D&D) processes in facilities containing significant inventories of fissionable materials. The document contains lessons learned and guidance for the development and management of criticality safety programs. It also contains information gleaned from occurrence reports, assessment reports, facility operations and management, NDA program reviews, criticality safety experts, and criticality safety evaluations. This information is designed to assist in the planning process and operational activities. Sufficient details are provided to allow the reader to understand the events, the lessons learned, and how to apply the information to present or planned D&D processes. Information is also provided on general lessons learned including criticality safety evaluations and criticality safety program requirements during D&D activities. The document also explores recent and past criticality accidents in operating facilities, and it extracts lessons learned pertinent to D&D activities. A reference section is included to provide additional information. This document does not address D&D lessons learned that are not pertinent to criticality safety.

  17. THE EVALUATION OF THE IMPLEMENTATION OF CONTRACTOR SAFETY MANAGEMENT SYSTEM (CSMS PROGRAM ON TURNAROUND PROJECT (TA AT PT. PUPUK SRIWIDJAJA (PUSRI PALEMBANG

    Directory of Open Access Journals (Sweden)

    Muhammad Arif

    2016-03-01

    Full Text Available Background :Turnaround is one of the done by contractor in which if it is not managed well, it could cause work accident. The purpose of this study was to evaluate the implementation of contractor safety management system (CSMS program on turnaround project at PT. Pupuk Sriwidjaja Palembang. Method : This study was a qualitative study. The information was obtained from deep interview, observation and the study of document. The data was analyzed by using content analysis. The validity of the instruments was tested through triangulation of sources, method and data Result : The program implementation Contractor Safety Management System (CSMS on a turnaround project is already well underway only on projects in addition to departments turnaround K3 & LH less involved in the risk assessment stage, pre-qualification and selection of contractors. Conclusion : The implementation of the program Contractor Safety Management System (CSMS on a turnaround project at PT. Pupuk Sriwidjaja Palembang are in accordance with the Code of Labor Management Health, Safety and Environmental Protection Contractor BPMIGAS. It is advisable to PT. Pupuk Sriwidjaja Palembang in order to improve communication between departments procure goods and services with K3 and LH-related departments work tendered as the risk assessment stage, pre-qualification and selection on work tendered. Need sanctions against contractors who do not regularly report performance data K3.

  18. The Hungarian model project: Strengthening training for operational safety at Paks nuclear power plant

    International Nuclear Information System (INIS)

    Mautner Markhof, F.

    1998-01-01

    The Hungarian Model project (HMP) reflects the commitment to constant increase of safety and reliability of the NPP Paks, the Government of Hungary and the IAEA. It includes some of the most important nuclear power objectives of Paks NPP, namely the strengthening of NPP personnel training and competence through the application of international best practice, the systematic approach to training (SAT), for training operation and maintenance personnel; setting up a state of-the-art maintenance training center (MTC) at Paks and enhancing safety culture at Paks NPP. The IAEA supported implementation of the HMP through fellowships and scientific visits, expert missions, provision of hardware and software for SAT application, and supply od major new uncontaminated items of actual WWER equipment for the MTC

  19. AREVA advanced safety IC solutions and licensing experience for new nuclear builds and modernization projects - 15545

    International Nuclear Information System (INIS)

    Fourestie, B.; Pickelmann, J.; Richter, S.; Hilsenkopf, P.; Paris, P.

    2015-01-01

    Regulatory requirements for the Instrumentation and Control (IC) for Nuclear Power Plants have become significantly more stringent during the last 10 years in the areas of software development and qualification, traceability, diversity, or seismic requirements for instance, and with the introduction of new standards (such as the IEC 62566, or the IEC 62003). Based on a large and comprehensive experience gained from projects in several regulatory environments and different plant types (including non-OEM plants), AREVA has developed and adapted its processes and products to provide state-of-the-art IC solutions in full compliance with the regulatory demands and requirements in terms of robustness (independence, defense-in-depth, diversity and cyber-security). In this paper we present the safety IC platforms developed by AREVA. These platforms include TELEPERM XS as the computerized safety IC platform for class 1 system implementation, the Qualified Display System (QDS) for safety classified screen-based interface, and UNICORN as fully diverse analog safety IC platform for backup systems

  20. Safety at Work : Research Methodology

    NARCIS (Netherlands)

    Beurden, van K. (Karin); Boer, de J. (Johannes); Brinks, G. (Ger); Goering-Zaburnenko, T. (Tatiana); Houten, van Y. (Ynze); Teeuw, W. (Wouter)

    2012-01-01

    In this document, we provide the methodological background for the Safety atWork project. This document combines several project deliverables as defined inthe overall project plan: validation techniques and methods (D5.1.1), performanceindicators for safety at work (D5.1.2), personal protection

  1. Radiological and environmental consequences. Final report of the Nordic Nuclear Safety Research project BOK-2

    International Nuclear Information System (INIS)

    Palsson, S.E.

    2002-11-01

    Final report of the Nordic Nuclear Safety Research project BOK-2, Radiological and Environmental Consequences. The project was carried out 1998-2001 with participants from all the Nordic countries. Representatives from the Baltic States were also invited to some of the meetings and seminars. The project consisted of work on terrestrial and marine radioecology and had a broad scope in order to enable participation of research groups with various fields of interest. This report focuses on the project itself and gives a general summary of the studies undertaken. A separate technical report summarises the work done by each research group and gives references to papers published in scientific journals. The topics in BOK-2 included improving assessment of old and recent fallout, use of radionuclides as tracers in Nordic marine areas, improving assessment of internal doses and use of mass spectrometry in radioecology. (au)

  2. Optimization of safety on pavement preservation projects.

    Science.gov (United States)

    2011-01-01

    To achieve a goal of reducing highway crash fatalities by 4% each year to improve roadway safety, the Georgia Department of Transportation (GDOT) is actively seeking opportunities to incorporate safety improvements into its current pavement preservat...

  3. Demonstration of Low Impact Development (LID) to Mitigate Stormwater Metal Contaminants in Navy Commercial Areas

    Science.gov (United States)

    2018-04-01

    perforated pipe (1/4-in holes); 7) drain cleanout; 8) backflow preventer on underdrain; 9) blood meal fertilizer by Pro-Pell-it!: soil, Bioswale Mix...several hours expected for these project sites). These metals can form soluble complexes with different inorganic and organic ligands. The complex...valence can range from -2 to +2. Organic and inorganic complexes may be treated by chemically active filtration through compost, peat, and soil. Also

  4. Reports of reactor safety research projects sponsored by the Federal Ministry for Research and Technology (BMFT)

    International Nuclear Information System (INIS)

    1984-04-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. the individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by he FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWRS 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  5. Krsko NPP Quality Assurance Plan Application to Nuclear Safety Upgrade Projects (PCFV System and PAR System)

    International Nuclear Information System (INIS)

    Biscan, Romeo; Fifnja, Igor

    2014-01-01

    Nuklearna Elektrarna Krsko (NEK) has undertaken Nuclear Safety Upgrade Projects as a safety improvement driven by the lessons learned from the Fukushima-Daiichi Accident. Among other projects, new modification 1008-VA-L Passive Containment Filtered Vent (PCFV) System has been installed which acts as the last barrier minimizing the release of radioactive material into the environment in case of failure of all safety systems, and to insure containment integrity during beyond design basis accidents (BDBA). In addition, modification 1002-GH-L Severe Accident Hydrogen Control System (PAR) has been implemented to prevent and mitigate the consequences of explosive gas generation (hydrogen and carbon monoxide) in case of reactor core melting. To ensure containment integrity for all design basis accidents (DBA) and BDBA conditions, NEK has eliminated existing safety-related electrical recombiners, replaced them with two safety-related passive autocatalytic recombiners (PARs) and added 20 new PARs designed for the BDBA conditions. Krsko NPP Quality Assurance Plan has been applied to Nuclear Safety Upgrade Projects (PCFV System and PAR System) through the following activities: · Internal audit of modification process was performed. · Supplier audits were performed to evaluate QA program efficiency of the main design organization and engineering organizations. · Evaluation and approval of Suppliers were performed. · QA engineer was involved in the review and approval of 1008-VA-L and 1002-GH-L modification documentation (Conceptual Design Package, Design Modification Package, Installation Package, Field Design Change Request, Problem/Deficiency Report, and Final Documentation Package). · Purchasing documentation for modifications 1008-VA-L and 1002-GH-L (technical specifications, purchase orders) has been verified and approved by QA. · QA and QC engineers were involved in oversight of production and testing of the new 1008-VA-L and 1002-GH-L plant components.

  6. ELFR: The European Lead Fast Reactor. Design, Safety Approach and Safety Characteristics

    International Nuclear Information System (INIS)

    Alemberti, Alessandro

    2012-01-01

    • In the framework of the LEADER project, the safety approach for a Lead cooled fast reactor has been defined and, in particular, all the possible challenges to the main safety functions and their mechanisms have been specified, in order to better define the needed provisions. • On the basis of the above and taking into account the results of the safety analyses performed during previous project (ELSY), a reference configuration of the ELFR plant has been consolidated, by improving and updating the plant design features. In particular, the emerged safety concerns have been analyzed in the LEADER project and a new set of design options and safety provisions have been proposed. • The combination of favourable Lead coolant inherent characteristics and plant design features, specifically developed to face identified challenges, resulted in a very robust and forgiving design, even in very extreme conditions, as a Fukushima-like scenario

  7. Hydrogen Technologies Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  8. Integrated Safety in Design

    DEFF Research Database (Denmark)

    Schultz, Casper Siebken; Jørgensen, Kirsten

    2014-01-01

    An on-going research project investigates the inclusion of health and safety considerations in the design phase as a means to achieve a higher level of health and safety in the construction industry. Moreover, the approach is coupled to the overall quality efforts. Two architectural firms and two...... consulting engineering firms are project participants. The hypothesis is that health and safety problems in execution can be prevented through better planning in the early stages of the construction processes and that accidents are prevented by providing safety. In the first stage of the research project...... a theoretical framework is developed from a combination of existing literature on health and safety and a mapping of existing practices based on interviews in all four companies. The interviews revealed that the basic knowledge on OHS among architects and engineers is limited. Also currently designers typically...

  9. Main outcomes from the EURATOM-ROSATOM ERCOSAM SAMARA parallel projects for hydrogen safety of LWR - 15357

    International Nuclear Information System (INIS)

    Paladino, D.; Kiselev, A.

    2015-01-01

    ERCOSAM and SAMARA are the acronyms for 2 parallel projects co-financed respectively by EURATOM and ROSATOM during the 2010-2014 period with the general aim to advance the knowledge on the phenomenology associated to the hydrogen and steam spreading and stratification in the LWR containment during a severe accident. The important peculiarity of the project was its experimental and analytical investigation of the impact of safety systems such as spray, coolers and PAR (Passive Autocatalytic Recombiners) on the distribution of gas species (hydrogen, steam and air). The main outcomes of the ERCOSAM-SAMARA projects are presented in this paper. The research needs, which could be considered in follow-up activities, are also identified. (authors)

  10. Nuclear criticality safety program for environmental restoration projects

    International Nuclear Information System (INIS)

    Marble, R.C.; Brown, T.D.

    1994-05-01

    The Fernald Environmental Management Project (FEMP), formerly known as the Feed Materials Production Center (FMPC), is located on a 1050 acre site approximately twenty miles northwest of Cincinnati, Ohio. The production area of the site covers approximately 136 acres in the central portion of the site. Surrounding the core production area is a buffer consisting of leased grazing land, reforested land, and unused areas. The uranium processing facility was designed and constructed in the early 1950s. During the period from 1952 to 1989 the site produced uranium feed material and uranium products used in the United States weapons complex. Production at the site ended in 1989, when the site was shut down for what was expected to be a short period of time. However, the FUTC was permanently shut down in 1991, and the site's mission was changed from production to environmental restoration. The objective of this paper is to give an update on activities at the Fernald Site and to describe the Nuclear Criticality Safety issues that are currently being addressed

  11. Integrated Safety in ''SARAF'

    International Nuclear Information System (INIS)

    Dickstein, P.; Grof, Y.; Machlev, M.; Pernick, A.

    2004-01-01

    As of the very early stages of the accelerator project at the Soreq Nuclear Research Center ''SARAF'' a safety group was established which has been an inseparable participant in the planning and design of the new facility. The safety group comprises of teams responsible for the shielding, radiation protection and general industrial safety aspects of ''SARAF''. The safety group prepared and documented the safety envelope for the accelerator, dealing with the safety requirements and guidelines for the first, pre-operational, stages of the project. The safety envelope, though based upon generic principles, took into account the accelerator features and the expected modes of operation. The safety envelope was prepared in a hierarchical structure, containing Basic Principles, Basic Guidelines, General Principles for Safety Implementation, Safety Requirements and Safety Underlining Issues. The above safety envelope applies to the entire facility, which entails the accelerator itself and the experimental areas and associated plant and equipment utilizing and supporting the production of the accelerated particle beams

  12. Specific safety measures for emergency lanes and shoulders of motorways : a proposal for motorways' authorities in the framework of the European research project Safety Standards for Road Design and Redesign SAFESTAR, Workpackage 1.1.

    NARCIS (Netherlands)

    Braimaister, L.

    1999-01-01

    This workpackage is one of seven workpackages of the European SAFESTAR project, launched by DG VII. Directing on safety standards and recommendations for the Trans-European Roadway Network (TERN), the workpackage considered safety measures on emergency lanes (stopping strips), which are inherent

  13. Proposal of a risk-factor-based analytical approach for integrating occupational health and safety into project risk evaluation.

    Science.gov (United States)

    Badri, Adel; Nadeau, Sylvie; Gbodossou, André

    2012-09-01

    Excluding occupational health and safety (OHS) from project management is no longer acceptable. Numerous industrial accidents have exposed the ineffectiveness of conventional risk evaluation methods as well as negligence of risk factors having major impact on the health and safety of workers and nearby residents. Lack of reliable and complete evaluations from the beginning of a project generates bad decisions that could end up threatening the very existence of an organization. This article supports a systematic approach to the evaluation of OHS risks and proposes a new procedure based on the number of risk factors identified and their relative significance. A new concept called risk factor concentration along with weighting of risk factor categories as contributors to undesirable events are used in the analytical hierarchy process multi-criteria comparison model with Expert Choice(©) software. A case study is used to illustrate the various steps of the risk evaluation approach and the quick and simple integration of OHS at an early stage of a project. The approach allows continual reassessment of criteria over the course of the project or when new data are acquired. It was thus possible to differentiate the OHS risks from the risk of drop in quality in the case of the factory expansion project. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT EAST-WEST DRIFT SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    1999-06-08

    The purpose of this analysis is to systematically identify and evaluate hazards related to the design of the Yucca Mountain Project Exploratory Studies Facility (ESF) East-West Cross Drift. This analysis builds upon prior ESF System Safety Analyses and incorporates TS Main Drift scenarios, where applicable, into the East-West Drift scenarios. This System Safety Analysis (SSA) focuses on the personnel safety and health hazards associated with the engineered design of the East-West Drift. The analysis also evaluates other aspects of the East-West Drift, including purchased equipment (e.g., scientific mapping platform) or Systems/Structures/Components (SSCs) and out-of-tolerance conditions. In addition to recommending design mitigation features, the analysis identifies the potential need for procedures, training, or Job Safety Analyses (JSAs). The inclusion of this information in the SSA is intended to assist the organization(s) (e.g., constructor, Safety and Health, design) responsible for these aspects of the East-West Drift in evaluating personnel hazards and augment the information developed by these organizations. The SSA is an integral part of the systems engineering process, whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach is used which incorporates operating experiences and recommendations from vendors, the constructor and the operating contractor. The risk assessment in this analysis characterizes the scenarios associated with East-West Drift SSCs in terms of relative risk and includes recommendations for mitigating all identified hazards. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into SSC designs. (2) Add safety features and capabilities to existing designs. (3) Develop procedures and conduct training to increase worker awareness of potential hazards, reduce exposure to hazards, and inform personnel of the

  15. Project Guarantee 1985. Final repository for high-level radioactive wastes: The system of safety barriers

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Final disposal of radioactive waste involves preventing the waste from returning from the repository location into the biosphere by means of successively arranged containment measures known as safety barriers. In the present volume NGB 85-04 of the series of reports for Project 'Guarantee' 1985, the safety barrier system for the type C repository for high-level waste is described. The barrier parameters which are relevant for safety analysis are quantified and associated error limits and data scatter are given. The aim of the report is to give a summary documentation of the safety analysis input data and their scientific background. For secure containment of radioactive waste safety barriers are used which effectively limit the release of radioactive material from the repository (release barriers) and effectively retard the entry of the original radioactive material into the biosphere (time barriers). Safety barriers take the form of both technically constructed containment measures and the siting of the repository in suitable geological formations. The technical safety barrier system in the case of high-level waste comprises: the waste solidification matrix (borosilicate glass), massive steel canisters, encasement of the waste canisters, encasement of the waste canisters in highly compacted bentonite, sealing of vacant storage space and access routes on repository closure. The natural geological safety barriers - the host rock and overlying formations provide sufficiently long deep groundwater flow times from the repository location to the earth's surface and for additional lengthening of radionuclide migration times by means of various chemical and physical retardation mechanisms. The stability of the geological formations is so great that hydrogeological system is protected for a sufficient length of time from deterioration caused, in particular, by erosion. Observations in the final section of the report indicate that input data for the type C repository safety

  16. Oskarshamn 1-project FENIX

    International Nuclear Information System (INIS)

    Sjoeqvist, N.G.

    1994-01-01

    This paper summarizes the actions to be taken in a large re-start and backfitting project such as the Fenix project. It describes the organization, planning and financial management, safety criteria and licensing procedures, safety concept report, health and safety. The results from the unique full system decontamination of the reactor pressure vessel is described. The project is still ongoing and therefore other results and lessons learnt are not reported. (author) 9 figs

  17. Innovation and Safety. A prestudy

    International Nuclear Information System (INIS)

    Rollenhagen, Carl; Hansson, Sven Ove; Hortberg, Johan; Jakobsson, Fredrik; Zhau, Victoria Jing; Mojeri, Sara

    2010-04-01

    The project summarized in this report was initiated to explore relations between innovation and safety. The first two sections of the report discuss some previously conducted research and give a general background to the subject. It is concluded that safety research and innovation research, by and large, has developed as separate academic disciplines. The concepts of 'innovative safety culture' and 'safe innovation cultures' are suggested as two concepts that can be used to integrate research: innovative safety cultures depart from safety culture research but attempts to introduce an innovative dimension with the aim to create adaptive and innovative safety cultures that efficiently can handle risks arising from existing innovations. Safe innovation cultures have focus on innovation itself, but with the ambition to introduce concepts and methods from safety research in the innovative processes. Three subprojects conducted in the context of the present research are summarized. The first project examines how an existing organization (e.g. SKB - Swedish Nuclear Fuel and Waste Management) attempts to integrate both innovative activities and operative activities in the same organisation. Interviews with key personnel explored different views about how innovative and safety work coexists in the organisation. The second project focuses on how major retrofit projects of a nuclear power plant is managed in parallel to operative activities (e.g. operating the plant on an everyday basis). By means of an innovative technique (e.g. system groups) seminars were held to suggest improvements in the technical change process. The third project conducted a risk analysis of a major organisational change (e.g. control centres for energy distribution). Experiences from the three projects are finally discussed in terms of similarities and differences associated with the cultures for innovation and safety. Suggestions for further research are made

  18. Clinical Trial Electronic Portals for Expedited Safety Reporting: Recommendations from the Clinical Trials Transformation Initiative Investigational New Drug Safety Advancement Project.

    Science.gov (United States)

    Perez, Raymond P; Finnigan, Shanda; Patel, Krupa; Whitney, Shanell; Forrest, Annemarie

    2016-12-15

    Use of electronic clinical trial portals has increased in recent years to assist with sponsor-investigator communication, safety reporting, and clinical trial management. Electronic portals can help reduce time and costs associated with processing paperwork and add security measures; however, there is a lack of information on clinical trial investigative staff's perceived challenges and benefits of using portals. The Clinical Trials Transformation Initiative (CTTI) sought to (1) identify challenges to investigator receipt and management of investigational new drug (IND) safety reports at oncologic investigative sites and coordinating centers and (2) facilitate adoption of best practices for communicating and managing IND safety reports using electronic portals. CTTI, a public-private partnership to improve the conduct of clinical trials, distributed surveys and conducted interviews in an opinion-gathering effort to record investigator and research staff views on electronic portals in the context of the new safety reporting requirements described in the US Food and Drug Administration's final rule (Code of Federal Regulations Title 21 Section 312). The project focused on receipt, management, and review of safety reports as opposed to the reporting of adverse events. The top challenge investigators and staff identified in using individual sponsor portals was remembering several complex individual passwords to access each site. Also, certain tasks are time-consuming (eg, downloading reports) due to slow sites or difficulties associated with particular operating systems or software. To improve user experiences, respondents suggested that portals function independently of browsers and operating systems, have intuitive interfaces with easy navigation, and incorporate additional features that would allow users to filter, search, and batch safety reports. Results indicate that an ideal system for sharing expedited IND safety information is through a central portal used by

  19. 75 FR 53701 - Clinical Studies of Safety and Effectiveness of Orphan Products Research Project Grant (R01...

    Science.gov (United States)

    2010-09-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0394] Clinical Studies of Safety and Effectiveness of Orphan Products Research Project Grant (R01); Correction AGENCY: Food and Drug Administration, HHS. ACTION: Notice; correction. SUMMARY: The Food and Drug...

  20. Criticality Safety Lessons Learned in a Deactivation and Decommissioning Environment [A Guide for Facility and Project Managers

    International Nuclear Information System (INIS)

    NIRIDER, L.T.

    2003-01-01

    This document was designed as a reference and a primer for facility and project managers responsible for Deactivation and Decommissioning (D and D) processes in facilities containing significant inventories of fissionable materials. The document contains lessons learned and guidance for the development and management of criticality safety programs. It also contains information gleaned from occurrence reports, assessment reports, facility operations and management, NDA program reviews, criticality safety experts, and criticality safety evaluations. This information is designed to assist in the planning process and operational activities. Sufficient details are provided to allow the reader to understand the events, the lessons learned, and how to apply the information to present or planned D and D processes. Information is also provided on general lessons learned including criticality safety evaluations and criticality safety program requirements during D and D activities. The document also explores recent and past criticality accidents in operating facilities, and it extracts lessons learned pertinent to D and D activities. A reference section is included to provide additional information. This document does not address D and D lessons learned that are not pertinent to criticality safety

  1. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1979-12-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed hear are of a continuing nature. Results and conclusions described may change as the work continues

  2. Inventory of Federal energy-related environment and safety research for FY 1979. Volume II. Project listings and indexes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-01

    This volume contains summaries of FY 1979 government-sponsored environment and safety research related to energy arranged by log number, which groups the projects by reporting agency. The log number is a unique number assigned to each project from a block of numbers set aside for each contributing agency. Information elements included in the summary listings are project title, principal investigators, research organization, project number, contract number, supporting organization, funding level, related energy sources with numbers indicating percentages of effort devoted to each, and R and D categories. A brief description of each project is given, and this is followed by subject index terms that were assigned for computer searching and for generating the printed subject index in the back of this volume.

  3. Inventory of Federal energy-related environment and safety research for FY 1979. Volume II. Project listings and indexes

    International Nuclear Information System (INIS)

    1980-12-01

    This volume contains summaries of FY 1979 government-sponsored environment and safety research related to energy arranged by log number, which groups the projects by reporting agency. The log number is a unique number assigned to each project from a block of numbers set aside for each contributing agency. Information elements included in the summary listings are project title, principal investigators, research organization, project number, contract number, supporting organization, funding level, related energy sources with numbers indicating percentages of effort devoted to each, and R and D categories. A brief description of each project is given, and this is followed by subject index terms that were assigned for computer searching and for generating the printed subject index in the back of this volume

  4. Cooperative project on methods and techniques for assessment of ageing and safety of nuclear objects

    International Nuclear Information System (INIS)

    Bundara, B.; Udovc, M.; Cvelbar, R.; Vojvodic Tuma, J.; Celin, R.; Cizelj, L.; Simonovski, I.; Pirs, B.; Zabric, I.

    2007-01-01

    Nuclear Power Plants are so far the most demanding electric power plants concerning the extent and complexity of knowledge that is needed for design, construction, installation, safe operation and proper maintenance. For safe operation of the NPP it is important to have reliable inspection procedures and methods to detect the relevant defects in the components. It is also important to have effective techniques and efficient methodology that enable precise estimation of the material degradation and reliable prediction of the remaining period of the safe service of structures and components. During the operation of NPP its materials, structures and components are exposed to various impacts that have for the result changes in the material. Changes usually manifest as deviation from the origin (generally considered as defects) and can be observed at level of microstructure and/or at structural level. Defects are consequence of ageing and ageing is a consequence of mechanical, thermal, chemical, radiation induced and other processes. Complexity of the NPP and continuous operation at high level of safety demands extensive cooperation of researchers and engineers with different scientific and educational background. In the paper is discussed the importance of sufficient support to the NPP related research projects and the need for cooperation between institutes. As an example is presented the cooperative project that bands the research groups with different scientific background into complementary team working on multidisciplinary project focused on assessment of ageing and safety of nuclear objects. (author)

  5. Road safety performance indicators : country profiles. SafetyNet, Building the European Road Safety Observatory, Workpackage 3, Deliverable 3.7b.

    NARCIS (Netherlands)

    Riguelle, F. Eksler, V. Holló, P. Morsink, P. Gent, A. van Gitelman, V. Assum, T. & Rackliff, L.

    2009-01-01

    The EC 6th Framework Integrated Project SafetyNet aims to accelerate the availability and use of harmonised road safety data in Europe. Having such data available throughout Europe would be tremendously beneficial for road safety, since it would enable the evaluation of road safety measures, the

  6. TA 55 Reinvestment Project II Phase C Update Project Status May 23, 2017

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, Anthony P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-25

    The TA-55 Reinvestment Project (TRP) II Phase C is a critical infrastructure project focused on improving safety and reliability of the Los Alamos National Laboratory (LANL) TA-55 Complex. The Project recapitalizes and revitalizes aging and obsolete facility and safety systems providing a sustainable nuclear facility for National Security Missions.

  7. Operational safety of geological disposal: IRSN project 'EXREV' for developing a safety assessment strategy for the operation and reversibility of a geological repository

    International Nuclear Information System (INIS)

    Tichauer, M.; Pellegrini, D.; Serres, C.; Besnus, F.

    2014-01-01

    A high-level waste geological disposal facility is envisioned by the legislator in the French Planning Act no. 2006-739 of 28 June 2006. This act sets major milestones for the operator (Andra) in 2013 (public debate), 2015 (licensing) and 2025 (operation). In the framework of the regulatory review process, IRSN's mission is to conduct an assessment of the safety case provided by Andra at every stage of the process for the French regulator, namely the Nuclear Safety Authority (ASN). In 2005, IRSN gathered more than twenty years of research and expertise in order to provide a comprehensive appraisal of the 'Dossier 2005' prepared by Andra, related to the feasibility of a geological disposal in the Callovo-Oxfordian clay formation. At this time, the description of the operational phase was only at a preliminary stage, but this step paved the way for developing an assessment strategy of the operational phase. In this perspective, IRSN set up the EXREV project in 2008 in order to build up a doctrine and to identify key safety issues to be dealt with. (authors)

  8. River Protection Project Integrated safety management system phase II verification review plan - 7/29/99

    International Nuclear Information System (INIS)

    SHOOP, D.S.

    1999-01-01

    The purpose of this review is to verify the implementation status of the Integrated Safety Management System (ISMS) for the River Protection Project (RPP) facilities managed by Fluor Daniel Hanford, Inc. (FDH) and operated by Lockheed Martin Hanford Company (LMHC). This review will also ascertain whether within RPP facilities and operations the work planning and execution processes are in place and functioning to effectively protect the health and safety of the workers, public, environment, and federal property over the RPP life cycle. The RPP ISMS should support the Hanford Strategic Plan (DOERL-96-92) to safely clean up and manage the site's legacy waste and deploy science and technology while incorporating the ISMS central theme to ''Do work safely'' and protect human health and the environment

  9. Nordic studies in reactor safety

    International Nuclear Information System (INIS)

    Pershagen, N.

    1993-01-01

    The Nordic Nuclear Safety Research Programme SIK programme in reactor safety is part of a major joint Nordic research effort in nuclear safety. The report summarizes the achievements of the SIK programme, which was carried out during 1990-1993 in collaboration between Nordic nuclear utilities, safety authorities, and research institutes. Three main projects were successfully completed dealing with: 1) development and application of a living PSA concept for monitoring the risk of core damage, and of safety indicators for early warning of possible safety problems; 2) review and intercomparison of severe accident codes, case studies of potential core melt accidents in nordic reactors, development of chemical models for the MAAP code, and outline of a system for computerized accident management support; 3) compilation of information about design and safety features of neighbouring reactors in Germany, Lithuania and Russia, and for naval reactors and nuclear submarines. The report reviews the state-of-the-art in each subject matter as an introduction to the individual project summaries. The main findings of each project are highlighted. The report also contains an overview of reactor safety research in the Nordic countries and a summary of fundamental reactor safety principles. (au) (69 refs.)

  10. The impact of occupational health and safety regulations on prevention through design in construction projects: Perspectives from Spain and the United Kingdom.

    Science.gov (United States)

    Martínez-Aires, María Dolores; Rubio Gámez, María Carmen; Gibb, Alistair

    2015-01-01

    Since the mid-1990 s, Prevention through Design (PtD) has become increasingly prevalent in the built environment. The acceptance of PtD has largely been due to the removal or reduction of risks during the execution phase of construction projects. European States have had the added impetus of national legislation. This paper analyzes the influence of European Union Directive 92/57/EEC on occupational safety and health injury prevention in the project design phase. Qualitative methods comprised individual semi-structured interviews and focus groups with a panel of experts. Sixty individuals from construction and related professions (architects, engineers, constructors, developers, and other construction experts) answered 17 key questions to establish national perceptions of the effectiveness of Directive 92/57/EEC in Spain and the United Kingdom (UK). The implementation of PtD in the project design phase in the UK is clearer since the regulations explicitly state the obligations of project designers as well as those of the coordinator. Interviews with Spanish experts show that, in Spain, the prevention culture is less frequently realized. The most significant differences between the European Directive and national regulations which influence PtD are linked to the Health and Safety Coordinator, and Health and Safety documents.

  11. Nordic projects concerning nuclear safety

    International Nuclear Information System (INIS)

    Soerensen, H.C.

    1988-11-01

    The report describes the nature of the work done in the first half of 1988 within the field of nuclear safety (1985-89) under the Nordic program for 1985-89. Five programmes and their documentation, are described and complete lists of addresses and of persons involved is given. (AB)

  12. Project Guarantee 1985. Final repository for low- and intermediate level radioactive wastes: Safety report

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Storage of radioactive waste must delay the return of radionuclides to the biosphere for a long period of time and must maintain the release rates at a sufficiently low level for all time. This is achieved with the aid of a series of safety barriers which consist, on the one hand, of technical barriers in the repository and, on the other hand , of natural geological barriers as they occur at the repository location. In order to assess the efficiency of the barriers, the working methods of the technical barriers and the host rock must be understood. This understanding is transferred into quantitative models in order to calculate the safety of the repository. The individual barriers and the methods used to modelling their functions were described in volume NGB 85-07 of the Project Guarantee 1985 report series and the data necessary for modelling were given. The models and data are used in the safety analysis, the results of which are contained in the present report. Safety considerations show that models are available in Switzerland which allow, in principle, an assessment of the long-term behaviour of a repository for low- and intermediate-level waste. The evaluation of earlier studies and experimental work, suitable laboratory measurements and results from field research enable compilation of a representative data-set so that the requirements for quantitative statements on safety of final disposal are met from this side also. The safety calculations show that the radiation doses calculated for a base case scenario with realistic/conservative parameter values are negligibly low. Also, radiation doses which are clearly under the protection standard of 10 mrem per year result for conservative values and the cumulation of several conservative assumptions. Even assuming exposure of the repository by erosion, a radiotoxicity of the soil formed results which is under natural values

  13. 77 FR 46764 - Clinical Studies of Safety and Effectiveness of Orphan Products Research Project Grant (R01)

    Science.gov (United States)

    2012-08-06

    ...] Clinical Studies of Safety and Effectiveness of Orphan Products Research Project Grant (R01) AGENCY: Food... per year. B. Research Objectives The goal of FDA's OPD grant program is to support the clinical... (OPD) grant program. The goal of FDA's OPD grant program is to support the clinical development of...

  14. Inventory of Federal energy-related environment and safety research for FY 1978. Volume II. Project listings and indexes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    This volume contains summaries of FY-1978 government-sponsored environment and safety research related to energy. Project summaries were collected by Aerospace Corporation under contract with the Department of Energy, Office of Program Coordination, under the Assistant Secretary for Environment. Summaries are arranged by log number, which groups the projects by reporting agency. The log number is a unique number assigned to each project from a block of numbers set aside for each agency. Information about the projects is included in the summary listings. This includes the project title, principal investigators, research organization, project number, contract number, supporting organization, funding level if known, related energy sources with numbers indicating percentages of effort devoted to each, and R and D categories. A brief description of each project is given, and this is followed by subject index terms that were assigned for computer searching and for generating the printed subject index in Volume IV.

  15. Inventory of Federal energy-related environment and safety research for FY 1978. Volume II. Project listings and indexes

    International Nuclear Information System (INIS)

    1979-12-01

    This volume contains summaries of FY-1978 government-sponsored environment and safety research related to energy. Project summaries were collected by Aerospace Corporation under contract with the Department of Energy, Office of Program Coordination, under the Assistant Secretary for Environment. Summaries are arranged by log number, which groups the projects by reporting agency. The log number is a unique number assigned to each project from a block of numbers set aside for each agency. Information about the projects is included in the summary listings. This includes the project title, principal investigators, research organization, project number, contract number, supporting organization, funding level if known, related energy sources with numbers indicating percentages of effort devoted to each, and R and D categories. A brief description of each project is given, and this is followed by subject index terms that were assigned for computer searching and for generating the printed subject index in Volume IV

  16. Pilotprojekt "Patientensicherheit" in der medizinischen Lehre [Pilot project "Patient-Safety" in Medical Education

    Directory of Open Access Journals (Sweden)

    Rosentreter, Michael

    2011-02-01

    Full Text Available [english] Since the summer term 2009 the study project „Patientensicherheit – Der klinische Umgang mit Patienten- und Eingriffsverwechslungen sowie Medikationsfehlern“ (Patient Safety – the clinical handling of patients – and mistaking of procedures as well as medication errors is offered within the Modellstudiengang Medizin. Seminars on patient safety in Germany so far mainly address trained doctors and health economists. In contrast, this study project on patient safety should at an early stage contribute to a “culture of discussing and preventing mistakes” – an aspect that is little established in clinical medicine, but also in medical training. For this purpose, a broad variety of courses was developed, which – relying on problem-oriented learning – enables the students to analyse so-called adverse events (AE and develop adequate prevention measures on the basis of the insights gained by this analysis. Therefore, theoretical lessons are complemented by discussing prototypical clinical cases. These discussions are moderated by experienced clinicians. After completing the seminar, students showed a significant increase (comparison of means in the self-assessed qualifications „Wissen zu Patientensicherheit“ (Knowledge of Patient Safety and „Wahrnehmung von Risikosituationen“ (Appreciation of Risk Situations. All in all, the students rated their training success with a grade of 1.5 (good.[german] Seit dem Sommersemester 2009 wird im Rahmen des Modellstudiengangs Medizin der RWTH Aachen das Lehrprojekt „Patientensicherheit – Der klinische Umgang mit Patienten- und Eingriffsverwechslungen sowie Medikationsfehlern“ angeboten Seminare zur Patientensicherheit in Deutschland zielen bislang vor allem auf ausgebildete Ärzte und Gesundheitsökonomen ab. Demgegenüber soll das Lehrprojekt Patientensicherheit einen frühzeitigen Beitrag zu einer „Kultur der Fehlerdiskussion und -vermeidung“ leisten – ein Aspekt, der

  17. Safety Aspects of Sustainable Storage Dams and Earthquake Safety of Existing Dams

    Directory of Open Access Journals (Sweden)

    Martin Wieland

    2016-09-01

    Full Text Available The basic element in any sustainable dam project is safety, which includes the following safety elements: ① structural safety, ② dam safety monitoring, ③ operational safety and maintenance, and ④ emergency planning. Long-term safety primarily includes the analysis of all hazards affecting the project; that is, hazards from the natural environment, hazards from the man-made environment, and project-specific and site-specific hazards. The special features of the seismic safety of dams are discussed. Large dams were the first structures to be systematically designed against earthquakes, starting in the 1930s. However, the seismic safety of older dams is unknown, as most were designed using seismic design criteria and methods of dynamic analysis that are considered obsolete today. Therefore, we need to reevaluate the seismic safety of existing dams based on current state-of-the-art practices and rehabilitate deficient dams. For large dams, a site-specific seismic hazard analysis is usually recommended. Today, large dams and the safety-relevant elements used for controlling the reservoir after a strong earthquake must be able to withstand the ground motions of a safety evaluation earthquake. The ground motion parameters can be determined either by a probabilistic or a deterministic seismic hazard analysis. During strong earthquakes, inelastic deformations may occur in a dam; therefore, the seismic analysis has to be carried out in the time domain. Furthermore, earthquakes create multiple seismic hazards for dams such as ground shaking, fault movements, mass movements, and others. The ground motions needed by the dam engineer are not real earthquake ground motions but models of the ground motion, which allow the safe design of dams. It must also be kept in mind that dam safety evaluations must be carried out several times during the long life of large storage dams. These features are discussed in this paper.

  18. A major safety overhaul

    CERN Multimedia

    2003-01-01

    A redefined policy, a revamped safety course, an environmental project... the TIS (Technical Inspection and Safety) Division has begun a major safety overhaul. Its new head, Wolfgang Weingarten, explains to the Bulletin why and how this is happening.

  19. Annual report on reactor safety research projects sponsored by the Minister for Research and Technology of the Federal Republic of Germany 1989

    International Nuclear Information System (INIS)

    1990-08-01

    Investigations on the safety of light water reactors (LWR) being performed in the framework of his research program on reactor safety are sponsored by the Bundesminister fuer Forschung und Technologie (BMFT) (Federal Minister for Research and Technology). Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks also projects on the safety of advanced reactors are sponsored by the BMFT. The Gesellschaft fuer Reaktorsicherheit (GRS), (Society for Reactor Safety), by order of the BMFT, informs continuously of the status of such investigations by means of semi-annual and annual publication of progress reports within the series GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general informations of progress in reactor safety research. The individual reports are classified according to the same classification system as applied in the nuclear index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in sequence of their project numbers. (orig./HP)

  20. Software Safety Risk in Legacy Safety-Critical Computer Systems

    Science.gov (United States)

    Hill, Janice L.; Baggs, Rhoda

    2007-01-01

    Safety Standards contain technical and process-oriented safety requirements. Technical requirements are those such as "must work" and "must not work" functions in the system. Process-Oriented requirements are software engineering and safety management process requirements. Address the system perspective and some cover just software in the system > NASA-STD-8719.13B Software Safety Standard is the current standard of interest. NASA programs/projects will have their own set of safety requirements derived from the standard. Safety Cases: a) Documented demonstration that a system complies with the specified safety requirements. b) Evidence is gathered on the integrity of the system and put forward as an argued case. [Gardener (ed.)] c) Problems occur when trying to meet safety standards, and thus make retrospective safety cases, in legacy safety-critical computer systems.

  1. CSNI collective statement on support facilities for existing and advanced reactors. The function of OECD/Nea joint projects Nea committee on the safety of nuclear installations (CSNI)

    International Nuclear Information System (INIS)

    2008-01-01

    The NEA Committee on the Safety of Nuclear Installations (CSNI) has recently completed a study on the availability and utilisation of facilities supporting safety studies for current and advanced nuclear power reactors. The study showed that significant steps had been undertaken in the past several years in support of safety test facilities, mainly by conducting multinational joint projects centered on the capability of unique test facilities worldwide. Given the positive experience of the safety research projects, it has been recommended that efforts be made to prioritize technical issues associated with advanced (Generation IV) reactor designs and to develop options on how to efficiently obtain the necessary data through internationally co-ordinated research, preparing a gradual extension of safety research beyond the needs set by currently operating reactors. This statement constitutes a reference for future CSNI activities and for safety authorities, R and D centres and industry for internationally co-ordinated research initiatives in the nuclear safety research area. (author)

  2. ITER safety

    International Nuclear Information System (INIS)

    Raeder, J.; Piet, S.; Buende, R.

    1991-01-01

    As part of the series of publications by the IAEA that summarize the results of the Conceptual Design Activities for the ITER project, this document describes the ITER safety analyses. It contains an assessment of normal operation effluents, accident scenarios, plasma chamber safety, tritium system safety, magnet system safety, external loss of coolant and coolant flow problems, and a waste management assessment, while it describes the implementation of the safety approach for ITER. The document ends with a list of major conclusions, a set of topical remarks on technical safety issues, and recommendations for the Engineering Design Activities, safety considerations for siting ITER, and recommendations with regard to the safety issues for the R and D for ITER. Refs, figs and tabs

  3. Supporting Fernald Site Closure with Integrated Health and Safety Plans as Documented Safety Analyses

    International Nuclear Information System (INIS)

    Kohler, S.; Brown, T.; Fisk, P.; Krach, F.; Klein, B.

    2004-01-01

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D and D) of over 200 structures, including eight major nuclear production plants. There is one of twelve nuclear facilities still remaining (Silos containing uranium ore residues) with its own safety basis documentation. This paper presents the status of the FCP's safety basis documentation program, illustrating that all of the former nuclear facilities and activities have now replaced. Basis of Interim Operations (BIOs) with I-HASPs as their safety basis during the closure process

  4. SFR Safety Considerations

    International Nuclear Information System (INIS)

    Glatz, Jean-Paul

    2012-01-01

    Objectives of the Safety and Operation Project: • analysis and experiments that support approaches and assess performance of specific safety features, • development and verification of computational tools and validation of models employed in safety assessment and facility licensing, and • valorisation of reactor operation, from experience and testing in operating SFR plants

  5. Important projects of the Division

    International Nuclear Information System (INIS)

    2008-01-01

    In this chapter important projects of the Division for Radiation Safety, NPP Decommissioning and Radwaste Management of the VUJE, a. s. are presented. Division for Radiation Safety, NPP Decommissioning and Radwaste Management has successfully carried out variety of significant projects. The most significant projects that were realised, are implemented and possible future projects are introduced in the following part of presentation.

  6. Preliminary safety evaluation for the spent nuclear fuel project`s cold vacuum drying system

    Energy Technology Data Exchange (ETDEWEB)

    Garvin, L.J., Westinghouse Hanford

    1996-07-01

    This preliminary safety evaluation (PSE) considers only the Cold Vacuum Drying System (CVDS) facility and its mission as it relates to the integrated process strategy (WHC 1995). The purpose of the PSE is to identify those CBDS design functions that may require safety- class and safety-significant accident prevention and mitigation features.

  7. Manpower analysis in transportation safety. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.S.; Bowden, H.M.; Colford, C.A.; DeFilipps, P.J.; Dennis, J.D.; Ehlert, A.K.; Popkin, H.A.; Schrader, G.F.; Smith, Q.N.

    1977-05-01

    The project described provides a manpower review of national, state and local needs for safety skills, and projects future manning levels for transportation safety personnel in both the public and private sectors. Survey information revealed that there are currently approximately 121,000 persons employed directly in transportation safety occupations within the air carrier, highway and traffic safety, motor carrier, pipeline, rail carrier, and marine carrier transportation industry groups. The projected need for 1980 is over 145,000 of which over 80 percent will be in highway safety. An analysis of transportation tasks is included, and shows ten general categories about which the majority of safety activities are focused. A skills analysis shows a generally high level of educational background and several years of experience are required for most transportation safety jobs. An overall review of safety programs in the transportation industry is included, together with chapters on the individual transportation modes.

  8. First NASA Aviation Safety Program Weather Accident Prevention Project Annual Review

    Science.gov (United States)

    Colantonio, Ron

    2000-01-01

    The goal of this Annual Review was to present NASA plans and accomplishments that will impact the national aviation safety goal. NASA's WxAP Project focuses on developing the following products: (1) Aviation Weather Information (AWIN) technologies (displays, sensors, pilot decision tools, communication links, etc.); (2) Electronic Pilot Reporting (E-PIREPS) technologies; (3) Enhanced weather products with associated hazard metrics; (4) Forward looking turbulence sensor technologies (radar, lidar, etc.); (5) Turbulence mitigation control system designs; Attendees included personnel from various NASA Centers, FAA, National Weather Service, DoD, airlines, aircraft and pilot associations, industry, aircraft manufacturers and academia. Attendees participated in discussion sessions aimed at collecting aviation user community feedback on NASA plans and R&D activities. This CD is a compilation of most of the presentations presented at this Review.

  9. BARC safety framework

    International Nuclear Information System (INIS)

    Jayarajan, K.; Taly, Y.K.

    2017-01-01

    BARC has a large number facilities and a large number of employees. It has a variety of activities, carried out in different parts of India. All activities related nuclear fuel cycle are carried out in BARC. In addition, BARC has many non-nuclear facilities and projects. Therefore, regulation of BARC facilities is a challenging task. BSC was constituted in the year 2000 to address the challenges of regulating safety of the projects, plants and facilities of BARC. It has a comprehensive regulatory framework, which makes use of the expertise of more than one thousand experts of BARC for safety and regulatory activities. BSC has completed hundred meetings and issued regulatory consents to many projects, facilities and activities. During the last 17 years, BSC has constituted 44 committees in three tiers, which had conducted more than 2000 meetings to support safety and regulatory activities of BSC

  10. Safety Commission databases support

    CERN Document Server

    Petit, S; CERN. Geneva. TS Department

    2005-01-01

    A collaboration project between the Safety Commission (SC) and the Controls, Safety and Engineering databases group (TS/CSE) started last year. The aim of this collaboration is to transfer several SC applications from their local environments onto the D7i-MTF EDMS framework, for which the TS/CSE group is responsible. Different domains of activity and projects have been defined in the areas of equipment management, safety inspections, accidents and risks management. Priorities have been established in collaboration with SC. This paper presents the new Safety Inspections Management system (SIM) which will be put in production before the summer 2005 and reviews the constraints of both the users and the development and operational framework that needed to be taken into account. The technical solutions adopted to assure a successful production start-up and operation of the SIM system are described. Progress on other on-going projects and plans for the next year are also reported.

  11. Annual report on reactor safety research projects sponsored by the Ministry of Economics and Technology of the Federal Republic of Germany. Reporting period 2007. Progress report

    International Nuclear Information System (INIS)

    2007-01-01

    Within its competence for energy research the Federal Ministry of Economics and Technology (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Research Management Division of GRS. The reports as of the year 2000 are available in the Internet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system 'Joint Safety Research Index (JSRI)'. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  12. The influence of organisational and management factors on safety performance in NNPPS. Rand D project

    International Nuclear Information System (INIS)

    Cal, C. de la; Gil, B.; Sola, R.; Vaquero, C.; Garces, M. I.

    2002-01-01

    The direct influence of organisational and managerial factors on safety performance in nuclear power plants has been widely proved by two findings, the analysis of their operating experience and the differences in safety levels reached by similar installations. Specially, the study of majors accidents such as TMI-2 and Chernobyl have demonstrated that the technical deficiencies are not the only root causes, but there are a whole set of human, organisational, managerial and social factors which are the origin from most of these deficiencies. In recent years, this fact is emphasised with the nuclear industry involved a process of change. The deregulation of the electricity market, which has increased the economic pressures to the companies and has driven in many cases to restructures in ownership (mergers, acquisitions), downsizing processes and outsourcing parts of the work, jointly with the development of information technologies and computer networks and with a change in the regulatory and social climates are some of the nre factors affecting the performance of nuclear power plants that have addressed, even more, to the need of re-viewing and assessing the impact of organisational aspects on their safe performance. There have been international efforts to analyse the influence of organisational factors in the safety of nuclear power plants following different approaches. Research institutions, utilities and regulatory bodies. individually or in co-operation, have tried to develop practical tools for taking into account the organisation. According to these international efforts the Association of Spanish Utilities, UNESA, and the Spanish Nuclear Regulatory Body, CSN, have included in 1998, for the first time in their Co-ordinated Plan for Research, an innovative five years R and D project entitled Development of methods to evaluate and model the impact of organisation on nuclear poer plants safety whose main objectives are to analyse the impact of organisation and

  13. Safety-critical Java for embedded systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Dalsgaard, Andreas Engelbredt; Hansen, René Rydhof

    2016-01-01

    This paper presents the motivation for and outcomes of an engineering research project on certifiable Javafor embedded systems. The project supports the upcoming standard for safety-critical Java, which defines asubset of Java and libraries aiming for development of high criticality systems....... The outcome of this projectinclude prototype safety-critical Java implementations, a time-predictable Java processor, analysis tools formemory safety, and example applications to explore the usability of safety-critical Java for this applicationarea. The text summarizes developments and key contributions...

  14. Chernobyl 30 years on. Key remediation and safety projects are 'on track'

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, David [NucNet, Brussels (Belgium)

    2016-06-15

    Thirty years after the accident at Chernobyl, key remediation and safety projects are on track and construction of the vital Euro 1.5 bn (US Dollars 1.6 bn) New Safe Confinement (NSC) is almost finished with commissioning scheduled for November 2017, the company in charge of construction and the European Bank for Reconstruction and Development (EBRD) told NucNet. The NSC is the most high profile and expensive element of the US Dollars 2.15 bn Shelter Implementation Plan (SIP), a framework developed to overcome the consequences of the accident.

  15. Final hazard classification and auditable safety analysis for the 105-C Reactor Interim Safe Storage Project

    International Nuclear Information System (INIS)

    Rodovsky, T.J.; Larson, A.R.; Dexheimer, D.

    1996-12-01

    This document summarizes the inventories of radioactive and hazardous materials present in the 105-C Reactor Facility and the operations associated with the Interim Safe Storage Project which includes decontamination and demolition and interim safe storage of the remaining facility. This document also establishes a final hazard classification and verifies that appropriate and adequate safety functions and controls are in place to reduce or mitigate the risk associated with those operations

  16. Regulatory Oversight of Safety Culture in Finland: A Systemic Approach to Safety

    International Nuclear Information System (INIS)

    Oedewald, P.; Väisäsvaara, J.

    2016-01-01

    In Finland the Radiation and Nuclear Safety Authority STUK specifies detailed regulatory requirements for good safety culture. Both the requirements and the practical safety culture oversight activities reflect a systemic approach to safety: the interconnections between the technical, human and organizational factors receive special attention. The conference paper aims to show how the oversight of safety culture can be integrated into everyday oversight activities. The paper also emphasises that the scope of the safety culture oversight is not specific safety culture activities of the licencees, but rather the overall functioning of the licence holder or the new build project organization from safety point of view. The regulatory approach towards human and organizational factors and safety culture has evolved throughout the years of nuclear energy production in Finland. Especially the recent new build projects have highlighted the need to systematically pay attention to the non-technical aspects of safety as it has become obvious how the HOF issues can affect the design processes and quality of construction work. Current regulatory guides include a set of safety culture related requirements. The requirements are binding to the licence holders and they set both generic and specific demands on the licencee to understand, monitor and to develop safety culture of their own organization but also that of their supplier network. The requirements set for the licence holders has facilitated the need to develop the regulator’s safety culture oversight practices towards a proactive and systemic approach.

  17. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  18. General safety orientations of the Jules Horowitz Reactor Project (JHRP)

    International Nuclear Information System (INIS)

    Tremodeux, P.; Fiorini, G.L.

    2000-01-01

    After a brief reminder of the JHR purpose, the document outlines the General Safety related Orientations/Recommendations used for the design and the safety assessment of the facility. As far as the JHR design is new, the safety philosophy adopted for this reactor will be as consistent as possible with that recommended for future (power...) reactors. The general recommendations developed in the paper are: the general nuclear safety approach for the design, operation and analysis with, in particular, the adoption of the Defence In Depth principle; the general safety objectives in terms of radiological consequences; the use of Probabilistic Safety Studies; quality assurance. The 'Defence in Depth' concept using amongst others the 'Barrier' principle remains the basis of the JHR safety. 'Defence In Depth' is applied both to design and operation. Its adequacy is checked during the safety assessment and the paper gives the technical recommendations that should allow the designer to implement this concept into the final design. Built mainly for experimental irradiation the JHR facilities will be handled according to conventional or new operation rules which could put materials under stress and entail handling errors. Specific recommendations are defined to take into account the corresponding peculiarities; they are discussed in the paper. The safety design of the JHR takes into account the experience accumulated through the CEA experimental irradiation programmes, which represents several dozen reactor years; the consultation of CEA reactor facilities operators is ongoing. The corresponding feedback is shortly described. Recommendations related to maintenance and associated operation are indicated as well as those regarding the human factor. Details are given on the JHR safety practical implementation through the CEA/DRN Safety approach. Details of the corresponding Safety Objectives are also discussed. Finally the designer position on the role of probabilistic safety

  19. Safety evaluation report related to the operation of WPPSS Nuclear Project No. 2, (Docket No. 50-397). Supplement No. 4

    International Nuclear Information System (INIS)

    1983-12-01

    Supplement No. 4 to the Safety Evaluation Report on the application filed by Washington Public Power Supply System for a license to operate the WPPSS Nuclear Project No. 2, located in Richland, Washington, has been prepared by the Division of Licensing, Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1, 2 and 3

  20. Safety design guide for safety related systems for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    In general, two types of safety related systems and structures exist in the nuclear plant; The one is a systems and structures which perform safety functions during the normal operation of the plant, and the other is a systems and structures which perform safety functions to mitigate events caused by failure of the normally operating systems or by naturally occurring phenomena. In this safety design guide, these systems are identified in detail, and the major events for which the safety functions are required and the major safety requirements are identified in the list. As the probabilistic safety assessments are completed during the course of the project, additions or deletions to the list may be justified. 3 tabs. (Author) .new

  1. Safety design guide for safety related systems for CANDU 9

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of); Wright, A.C.D. [Atomic Energy of Canada Ltd., Toronto (Canada)

    1996-03-01

    In general, two types of safety related systems and structures exist in the nuclear plant; The one is a systems and structures which perform safety functions during the normal operation of the plant, and the other is a systems and structures which perform safety functions to mitigate events caused by failure of the normally operating systems or by naturally occurring phenomena. In this safety design guide, these systems are identified in detail, and the major events for which the safety functions are required and the major safety requirements are identified in the list. As the probabilistic safety assessments are completed during the course of the project, additions or deletions to the list may be justified. 3 tabs. (Author) .new.

  2. A Cultural Resources Survey and Testing Report of the Elk Chute West Ditch Channel Cleanout Project, Dunklin and Pemiscot Counties, Missouri

    Science.gov (United States)

    1992-02-01

    the levee is leased by the U.S. Government to private individuals for livestock grazing and cotton cultivation. Cultivation within the project area has...atiuj ng adapi-al tun to thIie wetter condi Lions tot lowing the dry hypor In .iaI. lna I us trrte.sponds to the sub-Boreal climatic episode (Sabo el...the Buckett phase of the Cairo Lowland alea . However. as rhillips (1970) noted, the phase is otherwise not well delktn|d. Specilic pottery types such as

  3. Measuring safety in aviation : empirical results about the relation between safety outcomes and safety management system processes, operational activities and demographic data

    NARCIS (Netherlands)

    Kaspers, Steffen; Karanikas, Nektarios; Piric, Selma; van Aalst, Robbert; de Boer, Robert Jan; Roelen, Alfred

    2017-01-01

    A literature review conducted as part of a research project named “Measuring Safety in Aviation – Developing Metrics for Safety Management Systems” revealed several challenges regarding the safety metrics used in aviation. One of the conclusions was that there is limited empirical evidence about the

  4. Researchers' Roles in Patient Safety Improvement.

    Science.gov (United States)

    Pietikäinen, Elina; Reiman, Teemu; Heikkilä, Jouko; Macchi, Luigi

    2016-03-01

    In this article, we explore how researchers can contribute to patient safety improvement. We aim to expand the instrumental role researchers have often occupied in relation to patient safety improvement. We reflect on our own improvement model and experiences as patient safety researchers in an ongoing Finnish multi-actor innovation project through self-reflective narration. Our own patient safety improvement model can be described as systemic. Based on the purpose of the innovation project, our improvement model, and the improvement models of the other actors in the project, we have carried out a wide range of activities. Our activities can be summarized in 8 overlapping patient safety improvement roles: modeler, influencer, supplier, producer, ideator, reflector, facilitator, and negotiator. When working side by side with "practice," researchers are offered and engage in several different activities. The way researchers contribute to patient safety improvement and balance between different roles depends on the purpose of the study, as well as on the underlying patient safety improvement models. Different patient safety research paradigms seem to emphasize different improvement roles, and thus, they also face different challenges. Open reflection on the underlying improvement models and roles can help researchers with different backgrounds-as well as other actors involved in patient safety improvement-in structuring their work and collaborating productively.

  5. Automated nuclear material recovery and decontamination of large steel dynamic experiment containers

    International Nuclear Information System (INIS)

    Dennison, D.K.; Gallant, D.A.; Nelson, D.C.; Stovall, L.A.; Wedman, D.E.

    1999-01-01

    A key mission of the Los Alamos National Laboratory (LANL) is to reduce the global nuclear danger through stockpile stewardship efforts that ensure the safety and reliability of nuclear weapons. In support of this mission LANL performs dynamic experiments on special nuclear materials (SNM) within large steel containers. Once these experiments are complete, these containers must be processed to recover residual SNM and to decontaminate the containers to below low level waste (LLW) disposal limits which are much less restrictive for disposal purposes than transuranic (TRU) waste limits. The purpose of this paper is to describe automation efforts being developed by LANL for improving the efficiency, increasing worker safety, and reducing worker exposure during the material cleanout and recovery activities performed on these containers

  6. Seismic Safety Margins Research Program. Phase 1. Project V. Structural sub-system response: subsystem response review

    International Nuclear Information System (INIS)

    Fogelquist, J.; Kaul, M.K.; Koppe, R.; Tagart, S.W. Jr.; Thailer, H.; Uffer, R.

    1980-03-01

    This project is directed toward a portion of the Seismic Safety Margins Research Program which includes one link in the seismic methodology chain. The link addressed here is the structural subsystem dynamic response which consists of those components and systems whose behavior is often determined decoupled from the major structural response. Typically the mathematical model utilized for the major structural response will include only the mass effects of the subsystem and the main model is used to produce the support motion inputs for subsystem seismic qualification. The main questions addressed in this report have to do with the seismic response uncertainty of safety-related components or equipment whose seismic qualification is performed by (a) analysis, (b) tests, or (c) combinations of analysis and tests, and where the seismic input is assumed to have no uncertainty

  7. Software Safety Life cycle and Method of POSAFE-Q System

    International Nuclear Information System (INIS)

    Lee, Jang-Soo; Kwon, Kee-Choon

    2006-01-01

    This paper describes the relationship between the overall safety life cycle and the software safety life cycle during the development of the software based safety systems of Nuclear Power Plants. This includes the design and evaluation activities of components as well as the system. The paper also compares the safety life cycle and planning activities defined in IEC 61508 with those in IEC 60880, IEEE 7-4.3.2, and IEEE 1228. Using the KNICS project as an example, software safety life cycle and safety analysis methods applied to the POSAFE-Q are demonstrated. KNICS software safety life cycle is described by comparing to the software development, testing, and safety analysis process with international standards. The safety assessment of the software for POSAFE-Q is a joint Korean German project. The assessment methods applied in the project and the experiences gained from this project are presented

  8. A web-based tool for the Comprehensive Unit-based Safety Program (CUSP).

    Science.gov (United States)

    Pronovost, Peter J; King, Jay; Holzmueller, Christine G; Sawyer, Melinda; Bivens, Shauna; Michael, Michelle; Haig, Kathy; Paine, Lori; Moore, Dana; Miller, Marlene

    2006-03-01

    An organization's ability to change is driven by its culture, which in turn has a significant impact on safety. The six-step Comprehensive Unit-Based Safety Program (CUSP) is intended to improve local culture and safety. A Web-based project management tool for CUSP was developed and then pilot tested at two hospitals. HOW ECUSP WORKS: Once a patient safety concern is identified (step 3), a unit-level interdisciplinary safety committee determines issue criticality and starts up the projects (step 4), which are managed using project management tools within eCUSP (step 5). On a project's completion, the results are disseminated through a shared story (step 6). OSF St. Joseph's Medical Center-The Medical Birthing Center (Bloomington, Illinois), identified 11 safety issues, implemented 11 projects, and created 9 shared stories--including one for its Armband Project. The Johns Hopkins Hospital (Baltimore) Medical Progressive Care (MPC4) Unit identified 5 safety issues and implemented 4 ongoing projects, including the intravenous (IV) Tubing Compliance Project. The eCUSP tool's success depends on an organizational commitment to creating a culture of safety.

  9. Environment and safety research status report: 1993

    International Nuclear Information System (INIS)

    1993-03-01

    The 1993 status report discusses ongoing and planned research activities in the GRI Environment and Safety Program. The objectives and goals, accomplishments, and strategy along with the basis for each project area are presented for the supply, end use, and gas operations subprograms. Within the context of these subprograms, contract status summaries under their conceptual titles are given for the following project areas: Gas Supply Environmental and Safety Research, Air Quality Research, End Use Equipment Safety Research, Gas Operations Safety Research, Liquefied Natural Gas, Safety Research, and Gas Operations Environmental Research

  10. EGP contribution to Mochovce completion, safety enhancement and operation

    International Nuclear Information System (INIS)

    Letko, A.; Matula, P.

    2000-01-01

    The Re-Evaluation Programme of Mochovce NPP was created in 1995 as an integral part of the completion of the Unit 1 and Unit 2. This program analyzed the general fulfillment of the principle of nuclear safety in the NPP Mochovce project. The analysis has required new corrections of the project, so that the project met the higher safety requirements when starting production. 87 safety measures represent the 'Program'. The basis for their creation were the international missions from 1992 to 1995 which defined. The final safety aim was represented by 'The Technical Specification of the Safety Measures' supported by The Nuclear Power Plant Research Institute and recommended by The Nuclear Regulatory Authority of the Slovak Republic. The technical specification served as a qualified base for the next steps in the pre-project, project and realization stages. (author)

  11. Implementing 10 CFR 830 at the FEMP Silos: Nuclear Health and Safety Plans as Documented Safety Analysis

    International Nuclear Information System (INIS)

    Fisk, Patricia; Rutherford, Lavon

    2003-01-01

    The objective of the Silos Project at the Fernald Closure Project (FCP) is to safely remediate high-grade uranium ore residues (Silos 1 and 2) and metal oxide residues (Silo 3). The evolution of Documented Safety Analyses (DSAs) for these facilities has reflected the changes in remediation processes. The final stage in silos DSAs is an interpretation of 10 CFR 830 Safe Harbor Requirements that combines a Health and Safety Plan with nuclear safety requirements. This paper will address the development of a Nuclear Health and Safety Plan, or N-HASP

  12. Simplifying documentation while approaching site closure: integrated health and safety plans as documented safety analysis

    International Nuclear Information System (INIS)

    Brown, Tulanda

    2003-01-01

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). By isolating any remediation activities that deal with Enriched Restricted Materials, the SBRs and PRs assure that the hazard categories of former nuclear facilities undergoing remediation remain less than Nuclear. These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D and D) of over 150 structures, including six major nuclear production plants. This paper presents the FCP method for maintaining safety basis documentation, using the D and D I-HASP as an example

  13. Nuclear Safety in Central and Eastern Europe

    International Nuclear Information System (INIS)

    2001-04-01

    Nuclear safety is one of the critical issues with respect to the enlargement of the European Union towards the countries of Central and Eastern Europe. In the context of the enlargement process, the European Commission overall strategy on nuclear safety matters has been to bring the general standard of nuclear safety in the pre-accession countries up to a level that would be comparable to the safety levels in the countries of the European Union. In this context, the primary objective of the project was to develop a common format and general guidance for the evaluation of the current nuclear safety status in countries that operate commercial nuclear power plants. Therefore, one of the project team first undertakings was to develop an approach that would allow for a consistent and comprehensive overview of the nuclear safety status in the CEEC, enabling an equal treatment of the countries to be evaluated. Such an approach, which did not exist, should also ensure identification of the most important safety issues of the individual nuclear power plants. The efforts resulted in the development of the ''Performance Evaluation Guide'', which focuses on important nuclear safety issues such as plant design and operation, the practice of performing safety assessments, and nuclear legislation and regulation, in particular the role of the national regulatory body. Another important aspect of the project was the validation of the Performance Evaluation Guide (PEG) by performing a preliminary evaluation of nuclear safety in the CEEC, namely in Bulgaria, Czech Republic, Hungary, Lithuania, Romania, Slovak Republic, and Slovenia. The nuclear safety evaluation of each country was performed as a desktop exercise, using solely available documents that had been prepared by various Western institutions and the countries themselves. Therefore, the evaluation is only of a preliminary nature. The project did not intend to re-assess nuclear safety, but to focus on a comprehensive summary

  14. ITER-FEAT safety

    International Nuclear Information System (INIS)

    Gordon, C.W.; Bartels, H.-W.; Honda, T.; Raeder, J.; Topilski, L.; Iseli, M.; Moshonas, K.; Taylor, N.; Gulden, W.; Kolbasov, B.; Inabe, T.; Tada, E.

    2001-01-01

    Safety has been an integral part of the design process for ITER since the Conceptual Design Activities of the project. The safety approach adopted in the ITER-FEAT design and the complementary assessments underway, to be documented in the Generic Site Safety Report (GSSR), are expected to help demonstrate the attractiveness of fusion and thereby set a good precedent for future fusion power reactors. The assessments address ITER's radiological hazards taking into account fusion's favourable safety characteristics. The expectation that ITER will need regulatory approval has influenced the entire safety design and assessment approach. This paper summarises the ITER-FEAT safety approach and assessments underway. (author)

  15. Ignalina Safety Analysis Group

    International Nuclear Information System (INIS)

    Ushpuras, E.

    1995-01-01

    The article describes the fields of activities of Ignalina NPP Safety Analysis Group (ISAG) in the Lithuanian Energy Institute and overview the main achievements gained since the group establishment in 1992. The group is working under the following guidelines: in-depth analysis of the fundamental physical processes of RBMK-1500 reactors; collection, systematization and verification of the design and operational data; simulation and analysis of potential accident consequences; analysis of thermohydraulic and neutronic characteristics of the plant; provision of technical and scientific consultations to VATESI, Governmental authorities, and also international institutions, participating in various projects aiming at Ignalina NPP safety enhancement. The ISAG is performing broad scientific co-operation programs with both Eastern and Western scientific groups, supplying engineering assistance for Ignalina NPP. ISAG is also participating in the joint Lithuanian - Swedish - Russian project - Barselina, the first Probabilistic Safety Assessment (PSA) study of Ignalina NPP. The work is underway together with Maryland University (USA) for assessment of the accident confinement system for a range of breaks in the primary circuit. At present the ISAG personnel is also involved in the project under the grant from the Nuclear Safety Account, administered by the European Bank for reconstruction and development for the preparation and review of an in-depth safety assessment of the Ignalina plant

  16. Dismantling techniques for plutonium-contaminated gloveboxes: experience from first year of decommissioning

    International Nuclear Information System (INIS)

    Baumann, R.; Faber, P.

    2003-01-01

    At the mixed-oxide (MOX) processing facility formerly operated by ALKEM GmbH in Hanau, Germany - which was taken over to Siemens in 1988 and renamed Siemens' Hanau Fuel Fabrication Plant, MOX facility - around 8500 kg of plutonium were processed to make MOX fuel rods and fuel assemblies since production started in 1965. After shutdown of the facility by the authorities in mid-1991 for political reasons, the remaining nuclear fuel materials were processed during the subsequent ''cleanout'' phase starting in 1997 into rods and assemblies suitable for long-term storage. The last step in cleanout consisted of ''flushing'' the production equipment with depleted uranium and thoroughly cleaning the gloveboxes. During cleanout around 700 kg of plutonium were processed in the form of mixed oxides. The cleanout phase including the subsequent cleaning and flushing operations ended on schedule in September 2001 without any significant problems. Starting in mid-1999, the various glovebox dismantling techniques were tested using uncontaminated components while cleanout was still in progress and then, once these trials had been successfully completed, further qualified through use on actual components. The pilot-phase trials required four separate licenses under Section 7, Subsection (3) of the German Atomic Energy Act. Thanks to detailed advance planning and experience from the pilot trials the individual dismantling steps could be described in sufficient detail for the highly complex German licensing procedure. The first partial license for decommissioning the MOX facility under Sec. 7, Subsec. (3) of the Atomic Energy Act was issued on May 28, 2001. It mainly covers dismantling of the interior equipment inside the gloveboxes a well as the gloveboxes themselves. Actual decommissioning work inside the former production areas of the MOX facility started on a large scale in early September 2001. (orig.)

  17. Dismantling techniques for plutonium-contaminated gloveboxes: experience from first year of decommissioning; Zerlegungstechniken fuer Pu-kontaminierte Handschuhkaesten: Erfahrungsbericht nach einem Jahr Rueckbau

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, R.; Faber, P. [Siemens Power Generation, Decommissioning Projects, Hanau (Germany)

    2003-07-01

    At the mixed-oxide (MOX) processing facility formerly operated by ALKEM GmbH in Hanau, Germany - which was taken over to Siemens in 1988 and renamed Siemens' Hanau Fuel Fabrication Plant, MOX facility - around 8500 kg of plutonium were processed to make MOX fuel rods and fuel assemblies since production started in 1965. After shutdown of the facility by the authorities in mid-1991 for political reasons, the remaining nuclear fuel materials were processed during the subsequent ''cleanout'' phase starting in 1997 into rods and assemblies suitable for long-term storage. The last step in cleanout consisted of ''flushing'' the production equipment with depleted uranium and thoroughly cleaning the gloveboxes. During cleanout around 700 kg of plutonium were processed in the form of mixed oxides. The cleanout phase including the subsequent cleaning and flushing operations ended on schedule in September 2001 without any significant problems. Starting in mid-1999, the various glovebox dismantling techniques were tested using uncontaminated components while cleanout was still in progress and then, once these trials had been successfully completed, further qualified through use on actual components. The pilot-phase trials required four separate licenses under Section 7, Subsection (3) of the German Atomic Energy Act. Thanks to detailed advance planning and experience from the pilot trials the individual dismantling steps could be described in sufficient detail for the highly complex German licensing procedure. The first partial license for decommissioning the MOX facility under Sec. 7, Subsec. (3) of the Atomic Energy Act was issued on May 28, 2001. It mainly covers dismantling of the interior equipment inside the gloveboxes a well as the gloveboxes themselves. Actual decommissioning work inside the former production areas of the MOX facility started on a large scale in early September 2001. (orig.)

  18. Implementing partnerships in nonreactor facility safety analyses

    International Nuclear Information System (INIS)

    Courtney, J.C.; Perry, W.H.; Phipps, R.D.

    1996-01-01

    Faculty and students from LSU have been participating in nuclear safety analyses and radiation protection projects at ANL-W at INEL since 1973. A mutually beneficial relationship has evolved that has resulted in generation of safety-related studies acceptable to Argonne and DOE, NRC, and state regulatory groups. Most of the safety projects have involved the Hot Fuel Examination Facility or the Fuel Conditioning Facility; both are hot cells that receive spent fuel from EBR-II. A table shows some of the major projects at ANL-W that involved LSU students and faculty

  19. Safety assessment for the above ground storage of Cadmium Safety and Control Rods at the Solid Waste Management Facility

    International Nuclear Information System (INIS)

    Shaw, K.W.

    1993-11-01

    The mission of the Savannah River Site is changing from radioisotope production to waste management and environmental restoration. As such, Reactor Engineering has recently developed a plan to transfer the safety and control rods from the C, K, L, and P reactor disassembly basin areas to the Transuranic (TRU) Waste Storage Pads for long-term, retrievable storage. The TRU pads are located within the Solid Waste Management Facilities at the Savannah River Site. An Unreviewed Safety Question (USQ) Safety Evaluation has been performed for the proposed disassembly basin operations phase of the Cadmium Safety and Control Rod Project. The USQ screening identified a required change to the authorization basis; however, the Proposed Activity does not involve a positive USQ Safety Evaluation. A Hazard Assessment for the Cadmium Safety and Control Rod Project determined that the above-ground storage of the cadmium rods results in no change in hazard level at the TRU pads. A Safety Assessment that specifically addresses the storage (at the TRU pads) phase of the Cadmium Safety and Control Rod Project has been performed. Results of the Safety Assessment support the conclusion that a positive USQ is not involved as a result of the Proposed Activity

  20. Safety Assessment for Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    In the past few decades, international guidance has been developed on methods for assessing the safety of predisposal and disposal facilities for radioactive waste. More recently, it has been recognized that there is also a need for specific guidance on safety assessment in the context of decommissioning nuclear facilities. The importance of safety during decommissioning was highlighted at the International Conference on Safe Decommissioning for Nuclear Activities held in Berlin in 2002 and at the First Review Meeting of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management in 2003. At its June 2004 meeting, the Board of Governors of the IAEA approved the International Action Plan on Decommissioning of Nuclear Facilities (GOV/2004/40), which called on the IAEA to: ''establish a forum for the sharing and exchange of national information and experience on the application of safety assessment in the context of decommissioning and provide a means to convey this information to other interested parties, also drawing on the work of other international organizations in this area''. In response, in November 2004, the IAEA launched the international project Evaluation and Demonstration of Safety for Decommissioning of Facilities Using Radioactive Material (DeSa) with the following objectives: -To develop a harmonized approach to safety assessment and to define the elements of safety assessment for decommissioning, including the application of a graded approach; -To investigate the practical applicability of the methodology and performance of safety assessments for the decommissioning of various types of facility through a selected number of test cases; -To investigate approaches for the review of safety assessments for decommissioning activities and the development of a regulatory approach for reviewing safety assessments for decommissioning activities and as a basis for regulatory decision making; -To provide a forum

  1. Chapter No.4. Safety analyses

    International Nuclear Information System (INIS)

    2002-01-01

    In 2001 the activity in the field of safety analyses was focused on verification of the safety analyses reports for NPP V-2 Bohunice and NPP Mochovce concerning the new profiled fuel and probabilistic safety assessment study for NPP Mochovce. The calculation safety analyses were performed and expert reviews for the internal UJD needs were elaborated. An important part of work was performed also in solving of scientific and technical tasks appointed within bilateral projects of co-operation between UJD and its international partnership organisations as well as within international projects ordered and financed by the European Commission. All these activities served as an independent support for UJD in its deterministic and probabilistic safety assessment of nuclear installations. A special attention was paid to a review of probabilistic safety assessment study of level 1 for NPP Mochovce. The probabilistic safety analysis of NPP related to the full power operation was elaborated in the study and a contribution of the technical and operational improvements to the risk decreasing was quantified. A core damage frequency of the reactor was calculated and the dominant initiating events and accident sequences with the major contribution to the risk were determined. The target of the review was to determine the acceptance of the sources of input information, assumptions, models, data, analyses and obtained results, so that the probabilistic model could give a real picture of the NPP. The review of the study was performed in co-operation of UJD with the IAEA (IPSART mission) as well as with other external organisations, which were not involved in the elaboration of the reviewed document and probabilistic model of NPP. The review was made in accordance with the IAEA guidelines and methodical documents of UJD and US NRC. In the field of calculation safety analyses the UJD activity was focused on the analysis of an operational event, analyses of the selected accident scenarios

  2. Contribution of the ARCAL XX/IAEA project to improvement of radiation safety in medical practices

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    2001-01-01

    The objectives of the ARCAL XX Project: 'Guidelines on Control of Radiation Sources' (1997-2000) are to promote an effective control of the radiation sources used in medicine, industrial and research applications, harmonising and updating existing procedures within Latin American, adopting the International Basic Safety Standards, in order to avoid unnecessary expositions limiting the probability of accidents occurrence. Nine countries participate with experts in the development of guidelines based in the regional experience. The guidelines contain Radiological Safety Requirements, Guide for Authorisation Application and Inspections Procedures. At this moment, there are guidelines for Radiotherapy, Nuclear Medicine and Diagnostic Radiology. The implementation of these guidelines will improve the effectiveness of regulatory control of radiation sources in Latin American and the radiological protection in aspects of occupational, medical, public and potential exposure. This document presents the experience in the development of these guidelines and their contribution for elaborating national regulations in medical practices. (author) [es

  3. Introduction to 'International Handbook of Criticality Safety Benchmark Experiments'

    International Nuclear Information System (INIS)

    Komuro, Yuichi

    1998-01-01

    The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in 1992 by the United States Department of Energy. The project quickly became an international effort as scientists from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) is now an official activity of the Organization for Economic Cooperation and Development-Nuclear Energy Agency (OECD-NEA). 'International Handbook of Criticality Safety Benchmark Experiments' was prepared and is updated year by year by the working group of the project. This handbook contains criticality safety benchmark specifications that have been derived from experiments that were performed at various nuclear critical facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculation techniques used. The author briefly introduces the informative handbook and would like to encourage Japanese engineers who are in charge of nuclear criticality safety to use the handbook. (author)

  4. Overview of PHARE projects implemented in Romania between 1997 and 2008 for enhancing the nuclear safety level

    Energy Technology Data Exchange (ETDEWEB)

    Sanda, Radian; Zerger, Benoit; Manna, Giustino; Farrar, Brian [European Commission, Petten (Netherlands). Joint Research Centre (JRC)

    2015-01-15

    Through the Poland Hungary Aid for Reconstruction of the Economy (PHARE) programme, the European Commission (EC) supported the transition of the Eastern European states to the European market economy. PHARE was a pre-accession financial assistance programme which involved countries from Central and Eastern Europe that applied to become members of the European Union. The paper presents a synthesis of the projects carried out in Romania for enhancing nuclear safety by consolidating key areas such as Regulatory Activities, Radioactive Waste Management and On-Site assistance, in order to fulfil the requirements for accession to the European Union. Statistical considerations on the impact of the projects are also proposed and an analysis of the methodology of intervention is made.

  5. 324 Building life cycle dose estimates for planned work

    Energy Technology Data Exchange (ETDEWEB)

    Landsman, S.D.; Peterson, C.A.; Thornhill, R.E.

    1995-09-01

    This report describes a tool for use by organizational management teams to plan, manage, and oversee personnel exposures within their organizations. The report encompasses personnel radiation exposures received from activities associated with the B-Cell Cleanout Project, Surveillance and Maintenance Project, the Mk-42 Project, and other minor activities. It is designed to provide verifiable Radiological Performance Reports. The primary area workers receive radiation exposure is the Radiochemical Engineering Complex airlock. Entry to the airlock is necessary for maintenance of cranes and other equipment, and to set up the rail system used to move large pieces of equipment and shipping casks into and out of the airlock. Transfers of equipment and materials from the hot cells in the complex to the airlock are required to allow dose profiles of waste containers, shuffling of waste containers to allow grouting activities to go on, and to allow maintenance of in-cell cranes. Both DOE and the Pacific Northwest Laboratory (PNL) are currently investing in state-of-the-art decontamination equipment. Challenging goals for exposure reduction were established for several broad areas of activity. Exposure estimates and goals developed from these scheduled activities will be compared against actual exposures for scheduled and unscheduled activities that contributed to exposures received by personnel throughout the year. Included in this report are life cycle exposure estimates by calendar year for the B-Cell Cleanout project, a three-year estimate of exposures associated with Surveillance and Maintenance, and known activities for Calendar Year (CY) 1995 associated with several smaller projects. These reports are intended to provide a foundation for future dose estimates, by year, requiring updating as exposure conditions change or new avenues of approach to performing work are developed.

  6. 324 Building life cycle dose estimates for planned work

    International Nuclear Information System (INIS)

    Landsman, S.D.; Peterson, C.A.; Thornhill, R.E.

    1995-09-01

    This report describes a tool for use by organizational management teams to plan, manage, and oversee personnel exposures within their organizations. The report encompasses personnel radiation exposures received from activities associated with the B-Cell Cleanout Project, Surveillance and Maintenance Project, the Mk-42 Project, and other minor activities. It is designed to provide verifiable Radiological Performance Reports. The primary area workers receive radiation exposure is the Radiochemical Engineering Complex airlock. Entry to the airlock is necessary for maintenance of cranes and other equipment, and to set up the rail system used to move large pieces of equipment and shipping casks into and out of the airlock. Transfers of equipment and materials from the hot cells in the complex to the airlock are required to allow dose profiles of waste containers, shuffling of waste containers to allow grouting activities to go on, and to allow maintenance of in-cell cranes. Both DOE and the Pacific Northwest Laboratory (PNL) are currently investing in state-of-the-art decontamination equipment. Challenging goals for exposure reduction were established for several broad areas of activity. Exposure estimates and goals developed from these scheduled activities will be compared against actual exposures for scheduled and unscheduled activities that contributed to exposures received by personnel throughout the year. Included in this report are life cycle exposure estimates by calendar year for the B-Cell Cleanout project, a three-year estimate of exposures associated with Surveillance and Maintenance, and known activities for Calendar Year (CY) 1995 associated with several smaller projects. These reports are intended to provide a foundation for future dose estimates, by year, requiring updating as exposure conditions change or new avenues of approach to performing work are developed

  7. Technical self reliance of digital safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon; Lee, Dong Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Kook Hun [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of); Choi, Seung Gap [POSCON, Pohang (Korea, Republic of)

    2009-04-15

    This paper summarizes the development results of the Korea Nuclear Instrumentation and Control System (KNICS) project sponsored by the Korean government. In this project, Man Machine Interface System (MMIS) architecture, two digital platforms, and several control systems are developed. One platform is a programmable Logic Controller (PLC) for a safety system and another platform is a Distributed Control System (DCS) for a non safety system. With the POSAFE Q PLC, a Reactor Protection System (RPS) and an Engineered Safety Feature Component Control System (ESF CCS) are developed. A Power Control System (PCS) is developed based on the DCS. The safety grade platform and the digital safety systems obtained approval for the Topical Report from the Korean regulatory body in February of 2009. Also a Korean utility and a vendor company determined KNICS results to apply them to the planned Nuclear Power Plant (NPP) in March 2009. This paper introduces the technical self reliance experiences of the safety grade platform and the digital safety systems developed in the KNICS R and D project.

  8. Advances in operational safety and severe accident research

    Energy Technology Data Exchange (ETDEWEB)

    Simola, K. [VTT Automation (Finland)

    2002-02-01

    A project on reactor safety was carried out as a part of the NKS programme during 1999-2001. The objective of the project was to obtain a shared Nordic view of certain key safety issues related to the operating nuclear power plants in Finland and Sweden. The focus of the project was on selected central aspects of nuclear reactor safety that are of common interest for the Nordic nuclear authorities, utilities and research bodies. The project consisted of three sub-projects. One of them concentrated on the problems related to risk-informed deci- sion making, especially on the uncertainties and incompleteness of probabilistic safety assessments and their impact on the possibilities to use the PSA results in decision making. Another sub-project dealt with questions related to maintenance, such as human and organisational factors in maintenance and maintenance management. The focus of the third sub-project was on severe accidents. This sub-project concentrated on phenomenological studies of hydrogen combustion, formation of organic iodine, and core re-criticality due to molten core coolant interaction in the lower head of reactor vessel. Moreover, the current status of severe accident research and management was reviewed. (au)

  9. German Light-Water-Reactor Safety-Research Program

    International Nuclear Information System (INIS)

    Seipel, H.G.; Lummerzheim, D.; Rittig, D.

    1977-01-01

    The Light-Water-Reactor Safety-Research Program, which is part of the energy program of the Federal Republic of Germany, is presented in this article. The program, for which the Federal Minister of Research and Technology of the Federal Republic of Germany is responsible, is subdivided into the following four main problem areas, which in turn are subdivided into projects: (1) improvement of the operational safety and reliability of systems and components (projects: quality assurance, component safety); (2) analysis of the consequences of accidents (projects: emergency core cooling, containment, external impacts, pressure-vessel failure, core meltdown); (3) analysis of radiation exposure during operation, accident, and decommissioning (project: fission-product transport and radiation exposure); and (4) analysis of the risk created by the operation of nuclear power plants (project: risk and reliability). Various problems, which are included in the above-mentioned projects, are concurrently studied within the Heiss-Dampf Reaktor experiments

  10. HAZWOPER work plan and site safety and health plan for the Alpha characterization project at the solid waste storage area 4 bathtubbing trench at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-07-01

    This work plan/site safety and health plan is for the alpha sampling project at the Solid Waste Storage Area 4 bathtubbing trench. The work will be conducted by the Oak Ridge National Laboratory (ORNL) Environmental Sciences Division and associated ORNL environmental, safety, and health support groups. This activity will fall under the scope of 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response (HAZWOPER). The purpose of this document is to establish health and safety guidelines to be followed by all personnel involved in conducting work for this project. Work will be conducted in accordance with requirements as stipulated in the ORNL HAZWOPER Program Manual and applicable ORNL; Martin Marietta Energy Systems, Inc.; and U.S. Department of Energy policies and procedures. The levels of protection and the procedures specified in this plan are based on the best information available from historical data and preliminary evaluations of the area. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project. Unforeseeable site conditions or changes in scope of work may warrant a reassessment of the stated protection levels and controls. All adjustments to the plan must have prior approval by the safety and health disciplines signing the original plan

  11. Research projects into the safety of nuclear power plants. Period cover 01. January - 30. June 2016. Progress report; Forschungsvorhaben auf dem Gebiet der Reaktorsicherheit. Berichtszeitraum 01. Januar - 30. Juni 2016. Fortschrittsbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/ Authority Support Division of GRS. The reports as of the year 2000 are available in the internet-based information system on results and data of reactor safety research (https://www.grs-fbw.de). The compilation of the reports is classified according to general topics related to reactor safety research as well as to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  12. Research projects into the safety of nuclear power plants. Period cover 01. July - 31. December 2016. Progress report; Forschungsvorhaben auf dem Gebiet der Reaktorsicherheit. Berichtszeitraum 01. Juli - 31. Dezember 2016. Fortschrittsbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/ Authority Support Division of GRS. The reports as of the year 2000 are available in the internet-based information system on results and data of reactor safety research (https://www.grs-fbw.de). The compilation of the reports is classified according to general topics related to reactor safety research as well as to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. lt has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  13. Safety research in nuclear fuel cycle at PNC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF{sub 6}, uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  14. Safety research in nuclear fuel cycle at PNC

    International Nuclear Information System (INIS)

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF 6 , uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  15. Position adopted by the government about the safety options of the EPR reactor project; Prise de position du gouvernement concernant les options de surete du projet de reacteur EPR

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-01

    On September 28, 2004, on behalf of the French ministers in charge of nuclear safety, the general director of nuclear safety and radiation protection addressed to the president of Electricite de France (EdF) a letter presenting the government's position about the safety options of the EPR (European Pressurized Reactor) project. On the basis of the examination carried out by the nuclear safety authority (ASN) and by the permanent group of reactor experts, the government has considered these options as satisfactory with respect to the safety improvement objectives. Therefore, the government requested EdF to comply with these technical rules for any future reactor development. This dossier includes: the letter of the government, the technical directives for the design and construction of the next generation of PWR-type reactors, the technical rules relative to the design of the main primary and secondary coolant circuits of PWR-type reactors, and the technical file about the safety of the EPR project reprinted from the 2003 report of nuclear safety and radiation protection authority. (J.S.)

  16. Radiation safety study for conventional facility and siting pre project phase of International Linear Collider

    International Nuclear Information System (INIS)

    Sanami, Toshiya; Ban, Syuichi; Sasaki, Shin-ichi

    2015-01-01

    The International Linear Collider (ILC) is a proposed high-energy collider consisting of two linear accelerators, two dumping rings, electron and positron sources, and a single colliding hall with two detectors. The total length and CMS energy of the ILC will be 31 km and 500 GeV, respectively (and 50 km and 1 TeV after future upgrade). The design of the ILC has entered the pre-project phase, which includes site-dependent design. Radiation safety design for the ILC is on-going as a part of conventional facility and siting activities of the pre-project phase. The thickness of a central wall of normal concrete is designed to be 3.5 m under a pessimistic assumption of beam loss. The beam loss scenario is under discussion. Experience and knowledge relating to shielding design and radiation control operational work at other laboratories are required. (authors)

  17. PERCEPTION OF BUILDING CONSTRUCTION WORKERS TOWARDS SAFETY, HEALTH AND ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    C.R. CHE HASSAN

    2007-12-01

    Full Text Available The construction industry is known as one of the most hazardous activities. Therefore, safety on the job site is an important aspect with respect to the overall safety in construction. This paper assesses the safety level perception of the construction building workers towards safety, health and environment on a construction job site in Kuala Lumpur, Malaysia. The above study was carried out by choosing 5 selected large building construction projects and 5 small building construction projects respectively in and around Kuala Lumpur area. In the present study, an exhaustive survey was carried out in these 10 project site areas using a standard checklist and a detailed developed questionnaire. The checklist comprised 17 divisions of safety measurements which are considered and perceived to be important from the safety point of view and was assessed based on the score obtained. The questionnaire comprised the general information with 36 safety attitude statements on a 1-5 Likert scale which was distributed to 100 construction workers. The results of the checklist show the difference of safety levels between the large and small projects. The study revealed that the large projects shown a high and consistent level in safety while the small projects shown a low and varied safety levels. The relationship between the factors can be obtained from the questionnaire. They are organizational commitment, factor influencing communication among workmates, worker related factors, personal role and supervisors’ role factors, obstacles to safety and safe behavior factors and management commitment at all levels in line with the management structure and risk taking behavioral factors. The findings of the present study revealed invaluable indications to the construction managers especially in improving the construction workers’ attitude towards safety, health and environment and hence good safety culture in the building construction industries.

  18. Developing a Highway Safety Fundamentals Course : Research Project Capsule

    Science.gov (United States)

    2012-10-01

    Although the need for road : safety education was fi rst : recognized in the 1960s, : recently it has become an : increasingly urgent issue. To : fulfi ll the hefty goal set up by : the AASHTO Highway : Safety Strategy (cutting : traffi c fatalities ...

  19. Reports on research projects in the field of reactor safety sponsored by BMFT (Federal Ministry for Science and Technology)

    International Nuclear Information System (INIS)

    1982-03-01

    The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of semi-annual and annual publication of progress reports within the series GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the Research Program on the Safety of LWRs 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the Nuclear Safety Index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  20. EPRI program in water reactor safety

    International Nuclear Information System (INIS)

    Loewenstein, W.B.; Gelhaus, F.; Gopalakrishnan, A.

    1975-01-01

    The basis for EPRI's water reactor safety program is twofold. First is compilation and development of fundamental background data necessary for quantified light-water reactor (LWR) safety assurance appraisals. Second is development of realistic and experimentally bench-marked analytical procedures. The results are expected either to confirm the safety margins in current operating parameters, and to identify overly conservative controls, or, in some cases, to provide a basis for improvements to further minimize uncertainties in expected performance. Achievement of these objectives requires the synthesis of related current and projected experimental-analytical projects toward establishment of an experimentally-based analysis for the assurance of safety for LWRs

  1. Research projects into the safety of nuclear power plants. Period cover 01. January - 30. June 2017. Progress report; Forschungsvorhaben auf dem Gebiet der Reaktorsicherheit. Berichtszeitraum 01. Januar - 30. Juni 2017. Fortschrittsbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-07-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/ Authority Support Division of GRS. The reports as of the year 2000 are available in the internet-based information system on results and data of reactor safety research (https://www.grs-fbw.de). The compilation of the reports is classified according to the topic areas of reactor safety research. The reports are arranged in sequence of their project numbers. Ilt has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  2. Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these

  3. Patient safety--worker safety: building a culture of safety to improve healthcare worker and patient well-being.

    Science.gov (United States)

    Yassi, Annalee; Hancock, Tina

    2005-01-01

    Patient safety within the Canadian healthcare system is currently a high national priority, which merits a comprehensive understanding of the underlying causes of adverse events. Not least among these is worker health and safety, which is linked to patient outcomes. Healthcare workers have a high risk of workplace injuries and more mental health problems than most other occupational groups. Many healthcare professionals feel fatigued, stressed, in pain, or at risk of illness or injury-factors they feel impede their ability to provide consistent quality care. With this background, the Occupational Health and Safety Agency for Healthcare (OHSAH) in British Columbia, jointly governed by healthcare unions and healthcare employers, launched several major initiatives to improve the healthcare workplace. These included the promotion of safe patient handling, adaptive clothing, scheduled toileting, stroke management training, measures to improve management of aggressive behaviour and, of course, infection control-all intended to improve the safety of workers, but also to improve patient safety and quality of care. Other projects also explicitly promoting physical and mental health at work, as well as patient safety are also underway. Results of the projects are at various stages of completion, but ample evidence has already been obtained to indicate that looking after the well-being of healthcare workers results in safer and better quality patient care. While more research is needed, our work to date suggests that a comprehensive systems approach to promoting a climate of safety, which includes taking into account workplace organizational factors and physical and psychological hazards for workers, is the best way to improve the healthcare workplace and thereby patient safety.

  4. Hotel and Motel Fire Safety Project - USFA

    Data.gov (United States)

    Department of Homeland Security — Provides a listing of properties compliant with the requirements of the Hotel and Motel Fire Safety Act of 1990. Users may search for compliant properties and submit...

  5. Research projects into the safety of nuclear power plants. Period cover 01. July 2015 - 31. December 2015. Progress report; Forschungsvorhaben auf dem Gebiet der Reaktorsicherheit. Berichtszeitraum 01. Juli - 31. Dezember 2015. Fortschrittsbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/ Authority Support Division of GRS. The reports as of the year 2000 are available in the internet-based information system on results and data of reactor safety research (https://www.grs-fbw.de). The compilation of the reports is classified according to general topics related to reactor safety research as well as to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  6. Research projects into the safety of nuclear power plants. Period covered: 01. July - 31. December 2004. Progress report

    International Nuclear Information System (INIS)

    2004-01-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Technology (BMWi) (Federal Ministry of Economics and Technology) sponsors investigations into the safety of nuclear power plants. The objective of these investigations is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such investigations by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system 'Joint Safety Research Index' of the CEC (Commission of the European Communities). The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  7. Laboratory Safety in the Biology Lab.

    Science.gov (United States)

    Ritch, Donna; Rank, Jane

    2001-01-01

    Reports on a research project to determine if students possess and comprehend basic safety knowledge. Shows a significant increase in the amount of safety knowledge gained when students are exposed to various topics in laboratory safety and are held accountable for learning the information as required in a laboratory safety course. (Author/MM)

  8. Safety in Schools: An Integral Approach

    Science.gov (United States)

    Gairin, Joaquin; Castro, Diego

    2011-01-01

    The present paper summarizes a research project into integral safety in schools. The aims of this particular research are, firstly, to evaluate the degree of integral safety in schools, secondly, to propose means for improving prevention and integral safety systems and thirdly, to identify the characteristics of safety culture. The field work was…

  9. Intensive care unit nurses' perceptions of safety after a highly specific safety intervention.

    Science.gov (United States)

    Elder, N C; Brungs, S M; Nagy, M; Kudel, I; Render, M L

    2008-02-01

    It is unknown if successful changes in specific safety practices in the intensive care unit (ICU) generalize to broader concepts of patient safety by staff nurses. To explore perceptions of patient safety among nursing staff in ICUs following participation in a safety project that decreased hospital acquired infections. After implementation of practices that reduced catheter-related bloodstream infections in ICUs at four community hospitals, ICU nurses participated in focus groups to discuss patient safety. Audiotapes from the focus groups were transcribed, and two independent reviewers categorised the data which were triangulated with responses from selected questions of safety climate surveys and with the safety checklists used by management leadership on walk rounds. Thirty-three nurses attended eight focus groups; 92 nurses and managers completed safety climate surveys, and three separate leadership checklists were reviewed. In focus groups, nurses predominantly related patient safety to dangers in the physical environment (eg, bed rails, alarms, restraints, equipment, etc.) and to medication administration. These areas also represented 47% of checklist items from leadership walk rounds. Nurses most frequently mentioned self-initiated "double checking" as their main safety task. Focus-group participants and survey responses both noted inconsistency between management's verbal and written commitment compared with their day-to-day support of patient safety issues. ICU nurses who participated in a project to decrease hospital acquired infections did not generalize their experience to other aspects of patient safety or relate it to management's interest in patient safety. These findings are consistent with many adult learning theories, where self-initiated tasks, combined with immediate, but temporary problem-solving, are stronger learning forces than management-led activities with delayed feedback.

  10. Dealing with uncertainties in the safety of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2002-01-01

    Confidence in the safety assessment of a possible project of radioactive waste geological repository will only be obtained if the development of the project is closely guided by transparent safety strategies, acknowledging uncertainties and striving for limiting their effects. This paper highlights some sources of uncertainties, external or internal to the project, which are of particular importance for safety. It suggests safety strategies adapted to the uncertainties considered. The case of a possible repository project in the Callovo-Oxfordian clay layer of the French Bure site is examined from that point of view. The German project at Gorleben and the Swedish KBS-3 project are also briefly examined. (author)

  11. A Program Applying Professional Safety Basics in Construction Projects

    Directory of Open Access Journals (Sweden)

    Entisar Kadhim Rasheed

    2016-04-01

    Full Text Available When industrial and constructional renaissance started in the world, the great interest was going on towards the equipment’s, which was the first mean for production. After industry was settled the interest was going on towards the men ship which manpower on which the production depends. It was approved that it represents the basic part in all of the processes and the protection of those individuals against dangers of these equipment’s, industry and its accidents was the basic things which was studied in many researches until it crystallized in general principles for all industries and other take care in each industry. The professional safety is concerned as restrict which aims to take care of humanitarian and material principles also to raise the production of these principles, in the aspect of safety, health and providing the suitable healthy condition to the worker so he can feel safety, confidence and sociological settle, this will increase the production. So In order to maintain the manpower of business risks and to enable them to fulfill their role better to increase production and improve the quality and maintain the machine and supporting the national economy and keep pace with industrial developments and technological came the idea of research to focus on the importance of studying the subject of occupational safety by conducting a field survey to see the reality of professional safety in the relevant departments and work sites and through a questionnaire on the subject and conduct personal interviews with those concerned in this area and to prepare a program for the application of professional safety for each resource (labor, machines, materials, money in construction sites and departments concerned.

  12. FP7 project LONGLIFE: Treatment of long-term irradiation embrittlement effects in RPV safety assessment

    International Nuclear Information System (INIS)

    May, J.; Hein, H.; Altstadt, E.; Bergner, F.; Viehrig, H.W.; Ulbricht, A.; Chaouadi, R.; Radiguet, B.; Cammelli, S.; Huang, H.; Wilford, K.

    2012-01-01

    The increasing age of European Nuclear Power Plants (NPPs) and envisaged extensions of plant lifetimes from 40 up to 80 years require an improved understanding of ageing phenomena of RPV components. The Network of Excellence NULIFE (Nuclear Plant Life Prediction) has been established to advance the safe and economic long-term operation (LTO) of NPPs by facilitating increased co-operation for applied R and D amongst members of the European nuclear community. The accurate prediction and management of RPV neutron irradiation embrittlement connected with long-term operation is an important aspect of this co-operation. Phenomena that might become important at high neutron fluences (such as flux effects and late blooming effects) have to be considered adequately in safety assessments. However, the surveillance database for prolonged irradiation times and low neutron fluxes is sparse. Consequently, there are significant uncertainties in the treatment of long-term irradiation effects. Therefore, the project LONGLIFE (Treatment of long-term irradiation embrittlement effects in RPV safety assessment) was initiated under the Euratom 7th Framework Programme of the European Commission as an umbrella project of NULIFE. LONGLIFE aims at 1) improved understanding of long-term irradiation phenomena that might compromise RPV integrity, and thereby the LTO of European NPPs, and 2) assessment of the adequacy of current prediction tools, codes, standards and surveillance guidelines for supporting long-term RPV operation. The scope of the work comprises the analysis of LTO boundary conditions; microstructural investigations and supplementary mechanical tests on RPV steels, including RPV steels from decommissioned plants; training activities; and elaboration of recommendations for RPV materials assessment and embrittlement surveillance under LTO conditions. A key part of the technical work is the selection of relevant materials for examination, e.g. which contain different weld and base

  13. Safety analysis reports - new strategies

    International Nuclear Information System (INIS)

    Booth, J.A.

    1994-01-01

    Within the past year there have been many external changes in the requirements of safety analysis reports. Now there is emphasis on open-quotes graded approachesclose quotes depending on the Hazard Classification of the project. The Energy Facility Contractors Group (EFCOG) has a Safety Analysis Working Group. The results of this group for the past year are discussed as well as the implications for EG ampersand G. New strategies include ideas for incorporating the graded approach, auditable safety documents, additional guidance for Hazard Classification per DOE-STD-1027-92. The emphasis in the paper is on those projects whose hazard classification is category three or less

  14. General-purpose heat source project and space nuclear safety fuels program. Progress report, February 1980

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1980-05-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are: General-Purpose Heat Source Development and Space Nuclear Safety and Fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work

  15. LTO License Application Project NPP Borssele

    International Nuclear Information System (INIS)

    Jong, A.E. de; Blom, F.J.; Leilich, J.

    2012-01-01

    Borssele NPP plans to extend its operating life with 20 years until 2034. Borssele has started the project LTO 'bewijsvoering' (LTO 'Justification') in order to meet the requirements of the Dutch regulator. The outline of the project is based on IAEA safety guide 57 'Safe Long Term Operation of Nuclear Power Plants'. This paper describes the contents and coherence of the different parts in the project and how these respond to the IAEA guidelines on LTO. The goal of the project LTO 'bewijsvoering' is to ensure that safety and safety relevant systems, structures and components continue to perform their intended functions during long term operation. The outcome of the project LTO 'bewijsvoering' will be used for a license change application and this will be submitted to the Dutch regulator KFD for approval of prolonged operation of Borssele NPP after 2013. (author)

  16. ASN guide project. Safety policy and management in INBs (base nuclear installations)

    International Nuclear Information System (INIS)

    2010-01-01

    This guide presents the recommendations of the French Nuclear Safety Authority (ASN) in the field of safety policy and management (PMS) for base nuclear installations (INBs). It gives an overview and comments of some prescriptions of the so-called INB order and PMS decision. These regulatory texts define a framework for provisions any INB operator must implement to establish his safety policy, to define and implement a system which allows the safety to be maintained, the improvement of his INB safety to be permanently looked for. The following issues are addressed: operator's safety policy, identification of elements important for safety, of activities pertaining to safety, and of associated requirements, safety management organization and system, management of activities pertaining to safety, documentation and archiving

  17. Operational safety reliability research

    International Nuclear Information System (INIS)

    Hall, R.E.; Boccio, J.L.

    1986-01-01

    Operating reactor events such as the TMI accident and the Salem automatic-trip failures raised the concern that during a plant's operating lifetime the reliability of systems could degrade from the design level that was considered in the licensing process. To address this concern, NRC is sponsoring the Operational Safety Reliability Research project. The objectives of this project are to identify the essential tasks of a reliability program and to evaluate the effectiveness and attributes of such a reliability program applicable to maintaining an acceptable level of safety during the operating lifetime at the plant

  18. Current status of international cooperation on nuclear safety research

    International Nuclear Information System (INIS)

    Katsuragi, Satoru

    1984-01-01

    JAERI (Japan Atomic Energy Research Institute), as a representative organization in Japan, has been participating in many international cooperations on nuclear safety research. This report reviews the recent achievement and evolution of the international cooperative safety studies. Twelve projects that are based on the agreements between JAERI and foreign organizations are reviewed. As the fuel irradiation studies, the recent achievement of the OECD Halden Reactor Project and the agreement between Pacific Northwest Laboratories, Battelle Memorial Institute, and JAERI are explained. As for the study of reactivity accident, the cooperation of the NSRR (Nuclear Safety Research Reactor) project in Japan with PBF, PNS and PHEBUS projects in the U.S., West Germany and France, respectively, are now in progress. The fuel performance in abnormal transient and the experiment and analysis of severe fuel damage are the new areas of international interest. The OECD/LOFT project and ROSA-4 projects are also explained in connection with the FP source term problem and the analysis codes such as RELAP-5 and TRAC. As the safety studies associated with the downstream of the nuclear fuel cycle, the BEFAST project of IAEA and the ISIRS project of OECD/NEA are shortly reviewed. (Aoki, K.)

  19. 13. status report of the project HDR safety program of Kernforschungszentrum Karlsruhe. Working report 05.46/89

    International Nuclear Information System (INIS)

    Katzenmeier, G.

    1989-01-01

    The programme phase III, which extends to the end of 1991, is divided into the part projects containment behaviour in extreme accidents, long-term damage and monitoring the components in operation, behaviour of damaged components in dynamic accidents and large fires of actual materials. The main aims, state of the HDR safety programme, main points of the programme for 1990 and 8 technical reports on phase II and III are documented. There is a survey of costs. (DG) [de

  20. Safety infrastructure for countries establishing their first research reactor

    International Nuclear Information System (INIS)

    Abou Yehia, H.; Shokr, A.M.

    2010-01-01

    Establishment of a research reactor is a major project requiring careful planning, preparation, implementation, and investment in time and human resources. The implementation of such a project requires establishment of sustainable infrastructures, including legal and regulatory, safety, technical, and economic. An analysis of the needs for a new research reactor facility should be performed including the development of a utilization plan and evaluation of site availability and suitability. All these elements should be covered by a feasibility study of the project. This paper discusses the elements of such a study with the main focus on the specific activities and steps for developing the necessary safety infrastructure. Progressive involvement of the main organizations in the project, and application of the IAEA Code of Conduct on the Safety of Research Reactors and IAEA Safety Standards in different phases of the project are presented and discussed. (author)

  1. Joint road safety operations in tunnels and open roads

    Science.gov (United States)

    Adesiyun, Adewole; Avenoso, Antonio; Dionelis, Kallistratos; Cela, Liljana; Nicodème, Christophe; Goger, Thierry; Polidori, Carlo

    2017-09-01

    The objective of the ECOROADS project is to overcome the barrier established by the formal interpretation of the two Directives 2008/96/EC and 2004/54/EC, which in practice do not allow the same Road Safety Audits/Inspections to be performed inside tunnels. The projects aims at the establishment of a common enhanced approach to road infrastructure and tunnel safety management by using the concepts and criteria of the Directive 2008/96/CE on road infrastructure safety management and the results of related European Commission (EC) funded projects. ECOROADS has already implemented an analysis of national practices regarding Road Safety Inspections (RSI), two Workshops with the stakeholders, and an exchange of best practices between European tunnel experts and road safety professionals, which led to the definition of common agreed safety procedures. In the second phase of the project, different groups of experts and observers applied the above common procedures by inspecting five European road sections featuring both open roads and tunnels in Belgium, Albania, Germany, Serbia and Former Yugoslav Republic of Macedonia. This paper shows the feedback of the 5 joint safety operations and how they are being used for a set of - recommendations and guidelines for the application of the RSA and RSI concepts within the tunnel safety operations.

  2. Multivariate time series analysis of SafetyNet data. SafetyNet, Building the European Road Safety Observatory, Workpackage 7, Deliverable 7.7.

    NARCIS (Netherlands)

    Commandeur, J.J.F. Bijleveld, F.D. & Bergel, R.

    2009-01-01

    This deliverable provides an application of theories and methods documented in Deliverables 7.4 and 7.5 of work package 7 of the SafetyNet project. In this deliverable, use of select analysis techniques is demonstrated through real world road safety analysis problems, using aggregate data which may

  3. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD. INTEGRATED DISPOSAL FACILITY (IDF)

    International Nuclear Information System (INIS)

    MCLELLAN, G.W.

    2007-01-01

    permitting, scheduling, costs, stakeholders and technical issues. To meet the customer's needs and deadlines, the project was managed with conscientious discipline and application of sound project management principles in the Project Management Institute's Project Management Body of Knowledge. Several factors contributed to project success. Extensive planning and preparation were conducted, which was instrumental to contract and procurement management. Anticipating issues and risks, CH2M HILL prepared well defined scope and expectations, particularly for safety. To ensure worker safety, the project management team incorporated CH2M HILL's Integrated Safety Management System (ISMS) into the project and included safety requirements in contracting documents and baseline planning. The construction contractor DelHur Industries, Inc. adopted CH2M HILL's safety program to meet the procurement requirement for a comparable ISMS safety program. This project management approach contributed to an excellent safety record for a project with heavy equipment in constant motion and 63,555 man-hours worked. The project manager worked closely with ORP and Ecology to keep them involved in project decisions and head off any stakeholder or regulatory concerns. As issues emerged, the project manager addressed them expeditiously to maintain a rigorous schedule. Subcontractors and project contributors were held to contract commitments for performance of the work scope and requirements for quality, budget and schedule. Another element of project success extended to early and continual involvement of all interested in the project scope. Due to the public sensitivity of constructing a landfill planned for radioactive waste as well as offsite waste, there were many stakeholders and it was important to secure their agreement on scope and time frames. The project had multiple participants involved in quality assurance surveillances, audits and inspections, including the construction contractor, CH2M HILL

  4. ORNL Trusted Corridors Project: Watts Bar Dam Inland Waterway Project

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Randy M [ORNL; Gross, Ian G [ORNL; Smith, Cyrus M [ORNL; Hill, David E [ORNL

    2011-11-01

    Radiation has existed everywhere in the environment since the Earth's formation - in rocks, soil, water, and plants. The mining and processing of naturally occurring radioactive materials for use in medicine, power generation, consumer products, and industry inevitably generate emissions and waste. Radiological measuring devices have been used by industry for years to measure for radiation in undesired locations or simply identify radioactive materials. Since the terrorist attacks on the United States on 9-11-01 these radiation measuring devices have proliferated in many places in our nation's commerce system. DOE, TVA, the Army Corps and ORNL collaborated to test the usefulness of these devices in our nation's waterway system on this project. The purpose of the Watts Bar Dam ORNL Trusted Corridors project was to investigate the security, safety and enforcement needs of local, state and federal government entities for state-of-the-art sensor monitoring in regards to illegal cargo including utilization of the existing infrastructure. TVA's inland waterways lock system is a recognized and accepted infrastructure by the commercial carrier industry. Safety Monitoring activities included tow boat operators, commercial barges and vessels, recreational watercraft and their cargo, identification of unsafe vessels and carriers, and, monitoring of domestic and foreign commercial vessels and cargo identification. Safety Enforcement activities included cargo safety, tracking, identification of hazardous materials, waterway safety regulations, and hazardous materials regulations. Homeland Security and Law Enforcement Applications included Radiological Dispersive Devices (RDD) identification, identification of unsafe or illicit transport of hazardous materials including chemicals and radiological materials, and screening for shipments of illicit drugs. In the Fall of 2005 the SensorNet funding for the project expired. After several unsuccessful attempts to

  5. ORNL Trusted Corridors Project: Watts Bar Dam Inland Waterway Project

    International Nuclear Information System (INIS)

    Walker, Randy M.; Gross, Ian G.; Smith, Cyrus M.; Hill, David E.

    2011-01-01

    Radiation has existed everywhere in the environment since the Earth's formation - in rocks, soil, water, and plants. The mining and processing of naturally occurring radioactive materials for use in medicine, power generation, consumer products, and industry inevitably generate emissions and waste. Radiological measuring devices have been used by industry for years to measure for radiation in undesired locations or simply identify radioactive materials. Since the terrorist attacks on the United States on 9-11-01 these radiation measuring devices have proliferated in many places in our nation's commerce system. DOE, TVA, the Army Corps and ORNL collaborated to test the usefulness of these devices in our nation's waterway system on this project. The purpose of the Watts Bar Dam ORNL Trusted Corridors project was to investigate the security, safety and enforcement needs of local, state and federal government entities for state-of-the-art sensor monitoring in regards to illegal cargo including utilization of the existing infrastructure. TVA's inland waterways lock system is a recognized and accepted infrastructure by the commercial carrier industry. Safety Monitoring activities included tow boat operators, commercial barges and vessels, recreational watercraft and their cargo, identification of unsafe vessels and carriers, and, monitoring of domestic and foreign commercial vessels and cargo identification. Safety Enforcement activities included cargo safety, tracking, identification of hazardous materials, waterway safety regulations, and hazardous materials regulations. Homeland Security and Law Enforcement Applications included Radiological Dispersive Devices (RDD) identification, identification of unsafe or illicit transport of hazardous materials including chemicals and radiological materials, and screening for shipments of illicit drugs. In the Fall of 2005 the SensorNet funding for the project expired. After several unsuccessful attempts to find a Federal sponsor

  6. Safety review and approval process for the TFTR

    International Nuclear Information System (INIS)

    Levine, J.D.; Howe, H.J.; Howe, K.E.

    1983-01-01

    The design, construction, and operation of the Tokamak Fusion Test Reactor (TFTR) has undergone an extensive safety and enviromental analysis involving Princeton Plasma Physics Laboratory (PPPL), the U.S. Department of Energy (DOE), the Ebasco/Grumman Industrial Subcontractor Team, and other organizations. This analysis, which is continuing during the TFTR operational phase, has been facilitated by the preparation, review and approval of several documents, including an Environmental Statement (Draft and Final), a Preliminary Safety Analysis Report (PSAR), a Final Safety Analysis Report (FSAR), Operations Safety Requirements (OSRs) and Safety Requirements (SRs), and various Operating and Maintenance Manuals. Through TFTR Safety Group participation in formal system design evaluations, change control boards, and reviews of project procurement and installation documentation, the TFTR Management Configuration Control System assures that all aspects of the project, including proposed design, installation and operational changes, receive prompt and thorough safety analyses. These efforts will continue as the TFTR Program moves into the neutral beam and D-T operational phases. The safety review and approval experience that has been acquired on the TFTR Project should serve as a foundation for similar efforts on future fusion devices

  7. THE FLUORBOARD A STATISTICALLY BASED DASHBOARD METHOD FOR IMPROVING SAFETY

    International Nuclear Information System (INIS)

    PREVETTE, S.S.

    2005-01-01

    The FluorBoard is a statistically based dashboard method for improving safety. Fluor Hanford has achieved significant safety improvements--including more than a 80% reduction in OSHA cases per 200,000 hours, during its work at the US Department of Energy's Hanford Site in Washington state. The massive project on the former nuclear materials production site is considered one of the largest environmental cleanup projects in the world. Fluor Hanford's safety improvements were achieved by a committed partnering of workers, managers, and statistical methodology. Safety achievements at the site have been due to a systematic approach to safety. This includes excellent cooperation between the field workers, the safety professionals, and management through OSHA Voluntary Protection Program principles. Fluor corporate values are centered around safety, and safety excellence is important for every manager in every project. In addition, Fluor Hanford has utilized a rigorous approach to using its safety statistics, based upon Dr. Shewhart's control charts, and Dr. Deming's management and quality methods

  8. Health and Safety Management Plan for the Plutonium Stabilization and Packaging System

    International Nuclear Information System (INIS)

    1996-01-01

    This Health and Safety Management Plan (HSMP) presents safety and health policies and a project health and safety organizational structure designed to minimize potential risks of harm to personnel performing activities associated with Plutonium Stabilization and Packaging System (Pu SPS). The objectives of the Pu SPS are to design, fabricate, install, and startup of a glovebox system for the safe repackaging of plutonium oxides and metals, with a requirement of a 50-year storage period. This HSMP is intended as an initial project health and safety submittal as part of a three phase effort to address health and safety issues related to personnel working the Pu SPS project. Phase 1 includes this HSMP and sets up the basic approach to health and safety on the project and addresses health and safety issues related to the engineering and design effort. Phase 2 will include the Site Specific Construction health and Safety Plan (SSCHSP). Phase 3 will include an additional addendum to this HSMP and address health and safety issues associated with the start up and on-site test phase of the project. This initial submittal of the HSMP is intended to address those activities anticipated to be performed during phase 1 of the project. This HSMP is intended to be a living document which shall be modified as information regarding the individual tasks associated with the project becomes available. These modifications will be in the form of addenda to be submitted prior to the initiation of each phase of the project. For additional work authorized under this project this HSMP will be modified as described in section 1.4

  9. Spent nuclear fuel project cold vacuum drying facility safety equipment list

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the safety equipment list (SEL) for the Cold Vacuum Drying Facility (CVDF). The SEL was prepared in accordance with the procedure for safety structures, systems, and components (SSCs) in HNF-PRO-516, ''Safety Structures, Systems, and Components,'' Revision 0 and HNF-PRO-097, Engineering Design and Evaluation, Revision 0. The SEL was developed in conjunction with HNF-SO-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998). The SEL identifies the SSCs and their safety functions, the design basis accidents for which they are required to perform, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. This SEL has been developed for the CVDF Phase 2 Safety Analysis Report (SAR) and shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR until the CVDF final SAR is approved

  10. Safety Helmet 2.0 : A brainstorm based approach

    NARCIS (Netherlands)

    Aa, van der B. (Bert); Aa, van der B. (Bert); Boer, de J. (Johannes); Boer, de J. (Johannes); Dijkink, N.M. (Nienke); Dijkink, N.M. (Nienke)

    2012-01-01

    The Saxion University of Applied Sciences has recently started the projectSafety at Work”. The objective of the project is to increase safety at the workplace by applying and combining state of the art artifacts from the three disciplines: 1) Ambient Intelligence 2) Industrial &

  11. Safety performance indicators for the road network.

    NARCIS (Netherlands)

    Weijermars, W. Gitelman, V. Papadimitriou, E. Lima De & Azevedo, C.

    2010-01-01

    Within the 6th FP European project SafetyNet, a team has worked on the development of Safety Performance Indicators (SPIs) on seven road safety related areas. These SPIs reflect the operational conditions of the road traffic system that influence the system's safety performance. SPIs were developed

  12. Report of the tunnel safety working group

    International Nuclear Information System (INIS)

    Gannon, J.

    1991-04-01

    On 18 February 1991 the Project Manager formed a working group to address the safety guidelines and requirements for the underground facilities during the period of accelerator construction, installation, and commissioning. The following report summarizes the research and discussions conducted by the group and the recommended guidelines for safety during this phase of the project

  13. Research projects into the safety of nuclear power plants. Period cover 01. January 2014 - 30. June 2014. Progress report; Forschungsvorhaben auf dem Gebiet der Reaktorsicherheit. Berichtszeitraum 01. Januar 2014 - 30. Juni 2014. Fortschrittsbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi), formerly Federal Ministry of Economics and Technology, sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/ Authority Support Division of GRS. The reports as of the 1st half-year 2000 are available in the internet-based information system on results and data of reactor safety research (https://www.grs-fbw.de). The compilation of the reports is classified according to general topics related to reactor safety research as well as to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  14. Type B Investigation Report for 241-SY-101 Pump Start and 241-C-106 Pit Cleanout

    Energy Technology Data Exchange (ETDEWEB)

    Ewalt, J.R.

    1993-09-01

    In accordance with the direction of the Department of Energy (DOE) Manager, Richland Operations Office, a Type ``B`` investigation in accordance with the DOE Order 5484.1, Environmental Protection, Safety and Health Protection Information Reporting Requirements, has been conducted. The scope of the investigation included two events: The ``Inadvertent Mixer Pump Operation at 241-SY-101`` (RL-WHC-TANK FARM-1993-069); ``Inadequate Work Control Results in Personnel Skin Contamination at 241-C-106, Pit B`` (RL-WHC-TANK FARM-1993-071) events. Additionally, at the request of the President of the WHC, a broader investigation into Waste Tank Farm ``safety practices`` and ``Conduct of Operations`` was also conducted. The review was focused on (1) WHC organizations performing operations, maintenance, and radiological safety tasks; and (2) KEH organizations performing major maintenance tasks.

  15. No 2943. Project of law relative to nuclear transparency and safety; N. 2943. Projet de loi relatif a la transparence et a la securite en matiere nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-03-15

    This project of law comprises 5 titles dealing with: 1 - general dispositions: definition and scope of nuclear safety, security, radiation protection, operators liability, facilities in concern; 2 - the high nuclear safety authority: role and duties; 3 - public information in the domain of nuclear safety and radiation protection: information right of the public, local information commissions, high committee for nuclear safety transparency and information; 4 - basic nuclear facilities and transport of radioactive materials: applicable rules, police controls and measures, penal dispositions (investigations, sanctions); 5 - miscellaneous dispositions: changes made with respect to previous legislative texts. (J.S.)

  16. Evolution of Safety Basis Documentation for the Fernald Site

    International Nuclear Information System (INIS)

    Brown, T.; Kohler, S.; Fisk, P.; Krach, F.; Klein, B.

    2004-01-01

    The objective of the Department of Energy's (DOE) Fernald Closure Project (FCP), in suburban Cincinnati, Ohio, is to safely complete the environmental restoration of the Fernald site by 2006. Over 200 out of 220 total structures, at this DOE plant site which processed uranium ore concentrates into high-purity uranium metal products, have been safely demolished, including eight of the nine major production plants. Documented Safety Analyses (DSAs) for these facilities have gone through a process of simplification, from individual operating Safety Analysis Reports (SARs) to a single site-wide Authorization Basis containing nuclear facility Bases for Interim Operations (BIOs) to individual project Auditable Safety Records (ASRs). The final stage in DSA simplification consists of project-specific Integrated Health and Safety Plans (I-HASPs) and Nuclear Health and Safety Plans (N-HASPs) that address all aspects of safety, from the worker in the field to the safety basis requirements preserving the facility/activity hazard categorization. This paper addresses the evolution of Safety Basis Documentation (SBD), as DSAs, from production through site closure

  17. Proceedings of the Nuclear Criticality Technology Safety Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Rene G. Sanchez

    1998-04-01

    This document contains summaries of most of the papers presented at the 1995 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 16 and 17 at San Diego, Ca. The meeting was broken up into seven sessions, which covered the following topics: (1) Criticality Safety of Project Sapphire; (2) Relevant Experiments For Criticality Safety; (3) Interactions with the Former Soviet Union; (4) Misapplications and Limitations of Monte Carlo Methods Directed Toward Criticality Safety Analyses; (5) Monte Carlo Vulnerabilities of Execution and Interpretation; (6) Monte Carlo Vulnerabilities of Representation; and (7) Benchmark Comparisons.

  18. Laser safety at high profile projects

    Science.gov (United States)

    Barat, K.

    2011-03-01

    Laser Safety at high profile laser facilities tends to be more controlled than in the standard laser lab found at a research institution. The reason for this is the potential consequences for such facilities from incidents. This ranges from construction accidents, to equipment damage to personnel injuries. No laser user wants to sustain a laser eye injury. Unfortunately, many laser users, most commonly experienced researchers and inexperienced graduate students, do receive laser eye injuries during their careers. . More unforgiveable is the general acceptance of this scenario, as part of the research & development experience. How do senior researchers, safety personnel and management stop this trend? The answer lies in a cultural change that involves institutional training, user mentoring, hazard awareness by users and administrative controls. None of these would inhibit research activities. As a matter of fact, proper implementation of these controls would increase research productivity. This presentation will review and explain the steps needed to steer an institution, research division, group or individual lab towards a culture that should nearly eliminate laser accidents. As well as how high profile facilities try to avoid laser injuries. Using the definition of high profile facility as one who's funding in the million to billions of dollars or Euros and derives form government funding.

  19. Introduction to the Halden project and a short overview of the MMS activities at the project

    International Nuclear Information System (INIS)

    Owre, F.

    2005-01-01

    This presentation discusses the Man Machine System (MMS) research within the Halden Reactor Project located in Norway. This project is an International collaboration and the mission of this project is to improve safety at operating nuclear plants. The research activities include human reliability, knowledge management, design and evaluation of human system interfaces and control rooms, virtual reality for design, planning and training, operation and maintenance in a competitive electricity market as well as digital system safety research

  20. Long-term safety for KBS-3 repositories at Forsmark and Laxemar - a first evaluation. Main Report of the SR-Can project

    International Nuclear Information System (INIS)

    Hedin, Allan

    2006-10-01

    This document is the main report from the safety assessment project SR-Can. The SR-Can project is a preparatory stage for the SR-Site assessment, the report that will be used in support of SKB's application for a final repository. The purposes of the safety assessment SR-Can are the following: 1. To make a first assessment of the safety of potential KBS-3 repositories at Forsmark and Laxemar to dispose of canisters as specified in the application for the encapsulation plant. 2. To provide feedback to design development, to SKB's RandD programme, to further site investigations and to future safety assessment projects. 3. To foster a dialogue with the authorities that oversee SKB's activities, i.e. the Swedish Nuclear Power Inspectorate, SKI, and the Swedish Radiation Protection Authority, SSI, regarding interpretation of applicable regulations, as a preparation for the SR-Site project. The assessment relates to the KBS-3 disposal concept in which copper canisters with a cast iron insert containing spent nuclear fuel are surrounded by bentonite clay and deposited at approximately 500 m depth in saturated, granitic rock. Preliminary data from the Forsmark and Laxemar sites, presently being investigated by SKB as candidates for a KBS-3 repository are used in the assessment. An important aim of this report is to demonstrate the proper handling of requirements placed on the safety assessment in applicable regulations. Therefore, regulations issued by the Swedish Nuclear Power Inspectorate and the Swedish Radiation Protection Institute are reproduced in an Appendix where references are given to sections in the main text where the handling of the different requirements is discussed. The principal acceptance criterion requires that 'the annual risk of harmful effects after closure does not exceed 10 -6 for a representative individual in the group exposed to the greatest risk'. 'Harmful effects' refer to cancer and hereditary effects. The risk limit corresponds to an

  1. Long-term safety for KBS-3 repositories at Forsmark and Laxemar - a first evaluation. Main Report of the SR-Can project

    Energy Technology Data Exchange (ETDEWEB)

    Hedin, Allan (ed.)

    2006-10-15

    This document is the main report from the safety assessment project SR-Can. The SR-Can project is a preparatory stage for the SR-Site assessment, the report that will be used in support of SKB's application for a final repository. The purposes of the safety assessment SR-Can are the following: 1. To make a first assessment of the safety of potential KBS-3 repositories at Forsmark and Laxemar to dispose of canisters as specified in the application for the encapsulation plant. 2. To provide feedback to design development, to SKB's RandD programme, to further site investigations and to future safety assessment projects. 3. To foster a dialogue with the authorities that oversee SKB's activities, i.e. the Swedish Nuclear Power Inspectorate, SKI, and the Swedish Radiation Protection Authority, SSI, regarding interpretation of applicable regulations, as a preparation for the SR-Site project. The assessment relates to the KBS-3 disposal concept in which copper canisters with a cast iron insert containing spent nuclear fuel are surrounded by bentonite clay and deposited at approximately 500 m depth in saturated, granitic rock. Preliminary data from the Forsmark and Laxemar sites, presently being investigated by SKB as candidates for a KBS-3 repository are used in the assessment. An important aim of this report is to demonstrate the proper handling of requirements placed on the safety assessment in applicable regulations. Therefore, regulations issued by the Swedish Nuclear Power Inspectorate and the Swedish Radiation Protection Institute are reproduced in an Appendix where references are given to sections in the main text where the handling of the different requirements is discussed. The principal acceptance criterion requires that 'the annual risk of harmful effects after closure does not exceed 10{sup -6} for a representative individual in the group exposed to the greatest risk'. 'Harmful effects' refer to cancer and hereditary effects

  2. Study Of Safety Management By Using Gis In Coimbatore

    Directory of Open Access Journals (Sweden)

    S. Kanchana

    2015-08-01

    Full Text Available The safety management is very important in the process of construction .The traditional methods of construction safety control cannot meet the construction of big project. To ensure the safety of construction and reduce accidents in the process of construction the current situation and problems we face in construction safety management should be studied first. And then the project risk warning mechanism based on the GIS is constructed according to the problems we faced to achieve visual monitoring and warning of construction safety risk management and to provide decision support for construction. This project aims to develop a web-based spatial decision support system model for proactive health and safety management in linear construction projects. 5 Currently health and safety management is usually performed reactively instead of proactive management since hazard identification and risk assessment is mostly performed on paper based documents that are not effectively used at site. An information system relates to a chain of operations lead to planning the observation and collection of data to storage and analysis of data to the use of derived information in decision-making processes. To create a web-based free and open sourced GIS that can work with different data formats by exchanging and presenting data as a real-time map on web.

  3. An optimization model for improving highway safety

    Directory of Open Access Journals (Sweden)

    Promothes Saha

    2016-12-01

    Full Text Available This paper developed a traffic safety management system (TSMS for improving safety on county paved roads in Wyoming. TSMS is a strategic and systematic process to improve safety of roadway network. When funding is limited, it is important to identify the best combination of safety improvement projects to provide the most benefits to society in terms of crash reduction. The factors included in the proposed optimization model are annual safety budget, roadway inventory, roadway functional classification, historical crashes, safety improvement countermeasures, cost and crash reduction factors (CRFs associated with safety improvement countermeasures, and average daily traffics (ADTs. This paper demonstrated how the proposed model can identify the best combination of safety improvement projects to maximize the safety benefits in terms of reducing overall crash frequency. Although the proposed methodology was implemented on the county paved road network of Wyoming, it could be easily modified for potential implementation on the Wyoming state highway system. Other states can also benefit by implementing a similar program within their jurisdictions.

  4. Sweden's Cooperation with Eastern Europe in Radiation Safety 2010

    International Nuclear Information System (INIS)

    Van Dassen, Lars; Andersson, Sarmite; Bejarano, Gabriela

    2011-09-01

    The Swedish Radiation Safety Authority implemented in 2010 cooperation projects in Russia, Ukraine, Georgia, Armenia, Lithuania and Moldova based on instructions from the Swedish Government and agreements with the European Union and the Swedish International Development Cooperation Agency, SIDA. The projects aim at achieving a net contribution to radiation safety (including nuclear safety, nuclear security and non-proliferation as well as radiation protection and emergency preparedness) for the benefit of the host country as well as Sweden. This report gives an overview of all the projects implemented in 2010

  5. Report of investigation into allegations of retaliation for raising safety and quality of work issues regarding Argonne National Laboratory's Integral Fast Reactor project

    International Nuclear Information System (INIS)

    1991-12-01

    In August 1990 James A. Smith resigned his position as an experimenter at Argonne National Laboratory-West (ANL-W), located near Idaho Falls, Idaho. Smith who holds a Ph.D. in metallurgy, had worked at the Laboratory since 1988, primarily on its Integral Fast Reactor (IFR) project. He alleged that the quality of the Laboratory's work on that project had been undermined by fundamental errors in metallurgy and related sciences, at least some of which had nuclear safety implications; that the Laboratory had published false and misleading accounts of its work; that prevailing attitudes at the Laboratory were antithetical to quality scientific work; and that because he had expressed concerns about these matters his job was threatened by his managers. Evidence gathered during an investigation by the Department of Energy's Office of Nuclear Safety (NS) is presented and conclusions and recommendations are provided

  6. AGNES - safety reassessment of Paks NPP

    International Nuclear Information System (INIS)

    Gado, J.

    1995-01-01

    The main goal of the AGNES (Advanced General and New Evaluation of Safety) project for the reassessment of the safety of Paks Nuclear Power Plant, Hungary, was to improve the safety culture of the technology at Paks. A report was prepared on the reassessment of the Paks NPP safety. The analysis was divided into four groups: systems analysis, analysis of design basis accidents, severe accident analysis, and level 1 probabilistic safety analysis. Proposed safety enhancement measures are discussed. (N.T.)

  7. The Nordic programme for nuclear safety 1990-1993

    International Nuclear Information System (INIS)

    1992-02-01

    The description of planned projects concerning nuclear safety is divided under the headings of readiness for action in situations of abnormal radiation, nuclear wastes and deposition, radioecology, and reactor safety - professional emergency-readiness. Coordination initiatives are also dealt with. In addition to this a survey of projects, coordinators and project leaders and a description of suggested new measures for nuclear safety are given. Under the first heading the subjects dealt with are spreading and local consequences, strategies, measuring methods and data exchange and management for decision-makers, evaluation, harmonization and effecting of plans, public information, a nordic emergency action exercise and reduction data connected with contaminated areas. The second heading covers criteria for classification of radioactive material, experiences in demolition of uranium-cleaning plants, information management, waste management in the case of field deposition with radioactivity from past reactor accidents and climatological and geological processes of significance for long-duration safety. Subjects under the third heading of radioecology cover training, quality assurance, aquatic radioecology, agricultural and natural ecosystems. Subjects under reactor safety include safety evaluation, the course of serious accidents, and data on neighbour-reactor system's conditions of safety. (AB)

  8. Report on the research projects into the safety of nuclear power plants in operation sponsored by Federal Ministry of Economics and Labour. Period under report: 1 January - 30 June 2004

    International Nuclear Information System (INIS)

    2004-01-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Arbeit (BMWA) (Federal Ministry of Economics and Labour) sponsors research projects into the safety of nuclear power plants in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations and to the further development of safety technology. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWA, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The reports are published by the Research Management Division of GRS. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system 'Joint Safety Research Index' of the CEC (Commission of the European Communities). The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWA does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  9. Opportunities for Using Building Information Modeling to Improve Worker Safety Performance

    Directory of Open Access Journals (Sweden)

    Kasim Alomari

    2017-02-01

    Full Text Available Building information modelling (BIM enables the creation of a digital representation of a designed facility combined with additional information about the project attributes, performance criteria, and construction process. Users of BIM tools point to the ability to visualize the final design along with the construction process as a beneficial feature of using BIM. Knowing the construction process in relationship to a facility’s design benefits both safety professionals when planning worker safety measures for a project and designers when creating a project’s design. Success in using BIM to enhance safety partly depends on the familiarity of project personnel with BIM tools and the extent to which the tools can be used to identify and eliminate safety hazards. In a separate, ongoing study, the authors investigated the connection between BIM and safety to document the opportunities, barriers, and impacts. Utilizing an on-line survey of project engineers who work for construction firms together with a comprehensive literature review, the study found those who use BIM feel that it aids in communication of project information and project delivery, both of which have been found to have positive impacts on construction site safety. Further, utilizing the survey results, the authors apply the binary logistic regression econometric framework to better understand the factors that lead to safety professionals believing that BIM increases safety in the work place. In addition, according to the survey results, a large percentage of the engineers who use BIM feel that ultimately it helps to eliminate safety hazards and improve worker safety. The study findings suggest that improvements in safety performance across the construction industry may be due in part to increased use of BIM in the construction industry.

  10. Spent nuclear fuel project technical databook

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, M.A.

    1998-07-22

    The Spent Nuclear Fuel (SNF) project technical databook provides project-approved summary tables of selected parameters and derived physical quantities, with nominal design and safety basis values. It contains the parameters necessary for a complete documentation basis of the SNF Project technical and safety baseline. The databook is presented in two volumes. Volume 1 presents K Basins SNF related information. Volume 2 (not yet available) will present selected sludge and water information, as it relates to the sludge and water removal projects. The values, within this databook, shall be used as the foundation for analyses, modeling, assumptions, or other input to SNF project safety analyses or design. All analysis and modeling using a parameter available in this databook are required to use and cite the appropriate associated value, and document any changes to those values (i.e., analysis assumptions, equipment conditions, etc). Characterization and analysis efforts are ongoing to validate, or update these values.

  11. Spent nuclear fuel project technical databook

    International Nuclear Information System (INIS)

    Reilly, M.A.

    1998-01-01

    The Spent Nuclear Fuel (SNF) project technical databook provides project-approved summary tables of selected parameters and derived physical quantities, with nominal design and safety basis values. It contains the parameters necessary for a complete documentation basis of the SNF Project technical and safety baseline. The databook is presented in two volumes. Volume 1 presents K Basins SNF related information. Volume 2 (not yet available) will present selected sludge and water information, as it relates to the sludge and water removal projects. The values, within this databook, shall be used as the foundation for analyses, modeling, assumptions, or other input to SNF project safety analyses or design. All analysis and modeling using a parameter available in this databook are required to use and cite the appropriate associated value, and document any changes to those values (i.e., analysis assumptions, equipment conditions, etc). Characterization and analysis efforts are ongoing to validate, or update these values

  12. A comparison of the difference of requirements between functional safety and nuclear safety controllers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.K.; Lee, C.L.; Shyu, S.S. [Inst. of Nuclear Energy Research, Taoyuan, Taiwan (China)

    2014-07-01

    In order to establish self-reliant capabilities of nuclear I&C systems in Taiwan, Taiwan's Nuclear I&C System (TNICS) project had been established by Institute of Nuclear Energy Research (INER). A Triple Modular Redundant (TMR) safety controller (SCS-2000) has been completed and gone through the IEC 61508 Safety Integrity Level 3 (SIL3) certification of Functional Safety for industries. Based on the certification processes, the difference of requirements between Functional Safety and Nuclear Safety controllers in term of hardware and software are addressed in this study. Besides, the measures used to determine and verify the reliability of the safety control system design are presented. (author)

  13. Innovation and Safety. A prestudy; Innovation och saekerhet. En foerstudie

    Energy Technology Data Exchange (ETDEWEB)

    Rollenhagen, Carl; Hansson, Sven Ove; Hortberg, Johan; Jakobsson, Fredrik; Zhau, Victoria Jing; Mojeri, Sara

    2010-04-15

    The project summarized in this report was initiated to explore relations between innovation and safety. The first two sections of the report discuss some previously conducted research and give a general background to the subject. It is concluded that safety research and innovation research, by and large, has developed as separate academic disciplines. The concepts of 'innovative safety culture' and 'safe innovation cultures' are suggested as two concepts that can be used to integrate research: innovative safety cultures depart from safety culture research but attempts to introduce an innovative dimension with the aim to create adaptive and innovative safety cultures that efficiently can handle risks arising from existing innovations. Safe innovation cultures have focus on innovation itself, but with the ambition to introduce concepts and methods from safety research in the innovative processes. Three subprojects conducted in the context of the present research are summarized. The first project examines how an existing organization (e.g. SKB - Swedish Nuclear Fuel and Waste Management) attempts to integrate both innovative activities and operative activities in the same organisation. Interviews with key personnel explored different views about how innovative and safety work coexists in the organisation. The second project focuses on how major retrofit projects of a nuclear power plant is managed in parallel to operative activities (e.g. operating the plant on an everyday basis). By means of an innovative technique (e.g. system groups) seminars were held to suggest improvements in the technical change process. The third project conducted a risk analysis of a major organisational change (e.g. control centres for energy distribution). Experiences from the three projects are finally discussed in terms of similarities and differences associated with the cultures for innovation and safety. Suggestions for further research are made

  14. The ‘Medication Safety Minute’− Microlearning in Medicine

    LENUS (Irish Health Repository)

    Relihan, Eileen

    2018-04-06

    Summary of an initiative of St. James’s Hospital (SJH) medication safety programme to highlighting prescribing safety issues. The project the ‘Medication Safety Minute\\' was based on the concept of ‘bite-sized learning’. The aim was to deliver a message which could be which could be read and understood in one minute or less. The project was selected for the HSE excellence awards showcase.

  15. Safety Training: Basic Safety and Access Courses

    CERN Multimedia

    Antonella Vignes

    2005-01-01

    Objective The purpose of the basic safety courses is to increase awareness for everyone working on the CERN site (CERN staff, associates, outside companies, students and apprentices) of the various existing on-site hazards, and how to recognize and avoid them. Safety course changes The current organization for basic safety courses is changing. There will be two main modifications: the organization of the courses and the implementation of a specific new training course for the LHC machine during the LHC tests and hardware commissioning phase. Organizational changes This concerns the existing basic safety training, currently called level1, level2 and level3. Under the new procedure, a video will be projected in registration building 55 and will run every day at 14.00 and 15.00 in English. The duration of the video will be 50 minutes. The course contents will be the same as the slides currently used, plus a video showing real situations. With this new organization, attendees will systematically follow the...

  16. Safety Training: basic safety and access courses

    CERN Multimedia

    2005-01-01

    Objective The purpose of the basic safety courses is to increase awareness for everyone working on the CERN site (CERN staff, associates, outside companies, students and apprentices) of the various hazards existing on site, and how to recognise and avoid them. Safety course changes The current organisation of basic safety courses is changing. There will be two main modifications: the organisation of the courses and the implementation of a specific new training course for the LHC machine during the LHC tests and hardware commissioning phase. Organisational changes This concerns the existing basic safety training, currently called level 1, level 2 and level 3. Under the new procedure, a video will be projected in registration building 55 and will run every day at 14.00 and 15.00 in English. The duration of the video will be 50 minutes. The course contents will be the same as the slides currently used, plus a video showing real situations. With this new organization, participants will systematically follow...

  17. The European ASAMPSA_E project : towards guidance to model the impact of high amplitude natural hazards in the probabilistic safety assessment of nuclear power plants. Information on the project progress and needs from the geosciences.

    Science.gov (United States)

    Raimond, Emmanuel; Decker, Kurt; Guigueno, Yves; Klug, Joakim; Loeffler, Horst

    2015-04-01

    The Fukushima nuclear accident in Japan resulted from the combination of two correlated extreme external events (earthquake and tsunami). The consequences, in particular flooding, went beyond what was considered in the initial engineering design design of nuclear power plants (NPPs). Such situations can in theory be identified using probabilistic safety assessment (PSA) methodology. PSA results may then lead industry (system suppliers and utilities) or Safety Authorities to take appropriate decisions to reinforce the defence-in-depth of the NPP for low probability event but high amplitude consequences. In reality, the development of such PSA remains a challenging task. Definitions of the design basis of NPPs, for example, require data on events with occurrence probabilities not higher than 10-4 per year. Today, even lower probabilities, down to 10-8, are expected and typically used for probabilistic safety analyses (PSA) of NPPs and the examination of so-called design extension conditions. Modelling the combinations of natural or man-made hazards that can affect a NPP and affecting some meaningful probability of occurrence seems to be difficult. The European project ASAMPSAE (www.asampsa.eu) gathers more than 30 organizations (industry, research, safety control) from Europe, US and Japan and aims at identifying some meaningful practices to extend the scope and the quality of the existing probabilistic safety analysis developed for nuclear power plants. It offers a framework to discuss, at a technical level, how "extended PSA" can be developed efficiently and be used to verify if the robustness of Nuclear Power Plants (NPPs) in their environment is sufficient. The paper will present the objectives of this project, some first lessons and introduce which type of guidance is being developed. It will explain the need of expertise from geosciences to support the nuclear safety assessment in the different area (seismotectonic, hydrological, meteorological and biological

  18. Resilience Safety Culture in Aviation Organisations

    OpenAIRE

    Akselsson, R.; Koornneef, F.; Stewart, S.; Ward, M.

    2009-01-01

    Chapter 2: Resilience Safety Culture in Aviation Organisations The European Commission HILAS project (Human Integration into the Lifecycle of Aviation Systems - a project supported by the European Commission’s 6th Framework between 2005-2009) was focused on using human factors knowledge and methodology to address key challenges for aviation (current and future) including a performance based approach for safety and fatigue management in the aviation sector, mainly inflight operations and maint...

  19. FY 1993 Ferrocyanide Tank Safety Project: Effects of Aging on Ferrocyanide Wastes test plan for the remainder of FY 1993

    International Nuclear Information System (INIS)

    Lilga, M.A.; Schiefelbein, G.F.

    1993-06-01

    Researchers in the Hanford Ferrocyanide Task Team are studying safety issues associated with ferrocyanide precipitates in single shell waste storage tanks (SST). Ferrocyanide is a stable complex of ferrous, ion and cyanide ion that is considered nontoxic because it does not dissociate readily in aqueous solutions. However, in the laboratory at temperatures in excess of 180 degrees C and in the presence of oxidizers such as nitrates and nitrites, dry ferrocyanide and ferrocyanide waste stimulants can be made to react exothermically. The Ferrocyanide Safety Project at the Pacific Northwest Laboratory (PNL) is part of the Waste Tank Safety Program at Westinghouse Hanford Company (WHC). The purpose of the WHC program is to (1) maintain the ferrocyanide tanks with minimal risk of an accident, (2) select one or more strategies to assure safe storage, and (3) close out the unreviewed safety question (USQ). Tank ferrocyanide wastes were exposed to highly alkaline wastes from subsequent processing operations. Chemical reactions with caustic may have changed the ferrocyanide materials during 40 years of storage in the SSTs. Research in the open-quotes Effects of Aging on Ferrocyanide Wastesclose quotes task is targeted at studying aging of ferrocyanide tank simulants and other ferrocyanide materials to obtain a better understanding of how tank materials may have changed over the years. The research objective in this project is to determine the solubility and hydrolysis characteristics of simulated ferrocyanide tank wastes in alkaline media. The behavior of ferrocyanide simulant wastes is being determined by performing chemical reactions under conditions that might mimic the potential ranges in SST environments. Experiments are conducted at high pH, at high ionic strength, and in the presence of gamma radiation. Verification of simulant study findings by comparison with results with actual waste will also be required

  20. Safety Culture in Pre-operational Phases of Nuclear Power Plant Projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    An abundance of information exists on safety culture related to the operational phases of nuclear power plants; however, pre-operational phases present unique challenges. This publication focuses on safety culture during pre-operational phases that span the interval from before a decision to launch a nuclear power programme to first fuel load. It provides safety culture insights and focuses on eight generic issues: safety culture understanding; multicultural aspects; leadership; competencies and resource competition; management systems; learning and feedback; cultural assessments; and communication. Each issue is discussed in terms of: specific challenges; desired state; approaches and methods; and examples and resources. This publication will be of interest to newcomers and experienced individuals faced with the opportunities and challenges inherent in safety culture programmes aimed at pre-operational activities.

  1. Safety Culture in Pre-operational Phases of Nuclear Power Plant Projects

    International Nuclear Information System (INIS)

    2012-01-01

    An abundance of information exists on safety culture related to the operational phases of nuclear power plants; however, pre-operational phases present unique challenges. This publication focuses on safety culture during pre-operational phases that span the interval from before a decision to launch a nuclear power programme to first fuel load. It provides safety culture insights and focuses on eight generic issues: safety culture understanding; multicultural aspects; leadership; competencies and resource competition; management systems; learning and feedback; cultural assessments; and communication. Each issue is discussed in terms of: specific challenges; desired state; approaches and methods; and examples and resources. This publication will be of interest to newcomers and experienced individuals faced with the opportunities and challenges inherent in safety culture programmes aimed at pre-operational activities.

  2. Safety upgrading at PAKS Nuclear Power Plant

    International Nuclear Information System (INIS)

    Bajsz, J.; Elter, J.

    2000-01-01

    The operation of Paks NPP has reached its half time. Until this time the plant fulfilled expectations raised before its construction: the four units have produced safely and reliably more than 200 TWh electricity. The production of the plant has been at the stable level since its construction and has provided 43-38 % of electricity consumed in Hungary. The annual production is around 14 TWh, which means a load factor higher than 85 %. Safety upgrading activities [1] at Paks had started in the late eighties, when the commissioning work of units 3 and 4 were carried out. That time the main emphases were put to lessons learned of the TMI and Chernobyl accidents. The international reviews hosted by our plant widened our review's scope. To systematize our approach a complete safety review, the AGNES (Advanced General Safety and New Evaluation of Safety) project was started in 1991. The goal of the project was to evaluate to what extent Paks NPP satisfied the current international safety expectations and to help in determining the priorities for safety enhancement and upgrading measures. The project completed in 1994 ranked our safety upgrading measures by safety significance, which became a basis for technical design work and financial scheduling. The other important outcome of the AGNES project was the introduction the Periodical Safety Review regime by our nuclear authority. These periodical reviews held after 10 years of operation offer the possibility - and obligation for the licensee - to perform a comprehensive assessment of the safety of the plant, to evaluate the integral effects of changes of circumstances happened during the review period. The goal of these reviews is to deal with cumulative effects of NPP ageing, modifications, operating experience and technical developments aimed at ensuring a high level of safety throughout plant service life. The execution of our safety-upgrading program is well advancing. For the whole program from 1996 to 2002 250

  3. Failure Modes Effects and Criticality Analysis, an Underutilized Safety, Reliability, Project Management and Systems Engineering Tool

    Science.gov (United States)

    Mullin, Daniel Richard

    2013-09-01

    The majority of space programs whether manned or unmanned for science or exploration require that a Failure Modes Effects and Criticality Analysis (FMECA) be performed as part of their safety and reliability activities. This comes as no surprise given that FMECAs have been an integral part of the reliability engineer's toolkit since the 1950s. The reasons for performing a FMECA are well known including fleshing out system single point failures, system hazards and critical components and functions. However, in the author's ten years' experience as a space systems safety and reliability engineer, findings demonstrate that the FMECA is often performed as an afterthought, simply to meet contract deliverable requirements and is often started long after the system requirements allocation and preliminary design have been completed. There are also important qualitative and quantitative components often missing which can provide useful data to all of project stakeholders. These include; probability of occurrence, probability of detection, time to effect and time to detect and, finally, the Risk Priority Number. This is unfortunate as the FMECA is a powerful system design tool that when used effectively, can help optimize system function while minimizing the risk of failure. When performed as early as possible in conjunction with writing the top level system requirements, the FMECA can provide instant feedback on the viability of the requirements while providing a valuable sanity check early in the design process. It can indicate which areas of the system will require redundancy and which areas are inherently the most risky from the onset. Based on historical and practical examples, it is this author's contention that FMECAs are an immense source of important information for all involved stakeholders in a given project and can provide several benefits including, efficient project management with respect to cost and schedule, system engineering and requirements management

  4. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF)

    Energy Technology Data Exchange (ETDEWEB)

    MCLELLAN, G.W.

    2007-02-07

    issues as well as challenges with permitting, scheduling, costs, stakeholders and technical issues. To meet the customer's needs and deadlines, the project was managed with conscientious discipline and application of sound project management principles in the Project Management Institute's Project Management Body of Knowledge. Several factors contributed to project success. Extensive planning and preparation were conducted, which was instrumental to contract and procurement management. Anticipating issues and risks, CH2M HILL prepared well defined scope and expectations, particularly for safety. To ensure worker safety, the project management team incorporated CH2M HILL's Integrated Safety Management System (ISMS) into the project and included safety requirements in contracting documents and baseline planning. The construction contractor DelHur Industries, Inc. adopted CH2M HILL's safety program to meet the procurement requirement for a comparable ISMS safety program. This project management approach contributed to an excellent safety record for a project with heavy equipment in constant motion and 63,555 man-hours worked. The project manager worked closely with ORP and Ecology to keep them involved in project decisions and head off any stakeholder or regulatory concerns. As issues emerged, the project manager addressed them expeditiously to maintain a rigorous schedule. Subcontractors and project contributors were held to contract commitments for performance of the work scope and requirements for quality, budget and schedule. Another element of project success extended to early and continual involvement of all interested in the project scope. Due to the public sensitivity of constructing a landfill planned for radioactive waste as well as offsite waste, there were many stakeholders and it was important to secure their agreement on scope and time frames. The project had multiple participants involved in quality assurance surveillances, audits and

  5. Environment, safety and health progress assessment of the Fernald Environmental Management Project (FEMP)

    International Nuclear Information System (INIS)

    1991-11-01

    This report documents the results of the Environment, Safety, and Health (ES ampersand H) Progress Assessment of the Fernald Environmental Management Project (FEMP), Fernald, Ohio, conducted from October 15 through October 25, 1991. The Secretary of Energy directed that small, focused, ES ampersand H Progress Assessments be performed as part of the continuing effort to institutionalize line management accountability and the self-assessment process in the areas of ES ampersand H. The FEMP assessment is the pilot assessment for this new program. The objectives for the FEMP ES ampersand H Progress Assessment were to assess: (1) how the FEMP has progressed since the 1989 Tiger Assessment; (2) how effectively the FEMP has corrected specific deficiencies and associated root causes identified by that team; and (3) whether the current organization, resources, and systems are sufficient to proactively manage ES ampersand H issues

  6. Environment, safety and health progress assessment of the Fernald Environmental Management Project (FEMP)

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report documents the results of the Environment, Safety, and Health (ES&H) Progress Assessment of the Fernald Environmental Management Project (FEMP), Fernald, Ohio, conducted from October 15 through October 25, 1991. The Secretary of Energy directed that small, focused, ES&H Progress Assessments be performed as part of the continuing effort to institutionalize line management accountability and the self-assessment process in the areas of ES&H. The FEMP assessment is the pilot assessment for this new program. The objectives for the FEMP ES&H Progress Assessment were to assess: (1) how the FEMP has progressed since the 1989 Tiger Assessment; (2) how effectively the FEMP has corrected specific deficiencies and associated root causes identified by that team; and (3) whether the current organization, resources, and systems are sufficient to proactively manage ES&H issues.

  7. Selection of indicators for continuous monitoring of patient safety: recommendations of the project 'safety improvement for patients in Europe'

    DEFF Research Database (Denmark)

    Kristensen, Solvejg; Mainz, Jan; Bartels, Paul

    2009-01-01

    such as culture, infections, surgical complications, medication errors, obstetrics, falls and specific diagnostic areas. CONCLUSION: The patient safety indicators recommended present a set of possible measures of patient safety. One of the future perspectives of implementing patient safety indicators...... for systematic monitoring is that it will be possible to continuously estimate the prevalence and incidence of patient safety quality problems. The lesson learnt from quality improvement is that it will pay off in terms of improving patient safety....

  8. Development of Comprehensive Nuclear Safety Regulation Plan for 2007-2011

    International Nuclear Information System (INIS)

    Choi, Young Sung; Kim, Woong Sik; Park, Dong Keuk; Kim, Ho Ki

    2006-01-01

    The Article 8-2 of Atomic Energy Act requires the government to establish Atomic Energy Promotion Plan every five years. It sets out national nuclear energy policies in a systematic and consistent way. The plan presents the goals and basic directions of national nuclear energy policies on the basis of current status and prospects. Both areas of utilization and safety management of nuclear energy are included and various projects and schedules are delineated based on the national policy directions. The safety management area in this plan deals with the overall safety and regulation policy. Its detail projects and schedule should be developed in separate plans by responsible ministries under the mediation of the MOST. As a regulatory authority, MOST is responsible for safety management area and its technical support organization, KINS has developed Comprehensive Nuclear Safety Regulation Plan as an implementation plan of safety area. This paper presents the development process and specific projects contained in the Comprehensive Nuclear Safety Regulation Plan which is under development now

  9. General-purpose heat source project and space nuclear safety and fuels program. Progress reportt, January 1980

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1980-04-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are the general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work

  10. Nuclear ships and their safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-04-15

    Several aspects of nuclear ship propulsion, with special reference to nuclear safety, were discussed at an international symposium at Taormina, Italy, from 14-18 November 1960. Discussions on specific topics are conducted, grouped under the following headings: Economics and National Activities in Nuclear Ship Propulsion; International Problems and General Aspects of Safety for Nuclear Ships; Nuclear Ship Projects from the Angle of Safety; Ship Reactor Problems; Sea Motion and Hull Problems; Maintenance and Refuelling Problems; and Safety Aspects of Nuclear Ship Operation.

  11. Evaluation of the Safety Analysis Report for the Waste Isolation Pilot Plant Project

    International Nuclear Information System (INIS)

    Little, M.S.

    1985-05-01

    The Safety Analysis Report (SAR) for the Waste Isolation Pilot Plant (WIPP) Project was first published by the US Department of Energy (DOE), WIPP Project Office (WPO) in 1980. Since that time a total of eight amendments to this Report have been published. As part of its independent evaluation of the WIPP Project for the State of New Mexico, the Environmental Evaluation Group (EEG) maintains a continuing technical assessment of the information in this Report and its amendments. Beginning with the initial publication, and following the amendments, the EEG prepares detailed written comments and recommendations which are submitted to the WPO for consideration in future amendments. The WPO has made many substantial changes to the SAR in response to the EEG's comments. On frequent occasions, meetings between the two groups have been held in an effort to reach an accord on some of the more controversial issues. These meetings generally have been very constructive, but several important areas of conflict remain. In many instances, these areas represent changes which are to be considered by the WPO at some future date, rather than irreconcilable issues. The most important issues remaining to be resolved are included in the discussions of this report, and could be summarized as follows: (1) An amendment of the topical content to be more in accord with the DOE Order 5481.1A and AL 5481.1A. (2) Substantial revisions of the classification of components, structures and systems, and related quality assurance. (3) Revisions to the site geological and hydrologic data based on studies agreed to between DOE and the State

  12. Status of safety analysis reports

    Energy Technology Data Exchange (ETDEWEB)

    Cserhati, A

    1999-06-01

    The safety regulation connected to both of the Atomic Acts from 1980 and 1996 requires preparation of the Preliminary Safety Analysis Report (PSAR) as well as Final SAR (FSAR). In this respect the licensing procedure for the construction and commissioning of Paks NPP did not formally deviate from the standards applied in developed countries; this is particularly true if comparison is made with the standards applied for commissioning NPPs in the second half of the seventies. By the time the overall development of internationally accepted safety standards and some existing deficiencies of earlier SAR made necessary a general reassessment of the plant safety (AGNES project). The carried out PSR for Paks-1 and 2 also added a valuable contribution to the SAR content, however a formal update of SAR is not made yet. A Hungarian nuclear authority decree from 1997 obligates the licensee to prepare and submit a major upgrade of FSAR until the mid of 2000, after finishing the PSR for Paks-3 and 4. From this date a periodic update of FSAR is required every year. The operational license renewal affects only the PSR but not the FSAR updating. The new Nuclear Safety Code outlines the contents of PSAR and FSAR, based on US NRC Reg. Guide 1. 70. Rev. 3. Hungary by now can fulfill the upgrading of SAR without major external technical or financial help. The AGNES project covered the safety analysis chapters of SAR. It was financed mainly by the country. In the project there have been involved in limited cases as performers the VTT (Finland), Belgatom (Belgium), GRS (Germany), etc., the IVO (Finland) fulfilled tasks of an independent reviewer for safety analysis. The AGNES had certain interconnection with the similar IAEA RER safety reassessment project for WWER-440/213. The PSR for Paks-1 and 2 have been carried out by the Paks staff from the resources of the plant. During the evaluation of several parts of Paks-3 and 4 PSR documentation the authority intends to use certain

  13. Status of safety analysis reports

    International Nuclear Information System (INIS)

    Cserhati, A.

    1999-01-01

    The safety regulation connected to both of the Atomic Acts from 1980 and 1996 requires preparation of the Preliminary Safety Analysis Report (PSAR) as well as Final SAR (FSAR). In this respect the licensing procedure for the construction and commissioning of Paks NPP did not formally deviate from the standards applied in developed countries; this is particularly true if comparison is made with the standards applied for commissioning NPPs in the second half of the seventies. By the time the overall development of internationally accepted safety standards and some existing deficiencies of earlier SAR made necessary a general reassessment of the plant safety (AGNES project). The carried out PSR for Paks-1 and 2 also added a valuable contribution to the SAR content, however a formal update of SAR is not made yet. A Hungarian nuclear authority decree from 1997 obligates the licensee to prepare and submit a major upgrade of FSAR until the mid of 2000, after finishing the PSR for Paks-3 and 4. From this date a periodic update of FSAR is required every year. The operational license renewal affects only the PSR but not the FSAR updating. The new Nuclear Safety Code outlines the contents of PSAR and FSAR, based on US NRC Reg. Guide 1. 70. Rev. 3. Hungary by now can fulfill the upgrading of SAR without major external technical or financial help. The AGNES project covered the safety analysis chapters of SAR. It was financed mainly by the country. In the project there have been involved in limited cases as performers the VTT (Finland), Belgatom (Belgium), GRS (Germany), etc., the IVO (Finland) fulfilled tasks of an independent reviewer for safety analysis. The AGNES had certain interconnection with the similar IAEA RER safety reassessment project for WWER-440/213. The PSR for Paks-1 and 2 have been carried out by the Paks staff from the resources of the plant. During the evaluation of several parts of Paks-3 and 4 PSR documentation the authority intends to use certain

  14. Safety upgrading of the PAKS Nuclear Plant

    International Nuclear Information System (INIS)

    Vamos, G.; Vigassy, J.

    1993-01-01

    In the last several years the net electricity from the Paks NPP represents almost half of the Hungarian total. The 4 units of Paks belong to the latest generation of the VVER-440 units, the small-sized Russian designed PWRs. Reviewing the main design features of them, the safety merits and safety concerns are summarized. Due to the conservative design and the extensive operating experience the safety merits appear to be more significant than generally believed. The VVER-440 type has two models, the 230 and 213, which have a large number of distinctive safety features. These are highlighted in the section comparisons. A quality assurance program was initiated in Paks very early. A long-term safety upgrading program was also initiated, originating from vendor recommendations, regulatory decisions, in-house operating experience and safety concerns, and independent reviews. The main areas and some examples of the measures are described. This program, like all other activities related to nuclear safety, has been under regulatory control. The specific features of the Hungarian regulatory system are described. For advanced, general and new evaluation of the safety of the units in Paks in accordance with the internationally recommended criteria of the 90's, the project AGNES has been launched with international participation. The scope of this project is summarized. International efforts as the IAEA Regional Project on safety assessment of VVER-440/213 and VVER-440/230 units are underway. Since safety is not only a question of design, but it can be significantly influenced by operations and maintenance practices, the Paks NPP has invited LAEA's OSART and ASSET missions, WANO's Pilot Peer Review

  15. Program nuclear safety research: report 2000

    International Nuclear Information System (INIS)

    Muehl, B.

    2001-09-01

    The reactor safety R and D work of forschungszentrum karlsruhe (FZK) had been part of the nuclear safety research project (PSF) since 1990. In 2000, a new organisational structure was introduced and the Nuclear Safety Research Project was transferred into the nuclear safety research programme (NUKLEAR). In addition to the three traditional main topics - Light Water Reactor safety, Innovative systems, Studies related to the transmutation of actinides -, the new Programme NUKLEAR also covers Safety research related to final waste storage and Immobilisation of HAW. These new topics, however, will only be dealt with in the next annual report. Some tasks related to the traditional topics have been concluded and do no longer appear in the annual report; other tasks are new and are described for the first time. Numerous institutes of the research centre contribute to the work programme, as well as several external partners. The tasks are coordinated in agreement with internal and external working groups. The contributions to this report, which are either written in German or in English, correspond to the status of early/mid 2001. (orig.)

  16. The Nordic programme for nuclear safety 1990-1993

    International Nuclear Information System (INIS)

    1992-02-01

    The report, covering the year 1991 of the Nordic Programme for Nuclear Safety 1990-1993, presents 18 projects divided into 4 main areas: preparedness in abnormal radiation situations, nuclear wastes and shutdowns, radioecology and reactor safety - knowledge preparedness. The main areas are briefly described and the status of each project is presented. (CLS) (118 refs.)

  17. Development of web-based safety review advisory system

    International Nuclear Information System (INIS)

    Kim, M. W.; Lee, H. C.; Park, S. O.; Lee, K. H.; Hur, K. Y.; Lee, S. J.; Choi, S. S.; Kang, C. M.

    2002-01-01

    For the development of an expert system supporting the safety review of nuclear power plants, the application was implemented after gathering necessary theoretical background and practical requirements. The general and the detail functional specifications were established, and they are investigated by KINS (Korea Institute of Nuclear Safety). The Safety Review Advisory System(SRAS), this application on web-server environment was developed according to the above specifications. Reviews can do their safety reviewing regardless of their speciality or reviewing experiences because SRAS is operated by the safety review plans which are converted to standardized format. When the safety reviewing is carried out by using SRAS, the results of safety reviewing are accumulated in the database and may be utilized later usefully, and we can grasp safety reviewing progress. Users of SRAS are categorized into four groups, administrator, project manager, project reviewer and general reviewer. Each user group is delegated appropriate access capability. The function and some screen shots of SRAS are described

  18. Dukovany nuclear power plant safety

    International Nuclear Information System (INIS)

    1999-01-01

    Presentation covers recommended safety issues for the Dukovany NPP which have been solved with satisfactory conclusions. Safety issues concerned include: radiation safety; nuclear safety; security; emergency preparedness; health protection at work; fire protection; environmental protection; chemical safety; technical safety. Quality assurance programs at all stages on NPP life time is described. Report includes description of NPP staff training provision, training simulator, emergency operating procedures, emergency preparedness, Year 2000 problem, inspections and life time management. Description of Dukovany Plant Safety Analysis Projects including integrity of the equipment, modernisation, equipment innovation and safety upgrading program show that this approach corresponds to the actual practice applied in EU countries, and fulfilment of current IAEA requirements for safety enhancement of the WWER 440/213 units in the course of MORAWA Equipment Upgrading program

  19. Probabilistic safety goals. Phase 3 - Status report

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, J.-E. (VTT (Finland)); Knochenhauer, M. (Relcon Scandpower AB, Sundbyberg (Sweden))

    2009-07-15

    The first phase of the project (2006) described the status, concepts and history of probabilistic safety goals for nuclear power plants. The second and third phases (2007-2008) have provided guidance related to the resolution of some of the problems identified, and resulted in a common understanding regarding the definition of safety goals. The basic aim of phase 3 (2009) has been to increase the scope and level of detail of the project, and to start preparations of a guidance document. Based on the conclusions from the previous project phases, the following issues have been covered: 1) Extension of international overview. Analysis of results from the questionnaire performed within the ongoing OECD/NEA WGRISK activity on probabilistic safety criteria, including participation in the preparation of the working report for OECD/NEA/WGRISK (to be finalised in phase 4). 2) Use of subsidiary criteria and relations between these (to be finalised in phase 4). 3) Numerical criteria when using probabilistic analyses in support of deterministic safety analysis (to be finalised in phase 4). 4) Guidance for the formulation, application and interpretation of probabilistic safety criteria (to be finalised in phase 4). (LN)

  20. Probabilistic safety goals. Phase 3 - Status report

    International Nuclear Information System (INIS)

    Holmberg, J.-E.; Knochenhauer, M.

    2009-07-01

    The first phase of the project (2006) described the status, concepts and history of probabilistic safety goals for nuclear power plants. The second and third phases (2007-2008) have provided guidance related to the resolution of some of the problems identified, and resulted in a common understanding regarding the definition of safety goals. The basic aim of phase 3 (2009) has been to increase the scope and level of detail of the project, and to start preparations of a guidance document. Based on the conclusions from the previous project phases, the following issues have been covered: 1) Extension of international overview. Analysis of results from the questionnaire performed within the ongoing OECD/NEA WGRISK activity on probabilistic safety criteria, including participation in the preparation of the working report for OECD/NEA/WGRISK (to be finalised in phase 4). 2) Use of subsidiary criteria and relations between these (to be finalised in phase 4). 3) Numerical criteria when using probabilistic analyses in support of deterministic safety analysis (to be finalised in phase 4). 4) Guidance for the formulation, application and interpretation of probabilistic safety criteria (to be finalised in phase 4). (LN)