WorldWideScience

Sample records for safety authorization basis

  1. Authorization Basis Safety Classification of Transfer Bay Bridge Crane at the 105-K Basins

    International Nuclear Information System (INIS)

    CHAFFEE, G.A.

    2000-01-01

    This supporting document provides the bases for the safety classification for the K Basin transfer bay bridge crane and the bases for the Structures, Systems, and Components (SSC) safety classification. A table is presented that delineates the safety significant components. This safety classification is based on a review of the Authorization Basis (AB). This Authorization Basis review was performed regarding AB and design baseline issues. The primary issues are: (1) What is the AB for the safety classification of the transfer bay bridge crane? (2) What does the SSC safety classification ''Safety Significant'' or ''Safety Significant for Design Only'' mean for design requirements and quality requirements for procurement, installation and maintenance (including replacement of parts) activities for the crane during its expected life time? The AB information on the crane was identified based on review of Department of Energy--Richland Office (RL) and Spent Nuclear Fuel (SNF) Project correspondence, K Basin Safety Analysis Report (SAR) and RL Safety Evaluation Reports (SERs) of SNF Project SAR submittals. The relevant correspondence, actions and activities taken and substantive directions or conclusions of these documents are provided in Appendix A

  2. DARHT: INTEGRATION OF AUTHORIZATION BASIS REQUIREMENTS AND WORKER SAFETY

    International Nuclear Information System (INIS)

    MC CLURE, D. A.; NELSON, C. A.; BOUDRIE, R. L.

    2001-01-01

    This document describes the results of consensus agreements reached by the DARHT Safety Planning Team during the development of the update of the DARHT Safety Analysis Document (SAD). The SAD is one of the Authorization Basis (AB) Documents required by the Department prior to granting approval to operate the DARHT Facility. The DARHT Safety Planning Team is lead by Mr. Joel A. Baca of the Department of Energy Albuquerque Operations Office (DOE/AL). Team membership is drawn from the Department of Energy Albuquerque Operations Office, the Department of Energy Los Alamos Area Office (DOE/LAAO), and several divisions of the Los Alamos National Laboratory. Revision 1 of the DARHT SAD had been written as part of the process for gaining approval to operate the Phase 1 (First Axis) Accelerator. Early in the planning stage for the required update of the SAD for the approval to operate both Phase 1 and Phase 2 (First Axis and Second Axis) DARHT Accelerator, it was discovered that a conflict existed between the Laboratory approach to describing the management of facility and worker safety

  3. Hanford Generic Interim Safety Basis

    International Nuclear Information System (INIS)

    Lavender, J.C.

    1994-01-01

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports

  4. Hanford Generic Interim Safety Basis

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, J.C.

    1994-09-09

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  5. Safety Basis Report

    International Nuclear Information System (INIS)

    R.J. Garrett

    2002-01-01

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities

  6. Safety Basis Report

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2002-01-14

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  7. Advanced Test Reactor Safety Basis Upgrade Lessons Learned Relative to Design Basis Verification and Safety Basis Management

    International Nuclear Information System (INIS)

    G. L. Sharp; R. T. McCracken

    2004-01-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The reactor also provides other irradiation services such as radioisotope production. The ATR and its support facilities are located at the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL). An audit conducted by the Department of Energy's Office of Independent Oversight and Performance Assurance (DOE OA) raised concerns that design conditions at the ATR were not adequately analyzed in the safety analysis and that legacy design basis management practices had the potential to further impact safe operation of the facility.1 The concerns identified by the audit team, and issues raised during additional reviews performed by ATR safety analysts, were evaluated through the unreviewed safety question process resulting in shutdown of the ATR for more than three months while these concerns were resolved. Past management of the ATR safety basis, relative to facility design basis management and change control, led to concerns that discrepancies in the safety basis may have developed. Although not required by DOE orders or regulations, not performing design basis verification in conjunction with development of the 10 CFR 830 Subpart B upgraded safety basis allowed these potential weaknesses to be carried forward. Configuration management and a clear definition of the existing facility design basis have a direct relation to developing and maintaining a high quality safety basis which properly identifies and mitigates all hazards and postulated accident conditions. These relations and the impact of past safety basis management practices have been reviewed in order to identify lessons learned from the safety basis upgrade process and appropriate actions to resolve possible concerns with respect to the current ATR safety

  8. Authorization basis requirements comparison report

    Energy Technology Data Exchange (ETDEWEB)

    Brantley, W.M.

    1997-08-18

    The TWRS Authorization Basis (AB) consists of a set of documents identified by TWRS management with the concurrence of DOE-RL. Upon implementation of the TWRS Basis for Interim Operation (BIO) and Technical Safety Requirements (TSRs), the AB list will be revised to include the BIO and TSRs. Some documents that currently form part of the AB will be removed from the list. This SD identifies each - requirement from those documents, and recommends a disposition for each to ensure that necessary requirements are retained when the AB is revised to incorporate the BIO and TSRs. This SD also identifies documents that will remain part of the AB after the BIO and TSRs are implemented. This document does not change the AB, but provides guidance for the preparation of change documentation.

  9. Authorization basis requirements comparison report

    International Nuclear Information System (INIS)

    Brantley, W.M.

    1997-01-01

    The TWRS Authorization Basis (AB) consists of a set of documents identified by TWRS management with the concurrence of DOE-RL. Upon implementation of the TWRS Basis for Interim Operation (BIO) and Technical Safety Requirements (TSRs), the AB list will be revised to include the BIO and TSRs. Some documents that currently form part of the AB will be removed from the list. This SD identifies each - requirement from those documents, and recommends a disposition for each to ensure that necessary requirements are retained when the AB is revised to incorporate the BIO and TSRs. This SD also identifies documents that will remain part of the AB after the BIO and TSRs are implemented. This document does not change the AB, but provides guidance for the preparation of change documentation

  10. Knowledge basis in safety culture for researchers and practitioners

    International Nuclear Information System (INIS)

    Vieira Neto, Antonio S.; Barroso, Antonio C.O.; Goncalves, Adriana

    2009-01-01

    This paper presents the main characteristics of the knowledge basis in safety culture which is being developed at the IPEN-CNEN/SP, one of the Brazilian nuclear institutes of research. The main objective of this basis is to organize the information about safety culture found in the literature and to make it available to researchers and practitioners. The first stage of the development of this basis is already finished being the subject of this work. (author)

  11. Accelerator production of tritium authorization basis strategy

    International Nuclear Information System (INIS)

    Miller, L.A.; Edwards, J.; Rose, S.

    1996-01-01

    The Accelerator Production of Tritium (APT) project has proposed a strategy to develop the APT authorization basis and safety case based on DOE orders and fundamental requirements for safe operation. The strategy is viable regardless of whether the APT is regulated by DOE or by an external regulatory body. Currently the operation of Department of Energy (DOE) facilities is authorized by DOE and regulated by DOE orders and regulations while meeting the environmental protection requirements of the Environmental Protection Agency (EPA) and the states. In the spring of 1994, Congress proposed legislation and held hearings related to requiring all DOE operations to be subject to external regulation. On January 25, 1995, DOE, with the support of the White House Council on Environmental Quality, created the Advisory Committee on External Regulation of Department of Energy Nuclear Safety. This committee divided its recommendations into three areas: (1) facility safety, (2) worker safety, and (3) environmental protection. In the area of facility safety the committee recommended external regulation of DOE nuclear facilities by either the Nuclear Regulatory Commission (NRC) or a restructured Defense Nuclear Facilities Safety Board (DNFSB). In the area of worker safety, the committee recommended that the Occupational Safety and Health Administration (OSHA) regulate DOE nuclear facilities. In the environmental protection area, the committee did not recommend a change in the regulation by the EPA and the states of DOE nuclear facilities. If these recommendations are accepted, all DOE nuclear facilities will be impacted to some extent

  12. 10 CFR 830.202 - Safety basis.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility must establish and maintain the safety basis...

  13. Evolution of Safety Basis Documentation for the Fernald Site

    International Nuclear Information System (INIS)

    Brown, T.; Kohler, S.; Fisk, P.; Krach, F.; Klein, B.

    2004-01-01

    The objective of the Department of Energy's (DOE) Fernald Closure Project (FCP), in suburban Cincinnati, Ohio, is to safely complete the environmental restoration of the Fernald site by 2006. Over 200 out of 220 total structures, at this DOE plant site which processed uranium ore concentrates into high-purity uranium metal products, have been safely demolished, including eight of the nine major production plants. Documented Safety Analyses (DSAs) for these facilities have gone through a process of simplification, from individual operating Safety Analysis Reports (SARs) to a single site-wide Authorization Basis containing nuclear facility Bases for Interim Operations (BIOs) to individual project Auditable Safety Records (ASRs). The final stage in DSA simplification consists of project-specific Integrated Health and Safety Plans (I-HASPs) and Nuclear Health and Safety Plans (N-HASPs) that address all aspects of safety, from the worker in the field to the safety basis requirements preserving the facility/activity hazard categorization. This paper addresses the evolution of Safety Basis Documentation (SBD), as DSAs, from production through site closure

  14. APPROVAL OF WASTE TREATMENT AND IMMOBILIZATION PLANT CONTRACTOR-INITIATED AUTHORIZATION BASIS AMENDMENT REQUESTS (ABAR)

    International Nuclear Information System (INIS)

    JONES GL

    2008-01-01

    The objective is to describe the process used by the Office of River Protection (ORP) for evaluating and implementing Contractor-initiated changes to the Waste Treatment and Immobilization Plant (WTP) Authorization Basis (AB). The WTP Project's history has provided a unique challenge for establishing and maintaining an ORP-approved AB during design and construction. Until operations begin, the project cannot implement the classic Unreviewed Safety Question (USQ) process to determine when ORP approval of Contractor-initiated changes is required. A 'quasiUSQ' process has been implemented that defines when AB changes could occur. The three types of AB changes are (1) Limited Scope Changes, (2) Authorization Basis Deviations, and (3) Authorization Basis Amendment Request (ABAR). DOE RL/REG 97-13, 'Office of River Protection Position on Contractor-Initiated Changes to the Authorization Basis', describes the process the WTP Contractor must follow to make changes to the AB, with and without ORP approval. The process uses a 'safety evaluation' process that is similar to the USQ process but at a more qualitative level. The maturation of the WTP Contractor's facility design and activities, and other changing conditions, resulted in a process that allows the Contractor to make changes to the AB without ORP approval; however, those changes that may significantly affect nuclear safety do require ORP approval. This process balances the WTP regulatory principle of efficiency with assurance that adequate safety will not be compromised. The process has reduced the number of ABARs requiring ORP approval and reduced the potential for delays in design and procurement activities

  15. Safety culture competition - expectations of a regulatory authority

    International Nuclear Information System (INIS)

    Keil, D.; Gloeckle, W.

    2000-01-01

    The accident at the Chernobyl nuclear power station on April 26, 1986 influenced the development of reactor safety and promulgated two basic concepts especially in Germany. On the one hand, extensive measures of in-plant accident management have greatly reduced the so-called residual risk. On the other hand, a comprehensive safety approach has been initiated which comprises the nuclear power plant as a system together with people, technology, and organization and also includes safety culture. In a modern regulatory concept based on the dynamic development of safety, the authority's classical regulatory function of controlling is supplemented by the objective of promoting safety. While preserving the division of responsibilities between the regulatory authority and plant operators, the authority uses 'constructive critical dialog' as a tool to enhance safety. Besides the regulatory assessment of safety culture on the basis of indications or indicators, also the continuous promotion of safety culture in a dialog with plant operators is seen as one of the duties of a regulatory authority. Continued efforts are necessary to maintain the high level of safety culture in German nuclear power plants. Operators are expected to establish a safety management which assigns top priority to safety issues, and which pursues the goal of supervising and promoting safety culture. Developments on the deregulated electricity markets must not lead to safety aspects ranking second to economic aspects. Moreover, also under changed boundary conditions, only the safe operation of nuclear power plants ensures economic viability. (orig.) [de

  16. System Design and the Safety Basis

    International Nuclear Information System (INIS)

    Ellingson, Darrel

    2008-01-01

    The objective of this paper is to present the Bechtel Jacobs Company, LLC (BJC) Lessons Learned for system design as it relates to safety basis documentation. BJC has had to reconcile incomplete or outdated system description information with current facility safety basis for a number of situations in recent months. This paper has relevance in multiple topical areas including documented safety analysis, decontamination and decommissioning (D and D), safety basis (SB) implementation, safety and design integration, potential inadequacy of the safety analysis (PISA), technical safety requirements (TSR), and unreviewed safety questions. BJC learned that nuclear safety compliance relies on adequate and well documented system design information. A number of PIS As and TSR violations occurred due to inadequate or erroneous system design information. As a corrective action, BJC assessed the occurrences caused by systems design-safety basis interface problems. Safety systems reviewed included the Molten Salt Reactor Experiment (MSRE) Fluorination System, K-1065 fire alarm system, and the K-25 Radiation Criticality Accident Alarm System. The conclusion was that an inadequate knowledge of system design could result in continuous non-compliance issues relating to nuclear safety. This was especially true with older facilities that lacked current as-built drawings coupled with the loss of 'historical knowledge' as personnel retired or moved on in their careers. Walkdown of systems and the updating of drawings are imperative for nuclear safety compliance. System design integration with safety basis has relevance in the Department of Energy (DOE) complex. This paper presents the BJC Lessons Learned in this area. It will be of benefit to DOE contractors that manage and operate an aging population of nuclear facilities

  17. Transuranic waste storage and assay facility (TRUSAF) interim safety basis

    International Nuclear Information System (INIS)

    Gibson, K.D.

    1995-09-01

    The TRUSAF ISB is based upon current facility configuration and procedures. The purpose of the document is to provide the basis for interim operation or restrictions on interim operations and the authorization basis for the TRUSAF at the Hanford Site. The previous safety analysis document TRUSAF hazards Identification and Evaluation (WHC 1977) is superseded by this document

  18. Tank waste remediation system retrieval authorization basis amendment task plan

    International Nuclear Information System (INIS)

    Goetz, T.G.

    1998-01-01

    This task plan is a documented agreement between Nuclear Safety and Licensing and the Process Development group within the Waste Feed Delivery organization. The purpose of this task plan is to identify the scope of work, tasks and deliverables, responsibilities, manpower, and schedules associated with an authorization basis amendment as a result of the Waste Feed Waste Delivery Program, Project W-211, and Project W-TBD

  19. 29 CFR 1975.2 - Basis of authority.

    Science.gov (United States)

    2010-07-01

    ... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) COVERAGE OF EMPLOYERS UNDER THE WILLIAMS-STEIGER OCCUPATIONAL SAFETY AND HEALTH ACT OF 1970 § 1975.2 Basis... Occupational Safety and Health Act of 1970, is derived mainly from the Commerce Clause of the Constitution...

  20. Tank Waste Remediation System (TWRS) Retrieval Authorization Basis Amendment Task Plan

    International Nuclear Information System (INIS)

    HARRIS, J.P.

    1999-01-01

    This task plan is a documented agreement between Nuclear Safety and Licensing and Retrieval Engineering. The purpose of this task plan is to identify the scope of work, tasks and deliverables, responsibilities, manpower, and schedules associated with an authorization basis amendment as a result of the Waste Feed Delivery Program, Project W-211, Project W-521, and Project W-522

  1. SAFETY BASIS DESIGN DEVELOPMENT CHALLENGES IMECE2007-42747

    Energy Technology Data Exchange (ETDEWEB)

    RYAN GW

    2007-09-24

    'Designing in Safety' is a desired part of the development of any new potentially hazardous system, process, or facility. It is a required part of nuclear safety activities as specified in the U.S. Department of Energy (DOE) Order 420.B, Facility Safety. This order addresses the design of nuclear related facilities developed under federal regulation IOCFR830, Nuclear Safety Management. IOCFR830 requires that safety basis documentation be provided to identify how nuclear safety is being adequately addressed as a condition for system operation (e.g., the safety basis). To support the development of the safety basis, a safety analysis is performed. Although the concept of developing a design that addresses 'Safety is simple, the execution can be complex and challenging. This paper addresses those complexities and challenges for the design activity of a system to treat sludge, a corrosion product of spent nuclear fuel, at DOE's Hanford Site in Washington State. The system being developed is referred to as the Sludge Treatment Project (STP). This paper describes the portion of the safety analysis that addresses the selection of design basis events using the experience gained from the STP and the development of design requirements for safety features associated with those events. Specifically, the paper describes the safety design process and the application of the process for two types of potential design basis accidents associated with the operation of the system, (1) flashing spray leaks and (2) splash and splatter leaks. Also presented are the technical challenges that are being addressed to develop effective safety features to deal with these design basis accidents.

  2. SAFETY BASIS DESIGN DEVELOPMENT CHALLENGES IMECE2007-42747

    International Nuclear Information System (INIS)

    RYAN GW

    2007-01-01

    'Designing in Safety' is a desired part of the development of any new potentially hazardous system, process, or facility. It is a required part of nuclear safety activities as specified in the U.S. Department of Energy (DOE) Order 420.B, Facility Safety. This order addresses the design of nuclear related facilities developed under federal regulation IOCFR830, Nuclear Safety Management. IOCFR830 requires that safety basis documentation be provided to identify how nuclear safety is being adequately addressed as a condition for system operation (e.g., the safety basis). To support the development of the safety basis, a safety analysis is performed. Although the concept of developing a design that addresses 'Safety is simple, the execution can be complex and challenging. This paper addresses those complexities and challenges for the design activity of a system to treat sludge, a corrosion product of spent nuclear fuel, at DOE's Hanford Site in Washington State. The system being developed is referred to as the Sludge Treatment Project (STP). This paper describes the portion of the safety analysis that addresses the selection of design basis events using the experience gained from the STP and the development of design requirements for safety features associated with those events. Specifically, the paper describes the safety design process and the application of the process for two types of potential design basis accidents associated with the operation of the system, (1) flashing spray leaks and (2) splash and splatter leaks. Also presented are the technical challenges that are being addressed to develop effective safety features to deal with these design basis accidents

  3. Safety basis for the 241-AN-107 mixer pump installation and caustic addition

    International Nuclear Information System (INIS)

    Van Vleet, R.J.

    1994-01-01

    This safety Basis was prepared to determine whether or not the proposed activities of installing a 76 HP jet mixer pump and the addition of approximately 50,000 gallons of 19 M (50:50 wt %) aqueous caustic are within the safety envelope as described by Tank Farms (chapter six of WHC-SD-WM-ISB-001, Rev. 0). The safety basis covers the components, structures and systems for the caustic addition and mixer pump installation. These include: installation of the mixer pump and monitoring equipment; operation of the mixer pump, process monitoring equipment and caustic addition; the pump stand, caustic addition skid, the electrical skid, the video camera system and the two densitometers. Also covered is the removal and decontamination of the mixer pump and process monitoring system. Authority for this safety basis is WHC-IP-0842 (Waste Tank Administration). Section 15.9, Rev. 2 (Unreviewed Safety Questions) of WHC-IP-0842 requires that an evaluation be performed for all physical modifications

  4. River Protection Double-Shell Tank Waste Retrieval Authorization Basis Amendment Task Plan

    International Nuclear Information System (INIS)

    HARRIS, J.P.

    2000-01-01

    This task plan is a documented agreement between Nuclear Safety and Licensing and Retrieval Engineering. The purpose of this task plan is to identify the scope of work, tasks and deliverables, responsibilities, manpower, and schedules associated with an authorization basis amendment as a result of the Waste Feed Delivery Program, Project W-211, Project W-521, and Project W-522

  5. 340 Waste Handling Facility interim safety basis

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1995-01-01

    This document establishes the interim safety basis (ISB) for the 340 Waste Handling Facility (340 Facility). An ISB is a documented safety basis that provides a justification for the continued operation of the facility until an upgraded final safety analysis report is prepared that complies with US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports. The ISB for the 340 Facility documents the current design and operation of the facility. The 340 Facility ISB (ISB-003) is based on a facility walkdown and review of the design and operation of the facility, as described in the existing safety documentation. The safety documents reviewed, to develop ISB-003, include the following: OSD-SW-153-0001, Operating Specification Document for the 340 Waste Handling Facility (WHC 1990); OSR-SW-152-00003, Operating Limits for the 340 Waste Handling Facility (WHC 1989); SD-RE-SAP-013, Safety Analysis Report for Packaging, Railroad Liquid Waste Tank Cars (Mercado 1993); SD-WM-TM-001, Safety Assessment Document for the 340 Waste Handling Facility (Berneski 1994a); SD-WM-SEL-016, 340 Facility Safety Equipment List (Berneski 1992); and 340 Complex Fire Hazard Analysis, Draft (Hughes Assoc. Inc. 1994)

  6. General safety basis development guidance for environmental restoration decontamination and decommissioning

    International Nuclear Information System (INIS)

    Ellingson, D.R.; Kerr, N.; Bohlander, K.; Hansen, J.; Crowley, W.

    1994-02-01

    Safety analyses have the objective of contributing to two essential ingredients of a successful operation. The first is promoting the safety of the operation through worker involvement in information development (safety basis). The second is obtaining approval to conduct the operation (authorization). Typically these ingredients are assembled under separate programs covered by separate DOE requirements. DOE authorization relies on successful development of a document containing up to 21 topics written in terms and language suited to reviewers and approvers. Safety relies on successful training and procedures that convert the technical documented information into terms and language understandable to the worker. This separation can lead to successful incorporation of one ingredient independent of the other. At best, this separation may result in a safe but unauthorized operation; at worst, the separation may result in an unsafe operation authorized to proceed. This guide is based on experiences gained by contractors who have integrated rather than separated the safety and authorization. The short duration of ER/D ampersand D activities, the uncertainties of hazards, and the publicly expressed desire for demonstrable progress in cleanup activities add emphasis to the need to integrate rather than separate and develop new programs. Experience-based information has been useful to workers, safety analysis practitioners, and reviewers in the following ways: (1) Acquiring or developing the needed information in a useful form; (2) Managing the uncertainties during activity development and operation; (3) Identifying the subset of applicable requirements for an activity; (4) Developing the appropriate level of documentation detail for a specific activity; and (5) Increasing the usefulness and use of safety analysis (ownership)

  7. Spent Nuclear Fuel (SNF) Project Safety Basis Implementation Strategy

    International Nuclear Information System (INIS)

    TRAWINSKI, B.J.

    2000-01-01

    The objective of the Safety Basis Implementation is to ensure that implementation of activities is accomplished in order to support readiness to move spent fuel from K West Basin. Activities may be performed directly by the Safety Basis Implementation Team or they may be performed by other organizations and tracked by the Team. This strategy will focus on five key elements, (1) Administration of Safety Basis Implementation (general items), (2) Implementing documents, (3) Implementing equipment (including verification of operability), (4) Training, (5) SNF Project Technical Requirements (STRS) database system

  8. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  9. NRPA develops regulatory cooperation with Central Asian authorities for nuclear safety and radiation protection

    International Nuclear Information System (INIS)

    2009-01-01

    With the support of the Norwegian Ministry of Foreign Affairs, the NRPA has initiated a regional regulatory cooperation project with Kazakhstan, Kyrgyzstan and Tajikistan to improve regulations on nuclear safety, radiation protection and environmental issues, and assist the countries in re mediating radioactively contaminated sites. There is a critical lack in the regulatory basis for carrying out such remediation work, including a lack of relevant radiation and environmental safety norms and standards, licensing procedures and requirements for monitoring, as well as expertise to transform such a basis into practice. (Author)

  10. [Recommendations for inspections of the French nuclear safety authority].

    Science.gov (United States)

    Rousse, C; Chauvet, B

    2015-10-01

    The French nuclear safety authority is responsible for the control of radiation protection in radiotherapy since 2002. Controls are based on the public health and the labour codes and on the procedures defined by the controlled health care facility for its quality and safety management system according to ASN decision No. 2008-DC-0103. Inspectors verify the adequacy of the quality and safety management procedures and their implementation, and select process steps on the basis of feedback from events notified to ASN. Topics of the inspection are communicated to the facility at the launch of a campaign, which enables them to anticipate the inspectors' expectations. In cases where they are not physicians, inspectors are not allowed to access information covered by medical confidentiality. The consulted documents must therefore be expunged of any patient-identifying information. Exchanges before the inspection are intended to facilitate the provision of documents that may be consulted. Finally, exchange slots between inspectors and the local professionals must be organized. Based on improvements achieved by the health care centres and on recommendations from a joint working group of radiotherapy professionals and the nuclear safety authority, changes will be made in the control procedure that will be implemented when developing the inspection program for 2016-2019. Copyright © 2015. Published by Elsevier SAS.

  11. Intervention of French safety authorities during the design and construction phases of the Creys-Malville plant

    International Nuclear Information System (INIS)

    Orzoni, G.

    1985-01-01

    The intervention of French safety authorities during the design and construction phases of the Creys-Malville plant has been made by the different means of technical regulation, of several successive authorizations bound to different steps, and of numerous surveillance visits. Some safety-related problems have been met. Some of them are detailed, relating to the basis accident for containment design, decay heat removal, polar crane of reactor building, seismic resistance of main vessel internals, core cover plug, design and fabrication of steam generators. The main problems met during the design reviews and the construction phase of the plant have been solved in time; the safety level reached is provisionally judged acceptable by the French safety authorities

  12. 340 waste handling facility interim safety basis

    Energy Technology Data Exchange (ETDEWEB)

    VAIL, T.S.

    1999-04-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  13. 340 waste handling facility interim safety basis

    International Nuclear Information System (INIS)

    VAIL, T.S.

    1999-01-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people

  14. TWRS authorization basis configuration control summary

    International Nuclear Information System (INIS)

    Mendoza, D.P.

    1997-01-01

    This document was developed to define the Authorization Basis management functional requirements for configuration control, to evaluate the management control systems currently in place, and identify any additional controls that may be required until the TWRS [Tank Waste Remediation System] Configuration Management system is fully in place

  15. Complementary safety assessments - Report by the French Nuclear Safety Authority

    International Nuclear Information System (INIS)

    2011-12-01

    As an immediate consequence of the Fukushima accident, the French Authority of Nuclear Safety (ASN) launched a campaign of on-site inspections and asked operators (mainly EDF, AREVA and CEA) to make complementary assessments of the safety of the nuclear facilities they manage. The approach defined by ASN for the complementary safety assessments (CSA) is to study the behaviour of nuclear facilities in severe accidents situations caused by an off-site natural hazard according to accident scenarios exceeding the current baseline safety requirements. This approach can be broken into 2 phases: first conformity to current design and secondly an approach to the beyond design-basis scenarios built around the principle of defence in depth. 38 inspections were performed on issues linked to the causes of the Fukushima crisis. It appears that some sites have to reinforce the robustness of the heat sink. The CSA confirmed that the processes put into place at EDF to detect non-conformities were satisfactory. The complementary safety assessments demonstrated that the current seismic margins on the EDF nuclear reactors are satisfactory. With regard to flooding, the complementary safety assessments show that the complete reassessment carried out following the flooding of the Le Blayais nuclear power plant in 1999 offers the installations a high level of protection against the risk of flooding. Concerning the loss of electrical power supplies and the loss of cooling systems, the analysis of EDF's CSA reports showed that certain heat sink and electrical power supply loss scenarios can, if nothing is done, lead to core melt in just a few hours in the most unfavourable circumstances. As for nuclear facilities that are not power or experimental reactors, some difficulties have appeared to implement the CSA approach that was initially devised for reactors. Generally speaking, ASN considers that the safety of nuclear facilities must be made more robust to improbable risks which are not

  16. Criteria Document for B-plant's Surveillance and Maintenance Phase Safety Basis Document

    International Nuclear Information System (INIS)

    SCHWEHR, B.A.

    1999-01-01

    This document is required by the Project Hanford Managing Contractor (PHMC) procedure, HNF-PRO-705, Safety Basis Planning, Documentation, Review, and Approval. This document specifies the criteria that shall be in the B Plant surveillance and maintenance phase safety basis in order to obtain approval of the DOE-RL. This CD describes the criteria to be addressed in the S and M Phase safety basis for the deactivated Waste Fractionization Facility (B Plant) on the Hanford Site in Washington state. This criteria document describes: the document type and format that will be used for the S and M Phase safety basis, the requirements documents that will be invoked for the document development, the deactivated condition of the B Plant facility, and the scope of issues to be addressed in the S and M Phase safety basis document

  17. The role of the safety authority

    International Nuclear Information System (INIS)

    Gelder, P. de

    2004-01-01

    The original programme of the Belgium Workshop did not include a scheduled talk by a representative of the safety authority. However, because of the interest expressed by FSC delegates in this player, a speaker stepped forward. Pieter De Gelder, division head of AVN spoke of the role of the safety authority in the local dialogue. He recalled that in Belgium a safety authority in the modern sense of the word was founded only in the mid 1990's. The safety authority is a federal agency (FANC), while AVN is a private company, a contractor to FANC. Mr. De Gelder highlighted that the regulators are not formal members of the partnerships and do not attend each meeting. However, from time to time, partnerships invite experts from FANC and AVN to give presentations on specific topics. In particular, these experts have provided information on their roles and activities in the process, on legal and authorization procedures, and on the evaluation of ONDRAF/NIRAS dossiers. Mr. De Gelder observed that they found a very motivated local audience and they have committed themselves to continued interaction with the partnerships. Finally, he stressed that this type of public interaction around the repository issue is new to the regulator. (author)

  18. Authorization basis status report (miscellaneous TWRS facilities, tanks and components)

    Energy Technology Data Exchange (ETDEWEB)

    Stickney, R.G.

    1998-04-29

    This report presents the results of a systematic evaluation conducted to identify miscellaneous TWRS facilities, tanks and components with potential needed authorization basis upgrades. It provides the Authorization Basis upgrade plan for those miscellaneous TWRS facilities, tanks and components identified.

  19. Authorization basis status report (miscellaneous TWRS facilities, tanks and components)

    International Nuclear Information System (INIS)

    Stickney, R.G.

    1998-01-01

    This report presents the results of a systematic evaluation conducted to identify miscellaneous TWRS facilities, tanks and components with potential needed authorization basis upgrades. It provides the Authorization Basis upgrade plan for those miscellaneous TWRS facilities, tanks and components identified

  20. Interim safety basis compliance matrix for Trenches 31 and 34

    International Nuclear Information System (INIS)

    Ames, R.R.

    1994-01-01

    The tables provided in this document identify the specific requirements and basis for the administrative controls established in the Westinghouse Hanford Company (WHC) Solid Waste Burial Ground (SWBG) Interim Safety Basis (ISB) for operation of the Project W-025, Mixed Waste Lined Landfill (Trenches 31 and 34). The tables document the necessary controls and implementing procedures to ensure compliance with the requirements of the ISB. These requirements provide a basis for future Unreviewed Safety Questions (USQ) screening of applicable procedure changes, proposed physical modifications, tests, experiments, and occurrences. Table 1 provides the SWBG interim Operational Safety Requirements administrative controls matrix. The specific assumptions and commitments used in the safety analysis documents applicable to disposal of mixed wastes in Trenches 31 and 34 are provided in Table 2. Table 3 is provided to document the potential engineered and administrative mitigating features identified in the Preliminary Hazard Analysis (PHA) for disposal of mixed waste

  1. The French Nuclear Safety Authority (ASN)

    International Nuclear Information System (INIS)

    Alloso, Ph.

    2011-01-01

    This article presents the statutes, the organization and the missions of the Nuclear Safety Authority (ASN) whose scope includes radiation protection since 2002. Globally ASN is in charge of: -) participating to the making of laws and regulations, -) delivering administrative authorizations, -) controlling the conformity of nuclear installations and activities with the laws and regulations, -) informing the public, and -) reporting on the state of nuclear safety and radiation protection each year. (A.C.)

  2. Consejo de Seguridad Nuclear: the Spanish safety authority

    International Nuclear Information System (INIS)

    Gonzalez, E.

    1993-01-01

    The Spanish Authority in Nuclear Safety and Radiological Protection was created by special law in 1981. The Consejo de Seguridad Nuclear (CNS) was established independent of the Government and reporting direct to Congress. This five-member commission is responsible for assisting the Government and other institutions in safety matters, with the the authority to impose safety conditions on all activities related to radioactive materials, and particularly on the nuclear power plants. (author) 1 fig

  3. TSO support to safety authorities in new reactor licensing

    Energy Technology Data Exchange (ETDEWEB)

    Numark, N.J.; Bowling, M.L. [Numark Associates, Inc., Washington, DC (United States)

    2013-07-01

    Technical Support Organizations (TSOs) can provide review assistance to a safety authority in a cost-effective and timely manner. TSO scope tailored to safety authority needs. TSOs must understand and adhere to safety authority priorities and culture. TSOs must be flexible in regulatory approaches, work locations, time zones, and languages. Safety authorities have varying technical support needs. For instance, authorities may have substantial staff and expertise on various types of commercial Nuclear Power Plants (NPP), substantial staff and expertise on a single type of commercial NPP, limited staff but with expertise on commercial NPPs or limited staff and no expertise on commercial NPPs.

  4. To the problem of the statistical basis of evaluation of the mechanical safety factor

    International Nuclear Information System (INIS)

    Tsyganov, S.V.

    2009-01-01

    The methodology applied for the safety factor assessment of the WWER fuel cycles uses methods and terms of statistics. Value of the factor is calculated on the basis of estimation of probability to meet predefined limits. Such approach demands the special attention to the statistical properties of parameters of interest. Considering the mechanical constituents of the engineering factor it is assumed uncertainty factors of safety parameters are stochastic values. It characterized by probabilistic distributions that can be unknown. Traditionally in the safety factor assessment process the unknown parameters are estimated from the conservative points of view. This paper analyses how the refinement of the factors distribution parameters is important for the assessment of the mechanical safety factor. For the analysis the statistical approach is applied for modelling of different type of factor probabilistic distributions. It is shown the significant influence of the shape and parameters of distributions for some factors on the value of mechanical safety factor. (Authors)

  5. To the problem of the statistical basis of evaluation of the mechanical safety factor

    International Nuclear Information System (INIS)

    Tsyganov, S.

    2009-01-01

    The methodology applied for the safety factor assessment of the VVER fuel cycles uses methods and terms of statistics. Value of the factor is calculated on the basis of estimation of probability to meet predefined limits. Such approach demands the special attention to the statistical properties of parameters of interest. Considering the mechanical constituents of the engineering factor it is assumed uncertainty factors of safety parameters are stochastic values. It characterized by probabilistic distributions that can be unknown. Traditionally in the safety factor assessment process the unknown parameters are estimated from the conservative points of view. This paper analyses how the refinement of the factors distribution parameters is important for the assessment of the mechanical safety factor. For the analysis the statistical approach is applied for modelling of different type of factor probabilistic distributions. It is shown the significant influence of the shape and parameters of distributions for some factors on the value of mechanical safety factor. (author)

  6. DART - for design basis justification and safety related information management

    International Nuclear Information System (INIS)

    Billington, A.; Blondiaux, P.; Boucau, J.; Cantineau, B.; Doumont, C.; Mared, A.

    2000-01-01

    DART is the acronym for Design Analysis Re-engineering Tool. It embodies a systematic and integrated approach to NPP safety re-assessment and configuration management, that makes use of Reverse Failure Mode and Effect Analysis in conjunction with a state-of-the-art relational database and a standardized data format, to permit long-term management of plant safety related information. The plant design is reviewed in a step-by-step logical fashion by constructing fault trees that identify the link between undesired consequences and their causes. Each failure cause identified in a fault tree is addressed by defining functional requirements, which are in turn addressed by documenting the specific manner in which the plant complies with the requirement. The database can be used to generate up-to-date plant safety related documents, including: SAR, Systems Descriptions, Technical Specifications and plant procedures. The approach is open-minded by nature and therefore is not regulatory driven, however the plant licensing basis will also be reviewed and documented within the same database such that a Regulatory Conformance Program may be integrated with the other safety documentation. This methodology can thus reconstitute the plant design bases in a comprehensive and systematic way, while allowing to uncover weaknesses in design. The original feature of the DART methodology is that it links all the safety related documents together, facilitating the evaluation of the safety impact resulting from any plant modification. Due to its capability to retrieve the basic justifications of the plant design, it is also a useful tool for training the young generation of plant personnel. The DART methodology has been developed for application to units 2, 3 and 4 at Vattenfall's Ringhals site in Sweden. It may be applied to any nuclear power plant or industrial facility where public safety is a concern. (author)

  7. DART - for design basis justification and safety related information management

    International Nuclear Information System (INIS)

    Billington, A.; Blondiaux, B.; Boucau, J.; Cantineau, B.; Mared, A.

    2001-01-01

    DART is the acronym for Design Analysis Re-Engineering Tool. It embodies a systematic and integrated approach to NPP safety re-assessment and configuration management, that makes use of Reverse Failure Mode and Effect Analysis in conjunction with a state-of-the-art relational database and a standardized data format, to permit long-term management of plant safety related information. The plant design is reviewed in a step-by-step logical fashion by constructing fault trees that identify the link between undesired consequences and their causes. Each failure cause identified in a fault tree is addressed by defining functional requirements, which are in turn addressed by documenting the specific manner in which the plant complies with the requirement. The database can then be used to generate up-to-date plant safety related documents, including: SAR, Systems Descriptions, Technical Specifications and plant procedures. The approach is open-minded by nature and therefore is not regulatory driven, however the plant licensing basis will also be reviewed and documented within the same database such that a Regulatory Conformance Program may be integrated with the other safety documentation. This methodology can thus reconstitute the plant design bases in a comprehensive and systematic way, while allowing to uncover weaknesses in design. The original feature of the DART methodology is that it links all the safety related documents together, facilitating the evaluation of the safety impact resulting from any plant modification. Due to its capability to retrieve the basic justifications of the plant design, it is also a useful tool for training the young generation of plant personnel. The DART methodology has been developed for application to units 2, 3 and 4 at Vattenfall's Ringhals site in Sweden. It may be applied to any nuclear power plant or industrial facility where public safety is a concern. (author)

  8. Just in Time DSA-The Hanford Nuclear Safety Basis Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Olinger, S. J.; Buhl, A. R.

    2002-02-26

    The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safety Basis Requirements (the Rule) in January 2001 imposed the requirement that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSA that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: compliance with the Rule; a ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD&D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD&D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex.

  9. Just in Time DSA-The Hanford Nuclear Safety Basis Strategy

    International Nuclear Information System (INIS)

    Olinger, S. J.; Buhl, A. R.

    2002-01-01

    The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safety Basis Requirements (the Rule) in January 2001 imposed the requirement that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSA that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: compliance with the Rule; a ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD and D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD and D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex

  10. Just in Time DSA the Hanford Nuclear Safety Basis Strategy

    Energy Technology Data Exchange (ETDEWEB)

    JACKSON, M.W.

    2002-06-01

    The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford, Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safely Basis Requirements (the Rule) in January 2001 requires that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSAs that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long-term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: Compliance with the Rule; A ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and Consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD&D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD&D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex.

  11. Just in Time DSA the Hanford Nuclear Safety Basis Strategy

    International Nuclear Information System (INIS)

    JACKSON, M.W.

    2002-01-01

    The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford, Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safely Basis Requirements (the Rule) in January 2001 requires that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSAs that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long-term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: Compliance with the Rule; A ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and Consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD and D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD and D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex

  12. Nuclear Safety Authority independence, progresses to be considered

    International Nuclear Information System (INIS)

    Delzangles, Hubert

    2013-01-01

    The Nuclear Safety Authority is an independent administrative body. Nevertheless, functional and organic independence from operators and government can have different degrees. Having a look on the actual context, where government holds a large part of the main nuclear French operators, independence has to be maximal in order to avoid any conflict of interest that could attempt to nuclear safety. In a global point of view, it is possible to think about the risks or the benefits of the institutionalized cooperation between national regulators on the necessary independence of the Nuclear Safety Authority

  13. Safety performance indicators used by the Russian Safety Regulatory Authority in its practical activities on nuclear power plant safety regulation

    International Nuclear Information System (INIS)

    Khazanov, A.L.

    2005-01-01

    The Sixth Department of the Nuclear, Industrial and Environmental Regulatory Authority of Russia, Scientific and Engineering Centre for Nuclear and Radiation Safety process, analyse and use the information on nuclear power plants (NPPs) operational experience or NPPs safety improvement. Safety performance indicators (SPIs), derived from processing of information on operational violations and analysis of annual NPP Safety Reports, are used as tools to determination of trends towards changing of characteristics of operational safety, to assess the effectiveness of corrective measures, to monitor and evaluate the current operational safety level of NPPs, to regulate NPP safety. This report includes a list of the basic SPIs, those used by the Russian safety regulatory authority in regulatory activity. Some of them are absent in list of IAEA-TECDOC-1141 ('Operational safety performance indicators for nuclear power plants'). (author)

  14. Central waste complex interim safety basis

    International Nuclear Information System (INIS)

    Cain, F.G.

    1995-01-01

    This interim safety basis provides the necessary information to conclude that hazards at the Central Waste Complex are controlled and that current and planned activities at the CWC can be conducted safely. CWC is a multi-facility complex within the Solid Waste Management Complex that receives and stores most of the solid wastes generated and received at the Hanford Site. The solid wastes that will be handled at CWC include both currently stored and newly generated low-level waste, low-level mixed waste, contact-handled transuranic, and contact-handled TRU mixed waste

  15. The French Nuclear Safety Authority - ASN

    International Nuclear Information System (INIS)

    2013-01-01

    The ASN (Nuclear Safety Authority) was created by the act of 13 June 2006 concerning the transparency and safety of nuclear activities. The ASN is an independent administrative body that is in charge of controlling nuclear activities in France. The ASN has a workforce of 471 people and a budget of about 76 millions euros. This article details its missions and how it is organized to cover all the French territory. (A.C.)

  16. Safety assessment of botanicals and botanical preparations used as ingredients in food supplements: testing an European Food Safety Authority-tiered approach.

    Science.gov (United States)

    Speijers, Gerrit; Bottex, Bernard; Dusemund, Birgit; Lugasi, Andrea; Tóth, Jaroslav; Amberg-Müller, Judith; Galli, Corrado L; Silano, Vittorio; Rietjens, Ivonne M C M

    2010-02-01

    This article describes results obtained by testing the European Food Safety Authority-tiered guidance approach for safety assessment of botanicals and botanical preparations intended for use in food supplements. Main conclusions emerging are as follows. (i) Botanical ingredients must be identified by their scientific (binomial) name, in most cases down to the subspecies level or lower. (ii) Adequate characterization and description of the botanical parts and preparation methodology used is needed. Safety of a botanical ingredient cannot be assumed only relying on the long-term safe use of other preparations of the same botanical. (iii) Because of possible adulterations, misclassifications, replacements or falsifications, and restorations, establishment of adequate quality control is necessary. (iv) The strength of the evidence underlying concerns over a botanical ingredient should be included in the safety assessment. (v) The matrix effect should be taken into account in the safety assessment on a case-by-case basis. (vi) Adequate data and methods for appropriate exposure assessment are often missing. (vii) Safety regulations concerning toxic contaminants have to be complied with. The application of the guidance approach can result in the conclusion that safety can be presumed, that the botanical ingredient is of safety concern, or that further data are needed to assess safety.

  17. NPA applications development in the nuclear safety authority framework

    International Nuclear Information System (INIS)

    Maselj, A.; Vojnovic, D.; Gregonc, M.

    1999-01-01

    Due to the present tasks of the SNSA (Slovenian Nuclear Safety Administration) there was a need to gain a tool for analysing the transients of the Krsko Nuclear Power Plant at the SNSA. Combining the RELAP5 code with graphical interface NPA (Nuclear Plant Analyzer), the SNSA management saw an opportunity to have a powerful instrument for analyses and assessments on a user friendly basis and without high costs. The Krsko NPP Analyzer is a joint project of the SNSA and the operator, the Krsko NPP. The RELAP5/Mod2.5 input deck was constructed by the Krsko NPP's experts and their subcontractors. In 1996 the work started with translation of input model from RELAP5/Mod2.5 version to Mod3.2. This was done by Tractebel which combined NPA masks with translated input deck and constructed new dynamic function and interactive commands between graphical MMI (Man Machine Interface) and simulation code. Since Tractebel performed similar activities for the Belgian plants, their experience was used through a transfer of knowledge to the SNSA. After this phase of the project, a user of the NPP Analyzer can run accidents as SBLOCA, Main Steam Line Break, Feed Water Break, SGTR, and many other transients activating and combining interactive commands, starting from a full power operation. This project has not been finished yet. Improvements of the input deck should be done. The Critical Safety Function window will be created. The analyzer will be a helpful tool during the training program for Accident Assessment Group, which will give to the experts basic knowledge of plant operation, its systems, and physical phenomena during a steady state and transients or accidents. Also a new dimension is added to the existing safety evaluations at the SNSA to confirm the requested level of nuclear safety at the Krsko NPP. (author)

  18. Safety assessment of smoke flavouring primary products by the European Food Safety Authority

    NARCIS (Netherlands)

    Theobald, A.; Arcella, D.; Carere, A.; Croera, C.; Engel, K.H.; Gott, D.; Gurtler, R.; Meier, D.; Pratt, I.; Rietjens, I.M.C.M.; Simon, R.; Walker, R.

    2012-01-01

    This paper summarises the safety assessments of eleven smoke flavouring primary products evaluated by the European Food Safety Authority (EFSA). Data on chemical composition, content of polyaromatic hydrocarbons and results of genotoxicity tests and subchronic toxicity studies are presented and

  19. DEVELOPING SAFETY INDICATORS ON THE BASIS OF THE ICAO RECOMMENDATIONS

    Directory of Open Access Journals (Sweden)

    V. D. Sharov

    2014-01-01

    Full Text Available The article offers direct use of the recommendations of SMM ICAO Doc.9859, 3rd ed. 2013, for calculation the target and alert levels of safety indicators. Examples of calculation based on data of 2011 and monitoring of the current indicators during 2012 are presented. Safety indicators for airlines in terms of “numbers of incidents per 1000 flight hours” could be calculated on the basis of the state values through the «coefficient of conformity».

  20. Nuclear safety authority. Strategical planning 2005- 2007

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The Nuclear safety Authority (A.S.N.) provides, in the name of the state, the monitoring of nuclear safety and radiation protection to protect workers, patients, public and environment from the risks in relation with nuclear activities and more broadly with ionizing radiations, it contributes to citizens information in these areas. The ambition of A.S.N. is to carry out a successful, legitimate, credible nuclear monitoring, recognized by citizens and that constitutes an international reference. (N.C.)

  1. Relations between the safety authority and the nuclear power plant operators

    International Nuclear Information System (INIS)

    Laverie, M.; Flandrin, R.

    1991-01-01

    The French experience has led the safety authority to pay particular attention to the competence of a nuclear operator and to the exercise of his responsibility. In this context, safety does not seem to be improved by the imposition of too many regulations and control activities. On the contrary, an excessive regulatory framework may blunt the operator's awareness of his responsibility. It is the duty of the safety authority to fix the safety objectives. It is the operator's duty to establish the practical conditions for attaining these objectives and to justify these conditions to the safety authority. It is also his duty to implement them correctly. The authority must then verify the quality of this implementation by random inspection methods. Each of the two partners, each conforming to his role and exercise of his particular responsibilities, must remain vigilant. These different actions necessitate a permanent technical dialogue which is not in contradiction with the exercise of strict regulatory control. (orig.)

  2. Creating a safety culture in the regulatory authority: The Cuban experience

    International Nuclear Information System (INIS)

    Ferro Fernandez, R.; Guillen Campos, A.

    2002-01-01

    The Cuban regulatory authority has been working during several years for the fostering and development of a high Safety Culture level in nuclear activities in the country. As starting point to achieve this objective the assessment of the Safety Culture level in the regulatory authority performance was considered an important issue. For this purpose a preliminary diagnosis was carried out by means of a national survey that allowed identifying some areas of the regulatory activity that required improvements in order to achieve a higher Safety Culture and to immediately implement appropriate actions. Two of the most important actions undertaken were: the statement of the regulatory authority Safety Policy which governs and determines the performance of this organization and its staff and also the implementation of a new interaction practice at top level between the regulatory authority and the utilities of the nuclear sector through the Annual Regulatory Conference. The present paper summarizes these two introduced practices into the Cuban regulatory activity. (author)

  3. The French nuclear safety authority, an independent administrative body

    International Nuclear Information System (INIS)

    Lacoste, A.C.

    2007-01-01

    The Nuclear Safety Authority (ASN) is officially responsible for controlling safety and radioactivity in France so as to protect wage-earners, patients, the public and the environment from nuclear-related risks. It draws on the work done by the Institute of Radioprotection and Nuclear Safety (IRSN), and provides information to the public on these questions. The Authority's goal is to ensure an effective, legitimate, impartial and creditable control recognized by the public and serving as an international reference mark. ASN is led by a board of 5 commissaries, has a staff of 420 employees most of them civil servants, has an annual budget of 50 million euros and relies on 11 regional departments

  4. 10 CFR Appendix A to Subpart B of... - General Statement of Safety Basis Policy

    Science.gov (United States)

    2010-01-01

    ... at all levels. Performing work in accordance with the safety basis for a nuclear facility is the..., safety, and health into work planning and execution (48 CFR 970.5223-1, Integration of Environment, Safety and Health into Work Planning and Execution) and the DEAR clause on laws, regulations, and DOE...

  5. Selection of design basis event for modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Nakagawa, Shigeaki; Ohashi, Hirofumi

    2016-06-01

    Japan Atomic Energy Agency (JAEA) has been investigating safety requirements and basic approach of safety guidelines for modular High Temperature Gas-cooled Reactor (HTGR) aiming to increase internarial contribution for nuclear safety by developing an international HTGR safety standard under International Atomic Energy Agency. In this study, we investigate a deterministic approach to select design basis events utilizing information obtained from probabilistic approach. In addition, selections of design basis events are conducted for commercial HTGR designed by JAEA. As a result, an approach for selecting design basis event considering multiple failures of safety systems is established which has not been considered as design basis in the safety guideline for existing nuclear facility. Furthermore, selection of design basis events for commercial HTGR has completed. This report provides an approach and procedure for selecting design basis events of modular HTGR as well as selected events for the commercial HTGR, GTHTR300. (author)

  6. Exchange of information between nuclear safety authorities: Policy of the French regulator

    International Nuclear Information System (INIS)

    Asty, Michel

    2000-01-01

    Full text: The decree setting up the Nuclear Safety Authority in 1973 entrusted it with international assignments whose objectives are still valid: - develop exchanges of information with foreign counterparts on regulatory systems and practices, on problems encountered in the nuclear safety field and on provisions made, with a view to enhancing its approach, and - becoming better acquainted with the actual operating practice of these Safety Authorities from which lessons could be learned for its own working procedures; - improving its position in the technical discussions with the French operators, since its arguments would be strengthened by practical knowledge of conditions abroad; - make known and explain the French approach and practices in the nuclear safety field and provide information on measures taken to deal with the problems encountered. This approach has several objectives: - promote the circulation of information on French positions on certain issues, such as very low level waste, for instance; - assist some countries wishing to create or modify their Nuclear Safety Authority, such as countries of the former USSR, the Central and Eastern European countries, and emerging countries on other continents; - help, when requested, foreign Safety Authorities required to issue permits for nuclear equipment of French origin; - provide the countries concerned with all relevant information on French nuclear installations located near their frontiers. Examples are given on the way the French Nuclear Safety Authority implements these objectives. (author)

  7. A risk-informed framework for establishing a beyond design basis safety basis for external hazards

    Energy Technology Data Exchange (ETDEWEB)

    Amico, P. [Hughes Associates, Inc, Baltimore, MD (United States); Anoba, R. [Hughes Associates, Inc, Raleigh, NC (United States); Najafi, B. [Hughes Associates, Inc., Los Gatos, CA (United States)

    2014-07-01

    The events at Fukushima Daiichi taught us that meeting a deterministic design basis requirement for external hazards does not assure that the risk is low. As observed at the plant, the two primary reasons for this are failure cliffs above the design basis event and that combined hazard effects are not considered in design. Because the possible combinations of design basis exceedences and external hazard combinations are very large and complex, an approach focusing only on the most important ones is needed. For this reason, a risk informed approach is the most effective approach, which is discussed in this paper. (author)

  8. Health risk from radioactive and chemical environmental contamination: common basis for assessment and safety decision making

    International Nuclear Information System (INIS)

    Demin, V.

    2004-01-01

    To meet the growing practical need in risk analysis in Russia health risk assessment tools and regulations have been developed in the frame of few federal research programs. RRC Kurchatov Institute is involved in R and D on risk analysis activity in these programs. One of the objectives of this development is to produce a common, unified basis of health risk analysis for different sources of risk. Current specific and different approaches in risk assessment and establishing safety standards developed for chemicals and ionising radiation are analysed. Some recommendations are given to produce the common approach. A specific risk index R has been proposed for safety decision-making (establishing safety standards and other levels of protective actions, comparison of various sources of risk, etc.). The index R is defined as the partial mathematical expectation of lost years of healthy life (LLE) due to exposure during a year to a risk source considered. The more concrete determinations of this index for different risk sources derived from the common definition of R are given. Generic safety standards (GSS) for the public and occupational workers have been suggested in terms of this index. Secondary specific safety standards have been derived from GSS for ionizing radiation and a number of other risk sources including environmental chemical pollutants. Other general and derived levels for decision-making have also been proposed including the e-minimum level. Their possible dependence on the national or regional health-demographic data is shortly considered. Recommendations are given on methods and criteria for comparison of various sources of risk. Some examples of risk comparison are demonstrated in the frame of different comparison tasks. The paper has been prepared on the basis of the research work supported by International Science and Technology Centre, Moscow (project no. 2558). (author)

  9. Advanced Test Reactor (ATR) Facility 10CFR830 Safety Basis Related to Facility Experiments

    International Nuclear Information System (INIS)

    Tomberlin, T.A.

    2002-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR), a DOE Category A reactor, was designed to provide an irradiation test environment for conducting a variety of experiments. The ATR Safety Analysis Report, determined by DOE to meet the requirements of 10 CFR 830, Subpart B, provides versatility in types of experiments that may be conducted. This paper addresses two general types of experiments in the ATR facility and how safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore this type of experiment is addressed with more detail in the safety basis. This allows individual safety analyses for these experiments to be more routine and repetitive. The second type of experiment is less defined and is permitted under more general controls. Therefore, individual safety analyses for the second type of experiment tend to be more unique from experiment to experiment. Experiments are also discussed relative to ''major modifications'' and DOE-STD-1027-92. Application of the USQ process to ATR experiments is also discussed

  10. Safety Evaluation report on Tennessee Valley Authority: Sequoyah nuclear performance plan

    International Nuclear Information System (INIS)

    1988-05-01

    This Safety Evaluation Report (SER) on the information submitted by the Tennessee Valley Authority (TVA) in its Sequoyah Nuclear Performance Plan, through Revision 2, and supporting documents has been prepared by the US Nuclear Regulatory Commission staff. The plan addresses the plant-specific concerns requiring resolution before startup of either of the Sequoyah units. In particular, the SER addresses required actions for Unit 2 restart. In many cases, the programmatic aspects for Unit 1 are identical to those for Unit 2; the staff will conduct inspections of implementation of those programs. Where the Unit 1 program is different, the staff evaluation will be provided in a supplement to this SER. On the basis of its review, the staff concludes that Sequoyah-specific issues have been resolved to the extent that would support restart of Sequoyah Unit 2

  11. Working group 1A - basis for the standard-safety

    International Nuclear Information System (INIS)

    Whipple, C.

    1993-01-01

    This paper presents a summary of the progress made by working group 1A (Basis for the Safety Standard) during the Electric Power Research Institute's EPRI Workshop on the technical basis of EPA HLW Disposal Criteria, March 1993. This group discussed the semantics of terms within the standard 40 CFR Part 191, the implementation of this standard, the advanced notice of rulemaking, the issue of emitting carbon-14 through a gaseous pathway, the strategy of dealing with standards for contamination of drinking water and groundwater, the 100,000 year time frame, and the analysis of specific comments. The specific comments dealt with the cost effectiveness of the standard, the dose histogram for populations and individuals, groundwater definition and the underlying technology driver for this standard

  12. Technical nuclear safety in France. Control by the governmental authority

    International Nuclear Information System (INIS)

    1991-12-01

    In publishing this latest edition, we have endeavoured to provide the reader with the information necessary to obtain a full understanding of the regulatory system applied to ensure technical nuclear safety in France. As the reader will discover in the following pages, technical nuclear safety is a matter which must be settled in advance of the actual operation of civil nuclear installations; the primary requirement is to mobilize those involved to anticipate and prevent. The fundamental options on which the French system is based, the relationship between the operator and the safety authority must be clearly stated: independence of judgement and decision, complementarity of responsibilities. It is for the governmental authorities to determine the technical nuclear safety objectives, which are becoming more and more consistent if not unified throughout the world. It is for the operator to propose technical provisions in order to achieve these objectives. It is for the governmental authorities to verify, by technical safety analyses, the adequacy of the provisions in terms of the defined objectives. It is for the operator to properly implement these approved provisions. And, finally, it is for the governmental authorities to verify, by sampling, the quality of their implementation and to make from them the necessary regulatory inferences. This sequence of events requires permanent frank in-depth dialogue. The effectiveness of the regulatory action must therefore reside not in close technical restraint but in the interactions between responsible partners

  13. Technical nuclear safety in France. Control by the governmental authority

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-15

    In publishing this latest edition, we have endeavoured to provide the reader with the information necessary to obtain a full understanding of the regulatory system applied to ensure technical nuclear safety in France. As the reader will discover in the following pages, technical nuclear safety is a matter which must be settled in advance of the actual operation of civil nuclear installations; the primary requirement is to mobilize those involved to anticipate and prevent. The fundamental options on which the French system is based, the relationship between the operator and the safety authority must be clearly stated: independence of judgement and decision, complementarity of responsibilities. It is for the governmental authorities to determine the technical nuclear safety objectives, which are becoming more and more consistent if not unified throughout the world. It is for the operator to propose technical provisions in order to achieve these objectives. It is for the governmental authorities to verify, by technical safety analyses, the adequacy of the provisions in terms of the defined objectives. It is for the operator to properly implement these approved provisions. And, finally, it is for the governmental authorities to verify, by sampling, the quality of their implementation and to make from them the necessary regulatory inferences. This sequence of events requires permanent frank in-depth dialogue. The effectiveness of the regulatory action must therefore reside not in close technical restraint but in the interactions between responsible partners.

  14. The deep geologic repository technology programme: toward a geoscience basis for understanding repository safety

    International Nuclear Information System (INIS)

    Jensen, M.R.

    2007-01-01

    Within the Deep Geologic Repository Technology Programme (DGRTP) several Geoscience activities are focused on advancing the understanding of groundwater flow system evolution and geochemical stability in a Canadian Shield setting as affected by long-term climate change. A key aspect is developing confidence in predictions of groundwater flow patterns and residence times as they relate to the safety of a deep geologic repository for used nuclear fuel waste. This is being achieved through a coordinated multi-disciplinary approach intent on: i) demonstrating coincidence between independent geo-scientific data; ii) improving the traceability of geo-scientific data and its interpretation within a conceptual descriptive model(s); iii) improving upon methods to assess and demonstrate robustness in flow domain prediction(s) given inherent flow domain uncertainties (i.e. spatial chemical/physical property distributions, boundary conditions) in time and space; and iv) improving awareness amongst geo-scientists as to the utility of various geo-scientific data in supporting a safety case for a deep geologic repository. This multi-disciplinary DGRTP approach is yielding an improved understanding of groundwater flow system evolution and stability in Canadian Shield settings that is further contributing to the geo-scientific basis for understanding and communicating aspects of DGR safety. (author)

  15. The basis and safety of food irradiation. Advantages of radiation treatment for food sanitation and storage

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-09-01

    The food irradiation has the history of more than 60 years in its development. However, its commercial application has not been promoted well in Japan even though the safety of irradiated foods was confirmed. Recently, relevant authorities in 52 countries have given clearance to many commodities, and irradiated foods are commercially distributed in USA and EU countries. The international situation makes some unavoidable circumstances which can not close the commercialization of food irradiation in Japan. The present report contains the basis and application of food irradiation, and history of development in the World and Japan. Moreover, the safety of irradiated foods are demonstrated from many evidences of researches in animal feeding tests, in analysis of radiolytic products, in nutritional evaluations and in microbiological studies of irradiated foods. Especially, it makes obvious from the results of many researches that unique radiolytic products can not be produced by irradiation of foods. Because main radiation effects are induced by oxidation degradation of food components as similar to natural oxidation by heating or UV light. Radiation engineering for commercial process and identification methods of irradiated foods are also presented. (author)

  16. Discussion on the Criterion for the Safety Certification Basis Compilation - Brazilian Space Program Case

    Science.gov (United States)

    Niwa, M.; Alves, N. C.; Caetano, A. O.; Andrade, N. S. O.

    2012-01-01

    The recent advent of the commercial launch and re- entry activities, for promoting the expansion of human access to space for tourism and hypersonic travel, in the already complex ambience of the global space activities, brought additional difficulties over the development of a harmonized framework of international safety rules. In the present work, with the purpose of providing some complementary elements for global safety rule development, the certification-related activities conducted in the Brazilian space program are depicted and discussed, focusing mainly on the criterion for certification basis compilation. The results suggest that the composition of a certification basis with the preferential use of internationally-recognized standards, as is the case of ISO standards, can be a first step toward the development of an international safety regulation for commercial space activities.

  17. French safety authority projects in the field of research and test reactors

    International Nuclear Information System (INIS)

    Saint Raymond, P.; Duthe, M.; Abou Yehia, H.

    2001-01-01

    This paper gives an outline of some actions initiated by the French safety authority in the field of research and test reactors. An important action concerns the definition of the authorisation criteria for the implementation of experiments in these reactors. In particular, it is necessary to define clearly in which conditions an experiment may be authorised internally by the operating organisation or needs a formal approval by the safety authority. The practice related to the systematic safety reassessment of old facilities and the regulatory provisions associated with the decommissioning are presented after a discussion on the ageing issues. (author)

  18. Radiation protection databases of nuclear safety regulatory authority

    International Nuclear Information System (INIS)

    Janzekovic, H.; Vokal, B.; Krizman, M.

    2003-01-01

    Radiation protection and nuclear safety of nuclear installations have a common objective, protection against ionising radiation. The operational safety of a nuclear power plant is evaluated using performance indicators as for instance collective radiation exposure, unit capability factor, unplanned capability loss factor, etc. As stated by WANO (World Association of Nuclear Operators) the performance indicators are 'a management tool so each operator can monitor its own performance and progress, set challenging goals for improvement and consistently compare performance with that of other plants or industry'. In order to make the analysis of the performance indicators feasible to an operator as well as to regulatory authorities a suitable database should be created based on the data related to a facility or facilities. Moreover, the international bodies found out that the comparison of radiation protection in nuclear facilities in different countries could be feasible only if the databases with well defined parameters are established. The article will briefly describe the development of international databases regarding radiation protection related to nuclear facilities. The issues related to the possible development of the efficient radiation protection control of a nuclear facility based on experience of the Slovenian Nuclear Safety Administration will be presented. (author)

  19. Safety evaluation report of the Waste Isolation Pilot Plant safety analysis report: Contact-handled transuranic waste disposal operations

    International Nuclear Information System (INIS)

    1997-02-01

    DOE 5480.23, Nuclear Safety Analysis Reports, requires that the US Department of Energy conduct an independent, defensible, review in order to approve a Safety Analysis Report (SAR). That review and the SAR approval basis is documented in this formal Safety Evaluation Report (SER). This SER documents the DOE's review of the Waste Isolation Pilot Plant SAR and provides the Carlsbad Area Office Manager, the WIPP SAR approval authority, with the basis for approving the safety document. It concludes that the safety basis documented in the WIPP SAR is comprehensive, correct, and commensurate with hazards associated with planned waste disposal operations

  20. Pump performance and reliability follow-up by the French Safety Authorities

    International Nuclear Information System (INIS)

    Clausner, J.P.; De La Ronciere, X.; Scott de Martinville, E.; Courbiere, P.

    1990-12-01

    This paper will present, through actual examples, the methodology of the performance and reliability safety-related pumps evaluation applied by the French Safety Authorities and the lessons drawn from this evaluation

  1. ILK statement about the regulatory authorities' perception of operators' self-assessment of safety culture

    International Nuclear Information System (INIS)

    2005-01-01

    Over the past few years, German licensing and supervisory authorities have devoted increasing attention to safety management and safety culture issues. At present, German plant operators are introducing systems for self-assessment of the safety culture in their plants, such as the Safety Culture Assessment System developed by VGB Power Tech (VGB-SBS). In its statement, the International Committee on Nuclear Technology (ILK) addresses an effective approach of the authorities in evaluating the self-assessment of safety culture conducted by operators. ILK proposes a total of ten recommendations for evaluating the self-assessment system of the operators by the authority. The regulatory authorities should see to it that the operators establish a self-assessment system for aspects of organization and personnel, and use it continuously. The measures derived from this self-assessment by the operators, and the reasons underlying them, should be discussed with the authorities. In addition to the operators, also the regulatory authorities and the technical expert organizations commissioned by them should carry out self-assessments of their respective supervisory activities, taking into account also special events, such as changes in government, and develop appropriate programs of measures to be taken. In evaluating safety culture, the regulatory authorities should strive to support the activities of operators in improving their safety culture. A spirit of mutual confidence and cooperation should exist between operators and authorities. The recommendations expressed in the statement deliberately leave room for detailed implementation by the parties concerned. (orig.)

  2. Materials Safety Data Sheets: the basis for control of toxic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Ketchen, E.E.; Porter, W.E.

    1979-09-01

    The Material Safety Data Sheets contained in this volume are the basis for the Toxic Chemical Control Program developed by the Industrial Hygiene Department, Health Division, ORNL. The three volumes are the update and expansion of ORNL/TM-5721 and ORNL/TM-5722 Material Safety Data Sheets: The Basis for Control of Toxic Chemicals, Volume I and Volume II. As such, they are a valuable adjunct to the data cards issued with specific chemicals. The chemicals are identified by name, stores catalog number where appropriate, and sequence numbers from the NIOSH Registry of Toxic Effects of Chemical Substances, 1977 Edition, if available. The data sheets were developed and compiled to aid in apprising the employees of hazards peculiar to the handling and/or use of specific toxic chemicals. Space limitation necessitate the use of descriptive medical terms and toxicological abbreviations. A glossary and an abbreviation list were developed to define some of those sometimes unfamiliar terms and abbreviations. The page numbers are keyed to the catalog number in the chemical stores at ORNL.

  3. Safety assessment plans for authorization and inspection of radiation sources

    International Nuclear Information System (INIS)

    2002-05-01

    The objective of this TECDOC is to enhance the efficacy, quality and efficiency of the whole regulatory process. It provides advice on good practice administrative procedures for the regulatory process for preparation of applications, granting of authorizations, inspection, and enforcement. It also provides information on the development and use of standard safety assessment plans for authorization and inspection. The plans are intended to be used in conjunction with more detailed advice related to specific practices. In this sense, this TECDOC provides advice on a systematic approach to evaluations of protection and safety while other IAEA Safety Guides assist the user to distinguish between the acceptable and the unacceptable. This TECDOC covers administrative advice to facilitate the regulatory process governing authorization and inspection. It also covers the use of standard assessment and inspection plans and provides simplified plans for the more common, well established uses of radiation sources in medicine and industry, i.e. sources for irradiation facilities, industrial radiography, well logging, industrial gauging, unsealed sources in industry, X ray diagnosis, nuclear medicine, teletherapy and brachytherapy

  4. Safety assessment plans for authorization and inspection of radiation sources

    International Nuclear Information System (INIS)

    1999-09-01

    The objective of this TECDOC is to enhance the efficacy, quality and efficiency of the whole regulatory process. It provides advice on good practice administrative procedures for the regulatory process for preparation of applications, granting of authorizations, inspection, and enforcement. It also provides information on the development and use of standard safety assessment plans for authorization and inspection. The plans are intended to be used in conjunction with more detailed advice related to specific practices. In this sense, this TECDOC provides advice on a systematic approach to evaluations of protection and safety while other IAEA Safety Guides assist the user to distinguish between the acceptable and the unacceptable. This TECDOC covers administrative advice to facilitate the regulatory process governing authorization and inspection. It also covers the use of standard assessment and inspection plans and provides simplified plans for the more common, well established uses of radiation sources in medicine and industry, i.e. sources for irradiation facilities, industrial radiography, well logging, industrial gauging, unsealed sources in industry, X ray diagnosis, nuclear medicine, teletherapy and brachytherapy

  5. Safety evaluation report related to operation of Sequoyah Nuclear Plant, Units 1 and 2, Docket nos. 50-327 and 50-328, Tennessee Valley Authority

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    A safety evaluation of the Tennessee Valley Authority's application for a license to operate its Sequoyah Nuclear Plant, Units 1 and 2, located in Hamilton County, Tennessee, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. It consists of a technical review and staff evaluation of applicant information on: (1) population density, land use, and physical characteristics of the site area; (2) design, fabrication, construction, testing criteria, and performance characteristics of plant structures, systems, and components important to safety; (3) expected response of the facility to anticipated operating transients, and to postulated design basis accidents; (4) applicant engineering and construction organization, and plans for the conduct of plant operations; and (5) design criteria for a system to control the plant's radiological effluents. The staff has concluded that the plant can be operated by the Tennessee Valley Authority without endangering the health and safety of the public provided that the outstanding matters discussed in the report are favorably resolved. (author)

  6. Safety equipment list for the 241-SY-101 RAPID mitigation project

    Energy Technology Data Exchange (ETDEWEB)

    MORRIS, K.L.

    1999-06-29

    This document provides the safety classification for the safety (safety class and safety RAPID Mitigation Project. This document is being issued as the project SEL until the supporting authorization basis documentation, this document will be superseded by the TWRS SEL (LMHC 1999), documentation istlralized. Upon implementation of the authorization basis significant) structures, systems, and components (SSCS) associated with the 241-SY-1O1 which will be updated to include the information contained herein.

  7. Safety equipment list for the 241-SY-101 RAPID mitigation project

    International Nuclear Information System (INIS)

    Morris, K.L.

    1999-01-01

    This document provides the safety classification for the safety (safety class and safety RAPID Mitigation Project. This document is being issued as the project SEL until the supporting authorization basis documentation, this document will be superseded by the TWRS SEL (LMHC 1999), documentation istlralized. Upon implementation of the authorization basis significant) structures, systems, and components (SSCS) associated with the 241-SY-1O1 which will be updated to include the information contained herein

  8. Safety basis for selected activities in single-shell tanks with flammable gas concerns. Revision 1

    International Nuclear Information System (INIS)

    Schlosser, R.L.

    1996-01-01

    This is full revision to Revision 0 of this report. The purpose of this report is to provide a summary of analyses done to support activities performed for single-shell tanks. These activities are encompassed by the flammable gas Unreviewed Safety Question (USQ). The basic controls required to perform these activities involve the identification, elimination and/or control of ignition sources and monitoring for flammable gases. Controls are implemented through the Interim Safety Basis (ISB), IOSRs, and OSDs. Since this report only provides a historical compendium of issues and activities, it is not to be used as a basis to perform USQ screenings and evaluations. Furthermore, these analyses and others in process will be used as the basis for developing the Flammable Gas Topical Report for the ISB Upgrade

  9. Geo scientific basis for making the safety case for a SF/HL W/IL W repository in Opalinus clay in ne Switzerland (project Entsorgungsnachweis) 1: overview and main conclusions

    International Nuclear Information System (INIS)

    Gautschi, A.; Lambert, A.; Zuidema, P.

    2004-01-01

    This paper provides an overview of the geo-scientific basis and the main conclusions concerning the safety case for Project Entsorgungsnachweis (Nagra, 2002a, see first paper). The key geo-scientific input for the safety case is summarised in the following three papers. The data and arguments are discussed in great detail in Nagra (2002b) and in numerous reference reports cited therein. (author)

  10. Nuclear risk and communication: the essential role of safety authorities

    International Nuclear Information System (INIS)

    Hautin, N.

    1998-01-01

    Full text of publication follows: whether concerning mad cow disease, asbestos, nuclear, OGM or now, dioxin in French meat, public health risks have been making the headlines of newspapers for a while. And, firms whose activity is associated with these risks are in effect in the defendants box. Therefore, communicating becomes difficult: their word is suspect and, debates quite rapidly exceed the firm competencies to become a socio-cultural conflict. This paper explores in nuclear fields the essential role of safety authorities in such communication cases. Our surveys and the comparative case study between the pipe at La Hague and 'contaminated' nuclear transports in France are eloquent: the messages of nuclear firms is perceived through their image of a State within the State built from the past and reinforced by the negative prism of the news. Regular and technical arguments (the respect of norms) entertain the debate rather than hush it. That is why we could infer an objective, and independent opinion is required, one different from the firm, the public and ministries: its role of referee could allow a constructive dialog between the public and the firm. Risk communication nature and efficiency depend on that (cf. the diagram). As a solution, we think about a legitimate authority organization identified by the public first, but by other actors as well. From the public point of view, if we see the place of pressure groups (e.g. Greenpeace) in the debate as a measure of the lack of trust in the independence of safety authorities, we can infer that it is a reaffirmation of democracy which is demanded by the French public, which could be satisfied with powerful safety authorities. That is why safety authorities have an essential role to play, beyond this of control, in nuclear risk communication towards the public. Diagram: communication path between a nuclear firm and the public during conflict. (author)

  11. Reactor safety under design basis flood condition for inland sites

    International Nuclear Information System (INIS)

    Hajela, S.; Bajaj, S.S.; Samota, A.; Verma, U.S.P.; Warudkar, A.S.

    2002-01-01

    Full text: In June 1994, there was an incident of flooding at Kakrapar Atomic Power Station (KAPS) due to combination of heavy rains and mechanical failure in the operation of gates at the adjoining weir. An indepth review of the incident was carried out and a number of flood protection measures were recommended and were implemented at site. As part of this review, a safety analysis was also done to demonstrate reactor safety with a series of failures considered in the flood protection features. For each inland NPP site, as part of design, different flood scenarios are analysed to arrive at design basis flood (DBF) level. This level is estimated based on worst combination of heavy local precipitation, flooding in river, failure of upstream/downstream water control structures

  12. Cooperation between the French and German safety authorities: a process of progress

    International Nuclear Information System (INIS)

    Lacoste, A.C.; Hennenhoefer, G.

    1996-01-01

    Considerable efforts are devoted in several countries worldwide for the designing of a new generation of electro-nuclear reactors with noticeable safety improvements with respect to the existing units. The EPR (European Pressurized water Reactor) project is the first example of a joint survey and collaboration effort between two countries, France and Germany, both characterized by a strong nuclear industry and competence. Franco-German relations have considerably expanded in recent years, enabling the French and German electricians, manufacturers (EDF, Siemens, Framatome..), and safety authorities (DSIN, IPSN, BMU, GRS..) to adopt common positions and decisions on fundamental topics about technical aspects of safety. This kind of collaboration and alignment was obviously only possible because two conditions were fulfilled: the discussion concerned future reactors and not those already built for which safety rules and provisions are not easily modified; and a common industrial project existed and had consequently to comply with jointly defined safety objectives. These two conditions are still fulfilled, so it should be possible for the work between French and German safety authorities to continue successfully, even in the next more delicate stage, involving definition of common positions on more detailed technical provisions. Finally, it is unthinkable that this important work undertaken by France and Germany could be carried out without frequent consultation of the safety authorities of other nuclear countries, notably in Europe. (J.S.). 1 fig

  13. Expectations of the Swiss safety authorities

    International Nuclear Information System (INIS)

    Naegelin, R.

    1994-01-01

    On the one hand, nuclear energy can contribute significantly to our energy supply without much environmental consequences. On the other hand, there is a potential for large environmental consequences. The nuclear power plants are vastly different from conventional industrial activities where much has been learned through trial and error processes leading to slow improvements in their safety performance. Hence one cannot afford to learn from mistakes as an approach to safety improvement. It is more important to think ahead and precautions must be taken through proper design and operation before accidents can occur. The precondition for such an approach is what one now refers to as 'safety culture'. This requires a prerequisite frame of mind to 'desire' safety. In addition, the necessary technical 'ability' is also required, without which any culture cannot be realized. Culture is a human reaction to its environment so that it can live in harmony with the real or imaginary world. In the course of human history, different cultures, e.g. hunters and farmers, have evolved to adopt with the prevailing habitats. The term culture is also associated with a humane form of pre-industrial and industrial society. These cultures were, at least partially, the result of pressure to perform suitable actions. However, in the present modern times, things function quite well with less apparent pressure. Thereby positive values in the working culture become questionable. The traits that are endangered include thoroughness, carefulness and sense of duty in ones daily work habits. Also the removal of work from its central position in human life is involved, threatening care by pressure or time and costs. (author)

  14. Safety and Availability Checking for User Authorization Queries in RBAC

    Directory of Open Access Journals (Sweden)

    Jian-feng Lu

    2012-09-01

    Full Text Available This paper introduces the notion of safety and availability checking for user authorization query processing, and develop a recursive algorithm use the ideas from backtracking-based search techniques to search for the optimal solution. For the availability checking, we introduce the notion of max activatable set (MAS, and show formally how MAS can be determined in a hybrid role hierarchy. For the safety checking, we give a formal definition of dynamic separation-of-duty (DSoD policies, and show how to reduce the safety checking for DSoD to a SAT instance.

  15. Scientific basis for a safety case of deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Noseck, Ulrich; Becker, Dirk-Alexander; Brasser, Thomas [and others

    2012-11-15

    Within this project strategies and methods to build a safety case for deep geological repositories are further developed. This includes also the scientific fundamentals as a basis of the safety case. In the international framework the methodology of the Safety Case is frequently applied and continuously improved. According to definitions from IAEA and NEA the Safety Case is a compilation of arguments and facts, which describe, quantify and support the safety and the degree of confidence in the safety of the geological repository. The safety of the geological repository should be demonstrated by the safety case. The safety case is the basis for essential decisions during a repository programme. It comprises the results of safety assessments in combination with additional information like multiple lines of evidence and a discussion of robustness and quality of the repository, its design and the quality of all safety assessments including the basic assumptions. A crucial element of the Safety Case is the long-term safety analysis, i.e. the systematic analysis of the hazards connected with the facility and the capability of site and repository design to ensure the required safety functions and to fulfill the technical claims. Long-term safety analysis requires a powerful and qualified programme package, which contains appropriate hardware and software as well as well trained and experienced modellers performing the model calculations. The calculation tools used within safety cases need to be checked and verified and continuously adapted to the state-of-the-art science and technology. Especially it needs to be applicable to a real repository system. For the assessment of safety a deep process understanding is necessary. The R and D work performed within this project will contribute to the improvement of process and system understanding as well as to the further development of methods and strategies applied in the safety case. Emphasis was put on the following aspects

  16. Scientific basis for a safety case of deep geological repositories

    International Nuclear Information System (INIS)

    Noseck, Ulrich; Becker, Dirk-Alexander; Brasser, Thomas

    2012-11-01

    Within this project strategies and methods to build a safety case for deep geological repositories are further developed. This includes also the scientific fundamentals as a basis of the safety case. In the international framework the methodology of the Safety Case is frequently applied and continuously improved. According to definitions from IAEA and NEA the Safety Case is a compilation of arguments and facts, which describe, quantify and support the safety and the degree of confidence in the safety of the geological repository. The safety of the geological repository should be demonstrated by the safety case. The safety case is the basis for essential decisions during a repository programme. It comprises the results of safety assessments in combination with additional information like multiple lines of evidence and a discussion of robustness and quality of the repository, its design and the quality of all safety assessments including the basic assumptions. A crucial element of the Safety Case is the long-term safety analysis, i.e. the systematic analysis of the hazards connected with the facility and the capability of site and repository design to ensure the required safety functions and to fulfill the technical claims. Long-term safety analysis requires a powerful and qualified programme package, which contains appropriate hardware and software as well as well trained and experienced modellers performing the model calculations. The calculation tools used within safety cases need to be checked and verified and continuously adapted to the state-of-the-art science and technology. Especially it needs to be applicable to a real repository system. For the assessment of safety a deep process understanding is necessary. The R and D work performed within this project will contribute to the improvement of process and system understanding as well as to the further development of methods and strategies applied in the safety case. Emphasis was put on the following aspects

  17. Selecting of key safety parameters in reactor nuclear safety supervision

    International Nuclear Information System (INIS)

    He Fan; Yu Hong

    2014-01-01

    The safety parameters indicate the operational states and safety of research reactor are the basis of nuclear safety supervision institution to carry out effective supervision to nuclear facilities. In this paper, the selecting of key safety parameters presented by the research reactor operating unit to National Nuclear Safety Administration that can express the research reactor operational states and safety when operational occurrence or nuclear accident happens, and the interrelationship between them are discussed. Analysis shows that, the key parameters to nuclear safety supervision of research reactor including design limits, operational limits and conditions, safety system settings, safety limits, acceptable limits and emergency action level etc. (authors)

  18. 14 CFR 60.37 - FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA).

    Science.gov (United States)

    2010-01-01

    ... Bilateral Aviation Safety Agreement (BASA). 60.37 Section 60.37 Aeronautics and Space FEDERAL AVIATION... CONTINUING QUALIFICATION AND USE § 60.37 FSTD qualification on the basis of a Bilateral Aviation Safety... on International Civil Aviation for the sponsor of an FSTD located in that contracting State may be...

  19. French nuclear safety authorities: for a harmonization of nuclear safety at the European level

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The European Commission is working on 2 directives concerning nuclear energy: the first one is dedicated to nuclear safety and the second to the management of radioactive wastes and spent fuels. In the context of the widening of the European Union and of the inter-connection of the different electric power grids throughout Europe, the harmonization of the rules in the nuclear safety field is seen by manufacturers as a mean to achieve a fair competition between nuclear equipment supplying companies and by the French nuclear safety authorities (FNSA) as a mean to keep on improving nuclear safety and to be sure that competitiveness does not drive safety standards down. According to FNSA the 2 European directives could give a legal framework to the harmonization and should contain principles that reinforce the responsibility of each state. FNSA considers that the EPR (European pressurized water reactor) may be an efficient tool for the harmonization because of existing industrial cooperation programs between France and Germany and between France and Finland. (A.C.)

  20. Industrial safety, origins and current situation

    International Nuclear Information System (INIS)

    Gil Sarralbo, J. F.

    2011-01-01

    Basic Introduction to Industrial Safety, purpose and expected outcome. Concepts and fundamental principles that support it. Brief overview of its evolution over the course of history. The current legal basis in Spain for Industrial Safety. (Author) 4 refs.

  1. Safety culture as an element of contact and cooperation between utilities, research and safety authorities

    International Nuclear Information System (INIS)

    Hoegberg, L.

    1994-01-01

    The safety culture approach may simply be seen as a recognition of the close interdependence between safety and organisational processes: achievement of technical safety objectives will largely depend on the quality of the implementation processes in the organisations concerned. With a slight modification of the original INSAG formulation, SKI defines safety culture as 'a consciously formulated and implemented set of values in an organisation, which establishes that, as an overriding priority, safety issues receive the attention warranted by their significance'. In practice, a high level of safety culture means the systematic organisation and implementation of a number of activities aimed at creating a high quality defence in depth against both technical and human failures that may cause accidents. An enquiring and learning attitude is a key element of such a safety culture. For example, to prevent accidents, the organisation always needs to be reactive to incidents, by performing proper root cause analysis of both technical and organisational factors, and taking appropriate corrective actions. The long term organisational objective should be to be proactive and identify deficiencies in technology and organisation that may lead to serious incidents or, at worst, accidents and take corrective action even before actual occurrence of incidents of substantial safety significance. (author) 13 refs

  2. Safety analysis and risk assessment handbook

    International Nuclear Information System (INIS)

    Peterson, V.L.; Colwell, R.G.; Dickey, R.L.

    1997-01-01

    This Safety Analysis and Risk Assessment Handbook (SARAH) provides guidance to the safety analyst at the Rocky Flats Environmental Technology Site (RFETS) in the preparation of safety analyses and risk assessments. Although the older guidance (the Rocky Flats Risk Assessment Guide) continues to be used for updating the Final Safety Analysis Reports developed in the mid-1980s, this new guidance is used with all new authorization basis documents. With the mission change at RFETS came the need to establish new authorization basis documents for its facilities, whose functions had changed. The methodology and databases for performing the evaluations that support the new authorization basis documents had to be standardized, to avoid the use of different approaches and/or databases for similar accidents in different facilities. This handbook presents this new standardized approach. The handbook begins with a discussion of the requirements of the different types of authorization basis documents and how to choose the one appropriate for the facility to be evaluated. It then walks the analyst through the process of identifying all the potential hazards in the facility, classifying them, and choosing the ones that need to be analyzed further. It then discusses the methods for evaluating accident initiation and progression and covers the basic steps in a safety analysis, including consequence and frequency binning and risk ranking. The handbook lays out standardized approaches for determining the source terms of the various accidents (including airborne release fractions, leakpath factors, etc.), the atmospheric dispersion factors appropriate for Rocky Flats, and the methods for radiological and chemical consequence assessments. The radiological assessments use a radiological open-quotes templateclose quotes, a spreadsheet that incorporates the standard values of parameters, whereas the chemical assessments use the standard codes ARCHIE and ALOHA

  3. Safety balance: Analysis of safety systems

    International Nuclear Information System (INIS)

    Delage, M.; Giroux, C.

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses

  4. Flammable gas tank safety program: Technical basis for gas analysis and monitoring

    International Nuclear Information System (INIS)

    Estey, S.D.

    1998-01-01

    Several Hanford waste tanks have been observed to exhibit periodic releases of significant quantities of flammable gases. Because potential safety issues have been identified with this type of waste behavior, applicable tanks were equipped with instrumentation offering the capability to continuously monitor gases released from them. This document was written to cover three primary areas: (1) describe the current technical basis for requiring flammable gas monitoring, (2) update the technical basis to include knowledge gained from monitoring the tanks over the last three years, (3) provide the criteria for removal of Standard Hydrogen Monitoring System(s) (SHMS) from a waste tank or termination of other flammable gas monitoring activities in the Hanford Tank farms

  5. Safety assessment as basis for the decision making process

    International Nuclear Information System (INIS)

    Ilie, P.; Didita, L.; Danchiv, A.

    2005-01-01

    . The results of sensitivity and uncertainty analyses related to the input parameters will be presented. A practical application of decision making process in context of post-closure safety assessment will be presented, where decision framework means demonstration of compliance with radiological criteria. The analysis is focused on assessment of ground water pathway in the site selection phase of repository development and the ISAM methodology will be used as a decision tool to identify if a candidate site meets safety requirements for construction of disposal facility. If a decision is made that the results of the safety assessment are inadequate the following step is the identification and prioritisation of activities that will make the safety assessment acceptable. Even if the results are considered acceptable, the assessment results will be used to help prioritise the future activities at the site. (authors)

  6. TSO Role in Supporting the Regulatory Authority in View of Safety Culture

    International Nuclear Information System (INIS)

    Khamaza, A.; Vasilishin, A.

    2016-01-01

    Human and organizational factors are always of paramount importance at nuclear and radiation safety as well as in the safety regulation provision. Major NPP accidents occurred merely reaffirm this fact. The role of an authority that regulates nuclear safety increases each time in the aftermath of accidents perceived as a shock together with the importance of scientific and technical support. SEC NRS was established in 1987, the next year after the Chernobyl NPP accident aiming to strengthen supervision over works carried out at the nuclear industry enterprises. Currently SEC NRS provides comprehensive scientific and technical support to Rostechnadzor including safety review and regulatory legal documents development to regulate safety along with safety culture.

  7. Assessment of the effectiveness of the Hungarian nuclear safety regulatory authority by international expert teams

    International Nuclear Information System (INIS)

    Voeroess, L.; Lorand, F.

    2001-01-01

    On the basis of the role nuclear regulatory authorities (NRA) have to fulfil and the new challenges affecting them, in the paper an overview is made on how the Hungarian NRA has evaluated and utilised the results of different international efforts in the enhancement of its effectiveness and efficiency. The reviews have been conducted by different groups of experts organised by highly recognised international organisations (e.g. IAEA, EC) and highly competent foreign regulatory bodies. The different reviews of activities and working conditions of the HAEA NSD have resulted in a generally positive picture, however, it also revealed weaknesses as well. They recognised the developments made in recent years and also appreciated the overall favourable level of nuclear safety in Hungary, identified 'good practices' and made recommendations and suggestions for the most important and most efficient ways for future improvements. These are cited or referenced in the paper. At the end, some recommendations have been formed based on the experiences gained from the review missions and from our self-assessment. (author)

  8. 41 CFR 102-5.75 - What circumstances do not establish a basis for authorizing home-to-work transportation for field...

    Science.gov (United States)

    2010-07-01

    ... not establish a basis for authorizing home-to-work transportation for field work? 102-5.75 Section 102... (Continued) FEDERAL MANAGEMENT REGULATION GENERAL 5-HOME-TO-WORK TRANSPORTATION Authorizing Home-to-Work Transportation § 102-5.75 What circumstances do not establish a basis for authorizing home-to-work transportation...

  9. Optimization of the nuclear power engineering safety on the basis of social and economic parameters

    International Nuclear Information System (INIS)

    Kozlov, V.F.; Kuz'min, I.I.; Lystsov, V.N.; Amosova, T.V.; Makhutov, N.A.; Men'shikov, V.F.

    1995-01-01

    Principle of optimization of nuclear power engineering safety is presented on the basis of estimating the risks to the man's health with an account of peculiarities of socio-economic system and other types of economic activities in the region. Average expected duration of forthcoming life and costs of its prolongation serve as a unit for measuring the man's safety. It is shown that if the expenditures on NPP technical safety exceed the scientifically substantiated costs for this region with application of the above principle, than the risk for population will exceed the minimum achievable level. 8 refs., 2 figs., 1 tab

  10. Scientific and technical basis of safety increase measures at NPPs with WWER

    International Nuclear Information System (INIS)

    Skalozubov, V.I.; Klyuchnikov, A.A.; Komarov, Yu.A.; Shavlakov, A.V.

    2010-01-01

    This monograph presents the original development of the authors on scientific and technical substantiation of foreground modern measures on safety increase at nuclear power plants with water-water reactors: development and implementation of operative diagnostic system for thermo acoustical instability of reactor core, substantituation of performance capacity and reliability of fast-acting reducing units systems and regulation systems of reactor emergency cooling at control of dominant for safety accidents.

  11. Quality and safety of nuclear plants: the role of the administrative authorities

    International Nuclear Information System (INIS)

    Queniart, D.

    1977-10-01

    After specifying the notions of 'safety' and 'quality', the terms and conditions governing the intervention of the public authorities in the matter of safety of nuclear plants are described: individual permits, the establishing and application of technical rules of a general character, surveillance of the plants. The criteria and regulations guiding the evaluation of safety and quality and, in conclusion, insisting on the necessity for permanent discussions among the various organizations concerned are presented

  12. The French nuclear safety authority's experience with radioactive transport inspection

    International Nuclear Information System (INIS)

    Jacob, E.; Aguilar, J.

    2004-01-01

    About 300,000 radioactive material packages are transported annually in France. Most consist of radioisotopes for medical, pharmaceutical or industrial use. On the other hand, the nuclear industry deals with the transport of fuel cycle materials (uranium, fuel assemblies, etc.) and waste from power plants, reprocessing plants and research centers. France is also a transit country for shipments such as spent fuel packages from Switzerland or Germany, which are bound for Sellafield in Great Britain. The French nuclear safety authority (DGSNR: Directorate General for Nuclear Safety and Radioprotection) has been responsible since 1997 for the safety of radioactive material transport. This paper presents DGNSR's experience with transport inspection: a feedback of key points based on 300 inspections achieved during the past five years is given

  13. Technical organization of safety authorities for the event of an accident at a nuclear installation

    International Nuclear Information System (INIS)

    Scherrer, J.; Evrard, J.M.; Ney, J.

    1986-01-01

    Within the general context of nuclear safety, the Central Nuclear Installation Safety Service of the French Ministry for Industry and its technical backup, the Institute for Radiation Protection and Nuclear Safety of the CEA (Atomic Energy Commission), have established a special organization designed to provide real-time forecasts of the evolution of a nuclear accident situation with sufficient forewarning for the local representative of the Government (the Commissaire de la Republique in the Departement affected) to implement, as required, effective countermeasures to protect the population - for example, confinement indoors or evacuation. Descriptions are given of the principles of this organization and the particular precautions taken to confront the problems of mobilizing experts and of dealing with the saturation of normal telecommunications channels to be expected in the event of a nuclear accident. The organization set up for the installations belonging to Electricite de France is given as a detailed example. Particular stress is placed on the organizational arrangements of the Institute for Radiation Protection and Nuclear Safety designed to provide the emergency teams with the evaluation and forecasting tools they require to carry out their tasks. The procedures are on the whole well developed for atmospheric radioactivity transport, for which operational models already exist. Computer-backed methods with improved performance are at present being developed. A method of forecasting the behaviour of the releases resulting from nuclear accidents is set out for pressurized water reactors, based on evaluating the physical state of the installation, confinement integrity, availability of safety and backup systems, support systems and feed sources and on forecasting how this state will develop on the basis of measured and inferred physical values transmitted from the affected power station through a national network. The experience acquired during accident

  14. ITER safety task NID-5a: ITER tritium environmental source terms - safety analysis basis

    International Nuclear Information System (INIS)

    Natalizio, A.; Kalyanam, K.M.

    1994-09-01

    The Canadian Fusion Fuels Technology Project's (CFFTP) is part of the contribution to ITER task NID-5a, Initial Tritium Source Term. This safety analysis basis constitutes the first part of the work for establishing tritium source terms and is intended to solicit comments and obtain agreement. The analysis objective is to provide an early estimate of tritium environmental source terms for the events to be analyzed. Events that would result in the loss of tritium are: a Loss of Coolant Accident (LOCA), a vacuum vessel boundary breach. a torus exhaust line failure, a fuelling machine process boundary failure, a fuel processing system process boundary failure, a water detritiation system process boundary failure and an isotope separation system process boundary failure. 9 figs

  15. Setting clear expectations for safety basis development

    International Nuclear Information System (INIS)

    MORENO, M.R.

    2003-01-01

    DOE-RL has set clear expectations for a cost-effective approach for achieving compliance with the Nuclear Safety Management requirements (10 CFR 830, Nuclear Safety Rule) which will ensure long-term benefit to Hanford. To facilitate implementation of these expectations, tools were developed to streamline and standardize safety analysis and safety document development resulting in a shorter and more predictable DOE approval cycle. A Hanford Safety Analysis and Risk Assessment Handbook (SARAH) was issued to standardized methodologies for development of safety analyses. A Microsoft Excel spreadsheet (RADIDOSE) was issued for the evaluation of radiological consequences for accident scenarios often postulated for Hanford. A standard Site Documented Safety Analysis (DSA) detailing the safety management programs was issued for use as a means of compliance with a majority of 3009 Standard chapters. An in-process review was developed between DOE and the Contractor to facilitate DOE approval and provide early course correction. As a result of setting expectations and providing safety analysis tools, the four Hanford Site waste management nuclear facilities were able to integrate into one Master Waste Management Documented Safety Analysis (WM-DSA)

  16. Solid waste burial grounds interim safety analysis

    International Nuclear Information System (INIS)

    Saito, G.H.

    1994-01-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment

  17. Solid waste burial grounds interim safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  18. Developments related to the National Nuclear Safety Authority of Romania

    International Nuclear Information System (INIS)

    Baciu, Florin

    1998-01-01

    The contribution presents the status of the National Commission for Nuclear Activity Control (CNCAN) as indicated by the provisions of a Romanian Government Decision of May 1998. As specified in the art.3 the main tasks of the Commission are the following: to issue authorization and exercise permits of activities in nuclear field; to supervise the applications of the provisions stipulated by the law concerning development in safety conditions of nuclear activities; to develop instructions as well as nuclear safety regulations to ensure the quality assurance and functioning in safety conditions of the nuclear facilities and plants, the protection against nuclear radiation of the professionally exposed personnel, of the population, of the environment and of the material goods, the physical protection, the records, preservation and transport of radioactive material and of fissionable materials as well as the management of radioactive waste; organizes expert and is responsible for the state control concerning the integrated application of the law provisions in the field of quality constructions in which nuclear installations of national interest are located, during all the phases and for all the components of the quality system in this field; issues specialty and information documentation specific to its own activity, provides the information of the public through official publication, official statements to the press and other specific form of information; carries out any other tasks provided by law in the field of regulations and control of nuclear activity. Author presents also the CNCAN staff number evolution, the new structure, the staff distribution at headquarters, local agencies and national radiation monitoring network. Finally, the author discusses the legal provisions related to management manual procedures

  19. Technical basis for environmental qualification of microprocessor-based safety-related equipment in nuclear power plants

    International Nuclear Information System (INIS)

    Korsah, K.; Wood, R.T.; Hassan, M.; Tanaka, T.J.

    1998-01-01

    This document presents the results of studies sponsored by the Nuclear Regulatory Commission (NRC) to provide the technical basis for environmental qualification of computer-based safety equipment in nuclear power plants. The studies were conducted by Oak Ridge National Laboratory (ORNL), Sandia National Laboratories (SNL), and Brookhaven National Laboratory (BNL). The studies address the following: (1) adequacy of the present test methods for qualification of digital I and C systems; (2) preferred (i.e., Regulatory Guide-endorsed) standards; (3) recommended stressors to be included in the qualification process during type testing; (4) resolution of need for accelerated aging for equipment to be located in a benign environment; and (5) determination of an appropriate approach for addressing the impact of smoke in digital equipment qualification programs. Significant findings from the studies form the technical basis for a recommended approach to the environmental qualification of microprocessor-based safety-related equipment in nuclear power plants

  20. Technical basis for environmental qualification of microprocessor-based safety-related equipment in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, K.; Wood, R.T. [Oak Ridge National Lab., TN (United States); Hassan, M. [Brookhaven National Lab., Upton, NY (United States); Tanaka, T.J. [Sandia National Labs., Albuquerque, NM (United States)

    1998-01-01

    This document presents the results of studies sponsored by the Nuclear Regulatory Commission (NRC) to provide the technical basis for environmental qualification of computer-based safety equipment in nuclear power plants. The studies were conducted by Oak Ridge National Laboratory (ORNL), Sandia National Laboratories (SNL), and Brookhaven National Laboratory (BNL). The studies address the following: (1) adequacy of the present test methods for qualification of digital I and C systems; (2) preferred (i.e., Regulatory Guide-endorsed) standards; (3) recommended stressors to be included in the qualification process during type testing; (4) resolution of need for accelerated aging for equipment to be located in a benign environment; and (5) determination of an appropriate approach for addressing the impact of smoke in digital equipment qualification programs. Significant findings from the studies form the technical basis for a recommended approach to the environmental qualification of microprocessor-based safety-related equipment in nuclear power plants.

  1. Mining and mining authorities in Saarland 2016. Mining economy, mining technology, occupational safety, environmental protection, statistics, mining authority activities. Annual report

    International Nuclear Information System (INIS)

    2016-01-01

    The annual report of the Saarland Upper Mining Authority provides an insight into the activities of mining authorities. Especially, the development of the black coal mining, safety and technology of mining as well as the correlation between mining and environment are stressed.

  2. A refined safety analysis approach for closure of the Hanford Site flammable gas unreviewed safety question

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1997-01-01

    Following a 1990 investigation into flammable gas generation, retention, and release mechanisms within the Hanford Site high-level waste tanks, personnel concluded that the existing Authorization Basis documentation did not adequately evaluate flammable gas hazards. This declaration was based primarily on the fact that personnel did not adequately consider hydrogen and nitrous oxide evolution within the material in certain waste tanks and subsequent hypothetical ignition in the development of safety documentation for the waste tanks. The US Department of Energy-Headquarters subsequently declared an Unreviewed Safety Question (USQ). Although work scope has been focused on closure of the USQ since 1990, the DOE has yet to close the USQ because of considerable uncertainty regarding essential technical parameters and associated risk. The DOE recently approved a Basis for Interim Operation to revise the Authorization Basis for managing the tank farms, however, the USQ remains open. The two fundamental requirements for closure of the flammable gas USQ are as follows: development of a defensible technical basis for existing controls; development of a process to assess the adequacy of controls as the waste tank mission progresses

  3. THE NATIONAL AUTHORITY FOR ANIMAL HEALTH AND FOOD SAFETY, THE MAIN BODY INVOLVED IN FOOD SAFETY IN ROMANIA

    Directory of Open Access Journals (Sweden)

    PETRUTA-ELENA ISPAS

    2012-05-01

    Full Text Available This paper is intended to present the role, functions and responsibilities of the National Authority for Animal Health and Food Safety as the main body involved in food safety in Romania. It will be also exposed the Regulation 178/2002 of the European Parliament and the Council, the general food ”law” in Europe, and Law 150/2004, which transposed into Romanian legislation Regulation 178/2002.

  4. Analysis of safety culture components based on site interviews

    International Nuclear Information System (INIS)

    Ueno, Akira; Nagano, Yuko; Matsuura, Shojiro

    2002-01-01

    Safety culture of an organization is influenced by many factors such as employee's moral, safety policy of top management and questioning attitude among site staff. First this paper analyzes key factors of safety culture on the basis of site interviews. Then the paper presents a safety culture composite model and its applicability in various contexts. (author)

  5. Safety management of software-based equipment

    CERN Document Server

    Boulanger, Jean-Louis

    2013-01-01

    A review of the principles of the safety of software-based equipment, this book begins by presenting the definition principles of safety objectives. It then moves on to show how it is possible to define a safety architecture (including redundancy, diversification, error-detection techniques) on the basis of safety objectives and how to identify objectives related to software programs. From software objectives, the authors present the different safety techniques (fault detection, redundancy and quality control). "Certifiable system" aspects are taken into account throughout the book. C

  6. Organisational culture at the Radiation and Nuclear Safety Authority of Finland's Nuclear Reactor Regulation department

    International Nuclear Information System (INIS)

    Reiman, T.

    2001-01-01

    A case study to investigate the organisational culture of the regulatory authority was conducted at the Radiation and Nuclear Safety Authority of Finland's (STUK) Nuclear Reactor Regulation (YTO) department. Organisational culture is defined as a pattern of shared basic assumptions, which are basically unconscious. Objectives of the study were to conceptualise and describe the main characteristics of YTO's organisational culture and to carry out a tentative core task analysis of the inspectors' work. A combination of quantitative and qualitative methods was used in the research. In the first phase of the research, an organisational culture survey (FOCUS) was administered. It is base on a theory according to which organisations can be categorised into four main culture types, support-, innovation, goal- and rule-culture. It was tailored to better fit this kind of organisation on the basis of document analysis and preliminary interviews. Data was factor analysed and summated scales were formed. YTO's culture was identified as a hierarchy-focused (rule) culture with less emphasis on innovation, support or goals. However, the ideal values of the personnel emphasised also social support and goal setting. Ambiguous goals were felt by some personnel as increased uncertainty about the meaningfulness of one's job. Also a lack of feedback was mentioned as a weakness in YTO's culture. In the second phase of the research, a development workshop was carried out. The themes of the workshop were identified on the basis of the results of the first phase. Main targets for development that were identified in the workshop were human resources, goal setting and knowledge management. The ideal values of the personnel emphasised support and goal cultures. (orig.)

  7. Tank Farms Technical Safety Requirements. Volume 1 and 2

    International Nuclear Information System (INIS)

    CASH, R.J.

    2000-01-01

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR)

  8. Tank Farms Technical Safety Requirements [VOL 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    CASH, R.J.

    2000-12-28

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR).

  9. Atomic Energy Authority Bill (Lords) - second reading

    International Nuclear Information System (INIS)

    1986-01-01

    In the debate in the House of Commons on the second reading of the Atomic Energy Bill, the objective of which is to put the finances of the Authority on to a trading fund basis, the discussion included the following: proposed changes in method of financing the Authority; safety; underlying research; customer relations; accountability; personnel; public relations; radioactive waste management; energy research; parliamentary scrutiny; energy policy; nuclear power; fast reactors; fusion research; government policy. (U.K.)

  10. Qualified Presumption of Safety (QPS) is a generic risk assessment approach applied by the European Food Safety Authority (EFSA)

    DEFF Research Database (Denmark)

    Leuschner, R. G. K.; Robinson, T. P.; Hugas, M.

    2010-01-01

    Qualified Presumption of Safety (QPS) is a generic risk assessment approach applied by the European Food Safety Authority (EFSA) to notified biological agents aiming at simplifying risk assessments across different scientific Panels and Units. The aim of this review is to outline the implementation...... and value of the QPS assessment for EFSA and to explain its principles such as the unambiguous identity of a taxonomic unit, the body of knowledge including potential safety concerns and how these considerations lead to a list of biological agents recommended for QPS which EFSA keeps updated through...

  11. Barriers to Safety Event Reporting in an Academic Radiology Department: Authority Gradients and Other Human Factors.

    Science.gov (United States)

    Siewert, Bettina; Swedeen, Suzanne; Brook, Olga R; Eisenberg, Ronald L; Hochman, Mary

    2018-05-15

    Purpose To investigate barriers to reporting safety concerns in an academic radiology department and to evaluate the role of human factors, including authority gradients, as potential barriers to safety concern reporting. Materials and Methods In this institutional review board-approved, HIPAA-compliant retrospective study, an online questionnaire link was emailed four times to all radiology department staff members (n = 648) at a tertiary care institution. Survey questions included frequency of speaking up about safety concerns, perceived barriers to speaking up, and the annual number of safety concerns that respondents were unsuccessful in reporting. Respondents' sex, role in the department, and length of employment were recorded. Statistical analysis was performed with the Fisher exact test. Results The survey was completed by 363 of the 648 employees (56%). Of those 363 employees, 182 (50%) reported always speaking up about safety concerns, 134 (37%) reported speaking up most of the time, 36 (10%) reported speaking up sometimes, seven (2%) reported rarely speaking up, and four (1%) reported never speaking up. Thus, 50% of employees spoke up about safety concerns less than 100% of the time. The most frequently reported barriers to speaking up included high reporting threshold (69%), reluctance to challenge someone in authority (67%), fear of disrespect (53%), and lack of listening (52%). Conclusion Of employees in a large academic radiology department, 50% do not attain 100% reporting of safety events. The most common human barriers to speaking up are high reporting threshold, reluctance to challenge authority, fear of disrespect, and lack of listening, which suggests that existing authority gradients interfere with full reporting of safety concerns. © RSNA, 2018.

  12. Safety culture of nuclear power plant

    International Nuclear Information System (INIS)

    Zheng Beixin

    2008-01-01

    This paper is a summary on the basis of DNMC safety culture training material for managerial personnel. It intends to explain the basic contents of safety, design, management, enterprise culture, safety culture of nuclear power plant and the relationship among them. It explains especially the constituent elements of safety culture system, the basic requirements for the three levels of commitments: policy level, management level and employee level. It also makes some analyses and judgments for some typical safety culture cases, for example, transparent culture and habitual violation of procedure. (authors)

  13. Concept for creating program-technical complex of safety monitoring with system of safety parameters presentation functions on the basis of routine WWER-1000 systems

    International Nuclear Information System (INIS)

    Dunaev, V.G.; Tarasov, M. V.; Povarov, P.V.

    2005-01-01

    Prerequisites of creating the software-hardware complex for reactor safety monitoring on the Volgodonsk NPP are analyzed and generalized. The concept of this complex is based on functions of the safety parameters presentation system. It will serve as an interface between operator and technological process and give to operator a possibility to estimate quickly the state of the safety of the nuclear power unit. The complex will be created on the basis of routine reactor monitoring and control systems intended for the WWER-1000 reactor. In addition to existing soft- and hard-wares for reactor monitoring and for analysis of technological archive, it is proposed to create and connect in parallel the new software-hardware complex which ensures calculation and presentation of generalized factors of reactor safety [ru

  14. An Improved Setpoint Determination Methodology for the Plant Protection System Considering Beyond Design Basis Events

    International Nuclear Information System (INIS)

    Lee, C.J.; Baik, K.I.; Baek, S.M.; Park, K.-M.; Lee, S.J.

    2013-06-01

    According to the nuclear regulations and industry standards, the trip setpoint and allowable value for the plant protection system have been determined by considering design basis events. In order to improve the safety of a nuclear power plant, an attempt has been made to develop an improved setpoint determination methodology for the plant protection system trip parameter considering not only a design basis event but also a beyond design basis event. The results of a quantitative evaluation performed for the Advanced Power Reactor 1400 nuclear power plant in Korea are presented herein. The results confirmed that the proposed methodology is able to improve the nuclear power plant's safety by determining more reasonable setpoints that can cover beyond design basis events. (authors)

  15. The quality and safety of nuclear plants: the part played by the administrative authorities

    International Nuclear Information System (INIS)

    Queniart, Daniel

    1976-01-01

    After specifying the notions of 'safety' and 'quality', the terms and conditions governing the intervention of the public authorities in the matter of safety of nuclear plants are described: individual permits, the establishing and application of technical rules of a general character, surveillance of the plants. The criteria and regulations guiding the evaluation of safety and quality and, in conclusion, insisting on the necessity for permanent discussions among the various organizations concerned are presented [fr

  16. Regulatory standpoints on the design-basis capability of safety-related motor-operated valves(MOVs) and power-operated gate valves(POGVs)

    International Nuclear Information System (INIS)

    Kim, W. T.; Kum, O. H.

    1999-01-01

    The weakness in the design-basis capability of Motor-Operated Valves(MOVs) and the susceptibility to Pressure Locking and Thermal Binding phenomena of Power-Operated Gate Valves(POGVs) have been major concerns to be resolved in the nuclear society in and abroad since Three Mile Island accident occurred in the USA in 1979. Through detailed analysis of operating experience and regulatory activities, some MOVs and POGVs have been found to be unreliable in performing their safety functions when they are required to do so under certain conditions, especially under design-basis accident conditions. Further, it is well understood that these safety problems may not be identified by the typical valve in-service testing(IST). USNRC has published three Generic Letters, GL 89-10, GL 95-07, and GL 96-05, requiring nuclear plant licensees to take appropriate actions to resolve the problems mentioned above. Korean nuclear regulatory body has made public an administration measure called 'Regulatory recommendation to verify safety functions of the safety-related MOVs and POGVs' on June 13, 1997, and in this administration measure Korean utility is asked to submit written documents to show how it assure design-basis capability of these valves. The following are among the major concerns being considered from a regulation standpoint. Program scope and implementation priority, dynamic tests under differential pressure conditions, accuracy of diagnostic equipment, torque switch setting and torque bypass percentage, weak link analysis, motor actuator sizing, corrective actions taken to resolve pressure locking and thermal binding susceptibility, and a periodic verification program for the valves once design-basis capability has been verified

  17. Safety criteria for siting a nuclear power plant

    International Nuclear Information System (INIS)

    2001-01-01

    The guide sets forth requirements for safety of the population and the environment in nuclear power plant siting. It also sets out the general basis for procedures employed by other competent authorities when they issue regulations or grant licences. On request STUK (Radiation and Nuclear Safety Authority of Finland) issues case-specific statements about matters relating to planning and about other matters relating to land use in the environment of nuclear power plants

  18. Towards confidence in transport safety

    International Nuclear Information System (INIS)

    Robison, R.W.

    1992-01-01

    The U.S. Department of Energy (US DOE) plans to demonstrate to the public that high-level waste can be transported safely to the proposed repository. The author argues US DOE should begin now to demonstrate its commitment to safety by developing an extraordinary safety program for nuclear cargo it is now shipping. The program for current shipments should be developed with State, Tribal, and local officials. Social scientists should be involved in evaluating the effect of the safety program on public confidence. The safety program developed in cooperation with western states for shipments to the Waste Isolation Pilot plant is a good basis for designing that extraordinary safety program

  19. FLIGHT SAFETY CONTROL OF THE BASIS OF UNCERTAIN RISK EVALUATION WITH NON-ROUTINE FLIGHT CONDITIONS INVOLVED

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The article deals with methods of forecasting the level of aviation safety operation of aircraft systems on the basis of methods of evaluation the risks of negative situations as a consequence of a functional loss of initial properties of the system with critical violations of standard modes of the aircraft. Mathematical Models of Risks as a Danger Measure of Discrete Random Events in Aviation Systems are presented. Technological Schemes and Structure of Risk Control Proce- dures without the Probability are illustrated as Methods of Risk Management System in Civil Aviation. The assessment of the level of safety and quality and management of aircraft, made not only from the standpoint of reliability (quality and consumer properties, but also from the position of ICAO on the basis of a risk-based approach. According to ICAO, the security assessment is performed by comparing the calculated risk with an acceptable level. The approach justifies the use of qualitative evaluation techniques safety in the forms of proactive forecasted and predictive risk management adverse impacts to aviation operations of various kinds, including the space sector and nuclear energy. However, for the events such as accidents and disasters, accidents with the aircraft, fighters in a training flight, during the preparation of the pilots on the training aircraft, etc. there is no required statistics. Density of probability distribution (p. d. f. of these events are only hypothetical, unknown with "hard tails" that completely eliminates the application of methods of confidence intervals in the traditional approaches to the assessment of safety in the form of the probability analysis.

  20. Flammable gas deflagration consequence calculations for the tank waste remediation system basis for interim operation

    Energy Technology Data Exchange (ETDEWEB)

    Van Vleet, R.J., Westinghouse Hanford

    1996-08-13

    This paper calculates the radiological dose consequences and the toxic exposures for deflagration accidents at various Tank Waste Remediation System facilities. These will be used in support of the Tank Waste Remediation System Basis for Interim Operation.The attached SD documents the originator`s analysis only. It shall not be used as the final or sole document for effecting changes to an authorization basis or safety basis for a facility or activity.

  1. Study of system safety evaluation on LTO of national project. NISA safety research project on system safety of nuclear power plants

    International Nuclear Information System (INIS)

    Takizawa, Masayuki; Sekimura, Naoto; Miyano, Hiroshi; Aoyama, Katsunobu

    2012-01-01

    Japanese safety regulatory body, that is, Nuclear and Industrial Safety Agency (NISA) started a 5-year national safety research project as 'the first stage' from 2006 FY to 2010 FY whose objective is 'Improve the technical information basis in order to utilize knowledge as well as information related to ageing management and maintenance of NPPs. Fukushima disaster happened in March 2011, and the priority of research needs for ageing management dramatically changed in Japan. The second-stage national project started in October 2011 with the concept of 'system safety' of NNPs where not only ageing management on degradation phenomena of important components but also safety management on total plant systems are paid attention to. The second-stage project is so called 'Japanese Ageing Management Program for System Safety (JAMPSS)'. (author)

  2. Safety analyses for NHR-200

    Energy Technology Data Exchange (ETDEWEB)

    Jincai, Li; Zuying, Gao; Baocheng, Xu; Junxiao, He [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The NHR-200 is a commercial 200-MW District Heating Reactor developed in China. It is designed on the basis of design, construction and four-year operating experience of the 5MW Experimental Heating Reactor (NHR-5). It has special safety features which are briefly described in this paper. Accident classification and safety criteria are also explained. Some typical and serious accidents are studied theoretically, and their results are detailed in this paper. They demonstrate the excellent safety characteristics of HR-200. (author). 4 refs, 9 figs, 1 tab.

  3. Safety and environmental protection - realization efforts regarding the authorization of power engineering plants

    International Nuclear Information System (INIS)

    Dreyhaupt, F.J.

    1982-01-01

    As to power plants the author calls special attention to three statements concerning questions on safety and environmental protection which play a decisive part in authorizing conventional and nuclear facilities. After investigating the most important legal fundamental principles for the authorization of power engineering plants, the Atomic Act and the Federal Immission Protection Act, the author discusses the problems that arise with the application of the authorization procedures. The reasons which can be made responsible for the long running periods of the authorization procedures and therewith of the realization of the site installation work are given. Finally, the author describes and judges the outlines of regulations for large scale furnaces and for the TA-air supplementary clause. (orig.) [de

  4. Report from the nuclear safety authority about the preparation of nuclear facilities to the year 2000 transition

    International Nuclear Information System (INIS)

    Lacoste, A.C.

    1999-01-01

    The French nuclear safety authority with the technical help of the Institute of Nuclear Protection and Safety (IPSN) started in 1998 an evaluation and control work of the measures taken by the different nuclear facility operators in anticipation of the year 2000 transition. This report makes a status of the state of preparation of nuclear facilities prior to the transition: 1 - The nuclear safety and the year 2000 transition (defense-in-depth approach, preventive actions); 2 - The action of the safety authority (demands addressed to the operators of nuclear facilities, technical evaluation and control of the methodology adopted by each operator, preparation of the safety authority to the transition, follow up of the international actions); 3 - Status of the preparation of the different operators: Electricite de France (EdF) (corrective actions, inventory and investigation of computer systems, results, corrections, preventive actions, defensive actions, synthesis), research centres, storage sites and shutdown reactors, waste storage centres of the ANDRA, CEA facilities, decommissioned or partially dismantled reactors, fuel cycle centres.. (J.S.)

  5. 75 FR 69648 - Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers

    Science.gov (United States)

    2010-11-15

    ... interpretative posture weakens the safety structure the rule is designed to hold firmly in place. 10 CFR Part 830... Basis Documents, and notes that the Safety Basis Approval Authority may prescribe interim controls and... managers ``are expected to carefully evaluate situations that fall short of expectations and only provide...

  6. 75 FR 74022 - Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers

    Science.gov (United States)

    2010-11-30

    ... posture weakens the safety structure the rule is designed to hold firmly in place. 10 CFR Part 830 imposes... Basis Documents, and notes that the Safety Basis Approval Authority may prescribe interim controls and... managers ``are expected to carefully evaluate situations that fall short of expectations and only provide...

  7. Safety and authorizations relating to the use of new fuel in research reactors

    International Nuclear Information System (INIS)

    Niel, J.-C.; Abou Yehia, H.

    1999-01-01

    After giving a brief reminder of the procedure applied in France for granting licences to modify research reactors, we outline in this paper the main safety aspects associated with using new fuel in these reactors. Finally, by way of an example, we focus on the procedure followed for converting the cores of the OSIRIS (70 MW) and ISIS (700 kW) reactors to U 3 Si 2 Al fuel and the conclusions of the corresponding safety assessments. (author)

  8. Food Safety and Sanitary Practices of Selected Hotels in Batangas Province, Philippines: Basis of Proposed Enhancement Measures

    Directory of Open Access Journals (Sweden)

    April M. Perez

    2017-02-01

    Full Text Available This study assessed the extent of food safety and sanitary practices of selected hotels in Batangas province as basis of proposed enhancement measures. The study utilized descriptive method to describe food safety and sanitary practices of selected hotels in Batangas province with a total of 8 hotels (256 respondents. Purposive sampling was used in the study. The questionnaires were designed using the provision of the Sanitation Code of the Philippines, validated and finalized to come up with legitimate results. The study showed that there were eight (8 hotel respondents classified as two, three, four star with considerable years of experience and adequate number of employees. The hotels demonstrated the food safety and sanitary practices always in the areas of restaurant, bar service, catering and banquet and room service. The significant pair-wise comparison for restaurant, bar service, catering and banquet and room service shows that 2 star hotels greatly differs. The researcher recommends that the management should maintain high standard of food safety and sanitary practices among its staff, upgrade the food safety and sanitary practices for food safety accreditation, continuous training of the hotel managers/employees on food safety and sanitary practices.

  9. RBMK safety issues

    International Nuclear Information System (INIS)

    Weber, J.P.; Reichenbach, D.; Tscherkashow, J.M.

    1995-01-01

    On the basis of information and documents from the RBMK operation countries, the Western consortium mainly examined the two most modern plants, Ignalin-2 and Smolensk-3. The identification of numerous shortcomings, some of which had already been recongized by the participating Eastern organizations, resulted in some 300 specific recommendations to reactor designers, operators and licensing authorities. These recommendations are to be acted upon at once; only a small number did not meet with the approval of the Eastern partners. The safety review provided the Western consotrium with a profound insight into the design and safety of third-generation RBMK reactors; the Eastern partners were able to accumulate experience in working with Western safety philosophy. (orig.) [de

  10. Safety of Research Reactors. Safety Requirements

    International Nuclear Information System (INIS)

    2010-01-01

    The main objective of this Safety Requirements publication is to provide a basis for safety and a basis for safety assessment for all stages in the lifetime of a research reactor. Another objective is to establish requirements on aspects relating to regulatory control, the management of safety, site evaluation, design, operation and decommissioning. Technical and administrative requirements for the safety of research reactors are established in accordance with these objectives. This Safety Requirements publication is intended for use by organizations engaged in the site evaluation, design, manufacturing, construction, operation and decommissioning of research reactors as well as by regulatory bodies

  11. radiation safety culture for developing country: Basis for s minimum operational radiation protection programme

    International Nuclear Information System (INIS)

    Rozental, J. J.

    1997-01-01

    The purpose of this document is to present a methodology for an integrated strategy aiming at establishing an adequate radiation Safety infrastructure for developing countries, non major power reactor programme. Its implementation will allow these countries, about 50% of the IAEA's Member States, to improve marginal radiation safety, specially to those recipients of technical assistance and do not meet the Minimum radiation Safety Requirements of the IAEA's Basic Safety Standards for radiation protection Progress in the implementation of safety regulations depends on the priority of the government and its understanding and conviction about the basic requirements for protection against the risks associated with exposure to ionizing radiation. There is no doubt to conclude that the reasons for the deficiency of sources control and dose limitation are related to the lack of an appropriate legal and regulatory framework, specially considering the establishment of an adequate legislation; A minimum legal infrastructure; A minimum operational radiation safety programme; Alternatives for a Point of Optimum Contact, to avoid overlap and conflict, that is: A 'Memorandum of Understanding' among Regulatory Authorities in the Country, dealing with similar type of licensing and inspection

  12. Using resources for scientific-driven pharmacovigilance: from many product safety documents to one product safety master file.

    Science.gov (United States)

    Furlan, Giovanni

    2012-08-01

    required by other documents. The author has identified signal detection (intended not only as adverse event disproportionate reporting, but including non-clinical, laboratory, clinical analysis data and literature screening) and characterization as the basis for the preparation of all drug safety documents, which can be viewed as different ways of presenting the results of this activity. Therefore, the author proposes to merge all the aggregate reports required by current regulations into a single document - the Drug Safety Master File. This report should contain all the available information, from any source, regarding the potential and identified risks of a drug. It should be a living document updated and submitted to regulatory authorities on an ongoing basis.

  13. [Safety monitoring of cell-based medicinal products (CBMPs)].

    Science.gov (United States)

    Funk, Markus B; Frech, Marion; Spranger, Robert; Keller-Stanislawski, Brigitte

    2015-11-01

    Cell-based medicinal products (CBMPs), a category of advanced-therapy medicinal products (ATMPs), are authorised for the European market by the European Commission by means of the centralized marketing authorisation. By conforming to the German Medicinal Products Act (Sec. 4b AMG), national authorisation can be granted by the Paul-Ehrlich-Institut in Germany exclusively for ATMPs not based on a routine manufacturing procedure. In both procedures, quality, efficacy, and safety are evaluated and the risk-benefit balance is assessed. For the centralised procedure, mainly controlled clinical trial data must be submitted, whereas the requirements for national procedures could be modified corresponding to the stage of development of the ATMP. After marketing authorization, the marketing authorization/license holder is obligated to report all serious adverse reactions to the competent authority and to provide periodic safety update reports. If necessary, post-authorization safety studies could be imposed. On the basis of these regulatory measures, the safety of advanced therapies can be monitored and improved.

  14. Safety barriers and safety functions a comparison of different applications

    International Nuclear Information System (INIS)

    Harms-Ringdahl, L.

    1998-01-01

    A study is being made with the focus on different theories and applications concerning 'safety barriers' and 'safety functions'. One aim is to compare the characteristics of different kinds of safely functions, which can be purpose, efficiency, reliability, weak points etc. A further aim is to summarize how the combination of different barriers are described and evaluated. Of special interest are applications from nuclear and chemical process safety. The study is based on a literature review, interviews and discussions. Some preliminary conclusions are made. For example, it appears to exist a need for better tools to support the design and evaluation of procedures. There are a great number of theoretical models describing safety functions. However, it still appears to be an interest in further development of models, which might give the basis for improved practical tools. (author)

  15. An overview of the UK regulatory expectation for design basis accident analysis

    International Nuclear Information System (INIS)

    Trimble, Andy

    2013-01-01

    The UK Health and Safety Executive published its most recent regulatory expectations in the 2006 version of it's safety assessment principles (SAPs). This built on experience regulating the full range of facilities for which it is responsible. Thus the principles underpinning all regulatory safety case assessment are the same but the implementation differs depending on the application. This paper will describe the published design basis accident analysis (DBAA) logic in context with other technical aspects of the regulatory expectation for safety cases. It will further illustrate the DBAA methodology with practical examples from actual experience on reprocessing plant gained over the last 15 years or so. Among the examples will be the relevance of conventional safety fault initiators to nuclear safety assessment. It will further demonstrate the derivation of facility limits and conditions necessary for nuclear safety. (authors)

  16. Study on the KALIMER safety approach

    International Nuclear Information System (INIS)

    Kim, Eui Kwang; Han, Do Hee; Kim, Young Cheol.

    1997-01-01

    This study describes KALIMER's safety approach, how to establish the safety criteria and temperature limit, how to define safety evaluation events, and some safety research and development needs items. It is recommended that the KALIMER's approach to safety use seven levels of safety design and a defense-in-depth design approach with particular emphasis on inherent passive features. In order to establish as set DBEs for KALIMER safety evaluation, the procedure is explained how to define safety evaluation events. Final selection is to be determined later with the final establishment of design concepts. On the basis of preliminary studies and evaluation of the plant safety related areas, the KALIMER and PRISM have following three main difference that may require special research and development for KALIMER. (author). 7 refs., 6 tabs., 6 figs

  17. International conference on strengthening of nuclear safety in Eastern Europe. Armenian Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Nersesyan, V.

    1999-01-01

    The status of the Armenian Nuclear Regulatory Authority (ANRA) are described in detail with its main task and responsibilities concerning regulations and surveillance of nuclear and radiation safety. The following issues are presented: nuclear legislation; inspection activities; licensing of significant safety related modifications and modernization of NPPs; incidents at NPPs; personnel training; emergency planning; surveillance of nuclear materials; radioactive waste management; and plan of the ANRA perspective development

  18. Barsebaeck power plant - safety and emergency measures

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A Swedish-Danish Committee on safety at the Swedish nuclear power plant Barsebaeck was established in 1979 in order to evaluate the nuclear safety at Barsebaeck with a view to the reactor accident at the Three-Mile-Island nuclear power plant March 28, 1979. According to the committees mandate the investigations of the Kemeny Commission, the Rogouin investigation, investigations of the American Nuclear Regulatory Commission, and the Swedish report ''Safe nuclear power'' have been taken into consideration by the Committee. Furthermore, it has formed the basis for the Committees work that the authority responsibility for the safety at Barsebaeck lies with the Swedish authorities, and that these authorities have evaluated the safety aspects before the permissions for operation of the Barsebaeck power plant were given and hereafter currently in connection with the inspection of the power plant. The report prepared by the Commission treats aspects as: a) Nuclear safety at the Barsebaeck power plant, b) reactor safety and emergency provisions, c) common elements in the emergency provision situation in Sweden and Denmark, d) ongoing investigations on course of events during accidents and release limiting safety systems. (BP)

  19. Development of methodology for the analysis of fuel behavior in light water reactor in design basis accidents

    International Nuclear Information System (INIS)

    Salatov, A. A.; Goncharov, A. A.; Eremenko, A. S.; Kuznetsov, V. I.; Bolnov, V. A.; Gusev, A. S.; Dolgov, A. B.; Ugryumov, A. V.

    2013-01-01

    The report attempts to analyze the current experience of the safety fuel for light-water reactors (LWRs) under design-basis accident conditions in terms of its compliance with international requirements for licensing nuclear power plants. The components of fuel behavior analysis methodology in design basis accidents in LWRs were considered, such as classification of design basis accidents, phenomenology of fuel behavior in design basis accidents, system of fuel safety criteria and their experimental support, applicability of used computer codes and input data for computational analysis of the fuel behavior in accidents, way of accounting for the uncertainty of calculation models and the input data. A brief history of the development of probabilistic safety analysis methodology for nuclear power plants abroad is considered. The examples of a conservative approach to safety analysis of VVER fuel and probabilistic approach to safety analysis of fuel TVS-K are performed. Actual problems in development of the methodology of analyzing the behavior of VVER fuel at the design basis accident conditions consist, according to the authors opinion, in following: 1) Development of a common methodology for analyzing the behavior of VVER fuel in the design basis accidents, implementing a realistic approach to the analysis of uncertainty - in the future it is necessary for the licensing of operating VVER fuel abroad; 2) Experimental and analytical support to the methodology: experimental studies to identify and study the characteristics of the key uncertainties of computational models of fuel and the cladding, development of computational models of key events in codes, validation code on the basis of integral experiments

  20. A new approach to determine the environmental qualification requirements for the safety related equipment

    International Nuclear Information System (INIS)

    Hasnaoui, C.; Parent, G.

    2000-01-01

    The objective of the environmental qualification of safety related equipment is to ensure that the plant defense-in-depth is not compromised by common mode failures following design basis accidents with a harsh environment. A new approach based on safety functions has been developed to determine what safety-related equipment is required to function during and after a design basis accident, as well as their environmental qualification requirements. The main feature of this approach is to use auxiliary safety functions established from safety requirements as credited in the safety analyses. This approach is undertaken in three steps: identification of the auxiliary safety functions of each main safety function; determination of the main equipment groups required for each auxiliary safety function; and review of the safety analyses for design basis accidents in order to determine the credited auxiliary safety functions and their mission times for each accident scenario. Some of the benefits of the proposed approach for the determination of the safety environmental qualification requirements are: a systematic approach for the review of safety analyses based on a safety function check list, and the insurance, with the availability of the safety functions, that Gentilly-2 defense-in-depth would not be compromised by design basis accidents with a harsh environment. (author)

  1. Technical basis for environmental qualification of computer-based safety systems in nuclear power plants

    International Nuclear Information System (INIS)

    Korsah, K.; Wood, R.T.; Tanaka, T.J.; Antonescu, C.E.

    1997-01-01

    This paper summarizes the results of research sponsored by the US Nuclear Regulatory Commission (NRC) to provide the technical basis for environmental qualification of computer-based safety equipment in nuclear power plants. This research was conducted by the Oak Ridge National Laboratory (ORNL) and Sandia National Laboratories (SNL). ORNL investigated potential failure modes and vulnerabilities of microprocessor-based technologies to environmental stressors, including electromagnetic/radio-frequency interference, temperature, humidity, and smoke exposure. An experimental digital safety channel (EDSC) was constructed for the tests. SNL performed smoke exposure tests on digital components and circuit boards to determine failure mechanisms and the effect of different packaging techniques on smoke susceptibility. These studies are expected to provide recommendations for environmental qualification of digital safety systems by addressing the following: (1) adequacy of the present preferred test methods for qualification of digital I and C systems; (2) preferred standards; (3) recommended stressors to be included in the qualification process during type testing; (4) resolution of need for accelerated aging in qualification testing for equipment that is to be located in mild environments; and (5) determination of an appropriate approach to address smoke in a qualification program

  2. Basis for the safety approach for design and assessment of Generation IV nuclear systems

    International Nuclear Information System (INIS)

    Fiorini, G.L.; Leahy, T.

    2009-01-01

    The primary objective of the RSWG is the implementation of a harmonized approach on long-term safety, and to address risk and regulatory issues in development of the next generation of nuclear systems. To this end, the group is proposing safety goals and evaluation methodology applicable for the design and assessment of future systems. The paper resumes the content of the first RSWG report which provides insights for the safety approach and assists the GIF Systems Steering Committee as well as the GIF Experts Group and the GIF Policy Group for the definition of the most adequate safety related Gen IV R and D. The document is also an essential contributor to help identifying the needed supportive crosscut R and D effort (i.e. applicable to all the innovative nuclear technologies). Although the report presents a number of thoughts and recommendations, it really represents only the start of the efforts for the RSWG. (author)

  3. Documents pertaining to safety control of nuclear facilities

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls the safety of nuclear facilities in Finland. This control encompasses on one hand the evaluation of plant safety on the basis of plans and analyses pertaining to the plant and on the other hand the inspection of plant structures, systems and components as well as of operational activity. STUK also monitors plants operational experience feedback and technical developments in the field, as well as the development of safety research and takes the necessary measures on their basis. Guide YVL 1.1 describes how STUK controls the design, construction and operation of nuclear power plants. The documents to be submitted to STUK are described in the nuclear energy legislation and YVL guides. This guide presents the mode of delivery, quality, contents and number of documents to be submitted to STUK

  4. Towards a Formal Basis for Modular Safety Cases

    Science.gov (United States)

    Denney, Ewen; Pai, Ganesh

    2015-01-01

    Safety assurance using argument-based safety cases is an accepted best-practice in many safety-critical sectors. Goal Structuring Notation (GSN), which is widely used for presenting safety arguments graphically, provides a notion of modular arguments to support the goal of incremental certification. Despite the efforts at standardization, GSN remains an informal notation whereas the GSN standard contains appreciable ambiguity especially concerning modular extensions. This, in turn, presents challenges when developing tools and methods to intelligently manipulate modular GSN arguments. This paper develops the elements of a theory of modular safety cases, leveraging our previous work on formalizing GSN arguments. Using example argument structures we highlight some ambiguities arising through the existing guidance, present the intuition underlying the theory, clarify syntax, and address modular arguments, contracts, well-formedness and well-scopedness of modules. Based on this theory, we have a preliminary implementation of modular arguments in our toolset, AdvoCATE.

  5. The nuclear safety authority (ASN) presents its report on the status of nuclear safety and radiation protection in France in 2010

    International Nuclear Information System (INIS)

    2011-01-01

    After a presentation of the French nuclear safety authority (ASN) and of some events which occurred in 2010, this report present the actions performed by the ASN in different fields: nuclear activities (ionizing radiations and risks for health and for the environment), principles and actors of control of nuclear safety, radiation protection and environment protection, regulation, control of nuclear activities and of exposures to ionizing radiations, emergency situations, public information and transparency, international relationship. It proposes a regional overview of nuclear safety and radiation protection in France. It addresses the activities controlled by the ASN: medical and non medical usages of ionizing radiations, transportation of radioactive materials, electronuclear power stations, installations involved in the nuclear fuel cycle, research nuclear installations and other nuclear installations, safety in basic nuclear installation dismantling, radioactive wastes and polluted sites

  6. A Complete Security of Criminological Safety of Minors

    Directory of Open Access Journals (Sweden)

    Andrey I. Saveliev

    2016-11-01

    Full Text Available The article considers questions relating to the diversity of theoretical comprehension levels of criminological safety of minors. The Author analyzes the normative legal basis of activities of subjects of prevention and protection of children's rights

  7. EuroFIR eBASIS: application for health claims submissions and evaluations

    DEFF Research Database (Denmark)

    Kiely, M.; Black, L.J.; Plumb, J.

    2010-01-01

    Background: The European Food Information Resource (EuroFIR) network has established the eBASIS (Bioactive Substances in Food Information System) online food composition and biological effects database for plant-derived bioactive compounds (phytochemicals). On the basis of submitted evidence......, the European Food Safety Authority (EFSA) expert panel on Dietetic Products, Nutrition and Allergies assesses whether claims made under articles 13.1, 13.5 or 14 of the Regulation (EC) 1924/2006, which governs the use of nutrition and health claims on foods, are scientifically justified. This report evaluates...... the eBASIS biological effects database in the preparation and evaluation of health claims dossiers. Methods: The eBASIS biological effects database is a compilation of expert-evaluated data extracted from the literature, prioritising human intervention studies to investigate health effects...

  8. Safety balance: Analysis of safety systems; Bilans de surete: analyse par les organismes de surete

    Energy Technology Data Exchange (ETDEWEB)

    Delage, M; Giroux, C

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses.

  9. Safety evaluation report on Tennessee Valley Authority: Browns Ferry nuclear performance plan

    International Nuclear Information System (INIS)

    1989-10-01

    This safety evaluation report (SER) on the information submitted by the Tennessee Valley Authority (TVA) in its Nuclear Performance Plan, through Revision 2, for the Browns Ferry Nuclear Plant and in supporting documents has been prepared by the US Nuclear Regulatory commission staff. The Browns Ferry Nuclear Plant consists of three boiling-water reactors at a site in Limestone County, Alabama. The plan addresses the plant-specific concerns requiring resolution before the startup of Unit 2. The staff will inspect implementation of those TVA programs that address these concerns. Where systems are common to Units 1 and 2 or to Units 2 and 3, the staff safety evaluations of those systems are included herein. 85 refs

  10. Safety evaluation report on Tennessee Valley Authority: Watts Bar Nuclear Performance Plan

    International Nuclear Information System (INIS)

    1990-01-01

    This safety evaluation report on the information submitted by the Tennessee Valley Authority in its Nuclear Performance Plan for the Watts Bar Nuclear Plant and in supporting documents has been prepared by the US Nuclear Regulatory Commission staff. The plan addresses the plant-specific corrective actions as part of the recovery program for licensing of Unit 1. The staff will be monitoring and inspecting the implementation of the programs. The plan does not address all licensing matters that will be required for fuel load and operation of Unit 1. Those remaining licensing matters have been addressed in previous safety evaluations or will be addressed in accordance with routing NRC licensing practices. 97 refs

  11. Perspective on safety case to support a possible site recommendation decision

    International Nuclear Information System (INIS)

    Gil, A.V.; Gamble, R.P.

    2002-01-01

    The mission of the US Department of Energy (DOE) is to provide the basis for a national decision regarding the development of a geological repository for spent nuclear fuel and high-level radioactive waste at the Yucca Mountain site in Nevada. There are a number of steps in the decision process defined by US law that must be completed prior to development of a repository at this site. The DOE's focus is currently on the first two steps in this process: characterization of the site to support a determination by the DOE on whether the site is suitable for a geologic repository and a decision by the Secretary of Energy (the Secretary) on whether to recommend to the President that the site be approved for a repository. To enhance the confidence of multiple audiences in the basis for these actions, and to provide a basis for subsequent action by the President and the US Congress, information supporting the decision process must include the elements of a safety case consistent with the statutory and regulatory framework for these decisions. The idea of a safety case is to broaden the basis for confidence by decision-makers and the public in conclusions about safety. A safety case should cite multiple lines of evidence, or reasoning, beyond the results of a safety assessment to support the demonstration of safety, which includes compliance with applicable safety criteria. The multiple lines of evidence should show the basis for confidence in safety. To be most effective, such evidence requires information not directly used in the safety assessment. (author)

  12. 76 FR 63988 - Pilot Project on NAFTA Trucking Provisions; Pre-Authorization Safety Audits

    Science.gov (United States)

    2011-10-14

    ...-0097] Pilot Project on NAFTA Trucking Provisions; Pre-Authorization Safety Audits AGENCY: Federal Motor... motor carriers that applied to participate in the Agency's long-haul pilot program to test and... intent to proceed with the initiation of a United States- Mexico cross-border long-haul trucking pilot...

  13. Public safety around dams : Grand River Conservation Authority

    Energy Technology Data Exchange (ETDEWEB)

    Moore, N [Grand River Conservation Authority, Cambridge, ON (Canada)

    2009-07-01

    Ontario's Grand River Conservation Authority (GRCA) is a corporate body, through which municipalities, landowners and other organizations work cooperatively to manage the watershed and outdoor recreation. This involves reducing flood damage; improving water quality; providing adequate water supply; protecting natural areas; watershed planning; and environmental education. This presentation discussed public safety issues regarding a dam in the GRCA that is 5 minutes to downtown Brantford; 5 minutes to several elementary and secondary schools; and a popular area for anglers. The city of Brantford owns the east embankment and the Brant conservation area is located on the west embankment. The safeguards included measures to involve the municipality and local police; install better signage; install better fencing; and public education. Increasing public awareness of the dangers surrounding dams was an important point of the presentation. Results included reduced trespassing and greater community awareness. figs.

  14. Criteria adopted by the Argentine Nuclear Regulatory Authority for assessing digital systems related to safety

    International Nuclear Information System (INIS)

    Terrado, Carlos A.; Chiossi, Carlos E.; Felizia, Eduardo R.; Roca, Jose L.; Sajaroff, Pedro M.

    2004-01-01

    Following the technological evolution in Instrumentation and Control (I and C) design, analog components are replaced by digital in almost every industry. Due to growing challenges of obsolescence and increasing maintenance costs, licensees of nuclear and radioactive installations are increasingly upgrading or replacing their existing I and C analog systems and components. In existing installations, this involves analog to digital replacements. In new installations design, the use of digital I and C systems is being considered from the very beginning, becoming a good alternative, even in safety applications. Up to now, in Argentina, there is no specific rules for safety-related digital systems, every safety system, analog or digital, must comply with the same generic regulations. The Nuclear Regulatory Authority is now developing criteria to assess digital systems related to safety in nuclear and radioactive installations. In this paper some of those criteria, based on local research and the recognized state of the art, are explained. From a regulatory point of view, the use of digital technology often raises new technical and licensing issues, particularly for safety-related applications. Examples include new failure modes, the potential for common-cause failure of redundant components, electromagnetic interference (EMI), software verification and validation, configuration management and a more exhaustive quality assurance system. The mentioned criteria comprehend the design, operation, maintenance and acquisition of digital systems and components important to safety. The main topics covered are: requirements specifications for digital systems, planning and documentation for digital system development, effectiveness of a digital system, commercial off the shelf (COTS) treatment and considerations involving tools for software development. (author)

  15. The biological basis of plutonium safety standards

    International Nuclear Information System (INIS)

    Mole, R.H.

    1976-01-01

    Since no radiation injury or cancer in man can, as yet, be directly attributed to Pu, all safety standards for Pu must be determined by reference to other safety standards, development of which is discussed. A system of safety standards must be based on links with real damage, such as the requirement for 226 Ra in bone. The type of biological information required for making standards realistic is considered in relation to Pu and Ra in bone. Also considered are the possible effects of Pu in soft tissue such as bone marrow. Not only dose, but also the number of cells exposed to the dose are important biologically and cellular aspects are examined. Since there is no positive evidence of Pu toxicity relevant information on other α emitters must be examined. The observed effectiveness of Ra, daughters of 222 Ra and 232 Th in causing mutations and cancer, is surveyed. Reference is made to the necessity of improving the ICRP system, currently based on the critical organ concept, by recognising the need for summation of risks in other organs where exposure to Pu is concerned. Improved biological understanding particularly that of hereditary damage, in recent years leads to less pessimistic thinking on the effects of ionizing radiations. The immediate need appears to be for consistency in safety standards. (U.K.)

  16. Monitoring and reviewing research reactor safety in Australia

    International Nuclear Information System (INIS)

    Cairns, R.C.; Greenslade, G.K.

    1990-01-01

    Th research reactors operated by the Australian Nuclear Science and Technology Organization (ANSTO) comprise the 10 MW reactor HIFAR and the 100 kW reactor Moata. Although there are no power reactors in Australia the problems and issues of public concern which arise in the operation of research reactors are similar to those of power reactors although on a smaller scale. The need for independent safety surveillance has been recognized by the Australian Government and the ANSTO Act, 1987, required the Board of ANSTO to establish a Nuclear Safety Bureau (NSB) with responsibility to the Minister for monitoring and reviewing the safety of nuclear plant operated by ANSTO. The Executive Director of ANSTO operates HIFAR subject to compliance with requirements and arrangements contained in a formal Authorization from the Board of ANSTO. A Ministerial Direction to the Board of ANSTO requires the NSB to report to him, on a quarterly basis, matters relating to its functions of monitoring and reviewing the safety of ANSTO's nuclear plant. Experience has shown that the Authorization provides a suitable framework for the operational requirements and arrangements to be organised in a disciplined and effective manner, and also provides a basis for audits by the NSB by which compliance with the Board's safety requirements are monitored. Examples of the way in which the NSB undertakes its monitoring and reviewing role are given. Moata, which has a much lower operating power level and fission product inventory than HIFAR, has not been subject to a formal Authorization to date but one is under preparation

  17. Supporting Fernald Site Closure with Integrated Health and Safety Plans as Documented Safety Analyses

    International Nuclear Information System (INIS)

    Kohler, S.; Brown, T.; Fisk, P.; Krach, F.; Klein, B.

    2004-01-01

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D and D) of over 200 structures, including eight major nuclear production plants. There is one of twelve nuclear facilities still remaining (Silos containing uranium ore residues) with its own safety basis documentation. This paper presents the status of the FCP's safety basis documentation program, illustrating that all of the former nuclear facilities and activities have now replaced. Basis of Interim Operations (BIOs) with I-HASPs as their safety basis during the closure process

  18. Notification and authorization for the use of radiation sources (supplement to IAEA Safety Standards Series No. GS-G-1.5)

    International Nuclear Information System (INIS)

    2007-04-01

    The achievement and maintenance of a high level of safety in the use of radiation sources depend on there being a sound legal and governmental infrastructure, including a national regulatory body with well-defined responsibilities and functions. These responsibilities and functions include establishing and implementing a system for notification and authorization for control over radiation sources, including a system for review and assessment of applications for authorization. The Safety Requirements publication entitled Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety establishes the requirements for legal and governmental infrastructure. The term 'infrastructure' refers to the underlying structure of systems and organizations. This includes requirements concerning the establishment of a regulatory body for radiation sources and the responsibilities and functions assigned to it. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or the BSS) establish basic requirements for protection against risks associated with exposure to ionizing radiation and for the safety of radiation sources. The application of the BSS is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities to for radiation protection and safety. This TECDOC provides practical guidance on the process for dealing with applications for authorization and accepting notifications to regulatory bodies. Examples of guidelines that may be used by persons required to notify or apply for authorization and of the regulatory body's review and assessment procedures are provided in the Appendices. The TECDOC is oriented towards national regulatory infrastructures concerned with protection and safety for radiation sources used in medicine, industry, agriculture, research and education

  19. Notification and authorization for the use of radiation sources (supplement to IAEA Safety Standards Series No. GS-G-1.5)

    International Nuclear Information System (INIS)

    2010-10-01

    The achievement and maintenance of a high level of safety in the use of radiation sources depend on there being a sound legal and governmental infrastructure, including a national regulatory body with well-defined responsibilities and functions. These responsibilities and functions include establishing and implementing a system for notification and authorization for control over radiation sources, including a system for review and assessment of applications for authorization. The Safety Requirements publication entitled Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety establishes the requirements for legal and governmental infrastructure. The term 'infrastructure' refers to the underlying structure of systems and organizations. This includes requirements concerning the establishment of a regulatory body for radiation sources and the responsibilities and functions assigned to it. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or the BSS) establish basic requirements for protection against risks associated with exposure to ionizing radiation and for the safety of radiation sources. The application of the BSS is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities to for radiation protection and safety. This TECDOC provides practical guidance on the process for dealing with applications for authorization and accepting notifications to regulatory bodies. Examples of guidelines that may be used by persons required to notify or apply for authorization and of the regulatory body's review and assessment procedures are provided in the Appendices. The TECDOC is oriented towards national regulatory infrastructures concerned with protection and safety for radiation sources used in medicine, industry, agriculture, research and education

  20. The safety of nuclear power: Strategy for the future

    International Nuclear Information System (INIS)

    1992-01-01

    The conference took place in Vienna from 2 to 6 September 1991. It was attended by approximately 350 participants from about fifty countries and 12 international organizations. The conference was directed to decision makers on nuclear safety and energy policy at the technical policy level. Its objective was to review the nuclear power safety issues on which international consensus would be desirable, to address the concerns on nuclear safety expressed by the WCED, and to formulate recommendations for future actions by national and international authorities to advance nuclear safety to the highest level, including proposals for the IAEA's future activities for consideration by its governing bodies. Background Papers were prepared in advance of the conference by Expert Groups on the following five issues: Fundamental principles for the safe use of nuclear power; Ensuring and enhancing safety of operating plants; Treatment of nuclear power plants built to earlier safety standards; The next generation of nuclear power plants; Final disposal of radioactive waste. On the basis of comments received on these papers from IAEA Member States, significant topics for discussion were identified. These topics and the papers formed the basis of the discussions from which the conference arrived at recommendations for future action by national and international authorities. A separate abstract was prepared for the opening speeches, background papers, major findings of the conference and the President's closing statement. 2 figs, 1 tab

  1. Notification and authorization for the use of radiation sources (Supplement to IAEA Safety Standards Series No. GS-G-1.5)

    International Nuclear Information System (INIS)

    2011-10-01

    The achievement and maintenance of a high level of safety in the use of radiation sources depend on there being a sound legal and governmental infrastructure, including a national regulatory body with well-defined responsibilities and functions. These responsibilities and functions include establishing and implementing a system for notification and authorization for control over radiation sources, including a system for review and assessment of applications for authorization. The Safety Requirements publication entitled Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety establishes the requirements for legal and governmental infrastructure. The term 'infrastructure' refers to the underlying structure of systems and organizations. This includes requirements concerning the establishment of a regulatory body for radiation sources and the responsibilities and functions assigned to it. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or the BSS) establish basic requirements for protection against risks associated with exposure to ionizing radiation and for the safety of radiation sources. The application of the BSS is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities to for radiation protection and safety. This TECDOC provides practical guidance on the process for dealing with applications for authorization and accepting notifications to regulatory bodies. Examples of guidelines that may be used by persons required to notify or apply for authorization and of the regulatory body's review and assessment procedures are provided in the Appendices. The TECDOC is oriented towards national regulatory infrastructures concerned with protection and safety for radiation sources used in medicine, industry, agriculture, research and education. The IAEA

  2. Common safety approach for future pressurized water reactors in France and Germany

    International Nuclear Information System (INIS)

    Queniart, D.; Gros, G.

    1994-01-01

    In France and Germany all major activities related to future pressurized water reactors are now proceeding in a coordinated way among the two countries. This holds for utilities and industry in the development of a joint PWR project, the ''European Pressurized Water Reactor (EPR)'' by Electricite de France (EDF), German utilities, Nuclear Power International (NPI), Framatome and Siemens as well as for the technical safety objectives for future evolutionary reactors on the basis of a common safety approach adopted by the safety authorities of both countries for plants to operate form the beginning of the next century. The proposed paper covers this common development of a safety approach and particular technical safety objectives. (authors). 5 refs. 1 fig

  3. EGP contribution to Mochovce completion, safety enhancement and operation

    International Nuclear Information System (INIS)

    Letko, A.; Matula, P.

    2000-01-01

    The Re-Evaluation Programme of Mochovce NPP was created in 1995 as an integral part of the completion of the Unit 1 and Unit 2. This program analyzed the general fulfillment of the principle of nuclear safety in the NPP Mochovce project. The analysis has required new corrections of the project, so that the project met the higher safety requirements when starting production. 87 safety measures represent the 'Program'. The basis for their creation were the international missions from 1992 to 1995 which defined. The final safety aim was represented by 'The Technical Specification of the Safety Measures' supported by The Nuclear Power Plant Research Institute and recommended by The Nuclear Regulatory Authority of the Slovak Republic. The technical specification served as a qualified base for the next steps in the pre-project, project and realization stages. (author)

  4. Safety of Nuclear Power Plants: Design. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  5. Development of Safety Analysis Technology for Integral Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, S. K. [Korea Atomic Energy Research Institute, Taejeon (Korea); Seul, K. W.; Kim, W. S.; Kim, W. K.; Yun, Y. G.; Ahn, H. J.; Lee, J. S.; Sin, A. D. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2000-03-01

    The Nuclear Desalination Plant(NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in a present study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated based on the design of foreign and domestic integral reactors. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current and advanced reactor designs, and use requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified. They includes the use of proven technology for new safety systems, the systematic classification and selection of design basis accidents, and the safety assurance of desalination-related systems. These efforts to identify and resolve the safety concerns in the design stage will provide the early confidence of SMART safety to designers, and the technical basis to evaluate the safety to reviewers in the future. 8 refs., 20 figs., 4 tabs. (Author)

  6. 77 FR 42649 - Safety Zone: Sea World San Diego Fireworks, Mission Bay; San Diego, CA

    Science.gov (United States)

    2012-07-20

    ... 1625-AA00 Safety Zone: Sea World San Diego Fireworks, Mission Bay; San Diego, CA AGENCY: Coast Guard... authorized by the Captain of the Port, or his designated representative. DATES: This rule is effective from 8... to ensure the public's safety. B. Basis and Purpose The Ports and Waterways Safety Act gives the...

  7. The basic discussion on nuclear power safety improvement based on nuclear equipment design

    International Nuclear Information System (INIS)

    Zhao Feiyun; Yao Yangui; Yu Hao; He Yinbiao; Gao Lei; Yao Weida

    2013-01-01

    The safety of strengthening nuclear power design was described based on nuclear equipment design after Fukushima nuclear accident. From these aspects, such as advanced standard system, advanced design method, suitable test means, consideration of beyond design basis event, and nuclear safety culture construction, the importance of nuclear safety improvement was emphatically presented. The enlightenment was given to nuclear power designer. (authors)

  8. Recent achievement within the French-German safety approach for future PWRs

    International Nuclear Information System (INIS)

    Gros, G.; Rollinger, F.; Frisch, W.; Simon, M.

    1999-12-01

    The development of the common French-German safety approach was accomplished on three working levels: the technical safety organisations GRS and IPSN provided the technical basis, the advisory groups GPR and RSK developed common recommendations, and the authorities BMU and DSIN adopted and issued the recommendations. The general safety approach issued in May 1993 contains safety objectives, general principles and some technical principles for future PWRs. Based on this general approach, more detailed recommendations have been developed in 1994 on key issues. The following period from 1995 on was characterised by a further refinement of the recommendations and the treatment of some new subjects such as digital I and C, man-machine-interface and core design. (authors)

  9. Leadership and Safety Management: Regulatory Initiatives for Enhancing Nuclear Safety in the Republic of Korea

    International Nuclear Information System (INIS)

    Yun, C.H.; Park, Y.W.; Choi, K.S.

    2010-01-01

    Since the construction of the first nuclear power plant (NPP) in the Republic of Korea in 1978, a high level of nuclear safety has continued to be maintained. This has been the important basis on which the continuous construction of NPPs has been possible in the country. To date, regulatory initiatives, leaderships and strategies adopting well harmonized regulatory systems and practices of advanced countries have contributed to improving the effectiveness and efficiency of safety regulation and further enhancing nuclear safety. The outcomes have resulted in a high level of safety and performance of Korean NPPs, attributing largely to the safety promotion policy. Recently, with the support of the Korean Ministry of Education, Science and Technology (MEST), the Korea Institute of Nuclear Safety (KINS) established the International Nuclear Safety School and created a Nuclear Safety Master's Degree Programme. Further, it developed multilateral and bilateral cooperation with other agencies to promote global nuclear safety, with the aim of providing knowledge and training to new entrant countries in establishing the safety infrastructure necessary for ensuring an acceptable level of nuclear safety. (author)

  10. [Do residents and nurses communicate safety relevant concerns? : simulation study on the influence of the authority gradient].

    Science.gov (United States)

    St Pierre, M; Scholler, A; Strembski, D; Breuer, G

    2012-10-01

    discrepancy between their own knowledge and the intended course of action yet they decided not to address the problem, 12% explained their behavior with the perceived authority of the attending physician and 8% stated that in their opinion attending physicians violated SOPs on a daily basis. None of the participants had the feeling that the simulation setting had provoked a response different to what they might have done in everyday life. The authority gradient can have a major negative impact on perioperative patient care. Residents and nursing staff are seldom able to challenge the attending physicians when patient safety is at risk. However, even attending physicians who normally accept feedback and criticism from team members can fail to receive support.

  11. Safety design philosophy of gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Katanishi, Shoji; Kunitomi, Kazuhiko

    2003-01-01

    Japan Atomic Energy Research Institute has been developing design studies of the Gas Turbine High Temperature Reactor (GTHTR300). The original safety design philosophy has also been discussed and fixed for the GTHTR300. One of the unique feature of the safety philosophy of the GTHTR300 is that a depressurization accident is postulated as a design basis accident in order to show the high level of safety characteristics, though its probability of occurrence is much lower than the probability range of design basis accident. Another feature of safety design is to adopt a double confinement that is one of the original concepts for the GTHTR300. By using a double confinement, a feasibility of safety design without containment vessel was clarified even in case of a depressurization accident. This article describes the safety design philosophy and some results of preliminary evaluations which were conducted in order to clarify the feasibility of original safety design of the GTHTR300. (author)

  12. TECHNICAL BASIS DOCUMENT FOR NATURAL EVENT HAZARDS

    International Nuclear Information System (INIS)

    KRIPPS, L.J.

    2006-01-01

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls

  13. Procedure for getting safety classed concrete structures approved by Finnish Radiation and Nuclear Safety Authority

    International Nuclear Information System (INIS)

    Halme, Ville-Juhani

    2015-01-01

    Posiva is preparing geological final disposal in the Finnish bedrock in Olkiluoto, Eurajoki. The final disposal facility includes encapsulation plant and underground repository. Most of the main civil structures are concrete structures. STUK is the supervising authority in civil structures. The National Building Code of Finland and STUK's Regulatory Guide on nuclear safety (YVL) are the most important instructions when constructing concrete structures into nuclear installation. Posiva has classified concrete structures in two classes according STUK's YVL-guidance: EYT (non-nuclear) and Safety Class 3 (SC 3, nuclear safety significance). When building SC 3 concrete structures, specific protocol must be followed. Protocol includes planned routines for design, construction, supervision, quality control (QC) and quality assurance (QA) activities. Documents relating concrete structures must be approved by Posiva and STUK before construction work. After structures have been designed and actual building is ongoing, there are two main steps. Before concreting, readiness inspection for concreting must be arranged. Readiness inspection will be arranged according to a specific plan and the date must be informed to STUK. After establishing readiness for concreting, casting work can begin. Once concrete structures are done, inspected and approved, final documentation according to a quality control plan will be reviewed by Posiva. After Posiva's approval, final documentation will be sent for STUK's approval. In the end STUK will give the permission for commissioning of the concrete structures after approved commissioning inspection. The document is made up of an abstract and a poster

  14. The Safety Case and Safety Assessment for the Disposal of Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    This Safety Guide provides guidance and recommendations on meeting the safety requirements in respect of the safety case and supporting safety assessment for the disposal of radioactive waste. The safety case and supporting safety assessment provide the basis for demonstration of safety and for licensing of radioactive waste disposal facilities and assist and guide decisions on siting, design and operations. The safety case is also the main basis on which dialogue with interested parties is conducted and on which confidence in the safety of the disposal facility is developed. This Safety Guide is relevant for operating organizations preparing the safety case as well as for the regulatory body responsible for developing the regulations and regulatory guidance that determine the basis and scope of the safety case. Contents: 1. Introduction; 2. Demonstrating the safety of radioactive waste disposal; 3. Safety principles and safety requirements; 4. The safety case for disposal of radioactive waste; 5. Radiological impact assessment for the period after closure; 6. Specific issues; 7. Documentation and use of the safety case; 8. Regulatory review process.

  15. Safety design requirements for safety systems and components of JSFR

    International Nuclear Information System (INIS)

    Kubo, Shigenobu; Shimakawa, Yoshio; Yamano, Hidemasa; Kotake, Shoji

    2011-01-01

    Safety design requirements for JSFR were summarized taking the development targets of the FaCT project and design feature of JSFR into account. The related safety principle and requirements for Monju, CRBRP, PRISM, SPX, LWRs, IAEA standards, goals of GIF, basic principle of INPRO etc. were also taken into account so that the safety design requirements can be a next-generation global standard. The development targets for safety and reliability are set based on those of FaCT, namely, ensuring safety and reliability equal to future LWR and related fuel cycle facilities. In order to achieve these targets, the defence-in-depth concept is used as the basic safety design principle. General features of the safety design requirements are 1) Achievement of higher reliability, 2) Achievement of higher inspectability and maintainability, 3) Introduction of passive safety features, 4) Reduction of operator action needs, 5) Design consideration against Beyond Design Basis Events, 6) In-Vessel Retention of degraded core materials, 7) Prevention and mitigation against sodium chemical reactions, and 8) Design against external events. The current specific requirements for each system and component are summarized taking the basic design concept of JSFR into account, which is an advanced loop-type large-output power plant with a mixed-oxide-fuelled core. (author)

  16. Ferrocyanide Safety Program: Safety criteria for ferrocyanide watch list tanks

    International Nuclear Information System (INIS)

    Postma, A.K.; Meacham, J.E.; Barney, G.S.

    1994-01-01

    This report provides a technical basis for closing the ferrocyanide Unreviewed Safety Question (USQ) at the Hanford Site. Three work efforts were performed in developing this technical basis. The efforts described herein are: 1. The formulation of criteria for ranking the relative safety of waste in each ferrocyanide tank. 2. The current classification of tanks into safety categories by comparing available information on tank contents with the safety criteria; 3. The identification of additional information required to resolve the ferrocyanide safety issue

  17. Problems of nuclear energetics safety in the Soviet Union

    International Nuclear Information System (INIS)

    Kovalevitsh, O.M.

    1991-01-01

    Authors describe present state of Soviet nuclear energy. They don't cover problems relative to its development and that reasons made so bleak picture of this economic branch. They pay particular attention to low level of nuclear safety in nuclear power plants. The improvement of this situation they see in enacting of atomic low, as quickly as possible, which will make a basis of safety development in nuclear industry

  18. Light Water Reactor Sustainability Program Technical Basis Guide Describing How to Perform Safety Margin Configuration Risk Management

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Smith; James Knudsen; Bentley Harwood

    2013-08-01

    The INL has carried out a demonstration of the RISMC approach for the purpose of configuration risk management. We have shown how improved accuracy and realism can be achieved by simulating changes in risk – as a function of different configurations – in order to determine safety margins as the plant is modified. We described the various technical issues that play a role in these configuration-based calculations with the intent that future applications can take advantage of the analysis benefits while avoiding some of the technical pitfalls that are found for these types of calculations. Specific recommendations have been provided on a variety of topics aimed at improving the safety margin analysis and strengthening the technical basis behind the analysis process.

  19. Technical basis for evaluating electromagnetic and radio-frequency interference in safety-related I ampersand C systems

    International Nuclear Information System (INIS)

    Ewing, P.D.; Korsah, K.

    1994-04-01

    This report discusses the development of the technical basis for the control of upsets and malfunctions in safety-related instrumentation and control (I ampersand C) systems caused by electromagnetic and radio-frequency interference (EMI/RFI) and power surges. The research was performed at the Oak Ridge National Laboratory (ORNL) and was sponsored by the USNRC Office of Nuclear Regulatory Research (RES). The motivation for research stems from the safety-related issues that need to be addressed with the application of advanced I ampersand C systems to nuclear power plants. Development of the technical basis centered around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems known to be the source(s) of EMI/RFI and power surges. First, good EMC design and installation practices need to be established to control the impact of interference sources on nearby circuits and systems. These EMC good practices include circuit layouts, terminations, filtering, grounding, bonding, shielding, and adequate physical separation. Second, an EMI/RFI test and evaluation program needs to be established to outline the tests to be performed, the associated test methods to be followed, and carefully formulated acceptance criteria based on the intended environment to ensure that the circuit or system under test meets the recommended guidelines. Third, a program needs to be developed to perform confirmatory tests and evaluate the surge withstand capability (SWC) and of I ampersand C equipment connected to or installed in the vicinity of power circuits within the nuclear power plant. By following these three steps, the design and operability of safety-related I ampersand C systems against EMI/RFI and power surges can be evaluated, acceptance criteria can be developed, and appropriate regulatory guidance can be provided

  20. Evaluating fuel cycle safety for CITa

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Reilly, H.J.; Piet, S.J.

    1987-01-01

    A safety concern in the design of the Compact Ignition Tokamak (CIT) currently being designed in the U. S. is the accidental release of tritium. To evaluate the basis for that concern, an assessment of the risk to the public posed by CIT was conducted that made use of probabilistic risk assessment (PRA) techniques. These include both frequency and consequence elements of risk. This analysis concluded that the tritium systems on the CIT could be designed and operated as planned with negligible safety impact, well within the established guidelines. (author)

  1. International views on nuclear safety

    International Nuclear Information System (INIS)

    Birkhofer, A.

    2002-01-01

    Safety has always been an important objective in nuclear technology. Starting with a set of sound physical principles and prudent design approaches, safety concepts have gradually been refined and cover now a wide range of provisions related to design, quality and operation. Research, the evaluation of operating experiences and probabilistic risk assessments constitute an essential basis and international co-operation plays a significant role in that context. Concerning future developments a major objective for new reactor concepts, such as the EPR, is to practically exclude a severe core damage accident with large scale consequences outside the plant. (author)

  2. Power learning or path dependency? Investigating the roots of the European Food Safety Authority.

    Science.gov (United States)

    Roederer-Rynning, Christilla; Daugbjerg, Carsten

    2010-01-01

    A key motive for establishing the European Food Safety Authority (EFSA) was restoring public confidence in the wake of multiplying food scares and the BSE crisis. Scholars, however, have paid little attention to the actual political and institutional logics that shaped this new organization. This article explores the dynamics underpinning the making of EFSA. We examine the way in which learning and power shaped its organizational architecture. It is demonstrated that the lessons drawn from the past and other models converged on the need to delegate authority to an external agency, but diverged on its mandate, concretely whether or not EFSA should assume risk management responsibilities. In this situation of competitive learning, power and procedural politics conditioned the mandate granted to EFSA. The European Commission, the European Parliament and the European Council shared a common interest in preventing the delegation of regulatory powers to an independent EU agency in food safety policy.

  3. Organization and liability of British regulating authorities involved in nuclear safety and radiation protection

    International Nuclear Information System (INIS)

    Harbison, S.

    1995-01-01

    In Great Britain, nuclear safety juridic basis is made of two law: HSWA (1974) for hygiene and security in working environment, and NIA (1965) specific to nuclear sites. The HSWA law created an HSC (Hygiene and Security Commission) in charge of workers and public security. HSC executive organ is HSE, whose nuclear office is NSD. Nevertheless, the general philosophy remains the one of HSWA, which results in the liability of operators in nuclear matters, as well as for any other industrial matter. (D.L.). 1 fig., 1 map

  4. Operational safety - the IAEA response

    International Nuclear Information System (INIS)

    Rosen, M.

    1984-01-01

    Nuclear safety is an international issue. The role of the International Atomic Energy Agency is growing because it offers a centre for contact and exchange between East and West, North and South. New initiatives are under way to intensify international co-operative safety efforts through exchange of information on abnormal events at nuclear power plants, and through greater sharing of safety research results. Emergency preparedness also lends itself to international co-operation. A report has been prepared on the need for establishing mutual emergency assistance. By analysing possible constraints to bilateral or multinational efforts in advance, a basis for agreement at the time of an emergency is being worked out. Safety standards have been developed in several areas. The NUSS Codes and Guides, now almost complete, make available to countries starting a nuclear power programme a coherent set of nuclear safety standards. A revised set of Basic Safety Standards for Radiation Protection has been issued in 1982. (author)

  5. The in-depth safety assessment (ISA) pilot projects in Ukraine

    International Nuclear Information System (INIS)

    Kot, C. A.

    1998-01-01

    Ukraine operates pressurized water reactors of the Soviet-designed type, VVER. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs). After approval of the SARS by the Ukrainian Nuclear Regulatory Authority, the plants will be granted longer-term operating licenses. In September 1995, the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine issued a new contents requirement for the safety analysis reports of VVERs in Ukraine. It contains requirements in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. The DBA requirements are an expanded version of the older SAR requirements. The last two requirements, on PRA and BDBA, are new. The US Department of Energy (USDOE), through the International Nuclear Safety Program (INSP), has initiated an assistance and technology transfer program to Ukraine to assist their nuclear power stations in developing a Western-type technical basis for the new SARS. USDOE sponsored In-Depth Safety Assessments (ISAs) have been initiated at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1. USDOE/INSP have structured the ISA program in such a way as to provide maximum assistance and technology transfer to Ukraine while encouraging and supporting the Ukrainian plants to take the responsibility and initiative and to perform the required assessments

  6. Common basis of establishing safety standards and other safety decision-making levels for different sources of health risk

    International Nuclear Information System (INIS)

    Demin, V.F.

    2002-01-01

    Current approaches in establishing safety standards and other decision-making levels for different sources of health risk are critically analysed. To have a common basis for this decision-making a specific risk index R is recommended. In the common sense R is quantitatively defined as LLE caused by the annual exposure to the risk source considered: R = annual exposure, damage (LLE) from the exposure unit. This common definition is also rewritten in specific forms for a set of different risk sources (ionising radiation, chemical pollutants, etc): for different risk sources the exposure can be measured with different quantities (the probability of death, the exposure dose, etc.). R is relative LLE: LLE in years referred to 1 year under the risk. The dimension of this value is [year/year]. In the statistical sense R is conditionally the share of the year, which is lost due to exposure to a risk source during this year. In this sense R can be called as the relative damage. Really lifetime years are lost after the exposure. R can be in some conditional sense considered as a dimensionless quantity. General safety standards R n for the public and occupational workers have been suggested in terms of this index: R n = 0.0007 and 0.01 accordingly. Secondary safety standards are derived for a number of risk sources (ionising radiation, environmental chemical pollutants, etc). Values of R n are chosen in such a way that to have the secondary radiation BSS being equivalent to the current one's. Other general and derived levels for safety decision-making are also proposed including the de-minimus levels. Their possible dependence on the national or regional health-demographic data (HDD) is considered. Such issues as the ways of the integration and averaging of risk indices considered through the national or regional HDD for different risk sources and the use of non-threshold linear exposure - response relationships for ionising radiation and chemical pollutants are analysed

  7. Technical basis document for natural event hazards

    International Nuclear Information System (INIS)

    CARSON, D.M.

    2003-01-01

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for natural event hazards (NEH)-initiated representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report

  8. Plasma-safety assessment model and safety analyses of ITER

    International Nuclear Information System (INIS)

    Honda, T.; Okazaki, T.; Bartels, H.-H.; Uckan, N.A.; Sugihara, M.; Seki, Y.

    2001-01-01

    A plasma-safety assessment model has been provided on the basis of the plasma physics database of the International Thermonuclear Experimental Reactor (ITER) to analyze events including plasma behavior. The model was implemented in a safety analysis code (SAFALY), which consists of a 0-D dynamic plasma model and a 1-D thermal behavior model of the in-vessel components. Unusual plasma events of ITER, e.g., overfueling, were calculated using the code and plasma burning is found to be self-bounded by operation limits or passively shut down due to impurity ingress from overheated divertor targets. Sudden transition of divertor plasma might lead to failure of the divertor target because of a sharp increase of the heat flux. However, the effects of the aggravating failure can be safely handled by the confinement boundaries. (author)

  9. Safety of nuclear installations

    International Nuclear Information System (INIS)

    1991-01-01

    In accordance with the Nuclear Energy Act, a Licence may only be issued if the precautions required by the state of the art have been taken to prevent damage resulting from the construction and operation of the installation. The maximum admissible body doses in the area around the installation which must be observed in planning constructional and other technical protective measures to counter accidents in or at a nuclear power station (accident planning values, are established). According to the Radiological Protection Ordinance the Licensing Authority can consider these precautions to have been taken if, in designing the installation against accidents, the applicant has assumed the accidents which, according to the Safety Criteria and Guidelines for Nuclear Power Stations published in the Federal Register by the Federal Minister of the Interior after hearing the competent senior state authorities, must determine the design of a nuclear power station. On the basis of previous experience from safety analysis, assessment and operation of nuclear power stations, the accident guidelines published here define which accidents are determinative for the safety-related design of PWR power stations and what verification -particularly with regard to compliance with the accident planning values of the Radiological Protection Ordinance -must be provided by the applicant. (author)

  10. Kowledge-based dynamic network safety calculations. Wissensbasierte dynamische Netzsicherheitsberechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Kulicke, B [Inst. fuer Hochspannungstechnik und Starkstromanlagen, Berlin (Germany); Schlegel, S [Inst. fuer Hochspannungstechnik und Starkstromanlagen, Berlin (Germany)

    1993-06-28

    An important part of network operation management is the estimation and maintenance of the security of supply. So far the control personnel has only been supported by static network analyses and safety calculations. The authors describe an expert system, which is coupled to a real time simulation program on a transputer basis, for dynamic network safety calculations. They also introduce the system concept and the most important functions of the expert system. (orig.)

  11. Assessment of the long-term safety of repositories. Scientific basis

    International Nuclear Information System (INIS)

    Noseck, Ulrich; Becker, Dirk; Fahrenholz, Christine

    2008-12-01

    The project contributed to increase the scientific knowledge on the long-term safety assessment and the safety cases of a radioactive waste repository. International guidelines and more recent safety cases from other countries were evaluated. The feasibility study of the three safety indicators ''individual dose rate'', ''radiotoxicity concentration in the biosphere water'' and ''radiotoxicity flux from the geosphere'' showed that due to the independently derived corresponding reference values these indicators describe three different safety statements. The combination of the three values can give a stronger argument for the safety of the repository system. Another important methodological aspect of the safety cases is the definition and selection of scenarios, one of these the human intrusion scenario. Various human intrusion scenarios are considered in the different nations, which differ significantly with respect to type and time scale, the exposition type and exposition pathway. Further progress has been achieved in how to treat human intrusion scenarios in a German post-closure safety case. Another port of the project dealt with the impact of specific geochemical processes on the long-term safety of the repository. The impact of climate changes on the long-term safety of a radioactive waste repository in rock salt was investigated with respect to processes in the overburden and the biosphere where highest impact is expected. Sofa simplified models and only discrete climate estates have been considered

  12. The archaeology of computer codes - illustrated on the basis of the code SABINE

    International Nuclear Information System (INIS)

    Sdouz, G.

    1987-02-01

    Computer codes used by the physics group of the Institute for Reactor Safety are stored on back-up-tapes. However during the last years both the computer and the system have been changed. For new tasks these programmes have to be available. A new procedure is necessary to find and to activate a stored programme. This procedure is illustrated on the basis of the code SABINE. (Author)

  13. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Chinese Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  14. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  15. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  16. Role of the European Food Safety Authority (EFSA in providing scientific advice on the welfare of food producing animals

    Directory of Open Access Journals (Sweden)

    Jordi Serratosa

    2010-01-01

    Full Text Available The survey describes the work of the Animal Health and Welfare (AHAW Panel of the European Food Safety Authority (EFSA in the provision of scientific advice on the welfare of food producing animals including animal health and food safety aspects, where relevant, and on the impact of these scientific assessments on the EU regulatory framework. EFSA was created in 2002 with the mission to provide advice and scientific and technical support for the Community legislation and policies in all fields which have a direct or indirect impact on food and feed safety, plant health, environment and animal health and animal welfare. When providing objective and independent science-based advice, the risk assessment approach should be followed, whenever possible. The AHAW Panel of EFSA provides specific advices on risk factors related to animal diseases and welfare, mainly of food producing animals, including fish. According to EFSA’s remit, ethical, socio-economic, cultural and religious aspects are outside the scope of the EFSA’s assessments. Since 2004, the Animal Health and Welfare Panel of EFSA adopted a total of 21 scientific opinions on animal welfare. Animal diseases and food safety aspects have also been taken into account, where relevant. Animal welfare aspects have been considered in some scientific opinions on animal diseases (e.g. AI, FMD. The AHAW Panel is currently working on five scientific opinions on the welfare of dairy cows and on the welfare aspects of the stunning and killing of farmed fish for eight fish species (salmon, trout, carp, eel, tuna, sea bass, sea bream and turbot. The possible interactions and implications for food safety and animal disease have been considered, when relevant, in most of the AW scientific opinions, involving other areas of expertise in EFSA, like Biohazards, Contaminants and Plant Health. The final aim of EFSA’s scientific assessments on animal welfare is to support animal welfare EU legislation on the

  17. Confusion in practice: on nuclear safety responsibility subject of our nation

    International Nuclear Information System (INIS)

    Wang Jia

    2014-01-01

    Nuclear safety responsibility subject seems a unquestionable issue, but when I took part in the CNNC searching team of 'nuclear law legislation', I found that there are confusions on understanding of this concept and in application. The paper focuses on the content of nuclear safety responsibility, using legal and practical method to dig out the differences with the related and frequently confusing concepts, on which basis to analyze the situation of nuclear safety responsibility subject of our nation. In conclusion, I give suggestions on who shall be the nuclear safety responsibility subject. (author)

  18. Improving Research Reactor Accident Response Capability at the Hungarian Nuclear Safety Authority

    International Nuclear Information System (INIS)

    Vegh, J.; Gajdos, F.; Horvath, Cs.; Matisz, A.; Nyisztor, D.

    2013-06-01

    The paper describes the design and implementation of an on-line operation monitoring and accident response support system to be used at the CERTA emergency response centre of Hungarian Atomic Energy Authority (HAEA). The monitored facility is the Budapest Research Reactor (BRR), which is a tank-type thermal reactor having 10 MW thermal power. The basic reason for the development of the on-line safety information system is to extend the emergency response capability of the CERTA crisis centre to include emergencies related to BRR, as well. CERTA is operated by HAEA at its Budapest headquarters and the centre already has an on-line system for monitoring the state of the four units of Paks NPP, Hungary. The system is called CERTA VITA and it is able to monitor the four VVER-440/V213 units during their normal operation, and during emergencies (including severe accidents). Ensuring appropriate emergency response capabilities, as well as improving the presently available systems and tools was one of the important recommendations resulting from the analyses following the severe accident at Fukushima. This task is valid not only for the operators of the nuclear facilities but also for the nuclear safety authorities, therefore HAEA decided to launch a project - together with the Centre for Energy Research, the operator of BRR - to establish an on-line information system similar to the CERTA VITA used for monitoring the four units of the Paks NPP. It is believed that by the introduction of this new on-line system the accident response capabilities of HAEA will be further enhanced and the BRR emergencies will be handled at the same professional level as potential emergencies at Paks NPP. (authors)

  19. Radiobiological basis for setting neutron radiation safety standards

    International Nuclear Information System (INIS)

    Straume, T.

    1985-01-01

    Present neutron standards, adopted more than 20 yr ago from a weak radiobiological data base, have been in doubt for a number of years and are currently under challenge. Moreover, recent dosimetric re-evaluations indicate that Hiroshima neutron doses may have been much lower than previously thought, suggesting that direct data for neutron-induced cancer in humans may in fact not be available. These recent developments make it urgent to determine the extent to which neutron cancer risk in man can be estimated from data that are available. Two approaches are proposed here that are anchored in particularly robust epidemiological and experimental data and appear most likely to provide reliable estimates of neutron cancer risk in man. The first approach uses gamma-ray dose-response relationships for human carcinogenesis, available from Nagasaki (Hiroshima data are also considered), together with highly characterized neutron and gamma-ray data for human cytogenetics. When tested against relevant experimental data, this approach either adequately predicts or somewhat overestimates neutron tumorigenesis (and mutagenesis) in animals. The second approach also uses the Nagasaki gamma-ray cancer data, but together with neutron RBEs from animal tumorigenesis studies. Both approaches give similar results and provide a basis for setting neutron radiation safety standards. They appear to be an improvement over previous approaches, including those that rely on highly uncertain maximum neutron RBEs and unnecessary extrapolations of gamma-ray data to very low doses. Results suggest that, at the presently accepted neutron dose limit of 0.5 rad/yr, the cancer mortality risk to radiation workers is not very different from accidental mortality risks to workers in various nonradiation occupations

  20. Safety analysis of JMTR LEU fuel core, (3)

    International Nuclear Information System (INIS)

    Tsuchida, Noboru; Shiraishi, Tadao; Takahashi, Yutaka; Inada, Seiji; Saito, Minoru; Futamura, Yoshiaki; Kitano, Kyoshiro.

    1992-10-01

    Dose analysis in the safety evaluation and the site evaluation were performed for the JMTR core conversion from MEU fuel to LEU fuel. In the safety evaluation, the effective dose equivalents for the public surrounding the site were estimated in fuel handling accident and flow blockage to coolant channel which were selected as the design basis accidents with release of radioactive fission products to the environment. In the site evaluation, the flow blockage to coolant channel was selected as siting basis events, since this accident had the possibility of spreading radioactive release. Maximum exposure doses for the public were estimated assuming large amounts of fission products to release. It was confirmed that risk of radiation exposure of the public is negligible and the siting is appropriate. (author)

  1. Analysis of Electrical Safety Conditions Taking into Account Soil Conductivity Determined on the Basis of Fuzzy Logic

    OpenAIRE

    Manusov, V.Z.; Zaytseva, N.M.

    2017-01-01

    The goal of this work is to prove a possibility of determining soil parameters that influence its conductivity being the basis of grounding, step voltage and touch voltage calculation. This in its turn increases the safety level of electric equipment operation. The article is devoted to development of new, no conventional models of soil conductivity using the theory of fuzzy sets and fuzzy logic. The description of the solution includes the following sections: fuzzy models of specific electri...

  2. The principal approaches to the problem of nuclear power plant safety in the USSR

    International Nuclear Information System (INIS)

    Sidorenko, V.A.; Kovalevich, O.M.; Kramerov, A.Ya.; Bagdasarov, Yu.E.

    1977-01-01

    The paper sets forth methods of ensuring the safety of nuclear power plants in the USSR on the basis of the scientific and engineering experience gained during the design, construction and operation of such plants, and describes the complex of technical and organizational problems whose solution determines the actual safety of nuclear power plants in the USSR. High-quality nuclear power plant equipment and components and their constant checking during the whole life of the plant are the prerequisites for preventing failures and accidents. The pattern of protective measures is discussed on the basis of possible failures and 'safe limits' for failures. The potentialities of the quantitative probabilistic method are analysed together with the need for a deterministic approach. The relationship of the maximum design accident with the protection and localization systems is considered in the case of nuclear power plants of different generations. The authors deal with the questions of State regulation of power plant safety on the basis of the adopted organizational structure and the system of standards. In conclusion, they briefly consider the application of the safety approach here described to power plants using water-water reactors, high-power boiling-water reactors and fast reactors in accordance with their place and role in the nuclear power development programme of the USSR. (author)

  3. Integrated therapy safety management system.

    Science.gov (United States)

    Podtschaske, Beatrice; Fuchs, Daniela; Friesdorf, Wolfgang

    2013-09-01

    The aim is to demonstrate the benefit of the medico-ergonomic approach for the redesign of clinical work systems. Based on the six layer model, a concept for an 'integrated therapy safety management' is drafted. This concept could serve as a basis to improve resilience. The concept is developed through a concept-based approach. The state of the art of safety and complexity research in human factors and ergonomics forms the basis. The findings are synthesized to a concept for 'integrated therapy safety management'. The concept is applied by way of example for the 'medication process' to demonstrate its practical implementation. The 'integrated therapy safety management' is drafted in accordance with the six layer model. This model supports a detailed description of specific work tasks, the corresponding responsibilities and related workflows at different layers by using the concept of 'bridge managers'. 'Bridge managers' anticipate potential errors and monitor the controlled system continuously. If disruptions or disturbances occur, they respond with corrective actions which ensure that no harm results and they initiate preventive measures for future procedures. The concept demonstrates that in a complex work system, the human factor is the key element and final authority to cope with the residual complexity. The expertise of the 'bridge managers' and the recursive hierarchical structure results in highly adaptive clinical work systems and increases their resilience. The medico-ergonomic approach is a highly promising way of coping with two complexities. It offers a systematic framework for comprehensive analyses of clinical work systems and promotes interdisciplinary collaboration. © 2013 The Authors. British Journal of Clinical Pharmacology © 2013 The British Pharmacological Society.

  4. OSR encapsulation basis -- 100-KW

    International Nuclear Information System (INIS)

    Meichle, R.H.

    1995-01-01

    The purpose of this report is to provide the basis for a change in the Operations Safety Requirement (OSR) encapsulated fuel storage requirements in the 105 KW fuel storage basin which will permit the handling and storing of encapsulated fuel in canisters which no longer have a water-free space in the top of the canister. The scope of this report is limited to providing the change from the perspective of the safety envelope (bases) of the Safety Analysis Report (SAR) and Operations Safety Requirements (OSR). It does not change the encapsulation process itself

  5. HTR-PM Safety requirement and Licensing experience

    International Nuclear Information System (INIS)

    Li Fu; Zhang Zuoyi; Dong Yujie; Wu Zongxin; Sun Yuliang

    2014-01-01

    HTR-PM is a 200MWe modular pebble bed high temperature reactor demonstration plant which is being built in Shidao Bay, Weihai, Shandong, China. The main design parameters of HTR-PM were fixed in 2006, the basic design was completed in 2008. The review of Preliminary Safety Analysis Report (PSAR) of HTR-PM was started in April 2008, completed in September 2009. In general, HTR- PM design complies with the current safety requirement for nuclear power plant in China, no special standards are developed for modular HTR. Anyway, Chinese Nuclear Safety Authority, together with the designers, developed some dedicated design criteria for key systems and components and published the guideline for the review of safety analysis report of HTR-PM, based on the experiences from licensing of HTR-10 and new development of nuclear safety. The probabilistic safety goal for HTR-PM was also defined by the safety authority. The review of HTR-PM PSAR lasted for one and a half years, with 3 dialogues meetings and 8 topics meetings, with more than 2000 worksheets and answer sheets. The heavily discussed topics during the PSAR review process included: the requirement for the sub-atmospheric ventilation system, the utilization of PSA in design process, the scope of beyond design basis accidents, the requirement for the qualification of TRISO coating particle fuel, and etc. Because of the characteristics of first of a kind for the demonstration plant, the safety authority emphasized the requirement for the experiment and validation, the PSAR was licensed with certain licensing conditions. The whole licensing process was under control, and was re-evaluated again after Fukushima accident to be shown that the design of HTR-PM complies with current safety requirement. This is a good example for how to license a new reactor. (author)

  6. Approach to developing a ground-motion design basis for facilities important to safety at Yucca Mountain

    International Nuclear Information System (INIS)

    King, J.L.

    1990-01-01

    This paper discusses a methodology for developing a ground-motion design basis for prospective facilities at Yucca Mountain that are important to safety. The methodology utilizes a guasi-deterministic construct called the 10,000-year cumulative-slip earthquake that is designed to provide a conservative, robust, and reproducible estimate of ground motion that has a one-in-ten chance of occurring during the preclosure period. This estimate is intended to define a ground-motion level for which the seismic design would ensure minimal disruption to operations engineering analyses to ensure safe performance are included

  7. Reactor safety research - visible demonstrations and credible computations

    Energy Technology Data Exchange (ETDEWEB)

    Loewenstein, W B; Divakaruni, S M

    1985-11-01

    EPRI has been conducting nuclear safety research for a number of years with the primary goal of assuring the safety and reliability of the nuclear plants. The visibility is emphasized by sponsoring or participating in large scale test demonstrations to credibly support the complex computations that are the basis for quantification of safety margins. Recognizing the success of the airline industry in receiving favorable public perception, the authors compare the design and operation practices of the airline industry with those of the nuclear industry practices to identify the elements contributing to public concerns and unfavorable perceptions. In this paper, authors emphasize the importance of proper communications of research results to the public in a manner that non-specialists understand. Further, EPRI supported research and results in the areas of source term, seismic and structural engineering research, analysis using probabilistic risk assessment (PRA), quantification of safety margins, digital technology development and implementation, and plant transient and performance evaluations are discussed in the paper. (orig./HP).

  8. Reactor safety research - visible demonstrations and credible computations

    International Nuclear Information System (INIS)

    Loewenstein, W.B.; Divakaruni, S.M.

    1985-01-01

    EPRI has been conducting nuclear safety research for a number of years with the primary goal of assuring the safety and reliability of the nuclear plants. The visibility is emphasized by sponsoring or participating in large scale test demonstrations to credibly support the complex computations that are the basis for quantification of safety margins. Recognizing the success of the airline industry in receiving favorable public perception, the authors compare the design and operation practices of the airline industry with those of the nuclear industry practices to identify the elements contributing to public concerns and unfavorable perceptions. In this paper, authors emphasize the importance of proper communications of research results to the public in a manner that non-specialists understand. Further, EPRI supported research and results in the areas of source term, seismic and structural engineering research, analysis using probabilistic risk assessment (PRA), quantification of safety margins, digital technology development and implementation, and plant transient and performance evaluations are discussed in the paper. (orig./HP)

  9. Blanket safety by GEMSAFE methodology

    International Nuclear Information System (INIS)

    Sawada, Tetsuo; Saito, Masaki

    2001-01-01

    General Methodology of Safety Analysis and Evaluation for Fusion Energy Systems (GEMSAFE) has been applied to a number of fusion system designs, such as R-tokamak, Fusion Experimental Reactor (FER), and the International Thermonuclear Experimental Reactor (ITER) designs in the both stages of Conceptual Design Activities (CDA) and Engineering Design Activities (EDA). Though the major objective of GEMSAFE is to reasonably select design basis events (DBEs) it is also useful to elucidate related safety functions as well as requirements to ensure its safety. In this paper, we apply the methodology to fusion systems with future tritium breeding blankets and make clear which points of the system should be of concern from safety ensuring point of view. In this context, we have obtained five DBEs that are related to the blanket system. We have also clarified the safety functions required to prevent accident propagations initiated by those blanket-specific DBEs. The outline of the methodology is also reviewed. (author)

  10. Management and organizational indicators of process safety

    International Nuclear Information System (INIS)

    Van Hemel, S.B.; Connelly, E.M.; Haas, P.M.

    1991-01-01

    This study is part of a Nuclear Regulatory Commission research element on organizational factors in plant safety under the Human Factors research program. This paper reports that the study investigated the chemical industry, to find leading management or organizational tools which could be useful for the NRC. After collecting information form a variety of information sources, the authors concentrated our study on two types of indicators currently in use: the first is audit- or review-based, and concentrates on programmatic factors; the second, based on frequent behavioral observations, concentrates on the management of individual worker behaviors. The authors analyzed data on the relationships between the leading indictors and direct indictors such as accident and injury rates in three case studies, to determine whether sufficient evidence of validity and utility exists to justify consideration of these indicators as public safety indicators. This paper states that on the basis of statistical associations and other evidence, the authors concluded that the two indicator types have promise for use as plant safety performance indicators, and that further development and testing of the candidate indicators should be performed

  11. Nuclear safety culture and nuclear safety supervision

    International Nuclear Information System (INIS)

    Chai Jianshe

    2013-01-01

    In this paper, the author reviews systematically and summarizes up the development process and stage characteristics of nuclear safety culture, analysis the connotation and characteristics of nuclear safety culture, sums up the achievements of our country's nuclear safety supervision, dissects the challenges and problems of nuclear safety supervision. This thesis focused on the relationship between nuclear safety culture and nuclear safety supervision, they are essential differences, but there is a close relationship. Nuclear safety supervision needs to introduce some concepts of nuclear safety culture, lays emphasis on humanistic care and improves its level and efficiency. Nuclear safety supervision authorities must strengthen nuclear safety culture training, conduct the development of nuclear safety culture, make sure that nuclear safety culture can play significant roles. (author)

  12. Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author. Vol. 11(1)--Vol. 18(6)

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, W.B.; Klein, A.

    1978-04-11

    This index to Nuclear Safety covers articles published in Nuclear Safety, Vol. 11, No. 1 (January-February 1970), through Vol. 18, No. 6 (November-December 1977). It is divided into three sections: a chronological list of articles (including abstracts) followed by a permuted-title (KWIC) index and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center (NSIC), covers all safety aspects of nuclear power reactors and associated facilities. Over 450 technical articles published in Nuclear Safety in the last eight years are listed in this index.

  13. Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author. Vol. 11(1)--Vol. 18(6)

    International Nuclear Information System (INIS)

    Cottrell, W.B.; Klein, A.

    1978-01-01

    This index to Nuclear Safety covers articles published in Nuclear Safety, Vol. 11, No. 1 (January-February 1970), through Vol. 18, No. 6 (November-December 1977). It is divided into three sections: a chronological list of articles (including abstracts) followed by a permuted-title (KWIC) index and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center (NSIC), covers all safety aspects of nuclear power reactors and associated facilities. Over 450 technical articles published in Nuclear Safety in the last eight years are listed in this index

  14. Application of life-cycle information for advancement in safety of nuclear fuel cycle facilities. Application of safety information to advanced safety management support system

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko; Ishida, Michihiko

    2005-08-01

    Risk management is major concern to nuclear energy reprocessing plants to improve plant and process reliability and ensure their safety. This is because we are required to predict potential risks before any accident or disaster occurs. The advancement of safety design and safety systems technologies showed large amount of useful safety-related knowledge that can be of great importance to plant operation to reduce operation risks and ensure safety. This research proposes safety knowledge modeling framework on the basis of ontology technologies to systematically construct plant knowledge model, which includes plant structure, operation, and the associated behaviors. In such plant knowledge model safety related information is defined and linked to the different elements of plant knowledge model. Ontology editor is employed to define the basic concepts and their inter-relations, which are used to capture and construct plant safety knowledge. In order to provide detailed safety knowledgebase, HAZOP results are analyzed and structured so that safety-related knowledge are identified and structured within the plant knowledgebase. The target safety knowledgebase includes: failures, deviations, causes, consequences, and fault propagation as mapped to plant knowledge. The proposed ontology-based safety framework is applied on case study nuclear plant to structure failures, causes, consequences, and fault propagation, which are used to support plant operation. (author)

  15. SOME ASPECTS OF METHODOLOGICAL BASIS OF BANK’S FINANCIAL SECURITY MODELING

    Directory of Open Access Journals (Sweden)

    Z. Vasylchenko

    2013-05-01

    Full Text Available Developed methodical approaches for assessing financial safety of bank. Proposed by authors theoretical concept of integral bank’s financial security index has in its basis indicators of capital sufficiency, capital growth, liquidity and return on assets. Bringing together all the mentioned values is appropriate to do using the reliability function. As an input data for setting this function serve expert evaluations regarding the stability of the object that is under consideration. It was found out, that typically system of expert evaluations has couple of features (advantages, which don’t exclude and also don’t complement each other. These features authors consider by separating them as compensational, non-compensational and partly compensational advantages. It was proved, that in banking it is extremely important itself the realistic setup of the ratio between partial and integral indicators, which are partly inherent to-compensational advantage. Proved that the developed approaches for assessing strategic decisions on financial safety of bank are based on three-level index system: bank’s primary accounting figures; aggregate of special generalized figures which consolidate information on management decisions made in bank to the most possible extent; integral indices of financial safety of bank.

  16. The Argentine Approach to Radiation Safety: Its Ethical Basis

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2011-01-01

    The ethical bases of Argentina's radiation safety approach are reviewed. The applied principles are those recommended and established internationally, namely: the principle of justification of decisions that alters the radiation exposure situation; the principle of optimization of protection and safety; the principle of individual protection for restricting possible inequitable outcomes of optimized safety; and the implicit principle of inter generational prudence for protection future generations and the habitat. The principles are compared vis-a-vis the prevalent ethical doctrines: justification vis-a-vis teleology; optimization vis-a-vis utilitarianism; individual protection vis-a-vis de ontology; and, inter generational prudence vis-a-vis aretaicism (or virtuosity). The application of the principles and their ethics in Argentina is analysed. These principles are applied to All exposure to radiation harm; namely, to exposures to actual doses and to exposures to actual risk and potential doses, including those related to the safety of nuclear installations, and they are harmonized and applied in conjunction. It is concluded that building a bridge among all available ethical doctrines and applying it to radiation safety against actual doses and actual risk and potential doses is at the roots of the successful nuclear regulatory experience in Argentina.

  17. Safety evaluation report on Tennessee Valley Authority: Browns Ferry Nuclear Performance Plan

    International Nuclear Information System (INIS)

    1991-01-01

    This safety evaluation report (SER) was prepared by the US Nuclear Regulatory Commission (NRC) staff and represents the second and last supplement (SSER 2) to the staff's original SER published as Volume 3 of NUREG-1232 in April 1989. Supplement 1 of Volume 3 of NUREG-1232 (SSER 1) was published in October 1989. Like its predecessors, SSER 2 is composed of numerous safety evaluations by the staff regarding specific elements contained in the Browns Ferry Nuclear Performance Plan (BFNPP), Volume 3 (up to and including Revision 2), submitted by the Tennessee Valley Authority (TVA) for the Browns Ferry Nuclear Plant (BFN). The Browns Ferry Nuclear Plant consists of three boiling-water reactors (BWRs) at a site in Limestone County, Alabama. The BFNPP describes the corrective action plans and commitments made by TVA to resolve deficiencies with its nuclear programs before the startup of Unit 2. The staff has inspected and will continue to inspect TVA's implementation of these BFNPP corrective action plans that address staff concerns about TVA's nuclear program. SSER 2 documents the NRC staff's safety evaluations and conclusions for those elements of the BFNPP that were not previously addressed by the staff or that remained open as a result of unresolved issues identified by the staff in previous SERs and inspections

  18. Operating experience and systems analysis at Trillo NPP: A program intended for systematic review of plant safety systems to assess design basis requirements compliance

    International Nuclear Information System (INIS)

    Vega, R. de la

    1996-01-01

    The program was defined to apply to all plant safety systems and/or systems included in plant Technical Specifications. The goal of the program was to ensure, by systematic design, construction, and commissioning review, the adequacy of safety systems, structures and components to fulfill their safety functions. Also, as a result of the program, it was established that a complete, unambiguous, systematic, design basis definition shall take place. And finally, a complete documental review of the plant design shall result from the program execution

  19. The HTR safety concept demonstrated by selected examples

    International Nuclear Information System (INIS)

    Sommer, H.; Stoelzl, D.

    1981-01-01

    The licensing experience gained in the Federal Republic of Germany is based on the licensing procedures for the THTR-300 and the HTR-1160. In the course of the licensing procedures for these reactors a safety concept for an HTR has been developed. This experience constitutes the basis for the design of future HTR's. (author)

  20. The current CEA/DRN safety approach for the design and the assessment of future nuclear installations

    International Nuclear Information System (INIS)

    Fiorini, G.L.; Pinto, P.L.; Costa, M.

    1999-01-01

    The purpose of the document is to present the basis of the safety approach currently implemented by the CEA/DRN, both for the design and the assessment of innovative systems and future nuclear installations. This approach is the result of the experience maturated, within the context of the CEA/DRN Innovative Programme through practical applications over several future concepts, both for fission and fusion reactors, as well as for waste disposal. The background of this experience is structured coherently with the European Safety Authorities recommendations and the European Utilities Requirements (EUR). The Defence In Depth principle and its application, by means, among others, of the barrier concept, remains the basis of the safety design process of future nuclear installations. Its adequacy is checked through the safety assessment. The methodology for Lines Of Defence (LOD) implementation as well as the one for the LOD architecture assessment is shown and motivated. The document shows that the clear and unambiguous definition of the safety approach provides an essential base for the organisation of the design tasks, being sure that the safety aspects are correctly taken into account and implemented, and for an adequate safety assessment of the final design, both from qualitative point of view as well as for the quantitative safety analysis. (author)

  1. Effective education in radiation safety for nurses

    International Nuclear Information System (INIS)

    Ohno, K.; Kaori, T.

    2011-01-01

    In order to establish an efficient training program of radiation safety for nurses, studies have been carried out on the basis of questionnaires. Collaboration of nurses, who are usually standing closest to the patient, is necessary in order to offer safe radiological diagnostics/treatment. The authors distributed the questionnaire to 134 nurses in five polyclinic hospitals in Japan. Important questions were: fear of radiation exposure, knowledge on the radiation treatment, understanding the impact on pregnancy, and so on. Most of the nurses feel themselves uneasy against exposure to radiation. They do not have enough knowledge of radiological treatment. They do not know exactly what is the impact of the radiation on pregnant women. Such tendency is more pronounced, when nurses spend less time working in the radiological department. Nurses play important roles in radiological diagnostics/treatment. Therefore, a well-developed education system for radiation safety is essential. The training for the radiation safety in medicine should be done in the context of general safety in medicine. Education programs in undergraduate school and at the working place should be coordinated efficiently in order to ensure that both nurses and patients are informed about the meaning of radiation safety. (authors)

  2. Aggregate analysis of regulatory authority assessors' comments to improve the quality of periodic safety update reports.

    Science.gov (United States)

    Jullian, Sandra; Jaskiewicz, Lukasz; Pfannkuche, Hans-Jürgen; Parker, Jeremy; Lalande-Luesink, Isabelle; Lewis, David J; Close, Philippe

    2015-09-01

    Marketing authorization holders (MAHs) are expected to provide high-quality periodic safety update reports (PSURs) on their pharmaceutical products to health authorities (HAs). We present a novel instrument aiming at improving quality of PSURs based on standardized analysis of PSUR assessment reports (ARs) received from the European Union HAs across products and therapeutic areas. All HA comments were classified into one of three categories: "Request for regulatory actions," "Request for medical and scientific information," or "Data deficiencies." The comments were graded according to their impact on patients' safety, the drug's benefit-risk profile, and the MAH's pharmacovigilance system. A total of 476 comments were identified through the analysis of 63 PSUR HA ARs received in 2013 and 2014; 47 (10%) were classified as "Requests for regulatory actions," 309 (65%) as "Requests for medical and scientific information," and 118 (25%) comments were related to "Data deficiencies." The most frequent comments were requests for labeling changes (35 HA comments in 19 ARs). The aggregate analysis revealed commonly raised issues and prompted changes of the MAH's procedures related to the preparation of PSURs. The authors believe that this novel instrument based on the evaluation of PSUR HA ARs serves as a valuable mechanism to enhance the quality of PSURs and decisions about optimization of the use of the products and, therefore, contributes to improve further the MAH's pharmacovigilance system and patient safety. Copyright © 2015 John Wiley & Sons, Ltd.

  3. The international dimensions of nuclear safety standards

    International Nuclear Information System (INIS)

    Reed, J.M.

    1992-01-01

    The paper reviews the activities of the major international organisations in the field of nuclear safety standards; the International Atomic Energy Agency (IAEA), the OECD's Nuclear Energy Agency (NEA) and the Commission of the European Communities. Each organisation encourages the concept of international nuclear safety standards. After Chernobyl, there were calls for some form of binding international nuclear safety standards. Many Member States of IAEA accepted these Codes as a suitable basis for formulating their national safety standards, but the prevailing view was that voluntary compliance with the Codes was the preferred path. With few reactor vendors in a limited international market, the time may be approaching when an internationally licensable nuclear reactor is needed. Commonly accepted safety standards would be a prerequisite. The paper discusses the issues involved and the complexities of standards making in the international arena. (author)

  4. Status and trends in IAEA safety standards

    International Nuclear Information System (INIS)

    Lipar, M.

    2004-01-01

    While safety is a national responsibility, international standards and approaches to safety promote consistency and facilitate international technical co-operation and trade, and help to provide assurance that nuclear and radiation related technologies are used safely. The standards also provide support for States in meeting their international obligations. One general international obligation is that a State must not pursue activities that cause damage in another State. More specific obligations on Contracting States are set out in international safety related conventions. The internationally agreed IAEA safety standards provide the basis for States to demonstrate that they are meeting these obligations. These standards are founded in the IAEA's Statute, which authorizes the Agency to establish standards of safety for nuclear and radiation related facilities and activities and to provide for their application. The safety standards reflect an international consensus on what constitutes a high level of safety for protecting people and the environment. (orig.) [de

  5. Reliability analysis of diverse safety logic systems of fast breeder reactor

    International Nuclear Information System (INIS)

    Ravi Kumar, Bh.; Apte, P.R.; Srivani, L.; Ilango Sambasivan, S.; Swaminathan, P.

    2006-01-01

    Safety Logic for Fast Breeder Reactor (FBR) is designed to initiate safety action against Design Basis Events. Based on the outputs of various processing circuits, Safety logic system drives the control rods of the shutdown system. So, Safety Logic system is classified as safety critical system. Therefore, reliability analysis has to be performed. This paper discusses the Reliability analysis of Diverse Safety logic systems of FBRs. For this literature survey on safety critical systems, system reliability approach and standards to be followed like IEC-61508 are discussed in detail. For Programmable Logic device based systems, Hardware Description Languages (HDL) are used. So this paper also discusses the Verification and Validation for HDLs. Finally a case study for the Reliability analysis of Safety logic is discussed. (author)

  6. Preservation of primary information related to radiological protection and nuclear safety in the Argentine Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Chahab, Martin

    2008-01-01

    The preservation of primary information related to Radiological Protection and Nuclear Safety in the Argentine Nuclear Regulatory Authority began as a need of and as significant contribution to the future activities of the institution. Since 2005 a high number of experts have retired from the organization and will continue to do so until 2010. Besides, the primary information that experts possess is technical information produced at the beginning of Argentina's regulatory activity in the 50 's. If this information on account of its relevance - could not be preserved properly or be made available to the future generation of scientists and technicians, such an issue could have a negative impact on the efficiency and effectiveness of the institution in the future. The methodology selected for the project comprises several stages. Overall, the first stage consists in identifying primary information and expert's explicit knowledge through interviews and personal consultations. The second stage consists in converting to digital format the documentation that experts have traditionally kept in paper format. The third stage deals with transferring to a new database the already digitalized information from the computers of experts who are about to retire. The final stage is based on managing this information by creating knowledge maps and socio-grams, experts personal Web sites and a database with a mega browser to make information readily accessible. During the early months of the project, 190 pages have on average been converted to digital format on a daily basis, the equivalent of around 8 MB of information. The men/hours employed for this task has been around 40 minutes per day. As time went by, the method turned more efficient and as a result, some 400 pages were converted to digital format on a daily basis, accounting for 16 MB of information. The men/hours employed for this task has been around 60 minutes per day. Up until mid 2008, more than 1,000 documents have been

  7. Determination of the NPP Krsko reactor core safety limits using the COBRA-III-C code

    International Nuclear Information System (INIS)

    Lajtman, S.; Feretic, D.; Debrecin, N.

    1989-01-01

    This paper presents the NPP Krsko reactor core safety limits determined by the COBRA-III-C code, along with the methodology used. The reactor core safety limits determination is a part of reactor protection limits procedure. The results obtained were compared to safety limits presented in NPP Krsko FSAR. The COBRA-III-C NPP Krsko design core steady state thermal hydraulics calculation, used as the basis for the safety limits calculation, is presented as well. (author)

  8. Nuclear safety and energy supply security: conflict or goal?

    International Nuclear Information System (INIS)

    Kutas, S.

    2006-01-01

    Energy generation and safety problems at the nuclear power plant have been analysed. Nuclear power plants are operated on the commercial basis in many countries today. Safety and security in energy generation and distribution is a complex problem. Energy supply reliability, security energy price and other issues should be co-ordinated and solved at the same time. Decentralisation and deregulation means new challenges for regulatory bodies and assurance of security. International co-operation in this field is very important. Western European Nuclear Regulators' Association (WENRA) consolidates efforts of regulatory bodies of European countries in order to harmonize approaches of nuclear safety. Nuclear Safety, and security of energy supply is the task and goal at the same time. (author)

  9. Key issues on safety design basis selection and safety assessment

    International Nuclear Information System (INIS)

    An, S.; Togo, Y.

    1976-01-01

    In current fast reactor design in Japan, four design accident conditions and four design seismic conditions are adopted as the design base classifications. These are classified by the considerations on both likelihood of occurrence and the severeness of the consequences. There are several major problem areas in safety design consideration such as core accident problems which include fuel sodium interaction, fuel failure propagation and residual decay heat removal, and decay heat removal systems problems which is more or less the problem of selection of appropriate system and of assurance of high reliability of the system. In view of licensing, two kinds of accidents are postulated in evaluating the adequacy of a reactor site. The one is the ''major accident'' which is the accident to give most severe radiation hazard to the public from technical point of view. The other is the ''hypothetical accident'', induced public accident of which is severer than that of major accident. While the concept of the former is rather unique to Japanese licensing, the latter is almost equivalent to design base hypothetical accident of the US practice. In this paper, design bases selections, key safety issues and some of the licensing considerations in Japan are described

  10. CONCEPTUALIZATION OF IDEAS OF PSYCHOLOGICAL SAFETY IN SPORTS: PROBLEMS OF EXPERIMENTAL RESEARCH

    Directory of Open Access Journals (Sweden)

    Yulia Vladimirovna Vardanyan

    2013-09-01

    Full Text Available This article is devoted to the research of the concept “psychological safety in sports”. On the basis of analysis of ideas about psychological safety in sports and their representation in printed or verbal form the necessity of overcoming the fragmentation and lack of system is substantiated. The authors state that one and the same sports situation can constructively or destructively affect the psychological safety of direct or indirect participants of sports events. In this context, it is important to create the psycholinguistic basis of experimental research of psychological safety in sports. Great attention is paid to systematization of the content of the concept “psychological safety in sports”. The created models of words and expressions that convey ideas about this phenomenon are of particular value. In the structure of the concept the dominant meanings, expressed in the nucleus, and additional meanings, related to the periphery of the concept are distinguished.Purpose: to explore the ideas of psychological safety in sports and their representation in printed or verbal form; to determine ways of overcoming the conceptual psycholinguistic problems in the process of experimental research of psychological safety in sports; to create the model of words and expressions which are used to verbalize the concept “psychological safety in sports”.Methodology: theoretical analysis of psychological and linguistic literature, creation of the psycholinguistic basis of experimental research, modeling of the conceptual ideas of psychological safety in sports.Results: psycholinguistic basis of experimental research of psychological safety in sports, the model of content and structure of the corresponding concept.Practical implications: Pedagogical Psychology, Sports Psychology, Philology, Psycholinguistics.DOI: http://dx.doi.org/10.12731/2218-7405-2013-8-11

  11. Safety assessment of Olkiluoto NPP units 1 and 2. Decision of the Radiation and Nuclear Safety Authority regarding the periodic safety review of the Olkiluoto NPP

    International Nuclear Information System (INIS)

    2010-02-01

    In this safety assessment the Radiation and Nuclear Safety Authority (STUK) has evaluated the safety of the Olkiluoto Nuclear Power Plant units 1 and 2 in connection with the periodic safety review. This safety assessment provides a summary of the reviews, inspections and continuous oversight carried out by STUK. The issues addressed in the assessment and the related evaluation criteria are set forth in the nuclear energy and radiation safety legislation and the regulations issued thereunder. The provisions of the Nuclear Energy Act concerning the safe use of nuclear energy, security and emergency preparedness arrangements, and waste management are specified in more detail in the Government Decrees and Regulatory Guides issued by STUK. Based on the assessment, STUK consideres that the Olkiluoto Nuclear Power Plant units 1 and 2 meet the set safety requirements for operational nuclear power plants, the emergency preparedness arrangements are sufficient and the necessary control to prevent the proliferation of nuclear weapons has been appropriately arranged. The physical protection of the Olkiluoto nuclear power plant is not yet completely in compliance with the requirements of Government Decree 734/2008, which came into force in December 2008. Further requirements concerning this issue based also on the principle of continuous improvement were included in the decision relating to the periodic safety review. The safety of the Olkiluoto nuclear power plant was assessed in compliance with the Government Decree on the Safety of Nuclear Power Plants (733/2008), which came into force in 2008. The decree notes that existing nuclear power plants need not meet all the requirements set out for new plants. Most of the design bases pertaining to the Olkiluoto 1 and 2 nuclear power plant units were set in the 1970s. Substantial modernisations have been carried out at the Olkiluoto 1 and 2 nuclear power plant units since their commissioning to improve safety. This is in line with

  12. The power of simplification: Operator interface with the AP1000R during design-basis and beyond design-basis events

    International Nuclear Information System (INIS)

    Williams, M. G.; Mouser, M. R.; Simon, J. B.

    2012-01-01

    The AP1000 R plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and cost. The passive safety features are designed to function without safety-grade support systems such as component cooling water, service water, compressed air or HVAC. The AP1000 passive safety features achieve and maintain safe shutdown in case of a design-basis accident for 72 hours without need for operator action, meeting the expectations provided in the European Utility Requirements and the Utility Requirement Document for passive plants. Limited operator actions may be required to maintain safe conditions in the spent fuel pool (SFP) via passive means. This safety approach therefore minimizes the reliance on operator action for accident mitigation, and this paper examines the operator interaction with the Human-System Interface (HSI) as the severity of an accident increases from an anticipated transient to a design basis accident and finally, to a beyond-design-basis event. The AP1000 Control Room design provides an extremely effective environment for addressing the first 72 hours of design-basis events and transients, providing ease of information dissemination and minimal reliance upon operator actions. Symptom-based procedures including Emergency Operating Procedures (EOPs), Abnormal Operating Procedures (AOPs) and Alarm Response Procedures (ARPs) are used to mitigate design basis transients and accidents. Use of the Computerized Procedure System (CPS) aids the operators during mitigation of the event. The CPS provides cues and direction to the operators as the event progresses. If the event becomes progressively worse or lasts longer than 72 hours, and depending upon the nature of failures that may have occurred, minimal operator actions may be required outside of the control room in areas that have been designed to be accessible using components that have been designed

  13. Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author, Volume 18 (1) through Volume 22 (6)

    International Nuclear Information System (INIS)

    Cottrell, W.B.; Passiakos, M.

    1982-06-01

    This index to Nuclear Safety covers articles published in Nuclear Safety, Volume 18, Number 1 (January-February 1977) through Volume 22, Number 6 (November-December 1981). The index is divided into three section: a chronological list of articles (including abstracts), a permuted-title (KWIC) index, and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. Over 300 technical articles published in Nuclear Safety in the last 5 years are listed in this index

  14. Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author, Volume 18 (1) through Volume 22 (6)

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, W.B.; Passiakos, M.

    1982-06-01

    This index to Nuclear Safety covers articles published in Nuclear Safety, Volume 18, Number 1 (January-February 1977) through Volume 22, Number 6 (November-December 1981). The index is divided into three section: a chronological list of articles (including abstracts), a permuted-title (KWIC) index, and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. Over 300 technical articles published in Nuclear Safety in the last 5 years are listed in this index.

  15. Additional safety assessments, follow-up of stress tests of the French nuclear power stations. Action plan of the nuclear safety authority

    International Nuclear Information System (INIS)

    2012-01-01

    This document presents the French national action plan defined by the Nuclear Safety Authority (ASN) in compliance with the recommendations made by the ENSREG (European nuclear safety regulators group). It refers to decisions taken at the national level after the Fukushima accident, recommendations after European stress tests, and recommendations after the extraordinary meeting of contracting parties at the Convention on Nuclear Safety of August 2012. For different topics, this document recalls the recommendations made by the peer review, indicates the ASN's opinion and progress or ASN's requirements for different power stations. The first part addresses the recommendations made by peers and based on the European review. Topics concern natural hazards (effects, detection, inspections and controls related to earthquakes, margin assessment with respect to flooding and natural hazards), the loss of safety systems (cooling systems, electricity supplies, actions, instruments, training, and so on), the management of a severe accident (reference levels, measures, guides, exercises, training, management of contaminated water, radiation protection, premises). The second part deals with topics addressed within the frame of the Convention: national organisations, organisations in an emergency and post-accidental situation, international cooperation. A third part addresses the follow-up of additional measures issued by the ASN

  16. Emergency procedures beyond design basis ''Feed and Bleed''

    International Nuclear Information System (INIS)

    Dominguez Bautista, M.T.; Campuzano Pena, F.

    1994-01-01

    The incorporation of Beyond-Design-Basis Emergency Procedures, also called the Emergency Manual or Severe Accident Manual, has been an important step forward in nuclear power plant safety. These procedures cover situations in which the deterministic criteria used in plant design have been contravened. In such situations new accident scenarios, unforeseen system actions or a combination of both, need to be considered. Establishing these procedures is actually the last in a sequence of activities the sequence includes definition of scenarios, study of their phenomena, analysis of optional system actions, verification of their effectiveness and finally, implementation of the procedure. The systematization of these new strategies is supported by the results of the probabilistic analyses which serve in this case to pinpoint the objectives of these strategies. This paper describes the application of this methodology in the definition of a procedure for heat sink recovery on the secondary side (feed and bleed) if this has been totally or partially lost in a beyond-design-basis event. (Author)

  17. SKI's and SSI's joint review of SKB's safety assessment report, SR 97. Summary

    International Nuclear Information System (INIS)

    2001-01-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) has a programme for the siting of a repository for spent nuclear fuel in Swedish bedrock. In 1996, the Swedish Government decided that SKB must perform an assessment of the repository's long-term safety before undertaking the next step of the programme which entails drilling in a minimum of two municipalities (site investigations). SKB has presented such a safety assessment in SR 97 Post-closure Safety (henceforth referred to as SR 97). SR 97 is one of the documents in the comprehensive reporting that SKB must provide when it proposes sites for investigation. The Swedish Nuclear Power Inspectorate (SKI) and the Swedish Radiation Protection Institute (SSI) have evaluated SR 97 in terms of its purposes which are to demonstrate a methodology for safety assessment, to show that Swedish bedrock can provide a safe repository using SKB's method, to provide a basis for specifying the factors that are important for site selection and to derive preliminary requirements on the function of the engineered barriers. The authorities have reached the following conclusions: SR 97 does not indicate any conditions that would mean that geological final disposal in accordance with SKB's method would have significant deficiencies in relation to the safety and radiation protection requirements of the authorities. SR 97 contains the elements required for a comprehensive assessment of safety and radiation protection. SKB's safety assessment methodology has improved within several important areas, such as the documentation of processes and properties that can affect repository performance and the development of models for safety assessment calculations. The methodology used in SR 97 has some deficiencies, for example, the specification of future events to be described in the safety assessment. SR 97 has not, to an adequate extent, dealt with unfavourable conditions that can affect the future safety of a repository. SKB states that the

  18. Needs, requirements and challenges for technical support to nuclear safety authority

    International Nuclear Information System (INIS)

    Madonna, A.; Orsini, G.

    2010-01-01

    To face the very broad range of technical matters on which the regulatory and licensing activity are based, and related research and development activity, the Nuclear Safety Authorities (NSA) may need to rely upon external technical and scientific support. In providing technical support to NSA, the experience shows, from one side, the importance to have technical support organizations (TSO) with recognized competence, independence and appropriate regulatory view, and from the other side, the importance to have within the NSAs well developed management and technical capability to address, coordinate and use the results of the external technical support. Retaining the NSA the full responsibility for the final decision. Under which conditions and modus operandi the external support shall be provided in order to comply with requirements of being independent, competent and timely provided, fulfilling the administrative procedures, is the subject of attention and consideration of TSO function today. The Italian regulatory body is currently going to be institutionally re-established according to new law approved in 2009 /1/ and it needs to be resourced and fully organized with necessary capacities in the nearest future. The perspective of a new nuclear program, recently launched by the government, with significant incoming tasks for regulation and licensing, against the existing limited resources, let foresee a substantial potential need for technical support and advice. ITER-Consult (Ltd), created in 2003 in Italy, has well developed capabilities to provide independent technical evaluation and support to NSAs, to maintain safety culture and updated knowledge, to transfer know how and to establish international cooperation and networking. This mission is guided assuming as values the independence, the professional competence, the transparency, the credibility and the establishment of respectful relationship with the partners. Challenges exist for funding and operational

  19. International exchange of safety and licensing information

    International Nuclear Information System (INIS)

    Lafleur, J.D. Jr.; Hauber, R.D.; Chenier, D.M.

    1977-01-01

    A network of formal and informal bilateral arrangements for the exchange of nuclear safety information is being established by the US Nuclear Regulatory Commission. For developing countries such arrangements can provide ready access to the extensive, fully documented safety analyses and safety research results that USNRC has accumulated. USNRC has been receiving foreign visitors at a rate of about 500 per year, largely for discussions of safety and licensing questions related to light water reactors. Exchanges also are taking place on the safety of advanced reactors. A special interest of the USNRC is in providing for reciprocal communication, at the earliest possible time, of important problems, decisions and other actions on nuclear safety matters. For example, it is essential that a newly discovered problem in a nuclear reactor be brought immediately to the attention of other governments that are responsible for the safety of similar reactors. Definite progress has been made in the USA in defining categories of information that USNRC can receive in confidence from foreign countries, and can protect from disclosure under the US Freedom of Information Act. Certain exchanges have taken place on this basis. Experience in the establishment and operation of USNRC's bilateral exchange arrangements is summarized. A typical exchange with the regulatory authority of a country building its first power reactor is described. (author)

  20. PHWR safety: design, siting and construction

    International Nuclear Information System (INIS)

    Sharma, V.K.

    2002-01-01

    In all activities associated with NPPs viz. siting, design, construction, commissioning and operation, safety is given overriding importance. The safety design principles of PHWRs are based on defence-in-depth approach, physical and functional separation between process and safety systems and also among various safety systems, redundancy to meet single failure criteria and postulation of a number of design basis events for which the plant must be designed. Apart from engineered safety systems, PHWRs have inherent characteristics which contribute to safety. In siting of a NPP, it is required to ensure that the given site does not pose undue radiological hazard to public and the environment both during normal operation as well as during and following an accident condition. For this purpose, all site related external events, both natural and man induced, are assessed for their effect on the plant and are considered as part of the design basis. Possible radiological impact of the NPP on environment and surrounding population is assessed and ensured to be within acceptable limits. During construction phase, it is essential that the NPP be built in accordance with design intent and with required quality of workmanship to ensure that the NPP will remain safe during all states of operation. This is achieved through careful execution and QA activities encompassing all aspects of component fabrication at manufacturer works, civil construction, site erection, assembly, and commissioning. Future trends in nuclear safety will continue to be based on existing principles which have proved to be sound. These will be further strengthened by features such as increasing use of passive means of performing safety functions and a more explicit treatment of severe accidents. (author)

  1. Role of supervising authorities in NPP operation safety ensuring

    International Nuclear Information System (INIS)

    Elagin, Yu.P.

    2001-01-01

    The main working spheres and results gained during 40 years of activity of the Great Britain Nuclear Installation Inspectorate (NII) are considered. The new approach to safety analysis developed with NII participation is described in details. The important role of the safety analysis realization, utilization of modern methods for risk estimation and safety culture principles introduction at NPPs is shown [ru

  2. Development of the evaluation methods in reactor safety analyses and core characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In order to support the safety reviews by NRA on reactor safety design including the phenomena with multiple failures, the computer codes are developed and the safety evaluations with analyses are performed in the areas of thermal hydraulics and core characteristics evaluation. In the code preparation of safety analyses, the TRACE and RELAP5 code were prepared to conduct the safety analyses of LOCA and beyond design basis accidents with multiple failures. In the core physics code preparation, the functions of sensitivity and uncertainty analysis were incorporated in the lattice physics code CASMO-4. The verification of improved CASMO-4 /SIMULATE-3 was continued by using core physics data. (author)

  3. Is road safety management linked to road safety performance?

    Science.gov (United States)

    Papadimitriou, Eleonora; Yannis, George

    2013-10-01

    This research aims to explore the relationship between road safety management and road safety performance at country level. For that purpose, an appropriate theoretical framework is selected, namely the 'SUNflower' pyramid, which describes road safety management systems in terms of a five-level hierarchy: (i) structure and culture, (ii) programmes and measures, (iii) 'intermediate' outcomes'--safety performance indicators (SPIs), (iv) final outcomes--fatalities and injuries, and (v) social costs. For each layer of the pyramid, a composite indicator is implemented, on the basis of data for 30 European countries. Especially as regards road safety management indicators, these are estimated on the basis of Categorical Principal Component Analysis upon the responses of a dedicated road safety management questionnaire, jointly created and dispatched by the ETSC/PIN group and the 'DaCoTA' research project. Then, quasi-Poisson models and Beta regression models are developed for linking road safety management indicators and other indicators (i.e. background characteristics, SPIs) with road safety performance. In this context, different indicators of road safety performance are explored: mortality and fatality rates, percentage reduction in fatalities over a given period, a composite indicator of road safety final outcomes, and a composite indicator of 'intermediate' outcomes (SPIs). The results of the analyses suggest that road safety management can be described on the basis of three composite indicators: "vision and strategy", "budget, evaluation and reporting", and "measurement of road user attitudes and behaviours". Moreover, no direct statistical relationship could be established between road safety management indicators and final outcomes. However, a statistical relationship was found between road safety management and 'intermediate' outcomes, which were in turn found to affect 'final' outcomes, confirming the SUNflower approach on the consecutive effect of each layer

  4. Seismic methodology in determining basis earthquake for nuclear installation

    International Nuclear Information System (INIS)

    Ameli Zamani, Sh.

    2008-01-01

    Design basis earthquake ground motions for nuclear installations should be determined to assure the design purpose of reactor safety: that reactors should be built and operated to pose no undue risk to public health and safety from earthquake and other hazards. Regarding the influence of seismic hazard to a site, large numbers of earthquake ground motions can be predicted considering possible variability among the source, path, and site parameters. However, seismic safety design using all predicted ground motions is practically impossible. In the determination of design basis earthquake ground motions it is therefore important to represent the influences of the large numbers of earthquake ground motions derived from the seismic ground motion prediction methods for the surrounding seismic sources. Viewing the relations between current design basis earthquake ground motion determination and modem earthquake ground motion estimation, a development of risk-informed design basis earthquake ground motion methodology is discussed for insight into the on going modernization of the Examination Guide for Seismic Design on NPP

  5. Status of National Nuclear Infrastructure Development (NG-T-3.2). Basis for Evaluation - Legal, safety, security, safeguards issues

    International Nuclear Information System (INIS)

    Yllera, Javier

    2010-01-01

    A framework for achieving high levels of nuclear safety and security worldwide Builds upon: Legal Instruments; Use of IAEA SSs and security guidance; Harmonization of national regulations; Exchange of knowledge, experiences & regulatory practices and Multinational cooperation and safety reviews. The IAEA is the depository of many key international conventions and legal agreements. All countries with operating nuclear power plants are now parties to the Convention. The main objective of Convention on Nuclear Safety is to achieve and maintain a high level of nuclear safety worldwide through the enhancement of national measures and international cooperation including, where appropriate, safety related technical co-operation. All practical efforts must be made to prevent and mitigate nuclear or radiation accidents. The primary means of preventing and mitigating the consequences of accidents is “defence in depth”. Safety assessments are to be carried out and documented by the organization responsible for operating the facility, are to be independently verified and are to be submitted to the regulatory body as part of the licensing or authorization process. Licensing process must be well-defined, clear, transparent and traceable. The public should be given an opportunity to provide their views during certain steps of the licensing process

  6. Waste management safety

    International Nuclear Information System (INIS)

    Boehm, H.

    1983-01-01

    All studies carried out by competent authors of the safety of a waste management concept on the basis of reprocessing of the spent fuel elements and storage in the deep underground of the radioactive waste show that only a minor technical risk is involved in this step. This also holds true when evaluating the accidents which have occurred in waste management facilities. To explain the risk, first the completely different safety aspects of nuclear power plants, reprocessing plants and repositories are outlined together with the safety related characteristics of these plants. Also this comparison indicates that the risk of waste management facilities is considerably lower than the, already very small, risk of nuclear power plants. For the final storage of waste from reprocessing and for the direct storage of fuel elements, the results of safety analyses show that the radiological exposure following an accident with radioactivity releases, even under conservative assumptions, is considerably below the natural radiation exposure. The very small danger to the environment arising from waste management by reprocessing clearly indicates that aspects of technical safety alone will hardly be a major criterion for the decision in favor of one or the other waste management approach. (orig.) [de

  7. Organic reactivity analysis in Hanford single-shell tanks: Experimental and modeling basis for an expanded safety criterion

    International Nuclear Information System (INIS)

    Fauske, H.; Grigsby, J.M.; Turner, D.A.; Babad, H.; Meacham, J.E.

    1996-01-01

    De-spite demonstrated safe storage in terms of chemical stability of the Hanford high level waste for many decades, including decreasing waste temperatures and continuing aging of chemicals to less energetic states, concerns continue relative to assurance of long-term safe storage. Review of potential chemical safety hazards has been of particular recent interest in response to serious incidents within the Nuclear Weapons Complexes in the former Soviet Union (the 1957 Kyshtym and the 1993 Tomsk-7 incidents). Based upon an evaluation of the extensive new information and understanding that have developed over the last few years, it is concluded that the Hanford waste is stored safely and that concerns related to potential chemical safety hazards are not warranted. Spontaneous bulk runaway reactions of the Kyshtym incident type and other potential condensed-phase propagating reactions can be ruled out by assuring appropriate tank operating controls are in place and by limiting tank intrusive activities. This paper summarizes the technical basis for this position

  8. Demand of authorization to create the 'Flamanville 3' Basis Nuclear Installation. Synthesis report of the technical examination

    International Nuclear Information System (INIS)

    2007-02-01

    The present report has for objective to present to the College of Asn a synthesis of the technical instruction piloted by the services of Asn and realized by their technical supports (I.R.S.N., G.P.R., S.P.N.) during the period 2001-2006. After a reminder of the conditions of the examination of the safety options of the project EPR made between 1993 and 2000, this report explains the progress and the modalities of the instruction realized from 2001 till 2006. It draws up then, besides a notice of the Asn services at request of creation authorization, a synthesis of the technical examination realized according to axes presented on the fig 1. Finally, it presents the main lines of the examination that it would stay to realize if the creation authorization was delivered. (N.C.)

  9. A new concept of safety parameter display system

    International Nuclear Information System (INIS)

    Martinez, A.S.; Oliveira, L.F.S. de; Schirru, R.; Thome Filho, Z.D.; Silva, R.A. da.

    1986-07-01

    A general description of Angra-1 Parameter Display System (SSPA), a real time and on-line computerized monitoring system for the parameters related to the power plant safety is presented. This system has the main purpose of diminish the load on the Angra-1 power plant operators at an emergency event by supplying them with the additional tools serving as the basis for a prompt identification of the accident. The SSPA is a kind of safety parameter display system whose concept was introduced after Three Mile Island accident in USA. The SSPA comprises two nuclear applications independently considered. They are included into the Parameters Monitoring Integrated System (SIMP) and the safety critical function system (SFCS). (Author) [pt

  10. Technical safety Organisations (TSO) contribute to European Nuclear Safety

    International Nuclear Information System (INIS)

    Repussard, J.

    2010-01-01

    Nuclear safety and radiation protection rely on science to achieve high level prevention objectives, through the analysis of safety files proposed by the licensees. The necessary expertise needs to be exercised so as to ensure adequate independence from nuclear operators, appropriate implementation of state of the art knowledge, and a broad spectrum of analysis, adequately ranking the positive and negative points of the safety files. The absence of a Europe-wide nuclear safety regime is extremely costly for an industry which has to cope with a highly competitive and open international environment, but has to comply with fragmented national regulatory systems. Harmonization is therefore critical, but such a goal is difficult to achieve. Only a gradual policy, made up of planned steps in each of the three key dimensions of the problem (energy policy at EU level, regulatory harmonization, consolidation of Europe-wide technical expertise capability) can be successful to achieve the required integration on the basis of the highest safety levels. TSO's contribute to this consolidation, with the support of the EC, in the fields of research (EURATOM-Programmes), of experience feedback analysis (European Clearinghouse), of training and knowledge management (European Training and Tutoring Institute, EUROSAFE). The TSO's network, ETSON, is becoming a formal organisation, able to enter into formal dialogue with EU institutions. However, nuclear safety nevertheless remains a world wide issue, requiring intensive international cooperation, including on TSO issues. (author)

  11. Index to Nuclear Safety: a technical progress review by chrology, permuted title, and author, Volume 11(1) through Volume 20(6)

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, W B; Passiakos, M

    1980-06-01

    This index to Nuclear Safety, a bimonthly technical progress review, covers articles published in Nuclear Safety, Volume II, No. 1 (January-February 1970), through Volume 20, No. 6 (November-December 1979). It is divided into three sections: a chronological list of articles (including abstracts) followed by a permuted-title (KWIC) index and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center (NSIC), covers all safety aspects of nuclear power reactors and associated facilities. Over 600 technical articles published in Nuclear Safety in the last ten years are listed in this index.

  12. PRELIMINARY SELECTION OF MGR DESIGN BASIS EVENTS

    International Nuclear Information System (INIS)

    Kappes, J.A.

    1999-01-01

    The purpose of this analysis is to identify the preliminary design basis events (DBEs) for consideration in the design of the Monitored Geologic Repository (MGR). For external events and natural phenomena (e.g., earthquake), the objective is to identify those initiating events that the MGR will be designed to withstand. Design criteria will ensure that radiological release scenarios resulting from these initiating events are beyond design basis (i.e., have a scenario frequency less than once per million years). For internal (i.e., human-induced and random equipment failures) events, the objective is to identify credible event sequences that result in bounding radiological releases. These sequences will be used to establish the design basis criteria for MGR structures, systems, and components (SSCs) design basis criteria in order to prevent or mitigate radiological releases. The safety strategy presented in this analysis for preventing or mitigating DBEs is based on the preclosure safety strategy outlined in ''Strategy to Mitigate Preclosure Offsite Exposure'' (CRWMS M andO 1998f). DBE analysis is necessary to provide feedback and requirements to the design process, and also to demonstrate compliance with proposed 10 CFR 63 (Dyer 1999b) requirements. DBE analysis is also required to identify and classify the SSCs that are important to safety (ITS)

  13. Application and problems of probability methods in technical safety assessment in the field of nuclear engineering and other technologies

    International Nuclear Information System (INIS)

    Heuser, F.W.

    1980-01-01

    On the basis of a deterministic safety concept that has been developed in nuclear engineering, approaches for a probabilistic interpretation of existing safety requirements and for a further risk assessment are described. The procedures in technical reliability analysis and its application in nuclear engineering are discussed. By the example of a reliability analysis for a reactor protection system the author discusses the question as to what extent methods of reliability analysis can be used to interpret deterministically derived safety requirements. The the author gives a survey of the current value and application of probabilistic reliability assessments in non-nuclear technology. The last part of this report deals with methods of risk analysis and its use for safety assessment in nuclear engineering. On the basis of WASH 1,400 the most important phases and tasks of research work in risk assessment are explained, showing the basic criteria and the methods to be applied in risk analysis. (orig./HSCH) [de

  14. Regulatory assessment of safety culture in nuclear organisations - current trends and challenges

    International Nuclear Information System (INIS)

    Tronea, M.

    2010-01-01

    The paper gives an overview of the current practices in the area of regulatory assessment of safety culture in nuclear organisations and of the associated challenges. While the assessment and inspection procedures currently in use by regulatory authorities worldwide are directed primarily at verifying compliance with the licensing basis, there is a recognised need for a more systematic approach to the identification, collection and review of data relevant to the safety culture in licensees' organisations. The paper presents a proposal for using the existing regulatory inspection practices for gathering information relevant to safety culture and for assessing it in an integrated manner. The proposal is based on the latest requirements and guidance issued by the International Atomic Energy Agency (IAEA) on management systems for nuclear facilities and activities, particularly as regards the attributes needed for a strong nuclear safety culture. (author)

  15. The power of simplification: Operator interface with the AP1000{sup R} during design-basis and beyond design-basis events

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. G.; Mouser, M. R.; Simon, J. B. [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The AP1000{sup R} plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and cost. The passive safety features are designed to function without safety-grade support systems such as component cooling water, service water, compressed air or HVAC. The AP1000 passive safety features achieve and maintain safe shutdown in case of a design-basis accident for 72 hours without need for operator action, meeting the expectations provided in the European Utility Requirements and the Utility Requirement Document for passive plants. Limited operator actions may be required to maintain safe conditions in the spent fuel pool (SFP) via passive means. This safety approach therefore minimizes the reliance on operator action for accident mitigation, and this paper examines the operator interaction with the Human-System Interface (HSI) as the severity of an accident increases from an anticipated transient to a design basis accident and finally, to a beyond-design-basis event. The AP1000 Control Room design provides an extremely effective environment for addressing the first 72 hours of design-basis events and transients, providing ease of information dissemination and minimal reliance upon operator actions. Symptom-based procedures including Emergency Operating Procedures (EOPs), Abnormal Operating Procedures (AOPs) and Alarm Response Procedures (ARPs) are used to mitigate design basis transients and accidents. Use of the Computerized Procedure System (CPS) aids the operators during mitigation of the event. The CPS provides cues and direction to the operators as the event progresses. If the event becomes progressively worse or lasts longer than 72 hours, and depending upon the nature of failures that may have occurred, minimal operator actions may be required outside of the control room in areas that have been designed to be accessible using components that have been

  16. The cohort of the atomic bomb survivors major basis of radiation safety regulations

    CERN Document Server

    Rühm, W; Nekolla, E A

    2006-01-01

    Since 1950 about 87 000 A-bomb survivors from Hiroshima and Nagasaki have been monitored within the framework of the Life Span Study, to quantify radiation-induced late effects. In terms of incidence and mortality, a statistically significant excess was found for leukemia and solid tumors. In another major international effort, neutron and gamma radiation doses were estimated, for those survivors (Dosimetry System DS02). Both studies combined allow the deduction of risk coefficients that serve as a basis for international safety regulations. As an example, current results on all solid tumors combined suggest an excess relative risk of 0.47 per Sievert for an attained age of 70 years, for those who were exposed at an age of 30 years. After exposure to an effective dose of one Sievert the solid tumor mortality would thus be about 50% larger than that expected for a similar cohort not exposed to any ionizing radiation from the bombs.

  17. 1E Qualification of Electrical Equipment - Requirement for Safety Nuclear Power Plants

    International Nuclear Information System (INIS)

    Geambasu, C.; Segarceanu, D.; Albu, J.

    2002-01-01

    The paper presents the qualification methods of the safety related equipment according to the safety class 1E. There are presented the qualification principles, procedure and documents, emphasis being laid on the qualification approach by type tests. This approach assumes the equipment test under both normal and accident conditions (design basis events) simulating the operational conditions and covers the largest part of electrical equipment from a nuclear power plant.The safety related equipment is to be qualified is subjected to a sequential test that will be detailed in the paper. (author)

  18. A preliminary study on the design in architecture of nuclear and radiation safety standard system

    International Nuclear Information System (INIS)

    Song Dahu; Zhang Chi; Yang Lili; Li Bin; Liu Yingwei; An Hongzhen; Gao Siyi; Liu Ting; Meng De

    2014-01-01

    The connotation and function of nuclear and radiation safety standards are analyzed, and their relationships with the relevant laws and regulations are discussed in the paper. Some suggestions and blue print of overall architecture to build nuclear and radiation safety standard system are proposed, on the basis of researching the application status quo, existing problems and needs for nuclear and radiation safety standards in China. This work is a beneficial exploration and attempt to establish China's nuclear and radiation safety standards. (authors)

  19. Quality systems for radiotherapy: Impact by a central authority for improved accuracy, safety and accident prevention

    International Nuclear Information System (INIS)

    Jaervinen, H.; Sipilae, P.; Parkkinen, R.; Kosunen, A.; Jokelainen, I.

    2001-01-01

    High accuracy in radiotherapy is required for the good outcome of the treatments, which in turn implies the need to develop comprehensive Quality Systems for the operation of the clinic. The legal requirements as well as the recommendation by professional societies support this modern approach for improved accuracy, safety and accident prevention. The actions of a national radiation protection authority can play an important role in this development. In this paper, the actions of the authority in Finland (STUK) for the control of the implementation of the new requirements are reviewed. It is concluded that the role of the authorities should not be limited to simple control actions, but comprehensive practical support for the development of the Quality Systems should be provided. (author)

  20. Additional safety assessments. Report by the Nuclear Safety Authority - December 2011

    International Nuclear Information System (INIS)

    2011-12-01

    The first part of this voluminous report proposes an assessment of targeted audits performed in French nuclear installations (water pressurized reactors on the one hand, laboratories, factories and waste and dismantling installations on the other hand) on issues related to the Fukushima accident. The examined issues were the protection against flooding and against earthquake, and the loss of electricity supplies and of cooling sources. The second part addresses the additional safety assessments of the reactors and the European resistance tests: presentation of the French electronuclear stock, earthquake, flooding and natural hazards (installation sizing, safety margin assessment), loss of electricity supplies and cooling systems, management of severe accidents, subcontracting conditions. The third part addresses the same issues for nuclear installations other than nuclear power reactors

  1. Effective optimization of medical exposure: co-operation between radiation users and authorities

    International Nuclear Information System (INIS)

    Parkkinen, R.; Jarvinen, H.

    2006-01-01

    For the optimization of medical exposure in special radiological practices like in paediatric radiology, orthopaedics and cardiology, the Radiation and Nuclear Safety Authority (S.T.U.K.) in Finland has used a six step model to achieve the aims of the Medical Exposure Directive (97/43/EURATOM). The basis is to introduce the regulation and to meet the needs of the users for education and training. The aim is to educate some specialists to distribute information and good practices among their own professional groups. S.T.U.K. makes continuous verification on site visits and improves the process. (authors)

  2. Discussion on school-enterprise cooperation talent cultivation model for restaurant food safety major

    Directory of Open Access Journals (Sweden)

    Yin-hua LI

    2014-11-01

    Full Text Available Restaurant food safety school aims to cultivate high-skilled talents with professional ethics and professional quality for various food and beverage industries. They not only grasp basic knowledge and comprehensive vocational ability of restaurant food safety management, nutrition guidance and food matching, management and administration of catering industry but also adapt to the development of modern hotel and catering industry. Based on continuous exploration and cooperative experience with enterprises, the author attempts to provide reference basis for the establishment of restaurant food safety major.

  3. Determination of engineering safety factor -routine in Hungary (a methodology for the normal operation local power engineering safety factors)

    International Nuclear Information System (INIS)

    Szecsenyi, Z.; Korpas, L.; Bona, G.; Kereszturi, A.

    2010-01-01

    From the late nineties Paks Nuclear Power Plant-in collaboration with KFKI Atomic Energy Research Institute (KFKI AEKI)- is developing a system for determining the normal operation local power engineering safety factors. The system is based on a Monte Carlo sampling of the uncertain model input parameters. Additionally, the comparison of the calculation to the in-core measurements plays essential role for determining some important input parameters. By using new fuel types and the corresponding more recent detailed technological data, the applied method is being improved from time to time. Presently, the actually used and authorized engineering safety factors at Paks NPP are determined by using this method. In the paper, the system.s main properties are described (not going beyond the possible extent). The main points are as follows:-Mathematical definition of the engineering safety factor;-Sources of the uncertainties;-Input error propagation method constituting the basis of the system;-Flow-chart of the subsequent steps of the determination Finally, in the paper the engineering safety factors values of some selected parameters are presented as examples for demonstration of the capability of the method. (Authors)

  4. Conception of transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel of power reactors, which meets the requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism

    International Nuclear Information System (INIS)

    Il'kaev, R.I.; Matveev, V.Z.; Morenko, A.I.; Shapovalov, V.I.; Semenov, A.G.; Sergeyev, V.M.; Orlov, V.K.; Shatalov, V.V.; Gotovchikov, V.T.; Seredenko, V.A.; Haire, Jonathan M.; Forsberg, C.W.

    2004-01-01

    The report is devoted to the problem of creation of a new generation of multi-purpose universal transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel (SNF) of power reactors, which meets all requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism. Meeting all IAEA requirements in terms of safety both in normal operation conditions and accidents, as well as increased stability of transport cask (TC) with SNF under the conditions of beyond-design-basis accidents and acts of terrorism has been achieved in the design of multi-purpose universal TC due to the use of DU (depleted uranium) in it. At that, it is suggested to use DU in TC, which acts as effective gamma shield and constructional material in the form of both metallic depleted uranium and metal-ceramic mixture (cermet), based on stainless or carbon steel and DU dioxide. The metal in the cermet is chosen to optimize cask performance. The use of DU in the design of multi-purpose universal TC enables getting maximum load of the container for spent nuclear fuel when meeting IAEA requirements in terms of safety and providing increased stability of the container with SNF under conditions of beyond-design-basis accident and acts of terrorism

  5. Conception of transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel of power reactors, which meets the requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Il' kaev, R.I.; Matveev, V.Z.; Morenko, A.I.; Shapovalov, V.I. [Russian Federal Nuclear Center - All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation); Semenov, A.G.; Sergeyev, V.M.; Orlov, V.K. [All-Russian Research Inst. of Inorganic Materials, Moscow (Russian Federation); Shatalov, V.V.; Gotovchikov, V.T.; Seredenko, V.A. [All-Russian Research Inst. of Applied Chemistry, Moscow (Russian Federation); Haire, Jonathan M.; Forsberg, C.W. [Oak Ridge National Lab., Oak Ridge (United States)

    2004-07-01

    The report is devoted to the problem of creation of a new generation of multi-purpose universal transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel (SNF) of power reactors, which meets all requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism. Meeting all IAEA requirements in terms of safety both in normal operation conditions and accidents, as well as increased stability of transport cask (TC) with SNF under the conditions of beyond-design-basis accidents and acts of terrorism has been achieved in the design of multi-purpose universal TC due to the use of DU (depleted uranium) in it. At that, it is suggested to use DU in TC, which acts as effective gamma shield and constructional material in the form of both metallic depleted uranium and metal-ceramic mixture (cermet), based on stainless or carbon steel and DU dioxide. The metal in the cermet is chosen to optimize cask performance. The use of DU in the design of multi-purpose universal TC enables getting maximum load of the container for spent nuclear fuel when meeting IAEA requirements in terms of safety and providing increased stability of the container with SNF under conditions of beyond-design-basis accident and acts of terrorism.

  6. Regulatory Control of Radiation Sources. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  7. The promotion of work safety. A continuous task for the Swiss gas industry

    International Nuclear Information System (INIS)

    Luescher, H.J.

    1993-01-01

    The modern Western European population values the work safety very highly because of ethical and economical reasons. In Switzerland too, safety at work is actively promoted. Based on national legislation and on the SGWA-Association Statutes, the Swiss Gas Industry, with great engagement, promotes the measures for accident prevention. Following a general introduction into the legislative basis, possible ways and means for the promotion of safety at work are described. Subsequently, the concrete activities of the Gas Supply Authorities and the SGWA are pointed out, followed by a description of the future work-safety programmes of the Swiss Gas Industry. (orig.) [de

  8. Safety research for evolutionary light water reactors

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1996-01-01

    The development of nuclear energy has been characterized by a continuous evolution of the technological and philosophical underpinnings of reactor safety to enable operation of the plant without causing harm to either the plant operators or the public. Currently, the safety of a nuclear plant is assured through the combined use of procedures and engineered safety features together with a system of multiple protective barriers against the release of radioactivity. This approach is embodied in the concept of Design-Basis Accidents (DBA), which requires the designers to demonstrate that all credible accidents have been identified and that all safety equipment and procedures perform their functions extremely reliably. Particularly important functions are the automatic protection to shut the reactor down and to remove the decay heat while ensuring the integrity of the containment structure. Within the DBA concept, the so-called severe accidents were conveniently defined to be those accidents that lie beyond the DBA envelope; hence, they did not form part of the safety case. (author)

  9. Safety research for evolutionary light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D G [Karlsruhe Univ. (T.H.) (Germany). Universitaetsbibliothek

    1996-12-01

    The development of nuclear energy has been characterized by a continuous evolution of the technological and philosophical underpinnings of reactor safety to enable operation of the plant without causing harm to either the plant operators or the public. Currently, the safety of a nuclear plant is assured through the combined use of procedures and engineered safety features together with a system of multiple protective barriers against the release of radioactivity. This approach is embodied in the concept of Design-Basis Accidents (DBA), which requires the designers to demonstrate that all credible accidents have been identified and that all safety equipment and procedures perform their functions extremely reliably. Particularly important functions are the automatic protection to shut the reactor down and to remove the decay heat while ensuring the integrity of the containment structure. Within the DBA concept, the so-called severe accidents were conveniently defined to be those accidents that lie beyond the DBA envelope; hence, they did not form part of the safety case. (author).

  10. Safety in transport and storage of radioactive materials

    International Nuclear Information System (INIS)

    Mezrahi, A.; Xavier, A.M.

    1987-01-01

    The increasing utilization of radioisotopes in Industrial, Medical and Research Facilities as well as the processing of Nuclear Materials involve transport activities in a routine basis. The present work has the following main objectives: I) the identification of the safety aspects related to handling, transport and storage of radioactive materials; II) the orientation of the personnel responsible for the radiological safety of Radioactive Installations viewing the elaboration and implementation of procedures to minimize accidents; III) the report of case-examples of accidents that have occured in Brazil due to non-compliance with Transport Regulations. (author) [pt

  11. Canister storage building design basis accident analysis documentation

    International Nuclear Information System (INIS)

    KOPELIC, S.D.

    1999-01-01

    This document provides the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  12. Index to Nuclear Safety. A technical progress review by chronology, permuted title, and author. Vol. 11, No. 1--Vol. 17, No. 6

    International Nuclear Information System (INIS)

    Cottrell, W.B.; Klein, A.

    1977-01-01

    This index to Nuclear Safety covers articles in Nuclear Safety Vol. 11, No. 1 (Jan.-Feb. 1970), through Vol. 17, No. 6 (Nov.-Dec. 1976). The index includes a chronological list of articles (including abstract) followed by KWIC and Author Indexes. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. The index lists over 350 technical articles in the last six years of publication

  13. Index to Nuclear Safety. A technical progress review by chronology, permuted title, and author. Vol. 11, No. 1--Vol. 17, No. 6

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, W.B.; Klein, A.

    1977-02-23

    This index to Nuclear Safety covers articles in Nuclear Safety Vol. 11, No. 1 (Jan.-Feb. 1970), through Vol. 17, No. 6 (Nov.-Dec. 1976). The index includes a chronological list of articles (including abstract) followed by KWIC and Author Indexes. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. The index lists over 350 technical articles in the last six years of publication.

  14. Review of actinide nitride properties with focus on safety aspects

    Energy Technology Data Exchange (ETDEWEB)

    Albiol, Thierry [CEA Cadarache, St Paul Lez Durance Cedex (France); Arai, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  15. Radiation Authority and Nuclear Safety in Finland (STUK); La autoridad de Radiacion y Seguridad Nuclear de Finlandia (STUK)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Created in 1958 as an institute in charge of inspecting radioactive equipment used in hospitals, STUK is nowadays a specialised organisation whose functions cover all fields for applying radiation and nuclear safety. (Author)

  16. Model review and evaluation for application in DOE safety basis documentation of chemical accidents - modeling guidance for atmospheric dispersion and consequence assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Woodarad, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Hanna, S. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hesse, D. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Huang, J. -C. [Argonne National Lab. (ANL), Argonne, IL (United States); Lewis, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Mazzola, C. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    1997-09-01

    The U.S. Department of Energy (DOE), through its Defense Programs (DP), Office of Engineering and Operations Suppon, established the Accident Phenomenology and Consequence (AP AC) Methodology Evaluation Program to identify and evaluate methodologies and computer codes to support accident phenomenological and consequence calculations for both radiological and nonradiological materials at DOE facilities and to identify development needs. The program is also intended to define and recommend "best or good engineering/safety analysis practices" to be followed in preparing ''design or beyond design basis" assessments to be included in DOE nuclear and nonnuclear facility safety documents. The AP AC effort is intended to provide scientifically sound and more consistent analytical approaches, by identifying model selection procedures and application methodologies, in order to enhance safety analysis activities throughout the DOE complex.

  17. Action taken by the french safety authorities for fire protection and fire fighting in basic nuclear plants

    International Nuclear Information System (INIS)

    Savornin, J.; Gibault, M.; Berger, R.; Kaluzny, Y.; Wallard, H.E.; Winter, D.

    1989-03-01

    The safety goal for nuclear installations is to prevent the dispersal of radioactive substances, both in the work area and outside the buildings into the environment. It is therefore at the design stage, then during construction and subsequent operation that it is necessary to take preventive measures against the outbreak of fire, and to take precautions to ensure that the consequences will always be limited. The paper describes the arrangements made by the French safety authorities to provide protection against fire in both nuclear plants and nuclear fuel cycle installations at all these stages

  18. Safety Evaluation Report on Tennessee Valley Authority: Browns Ferry Nuclear Performance Plan: Browns Ferry Unit 2 restart

    International Nuclear Information System (INIS)

    1989-04-01

    This safety evaluation report (SER) on the information submitted by the Tennessee Valley Authority (TVA) in its Nuclear Performance Plan, through Revision 2, for the Browns Ferry Nuclear Power Station and in supporting documents has been prepared by the US Nuclear Regulatory Commission staff. The plan addresses the plant-specific concerns requiring resolution before startup of Unit 2. The staff will inspect implementation of those programs. Where systems are common to Units 1 and 2 or to Units 2 and 3, the staff safety evaluations of those systems are included herein. 3 refs

  19. Deepening om Safety culture Auto evaluation

    International Nuclear Information System (INIS)

    Lopez Churruca, I.; Buedo Jimenez, J. L.

    2009-01-01

    The concept of safety culture used in nuclear forums refers to the series of actions aimed at guaranteeing that safety issues in nuclear power plants are adequately addressed. The activities to which this concept refers have been gradually extended over the years so that, today, they encompass the whole organizations structure. In other words, the safety culture implies that all positions in the organizational structure perform their tasks with a level of attention such that all their senses are focused on them. And this performance is what leads us to excellence in plant operation. In addition, the implementation of a self-assessment system in the Cofrentes Nuclear Power Plant of its activities and processes has resulted in the identification of expectations on the basis of which we can identify strengths and weaknesses, enabling us to leverage the former and correct the latter. (Author)

  20. Nuclear safety risk control in the outage of CANDU unit

    International Nuclear Information System (INIS)

    Wu Mingliang; Zheng Jianhua

    2014-01-01

    Nuclear fuel remains in the core during the outage of CANDU unit, but there are still nuclear safety risks such as reactor accidental criticality, fuel element failure due to inability to properly remove residual heat. Furthermore, these risks are aggravated by the weakening plant system configuration and multiple cross operations during the outage. This paper analyzes the phases where there are potential nuclear safety risks on the basis of the typical critical path arrangement of the outage of Qinshan NPP 3 and introduces a series of CANDU-specific risk control measures taken during the past plant outages to ensure nuclear safety during the unit outage. (authors)

  1. Overview of the periodic safety review of nuclear power plants as practised in India

    International Nuclear Information System (INIS)

    Jhamb, N.K.; Chande, S.K.

    1997-01-01

    In India, routine and periodic safety reviews of nuclear facilities are carried out through a multitiered hierarchy of committees at the plant level, the operating organization level and the regulatory body level. In 1993, it was decided by the Atomic Energy Regulatory Board (AERB, the regulatory body) that, as a policy, authorization for operation of nuclear power plants (NPPs) shall have a validity period of 5 years, after which this authorization will have to be renewed. NPPs have to carry out a self-assessment according to an established procedure, prepare a Safety Assessment Report for Renewal of Authorization (SARRA) and submit it to the AERB for review. The procedure defines the objectives of the report and gives guidelines on the required review of the self-assessment of the operational plant safety. The paper discusses the objectives, the elements of the SARRA review, the review process, the SARRA review carried out in 1993-1994, the basis for acceptability of continued plant operation, and the lessons learned for future periodic safety reviews in India and for exchange of operating experience feedback. (author)

  2. Safety assessment for the above ground storage of Cadmium Safety and Control Rods at the Solid Waste Management Facility

    International Nuclear Information System (INIS)

    Shaw, K.W.

    1993-11-01

    The mission of the Savannah River Site is changing from radioisotope production to waste management and environmental restoration. As such, Reactor Engineering has recently developed a plan to transfer the safety and control rods from the C, K, L, and P reactor disassembly basin areas to the Transuranic (TRU) Waste Storage Pads for long-term, retrievable storage. The TRU pads are located within the Solid Waste Management Facilities at the Savannah River Site. An Unreviewed Safety Question (USQ) Safety Evaluation has been performed for the proposed disassembly basin operations phase of the Cadmium Safety and Control Rod Project. The USQ screening identified a required change to the authorization basis; however, the Proposed Activity does not involve a positive USQ Safety Evaluation. A Hazard Assessment for the Cadmium Safety and Control Rod Project determined that the above-ground storage of the cadmium rods results in no change in hazard level at the TRU pads. A Safety Assessment that specifically addresses the storage (at the TRU pads) phase of the Cadmium Safety and Control Rod Project has been performed. Results of the Safety Assessment support the conclusion that a positive USQ is not involved as a result of the Proposed Activity

  3. Bowtie Risk Management methodology and Modern Nuclear Safety Reports

    International Nuclear Information System (INIS)

    Ilizastigui Pérez, F.

    2016-01-01

    The Safety Report (SR) plays a crucial role within the nuclear licensing regime as the principal means for demonstrating the adequacy of safety analysis for a nuclear facility to ensure that it can be constructed, operated, maintained, shut down, and decommissioned safely and in compliance with applicable laws and regulations. It serves as the basis for granting authorizations for the commencement of the main stages of the facility’s life cycle as well as decision-making processes related to safety. Historically, the majority of nuclear safety reports have operated under rather prescriptive regimes, with emphasis placed on demonstrations of the robustness of the facility’s design (design safety) against prescriptive technical requirements set by the regulatory body, and less attention paid to demonstrating the adequacy and effectiveness of Operator’s management system for managing risks to daily operation.

  4. Conceptual design study for the demonstration reactor of JSFR. (3) Safety design and evaluation

    International Nuclear Information System (INIS)

    Tani, Akihiro; Shimakawa, Yoshio; Kubo, Shigenobu; Fujimura, Ken; Yamano, Hidemasa

    2011-01-01

    This paper describes the result of conceptual safety design and evaluation for the demonstration plant of Japan sodium-cooled fast reactor (JSFR), which was preliminarily conducted for providing information necessary to decide the plant specification for further design study. The plant major specifications except for output power and safety design concept are almost the same as those of the commercial JSFR. A set of safety evaluation for typical design basis events (DBEs) is mainly focused here, which was conducted for the 750 MWe design. Safety analyses for DBEs evaluation were performed on the basis of conservative assumptions using a one-dimensional flow network code with point kinetics. For representative DBEs, transient over power type events and loss of flow type events were analyzed. The long-term loss-of-offsite power event was also calculated to evaluate the natural circulation decay heat removal system. All analytical results showed to meet tentative safety criteria, thus it was confirmed that the safety design concept of JSFR is feasible against DBEs. (author)

  5. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    KRIPPS, L.J.

    2005-03-03

    This document describes the qualitative evaluation of frequency and consequences for DST and SST representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant structures, systems and components (SSCs) and/or technical safety requirements (TSRs) were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support WP-13033, Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.

  6. Safety culture in design. Final report

    International Nuclear Information System (INIS)

    Macchi, L.; Pietikaeinen, E.; Liinasuo, M.; Savioja, P.; Reiman, T.; Wahlstroem, M.; Kahlbom, U.; Rollenhagen, C.

    2013-04-01

    In this report we approach design from a safety culture approach As this research area is new and understudied, we take a wide scope on the issue. Different theoretical perspectives that can be taken when improving safety of the design process are considered in this report. We suggest that in the design context the concept of safety culture should be expanded from an organizational level to the level of the network of organizations involved in the design activity. The implication of approaching the design process from a safety culture perspective are discussed and the results of the empirical part of the research are presented. In the interview study in Finland and Sweden we identified challenges and opportunities in the design process from safety culture perspective. Also, a small part of the interview study concentrated on state of the art human factors engineering (HFE) practices in Finland and the results relating to that are presented. This report provide a basis for future development of systematic good design practices and for providing guidelines that can lead to safe and robust technical solutions. (Author)

  7. Safety culture in design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Macchi, L.; Pietikaeinen, E.; Liinasuo, M.; Savioja, P.; Reiman, T.; Wahlstroem, M. [VTT Technical Research Centre of Finland, Espoo (Finland); Kahlbom, U. [Risk Pilot AB, Stockholm (Sweden); Rollenhagen, C. [Vattenfall, Stockholm, (Sweden)

    2013-04-15

    In this report we approach design from a safety culture approach As this research area is new and understudied, we take a wide scope on the issue. Different theoretical perspectives that can be taken when improving safety of the design process are considered in this report. We suggest that in the design context the concept of safety culture should be expanded from an organizational level to the level of the network of organizations involved in the design activity. The implication of approaching the design process from a safety culture perspective are discussed and the results of the empirical part of the research are presented. In the interview study in Finland and Sweden we identified challenges and opportunities in the design process from safety culture perspective. Also, a small part of the interview study concentrated on state of the art human factors engineering (HFE) practices in Finland and the results relating to that are presented. This report provide a basis for future development of systematic good design practices and for providing guidelines that can lead to safe and robust technical solutions. (Author)

  8. A risk-informed perspective on deterministic safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Wan, P.T.

    2009-01-01

    In this work, the deterministic safety analysis (DSA) approach to nuclear safety is examined from a risk-informed perspective. One objective of safety analysis of a nuclear power plant is to demonstrate via analysis that the risks to the public from events or accidents that are within the design basis of the power plant are within acceptable levels with a high degree of assurance. This nuclear safety analysis objective can be translated into two requirements on the risk estimates of design basis events or accidents: the nominal risk estimate to the public must be shown to be within acceptable levels, and the uncertainty in the risk estimates must be shown to be small on an absolute or relative basis. The DSA approach combined with the defense-in-depth (DID) principle is a simplified safety analysis approach that attempts to achieve the above safety analysis objective in the face of potentially large uncertainties in the risk estimates of a nuclear power plant by treating the various uncertainty contributors using a stylized conservative binary (yes-no) approach, and applying multiple overlapping physical barriers and defense levels to protect against the release of radioactivity from the reactor. It is shown that by focusing on the consequence aspect of risk, the previous two nuclear safety analysis requirements on risk can be satisfied with the DSA-DID approach to nuclear safety. It is also shown the use of multiple overlapping physical barriers and defense levels in the traditional DSA-DID approach to nuclear safety is risk-informed in the sense that it provides a consistently high level of confidence in the validity of the safety analysis results for various design basis events or accidents with a wide range of frequency of occurrence. It is hoped that by providing a linkage between the consequence analysis approach in DSA with a risk-informed perspective, greater understanding of the limitation and capability of the DSA approach is obtained. (author)

  9. Canister storage building design basis accident analysis documentation

    Energy Technology Data Exchange (ETDEWEB)

    KOPELIC, S.D.

    1999-02-25

    This document provides the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  10. Nuclear safety

    International Nuclear Information System (INIS)

    Tarride, Bruno

    2015-10-01

    The author proposes an overview of methods and concepts used in the nuclear industry, at the design level as well as at the exploitation level, to ensure an acceptable safety level, notably in the case of nuclear reactors. He first addresses the general objectives of nuclear safety and the notion of acceptable risk: definition and organisation of nuclear safety (relationships between safety authorities and operators), notion of acceptable risk, deterministic safety approach and main safety principles (safety functions and confinement barriers, concept of defence in depth). Then, the author addresses the safety approach at the design level: studies of operational situations, studies of internal and external aggressions, safety report, design principles for important-for-safety systems (failure criterion, redundancy, failure prevention, safety classification). The next part addresses safety during exploitation and general exploitation rules: definition of the operation domain and of its limits, periodic controls and tests, management in case of incidents, accidents or aggressions

  11. SAFETY EVALUATION OF OXALIC ACID WASTE RETRIEVAL IN SINGLE SHELL TANK (SST) 241-C-106

    International Nuclear Information System (INIS)

    SHULTZ, M.V.

    2003-01-01

    This report documents the safety evaluation of the process of retrieving sludge waste from single-shell tank 241-C-106 using oxalic acid. The results of the HAZOP, safety evaluation, and control allocation/decision are part of the report. This safety evaluation considers the use of oxalic acid to recover residual waste in single-shell tank (SST) 241-C-106. This is an activity not addressed in the current tank farm safety basis. This evaluation has five specific purposes: (1) Identifying the key configuration and operating assumptions needed to evaluate oxalic acid dissolution in SST 241-C-106. (2) Documenting the hazardous conditions identified during the oxalic acid dissolution hazard and operability study (HAZOP). (3) Documenting the comparison of the HAZOP results to the hazardous conditions and associated analyzed accident currently included in the safety basis, as documented in HNF-SD-WM-TI-764, Hazard Analysis Database Report. (4) Documenting the evaluation of the oxalic acid dissolution activity with respect to: (A) Accident analyses described in HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR), and (B) Controls specified in HNF-SD-WM-TSR-006, Tank Farms Technical Safety Requirements (TSR). (5) Documenting the process and results of control decisions as well as the applicability of preventive and/or mitigative controls to each oxalic acid addition hazardous condition. This safety evaluation is not intended to be a request to authorize the activity. Authorization issues are addressed by the unreviewed safety question (USQ) evaluation process. This report constitutes an accident analysis

  12. Scientific Method and the Regulation of Health and Nutritional Claims by the European Food Safety Authority

    Science.gov (United States)

    Hoad, Darren

    2011-01-01

    The protection of European consumers from the false or misleading scientific and nutritional claims of food manufacturers took a step forward with the recent opinions of the European Food Safety Authority (EFSA). As a risk assessment agency, the EFSA recently assessed and rejected a vast number of food claim forcing the withdrawal of many claims…

  13. Safety analysis of tritium processing system based on PHA

    International Nuclear Information System (INIS)

    Fu Wanfa; Luo Deli; Tang Tao

    2012-01-01

    Safety analysis on primary confinement of tritium processing system for TBM was carried out with Preliminary Hazard Analysis. Firstly, the basic PHA process was given. Then the function and safe measures with multiple confinements about tritium system were described and analyzed briefly, dividing the two kinds of boundaries of tritium transferring through, that are multiple confinement systems division and fluid loops division. Analysis on tritium releasing is the key of PHA. Besides, PHA table about tritium releasing was put forward, the causes and harmful results being analyzed, and the safety measures were put forward also. On the basis of PHA, several kinds of typical accidents were supposed to be further analyzed. And 8 factors influencing the tritium safety were analyzed, laying the foundation of evaluating quantitatively the safety grade of various nuclear facilities. (authors)

  14. Sizewell B nuclear power station: the basis for the decision by the Health and Safety Executive to grant consent to load fuel into the reactor

    International Nuclear Information System (INIS)

    1994-01-01

    The licensing and consent process and the basis for granting a consent for Nuclear Electric to load fuel into the Sizewell B reactor in the United Kingdom are explained. Consent was granted by the UK Nuclear Installations Inspectorate on behalf of the Health and Safety Executive on satisfactory completion of construction and those commissioning stages needed to proceed safely, and the production of a satisfactory safety case. A summary of the assessment of the safety case is appended. It covers the reactor core, coolant system structural integrity, engineered safety features, main and essential electrical system, control and instrumentation, radioactive waste management, radiological protection, fuel storage and handling, civil works and structures, fault analysis, human factors, hazard analysis, quality assurance, and decommissioning. (UK)

  15. Guidance for the definition and application of probabilistic safety criteria

    International Nuclear Information System (INIS)

    Holmberg, J.-E.; Knochenhauer, M.

    2011-05-01

    The project 'The Validity of Safety Goals' has been financed jointly by NKS (Nordic Nuclear Safety Research), SSM (Swedish Radiation Safety Authority) and the Swedish and Finnish nuclear utilities. The national financing went through NPSAG, the Nordic PSA Group (Swedish contributions) and SAFIR2010, the Finnish research programme on NPP safety (Finnish contributions). The project has been performed in four phases during 2006-2010. This guidance document aims at describing, on the basis of the work performed throughout the project, issues to consider when defining, applying and interpreting probabilistic safety criteria. Thus, the basic aim of the document is to serve as a checklist and toolbox for the definition and application of probabilistic safety criteria. The document describes the terminology and concepts involved, the levels of criteria and relations between these, how to define a probabilistic safety criterion, how to apply a probabilistic safety criterion, on what to apply the probabilistic safety criterion, and how to interpret the result of the application. The document specifically deals with what makes up a probabilistic safety criterion, i.e., the risk metric, the frequency criterion, the PSA used for assessing compliance and the application procedure for the criterion. It also discusses the concept of subsidiary criteria, i.e., different levels of safety goals. The results from the project can be used as a platform for discussions at the utilities on how to define and use quantitative safety goals. The results can also be used by safety authorities as a reference for risk-informed regulation. The outcome can have an impact on the requirements on PSA, e.g., regarding quality, scope, level of detail, and documentation. Finally, the results can be expected to support on-going activities concerning risk-informed applications. (Author)

  16. Guidance for the definition and application of probabilistic safety criteria

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, J.-E. (VTT Technical Research Centre of Finland (Finland)); Knochenhauer, M. (Scandpower AB (Sweden))

    2011-05-15

    The project 'The Validity of Safety Goals' has been financed jointly by NKS (Nordic Nuclear Safety Research), SSM (Swedish Radiation Safety Authority) and the Swedish and Finnish nuclear utilities. The national financing went through NPSAG, the Nordic PSA Group (Swedish contributions) and SAFIR2010, the Finnish research programme on NPP safety (Finnish contributions). The project has been performed in four phases during 2006-2010. This guidance document aims at describing, on the basis of the work performed throughout the project, issues to consider when defining, applying and interpreting probabilistic safety criteria. Thus, the basic aim of the document is to serve as a checklist and toolbox for the definition and application of probabilistic safety criteria. The document describes the terminology and concepts involved, the levels of criteria and relations between these, how to define a probabilistic safety criterion, how to apply a probabilistic safety criterion, on what to apply the probabilistic safety criterion, and how to interpret the result of the application. The document specifically deals with what makes up a probabilistic safety criterion, i.e., the risk metric, the frequency criterion, the PSA used for assessing compliance and the application procedure for the criterion. It also discusses the concept of subsidiary criteria, i.e., different levels of safety goals. The results from the project can be used as a platform for discussions at the utilities on how to define and use quantitative safety goals. The results can also be used by safety authorities as a reference for risk-informed regulation. The outcome can have an impact on the requirements on PSA, e.g., regarding quality, scope, level of detail, and documentation. Finally, the results can be expected to support on-going activities concerning risk-informed applications. (Author)

  17. Organization of public authorities in France for the event of an incident or accident involving nuclear safety: Simulation of a nuclear crisis

    International Nuclear Information System (INIS)

    Cartigny, J.; Majorel, Y.

    1986-01-01

    The French nuclear safety regulations lay down the action to be taken in the event of an incident or accident involving the types of radiological hazard that could arise in a nuclear installation or during the transport of radioactive material. The organization established for this purpose is designed to ensure that the technical measures taken by the authorities responsible for nuclear safety, radiation protection, public order and public safety are fully effective. The Interministerial Nuclear Safety Committee (Comite interministeriel de la securite nucleaire), which reports to the Prime Minister, co-ordinates the measures taken by the public authorities. The public authorities and the operators together organize exercises designed to verify the whole complex of measures foreseen in the event of an incident or accident. These exercises, which have been carried out in a systematic manner in France for some years, are based on scenarios which are as realistic as possible and enable the following objectives to be achieved: (1) analysis of the crisis apparatus (ORSECRAD plans, individual intervention plans, information conventions); (2) uncovering gaps or inadequacies; (3) arrangements for interchange of information between the various participants whose responsibilities involve them in the emergency; and (4) allowance for the information requirements of the media and the population. The information drawn from these exercises enables the various procedures to be improved step by step. (author)

  18. Efficacy and safety testing of mycotoxin-detoxifying agents in broilers following the European Food Safety Authority guidelines.

    Science.gov (United States)

    Osselaere, A; Devreese, M; Watteyn, A; Vandenbroucke, V; Goossens, J; Hautekiet, V; Eeckhout, M; De Saeger, S; De Baere, S; De Backer, P; Croubels, S

    2012-08-01

    Contamination of feeds with mycotoxins is a worldwide problem and mycotoxin-detoxifying agents are used to decrease their negative effect. The European Food Safety Authority recently stated guidelines and end-points for the efficacy testing of detoxifiers. Our study revealed that plasma concentrations of deoxynivalenol and deepoxy-deoxynivalenol were too low to assess efficacy of 2 commercially available mycotoxin-detoxifying agents against deoxynivalenol after 3 wk of continuous feeding of this mycotoxin at concentrations of 2.44±0.70 mg/kg of feed and 7.54±2.20 mg/kg of feed in broilers. This correlates with the poor absorption of deoxynivalenol in poultry. A safety study with 2 commercially available detoxifying agents and veterinary drugs showed innovative results with regard to the pharmacokinetics of 2 antibiotics after oral dosing in the drinking water. The plasma and kidney tissue concentrations of oxytetracycline were significantly higher in broilers receiving a biotransforming agent in the feed compared with control birds. For amoxicillin, the plasma concentrations were significantly higher for broilers receiving an adsorbing agent in comparison to birds receiving the biotransforming agent, but not to the control group. Mycotoxin-detoxifying agents can thus interact with the oral bioavailability of antibiotics depending on the antibiotic and detoxifying agent, with possible adverse effects on the health of animals and humans.

  19. Current issues and perspectives in food safety and risk assessment.

    Science.gov (United States)

    Eisenbrand, G

    2015-12-01

    In this review, current issues and opportunities in food safety assessment are discussed. Food safety is considered an essential element inherent in global food security. Hazard characterization is pivotal within the continuum of risk assessment, but it may be conceived only within a very limited frame as a true alternative to risk assessment. Elucidation of the mode of action underlying a given hazard is vital to create a plausible basis for human toxicology evaluation. Risk assessment, to convey meaningful risk communication, must be based on appropriate and reliable consideration of both exposure and mode of action. New perspectives, provided by monitoring human exogenous and endogenous exposure biomarkers, are considered of great promise to support classical risk extrapolation from animal toxicology. © The Author(s) 2015.

  20. Nuclear Safety Bureau: safety objectives and principles for the proposed ANSTO reactor

    International Nuclear Information System (INIS)

    Westall, D.

    1993-01-01

    Siting criteria and safety assessment principles were previously promulgated by the Australian Atomic Energy Commission (AAEC), and have been applied by ANSTO and the Nuclear Safety Bureau (NSB). The NSB is revising these criteria and principles to take account of evolving nuclear safety standards and practices. The NSB Safety and Siting Assessment Principles (SSAP) are presented and it is estimated that it will provide a comprehensive basis for the safety assessment of research reactors in Australia, and be applicable to all stages of a reactor project: siting: design and construction; operation; modification; and decommissioning. The SSAP are similar to the principles promulgated by the AAEC, in that probabilistic safety criteria are set for assessment of design, however these criteria are complimentary to a deterministic design basis approach. This is a similar approach to that recently published by the UK Nuclear Installations Inspectorate 4 . Siting principles are now also included, where they were previously separate, and require a consideration of the consequences of severe accidents which are an extension of accidents catered for by the design of the plant. Criteria for radiation doses due to normal operations and design basis accidents are included in the principles for safety assessment. 9 refs

  1. A cliff edge evaluation for CANDU-6 beyond design basis accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.M.; Kho, D.W., E-mail: wolsong@khnp.co.kr [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Yi, S.D.; Kang, S.H.; Kim, S.R. [Nuclear Engineering Service and Solution Co., Ltd., Daejeon (Korea, Republic of)

    2015-07-01

    The condition of nuclear power plant in the event of station black out (SBO) accompanying large-scale natural disaster exceeding design basis accident (DBA) was evaluated. Additional scenarios were added to the evaluation to review capability of the plant to endure different conditions with different actions. The analysis resulted that the key action required from the operator was to ensure the opening of main steam safety valves (MSSVs) in the secondary side and of motor-operated valves for high pressure injection of Emergency Core Cooling System (HPECCS) to mitigate accidents or extend the cliff edge. (author)

  2. Safety evaluation report related to the operation of Sequoyah Nuclear Plant, Units 1 and 2, Docket Nos. 50-327 and 50-328, Tennessee Valley Authority. Supplement No. 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-01-01

    On September 17, 1980, the Nuclear Regulatory Commission (NRC) issued the facility operating license DPR-77 to the Tennessee Valley Authority for the Sequoyah Nuclear Plant, Unit 1, located in Hamilton County, Tennessee. The license authorized operation of Unit 1 at 100 percent power; however, a license condition regarding the adequacy of the hydrogen control system was included that required resolution by January 31, 1981. The purpose of Supplement No. 4 to the SER is to further update our Safety Evaluation Reports on the hydrogen control measures (Section 22.2, II.B.7), and to comply with the license condition which is as follows: 'By January 31, 1981, TVA shall by testing and analysis show to the satisfaction of the NRC staff that an interim hydrogen control system will provide with reasonable assurance protection against breach of containment in the event that a substantial quantity of hydrogen is generated.' TVA submitted on December 11, 1980, the first quarterly report on the research program for hydrogen control. Also, TVA revised volume 2 of the Sequoyah Core Degradation Program Report to incorporate additional information on the overall program. Section II.B.7 of Supplement No. 4 responds to the license condition. Each section is supplementary to and not in lieu of discussion in the Safety Evaluation Report and Supplements Nos. 1, 2, and 3, except where specifically noted. Supplements No. 2 and 3 to the Safety Evaluation Report provided a basis for concluding that the full-power licensing of Sequoyah Unit 1 need not await completion of ongoing work on hydrogen control measures. This supplement concludes that operation of the IDIS for an interim period of one year is appropriate.

  3. Managing for safety and safety culture within the UK nuclear industry. A regulator's perspective

    International Nuclear Information System (INIS)

    Tyrer, M.J.

    2002-01-01

    This paper outlines the basis of the legal system for the regulation of health and safety at work within the United Kingdom (UK), and in particular, the regulation of the nuclear industry. The framework, formulated by the regulator, which has been published as a practical guide for directors, managers, health and safety professionals and employee representatives for the successful management of health and safety is explained. This guidance, however, concentrates, to a large extent, on management systems and only addresses in part the types of issues, such as behaviours, values, attitudes and beliefs which contribute to the safety culture of an organization. The regulator of the UK nuclear industry has considered research, and other work, carried out by several organizations in this area, notably the Advisory Committee on the Safety of Nuclear Installations (ACSNI) and the International Atomic Energy Agency (IAEA), and produced its own framework for managing for safety at nuclear installations. As a regulator, the Health and Safety Executive (HSE), and its inspectorate responsible for regulation of the nuclear industry, HM Nuclear Installations Inspectorate (HMNII), are not the appropriate organization to assess the safety culture of an organization, but positively encourage organizations to both carry out this assessment themselves and to monitor their performance. To this end, HSE has developed, and made available, the Health and Safety Climate Tool which is aimed at providing organizations with information which can be used as part of a continuous improvement process. (author)

  4. Safety philosophy and licensing practice in different member states of IAEA: Germany, F.R

    International Nuclear Information System (INIS)

    Lahner, K.

    1981-01-01

    The safety philosophy, as the basis of the design of a NPP, will be shown under the aspects of general design rules, requirements by law, reactor safety commission and nuclear or conventional technical standards. Then a discussion of the licensing practise in the Federal Republic of Germany and in the USA will follow for the different stages of conceptual design, construction and operation with special consideration of the example of the NPP Muelheim-Kaerlich. The interrelation between designer and licensing authority, reactor safety commission and technical consultants will be taken into account. (orig./RW)

  5. Report on activities of Nuclear Regulatory Authority of the Slovak Republic and safety of nuclear installations in the Slovak Republic in 2007. Annual report

    International Nuclear Information System (INIS)

    2007-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2007 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Issuance of authorizations, assessment, supervisory activities and enforcement; (4) Nuclear safety of nuclear installations in the Slovak Republic; (5) Safety of other nuclear installations; (6) Management of radioactive waste; (7) Nuclear materials; (8) Emergency planning and preparedness; (9) International activities; (10) Public communication; (11) Nuclear Regulatory Authority of the Slovak Republic; (12) Abbreviations

  6. Complementary Safety Assessments for Research Reactors for the French Nuclear Safety Authority

    International Nuclear Information System (INIS)

    Kassiotis, Christophe; Rigaud, Antoine; Evrard, Lydie

    2013-01-01

    The 'Autorite de surete nucleaire' (ASN) requested licensees to undertake stress tests, called complementary safety assessments (CSA), of their installations on May 5th 2011, following the accident that occurred in Japan on March 11th 2011. Their mission consisted in providing feedback on the consequences of potential extreme events. In this process, all the French facilities were divided into three categories of decreasing priority, depending on two main factors: on the one hand, their vulnerability to the various phenomena that led to the Fukushima accident, and on the other hand, the amount of radioactive elements that would be dispersed in the event of a failure of the safety functions. On the 79 high-priority facilities, only five of them are research or experimental reactors (including two currently shutdown or in decommissioning) and their operators (the 'Comissariat a l'energie atomique et aux energies alternatives' (CEA) and the 'Institut Laue Langevin') submitted their reports to the ASN on September 15 th 2011. Concerning the lower-priority facilities, including three other facilities (two research reactors operated by the CEA and a facility operated by ITER Organization) the deadline was September 15 th 2012. Finally, the remaining facilities were not asked to submit a report yet, but they will have to do it later, mainly on the occasion of their next periodic safety review. The analyses of the cliff-edge effects, that may occur in extreme situations (exceptional scale event, combination of several disasters...), led to the definition of a hardened safety core concept by the 'Institut de radioprotection et de surete nucleaire' (IRSN). This hardened safety core of structures, equipment and organizational measures must ensure the ultimate protection of the concerned facilities in extreme situations : it is designed to prevent severe accidents (or curb their progression), limit large scale releases for extreme accidents, and enables the operating teams to

  7. International exchange of safety and licensing information

    International Nuclear Information System (INIS)

    Lafleur, J.D. Jr.; Hauber, R.D.; Chenier, D.M.

    1977-01-01

    A network of formal and informal bilateral arrangements for the exchange of nuclear safety information is being established by the U.S. Nuclear Regulatory Commission. For developing countries, such arrangements can provide ready access to the extensive, fully documented safety analyses and safety research results that NRC has accumulated. NRC has been receiving foreign visitors at a rate of about 500 per year, largely for discussions of safety and licensing questions related to light water reactors. Exchanges also are taking place on the safety of advanced reactors. A special interest of the NRC is in providing for reciprocal communicaion, at the earliest possible time, of important problems, decisions and other actions on nuclear safety matters. For example, it is essential that a newly-discovered problem in a nuclear reactor be brought immediately to the attention of other governments which are responsible for the safety of similar reactors. Definite progress has been made in the U.S. Freedom of Information Act. Certain exchanges have taken place on this basis. Experience in the establishment and operation of NRC's bilateral exchange arrangements is summarized. A typical exchange with the regulatory authority of country building its first power reactor is described

  8. Drug packaging in 2014: authorities should direct more efforts towards medication safety.

    Science.gov (United States)

    2015-05-01

    In 2014, Prescrire examined the packaging quality of about 250 drugs. A few advances stand out, mainly involving recent drugs, but on the whole, the situation is worrisome in terms of medication safety. Although pharmaceutical companies and drug regulatory agencies seem to be taking more account of the risk of accidental poisoning in children, the level of protection remains low overall in the absence of stringent measures on the part of the authorities. New drugs too often have poor-quality or even dangerous packaging at the time of their market introduction. And the packaging quality of older drugs is disturbing. Pharmaceutical companies no longer invest in the packaging of these products, and agencies often fail to take advantage of the opportunities provided by their reassessment to improve the situation. The inappropriate labelling of certain injectable drugs remains a source of medication errors, sometimes resulting in very serious consequences. In 2014, signs of progress in the packaging of several drugs show that its role in medication safety is better appreciated. But the persistence of dangers in the pharmaceuticals market, created by "unfinished", overly complex or poor-quality packaging, raises the question of the responsibility of pharmaceutical companies and agencies for past and present accidents.

  9. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    CROWE, R.D.; PIEPHO, M.G.

    2000-01-01

    This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  10. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    CROWE, R.D.

    1999-01-01

    This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  11. The Swedish Utilities joint approach to form common basis for design requirements for the future

    International Nuclear Information System (INIS)

    Hansson, B.

    1998-01-01

    The Owners of the Swedish Nuclear Power Plants have decided to form a document that should state the design principals and requirement for cost-effective and continuous development of the reactor safety in the future. The development of this document will be a part of the modernization and development of the Swedish Nuclear Power Plants. The basis for this document is an evaluation of Swedish and International standards and regulations as IAEA/INSAG, US-regulations, EUR etc. (author)

  12. Development of Comprehensive Nuclear Safety Regulation Plan for 2007-2011

    International Nuclear Information System (INIS)

    Choi, Young Sung; Kim, Woong Sik; Park, Dong Keuk; Kim, Ho Ki

    2006-01-01

    The Article 8-2 of Atomic Energy Act requires the government to establish Atomic Energy Promotion Plan every five years. It sets out national nuclear energy policies in a systematic and consistent way. The plan presents the goals and basic directions of national nuclear energy policies on the basis of current status and prospects. Both areas of utilization and safety management of nuclear energy are included and various projects and schedules are delineated based on the national policy directions. The safety management area in this plan deals with the overall safety and regulation policy. Its detail projects and schedule should be developed in separate plans by responsible ministries under the mediation of the MOST. As a regulatory authority, MOST is responsible for safety management area and its technical support organization, KINS has developed Comprehensive Nuclear Safety Regulation Plan as an implementation plan of safety area. This paper presents the development process and specific projects contained in the Comprehensive Nuclear Safety Regulation Plan which is under development now

  13. Mixing of incompatible materials in waste tanks technical basis document

    International Nuclear Information System (INIS)

    SANDGREN, K.R.

    2003-01-01

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process, the technical basis for assigning risk bins, and the controls selected for the mixing of incompatible materials representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSCs) and/or technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the FR-equency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report

  14. State Regulatory Authority (SRA) Coordination of Safety, Security, and Safeguards of Nuclear Facilities: A Framework for Analysis

    International Nuclear Information System (INIS)

    Mladineo, S.; Frazar, S.; Kurzrok, A.; Martikka, E.; Hack, T.; Wiander, T.

    2013-01-01

    In November 2012 the International Atomic Energy Agency (IAEA) sponsored a Technical Meeting on the Interfaces and Synergies in Safety, Security, and Safeguards for the Development of a Nuclear Power Program. The goal of the meeting was to explore whether and how safeguards, safety, and security systems could be coordinated or integrated to support more effective and efficient nonproliferation infrastructures. While no clear consensus emerged, participants identified practical challenges to and opportunities for integrating the three disciplines’ regulations and implementation activities. Simultaneously, participants also recognized that independent implementation of safeguards, safety, and security systems may be more effective or efficient at times. This paper will explore the development of a framework for conducting an assessment of safety-security-safeguards integration within a State. The goal is to examine State regulatory structures to identify conflicts and gaps that hinder management of the three disciplines at nuclear facilities. Such an analysis could be performed by a State Regulatory Authority (SRA) to provide a self-assessment or as part of technical cooperation either with a newcomer State, or to a State with a fully developed SRA.

  15. The role of quantitative uncertainty in the safety analysis of flammable gas accidents in Hanford waste tanks

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1998-01-01

    Following a 1990 investigation into flammable gas generation, retention, and release mechanisms within the Hanford Site high-level waste tanks, personnel concluded that the existing Authorization Basis documentation did not adequately evaluate flammable gas hazards. The US Department of Energy Headquarters subsequently declared the flammable gas hazard as an unresolved safety issue. Although work scope has been focused on resolution of the issue, it has yet to be resolved due to considerable uncertainty regarding essential technical parameters and associated risk. Resolution of the Flammable Gas Safety Issue will include the identification of a set of controls for the Authorization Basis for the tanks which will require a safety analysis of flammable gas accidents. A traditional nuclear facility safety analysis is based primarily on the analysis of a set of bounding accidents to represent the risks of the possible accidents and hazardous conditions at a facility. While this approach may provide some indication of the bounding consequences of accidents for facilities, it does not provide a satisfactory basis for identification of facility risk or safety controls when there is considerable uncertainty associated with accident phenomena and/or data as is the case with potential flammable gas accidents at the Hanford Site. This is due to the difficulties in identifying the bounding case and reaching consensus among safety analysts, facility operations and engineering, and the regulator on the implications of the safety analysis results. In addition, the bounding cases are frequently based on simplifying assumptions that make the analysis results insensitive to variations among facilities or the impact of alternative safety control strategies. The existing safety analysis of flammable gas accidents for the Tank Waste Remediation system (TWRS) at the Hanford Site has these difficulties. However, Hanford Site personnel are developing a refined safety analysis approach

  16. Lessons learned on digital systems safety

    International Nuclear Information System (INIS)

    Sivertsen, Terje

    2005-06-01

    A decade ago, in 1994, lessons learned from Halden research activities on digital systems safety were summarized in the reports HWR-374 and HWR-375, under the title 'A Lessons Learned Report on Software Dependability'. The reports reviewed all activities made at the Halden Project in this field since 1977. As such, the reports provide a wealth of information on Halden research. At the same time, the lessons learned from the different activities are made more accessible to the reader by being summarized in terms of results, conclusions and recommendations. The present report provides a new lessons learned report, covering the Halden Project research activities in this area from 1994 to medio 2005. As before, the emphasis is on the results, conclusions and recommendations made from these activities, in particular how they can be utilized by different types of organisations, such as licensing authorities, safety assessors, power companies, and software developers. The contents of the report have been edited on the basis of input from a large number of Halden work reports, involving many different authors. Brief summaries of these reports are included in the last part of the report. (Author)

  17. Development of safety analysis technology for integral reactor; evaluation on safety concerns of integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Chul; Kim, Woong Sik; Lee, J. H. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2002-03-01

    The Nuclear Desalination Plant (NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in this study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current light water reactor and advanced reactor designs, and user requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified and discussed. They include the use of proven technology for new safety features, systematic event classification and selection, strengthening containment function, and the safety impacts on desalination-related systems. The study presents the general safety requirements applicable to licensing of an integral reactor and suggests additional regulatory requirements, which need to be developed, based on the direction to resolution of the safety concerns. The efforts to identify and technically resolve the safety concerns in the design stage will provide the early confidence of SMART safety and the technical basis to evaluate the safety to designers and reviewers in the future. Suggestion on the development of additional regulatory requirements will contribute for the regulator to taking actions for licensing of an integral reactor. 66 refs., 5 figs., 24 tabs. (Author)

  18. Determination of Design Basis Earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Muneaki [Japan Atomic Power Co., Tokyo (Japan)

    1997-03-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  19. Determination of Design Basis Earthquake ground motion

    International Nuclear Information System (INIS)

    Kato, Muneaki

    1997-01-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  20. Index to Nuclear Safety. A technical progress review by chronology, permuted title, and author. Vol 11, No. 1 through Vol. 16, No. 6

    International Nuclear Information System (INIS)

    Cottrell, W.B.; Klein, A.

    1976-04-01

    This index to Nuclear Safety covers articles in Nuclear Safety Vol. 11, No. 1 (Jan.-Feb. 1970) through Vol. 16, No. 6 (Nov.-Dec. 1975). Included in the index is a chronological list of articles (including abstract) followed by both a KWIC index and an Author Index. Nuclear Safety is a bimonthly technical progress review prepared by the Nuclear Safety Information Center and covers all safety aspects of nuclear power reactors and associated facilities. The index lists over 300 technical articles in the last six years of publication

  1. Index to Nuclear Safety. A technical progress review by chronology, permuted title, and author. Vol 11, No. 1 through Vol. 16, No. 6

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, W.B.; Klein, A.

    1976-04-01

    This index to Nuclear Safety covers articles in Nuclear Safety Vol. 11, No. 1 (Jan.-Feb. 1970) through Vol. 16, No. 6 (Nov.-Dec. 1975). Included in the index is a chronological list of articles (including abstract) followed by both a KWIC index and an Author Index. Nuclear Safety is a bimonthly technical progress review prepared by the Nuclear Safety Information Center and covers all safety aspects of nuclear power reactors and associated facilities. The index lists over 300 technical articles in the last six years of publication.

  2. Status of conceptual safety design study of Japanese sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kubo, Shigenobu; Kurisaka, Kenichi; Niwa, Hajime; Shimakawa, Yoshio

    2005-01-01

    In this paper, the current conceptual safety design and related evaluation of Japanese Sodium-cooled Fast Reactor which is studied in the framework of the Feasibility Study (FS) on commercialized Fast Reactor Cycle Systems in Japan are described. The purpose of the safety design is to establish a feasible safety concept of FBR which aims at a sustainable energy source of the next generations. The safety targets and the safety design principle are set aiming at realizing worldwide acceptability of the safety level. The basic safety design concept, which can meet the safety targets, was formulated taking along with the defense-in-depth philosophy as the basic safety design principle. In order to cope with wide range of energy and resource demands, there are some various designs both of oxide and metal fuel for JSFR. Some analytical results of typical design basis events, design extension conditions and core damage frequency estimation show the feasibility of the safety design concept for them. (author)

  3. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    KRIPPS, L.J.

    2005-02-18

    This document describes the qualitative evaluation of frequency and consequences for double shell tank (DST) and single shell tank (SST) representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant SSCs and/or TSRS were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.

  4. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    International Nuclear Information System (INIS)

    KOZLOWSKI, S.D.

    2007-01-01

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below

  5. Fundamental safety principles. Safety fundamentals

    International Nuclear Information System (INIS)

    2007-01-01

    This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purpose. The fundamental safety objective - to protect people and the environment from harmful effects of ionizing radiation - applies to all circumstances that give rise to radiation risks. The safety principles are applicable, as relevant, throughout the entire lifetime of all facilities and activities - existing and new - utilized for peaceful purposes, and to protective actions to reduce existing radiation risks. They provide the basis for requirements and measures for the protection of people and the environment against radiation risks and for the safety of facilities and activities that give rise to radiation risks, including, in particular, nuclear installations and uses of radiation and radioactive sources, the transport of radioactive material and the management of radioactive waste

  6. Fundamental safety principles. Safety fundamentals

    International Nuclear Information System (INIS)

    2006-01-01

    This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purpose. The fundamental safety objective - to protect people and the environment from harmful effects of ionizing radiation - applies to all circumstances that give rise to radiation risks. The safety principles are applicable, as relevant, throughout the entire lifetime of all facilities and activities - existing and new - utilized for peaceful purposes, and to protective actions to reduce existing radiation risks. They provide the basis for requirements and measures for the protection of people and the environment against radiation risks and for the safety of facilities and activities that give rise to radiation risks, including, in particular, nuclear installations and uses of radiation and radioactive sources, the transport of radioactive material and the management of radioactive waste

  7. HANFORD SAFETY ANALYSIS & RISK ASSESSMENT HANDBOOK (SARAH)

    Energy Technology Data Exchange (ETDEWEB)

    EVANS, C B

    2004-12-21

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S&M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard.

  8. The current CEA/DRN safety approach for the design and the assessment of non-electrical applications of nuclear heat

    International Nuclear Information System (INIS)

    Fiorini, G.L.; Costa, M.

    2000-01-01

    This paper presents the basis of the safety approach currently implemented by the Commissariat a l'Energie Atomique - Nuclear Reactor Directorate (CEA/DRN), both for the design and the assessment of innovative systems and future nuclear installations. It is considered that the described approach is applicable to the plants built for non-electrical applications of nuclear heat. This is typically the case of Nuclear Desalination Installations. This approach is the result of the experience maturated, within the context of the CEA/DRN Innovative Programme, through practical applications over several future concepts (both fission and fusion plants). The background of this experience is structured coherently with the European Safety Authorities recommendations, the European Utilities Requirements (EUR) and the ''fundamental safety objectives'' defined by the IAEA. The Defence In Depth principle and its application, by means, among others, of the barrier concept, remains the basis of the safety design process of future nuclear installations. Its adequacy is checked through the safety assessment. The methodology for Lines of Defence (LOD) implementation as well as the one for the LOD architecture assessment is shown and motivated. The document shows that the clear and unambiguous definition of the safety approach provides an essential base for the organisation of the design tasks, being sure that the safety aspects are correctly taken into account and implemented, and for an adequate safety assessment of the final design, both from qualitative point of view as well as for the quantitative safety analysis. (author)

  9. Building competence in radiation and nuclear safety through education and training - the approach of a national regulatory authority

    International Nuclear Information System (INIS)

    Karfopoulos, K.L.; Carinou, E.; Kamenopoulou, V.; Dimitriou, P.; Housiadas, Ch.

    2015-01-01

    The Greek Atomic Energy Commission (EEAE) is the national competent authority for radiation and nuclear safety and security as well as for the radiation protection of ionizing and artificially produced non-ionizing radiation. The legal framework determines, inter alia, the responsibilities in education and training issues. The EEAE has a range of activities, in providing postgraduate and continuous education and training on radiation protection, and nuclear safety and security, at the national and international levels. At the national level, and particularly in the medical field, the EEAE is a participant in and a major contributor to the Inter-University Postgraduate Program on Medical Radiation Physics. Since 2003, the EEAE has been the Regional Training Center (RTC) for radiation, transport and waste safety of the International Atomic Energy Agency (IAEA) for the European Region in the English language. Moreover, the EEAE has also been recognized as the IAEA's Regional Training Center (RTC) in nuclear security in the English language since 2013. The EEAE recently proceeded to two significant initiatives: the design of a national program for education and training, and the certification of the Department of Education according to ISO 29990:2010. In this paper, the initiatives taken to enhance the radiation protection system in the country through education and training are presented. (authors)

  10. Model-Driven Development of Safety Architectures

    Science.gov (United States)

    Denney, Ewen; Pai, Ganesh; Whiteside, Iain

    2017-01-01

    We describe the use of model-driven development for safety assurance of a pioneering NASA flight operation involving a fleet of small unmanned aircraft systems (sUAS) flying beyond visual line of sight. The central idea is to develop a safety architecture that provides the basis for risk assessment and visualization within a safety case, the formal justification of acceptable safety required by the aviation regulatory authority. A safety architecture is composed from a collection of bow tie diagrams (BTDs), a practical approach to manage safety risk by linking the identified hazards to the appropriate mitigation measures. The safety justification for a given unmanned aircraft system (UAS) operation can have many related BTDs. In practice, however, each BTD is independently developed, which poses challenges with respect to incremental development, maintaining consistency across different safety artifacts when changes occur, and in extracting and presenting stakeholder specific information relevant for decision making. We show how a safety architecture reconciles the various BTDs of a system, and, collectively, provide an overarching picture of system safety, by considering them as views of a unified model. We also show how it enables model-driven development of BTDs, replete with validations, transformations, and a range of views. Our approach, which we have implemented in our toolset, AdvoCATE, is illustrated with a running example drawn from a real UAS safety case. The models and some of the innovations described here were instrumental in successfully obtaining regulatory flight approval.

  11. Research on integrated managing system based on CIMS for nuclear power plant safety

    International Nuclear Information System (INIS)

    Zhou Gang

    2006-01-01

    In order to improve safety, economy and reliability of operation for nuclear power plant (NPP), a novel integrated managing method was proposed based on the ideas of computer and contemporary integrated manufacturing system (CIMS). The application of CIMS to nuclear power plant safety management was researched. In order to design an integrated managing system to meet the needs of NPP safety management, all work related to nuclear safety is divided into different category according to its characters. On basis of this work, general integrated managing system was designed at first. Then subsystems were designed and every subsystem implements a category of nuclear safety management work. All subsystems are independent relatively on the one hand and are interrelated on other hand by global information system. (authors)

  12. The safety evaluation guide for laboratories and plants a tool for enhancing safety

    International Nuclear Information System (INIS)

    Lhomme, Veronique; Daubard, Jean-Paul

    2013-01-01

    The Institute for Radioprotection and Nuclear Safety (IRSN) acts as technical support for the French government Authorities competent in nuclear safety and radiation protection for civil and defence activities. In this frame, the Institute's performs safety assessments of the safety cases submitted by operators to these Authorities for each stage in the life cycle of a nuclear facility, including dismantling operations, which is subjected to a licensing procedure. In the fuel cycle field, this concerns a large variety of facilities. Very often, depending on facilities and on safety cases, safety assessment to be performed is multidisciplinary and involves the supervisor in charge of the facility and several safety experts, particularly to cover the whole set of risks (criticality, exposure to radiation, fire, handling, containment, human and organisational factors...) encountered during facility's operations. Taking these into account, and in order to formalize the assessment process of the fuel cycle facilities, laboratories, irradiators, particle accelerators, under-decommissioning reactors and radioactive waste management, the 'Plants, Laboratories, Transports and Waste Safety' Division of IRSN has developed an internal guide, as a tool: - To present the methodological framework, and possible specificities, for the assessment according to the 'Defence in Depth Concept' (Part 1); - To provide key questions associated to the necessary contradictory technical review of the safety cases (Part 2); - To capitalise on experience on the basis of technical examples (coming from incident reports, previous safety assessments...) demonstrating the questioning (Part 3). The guide is divided in chapters, each dedicated to a type of risk (dissemination of radioactive material, external or internal exposure from ionising radiation, criticality, radiolysis mechanisms, handling operations, earthquake, human or organisational factors...) or to a type

  13. Safety design philosophy of gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Katanishi, Shoji; Kunitomi, Kazuhiko

    2003-01-01

    Japan Atomic Energy Research Institute (JAERI) has been developing design studies of the Gas Turbine High Temperature Reactor (GTHTR300). The original safety design philosophy has also been discussed and fixed for the GTHTR300 based on the experience of the High Temperature Engineering Test Reactor (HTTR) of JAERI which is the first High Temperature Gas-cooled Reactor (HTGR) in Japan. One of the unique feature of the safety philosophy of the GTHTR300 is that a depressurization accident induced by a large pipe break is postulated as a design basis accident in order to show the high level of safety characteristics, though its probability of occurrence is lower than the probability range of design basis accident. Another feature of safety design is to adopt a double confinement that is one of the original concepts for the GTHTR300. By using a double confinement, a feasibility of safety design without containment vessel was clarified even in case of the depressurization accident. The safety design philosophies for passive cooling system, reactor shutdown system, and so on were determined. The methodology for the safety evaluation, such as safety criteria and selection of events to be evaluated by using estimation of probability of occurrence, were also discussed and determined. This article describes the safety design philosophy and some results of preliminary evaluations which were conducted in order to clarify the feasibility of original safety design of the GTHTR300. The present study is entrusted from Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  14. Range and limits of application of Sec.12, Atomic Energy Act, as a legal basis of the nuclear plant safety ordinance

    International Nuclear Information System (INIS)

    Schmidt-Preuss, Matthias

    2009-01-01

    Ensuring plant safety is a key purpose of nuclear law. Sec.7 II No.3, Atomic Energy Act, is considered the basic norm of nuclear legislation. The main requirement this embodies is ensuring 'the provisions against damage arising from construction and operation of a plant as required in accordance with the state of the art'. These normative requirements constitute the strictest yardstick existing in legislation about technology. Putting it into effect has always been the purpose of the set of nuclear rules and regulations constituting the next lower level of legislation, which so far have developed by evolution and are now to be updated comprehensively in the format of so-called modules as provided for in the concept of the Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU). So far, there has not been a nuclear plant safety ordinance. The Atomic Energy Act has always provided a basis for adopting such an ordinance, especially so in Sec.12 I 1 No.1, Atomic Energy Act. No federal government has so far wanted to make use of it. This makes it all the more remarkable that the BMU took up the subject of a nuclear plant safety ordinance as early as in 2006, starting a dialog with the federal states. This dialog meanwhile has come to a halt. The subject seems to be dormant right now, but certainly has not been shelved. Ensuring plant safety is a key purpose of nuclear law. Sec.7 II No.3, Atomic Energy Act, is considered the basic norm of nuclear legislation. The main requirement this embodies is ensuring 'the provisions against damage arising from construction and operation of a plant as required in accordance with the state of the art'. These normative requirements constitute the strictest yardstick existing in legislation about technology. Putting it into effect has always been the purpose of the set of nuclear rules and regulations constituting the next lower level of legislation, which so far have developed by evolution and are now to be

  15. Regulatory Control of Radiation Sources. Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  16. Characterisation of Liquefaction Effects for Beyond-Design Basis Safety Assessment of Nuclear Power Plants

    Science.gov (United States)

    Bán, Zoltán; Győri, Erzsébet; János Katona, Tamás; Tóth, László

    2015-04-01

    -tree procedure. Earlier studies have shown that the potentially liquefiable layer at Paks Nuclear Power Plant is situated in relatively large depth. Therefore the applicability and adequacy of the methods at high overburden pressure is important. In case of existing facilities, the geotechnical data gained before construction aren't sufficient for the comprehensive liquefaction analysis. Performance of new geotechnical survey is limited. Consequently, the availability of the data has to be accounted while selection the analysis methods. Considerations have to be made for dealing with aleatory uncertainty related to the knowledge of the soil conditions. It is shown in the paper, a careful comparison and analysis of the results obtained by different methodologies provides the basis of the selection of practicable methods for the safety analysis of nuclear power plant for beyond design basis liquefaction hazard.

  17. Leadership for Safety in Practice: Perspectives from a Nuclear Regulator

    International Nuclear Information System (INIS)

    Tyobeka, B. M.

    2016-01-01

    The principal responsibility for a nuclear regulator is to assure compliance with regulations and safety standards by operators. One of these requirements is demonstration of, and adherence to, nuclear safety culture by the operators. At the same time, the regulators themselves are expected to live the talk and practice what they preach, i.e., demonstrate highest levels of nuclear safety culture within their organizations. Consequently, it is recognised that leadership is important in the creation of a culture that supports and promotes a strong nuclear safety performance of an organization. The leaders of a regulatory body are vital in inspiring employees to a higher level of safety and productivity, which means that they must apply good leadership attributes on a daily basis. This paper will attempt to bring forth and share attributes for strong leadership role in promoting a safety culture within a nuclear regulatory body by surveying world-wide practices and examples in developing and advanced nuclear countries. (author)

  18. Review of SKB's interim report of SR-Can: SKI's and SSI's evaluation of SKB's up-dated methodology for safety assessment

    International Nuclear Information System (INIS)

    Dverstorp, Bjoern; Moberg, Leif; Wiebert, Anders; Xu Shulan; Stroemberg, Bo; Kautsky, Fritz; Lilja, Christina; Simic, Eva; Sundstroem, Benny; Toverud, Oeivind

    2005-07-01

    This report presents the findings of a review of the Swedish Nuclear Fuel and Waste Management Co.'s (SKB) interim report of the safety assessment SR-Can (SKB TR 04-11), conducted by the Swedish Radiation Protection Authority (SSI) and the Swedish Nuclear Power Inspectorate (SKI). SKB's interim report describes and exemplifies the safety assessment methodology that SKB plans to use in the oncoming licence applications for an encapsulation plant and a final repository for spent nuclear fuel. The authorities' review takes into account the findings of an international peer review of SKB's interim report. The authorities conclude that SKB has improved its safety assessment methodology in several aspects compared to earlier safety reports. Among other things the authorities commend SKB for giving a comprehensive account of relevant regulations and guidance, and for the systematic approach to identification and documentation of features, events and processes that need to be considered in the safety assessment. However, the authorities also conclude that important parts of SKB's method need to be further developed before they are mature enough to be used as a basis for a license application. The authorities' overall assessment is summarised in chapter 8 of this report

  19. Light Water Reactor Generic Safety Issues Database (LWRGSIDB). User's manual

    International Nuclear Information System (INIS)

    1999-01-01

    The IAEA Conference on 'The Safety of Nuclear Power: Strategy for the Future' in 1991 was a milestone in nuclear safety. The objective of this conference was to review nuclear power safety issues for which achieving international consensus would be desirable, to address concerns on nuclear safety and to formulate recommendations for future actions by national and international authorities to advance nuclear safety to the highest level. Two of the important items addressed by this conference were ensuring and enhancing safety of operating plants and treatment of nuclear power plants built to earlier safety standards. Some of the publications related to these two items that have been issued subsequent to this conference are: A Common Basis for Judging the Safety of Nuclear Power Plants Built to Earlier Standards, INSAG-8 (1995), the IAEA Safety Guide 50-SG-O12, Periodic Safety Review of Operational Nuclear Power Plants (1994) and IAEA Safety Reports Series No. 12, Evaluation of the Safety of Operating Nuclear Power Plants Built to Earlier Standards: A Common Basis for Judgement (1998). Some of the findings of the 1991 conference have not yet been fully addressed. An IAEA Symposium on Reviewing the Safety of Existing Nuclear Power Plants in 1996 showed that there is an urgent need for operating organizations and national authorities to review those operating nuclear power plants which do not reach the high safety levels of the vast majority of plants and to undertake improvements with assistance from the international community if required. Safety reviews of operating nuclear power plants take on added importance in the context of the Convention on Nuclear Safety and its implementation. In order to perform safety reviews and to reassess the safety of operating nuclear power plants in a uniform manner, it is imperative to have an internationally accepted reference. Existing guidance needs to be complemented by a list of safety issues which have been encountered and

  20. Safety, danger and catastrophe inevitability in operation of safety-critical software algorithms: a possible new look at software safety analysis

    International Nuclear Information System (INIS)

    Povyakalo, A.A.

    2000-01-01

    The paper provides basic definitions and describes the basic procedure of the Formal Qualitative Safety Analysis (FQSA) of critical software algorithms. The procedure is described by C-based pseudo-code. It uses the notion of weakest precondition and representation of a given critical algorithm by a Gurevich's Abstract State Mashine (GASM). For a given GASM and a given Catastrophe Condition the procedure results in a Catastrophe Inevitability Condition (it means that every sequence of algorithm steps lead to a catastrophe early or late), Danger Condition (it means that next step may lead to a catastrophe or make a catastrophe to be inevitable, but a catastrophe may be prevented yet), Safety Condition (it means that a next step can not lead to a catastrophe or make a catastrophe to be inevitable). The using of proposed procedure is illustrated by a simplest test example of algorithm. The FQSA provides a logical basis for PSA of critical algorithm. (author)

  1. Radioactive waste storage facilities, involvement of AVN in inspection and safety assessment

    International Nuclear Information System (INIS)

    Simenon, R.; Smidts, O.

    2006-01-01

    The legislative and regulatory framework in Belgium for the licensing and the operation of radioactive waste storage buildings are defined by the Royal Decree of 20 July 2001 (hereby providing the general regulations regarding to the protection of the population, the workers and the environment against the dangers of ionising radiation). This RD introduces in the Belgian law the radiological protection and ALARA-policy concepts. The licence of each nuclear facility takes the form of a Royal Decree of Authorization. It stipulates that the plant has to be in conformity with its Safety Analysis Report. This report is however not a public document but is legally binding. Up to now, the safety assessment for radioactive waste storage facilities, which is implemented in this Safety Analysis Report, has been judged on a case-by-case basis. AVN is an authorized inspection organisation to carry out the surveillance of the Belgian nuclear installations and performs hereby nuclear safety assessments. AVN has a role in the nuclear safety and radiation protection during all the phases of a nuclear facility: issuance of licenses, during design and construction phase, operation (including reviewing and formal approval of modifications) and finally the decommissioning. Permanent inspections are performed on a regular basis by AVN, this by a dedicated site inspector, who is responsible for a site of an operator with nuclear facilities. Besides the day-to-day inspections during operation there are also the periodic safety reviews. AVN assesses the methodological approaches for the analyses, reviews and approves the final studies and results. The conditioned waste in Belgium is stored on the Belgoprocess' sites (region Mol-Dessel) for an intermediate period (about 80 years). In the meantime, a well-defined inspection programme is being implemented to ensure that the conditioned waste continues to be stored safely during this temporary storage period. This programme was draw up by

  2. Report on activities of Nuclear Regulatory Authority of the Slovak Republic and safety of nuclear installations in the Slovak Republic in 2009. Annual report

    International Nuclear Information System (INIS)

    2010-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2009 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Issuance of authorizations, assessment, supervisory activities and enforcement; (4) Nuclear safety of nuclear installations in the Slovak Republic; (5) Safety of other nuclear installations; (6) Management of radioactive waste; (7) Nuclear materials and physical protection of nuclear materials; (8) Emergency planning and preparedness; (9) International activities; (10) Public communication; (11) Nuclear Regulatory Authority of the Slovak Republic; (12) UJD SR organization chart; (13) Abbreviations.

  3. Report on activities of Nuclear Regulatory Authority of the Slovak Republic and safety of nuclear installations in the Slovak Republic in 2008. Annual report

    International Nuclear Information System (INIS)

    Zemanova, D.; Pirozekova, M.

    2009-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2008 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Issuance of authorizations, assessment, supervisory activities and enforcement; (4) Nuclear safety of nuclear installations in the Slovak Republic; (5) Safety of other nuclear installations; (6) Management of radioactive waste; (7) Nuclear materials and physical protection of nuclear materials; (8) Activity of Building Office; (9) Emergency planning and preparedness; (10) International activities; (11) Public communication; (11) Nuclear Regulatory Authority of the Slovak Republic; (12) UJD SR organization chart; (13) Abbreviations

  4. Research and development strategy and maintenance engineering to strengthen the basis of ageing management. International activities

    International Nuclear Information System (INIS)

    Sekimura, Naoto

    2009-01-01

    Systematic development of information basis for database and knowledge-base has been performed in addition to the development of codes and standards by academic societies, regulatory bodies and industries through the intensive domestic safety research collaborations and international collaboration, through the continuous revision of Strategy Maps for Ageing Management and Safe Long Term Operation. Important international activities in IAEA and OECD/NEA especially for knowledge-base and extraction of commendable practices in ageing management are discussed. (author)

  5. Transportation Safety Excellence in Operations Through Improved Transportation Safety Document

    International Nuclear Information System (INIS)

    Dr. Michael A. Lehto; MAL

    2007-01-01

    A recent accomplishment of the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Nuclear Safety analysis group was to obtain DOE-ID approval for the inter-facility transfer of greater-than-Hazard-Category-3 quantity radioactive/fissionable waste in Department of Transportation (DOT) Type A drums at MFC. This accomplishment supported excellence in operations through safety analysis by better integrating nuclear safety requirements with waste requirements in the Transportation Safety Document (TSD); reducing container and transport costs; and making facility operations more efficient. The MFC TSD governs and controls the inter-facility transfer of greater-than-Hazard-Category-3 radioactive and/or fissionable materials in non-DOT approved containers. Previously, the TSD did not include the capability to transfer payloads of greater-than-Hazard-Category-3 radioactive and/or fissionable materials using DOT Type A drums. Previous practice was to package the waste materials to less-than-Hazard-Category-3 quantities when loading DOT Type A drums for transfer out of facilities to reduce facility waste accumulations. This practice allowed operations to proceed, but resulted in drums being loaded to less than the Waste Isolation Pilot Plant (WIPP) waste acceptance criteria (WAC) waste limits, which was not cost effective or operations friendly. An improved and revised safety analysis was used to gain DOE-ID approval for adding this container configuration to the MFC TSD safety basis. In the process of obtaining approval of the revised safety basis, safety analysis practices were used effectively to directly support excellence in operations. Several factors contributed to the success of MFC's effort to obtain approval for the use of DOT Type A drums, including two practices that could help in future safety basis changes at other facilities. (1) The process of incorporating the DOT Type A drums into the TSD at MFC helped to better integrate nuclear safety

  6. Safety strategy and safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1976-01-01

    The safety strategy for nuclear power plants is characterized by the fact that the high level of safety was attained not as a result of experience, but on the basis of preventive accident analyses and the finding derived from such analyses. Although, in these accident analyses, the deterministic approach is predominant, it is supplemented by reliability analyses. The accidents analyzed in nuclear licensing procedures cover a wide spectrum from minor incidents to the design basis accidents which determine the design of the safety devices. The initial and boundary conditions, which are essentail for accident analyses, and the determination of the loads occurring in various states during regular operation and in accidents flow into the design of the individual systems and components. The inevitable residual risk and its origins are discussed. (orig.) [de

  7. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    Energy Technology Data Exchange (ETDEWEB)

    CROWE, R.D.

    1999-09-09

    This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  8. Integrated Safety Culture Model and Application

    Institute of Scientific and Technical Information of China (English)

    汪磊; 孙瑞山; 刘汉辉

    2009-01-01

    A new safety culture model is constructed and is applied to analyze the correlations between safety culture and SMS. On the basis of previous typical definitions, models and theories of safety culture, an in-depth analysis on safety culture's structure, composing elements and their correlations was conducted. A new definition of safety culture was proposed from the perspective of sub-cuhure. 7 types of safety sub-culture, which are safety priority culture, standardizing culture, flexible culture, learning culture, teamwork culture, reporting culture and justice culture were defined later. Then integrated safety culture model (ISCM) was put forward based on the definition. The model divided safety culture into intrinsic latency level and extrinsic indication level and explained the potential relationship between safety sub-culture and all safety culture dimensions. Finally in the analyzing of safety culture and SMS, it concluded that positive safety culture is the basis of im-plementing SMS effectively and an advanced SMS will improve safety culture from all around.

  9. System theory and safety models in Swedish, UK, Dutch and Australian road safety strategies.

    Science.gov (United States)

    Hughes, B P; Anund, A; Falkmer, T

    2015-01-01

    Road safety strategies represent interventions on a complex social technical system level. An understanding of a theoretical basis and description is required for strategies to be structured and developed. Road safety strategies are described as systems, but have not been related to the theory, principles and basis by which systems have been developed and analysed. Recently, road safety strategies, which have been employed for many years in different countries, have moved to a 'vision zero', or 'safe system' style. The aim of this study was to analyse the successful Swedish, United Kingdom and Dutch road safety strategies against the older, and newer, Australian road safety strategies, with respect to their foundations in system theory and safety models. Analysis of the strategies against these foundations could indicate potential improvements. The content of four modern cases of road safety strategy was compared against each other, reviewed against scientific systems theory and reviewed against types of safety model. The strategies contained substantial similarities, but were different in terms of fundamental constructs and principles, with limited theoretical basis. The results indicate that the modern strategies do not include essential aspects of systems theory that describe relationships and interdependencies between key components. The description of these strategies as systems is therefore not well founded and deserves further development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. HANFORD SAFETY ANALYSIS and RISK ASSESSMENT HANDBOOK (SARAH)

    International Nuclear Information System (INIS)

    EVANS, C.B.

    2004-01-01

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S and M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard

  11. Westinghouse Hanford Company safety analysis reports and technical safety requirements upgrade program

    International Nuclear Information System (INIS)

    Busche, D.M.

    1995-09-01

    During Fiscal Year 1992, the US Department of Energy, Richland Operations Office (RL) separately transmitted the following US Department of Energy (DOE) Orders to Westinghouse Hanford Company (WHC) for compliance: DOE 5480.21, ''Unreviewed Safety Questions,'' DOE 5480.22, ''Technical Safety Requirements,'' and DOE 5480.23, ''Nuclear Safety Analysis Reports.'' WHC has proceeded with its impact assessment and implementation process for the Orders. The Orders are closely-related and contain some requirements that are either identical, similar, or logically-related. Consequently, WHC has developed a strategy calling for an integrated implementation of the three Orders. The strategy is comprised of three primary objectives, namely: Obtain DOE approval of a single list of DOE-owned and WHC-managed Nuclear Facilities, Establish and/or upgrade the ''Safety Basis'' for each Nuclear Facility, and Establish a functional Unreviewed Safety Question (USQ) process to govern the management and preservation of the Safety Basis for each Nuclear Facility. WHC has developed policy-revision and facility-specific implementation plans to accomplish near-term tasks associated with the above strategic objectives. This plan, which as originally submitted in August 1993 and approved, provided an interpretation of the new DOE Nuclear Facility definition and an initial list of WHC-managed Nuclear Facilities. For each current existing Nuclear Facility, existing Safety Basis documents are identified and the plan/status is provided for the ISB. Plans for upgrading SARs and developing TSRs will be provided after issuance of the corresponding Rules

  12. Integrated therapy safety management system

    Science.gov (United States)

    Podtschaske, Beatrice; Fuchs, Daniela; Friesdorf, Wolfgang

    2013-01-01

    Aims The aim is to demonstrate the benefit of the medico-ergonomic approach for the redesign of clinical work systems. Based on the six layer model, a concept for an ‘integrated therapy safety management’ is drafted. This concept could serve as a basis to improve resilience. Methods The concept is developed through a concept-based approach. The state of the art of safety and complexity research in human factors and ergonomics forms the basis. The findings are synthesized to a concept for ‘integrated therapy safety management’. The concept is applied by way of example for the ‘medication process’ to demonstrate its practical implementation. Results The ‘integrated therapy safety management’ is drafted in accordance with the six layer model. This model supports a detailed description of specific work tasks, the corresponding responsibilities and related workflows at different layers by using the concept of ‘bridge managers’. ‘Bridge managers’ anticipate potential errors and monitor the controlled system continuously. If disruptions or disturbances occur, they respond with corrective actions which ensure that no harm results and they initiate preventive measures for future procedures. The concept demonstrates that in a complex work system, the human factor is the key element and final authority to cope with the residual complexity. The expertise of the ‘bridge managers’ and the recursive hierarchical structure results in highly adaptive clinical work systems and increases their resilience. Conclusions The medico-ergonomic approach is a highly promising way of coping with two complexities. It offers a systematic framework for comprehensive analyses of clinical work systems and promotes interdisciplinary collaboration. PMID:24007448

  13. Some questions of monitoring on nuclear installations and quality of safety assessments

    International Nuclear Information System (INIS)

    Labazov, V.

    1998-01-01

    The paper is prepared on the basis of assessment performed by the State Scientific and Technical Centre on Nuclear and Radiation safety which deals with scientific and technical support of the Regulatory Authorities of Ukraine concerning integrity of pressurised elements in the NPP. A number of acute issues on control equipment could be distinguished: placement of sensors should provide adequate information on the data under control necessary for safety analysis; properties of instrumentation should provide trustworthy information about measured values; accurate recommendations should be imposed to operating organisations for performing special analyses for control devices

  14. Modern licensing approaches for analysis of important to safety processes in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Andreeva, M.; Groudev, P.; Pavlova, M.; Stoyanov, S.

    2008-01-01

    It is presented within the paper the modern approaches for analysis of important to safety assessment processes in Nuclear Power Plants, included Bulgarian Regulatory Agency's requirements for quantity assessment of these processes applying deterministic and probabilistic approaches for establishing and confirming the design basis and defence-in-depth effectiveness. (authors)

  15. Safety of nuclear installations in the Slovak Republic and activities of the Nuclear Regulatory Authority of the Slovak Republic in 2007

    International Nuclear Information System (INIS)

    Zemanova, D.

    2008-01-01

    Prepared pursuant to the provisions of the Atomic Act, the report provides information on the safety of nuclear installation in the Slovak Republic and activities of the Nuclear Regulatory Authority of the Slovak Republic ( UJD SR). UJD SR executes its activities in the area of legislation, issuance of authorizations and permissions for the siting, construction, operation and decommissioning of nuclear installations, in the area of reviews, assessments and control of nuclear safety of nuclear installations and emergency planning, in the area of records and accountability of nuclear materials, independent public information and in the area of international co-operation focused on peaceful uses of nuclear power. Based on the results of inspection activities and evaluation of safety indicators, UJD SR assessed the operation of nuclear installations in the Slovak Republic as safe and reliable. No significant event that could have a negative impact on the personnel, population or environment occurred in 2007. (orig.)

  16. Safety goals and safety culture opening plenary. 2. Safety Regulation Implemented by Gosatomnadzor of Russia

    International Nuclear Information System (INIS)

    Gutsalov, A.T.; Bukrinsky, A.M.

    2001-01-01

    This paper describes principles and approaches used by Gosatomnadzor of Russia in establishing safety goals. The link between safety goals and safety culture is demonstrated. The paper also contains information on nuclear regulatory activities in Russia. Regulatory documents of Gosatomnadzor of Russia do not provide precise definitions of safety goals as IAEA documents INSAG-3 or INSAG-12 do. However, overall activities of Gosatomnadzor of Russia are directed to the achievement of these safety goals, as Gosatomnadzor of Russia is a federal executive authority responsible for the regulation of nuclear and radiation safety in accordance with the Russian Federal Law 'On the Use of Nuclear Energy'. Thus, in the Statement of the Policy of the Russian Regulatory Authority, enacted in 1992, it was established that the overall activities of Gosatomnadzor of Russia are directed to the achievement of the main goal. This goal is to establish conditions that ensure that personnel, the public, and the environment are protected from unacceptable radiation and nonproliferation of nuclear materials. The practical application of such a method as given by the publication of Statements of Policy of Gosatomnadzor of Russia may be considered as a safety culture element. 'General Provisions of NPP Safety Ensuring' (OPB-88/ 97) is a regulatory document of the highest level in the hierarchy of regulatory documents of Gosatomnadzor of Russia. It establishes quantitative values of safety goals as do the foregoing IAEA documents. Thus, this regulatory document sets up the following: 1. The estimated total probability of severe accidents should not exceed 10 5 /reactor.yr. 2. The estimated probability of the worst possible radioactive release to the environment specified in the standards should not exceed 10 -7 /reactor.yr in the case of severe beyond-design-basis accidents. 3. The probability of a reactor vessel failure should not exceed 10 -7 /reactor.yr. The foregoing values are somehow

  17. Session 1 theme: Various forms of design basis knowledge and effects of its loss on Safety. Views from EDF

    International Nuclear Information System (INIS)

    Servière, Georges

    2013-01-01

    Design basis knowledge - What happens or may happen and corresponding required knowledge: • Unexpected events or failures of equipment; • Spare part issues (no longer availaible,…); • Change in applicable regulations / requirements; • Change of operating conditions; • Change of plant performances; • Evolution of external environment and conditions; • Events and accidents on other plants, worldwide; • New knowledge availaible; • Periodic safety reviews and upgrades; • Extension of plant operation life; • Decommissioning and dismantling; • Some of those you may choose not to do, but most of them have to be faced and need appropriate knowledge

  18. Safety design philosophy of the ABWR for the next generation LWRs

    International Nuclear Information System (INIS)

    Sato, Takashi; Akinaga, Makoto; Kojima, Yoshihiro

    2009-01-01

    The paper presents safety design philosophy of the advanced boiling water reactor (ABWR) to be reflected in developing the next generation light water reactors (LWRs). The basic policy of the ABWR safety design was to improve safety and reduce cost simultaneously by reflecting lessons learned of precursors, incidents and accidents that were beyond the design basis such as the Three Mile Island Unit 2 (TMI 2) accident. The ABWR is a fully active safety plant. The ABWR enhanced redundancy and diversity of active safety systems using probabilistic safety assessment (PSA) insights. It adopted a complete three division active emergency core cooling system (ECCS) and attained a very low core damage frequency (CDF) value of less than 10 -7 /ry for internal events. Only very small residual risks, if any, rather exist in external events such as an extremely large earthquake beyond the design basis. This is because external events can constitute a common cause that disables all the redundant active safety systems. Therefore, it is useless to add one more ECCS train and make a four division active ECCS for external events. Nowadays, however, fully passive safety LWRs are already established. Incorporating some of these passive safety systems we can also establish the next generation LWRs that are truly strong against external events. We can establish a plant that can survive a giant earthquake at least three days without AC power source, SA proof safety design that enables no containment failure and no evacuation to eliminate the residual risks. The same basic policy as the ABWR to improve safety and reduce cost simultaneously is again effective for the next generation LWRs. (author)

  19. The International Atomic Energy Agency (IAEA) standards and recommendations on radioactive waste and transport safety

    International Nuclear Information System (INIS)

    Warnecke, E.; Rawl, R.

    1996-01-01

    The International Atomic Energy Agency (IAEA) publishes standards and recommendations on all aspects of nuclear safety in its Safety Series, which includes radioactive waste management and transport of radioactive materials. Safety Series documents may be adopted by a State into its national legal framework. Most of the States used the IAEA transport regulations (Safety Series No. 6) as a basis for their national regulation. The two highest ranking documents of the Radioactive Waste Safety Standards (RADWASS) programme, the Safety Fundamentals and the Safety Standard on the national waste management system, have been published. Both provide impetus into the waste management safety convention, a legally binding document for signatory states, which is being drafted. The already existing Convention on Nuclear Safety covers the management of radioactive waste at land-based civil nuclear power plants. (author) 1 fig., 18 refs

  20. Index to Nuclear Safety. A technical progress review by chronology, permuted title, and author. Vol. 11, No. 1 through Vol. 15, No. 6

    International Nuclear Information System (INIS)

    Cottrell, W.B.; Klein, A.

    1975-04-01

    This issue of the Index to Nuclear Safety covers only articles included in Nuclear Safety, Vol. 11, No. 1, through Vol. 15, No. 6. This index is presented in three sections as follows: Chronological List of Articles by Volume; Permuted Title (KWIC) Index; and Author Index. (U.S.)

  1. Fault tree synthesis for software design analysis of PLC based safety-critical systems

    International Nuclear Information System (INIS)

    Koo, S. R.; Cho, C. H.; Seong, P. H.

    2006-01-01

    As a software verification and validation should be performed for the development of PLC based safety-critical systems, a software safety analysis is also considered in line with entire software life cycle. In this paper, we propose a technique of software safety analysis in the design phase. Among various software hazard analysis techniques, fault tree analysis is most widely used for the safety analysis of nuclear power plant systems. Fault tree analysis also has the most intuitive notation and makes both qualitative and quantitative analyses possible. To analyze the design phase more effectively, we propose a technique of fault tree synthesis, along with a universal fault tree template for the architecture modules of nuclear software. Consequently, we can analyze the safety of software on the basis of fault tree synthesis. (authors)

  2. Mining and mining authorities in Saarland 2016. Mining economy, mining technology, occupational safety, environmental protection, statistics, mining authority activities. Annual report; Bergbau und Bergbehoerden im Saarland 2016. Bergwirtschaft, Bergtechnik, Arbeitsschutz, Umweltschutz, Statistiken, Taetigkeiten der Bergbehoerden. Jahresbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    The annual report of the Saarland Upper Mining Authority provides an insight into the activities of mining authorities. Especially, the development of the black coal mining, safety and technology of mining as well as the correlation between mining and environment are stressed.

  3. Challenges in developing TSO to provide technical support in nuclear safety and security to Pakistan Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Mallick, Shahid A.; Sherwani, Uzman Habib; Mehdi, M. Ammar

    2010-01-01

    This paper highlights the needs for the establishment of a technical support organization (TSO) in Pakistan Nuclear Regulatory Authority (PNRA), challenges faced during its development, application of training need assessment required for the competency development of its technical manpower and difficulties encountered after its evolution. Key issues addressed include recruitment of technical manpower and enhancing their competencies, acquisition of proper tools required for safety review and assessment, development of a sustainable education and training program consistent with the best international practices and taking the measures to get confidence of the regulatory body. (author)

  4. Light water reactor safety. Past, present and future

    International Nuclear Information System (INIS)

    Sehgal, Bal Raj

    2009-01-01

    This paper presents a review of the past, present and possible future developments in light water reactor (LWR) safety. The paper divides the past into two periods: the distant past i.e., before the TMI-2 accident when the main concern was with the design basis, the general design criteria, the concept of the defense in depth, the thermal hydraulics of the large loss of coolant accident (LOCA) and the success of the emergency core cooling system (ECCS), and the near past, i.e., after the TMI-2 accident when the main concern was with the physics of the postulated severe accidents: their prevention and mitigation. The present period is chosen as the translation of the research on the design basis and severe accidents into practical designs of Gen III+ with their core catchers and severe accident management (SAM) strategies, which could, in fact, provide ample assurances of public safety even for very severe accidents. The paper attempts to describe the remaining safety issues for both the Gen II and Gen III+ nuclear plants. The more important safety challenges are being posed by the recent moves of (1) extension of the life of the presently installed Gen II LWRs to 60 years (and perhaps to 80 years) and (2) the large uprates in power that are being sought for the Gen II LWRs. Clearly, the safety margins will be tested by these moves of long extended operations with greater power ratings of the Gen II plants. A prognosis of the emerging development trends in the LWR safety has been attempted with some suggestions. (author)

  5. Measuring regional authority

    NARCIS (Netherlands)

    Marks, G.W.; Hooghe, E.A.E.B.; Schakel, A.H.

    2008-01-01

    This article sets out a conceptual basis for measuring regional authority and engages basic measurement issues. Regional authority is disaggregated into two domains (self-rule and shared rule) and these are operationalised in eight dimensions. The article concludes by examining the robustness of

  6. Requirements on the provisional safety analyses and technical comparison of safety measures

    International Nuclear Information System (INIS)

    2010-04-01

    The concept of a Geological Underground Repository (SGT) was adopted by the Swiss Federal Council on April 2 nd , 2008. It fixes the goals and the safety technical criteria as well as the procedures for the choice of the site for an underground repository. Those responsible for waste management evaluate possible site regions according to the present status of geological knowledge and based on the safety criteria defined in SGT as well as on technical feasibility. In a first step, they propose geological repository sites for high level (HAA) and for low and intermediate level (SMA) radioactive wastes and justify their choice in a report delivered to the Swiss Federal Office of Energy. The Swiss Federal Council reviews the choices presented and, in the case of positive evaluation, approves them and considers them as an initial orientation. In a second step, based on the possible sites according to step 1, the waste management institution responsible has to reduce the repositories chosen for HAA and SMA by taking into account safety aspects, technical feasibility as well as space planning and socio-economical aspects. In making this choice, safety aspects have the highest priority. The criteria used for the evaluation in the first step have to be defined using provisional quantitative safety analyses. On the basis of the whole appraisal, including space planning and socio-economical aspects, those responsible for waste management propose at least two repository sites for HAA- and SMA-waste. Their selection is then reviewed by the authorities and, in the case of a positive assesment, the selection is taken as an intermediate result. The remaining sites are further studied to examine site choice and the delivery of a request for a design license. If necessary, the requested geological knowledge has to be confirmed by new investigations. Based on the results of the choosing process and a positive evaluation by the safety authorities, the Swiss Federal Council has to

  7. Management of safety, safety culture and self assessment

    International Nuclear Information System (INIS)

    Carnino, A.

    2000-01-01

    Safety management is the term used for the measures required to ensure that an acceptable level of safety is maintained throughout the life of an installation, including decommissioning. The safety culture concept and its implementation are described in part one of the paper. The principles of safety are now quite well known and are implemented worldwide. It leads to a situation where harmonization is being achieved as indicated by the entry into force of the Convention on Nuclear Safety. To go beyond the present nuclear safety levels, management of safety and safety culture will be the means for achieving progress. Recent events which took place in major nuclear power countries have shown the importance of the management and the consequences on safety. At the same time, electricity deregulation is coming and will impact on safety through reductions in staffing and in operation and maintenance cost at nuclear installations. Management of safety as well as its control and monitoring by the safety authorities become a key to the future of nuclear energy.(author)

  8. For optimum safety technologies: understanding relations between the different national authorities and the technical support organizations

    International Nuclear Information System (INIS)

    Mahmoud, N.S.; Mostafa Aziz, Mostafa

    2010-01-01

    TSOs describe expert independent organizations, which provide supports for government, regulatory authorities, utilities and industry. The TSO must dispose different competences and objectives in order to deliver to the four independent authorities the technical and scientific knowledge. This comprehensive knowledge, from TSO, should perform through the research and development activities (R and D). Concerning the government, TSOs consider the R and D on the management procedures to characterize the links, to differentiate roles to prevent the overlapping efforts, and finally to build a central data bank in nuclear technologies for the other three authorities. For regulatory organizations, R and D are involved in the regulatory requirements and surveillance processes. On the other side R and D, in case of utilities, activities should focus on the improvement of safety operations for nuclear power and its new generations, and for other nuclear/radiological facilities. Finally, the forth TSOs has R and D targets that should concentrate mainly on material, efficiency, and durability of different equipment and parts involved in the nuclear activities during manufacturing. (author)

  9. Analysis of characteristics and radiation safety situation of uranium mining and metallurgy facilities in north area of China

    International Nuclear Information System (INIS)

    Liu Ruilan; Li Jianhui; Wang Xiaoqing; Huang Mingquan

    2014-01-01

    According to the radiation safety management of uranium mining and metallurgy facilities in north area of China, features and radiation safety conditions of uranium mining and metallurgy facilities in north area of China were analyzed based on summarizing the inspection data for 2011-2013. So the main problems of radiation environment security on uranium mine were studied. The relevant management measures and recommendations were put forward, and the basis for environmental radiation safety management decision making of uranium mining and metallurgy facilities in future was provided. (authors)

  10. Technical Details on Beyond Design Basis Event Pilot Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-01-01

    The primary focus of the BDBE pilot project was the review of BDBE analysis and mitigation features at four DOE nuclear facilities representing a range of DOE sites, nuclear facility types/activities, and responsible program offices. The pilots looked at (1) how beyond design basis accidents were evaluated and documented in the facility Documented Safety Analysis, (2) potential BDBE vulnerabilities and margins to failure of facility safety features as obtained from general area and specific system walkdowns and design documents reviews, and (3) preparations made in facility and site emergency management programs to respond to severe accidents. It also evaluated whether draft BDBE guidance on safety analysis and emergency management could be used to improve the analysis of and preparations for mitigating severe and beyond design basis accidents. The details of these activities are organized in this report as described below.

  11. Geological basis and data set for assessing the long-term safety of the final repository for low- and intermediate-level radioactive wastes at the Wellenberg site (Community of Wolfenschiessen, NW)

    International Nuclear Information System (INIS)

    1993-09-01

    This report forms part of the supporting documentation for the low- and intermediate-level waste repository site selection procedure. The aim of the report is to present the site-specific geological data, and the geosphere database derived therefrom, which were used as a basis for evaluating the long-term safety of a repository at Wellenberg. These data also form a key component of other reports appearing simultaneously with the present one, first on the intercomparison of the four potential sites, (NTB 93-02) and second, on the safety assessment of the Wellenberg site itself (NTB 93-26). The level of detail of the present report is determined by the requirements of the other two reports mentioned, which would include presenting, discussing and justifying the geosphere dataset used in the performance assessment model calculations. The introductory chapter discusses procedures and goals. The second chapter provides an overview of the geographical and geological situation at Wellenberg. Chapter 3 then discusses the planning and progress of the field programme, and the current status of investigations is presented. The fourth chapter presents the geological situation at the Wellenberg site and describes the concept and models formulated on the basis of this information. Chapter 5 derives the performance assessment and engineering datasets, based on the investigations, concepts and modelling exercises described in chapter 4. In summary, it can be said that, to date, the investigation results from Wellenberg have confirmed predictions in all relevant respects and, in some cases, have even exceeded expectations (e.g. in relation to the available volume of host rock). (author) figs., tabs., 141 refs

  12. Simplifying documentation while approaching site closure: integrated health and safety plans as documented safety analysis

    International Nuclear Information System (INIS)

    Brown, Tulanda

    2003-01-01

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). By isolating any remediation activities that deal with Enriched Restricted Materials, the SBRs and PRs assure that the hazard categories of former nuclear facilities undergoing remediation remain less than Nuclear. These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D and D) of over 150 structures, including six major nuclear production plants. This paper presents the FCP method for maintaining safety basis documentation, using the D and D I-HASP as an example

  13. Report on the seismic safety examination of nuclear facilities based on the 1995 Hyogoken-Nanbu earthquake

    International Nuclear Information System (INIS)

    2001-01-01

    Just after the Hyogoken-Nanbu Earthquake occurred, Nuclear Safety Commission of Japan established a committee to examine the validity or related guidelines on the seismic design to be used for the safety examination. After the 8 months study, the committee confirmed that the validity of guidelines regulating the seismic design of nuclear facilities is not impaired even though on the basis of the Hyogoken-Nanbu earthquake. This report is the outline of the Committee's study results. (author)

  14. Interim Safety Basis for Fuel Supply Shutdown Facility

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2000-01-01

    This ISB, in conjunction with the IOSR, provides the required basis for interim operation or restrictions on interim operations and administrative controls for the facility until a SAR is prepared in accordance with the new requirements or the facility is shut down. It is concluded that the risks associated with tha current and anticipated mode of the facility, uranium disposition, clean up, and transition activities required for permanent closure, are within risk guidelines

  15. Plutonium uranium extraction (PUREX) end state basis for interim operation (BIO) for surveillance and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    DODD, E.N.

    1999-05-12

    This Basis for Interim Operation (BIO) was developed for the PUREX end state condition following completion of the deactivation project. The deactivation project has removed or stabilized the hazardous materials within the facility structure and equipment to reduce the hazards posed by the facility during the surveillance and maintenance (S and M) period, and to reduce the costs associated with the S and M. This document serves as the authorization basis for the PUREX facility, excluding the storage tunnels, railroad cut, and associated tracks, for the deactivated end state condition during the S and M period. The storage tunnels, and associated systems and areas, are addressed in WHC-SD-HS-SAR-001, Rev. 1, PUREX Final Safety Analysis Report. During S and M, the mission of the facility is to maintain the conditions and equipment in a manner that ensures the safety of the workers, environment, and the public. The S and M phase will continue until the final decontamination and decommissioning (D and D) project and activities are begun. Based on the methodology of DOE-STD-1027-92, Hazards Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports, the final facility hazards category is identified as hazards category This considers the remaining material inventories, form and distribution of the material, and the energies present to initiate events of concern. Given the current facility configuration, conditions, and authorized S and M activities, there are no operational events identified resulting in significant hazard to any of the target receptor groups (e.g., workers, public, environment). The only accident scenarios identified with consequences to the onsite co-located workers were based on external natural phenomena, specifically an earthquake. The dose consequences of these events are within the current risk evaluation guidelines and are consistent with the expectations for a hazards category 2

  16. Plutonium uranium extraction (PUREX) end state basis for interim operation (BIO) for surveillance and maintenance

    International Nuclear Information System (INIS)

    DODD, E.N.

    1999-01-01

    This Basis for Interim Operation (BIO) was developed for the PUREX end state condition following completion of the deactivation project. The deactivation project has removed or stabilized the hazardous materials within the facility structure and equipment to reduce the hazards posed by the facility during the surveillance and maintenance (S and M) period, and to reduce the costs associated with the S and M. This document serves as the authorization basis for the PUREX facility, excluding the storage tunnels, railroad cut, and associated tracks, for the deactivated end state condition during the S and M period. The storage tunnels, and associated systems and areas, are addressed in WHC-SD-HS-SAR-001, Rev. 1, PUREX Final Safety Analysis Report. During S and M, the mission of the facility is to maintain the conditions and equipment in a manner that ensures the safety of the workers, environment, and the public. The S and M phase will continue until the final decontamination and decommissioning (D and D) project and activities are begun. Based on the methodology of DOE-STD-1027-92, Hazards Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports, the final facility hazards category is identified as hazards category This considers the remaining material inventories, form and distribution of the material, and the energies present to initiate events of concern. Given the current facility configuration, conditions, and authorized S and M activities, there are no operational events identified resulting in significant hazard to any of the target receptor groups (e.g., workers, public, environment). The only accident scenarios identified with consequences to the onsite co-located workers were based on external natural phenomena, specifically an earthquake. The dose consequences of these events are within the current risk evaluation guidelines and are consistent with the expectations for a hazards category 2

  17. Safety analysis methodology for OPR 1000

    International Nuclear Information System (INIS)

    Hwang-Yong, Jun

    2005-01-01

    Full text: Korea Electric Power Research Institute (KEPRI) has been developing inhouse safety analysis methodology based on the delicate codes available to KEPRI to overcome the problems arising from currently used vendor oriented methodologies. For the Loss of Coolant Accident (LOCA) analysis, the KREM (KEPRI Realistic Evaluation Methodology) has been developed based on the RELAP-5 code. The methodology was approved for the Westinghouse 3-loop plants by the Korean regulatory organization and the project to extent the methodology to the Optimized Power Reactor 1000 (OPR1000) has been ongoing since 2001. Also, for the Non-LOCA analysis, the KNAP (Korea Non-LOCA Analysis Package) has been developed using the UNICORN-TM code system. To demonstrate the feasibility of these codes systems and methodologies, some typical cases of the design basis accidents mentioned in the final safety analysis report (FSAR) were analyzed. (author)

  18. Highway Safety Program Manual: Volume 3: Motorcycle Safety.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 3 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) concentrates on aspects of motorcycle safety. The purpose and specific objectives of a State motorcycle safety program are outlined. Federal authority in the highway safety area and general policies…

  19. Concepts and examples of safety analyses for radioactive waste repositories in continental geological formations

    International Nuclear Information System (INIS)

    1983-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of underground radioactive waste repositories. It is a companion to a general introductory document on the subject ''Safety Assessment for the Underground Disposal of Radioactive Wastes'', IAEA Safety Series No. 56, 1981, and reference to this earlier document will facilitate the reader's understanding of the present report. Since examples of safety analyses are summarized here, it is hoped that this document will contribute to providing a basis for a common understanding among authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing technical information, this document is also intended to stimulate further international discussion. The purposes of this report are: a) to identify the factors to be taken into account in radiological safety analyses of deep geological repositories, indicating as far as possible their relative importance during the various phases of system development; b) to show how these factors have been analysed in various safety assessment studies; and c) to comment on the merits of the selected and alternative approaches

  20. Concepts and examples of safety analyses for radioactive waste repositories in continental geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of underground radioactive waste repositories. It is a companion to a general introductory document on the subject ''Safety Assessment for the Underground Disposal of Radioactive Wastes'', IAEA Safety Series No. 56, 1981, and reference to this earlier document will facilitate the reader's understanding of the present report. Since examples of safety analyses are summarized here, it is hoped that this document will contribute to providing a basis for a common understanding among authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing technical information, this document is also intended to stimulate further international discussion. The purposes of this report are: a) to identify the factors to be taken into account in radiological safety analyses of deep geological repositories, indicating as far as possible their relative importance during the various phases of system development; b) to show how these factors have been analysed in various safety assessment studies; and c) to comment on the merits of the selected and alternative approaches.

  1. Cold Vacuum Drying Facility Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    PIEPHO, M.G.

    1999-01-01

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR

  2. Development of French technical safety regulations: safety fundamental rules

    International Nuclear Information System (INIS)

    Lebouleux, P.

    1982-09-01

    The technical regulation related to nuclear safety in France is made of a set of regulation texts, of a different nature, that define the requirements for the construction, commissioning and operations of nuclear facilities. Simultaneously, the safety authorities (Service Central de Surete des Installations Nucleaires: SCSIN) issue recommendations or guides which are not strictly speaking regulations in the juridical sense; they are called ''Regles Fondamentales de Surete'' (RFS). The RFS set up and detail the conditions, the respect of which is deemed to be complying with the French regulation pratice, for the subject to which they relate. Their purpose is to make known rules judged acceptable by safety authorities, thus making the safety review easier. The RFS program is described. A RFS -or a letter- can also give the result of the examination of the constructor and operator code (RCC) by safety authorities

  3. Development of French technical safety regulations: safety fundamental rules

    International Nuclear Information System (INIS)

    Lebouleux, P.

    1983-01-01

    The technical regulation related to nuclear safety in France is made of a set of regulation texts, of a different nature, that define the requirements for the construction, commissioning and operating of nuclear facilities. Simultaneously, the safety authorities (Service Central de Surete des Installations Nucleaires: SCSIN) issue recommendations or guides which are not strictly speaking regulations in the juridicial sense; they are called Regles Fondamentales de Surete (RFS). The RFS set up and detail the conditions, the respect of which is deemed to be complying with the French regulation practice, for the subject to which they relate. Their purpose is to make known rules judged acceptable by safety authorities, thus making the safety review easier. The RFS program is described. A RFS - or a letter - can also give the result of the examination of the constructor and operator codes (RCC) by safety authorities

  4. A program approach for site safety at oil spills

    International Nuclear Information System (INIS)

    Whipple, F.L.; Glenn, S.P.; Ocken, J.J.; Ott, G.L.

    1993-01-01

    When OSHA developed the hazardous waste operations (Hazwoper) regulations (29 CFR 1910.120) members of the response community envisioned a separation of oil and open-quotes hazmatclose quotes response operations. Organizations that deal with oil spills have had difficulty applying Hazwoper regulations to oil spill operations. This hinders meaningful implementation of the standard for their personnel. We should approach oil spills with the same degree of caution that is applied to hazmat response. Training frequently does not address the safety of oil spill response operations. Site-specific safety and health plans often are neglected or omitted. Certain oils expose workers to carcinogens, as well as chronic and acute hazards. Significant physical hazards are most important. In responding to oil spills, the hazards must be addressed. It is the authors' contention that a need exists for safety program at oil spill sites. Gone are the days of labor pool hires cleaning up spills in jeans and sneakers. The key to meaningful programs for oil spills requires application of controls focused on relevant safety risks rather than minimal chemical exposure hazards. Working with concerned reviewers from other agencies and organizations, the authors have developed a general safety and health program for oil spill response. It is intended to serve as the basis for organizations to customize their own written safety and health program (required by OSHA). It also provides a separate generic site safety plan for emergency phase oil spill operations (check-list) and long term post-emergency phase operations

  5. Cold Vacuum Drying facility design basis accident analysis documentation

    International Nuclear Information System (INIS)

    CROWE, R.D.

    2000-01-01

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report (FSAR), ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR. The calculations in this document address the design basis accidents (DBAs) selected for analysis in HNF-3553, ''Spent Nuclear Fuel Project Final Safety Analysis Report'', Annex B, ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' The objective is to determine the quantity of radioactive particulate available for release at any point during processing at the Cold Vacuum Drying Facility (CVDF) and to use that quantity to determine the amount of radioactive material released during the DBAs. The radioactive material released is used to determine dose consequences to receptors at four locations, and the dose consequences are compared with the appropriate evaluation guidelines and release limits to ascertain the need for preventive and mitigative controls

  6. Cold Vacuum Drying facility design basis accident analysis documentation

    Energy Technology Data Exchange (ETDEWEB)

    CROWE, R.D.

    2000-08-08

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report (FSAR), ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR. The calculations in this document address the design basis accidents (DBAs) selected for analysis in HNF-3553, ''Spent Nuclear Fuel Project Final Safety Analysis Report'', Annex B, ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' The objective is to determine the quantity of radioactive particulate available for release at any point during processing at the Cold Vacuum Drying Facility (CVDF) and to use that quantity to determine the amount of radioactive material released during the DBAs. The radioactive material released is used to determine dose consequences to receptors at four locations, and the dose consequences are compared with the appropriate evaluation guidelines and release limits to ascertain the need for preventive and mitigative controls.

  7. Probabilistic safety assessment of the nuclear facilities in Cuba

    International Nuclear Information System (INIS)

    Rivero O, J.J.; Salomon L, J.

    1991-01-01

    During 1986-1990 basis were established for further developing probabilistic safety assessment (PSA) of Juragua NPP. A team work was consolidated and carried out the preliminary studies of the small break LOCA initiating event. A significant achievement was the creation of the ANCON code, which allows the evaluation of complex fault trees in personal computers, and has been applied in PSA modelling, and specialist qualification. The paper describes the main results and future activities in this field. (author)

  8. Implementation of the obligations of the convention on nuclear safety. Fourth Swiss report in accordance with Article 5

    International Nuclear Information System (INIS)

    2007-07-01

    Switzerland has signed the Convention on Nuclear Safety. Most of the requirements of the articles of the Convention were already standard practice in Switzerland. In the last years, all Swiss nuclear power plants (NPPs) as well as the Swiss Federal Nuclear Safety Inspectorate (HSK) built up documented quality management systems. The independence of HSK from licensing authorities is fulfilled on a technical level. In 2005, a new Nuclear Energy Act came into force requiring formal independence of the supervisory authorities from the licensing authorities. A separate act to legally settle the Inspectorate's fully independent status was adopted by Parliament. HSK participates in international projects and is represented in numerous nuclear safety working groups in order to ensure the exchange of scientific, technical and regulatory know-how. The regulatory processes applied to the licensing and safety surveillance of nuclear installations and their operation are up to date with the current state of science and technology. Deterministic and probabilistic safety evaluations guide and prioritise inspections and provide the basis for a graded approach to safety review and assessment. The surveillance of the NPPs' operating, control and safety systems, their component performance and integrity, their organisational and human aspects as well as the management, conditioning and interim storage of radioactive waste are permanent features of the supervisory authority's activities. Within the frame of a new integrated oversight process there is an annual systematic assessment of nuclear safety for each NPP based on the analysis of events, inspection results and operator licensing reviews. The assurance of low radiation doses to both NPP workers and the general public is an additional goal that is directly associated with the safe operation of NPPs. In case of an accident in a nuclear installation, contingency plans are in place and are continually updated. Emergency drills are

  9. Implementation of the obligations of the convention on nuclear safety. Fourth Swiss report in accordance with Article 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-15

    Switzerland has signed the Convention on Nuclear Safety. Most of the requirements of the articles of the Convention were already standard practice in Switzerland. In the last years, all Swiss nuclear power plants (NPPs) as well as the Swiss Federal Nuclear Safety Inspectorate (HSK) built up documented quality management systems. The independence of HSK from licensing authorities is fulfilled on a technical level. In 2005, a new Nuclear Energy Act came into force requiring formal independence of the supervisory authorities from the licensing authorities. A separate act to legally settle the Inspectorate's fully independent status was adopted by Parliament. HSK participates in international projects and is represented in numerous nuclear safety working groups in order to ensure the exchange of scientific, technical and regulatory know-how. The regulatory processes applied to the licensing and safety surveillance of nuclear installations and their operation are up to date with the current state of science and technology. Deterministic and probabilistic safety evaluations guide and prioritise inspections and provide the basis for a graded approach to safety review and assessment. The surveillance of the NPPs' operating, control and safety systems, their component performance and integrity, their organisational and human aspects as well as the management, conditioning and interim storage of radioactive waste are permanent features of the supervisory authority's activities. Within the frame of a new integrated oversight process there is an annual systematic assessment of nuclear safety for each NPP based on the analysis of events, inspection results and operator licensing reviews. The assurance of low radiation doses to both NPP workers and the general public is an additional goal that is directly associated with the safe operation of NPPs. In case of an accident in a nuclear installation, contingency plans are in place and are continually updated

  10. US nuclear safety. Review and experience

    International Nuclear Information System (INIS)

    Hanauer, S.H.

    1977-01-01

    The paper deals with the evolution of reactor safety principles, design bases, regulatory requirements, and experience in the United States. Safety concerns have evolved over the years, from reactivity transients and shut-down systems, to blowdowns and containment, to severe design basis accidents and mitigating systems, to the performance of actual materials, systems and humans. The primary safety concerns of one epoch have been superseded in considerable measure by those of later times. Successive plateaus of technical understanding are achieved by solutions being found to earlier problems. Design studies, research, operating experience and regulatory imperatives all contribute to the increased understanding and thus to the safety improvements adopted and accepted. The improvement of safety with time, and the ability of existing reactors to operate safely in the face of new concerns, has confirmed the correctness and usefulness of the defence-in-depth approach and safety margins used in safety design in the United States of America. A regulatory programme such as the one in the United States justifies its great cost by its important contributions to safety. Yet only the designers, constructors and operators of nuclear power plants can actually achieve public safety. The regulatory programme audits, assesses and spot-checks the actual work. Since neither materials nor human beings are flawless, mistakes will be made; that is why defence-in-depth and safety margins are provided. The regulatory programme should enhance safety by decreasing the frequency of uncorrected mistakes. Maintenance of public safety also requires technical and managerial competence and attention in the organizations responsible for nuclear plants as well as regulatory organizations. (author)

  11. Towards a binding international governance of nuclear safety: an impossible quest?

    International Nuclear Information System (INIS)

    Finon, Dominique

    2014-01-01

    The Fukushima accident again raises the question of the social and economic viability of nuclear technology. On an international basis, it should be necessary to reach the maximum level of safety for every nuclear power plant (NPP) to avoid any further accident in order to preserve the acceptability of the technology. To obtain a significant orientation in upgrading safety standards in matter of NPP design and operation and institutional practices for control and safety in all countries with nuclear facilities, the ideal would be to succeed in setting up a binding international governance. This article examines the incentives and the conditions to achieve it. These incentives on the States appear not to be strong enough at the global level in order that they delegate part of their sovereignty in this domain. It seems that we must be content with a weak governance. This governance combining the role of the IAEA as a facilitator, and different peer pressures mechanisms at the level of the NPP operators, the reactors vendors and the safety authority. We observe that each of these mechanisms is presently being reinforced. But how strong this weak governance is strong enough? (author)

  12. Use of probabilistic safety assessment in supporting regulatory authority`s work; Todennaekoeisyyspohjaisen turvallisuusanalyysin kaeyttoe viranomaistyoen tukena

    Energy Technology Data Exchange (ETDEWEB)

    Julin, A

    1995-11-01

    The aim of the study was to examine possibilities to use probabilistic safety assessment (PSA) more effectively in regulatory control of nuclear power plants. The structure, results and evaluation methods of PSA along with the necessary equations and principles, which could be used in utilising level 1 PSA results in decision making, have been introduced. The presented examples describe the ways PSA has been utilised abroad and particularly in Finnish Centre for Radiation and Nuclear Safety (STUK). The examples calculated in the study are based on the SPSA code and the PSA model of Olkiluoto nuclear power plant (TVO). The examples compare component safety classes versus safety importance and the risk of continued operation versus shutdown alternative in residual heat removal system failures. In addition to this allowed outage times, as calculated by PSA, were compared to allowed outage times according to technical specifications. The last 9 years operating experiences of TVO II was also examined by analysing the risk importance of significant component failures and operational disturbances. The analysis showed that the contribution of component failures and operational disturbances to the overall core damage risk during the studied time period was only 5 per cent. It appeared that the rare, significant initiating events provide the main contribution to the total cumulative risk. (57 refs., 22 figs., 17 tabs.).

  13. Safety surveillance of activities on nuclear pressure components in China

    International Nuclear Information System (INIS)

    Li Ganjie; Li Tianshu; Yan Tianwen

    2005-01-01

    The nuclear pressure components, which perform the nuclear safety functions, are one of the key physical barriers for nuclear safety. For the national strategy on further development of nuclear power and localization of nuclear pressure components, there still exist some problems in preparedness on the localization. As for the technical basis, what can not be overlooked is the management. Aiming at the current problems, National Nuclear Safety Administration (NNSA) has taken measures to strengthen the propagation and popularization of nuclear safety culture, adjust the review and approval policies for nuclear pressure components qualification license, establish more stringent management requirements, and enhance the surveillance of activities on nuclear pressure equipment. Meanwhile, NNSA has improved the internal management and the regulation efficiency on nuclear pressure components. At the same time, with the development and implementation of 'Rules on the Safety Regulation for Nuclear Safety Important Components' to be promulgated by the State Council of China, NNSA will complete and improve the regulation on nuclear pressure components and other nuclear equipment. (authors)

  14. Human factors in safety assessment. Safety culture assessment

    International Nuclear Information System (INIS)

    Zhang Li; Deng Zhiliang; Wang Yiqun; Huang Weigang

    1996-01-01

    This paper analyses the present conditions and problems in enterprises safety assessment, and introduces the characteristics and effects of safety culture. The authors think that safety culture must be used as a 'soul' to form the pattern of modern safety management. Furthermore, they propose that the human safety and synthetic safety management assessment in a system should be changed into safety culture assessment. Finally, the assessment indicators are discussed

  15. Challenges in strengthening radiation safety and security programme in Malaysia

    International Nuclear Information System (INIS)

    Noriah, M.A.

    2010-01-01

    This paper illustrates the Malaysian experience in implementing steps in strengthening radiation safety and security through certification of radiation safety personnel, which is dedicated to meet the current and future needs in sustainability of radiation safety and security systems. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important in implementing the radiation safety policy efficiently. Through this effort, we are able to create a basis for adequate protection of workers, the public and the environment and encourage licensees to manage radiation safety and security based on performance, and not on compliance culture, with the final objective of professing a safety culture through self regulation. This will certainly benefit an organisation with ultimate goals are to continuously strive for a healthy, accident free and environmentally sound workplace and community, while providing the technical support needed to meet the national mission. This will strengthen the radiation safety and security programme and could be used to assist in manpower development once Malaysia makes the decision to embark on a nuclear power programme. (author)

  16. International safety standards and regulatory practices and their application to Brazilian nuclear power plants - a realistic view

    International Nuclear Information System (INIS)

    Almeida, Claudio; Camargo, Claudio

    1999-01-01

    An international nuclear safety regime is being established through a series of binding safety conventions, voluntarily adopted international safety standards and an accompanying peer review process. The basis for the evaluation of each country performance within this international regime should be the international practices. However, local conditions should be taken into account to avoid undue stress of the limited resources available to countries with a limited nuclear power programme. This work reviews the current international nuclear safety and discusses the application of some international practices to the Brazilian situation, considering the peculiarities of the national nuclear power programme and the limitations of the available financial and human resources. (author)

  17. Criticality safety analysis for plutonium dissolver using silver mediated electrolytic oxidation method

    International Nuclear Information System (INIS)

    Umeda, Miki; Sugikawa, Susumu; Nakamura, Kazuhito; Egashira, Tetsurou

    1998-08-01

    Design and construction of a plutonium dissolver using silver mediated electrolytic oxidation method are promoted in NUCEF. Criticality safety analysis for the plutonium dissolver is described in this report. The electrolytic plutonium dissolver consists of connection pipes and three pots for MOX powder supply, circulation and electrolysis. The criticality control for the dissolver is made by geometrically safe shape with mass limitation. Monte Carlo code KENO-IV using MGCL-137 library based on ENDF/B-IV was used for the criticality safety analysis for the plutonium dissolver. Considering the required size for construction and criticality safety, diameter of pot and distance between two pots were determined. On this condition, the criticality safety analysis for the plutonium dissolver with connection pipes was carried out. As the result of the criticality safety analysis, an effective neutron multiplication factor keff of 0.91 was obtained and the criticality safety of the plutonium dissolver was confirmed on the basis of criteria of ≤0.95. (author)

  18. Beyond safety outcomes: An investigation of the impact of safety climate on job satisfaction, employee engagement and turnover using social exchange theory as the theoretical framework.

    Science.gov (United States)

    Huang, Yueng-Hsiang; Lee, Jin; McFadden, Anna C; Murphy, Lauren A; Robertson, Michelle M; Cheung, Janelle H; Zohar, Dov

    2016-07-01

    Safety climate, a measure of the degree to which safety is perceived by employees to be a priority in their company, is often implicated as a key factor in the promotion of injury-reducing behavior and safe work environments. Using social exchange theory as a theoretical basis, this study hypothesized that safety climate would be related to employees' job satisfaction, engagement, and turnover rate, highlighting the beneficial effects of safety climate beyond typical safety outcomes. Survey data were collected from 6207 truck drivers from two U.S. trucking companies. The objective turnover rate was collected one year after the survey data collection. Results showed that employees' safety climate perceptions were linked to employees' level of job satisfaction, engagement, and objective turnover rate, thus supporting the application of social exchange theory. Job satisfaction was also a significant mediator between safety climate and the two human resource outcomes (i.e., employee engagement and turnover rate). This study is among the first to assess the impact of safety climate beyond safety outcomes among lone workers (using truck drivers as an exemplar). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The formal notices of the French authority of nuclear safety; Les mises en demeure de l'autorite de surete nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The French authority of nuclear safety (ASN) publishes on its web site (http://www.asn.gouv.fr) the formal notices and official statements addressed by the ASN to the concerned responsible persons (operators of nuclear facilities, directors of companies etc..) when anomalies requiring a corrective action have been noticed during on-site or off-site safety inspections. This document brings together the formal notices addressed by the ASN since June 2000 and up to April 2002. (J.S.)

  20. The safety case in support of the license application of the surface repository of low-level waste in Dessel, Belgium

    International Nuclear Information System (INIS)

    Wacquier, William; Cool, Wim

    2014-01-01

    The modern concept of the safety case, developed by the OECD/NEA for geological repositories of high- and medium-level waste has been successfully applied by ONDRAF/ NIRAS for a surface repository for Category A waste (i.e. low-level waste) in Belgium in the current project phase 2006-2012. This resulted in the submission on 31 January 2013 by ONDRAF/NIRAS of an application for a 'construction and operation license' to the safety authorities. The benefits of using the notion of the safety case have been that: i) safety has been incorporated in an integrated manner within all assessment basis, design and safety assessment activities; ii) the process of development of the license application has gained in clarity and traceability; iii) the documentation of the license application contains multiple lines of argumentation for safety rather than argumentation based only on quantitative radiological impact calculations. To offer a comprehensive view on the safety argumentation and its development, it has been found useful to develop the argumentation not only along a safety statements structure but also along the safety report structure. (authors)

  1. Joint probability safety assessment for NPP defense infrastructure against extreme external natural hazards

    International Nuclear Information System (INIS)

    Guilin, L.; Defu, L.; Huajun, L.; Fengqing, W.; Tao, Z.

    2012-01-01

    With the increasing tendency of natural hazards, the typhoon, hurricane and tropical Cyclone induced surge, wave, precipitation, flood and wind as extreme external loads menacing Nuclear Power Plants (NPP) in coastal and inland provinces of China. For all of planned, designed And constructed NPP the National Nuclear Safety Administration of China and IAEA recommended Probable Maximum Hurricane /Typhoon/(PMH/T), Probable Maximum Storm Surge (PMSS), Probable Maximum Flood (PMF), Design Basis Flood (DBF) as safety regulations for NPP defense infrastructures. This paper discusses the joint probability analysis of simultaneous occurrence typhoon induced extreme external hazards and compare with IAEA 2006-2009 recommended safety regulation design criteria for some NPP defense infrastructures along China coast. (authors)

  2. Operational safety of near surface waste disposal facilities in the Republic of Moldova

    International Nuclear Information System (INIS)

    Ursulean, I.; Balaban, V.

    2000-01-01

    Over the last few years, the Republic of Moldova, with assistance from the IAEA, undertook the establishment of the legislative and normative basis consisting of a regulatory body infrastructure, including a monitoring optimization strategy concerning radioactive waste management safety. At present the following work is underway: the introduction of a new law 'About Radiation Safety and Population Protection', the re-implementation of a normative base, and the incorporation of the IAEA Basic Safety Standards through the national legislation. Presently in the Republic of Moldova, there exists a system of radioactive waste management, comprising collection, disposal, transportation and storage. This system consists of the radioactive material users, the designated disposal facility and the regulatory bodies. (author)

  3. The concept of underground nuclear heat and power plants (UNHPP) of upgraded safety, developed on the basis of ship-building technologies

    International Nuclear Information System (INIS)

    Pashin, V.M.; Petrov, Eh.L.; Shalik, G.P.; Khazov, B.S.; Malyshev, S.P.

    1996-01-01

    A concept of underground nuclear heat and power plants (UNHPP) of upgraded safety on the basis of ship-building technologies is considered, in which the priority is set to population security and environmental protection. Ways of realization of ziro radiation risk for the population residing in a close vicinity of UNHPP are substantiated. basic principles of the concept are formulated which envisage the use of ship propulsion reactor facilities that have been multiply tested in operation. The sources of economic competitiveness of UNHPPs, as compared with the existing NPPs, are shown

  4. Accident beyond the design basis management with the coolant loss at the NPP with WWER

    International Nuclear Information System (INIS)

    Skalozubov, V.I.; Klyuchnikov, A.A.; Kolykhanov, V.N.

    2010-01-01

    The analysis of status and experience of development on modelling and accident beyond the design basis management, including the severe accidents, at the nuclear power plants is carried out. The methodical providing of manuals on the accident beyond the design basis management with the coolant loss on the basis of simulated critical system configurations providing the necessary safety function performance on reactor unit is proposed. The project of symptom-oriented manuals on accident beyond the design basis management with the coolant loss on the serial power unit with WWER-1000 on the basis of developed methodical providing and well known results of deepened safety analysis is presented.

  5. EPRI program in water reactor safety

    International Nuclear Information System (INIS)

    Loewenstein, W.B.; Gelhaus, F.; Gopalakrishnan, A.

    1975-01-01

    The basis for EPRI's water reactor safety program is twofold. First is compilation and development of fundamental background data necessary for quantified light-water reactor (LWR) safety assurance appraisals. Second is development of realistic and experimentally bench-marked analytical procedures. The results are expected either to confirm the safety margins in current operating parameters, and to identify overly conservative controls, or, in some cases, to provide a basis for improvements to further minimize uncertainties in expected performance. Achievement of these objectives requires the synthesis of related current and projected experimental-analytical projects toward establishment of an experimentally-based analysis for the assurance of safety for LWRs

  6. Report of study group 4.3 ''pipeline integrity management and safety''

    Energy Technology Data Exchange (ETDEWEB)

    Clavel, P.

    2000-07-01

    This report highlights the Pipeline integrity Management methods being implemented by gas companies. These aim at maintaining the current high safety level, prevent major hazards, ensure the integrity of the pipeline and protect people and environment in the vicinity of the pipeline in the most cost effective way. It should be noticed that Pipeline Integrity Management aspects, technical and organisational, are included in the more general framework of the Safety Management System. Currently, more and more gas companies implement such a system on the basis of standards like ISO 9000 and so on. In this way, the report shows how practices of Pipeline Integrity Management are continually developing in order to adapt to their environment, and to improve performance. Past experience and imminent developments show that Pipeline Integrity Management is a flexible and efficient approach to improve safety in the long term. Consequently, Pipeline Integrity Management Systems are, under the control of authorities, the best alternative to additional safety regulations. Within the context of deregulation of the European markets and globalization Pipeline Integrity Management appears to be a tool to promote the gas industry in the eyes of the authorities, the market regulators and the customers (industrialists,...). (author)

  7. Organisational culture at the Radiation and Nuclear Safety Authority of Finland's department of Nuclear Reactor Regulation

    International Nuclear Information System (INIS)

    Reiman, T.; Norros, L.

    2001-03-01

    A case study to investigate the organisational culture of the regulatory authority was conducted at the Radiation and Nuclear Safety Authority of Finland's (STUK) Nuclear Reactor Regulation (YTO) - department. Organisational culture is defined as a pattern of shared basic assumptions, which are basically unconscious. Objectives of the study were to conceptualise and describe the main characteristics of YTO's organisational culture and to carry out a tentative core task analysis of the inspectors' work. A combination of quantitative and qualitative methods was used in the research. YTO's culture was identified as a hierarchy-focused culture with less emphasis on innovation or social support. However, the ideal values of the personnel emphasised also social support and goal setting. Ambiguous goals were felt by some personnel as increased uncertainty about the meaningfulness of one's job. Also a lack of feedback was mentioned. The core task analysis identified the critical functions of the regulatory practice. These functions specify the three roles of the regulatory authority, the expert role, the public role and the authority role. The culture must support the fulfilment of the requirements of all the three roles. Development needs in YTO's culture were identified and recommendations were made. (au)

  8. Reactor safety research and development in Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Nitheanandan, T. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Atomic Energy of Canada Limited's Chalk River Laboratories provides three different services to stakeholders and customers. The first service provided by the laboratory is the implementation of Research and Development (R&D) programs to provide the underlying technological basis of safe nuclear power reactor designs. A significant portion of the Canadian R&D capability in reactor safety resides at Atomic Energy of Canada Limited's Chalk River Laboratories, and this capability was instrumental in providing the science and technology required to aid in the safety design of CANDU power reactors. The second role of the laboratory has been in supporting nuclear facility licensees to ensure the continued safe operation of nuclear facilities, and to develop safety cases to justify continued operation. The licensing of plant life extension is a key industry objective, requiring extensive research on degradation mechanisms, such that safety cases are based on the original safety design data and valid and realistic assumptions regarding the effect of ageing and management of plant life. Recently, Chalk River Laboratories has been engaged in a third role in research to provide the technical basis and improved understanding for decision making by regulatory bodies. The state-of-the-art test facilities in Chalk River Laboratories have been contributing to the R&D needs of all three roles, not only in Canada but also in the international community, thorough Canada's participation in cooperative programs lead by International Atomic Energy Agency and the OECD's Nuclear Energy Agency. (author)

  9. The added value of international benchmarks for fuel performance codes: an illustration on the basis of TRANSURANUS

    International Nuclear Information System (INIS)

    Van Uffelen, P.; Schubert, A.; Gyeori, C.; Van De Laar, J.

    2009-01-01

    Safety authorities and fuel designers, as well as nuclear research centers rely heavily on fuel performance codes for predicting the behaviour and life-time of fuel rods. The simulation tools are developed and validated on the basis of experimental results, some of which is in the public domain such as the International Fuel Performance Experiments database of the OECD/NEA and IAEA. Publicly available data constitute an excellent basis for assessing codes themselves, but also to compare codes that are being developed by independent teams. The present report summarises the advantages for the TRANSURANUS code by taking part in previous benchmarks organised by the IAEA, and outlines the preliminary results along with the perspectives of our participation in the current coordinated research project FUMEXIII

  10. 5 CFR 304.103 - Authority.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Authority. 304.103 Section 304.103... APPOINTMENTS § 304.103 Authority. (a) Basic authority. (1) When authorized by an appropriation or other statute... expert or consultant who works on a strictly intermittent basis may be appointed under this authority...

  11. Regulatory requirements and administrative practice in safety of nuclear installations

    International Nuclear Information System (INIS)

    Servant, J.

    1977-01-01

    This paper reviews the current situation of the France regulatory rules and procedures dealing with the safety of the main nuclear facilities and, more broadly, the nuclear security. First, the author outlines the policy of the French administration which requires that the licensee responsible for an installation has to demonstrate that all possible measures are taken to ensure a sufficient level of safety, from the early stage of the project to the end of the operation of the plant. Thus, the administration performs the assessment on a case-by-case basis, of the safety of each installation before granting a nuclear license. On the other hand, the administration settles overall safety requirements for specific categories of installations or components, which determine the ultimate safety performances, but avoid, as far as possible, to detail the technical specifications to be applied in order to comply with these goals. This approach, which allows the designers and the licensees to rely upon sound codes and standards, gains the advantage of a great flexibility without imparing the nuclear safety. The author outlines the licensing progress for the main categories of installations: nuclear power plants of the PWR type, fast breeders, uranium isotope separation plants, and irradiated fuel processing plants. Emphasis is placed on the most noteworthy points: standardization of projects, specific risks of each site, problems of advanced type reactors, etc... The development of the technical regulations is presented with emphasis on the importance of an internationally concerned action within the nuclear international community. The second part of this paper describes the France operating experience of nuclear installations from the safety point of view. Especially, the author examines the technical and administrative utilization of data from safety significant incidents in reactors and plants, and the results of the control performed by the nuclear installations

  12. Radiation safety

    International Nuclear Information System (INIS)

    1996-04-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. The health effects of radiation - both natural and artificial - are relatively well understood and can be effectively minimized through careful safety measures and practices. The IAEA, together with other international and expert organizations, is helping to promote and institute Basic Safety Standards on an international basis to ensure that radiation sources and radioactive materials are managed for both maximum safety and human benefit

  13. Transient and accident analyses topical design basis documents

    International Nuclear Information System (INIS)

    Chi, Larry; Eckert, Eugene; Grim, Brit

    2004-01-01

    The designers and operators of nuclear power plants have extensively documented system functions, licensing performance, and operating procedures for all conditions. This paper presents a complementary, systematic approach for the documentation of all requirements that are based on the analysis of operational transients, abnormal transients, accidents, and other events which are included in the design and licensing basis for the plant. Up to now, application of the approach has focused on required mitigation actions (automatic or manual). All mitigation actions are directly identified with all applicable reactor events, as well as the plant-unique systems that work together to perform each function. The approach is also applicable to all operational functions. The approach makes extensive use of data base methods, thereby providing effective ways to interrogate the information for the varied users of this information. Examples of use include: evaluations of system design changes and equipment modifications, safety evaluations of any plant change (e.g., USNRC 10CFR50.59 review), plant operations (e.g., manual actions during unplanned events), system interactions, classification of safety-related equipment, environmental qualification of equipment, and mitigation requirements for different reactor operating states. This approach has been applied in customized ways to several boiling water reactor (BWR) units, based on the desires and needs of the specific utility. (author)

  14. The role of PRA in the safety assessment of VVER Nuclear Power Plants in Ukraine

    International Nuclear Information System (INIS)

    Kot, C.

    1999-01-01

    Ukraine operates thirteen (13) Soviet-designed pressurized water reactors, VVERS. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs), in accordance with new SAR content requirements issued in September 1995, by the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine. The requirements are in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. The last two requirements, on PRA and BDBA, are new, and the DBA requirements are an expanded version of the older SAR requirements. The US Department of Energy (USDOE), as part of its Soviet-Designed Reactor Safety activities, is providing assistance and technology transfer to Ukraine to support their nuclear power plants (NPPs) in developing a Western-type technical basis for the new SARs. USDOE sponsored In-Depth Safety Assessments (ISAs) are in progress at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1, and a follow-on study has been initiated at Khmenytskyy Unit 1. The ISA projects encompass most areas of plant safety evaluation, but the initial emphasis is on performing a detailed, plant-specific Level 1 Internal Events PRA. This allows the early definition of the plant risk profile, the identification of risk significant accident sequences and plant vulnerabilities and provides guidance for the remainder of the safety assessments

  15. Safety studies on Korean fusion DEMO plant using integrated safety assessment methodology

    International Nuclear Information System (INIS)

    Oh, Kyemin; Kang, Myoung-suk; Heo, Gyunyoung; Kim, Hyoung-chan

    2014-01-01

    Highlights: •The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant. •The concepts of integrated safety assessment methodology (ISAM) that can be applied in addressing regulatory requirements and recognizing safety issues for K-DEMO were emphasized. •Phenomena identification and ranking table (PIRT) was proposed. It can recognize vulnerabilities of systems and identify the gaps in technical areas requiring additional researches. •This work is expected to contribute on the conceptual design of safety features for K-DEMO to design engineers and the guidance for regulatory requirements to licensers. -- Abstract: The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant (K-DEMO) as a part of R and D program through the National Fusion Research Institute of Korea. Even though nuclear regulation and licensing framework is well setup due to the operating and design experience of Pressurized Water Reactors (PWRs) since 1970s, the regulatory authority of South Korea has concerns on the challenge of facing new nuclear facilities including K-DEMO due to the differences in systems, materials, and inherent safety feature from conventional PWRs. Even though the follow-up of the ITER license process facilitates to deal with significant safety issues of fusion facilities, a licensee as well as a licenser should identify the gaps between ITER and DEMO in terms of safety issues. First we reviewed the methods of conducting safety analysis for unprecedented nuclear facilities such as Generation IV reactors, particularly very high temperature reactor (VHTR), which is called as integrated safety assessment methodology (ISAM). Second, the analysis for the conceptual design of K-DEMO on the basis of ISAM was conducted. The ISAM consists of five analytical tools to develop the safety requirements from licensee

  16. Safety studies on Korean fusion DEMO plant using integrated safety assessment methodology

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Kyemin; Kang, Myoung-suk [Kyung Hee University, Youngin-si, Gyeonggi-do 446-701 (Korea, Republic of); Heo, Gyunyoung, E-mail: gheo@khu.ac.kr [Kyung Hee University, Youngin-si, Gyeonggi-do 446-701 (Korea, Republic of); Kim, Hyoung-chan [National Fusion Research Institute, Daejeon-si 305-333 (Korea, Republic of)

    2014-10-15

    Highlights: •The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant. •The concepts of integrated safety assessment methodology (ISAM) that can be applied in addressing regulatory requirements and recognizing safety issues for K-DEMO were emphasized. •Phenomena identification and ranking table (PIRT) was proposed. It can recognize vulnerabilities of systems and identify the gaps in technical areas requiring additional researches. •This work is expected to contribute on the conceptual design of safety features for K-DEMO to design engineers and the guidance for regulatory requirements to licensers. -- Abstract: The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant (K-DEMO) as a part of R and D program through the National Fusion Research Institute of Korea. Even though nuclear regulation and licensing framework is well setup due to the operating and design experience of Pressurized Water Reactors (PWRs) since 1970s, the regulatory authority of South Korea has concerns on the challenge of facing new nuclear facilities including K-DEMO due to the differences in systems, materials, and inherent safety feature from conventional PWRs. Even though the follow-up of the ITER license process facilitates to deal with significant safety issues of fusion facilities, a licensee as well as a licenser should identify the gaps between ITER and DEMO in terms of safety issues. First we reviewed the methods of conducting safety analysis for unprecedented nuclear facilities such as Generation IV reactors, particularly very high temperature reactor (VHTR), which is called as integrated safety assessment methodology (ISAM). Second, the analysis for the conceptual design of K-DEMO on the basis of ISAM was conducted. The ISAM consists of five analytical tools to develop the safety requirements from licensee

  17. Software for computer based systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    systems important to safety in nuclear power plants, for all phases of the system life cycle. The guidance is applicable to systems important to safety. Since at present the reliability of a computer based system cannot be predicted on the sole basis of, or built in by, the design process, it is difficult to define and to agree systematically on any possible relaxation in the guidance to apply to software for safety related systems. Whenever possible, recommendations which apply only to safety systems and not to safety related systems are explicitly identified. The guidance relates primarily to the software used in computer based systems important to safety. Guidance on the other aspects of computer based systems, such as those concerned with the design of the computer based system itself and its hardware, is limited to the issues raised by the development, verification and validation of software.The main focus of this Safety Guide is on the preparation of documentation that is used for an adequate demonstration of the safety and reliability of computer based systems important to safety.This Safety Guide applies to all types of software: pre-existing software or firmware (such as an operating system), software to be specifically developed for the project, or software to be developed from an existing pre developed equipment family of hardware or software modules. This Safety Guide is intended for use by those involved in the production, assessment and licensing of computer based systems, including plant system designers, software designers and programmers, verifiers, validators, certifiers and regulators, as well as plant operators. The various interfaces between those involved are considered. (author)

  18. Methods for formulation of design basis accidents within a risk-informed approach to safety regulation of new nuclear power plants

    International Nuclear Information System (INIS)

    Beer, B.C.; Apostolakis, G.E.; Golay, M.W.

    2000-01-01

    Within a project sponsored by the U.S. Department of Energy (DOE) an investigation is being conducted into creating a risk-informed safety regulatory framework and design process based upon the use of probabilistic risk assessment (PRA). In conjunction with efforts to formulate an overall regulatory framework (i.e., reported in PSAM 5 by F. Duran, A. Camp, G. Apostolakis and M. Golay, 'A Framework for Regulatory Requirements and Industry Standards for New Nuclear Power Plants'), this paper addresses the potential role(s) of Design Basis Accidents (DBAs) within this new framework. Currently that role, if any, is unclear. In previous nuclear safety regulatory treatments, DBAs have been of great practical value for both designers and regulators. However, they have suffered from being inconsistently formulated, and lacking fundamental justification. Any DBA set is likely to be formulated uniquely for a specific reactor concept. The staff of any nuclear power plant (NPP) in the U.S. routinely calculates the likelihood of core damage, the likelihood of radioactive release and the likelihood of adverse health effects due to radioactive release. As the accuracy of such estimates improves industry-wide, safety regulators consider weighing these calculated risks more heavily than strict adherence to the prescriptive conservatisms of existing regulations, hence risk-informed regulation. DBAs, despite their prescriptive nature, can remain useful tools for regulators and designers in a risk-informed regulatory framework, providing that they can be formulated in a fashion consistent with the risk profiles of a plant. DBAs also offer the opportunity to take into account factors of uncertainty not captured in a PRA, which are typically addressed via defense-in-depth features and subjective judgements. Designers seeking only to create a plant having a calculated risk below a certain value, while minimizing cost, may find themselves in an inefficient trial-and-error process as they

  19. Lessons learned on the design and the conduct of Post-Authorization Safety Studies

    DEFF Research Database (Denmark)

    Engel, Pierre; Almas, Mariana Ferreira; De Bruin, Marieke Louise

    2017-01-01

    Aims: To describe and characterize the first cohort of Post-Authorization Safety Study (PASS) protocols reviewed under the recent European pharmacovigilance legislation. Methods: A systematic approach was used to compile all publicly available information on PASS protocols and assessments submitted...... the 189 PASS, slightly more involved primary data capture (58%). PASS assessing drug utilization mainly leveraged secondary data sources (58%). The majority of the PASS did not include a comparator (65%) and 35% of PASS also evaluated clinical effectiveness endpoints. Conclusions: To the best of our...... knowledge this is the first comprehensive review of three years of PASS protocols submitted under the new pharmacovigilance legislation. Our results show that both EMA and PASS sponsors could respectively increase the availability of protocol assessments and documents in the EU-PAS. Protocol content review...

  20. Nuclear safety in Slovak Republic. Regulatory aspects of NPP nuclear safety

    International Nuclear Information System (INIS)

    Lipar, M.

    1999-01-01

    Regulatory Authority (UJD) is appointed by the Slovak Republic National Council as an Executive Authority for nuclear safety supervision. Nuclear safety legislation, organisation and resources of UJD, its role and responsibilities are described together with its inspection and licensing functions and International cooperation concerning improvements of safety effectiveness. Achievements of UJD are listed in detail

  1. Simplified safety and containment systems for the iris reactor

    International Nuclear Information System (INIS)

    Conway, L.E.; Lombardi, C.; Ricotti, M.; Oriani, L.

    2001-01-01

    The IRIS (International Reactor Innovative and Secure) is a 100 - 300 MW modular type pressurized water reactor supported by the U.S. DOE NERI Program. IRIS features a long-life core to provide proliferation resistance and to reduce the volume of spent fuel, as well as reduce maintenance requirements. IRIS utilizes an integral reactor vessel that contains all major primary system components. This integral reactor vessel makes it possible to reduce containment size; making the IRIS more cost competitive. IRIS is being designed to enhance reactor safety, and therefore a key aspect of the IRIS program is the development of the safety and containment systems. These systems are being designed to maximize containment integrity, prevent core uncover following postulated accidents, minimize the probability and consequences of severe accidents, and provide a significant simplification over current safety system designs. The design of the IRIS containment and safety systems has been identified and preliminary analyses have been completed. The IRIS safety concept employs some unique features that minimize the consequences of postulated design basis events. This paper will provide a description of the containment design and safety systems, and will summarize the analysis results. (author)

  2. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  3. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  4. Safety upgrading at PAKS Nuclear Power Plant

    International Nuclear Information System (INIS)

    Bajsz, J.; Elter, J.

    2000-01-01

    The operation of Paks NPP has reached its half time. Until this time the plant fulfilled expectations raised before its construction: the four units have produced safely and reliably more than 200 TWh electricity. The production of the plant has been at the stable level since its construction and has provided 43-38 % of electricity consumed in Hungary. The annual production is around 14 TWh, which means a load factor higher than 85 %. Safety upgrading activities [1] at Paks had started in the late eighties, when the commissioning work of units 3 and 4 were carried out. That time the main emphases were put to lessons learned of the TMI and Chernobyl accidents. The international reviews hosted by our plant widened our review's scope. To systematize our approach a complete safety review, the AGNES (Advanced General Safety and New Evaluation of Safety) project was started in 1991. The goal of the project was to evaluate to what extent Paks NPP satisfied the current international safety expectations and to help in determining the priorities for safety enhancement and upgrading measures. The project completed in 1994 ranked our safety upgrading measures by safety significance, which became a basis for technical design work and financial scheduling. The other important outcome of the AGNES project was the introduction the Periodical Safety Review regime by our nuclear authority. These periodical reviews held after 10 years of operation offer the possibility - and obligation for the licensee - to perform a comprehensive assessment of the safety of the plant, to evaluate the integral effects of changes of circumstances happened during the review period. The goal of these reviews is to deal with cumulative effects of NPP ageing, modifications, operating experience and technical developments aimed at ensuring a high level of safety throughout plant service life. The execution of our safety-upgrading program is well advancing. For the whole program from 1996 to 2002 250

  5. Nuclear safety and security culture - an integrated approach to regulatory oversight

    International Nuclear Information System (INIS)

    Tronea, M.; Ciurea Ercau, C.

    2013-01-01

    The paper presents the development and implementation of regulatory guidelines for the oversight of safety and security culture within licensees organizations. CNCAN (the National Commission for Nuclear Activities of Romania) has used the International Atomic Energy Agency (IAEA) attributes for a strong safety culture as the basis for its regulatory guidelines providing support to the reviewers and inspectors for recognizing and gathering information relevant to safety culture. These guidelines are in process of being extended to address also security culture, based on the IAEA Nuclear Security Series No. 7 document Nuclear Security Culture: Implementing Guide. Recognizing that safety and security cultures coexist and need to reinforce each other because they share the common objective of limiting risk and that similar regulatory review and inspection processes are in place for nuclear security oversight, an integrated approach is considered justified, moreover since the common elements of these cultures outweigh the differences. (authors)

  6. Activities of Nuclear Regulatory Authority and safety of nuclear facilities in the Slovak Republic in 1993

    International Nuclear Information System (INIS)

    1994-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (NRA SR) in 1993 is presented. These activities are reported under the headings: (1) Introduction; (2) Regulatory activities at nuclear power plants units in operation; (2.1) Nuclear power plant SEP-EBO V-1; (4) Selected operation events and safety assessment in NPP SEP-EBO V-1; (2.2) Safety assessment of NPP SEP-EBO V-2; (3) Results of regulatory activities at the decommissioning of NPP A-1; (4) Regulatory activities at units under construction SEP-EMO - NPP Mochovce; (5) Further regulatory activities. (5.1) Preparation of designated personnel; (5.2) Inspection and accountancy of nuclear material; (5.3) Security provisions; (5.4) Accounted items and double use items; (5.5) Problem of radioactive wastes; (6.1) International co-operation activities of NRA; (6.2) Emergency planning; (6.3) International activities for quality enhancement of national supervision; (7) Conclusion [sk

  7. Health effects of radiation and the implications for radiation safety

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1991-01-01

    In this Paper two elements of a multiphase analysis of radiation exposures in the living environment - the human health effects of ionizing radiation and the implications for radiation safety policy and practices - are presented. Part 1 draws together the current state of scientific knowledge and insight about the human health effects of radiation, describing these in terms of known cause-related deterministic effects and of the estimated incidence of stochastic effects as defined by biostatistics and biological models. The 1988 UNSCEAR report provides an authoritative basis for such an examination. Part 2 explores some of the major implications that the state-of-the-art of radiation biology has - or should have - for radiation safety policy and practices. (author)

  8. Implementation of safety parameter display system at VVER-440 NPPs

    International Nuclear Information System (INIS)

    Manninen, T.

    1997-01-01

    Furnishing WWER-440 nuclear power plant units with a safety parameter display system (SPDS) fulfilling the requirements of internationally recognized standards and guidelines has been ranked high on the lists of proposed safety improvement projects. Technically such an SPDS system can be implemented either as a separate stand-alone system or as a more or less closely integrated part of a process information system of the plant unit. In the paper examples of these approaches are presented. Functionally all these examples include the well proven SPDS concept developed by IVO Power Engineering Ltd, Finland. The functional design basis, the general requirements for the system platform, experience with implementation and expansion possibilities of the systems are discussed. (author)

  9. Safety evaluation of accident-tolerant FCM fueled core with SiC-coated zircalloy cladding for design-basis-accidents and beyond DBAs

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ji-Han, E-mail: chunjh@kaeri.re.kr; Lim, Sung-Won; Chung, Bub-Dong; Lee, Won-Jae

    2015-08-15

    Highlights: • Thermal conductivity model of the FCM fuel was developed and adopted in the MARS. • Scoping analysis for candidate FCM FAs was performed to select feasible FA. • Preliminary safety criteria for FCM fuel and SiC/Zr cladding were set up. • Enhanced safety margin and accident tolerance for FCM-SiC/Zr core were demonstrated. - Abstract: The FCM fueled cores proposed as an accident tolerant concept is assessed against the design-basis-accident (DBA) and the beyond-DBA (BDBA) scenarios using MARS code. A thermal conductivity model of FCM fuel is incorporated in the MARS code to take into account the effects of irradiation and temperature that was recently measured by ORNL. Preliminary analyses regarding the initial stored energy and accident tolerant performance were carried out for the scoping of various cladding material candidates. A 16 × 16 FA with SiC-coated Zircalloy cladding was selected as the feasible conceptual design through a preliminary scoping analysis. For a selected design, safety analyses for DBA and BDBA scenarios were performed to demonstrate the accident tolerance of the FCM fueled core. A loss of flow accident (LOFA) scenario was selected for a departure-from-nucleate-boiling (DNB) evaluation, and large-break loss of coolant accident (LBLOCA) scenario for peak cladding temperature (PCT) margin evaluation. A control element assembly (CEA) ejection accident scenario was selected for peak fuel enthalpy and temperature. Moreover, a station blackout (SBO) and LBLOCA without a safety injection (SI) scenario were selected as a BDBA. It was demonstrated that the DBA safety margin of the FCM core is satisfied and the time for operator actions for BDBA s is evaluated.

  10. Unites States position paper on sodium fires. Design basis and testing

    International Nuclear Information System (INIS)

    Lancet, R.T.; Johnson, R.P.; Matlin, E.; Vaughan, E.U.; Fields, D.E.; Glueckler, E.; McCormack, J.D.; Miller, C.W.; Pedersen, D.R.

    1989-01-01

    This paper focuses on designs, analyses, and tests performed since the last Sodium Fires Meeting of the IAEA International Working Group on Fast Reactors in May 1982. Since the U.S. Liquid Metal Reactor (LMR) program is focused on the two advanced LMRs, SAFR and PRISM, the paper relates this work to these designs. First, the design philosophy and approach taken by these advanced pool reactors are described. This includes methods of leak detection, the design basis leaks, and passive accommodation of sodium fires. Then the small- and large-scale sodium fire tests performed in support of the Clinch River Breeder Reactor Plant (CRBRP) program, including post-accident cleanup, are presented and related to the advanced LMR designs. Next, the assessment and behavior of the aerosols generated are discussed including generation rate, behavior within structures, release and dispersal, and deposition on safety-grade equipment. Finally, the impact of these aerosols on the performance of safety-grade decay heat removal heat exchange surfaces is discussed including some test results as well as planned tests. (author)

  11. High level issues in reliability quantification of safety-critical software

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2012-01-01

    For the purpose of developing a consensus method for the reliability assessment of safety-critical digital instrumentation and control systems in nuclear power plants, several high level issues in reliability assessment of the safety-critical software based on Bayesian belief network modeling and statistical testing are discussed. Related to the Bayesian belief network modeling, the relation between the assessment approach and the sources of evidence, the relation between qualitative evidence and quantitative evidence, how to consider qualitative evidence, and the cause-consequence relation are discussed. Related to the statistical testing, the need of the consideration of context-specific software failure probabilities and the inability to perform a huge number of tests in the real world are discussed. The discussions in this paper are expected to provide a common basis for future discussions on the reliability assessment of safety-critical software. (author)

  12. Interim safety basis for fuel supply shutdown facility

    International Nuclear Information System (INIS)

    Brehm, J.R.; Deobald, T.L.; Benecke, M.W.; Remaize, J.A.

    1995-01-01

    This ISB in conjunction with the new TSRs, will provide the required basis for interim operation or restrictions on interim operations and administrative controls for the Facility until a SAR is prepared in accordance with the new requirements. It is concluded that the risk associated with the current operational mode of the Facility, uranium closure, clean up, and transition activities required for permanent closure, are within Risk Acceptance Guidelines. The Facility is classified as a Moderate Hazard Facility because of the potential for an unmitigated fire associated with the uranium storage buildings

  13. 16 CFR 1500.2 - Authority.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Authority. 1500.2 Section 1500.2 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS HAZARDOUS SUBSTANCES AND ARTICLES; ADMINISTRATION AND ENFORCEMENT REGULATIONS § 1500.2 Authority. Authority under the...

  14. Safety regulation for the design approval of special form radioactive sources

    International Nuclear Information System (INIS)

    Cho, Woon-Kap

    2009-01-01

    Several kinds of special form radioactive sources for industrial, medical applications are being produced in Korea. Special form radioactive sources should meet strict safety requirements specified in the domestic safety regulations and the design of the sources should be certified by the regulatory authority, the Ministry of Education, Science and Technology (MEST). Several safety tests such as impact, percussion, heating, and leak tests are performed on the sources according to the domestic regulations and the international safety standards such as ANSI N542-1977 and ISO 2919-1999(E). As a regulatory expert body, Korea Institute of Nuclear Safety (KINS) assesses various types of application documents, such as safety analysis report, quality assurance program, and other documents evidencing fulfillment of requirements for design approval of the special form radioactive sources, submitted by a legal person who intends to produce special form radioactive sources and then reports the assessment result to MEST. A design approval certificate is issued to the applicant by MEST on the basis of a technical evaluation report presented by KINS.

  15. Safety of Research Reactors. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Requirements publication establishes requirements for all main areas of safety for research reactors, with particular emphasis on requirements for design and operation. It explains the safety objectives and concepts that form the basis for safety and safety assessment for all stages in the lifetime of a research reactor. Technical and administrative requirements for the safety of new research reactors are established in accordance with these objectives and concepts, and they are to be applied to the extent practicable for existing research reactors. The safety requirements established in this publication for the management of safety and regulatory supervision apply to site evaluation, design, manufacturing, construction, commissioning, operation (including utilization and modification), and planning for decommissioning of research reactors (including critical assemblies and subcritical assemblies). The publication is intended for use by regulatory bodies and other organizations with responsibilities in these areas and in safety analysis, verification and review, and the provision of technical support.

  16. CAD/CAE-technologies application for assessment of passenger safety on railway transport in emergency

    Science.gov (United States)

    Antipin, D. Ya; Shorokhov, S. G.; Bondarenko, O. I.

    2018-03-01

    A possibility of using current software products realizing CAD/CAE-technologies for the assessment of passenger safety in emergency cases on railway transport has been analyzed. On the basis of the developed solid computer model of an anthropometric dummy, the authors carried out an analysis of possible levels of passenger injury during accident collision of a train with an obstacle.

  17. Preliminary Evaluation Methodology of ECCS Performance for Design Basis LOCA Redefinition

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Ahn, Seung Hoon; Seul, Kwang Won

    2010-01-01

    To improve their existing regulations, the USNRC has made efforts to develop the risk-informed and performance-based regulation (RIPBR) approaches. As a part of these efforts, the rule revision of 10CFR50.46 (ECCS Acceptance Criteria) is underway, considering some options for 4 categories of spectrum of break sizes, ECCS functional reliability, ECCS evaluation model, and ECCS acceptance criteria. Since the potential for safety benefits and unnecessary burden reduction from design basis LOCA redefinition is high relative to other options, the USNRC is proceeding with the rulemaking for design basis LOCA redefinition. An instantaneous break with a flow rate equivalent to a double ended guillotine break (DEGB) of the largest primary piping system in the plant is widely recognized as an extremely unlikely event, while redefinition of design basis LOCA can affect the existing regulatory practices and approaches. In this study, the status of the design basis LOCA redefinition and OECD/NEA SMAP (Safety Margin Action Plan) methodology are introduced. Preliminary evaluation methodology of ECCS performance for LOCA is developed and discussed for design basis LOCA redefinition

  18. Assessment of Safety Culture

    International Nuclear Information System (INIS)

    Bilic Zabric, T.; Kavsek, D.

    2006-01-01

    A strong safety culture leads to more effective conduct of work and a sense of accountability among managers and employees, who should be given the opportunity to expand skills by training. The resources expended would thus result in tangible improvements in working practices and skills, which encourage further improvement of safety culture. In promoting an improved safety culture, NEK has emphasized both national and organizational culture with an appropriate balance of behavioural sciences and quality management systems approaches. In recent years there has been particular emphasis put on an increasing awareness of the contribution that human behavioural sciences can make to develop good safety practices. The purpose of an assessment of safety culture is to increase the awareness of the present culture, to serve as a basis for improvement and to keep track of the effects of change or improvement over a longer period of time. There is, however, no single approach that is suitable for all purposes and which can measure, simultaneously, all the intangible aspects of safety culture, i.e. the norms, values, beliefs, attitudes or the behaviours reflecting the culture. Various methods have their strengths and weaknesses. To prevent significant performance problems, self-assessment is used. Self-assessment is the process of identifying opportunities for improvement actively or, in some cases, weaknesses that could cause more serious errors or events. Self-assessments are an important input to the corrective action programme. NEK has developed questionnaires for safety culture self-assessment to obtain information that is representative of the whole organization. Questionnaires ensure a greater degree of anonymity, and create a less stressful situation for the respondent. Answers to questions represent the more apparent and conscious values and attitudes of the respondent. NEK proactively co-operates with WANO, INPO, IAEA in the areas of Safety Culture and Human

  19. Defence-in-depth and development of safety requirements for advanced nuclear reactors

    International Nuclear Information System (INIS)

    Carnino, A.; Gasparini, M.

    2002-01-01

    The paper addresses a general approach for the preparation of the design safety requirements using the IAEA Safety Objectives and the strategy of defence-in-depth. It proposes a general method (top-down approach) to prepare safety requirements for a given kind of reactor using the IAEA requirements for nuclear power plants as a starting point through a critical interpretation and application of the strategy of defence-in-depth. The IAEA has recently developed a general methodology for screening the defence-in-depth of nuclear power plants starting from the fundamental safety objectives as proposed in the IAEA Safety Fundamentals. This methodology may provide a useful tool for the preparation of safety requirements for the design and operation of any kind of reactor. Currently the IAEA is preparing the technical basis for the development of safety requirements for Modular High Temperature Gas Reactors, with the aim of showing the viability of the method. A draft TECDOC has been prepared and circulated among several experts for comments. This paper is largely based on the content of the draft TECDOC. (authors)

  20. The practical implementation of integrated safety management for nuclear safety analysis and fire hazards analysis documentation

    International Nuclear Information System (INIS)

    COLLOPY, M.T.

    1999-01-01

    In 1995 Mr. Joseph DiNunno of the Defense Nuclear Facilities Safety Board issued an approach to describe the concept of an integrated safety management program which incorporates hazard and safety analysis to address a multitude of hazards affecting the public, worker, property, and the environment. Since then the U S . Department of Energy (DOE) has adopted a policy to systematically integrate safety into management and work practices at all levels so that missions can be completed while protecting the public, worker, and the environment. While the DOE and its contractors possessed a variety of processes for analyzing fire hazards at a facility, activity, and job; the outcome and assumptions of these processes have not always been consistent for similar types of hazards within the safety analysis and the fire hazard analysis. Although the safety analysis and the fire hazard analysis are driven by different DOE Orders and requirements, these analyses should not be entirely independent and their preparation should be integrated to ensure consistency of assumptions, consequences, design considerations, and other controls. Under the DOE policy to implement an integrated safety management system, identification of hazards must be evaluated and agreed upon to ensure that the public. the workers. and the environment are protected from adverse consequences. The DOE program and contractor management need a uniform, up-to-date reference with which to plan. budget, and manage nuclear programs. It is crucial that DOE understand the hazards and risks necessarily to authorize the work needed to be performed. If integrated safety management is not incorporated into the preparation of the safety analysis and the fire hazard analysis, inconsistencies between assumptions, consequences, design considerations, and controls may occur that affect safety. Furthermore, confusion created by inconsistencies may occur in the DOE process to grant authorization of the work. In accordance with

  1. Verification and validation issues for digitally-based NPP safety systems

    International Nuclear Information System (INIS)

    Ets, A.R.

    1993-01-01

    The trend toward standardization, integration and reduced costs has led to increasing use of digital systems in reactor protection systems. While digital systems provide maintenance and performance advantages, their use also introduces new safety issues, in particular with regard to software. Current practice relies on verification and validation (V and V) to ensure the quality of safety software. However, effective V and V must be done in conjunction with a structured software development process and must consider the context of the safety system application. This paper present some of the issues and concerns that impact on the V and V process. These include documentation of systems requirements, common mode failures, hazards analysis and independence. These issues and concerns arose during evaluations of NPP safety systems for advanced reactor designs and digital I and C retrofits for existing nuclear plants in the United States. The pragmatic lessons from actual systems reviews can provide a basis for further refinement and development of guidelines for applying V and V to NPP safety systems. (author). 14 refs

  2. HTGR safety research program

    International Nuclear Information System (INIS)

    Barsell, A.W.; Olsen, B.E.; Silady, F.A.

    1981-01-01

    An HTGR safety research program is being performed supporting and guided in priorities by the AIPA Probabilistic Risk Study. Analytical and experimental studies have been conducted in four general areas where modeling or data assumptions contribute to large uncertainties in the consequence assessments and thus, in the risk assessment for key core heat-up accident scenarios. Experimental data have been obtained on time-dependent release of fission products from the fuel particles, and plateout characteristics of condensible fission products in the primary circuit. Potential failure modes of primarily top head PCRV components as well as concrete degradation processes have been analyzed using a series of newly developed models and interlinked computer programs. Containment phenomena, including fission product deposition and potential flammability of liberated combustible gases have been studied analytically. Lastly, the behaviour of boron control material in the core and reactor subcriticality during core heatup have been examined analytically. Research in these areas has formed the basis for consequence updates in GA-A15000. Systematic derivation of future safety research priorities is also discussed. (author)

  3. AP1000 Containment Design and Safety Assessment

    International Nuclear Information System (INIS)

    Wright, Richard F.; Ofstun, Richard P.; Bachere, Sebastien

    2002-01-01

    The AP1000 is an up-rated version of the AP600 passive plant design that recently received final design certification from the US NRC. Like AP600, the AP1000 is a two-loop, pressurized water reactor featuring passive core cooling and passive containment safety systems. One key safety feature of the AP1000 is the passive containment cooling system which maintains containment integrity in the event of a design basis accident. This system utilizes a high strength, steel containment vessel inside a concrete shield building. In the event of a pipe break inside containment, a high pressure signal actuates valves which allow water to drain from a storage tank atop the shield building. Water is applied to the top of the containment shell, and evaporates, thereby removing heat. An air flow path is formed between the shield building and the containment to aid in the evaporation and is exhausted through a chimney at the top of the shield building. Extensive testing and analysis of this system was performed as part of the AP600 design certification process. The AP1000 containment has been designed to provide increased safety margin despite the increased reactor power. The containment volume was increased to accommodate the larger steam generators, and to provide increased margin for containment pressure response to design basis events. The containment design pressure was increased from AP600 by increasing the shell thickness and by utilizing high strength steel. The passive containment cooling system water capacity has been increased and the water application rate has been scaled to the higher decay heat level. The net result is higher margins to the containment design pressure limit than were calculated for AP600 for all design basis events. (authors)

  4. The Regulatory Approach for the Assessment of Safety Culture in Germany: A Tool for Practical Use for Inspections

    International Nuclear Information System (INIS)

    Fassmann, W.; Beck, J.; Kopisch, C.

    2016-01-01

    Need for methods to assess licencees’ safety culture has been recognised since the Chernobyl accident. Several conferences organized by IAEA and OECD-NEA stated the need for regulatory oversight of safety culture and for suitable methods. In 2013, IAEA published a Technical Document (TECDOC 1707) on the process of safety culture oversight by regulatory authorities which leaves much room for regulators’ ways of performing safety culture oversight. In response to these developments, the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) as the federal regulatory body commissioned GRS in 2011 to develop a practical guidance for assessing licencees’ safety culture in the process of regulatory oversight. This research and development project was completed just recently. The publicly available documentation comprises a shorter guidance document with the indispensable information for an appropriate, practical application and a report with more detailed information about the scientific basis of this guidance. To achieve best possible adaptation to regulators’ needs, GRS asked members of the regulatory authority of Baden-Wuerttemberg (one of the federal states of Germany) for comments on a draft of the guidance which was then finalised by duly considering this highly valuable and favorable feedback. Decisions regarding future use rest with German regulatory authorities.

  5. Harmonizing nuclear safety practices in Europe: WENRA activities in the area of waste management

    International Nuclear Information System (INIS)

    Theis, St.; Dandrieux, G.; Feron, F.

    2011-01-01

    The Western European Nuclear Regulators Association (WENRA) was created in 1999. It originally consisted of the heads of the nuclear safety authorities of the member countries of the European Union (E.U.), plus Switzerland. The original objectives of the Association were: -) to develop a common approach to nuclear safety and regulation, in particular within the E.U.; -) to provide the E.U. with an independent capability to examine nuclear safety and regulation in candidate countries; -) to evaluate and achieve a common approach to nuclear safety and regulatory issues which arise. For the detailed work WENRA set up two working groups, for reactor safety (RHWG: reactor harmonization working group) and a little later for waste and decommissioning (WGWD: working group on waste and decommissioning). The basis for all WENRA work is the WENRA policy statement which as a major promoter of developments contains a self commitment of all WENRA member states to implement without undue delay harmonized requirements produced by the working groups after approval of the WENRA plenary. First WENRA publications receiving much public interest were mainly dedicated to the safety of power reactor, and more recently on new reactors and on long term operation of currently operating reactors. (authors)

  6. Technical basis for the aboveground structure failure and associated represented hazardous conditions

    International Nuclear Information System (INIS)

    GOETZ, T.G.

    2003-01-01

    This technical basis document describes the risk binning process and the technical basis for assigning risk bins for the aboveground structure failure representative accident and associated represented hazardous conditions. This document was developed to support the documented safety analysis

  7. AP1000{sup R} nuclear power plant safety overview for spent fuel cooling

    Energy Technology Data Exchange (ETDEWEB)

    Gorgemans, J.; Mulhollem, L.; Glavin, J.; Pfister, A.; Conway, L.; Schulz, T.; Oriani, L.; Cummins, E.; Winters, J. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    possible pool heat load conditions. - After 3 days, several different means are provided to continue spent fuel cooling using installed plant equipment as well as off-site equipment with built-in connections. Even for beyond design basis accidents with postulated pool damage and multiple failures in the passive safety-related systems and in the defense-in-depth active systems, the AP1000 multiple spent fuel pool spray and fill systems provide additional lines of defense to prevent spent fuel damage. (authors)

  8. Developing design premises for a KBS-3V repository based on results from the safety assessment - 16027

    International Nuclear Information System (INIS)

    Andersson, Johan; Hedin, Allan

    2009-01-01

    As a part of the planned license application for a final repository for spent nuclear fuel the Swedish Nuclear Fuel and Waste Management Co. (SKB), has developed design premises from a long term safety aspect of a KBS-3V repository for spent nuclear fuel. The purpose is to provide requirements from a long term safety aspect, to form the basis for the development of the reference design of the repository and to justify that design. Design premises typically concern specification on what mechanical loads the barriers must withstand, restrictions on the composition of barrier materials or acceptance criteria for the various underground excavations. These design constraints, if all fulfilled by the actual design, should form a good basis for demonstrating repository safety. The justification for these design premises is derived from SKB's most recent safety assessment SR-Can complemented by a few additional analyses. Some of the design premises may be modified in future stages of SKB's program, as a result of analyses based on more detailed site data and a more developed understanding of processes of importance for long-term safety. (authors)

  9. Final safety analysis report (FSAR) for waste receiving and processing (WRAP) facility

    International Nuclear Information System (INIS)

    Weidert, J.R.

    1997-01-01

    This safety analysis report provides a summary description of the WRAP Facility, focusing on significant safety-related characteristics of the location and facility design. This report demonstrates that adherence to the safety basis wi11 ensure necessary operational safety considerations have been addressed sufficiently and justifies the adequacy of the safety basis in protecting the health and safety of the public, workers, and the environment

  10. Light water reactor sequence timing: its significance to probabilistic safety assessment modeling

    International Nuclear Information System (INIS)

    Bley, D.C.; Buttemer, D.R.; Stetkar, J.W.

    1988-01-01

    This paper examines event sequence timing in light water reactor plants from the viewpoint of probabilistic safety assessment (PSA). The analytical basis for the ideas presented here come primarily from the authors' work in support of more than 20 PSA studies over the past several years. Timing effects are important for establishing success criteria for support and safety system response and for identifying the time available for operator recovery actions. The principal results of this paper are as follows: 1. Analysis of event sequence timing is necessary for meaningful probabilistic safety assessment - both the success criteria for systems performance and the probability of recovery are tightly linked to sequence timing. 2. Simple engineering analyses based on first principles are often sufficient to provide adequate resolution of the time available for recovery of PSA scenarios. Only those parameters that influence sequence timing and its variability and uncertainty need be examined. 3. Time available for recovery is the basic criterion for evaluation of human performance, whether time is an explicit parameter of the operator actions analysis or not. (author)

  11. Cold Vacuum Drying (CVD) Facility Design Basis Accident Analysis Documentation

    Energy Technology Data Exchange (ETDEWEB)

    PIEPHO, M.G.

    1999-10-20

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR.

  12. 16 CFR 1700.2 - Authority.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Authority. 1700.2 Section 1700.2 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS POISON PREVENTION PACKAGING § 1700.2 Authority. Authority under the Poison Prevention Packaging Act of 1970 is...

  13. Probabilistic assessment of nuclear safety and safeguards

    International Nuclear Information System (INIS)

    Higson, D.J.

    1987-01-01

    Nuclear reactor accidents and diversions of materials from the nuclear fuel cycle are perceived by many people as particularly serious threats to society. Probabilistic assessment is a rational approach to the evaluation of both threats, and may provide a basis for decisions on appropriate actions to control them. Probabilistic method have become standard tools used in the analysis of safety, but there are disagreements on the criteria to be applied when assessing the results of analysis. Probabilistic analysis and assessment of the effectiveness of nuclear material safeguards are still at an early stage of development. (author)

  14. 15 CFR 970.205 - Vessel safety.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Vessel safety. 970.205 Section 970.205... safety. In order to provide a basis for the necessary determinations with respect to the safety of life... Safety of Life at Sea, 1974 (SOLAS 74) possesses current valid SOLAS 74 certificates; (2) That any...

  15. Technical basis document for external events

    International Nuclear Information System (INIS)

    OBERG, B.D.

    2003-01-01

    This document supports the Tank Farms Documented Safety Analysis and presents the technical basis for the FR-equencies of externally initiated accidents. The consequences of externally initiated events are discussed in other documents that correspond to the accident that was caused by the external event. The external events include aircraft crash, vehicle accident, range fire, and rail accident

  16. Safety improvements at Canadian nuclear power plants in the aftermath of Fukushima accident

    International Nuclear Information System (INIS)

    Rzentkowski, G.; Khouaja, H.

    2014-01-01

    This paper describes the safety review of operating nuclear power plants undertaken by the Canadian Nuclear Safety Commission in light of the March 11, 2011 accident at the Fukushima Daiichi Nuclear Power Plants (NPPs). The review confirmed that the Canadian NPPs are robust and have a strong design relying on multiple layers of defence to protect the public from credible external events. Nevertheless, in the spirit of continuous safety improvements, the review identified a number of recommendations to further strengthen reactor defence-in-depth in preventing and mitigating the consequences of beyond design basis accidents, enhance onsite and offsite emergency response, and improve the CNSC regulatory framework. Progress achieved to date, in implementing these measures, is described in this paper along with a summary of safety benefits for each level of the reactor defence-in-depth. (author)

  17. Safety improvements at Canadian nuclear power plants in the aftermath of Fukushima accident

    Energy Technology Data Exchange (ETDEWEB)

    Rzentkowski, G.; Khouaja, H. [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2014-07-01

    This paper describes the safety review of operating nuclear power plants undertaken by the Canadian Nuclear Safety Commission in light of the March 11, 2011 accident at the Fukushima Daiichi Nuclear Power Plants (NPPs). The review confirmed that the Canadian NPPs are robust and have a strong design relying on multiple layers of defence to protect the public from credible external events. Nevertheless, in the spirit of continuous safety improvements, the review identified a number of recommendations to further strengthen reactor defence-in-depth in preventing and mitigating the consequences of beyond design basis accidents, enhance onsite and offsite emergency response, and improve the CNSC regulatory framework. Progress achieved to date, in implementing these measures, is described in this paper along with a summary of safety benefits for each level of the reactor defence-in-depth. (author)

  18. Basic Safety Standards for Radiation Protection - 1967 Edition

    International Nuclear Information System (INIS)

    1967-01-01

    This first revision of the Basic Safety Standards was approved by the IAEA Board of Governors in September 1965. It was prepared with the assistance of a panel of experts chaired by Prof. L. Bugnard, Director of the French Institut National d'Hygiene, and attended by representatives of several international organizations. Comments from Member States were considered and changes were introduced on the basis of recommendations made by the International Commission on Radiological Protection in 1966. The Director General of the IAEA has been authorized by the Board to apply the revised Standards to IAEA and IAEA-assisted operations. It has also been recommended that the national regulations of Member States should conform, as far as is practicable, to the revised Standards. (author)

  19. Time Based Workload Analysis Method for Safety-Related Operator Actions in Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eung Se [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-05-15

    During the design basis event, the safety system performs safety functions to mitigate the event. The most of safety system is actuated by automatic system however, there are operator manual actions that are needed for the plant safety. These operator actions are classified as important human actions in human factors engineering design. The human factors engineering analysis and evaluation is needed for these important human actions to assure that operator successfully perform their tasks for plant safety and operational goals. The work load analysis is one of the required analysis for the important human actions.

  20. Time Based Workload Analysis Method for Safety-Related Operator Actions in Safety Analysis

    International Nuclear Information System (INIS)

    Kim, Yun Goo; Oh, Eung Se

    2016-01-01

    During the design basis event, the safety system performs safety functions to mitigate the event. The most of safety system is actuated by automatic system however, there are operator manual actions that are needed for the plant safety. These operator actions are classified as important human actions in human factors engineering design. The human factors engineering analysis and evaluation is needed for these important human actions to assure that operator successfully perform their tasks for plant safety and operational goals. The work load analysis is one of the required analysis for the important human actions.

  1. Safety campaigns. TIS Launches New Safety Information Campaign

    CERN Multimedia

    2001-01-01

    Need to start a new installation and worried about safety aspects? Or are you newly responsible for safety matters in a CERN building? Perhaps you're simply interested in how to make the working environment safer for yourself and your colleagues. Whatever the case, a new information campaign launched by TIS this week can help. The most visible aspects of the new campaign will be posters distributed around the Laboratory treating a different subject each month. The Web site - http://safety.cern.ch/ - which provides all safety related information. But these are not the only aspects of the new campaign. Members of the TIS/GS group, whose contact details can be found on the safety web site, are available to give information and advice on a one-to-one basis at any time. The campaign's launch has been timed to coincide with European Safety Week, organized by the European Agency for Safety and Health at Work and the subject treated in the first posters is safety inspection. This particular topic only concerns thos...

  2. Safety Assurance for Irradiating Experiments in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    T. A. Tomberlin; S. B. Grover

    2004-11-01

    The Advanced Test Reactor (ATR), located at the Idaho National Engineering and Environmental Laboratory (INEEL), was specifically designed to provide a high neutron flux test environment for conducting a variety of experiments. This paper addresses the safety assurance process for two general types of experiments conducted in the ATR facility and how the safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore, this type of experiment is addressed in more detail in the ATR safety basis. This allows the individual safety analysis for this type of experiment to be more standardized. The second type of experiment is defined in more general terms in the ATR safety basis and is permitted under more general controls. Therefore, the individual safety analysis for the second type of experiment tends to be more unique and is tailored to each experiment.

  3. Safety Assurance for Irradiating Experiments in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    T. A. Tomberlin; S. B. Grover

    2004-01-01

    The Advanced Test Reactor (ATR), located at the Idaho National Engineering and Environmental Laboratory (INEEL), was specifically designed to provide a high neutron flux test environment for conducting a variety of experiments. This paper addresses the safety assurance process for two general types of experiments conducted in the ATR facility and how the safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore, this type of experiment is addressed in more detail in the ATR safety basis. This allows the individual safety analysis for this type of experiment to be more standardized. The second type of experiment is defined in more general terms in the ATR safety basis and is permitted under more general controls. Therefore, the individual safety analysis for the second type of experiment tends to be more unique and is tailored to each experiment

  4. Report of the State Office for Nuclear Safety on state supervision of nuclear safety of nuclear facilities and radiation protection in 1998

    International Nuclear Information System (INIS)

    1999-05-01

    The legislative basis of the authority of the State Office for Nuclear Safety as the Czech national regulatory body is outlined, its organizational scheme is presented, and the responsibilities of the various departments are highlighted. The operation of major Czech nuclear facilities, including the Dukovany NPP which is in operation and the Temelin NPP which is under construction, is described with respect to nuclear safety. Since the Office's responsibilities also cover radiation protection in the Czech Republic, a survey of ionizing radiation sources and their supervision is given. Other topics include, among other things, nuclear material transport, the state system for nuclear materials accountancy and control, central registries for radiation protection, nuclear waste management, the National Radiation Monitoring Network, personnel qualification and training, emergency planning, legislative activities, international cooperation, and public information. (P.A.)

  5. Safety strategy

    International Nuclear Information System (INIS)

    Schultheiss, G.F.

    1980-01-01

    The basis for safety strategy in nuclear industry and especially nuclear power plants is the prevention of radioactivity release inside or outside of the technical installation. Therefore either technical or administrative measures are combined to a general strategy concept. This introduction will explain in more detail the following topics: - basic principles of safety - lines of assurance (LOA) - defense in depth - deterministic and probabilistic methods. This presentation is seen as an introduction to the more detailed discussion following in this course, nevertheless some selected examples will be used to illustrate the aspects of safety strategy development although they might be repeated later on. (orig.)

  6. Safety culture

    International Nuclear Information System (INIS)

    Keen, L.J.

    2003-01-01

    Safety culture has become a topic of increasing interest for industry and regulators as issues are raised on safety problems around the world. The keys to safety culture are organizational effectiveness, effective communications, organizational learning, and a culture that encourages the identification and resolution of safety issues. The necessity of a strong safety culture places an onus on all of us to continually question whether the safety measures already in place are sufficient, and are being applied. (author)

  7. Safety design

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Shiozawa, Shusaku

    2004-01-01

    JAERI established the safety design philosophy of the HTTR based on that of current reactors such as LWR in Japan, considering inherent safety features of the HTTR. The strategy of defense in depth was implemented so that the safety engineering functions such as control of reactivity, removal of residual heat and confinement of fission products shall be well performed to ensure safety. However, unlike the LWR, the inherent design features of the high-temperature gas-cooled reactor (HTGR) enables the HTTR meet stringent regulatory criteria without much dependence on active safety systems. On the other hand, the safety in an accident typical to the HTGR such as the depressurization accident initiated by a primary pipe rupture shall be ensured. The safety design philosophy of the HTTR considers these unique features appropriately and is expected to be the basis for future Japanese HTGRs. This paper describes the safety design philosophy and safety evaluation procedure of the HTTR especially focusing on unique considerations to the HTTR. Also, experiences obtained from an HTTR safety review and R and D needs for establishing the safety philosophy for the future HTGRs are reported

  8. Ultrasonic data acquisition installation for basis and in-service testing of nuclear pressure vessels

    International Nuclear Information System (INIS)

    Gutmann, G.; Engl, G.

    1976-01-01

    The safety of nuclear installations requires continuous safety inspections during construction and operation. Essential parts of this safety inspection are the basis and in-line inspections. For this purpose installation systems are used which allow an optimal statement to be made regarding the conditions of tested components

  9. Safety substantiation for underground isolation of spent nuclear fuel or spent nuclear materials as a basis to develop reliable technological solutions

    International Nuclear Information System (INIS)

    Gupalo, T.A.; Beygul, V.P.; Gupalo, M.S.; Kudinov, K.G.

    2000-01-01

    Major issues of the technique for mining and ecological safety substantiation of multi-barrier systems for long-term underground isolation of spent nuclear materials and solidified wastes containing long-lived radionuclides have been presented. The experience with the use of this technique for assessment of ecological safety for the long-term storage of plutonium-containing intermediate level wastes in underground facilities existing in the crystalline rock mass has been considered. The probabilistic evaluations of events of the emergency sequences of abnormal situations are based on the results of 40-year in-situ investigations in the rock mass. Feasibility of optimization has been shown for technological design solutions on storage facilities by the ''risk-costs'' principle. (authors)

  10. A defence in depth approach to safety assessment of existing nuclear power plant

    International Nuclear Information System (INIS)

    Butcher, P.; Holloway, N.J.

    1998-01-01

    The safety assessment of plant built to earlier standards requires an approach to prioritisation of upgrades that is based on sound engineering and safety principles. The principles of defence in depth are universally accepted and can form the basis of a prioritisation scheme for safety issues, and hence for the upgrading required to address them. The described scheme includes criteria for acceptability and issue prioritisation that are based on the number of lines of defence and the consequences of their failure. They are thus equivalent in concept to risk criteria, but are based on deterministic principles. This scheme has been applied successfully to the RBMK plant at Ignalina in Lithuania, for which a Western-style Safety Analysis Report has recently been produced and reviewed by joint Western and Eastern teams. An extended Safety Improvement Programme (SIP2) has been developed and agreed, based on prioritisations from the defence in depth assessment. (author)

  11. Food safety performance indicators to benchmark food safety output of food safety management systems.

    Science.gov (United States)

    Jacxsens, L; Uyttendaele, M; Devlieghere, F; Rovira, J; Gomez, S Oses; Luning, P A

    2010-07-31

    There is a need to measure the food safety performance in the agri-food chain without performing actual microbiological analysis. A food safety performance diagnosis, based on seven indicators and corresponding assessment grids have been developed and validated in nine European food businesses. Validation was conducted on the basis of an extensive microbiological assessment scheme (MAS). The assumption behind the food safety performance diagnosis is that food businesses which evaluate the performance of their food safety management system in a more structured way and according to very strict and specific criteria will have a better insight in their actual microbiological food safety performance, because food safety problems will be more systematically detected. The diagnosis can be a useful tool to have a first indication about the microbiological performance of a food safety management system present in a food business. Moreover, the diagnosis can be used in quantitative studies to get insight in the effect of interventions on sector or governmental level. Copyright 2010 Elsevier B.V. All rights reserved.

  12. IAEA activity related to safety of nuclear desalination

    International Nuclear Information System (INIS)

    Gasparini, M.

    2000-01-01

    The nuclear plants for desalination to be built in the future will have to meet the standards of safety required for the best nuclear power plants currently in operation or being designed. The current safety approach, based on the achievement of the fundamental safety functions and defence in depth strategy, has been shown to be a sound foundation for the safety and protection of public health, and gives the plant the capability of dealing with a large variety of sequences, even beyond the design basis. The Department of Nuclear Safety of the IAEA is involved in many activities, the most important of which are to establish safety standards, and to provide various safety services and technical knowledge in many Technical Co-operation assistance projects. The department is also involved in other safety areas, notably in the field of future reactors. The IAEA is carrying out a project on the safety of new generation reactors, including those used for desalination, with the objective of fostering an exchange of information on safety approaches, promoting harmonization among Member States and contributing towards the development and revision of safety standards and guidelines for nuclear power plant design. The safety, regulatory and environmental concerns in nuclear powered desalination are those related directly to nuclear power plants, with due consideration given to the coupling process. The protection of product water against radioactive contamination must be ensured. An effective infrastructure, including appropriate training, a legal framework and regulatory regime, is a prerequisite to considering use of nuclear power for desalination plants, also in those countries with limited industrial infrastructures and little experience in nuclear technology or safety. (author)

  13. Reactor system safety assurance

    International Nuclear Information System (INIS)

    Mattson, R.J.

    1984-01-01

    The philosophy of reactor safety is that design should follow established and conservative engineering practices, there should be safety margins in all modes of plant operation, special systems should be provided for accidents, and safety systems should have redundant components. This philosophy provides ''defense in depth.'' Additionally, the safety of nuclear power plants relies on ''safety systems'' to assure acceptable response to design basis events. Operating experience has shown the need to study plant response to more frequent upset conditions and to account for the influence of operators and non-safety systems on overall performance. Defense in depth is being supplemented by risk and reliability assessment

  14. Effects and practices on nuclear safety convention promoting nuclear safety in China

    International Nuclear Information System (INIS)

    Zhang Wei; Cheng Jianxiu; Chen Maosong

    2010-01-01

    By the means of peer review and self-review, the Contracting Parties are reviewed on obligations under the Convention. In order to implementation these, the State Department established the specific group, under the efforts of departments together, the China fulfilled the obligations successfully. The international society affirmed the good practices on nuclear safety in China, at the same time, they pointed out some fields that China pay close attention to. On the basis of analyzing questions, we point out some aspects which are combined the common questions put forward by the International Atomic Energy Agency on the 4th reviewing meeting that the Chinese government pay close attention to on the next review meeting. Meanwhile, we also put forward some suggestions on how to do better on fulfilling the convention. (authors)

  15. Investigation on regulatory requirements for radiation safety management

    International Nuclear Information System (INIS)

    Han, Eun Ok; Choi, Yoon Seok; Cho, Dae Hyung

    2013-01-01

    NRC recognizes that efficient management of radiation safety plan is an important factor to achieve radiation safety service. In case of Korea, the contents to perform the actual radiation safety management are legally contained in radiation safety management reports based on the Nuclear Safety Act. It is to prioritize the importance of safety regulations in each sector in accordance with the current situation of radiation and radioactive isotopes-used industry and to provide a basis for deriving safety requirements and safety regulations system maintenance by the priority of radiation safety management regulations. It would be helpful to achieve regulations to conform to reality based on international standards if consistent safety requirements is developed for domestic users, national standards and international standards on the basis of the results of questions answered by radiation safety managers, who lead on-site radiation safety management, about the priority of important factors in radioactive sources use, sales, production, moving user companies, to check whether derived configuration requirements for radiation safety management are suitable for domestic status

  16. New safety concept for geological disposal in Japan - -16339

    International Nuclear Information System (INIS)

    Kitayama, Kazumi

    2009-01-01

    This paper describes a new safety concept for the Japanese geological disposal program, which is a development of the conventional multi-barrier system concept. The Japanese government established the 'Nuclear Waste Management Organization of Japan' (NUMO) as an implementation body in 2000 based on the 'Final disposal act' following the publication of the 'H-12 Report', which confirmed the scientific and engineering feasibility of HLW geological disposal in Japan. Since then, NUMO has undertaken further technical developments aimed at achieving safe and efficient implementation of final disposal. The safety concept developed in the 'H-12 Report' provides sufficient safety on the basis of site-generic considerations. However, it is considered to be over-conservative and therefore does not represent the most probable performance of the engineered or natural barriers. Recently, concrete measures have been proposed requiring the safety case to be presented in terms of a realistic assessment of the most probable performance. This approach takes into account the safety functions of both engineered and natural barriers as well as the long-term static geochemical equilibrium. In particular, the evolution of the safety performance of engineered and natural barriers can be efficiently augmented by the realistic long-term geochemical equilibrium. (author)

  17. Application of safety standards and rules in the Shelter Implementation Plan at the destroyed power unit of Chernobyl NPP

    International Nuclear Information System (INIS)

    Berthold, A.; Bogorinski, P.; Bykov, V.; Redko, V.; Erickson, L.; Kadkin, Ye.; Kondratiev, S.; Simonov, I.; Smyshliaieva, S.; Yesipenko, Yu.

    2002-01-01

    This report deals with the application of safety standards and rules to the Shelter Implementation Plan (SIP) measures. Since 1998 this plan is being implemented at the Chornobyl NPP destroyed unit (which is now known as the Shelter). It includes a set of various tasks whose performance will help partially achieve the established safety objectives. The Regulatory Authority should establish for the Shelter safety goals, principles, and criteria in general, while the Operator of the Shelter is free to independently select the optimum method for their implementation. The Operator of the Shelter must demonstrate (in safety analysis report) that established safety goals are achieved and safety principles and criteria are met. Safety goals, principles, and criteria established for radioactive waste management are reasonable to apply in measures provided for by SIP. However, due to the unique nature of the Shelter, some criteria should not be applied directly and in full scope. Norms and rules on radiation protection should be applied in full scope. The specifics of radiation protection during each Shelter-related activity are considered individually. Safety standards and rules related to technical aspects are reasonable only as a basis. Effective resolution of specific technical issues associated with safety assurance is achieved through interaction between the Operator and the Regulatory Authority during design of SIP structures and systems. Hence, effectiveness of the licensing process plays an important role in the success of the SIP.(author)

  18. Basic safety principles of KLT-40C reactor plants

    International Nuclear Information System (INIS)

    Beliaev, V.; Polunichev, V.

    2000-01-01

    The KLT-40 NSSS has been developed for a floating power block of a nuclear heat and power station on the basis of ice-breaker-type NSSS (Nuclear Steam Supply System) with application of shipbuilding technologies. Basic reactor plant components are pressurised water reactor, once-through coil-type steam generator, primary coolant pump, emergency protection rod drive mechanisms of compensate group-electromechanical type. Basic RP components are incorporated in a compact steam generating block which is arranged within metal-water shielding tank's caissons. Domestic regulatory documents on safety were used for the NSSS design. IAEA recommendations were also taken into account. Implementation of basic safety principles adopted presently for nuclear power allowed application of the KLT-40C plant for a floating power unit of a nuclear co-generation station. (author)

  19. Secondary school accident reporting in one education authority.

    Science.gov (United States)

    Williams, W R; Latif, A H A; Sibert, J

    2002-01-01

    Secondary schools appear to have very different accident rates when they are compared on the basis of accident report returns. The variation may be as a result of real differences in accident rates or different reporting procedures. This study investigates accident reporting from secondary schools and, in particular, the role of the school nurse. Accident form returns covering a 2-year period were collected for statistical analysis from 13 comprehensive schools in one local education authority in Wales. School sites were visited in the following school year to obtain information about accident records held on site and accident reporting procedures. The main factors determining the number of school accident reports submitted to the education authority relate to differences in recording and reporting procedures, such as the employment of a nurse and the policy of the head teacher/safety officer on submitting accident returns. Accident and emergency department referrals from similar schools may show significant differences in specific injuries and their causes. The level of school accident activity cannot be gauged from reports submitted to the education authority. Lack of incentives for collecting good accident data, in conjunction with the degree of complacency in the current system, suggest that future accident rates and reporting activity are unlikely to change.

  20. REFORMASI SISTEM AKUNTANSI CASH BASIS MENUJU SISTEM AKUNTANSI ACCRUAL BASIS

    Directory of Open Access Journals (Sweden)

    Yuri Rahayu

    2016-03-01

    Full Text Available Abstract –  Accounting reform movement was born with the aim of structuring the direction of improvement . This movement is characterized by the enactment of the Act of 2003 and Act 1 of 2004, which became the basis of the birth of Government Regulation No.24 of 2005 on Government Accounting Standards ( SAP . The general,  accounting is based on two systems,  the cash basis  and the accrual basis. The facts speak far students still at problem with differences to the two methods that result in a lack of understanding on the treatment system for recording. The purpose method of research is particularly relevant to student references who are learning basic accounting so that it can provide information and more meaningful understanding of the accounting method cash basis and Accrual basis. This research was conducted through a normative approach, by tracing the document that references a study/library that combines source of reference that can be believed either from books and the internet are processed with a foundation of knowledge and experience of the author. The conclusion can be drawn that basically to be able to understand the difference of the system and the Cash Basis accrual student base treatment requires an understanding of both methods. To be able to have the ability and understanding of both systems required reading exercises and reference sources.   Keywords : Reform, cash basis, accrual basis   Abstrak - Gerakan reformasi akuntansi dilahirkan dengan tujuan penataan ke arah perbaikan. Gerakan ini  ditandai dengan dikeluarkannya  Undang-Undang tahun 2003 dan Undang-Undang No.1 Tahun 2004  yang menjadi dasar lahirnya Peraturan Pemerintah No.24 Tahun 2005 tentang Standar Akuntansi Pemerintah (SAP . Pada umumnya pencatatan akuntansi di dasarkan pada dua sistem yaitu basis kas (Cash Basis dan basis akrual  (Accrual Basis. Fakta berbicara Selama ini mahasiswa masih dibinggungkan dengan perbedaan ke dua metode itu sehingga