WorldWideScience

Sample records for safety analysis tool

  1. STARS software tool for analysis of reliability and safety

    International Nuclear Information System (INIS)

    Poucet, A.; Guagnini, E.

    1989-01-01

    This paper reports on the STARS (Software Tool for the Analysis of Reliability and Safety) project aims at developing an integrated set of Computer Aided Reliability Analysis tools for the various tasks involved in systems safety and reliability analysis including hazard identification, qualitative analysis, logic model construction and evaluation. The expert system technology offers the most promising perspective for developing a Computer Aided Reliability Analysis tool. Combined with graphics and analysis capabilities, it can provide a natural engineering oriented environment for computer assisted reliability and safety modelling and analysis. For hazard identification and fault tree construction, a frame/rule based expert system is used, in which the deductive (goal driven) reasoning and the heuristic, applied during manual fault tree construction, is modelled. Expert system can explain their reasoning so that the analyst can become aware of the why and the how results are being obtained. Hence, the learning aspect involved in manual reliability and safety analysis can be maintained and improved

  2. Reload safety analysis automation tools

    International Nuclear Information System (INIS)

    Havlůj, F.; Hejzlar, J.; Vočka, R.

    2013-01-01

    Performing core physics calculations for the sake of reload safety analysis is a very demanding and time consuming process. This process generally begins with the preparation of libraries for the core physics code using a lattice code. The next step involves creating a very large set of calculations with the core physics code. Lastly, the results of the calculations must be interpreted, correctly applying uncertainties and checking whether applicable limits are satisfied. Such a procedure requires three specialized experts. One must understand the lattice code in order to correctly calculate and interpret its results. The next expert must have a good understanding of the physics code in order to create libraries from the lattice code results and to correctly define all the calculations involved. The third expert must have a deep knowledge of the power plant and the reload safety analysis procedure in order to verify, that all the necessary calculations were performed. Such a procedure involves many steps and is very time consuming. At ÚJV Řež, a.s., we have developed a set of tools which can be used to automate and simplify the whole process of performing reload safety analysis. Our application QUADRIGA automates lattice code calculations for library preparation. It removes user interaction with the lattice code and reduces his task to defining fuel pin types, enrichments, assembly maps and operational parameters all through a very nice and user-friendly GUI. The second part in reload safety analysis calculations is done by CycleKit, a code which is linked with our core physics code ANDREA. Through CycleKit large sets of calculations with complicated interdependencies can be performed using simple and convenient notation. CycleKit automates the interaction with ANDREA, organizes all the calculations, collects the results, performs limit verification and displays the output in clickable html format. Using this set of tools for reload safety analysis simplifies

  3. The use of case tools in OPG safety analysis code qualification

    International Nuclear Information System (INIS)

    Pascoe, J.; Cheung, A.; Westbye, C.

    2001-01-01

    Ontario Power Generation (OPG) is currently qualifying its critical safety analysis software. The software quality assurance (SQA) framework is described. Given the legacy nature of much of the safety analysis software the reverse engineering methodology has been adopted. The safety analysis suite of codes was developed over a period of many years to differing standards of quality and had sparse or incomplete documentation. Key elements of the reverse engineering process require recovery of design information from existing coding. This recovery, if performed manually, could represent an enormous effort. Driven by a need to maximize productivity and enhance the repeatability and objectivity of software qualification activities the decision was made to acquire or develop and implement Computer Aided Software Engineering (CASE) tools. This paper presents relevant background information on CASE tools and discusses how the OPG SQA requirements were used to assess the suitability of available CASE tools. Key findings from the application of CASE tools to the qualification of the OPG safety analysis software are discussed. (author)

  4. Conception of a PWR simulator as a tool for safety analysis

    International Nuclear Information System (INIS)

    Lanore, J.M.; Bernard, P.; Romeyer Dherbey, J.; Bonnet, C.; Quilchini, P.

    1982-09-01

    A simulator can be a very useful tool for safety analysis to study accident sequences involving malfunctions of the systems and operator interventions. The main characteristics of the simulator SALAMANDRE (description of the systems, physical models, programming organization, control desk) have then been selected according tot he objectives of safety analysis

  5. Safety indicators: an efficient tool for a better safety

    International Nuclear Information System (INIS)

    Aufort, P.; Lars, R.

    1993-01-01

    Safety indicators based on the examination of the Operating Technical Specifications have been defined with the aim of following the in-operation safety level of French nuclear power plants. These safety indicators are operation feedback tools which permit the a posteriori justification and the adjustment of actual procedures. They would allow detection of an abnormal unavailability occurrence rate or a situation revealing a potential safety problem. So, data acquisition, processing, analysis and display software allowing trend analysis of these indicators has been developed so far as: a reflexion tool for the power plant operators about the safety instructions and the adjustment of preventive maintenance, and a help for decision making at a national level for the examination and the improvement of Operating Technical Specifications. This paper presents the objectives of these safety indicators, the processing tool associated, the preliminary results obtained and more elaborate processing of these indicators. These safety indicators may be very useful in framing probabilistic safety assessments. (author)

  6. Screening of Gas-Cooled Reactor Thermal-Hydraulic and Safety Analysis Tools and Experimental Database

    International Nuclear Information System (INIS)

    Lee, Won Jae; Kim, Min Hwan; Lee, Seung Wook

    2007-08-01

    This report is a final report of I-NERI Project, 'Screening of Gas-cooled Reactor Thermal Hydraulic and Safety Analysis Tools and Experimental Database 'jointly carried out by KAERI, ANL and INL. In this study, we developed the basic technologies required to develop and validate the VHTR TH/safety analysis tools and evaluated the TH/safety database information. The research tasks consist of; 1) code qualification methodology (INL), 2) high-level PIRTs for major nucleus set of events (KAERI, ANL, INL), 3) initial scaling and scoping analysis (ANL, KAERI, INL), 4) filtering of TH/safety tools (KAERI, INL), 5) evaluation of TH/safety database information (KAERI, INL, ANL) and 6) key scoping analysis (KAERI). The code qualification methodology identifies the role of PIRTs in the R and D process and the bottom-up and top-down code validation methods. Since the design of VHTR is still evolving, we generated the high-level PIRTs referencing 600MWth block-type GT-MHR and 400MWth pebble-type PBMR. Nucleus set of events that represents the VHTR safety and operational transients consists of the enveloping scenarios of HPCC (high pressure conduction cooling: loss of primary flow), LPCC/Air-Ingress (low pressure conduction cooling: loss of coolant), LC (load changes: power maneuvering), ATWS (anticipated transients without scram: reactivity insertion), WS (water ingress: water-interfacing system break) and HU (hydrogen-side upset: loss of heat sink). The initial scaling analysis defines dimensionless parameters that need to be reflected in mixed convection modeling and the initial scoping analysis provided the reference system transients used in the PIRTs generation. For the PIRTs phenomena, we evaluated the modeling capability of the candidate TH/safety tools and derived a model improvement need. By surveying and evaluating the TH/safety database information, a tools V and V matrix has been developed. Through the key scoping analysis using available database, the modeling

  7. Screening of Gas-Cooled Reactor Thermal-Hydraulic and Safety Analysis Tools and Experimental Database

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Kim, Min Hwan; Lee, Seung Wook (and others)

    2007-08-15

    This report is a final report of I-NERI Project, 'Screening of Gas-cooled Reactor Thermal Hydraulic and Safety Analysis Tools and Experimental Database 'jointly carried out by KAERI, ANL and INL. In this study, we developed the basic technologies required to develop and validate the VHTR TH/safety analysis tools and evaluated the TH/safety database information. The research tasks consist of; 1) code qualification methodology (INL), 2) high-level PIRTs for major nucleus set of events (KAERI, ANL, INL), 3) initial scaling and scoping analysis (ANL, KAERI, INL), 4) filtering of TH/safety tools (KAERI, INL), 5) evaluation of TH/safety database information (KAERI, INL, ANL) and 6) key scoping analysis (KAERI). The code qualification methodology identifies the role of PIRTs in the R and D process and the bottom-up and top-down code validation methods. Since the design of VHTR is still evolving, we generated the high-level PIRTs referencing 600MWth block-type GT-MHR and 400MWth pebble-type PBMR. Nucleus set of events that represents the VHTR safety and operational transients consists of the enveloping scenarios of HPCC (high pressure conduction cooling: loss of primary flow), LPCC/Air-Ingress (low pressure conduction cooling: loss of coolant), LC (load changes: power maneuvering), ATWS (anticipated transients without scram: reactivity insertion), WS (water ingress: water-interfacing system break) and HU (hydrogen-side upset: loss of heat sink). The initial scaling analysis defines dimensionless parameters that need to be reflected in mixed convection modeling and the initial scoping analysis provided the reference system transients used in the PIRTs generation. For the PIRTs phenomena, we evaluated the modeling capability of the candidate TH/safety tools and derived a model improvement need. By surveying and evaluating the TH/safety database information, a tools V and V matrix has been developed. Through the key scoping analysis using available database, the

  8. Evaluation of static analysis tools used to assess software important to nuclear power plant safety

    Energy Technology Data Exchange (ETDEWEB)

    Ourghanlian, Alain [EDF Lab CHATOU, Simulation and Information Technologies for Power Generation Systems Department, EDF R and D, Cedex (France)

    2015-03-15

    We describe a comparative analysis of different tools used to assess safety-critical software used in nuclear power plants. To enhance the credibility of safety assessments and to optimize safety justification costs, Electricit e de France (EDF) investigates the use of methods and tools for source code semantic analysis, to obtain indisputable evidence and help assessors focus on the most critical issues. EDF has been using the PolySpace tool for more than 10 years. Currently, new industrial tools based on the same formal approach, Abstract Interpretation, are available. Practical experimentation with these new tools shows that the precision obtained on one of our shutdown systems software packages is substantially improved. In the first part of this article, we present the analysis principles of the tools used in our experimentation. In the second part, we present the main characteristics of protection-system software, and why these characteristics are well adapted for the new analysis tools.

  9. SafetyBarrierManager, a software tool to perform risk analysis using ARAMIS's principles

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2017-01-01

    of the ARAMIS project, Risø National Laboratory started developing a tool that could implement these methodologies, leading to SafetyBarrierManager. The tool is based on the principles of “safety‐barrier diagrams”, which are very similar to “bowties”, with the possibility of performing quantitative analysis......The ARAMIS project resulted in a number of methodologies, dealing with among others: the development of standard fault trees and “bowties”; the identification and classification of safety barriers; and including the quality of safety management into the quantified risk assessment. After conclusion....... The tool allows constructing comprehensive fault trees, event trees and safety‐barrier diagrams. The tool implements the ARAMIS idea of a set of safety barrier types, to which a number of safety management issues can be linked. By rating the quality of these management issues, the operational probability...

  10. Quantifying system safety: A comparison of the SBOAT & Safety Barrier Manager tools

    OpenAIRE

    Hansen, Zaza Nadja Lee; Duijm, Nijs Jan; Markert, Frank; Herbert, Luke Thomas

    2015-01-01

    This paper presents two software tools for analyzing safety risks, SBOAT (Stochastic BPMN Optimisation and Analysis Tool) and SBM (SafetyBarrierManagerr). SBOAT employs principles from stochastic model checking to allow for the quantitative verification of workflows. SBM supports the creation of valid safety-barrier diagrams and allows the quantitative analysis of the probability of all possible end states of the barrier diagram, i.e. the outcomes if one or several of the barriers fail to per...

  11. SIMMER as a safety analysis tool

    International Nuclear Information System (INIS)

    Smith, L.L.; Bell, C.R.; Bohl, W.R.; Bott, T.F.; Dearing, J.F.; Luck, L.B.

    1982-01-01

    SIMMER has been used for numerous applications in fast reactor safety, encompassing both accident and experiment analysis. Recent analyses of transition-phase behavior in potential core disruptive accidents have integrated SIMMER testing with the accident analysis. Results of both the accident analysis and the verification effort are presented as a comprehensive safety analysis program

  12. Quantifying system safety: A comparison of the SBOAT & Safety Barrier Manager tools

    DEFF Research Database (Denmark)

    Hansen, Zaza Nadja Lee; Duijm, Nijs Jan; Markert, Frank

    2015-01-01

    This paper presents two software tools for analyzing safety risks, SBOAT (Stochastic BPMN Optimisation and Analysis Tool) and SBM (SafetyBarrierManagerr). SBOAT employs principles from stochastic model checking to allow for the quantitative verification of workflows. SBM supports the creation...

  13. REVEAL - A tool for rule driven analysis of safety critical software

    International Nuclear Information System (INIS)

    Miedl, H.; Kersken, M.

    1998-01-01

    As the determination of ultrahigh reliability figures for safety critical software is hardly possible, national and international guidelines and standards give mainly requirements for the qualitative evaluation of software. An analysis whether all these requirements are fulfilled is time and effort consuming and prone to errors, if performed manually by analysts, and should instead be dedicated to tools as far as possible. There are many ''general-purpose'' software analysis tools, both static and dynamic, which help analyzing the source code. However, they are not designed to assess the adherence to specific requirements of guidelines and standards in the nuclear field. Against the background of the development of I and C systems in the nuclear field which are based on digital techniques and implemented in high level language, it is essential that the assessor or licenser has a tool with which he can automatically and uniformly qualify as many aspects as possible of the high level language software. For this purpose the software analysis tool REVEAL has been developed at ISTec and the Halden Reactor Project. (author)

  14. Simulation for Prediction of Entry Article Demise (SPEAD): An Analysis Tool for Spacecraft Safety Analysis and Ascent/Reentry Risk Assessment

    Science.gov (United States)

    Ling, Lisa

    2014-01-01

    For the purpose of performing safety analysis and risk assessment for a potential off-nominal atmospheric reentry resulting in vehicle breakup, a synthesis of trajectory propagation coupled with thermal analysis and the evaluation of node failure is required to predict the sequence of events, the timeline, and the progressive demise of spacecraft components. To provide this capability, the Simulation for Prediction of Entry Article Demise (SPEAD) analysis tool was developed. The software and methodology have been validated against actual flights, telemetry data, and validated software, and safety/risk analyses were performed for various programs using SPEAD. This report discusses the capabilities, modeling, validation, and application of the SPEAD analysis tool.

  15. Safety-barrier diagrams as a tool for modelling safety of hydrogen applications

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan; Markert, Frank

    2009-01-01

    Safety-barrier diagrams have proven to be a useful tool in documenting the safety measures taken to prevent incidents and accidents in process industry. Especially during the introduction of new hydrogen technologies or applications, as e.g. hydrogen refuelling stations, safety-barrier diagrams...... are considered a valuable supplement to other traditional risk analysis tools to support the communication with authorities and other stakeholders during the permitting process. Another advantage of safety-barrier diagrams is that they highlight the importance of functional and reliable safety barriers in any...... system and here is a direct focus on those barriers that need to be subject to safety management in terms of design and installation, operational use, inspection and monitoring, and maintenance. Safety-barrier diagrams support both quantitative and qualitative approaches. The paper will describe...

  16. Tools to quantify safety culture

    International Nuclear Information System (INIS)

    Avella, B.

    2011-01-01

    This paper reviews the notion of safety culture and then describes some of the tools that can be used to assess it. Required characteristics to obtain reliable tools and techniques are provided, along with a short summary of the most common and important tools and techniques used to assess safety culture at the nuclear field is described. At the end of this paper, the reader will better understand the importance of the safety culture of the organization and will have requirements to help him in choosing reliable tools and techniques. Further, there will be recommendations on how best to follow-up after an assessment of safety culture. (author)

  17. The fault tree as a tool in safety analysis in nuclear power plants

    International Nuclear Information System (INIS)

    Waddington, J.G.; Wild, A.

    1981-01-01

    Modern safety analysis must be able to identify realistic failure modes based on realistic operation and system malfunction, demonstrate rigorously that adequate independence exists between a malfunctioning system and those other systems required to mitigate the effects of the malfunction, design adequate reliability into systems important to plant safety and to demonstrate rigorously that the design reliability is met in operation, and identify the realistic actions expected of the operator. Fault trees, which have proved to be a powerful tool to achieve these objectives, are inevitably large and must be computerized. However, the computerized system must be simple, must allow merging of branches developed independently, must provide for easy modification and the processing must be economical and easily accessible. A new system for displaying, plotting and analysing fault trees has been developed and implemented on a small computer at AECB to demonstrate the viability of the approach to designers, and to provide a tool to assess licensee's submissions on failure modes of support systems such as electrical, service water and air, and to assess reliability predictions for special safety systems. (author)

  18. Probabilistic Safety Assessment: An Effective Tool to Support “Systemic Approach” to Nuclear Safety and Analysis of Human and Organizational Aspects

    International Nuclear Information System (INIS)

    Kuzmina, I.

    2016-01-01

    The Probabilistic Safety Assessment (PSA) represents a comprehensive conceptual and analytical tool for quantitative evaluation of risk of undesirable consequences from nuclear facilities and drawing on qualitative insights for nuclear safety. PSA considers various technical, human, and organizational factors in an integral manner thus explicitly pursuing a true ‘systemic approach’ to safety and enabling holistic insights for further safety improvement. Human Reliability Analysis (HRA) is one of the major tasks within PSA. The poster paper provides an overview of the objectives and scope of PSA and HRA and discusses on further needs in the area of HRA. (author)

  19. SCALE 5: Powerful new criticality safety analysis tools

    International Nuclear Information System (INIS)

    Bowman, Stephen M.; Hollenbach, Daniel F.; Dehart, Mark D.; Rearden, Bradley T.; Gauld, Ian C.; Goluoglu, Sedat

    2003-01-01

    Version 5 of the SCALE computer software system developed at Oak Ridge National Laboratory, scheduled for release in December 2003, contains several significant new modules and sequences for criticality safety analysis and marks the most important update to SCALE in more than a decade. This paper highlights the capabilities of these new modules and sequences, including continuous energy flux spectra for processing multigroup problem-dependent cross sections; one- and three-dimensional sensitivity and uncertainty analyses for criticality safety evaluations; two-dimensional flexible mesh discrete ordinates code; automated burnup-credit analysis sequence; and one-dimensional material distribution optimization for criticality safety. (author)

  20. Safety analysis for research reactors

    International Nuclear Information System (INIS)

    2008-01-01

    The aim of safety analysis for research reactors is to establish and confirm the design basis for items important to safety using appropriate analytical tools. The design, manufacture, construction and commissioning should be integrated with the safety analysis to ensure that the design intent has been incorporated into the as-built reactor. Safety analysis assesses the performance of the reactor against a broad range of operating conditions, postulated initiating events and other circumstances, in order to obtain a complete understanding of how the reactor is expected to perform in these situations. Safety analysis demonstrates that the reactor can be kept within the safety operating regimes established by the designer and approved by the regulatory body. This analysis can also be used as appropriate in the development of operating procedures, periodic testing and inspection programmes, proposals for modifications and experiments and emergency planning. The IAEA Safety Requirements publication on the Safety of Research Reactors states that the scope of safety analysis is required to include analysis of event sequences and evaluation of the consequences of the postulated initiating events and comparison of the results of the analysis with radiological acceptance criteria and design limits. This Safety Report elaborates on the requirements established in IAEA Safety Standards Series No. NS-R-4 on the Safety of Research Reactors, and the guidance given in IAEA Safety Series No. 35-G1, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, providing detailed discussion and examples of related topics. Guidance is given in this report for carrying out safety analyses of research reactors, based on current international good practices. The report covers all the various steps required for a safety analysis; that is, selection of initiating events and acceptance criteria, rules and conventions, types of safety analysis, selection of

  1. Tools for plant safety engineer

    International Nuclear Information System (INIS)

    Fabic, S.

    1996-01-01

    This paper contains: - review of tools for monitoring plant safety equipment reliability and readiness, before and accident (performance indicators for monitoring the risk and reliability performance and for determining when degraded performance alert levels are achieved) - brief reviews of tools for use during an accident: Emergency Operating Procedures (EOPs), Emergency Response Data System (ERDS), Reactor Safety Assessment System (RSAS), Computerized Accident Management Support

  2. Choice and complexation of techniques and tools for assessment of NPP I and C systems safety

    International Nuclear Information System (INIS)

    Illiashenko, Oleg; Babeshko, Eugene

    2011-01-01

    There are a lot of techniques to analyze and assess reliability and safety of NPP Instrumentation and Control (I and C) systems (e.g. FMEA - Failure Modes and Effects Analysis and its modifications, FTA - Fault Tree Analysis, HAZOP - Hazard and Operability Analysis, RBD - Reliability Block Diagram, Markov Models, etc.) and quantity of tools based on these techniques is constantly increasing. Known ways of safety assessment, as well as problems of their choice and complexation are analyzed. Objective of the paper is the development of general 'technique of techniques choosing' and tool for support of such technique. The following criteria are used for analysis and comparison and their features are described: compliance to normative documents; experience of application in industry; methods used for assessment of system NPP I and C safety; tool architecture/framework; reporting; vendor support, etc. Comparative analysis results of existing T and T - Tools and Techniques for safety analysis are presented in matrix form ('Tools-Criterion') with example. Features of complexation of different safety assessment techniques (FMECA, FTA, RBD, Markov Models) are described. The proposed technique is implemented as special tool for decision-making. The proposed technique was used for development of RPC Radiy company standard CS 66. This guide contains requirements and procedures of FMECA analysis of developed and produced NPP I and C systems based on RADIY platform. (author)

  3. SafetyAnalyst : software tools for safety management of specific highway sites

    Science.gov (United States)

    2010-07-01

    SafetyAnalyst provides a set of software tools for use by state and local highway agencies for highway safety management. SafetyAnalyst can be used by highway agencies to improve their programming of site-specific highway safety improvements. SafetyA...

  4. Automated tools for safety-critical software

    International Nuclear Information System (INIS)

    Lapassat, A.M.

    1993-01-01

    The regulatory (DSIN), the utilities (EDF, CEA..) and the CEA-Institute for Protection and Nuclear Safety (IPSN) work together at the French nuclear safety. This paper presents a tool, called CLAIRE, for simulation and tests of different nuclear safety system. (TEC)

  5. Machine and Woodworking Tool Safety. Module SH-24. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on machine and woodworking tool safety is one of 50 modules concerned with job safety and health. This module discusses specific practices and precautions concerned with the efficient operation and use of most machine and woodworking tools in use today. Following the introduction, 13 objectives (each keyed to a page in the…

  6. Development of a tool of probabilistic safety analysis for advanced nuclear reactors

    International Nuclear Information System (INIS)

    Hidalgo H, F.E.; Fran N, P.

    2007-01-01

    It is developing a tool to explain in a simple way in that it consists the Probabilistic Safety Analysis (APS) and at the same time to facilitate the comparison among the different designs of advanced nuclear reactors starting from their safety systems. This tool for teaching contemplates all the workspaces in an APS, but it is deepened only in what is the development of accident sequences and systems models. At the moment its have incorporated three types of advanced reactors, ABWR, ESBWR, and the HTGR and they are compared among if and with a BWR like that of Laguna Verde. This tool is carried out in Visual Basic code because it is a platform that can be used in any Windows atmosphere and for their easy programming. The system includes a tree of events developed for this purpose for a research HTGR built in Japan (HTTR) to have a point of comparison of the same one with other reactors of previous generations. It is that in the fourth generation reactors the measure of frequency of core damage doesn't make the same sense that for reactors of previous generations, which is due to its passive safety systems and its design type of the fuel, that which makes indispensable the development of another type of risk measure. The tree of events is presented for the initiator event 'the rupture of the main pipe' that causes the depressurization of the HTTR reactor. In this article it was concluded that it is necessary to evaluate the accident until reaching to the liberation of fission products that one knows in APS like an APS study level 1 and level 2 together. The final states developed starting from the possible phenomena that happen in these scenarios are presented. For this, its are considered flaws of all the mitigation systems that intervene in this accident. The tree of events developed for this work and the definition of the final states contributes to the development of as carrying out an APS for fourth generation reactors, with the purpose of developing an APS

  7. Safety analysis and review system: a Department of Energy safety assurance tool

    International Nuclear Information System (INIS)

    Rosenthal, H.B.

    1981-01-01

    The concept of the Safety Analysis and Review System is not new. It has been used within the Department and its predecessor agencies, Atomic Energy Commission (AEC) and Energy Research and Development Administration (ERDA), for over 20 years. To minimize the risks from nuclear reactor and power plants, the AEC developed a process to support management authorization of each operation through identification and analysis of potential hazards and the measures taken to control them. As the agency evolved from AEC through ERDA to the Department of Energy, its responsibilities were broadened to cover a diversity of technologies, including those associated with the development of fossil, solar, and geothermal energy. Because the safety analysis process had proved effective in a technology of high potential hazard, the Department investigated the applicability of the process to the other technologies. This paper describes the system and discusses how it is implemented within the Department

  8. Laser safety tools and training

    CERN Document Server

    Barat, Ken

    2008-01-01

    Lasers perform many unique functions in a plethora of applications, but there are many inherent risks with this continually burgeoning technology. Laser Safety: Tools and Training presents simple, effective ways for users in a variety of facilities to evaluate the hazards of any laser procedure and ensure they are following documented laser safety standards.Designed for use as either a stand-alone volume or a supplement to Laser Safety Management, this text includes fundamental laser and laser safety information and critical laser use information rarely found in a single source. The first lase

  9. ELECTRA © Launch and Re-Entry Safety Analysis Tool

    Science.gov (United States)

    Lazare, B.; Arnal, M. H.; Aussilhou, C.; Blazquez, A.; Chemama, F.

    2010-09-01

    French Space Operation Act gives as prime objective to National Technical Regulations to protect people, properties, public health and environment. In this frame, an independent technical assessment of French space operation is delegated to CNES. To perform this task and also for his owns operations CNES needs efficient state-of-the-art tools for evaluating risks. The development of the ELECTRA© tool, undertaken in 2007, meets the requirement for precise quantification of the risks involved in launching and re-entry of spacecraft. The ELECTRA© project draws on the proven expertise of CNES technical centers in the field of flight analysis and safety, spaceflight dynamics and the design of spacecraft. The ELECTRA© tool was specifically designed to evaluate the risks involved in the re-entry and return to Earth of all or part of a spacecraft. It will also be used for locating and visualizing nominal or accidental re-entry zones while comparing them with suitable geographic data such as population density, urban areas, and shipping lines, among others. The method chosen for ELECTRA© consists of two main steps: calculating the possible reentry trajectories for each fragment after the spacecraft breaks up; calculating the risks while taking into account the energy of the fragments, the population density and protection afforded by buildings. For launch operations and active re-entry, the risk calculation will be weighted by the probability of instantaneous failure of the spacecraft and integrated for the whole trajectory. ELECTRA©’s development is today at the end of the validation phase, last step before delivery to users. Validation process has been performed in different ways: numerical application way for the risk formulation; benchmarking process for casualty area, level of energy of the fragments entries and level of protection housing module; best practices in space transportation industries concerning dependability evaluation; benchmarking process for

  10. A tool for safety evaluations of road improvements.

    Science.gov (United States)

    Peltola, Harri; Rajamäki, Riikka; Luoma, Juha

    2013-11-01

    Road safety impact assessments are requested in general, and the directive on road infrastructure safety management makes them compulsory for Member States of the European Union. However, there is no widely used, science-based safety evaluation tool available. We demonstrate a safety evaluation tool called TARVA. It uses EB safety predictions as the basis for selecting locations for implementing road-safety improvements and provides estimates of safety benefits of selected improvements. Comparing different road accident prediction methods, we demonstrate that the most accurate estimates are produced by EB models, followed by simple accident prediction models, the same average number of accidents for every entity and accident record only. Consequently, advanced model-based estimates should be used. Furthermore, we demonstrate regional comparisons that benefit substantially from such tools. Comparisons between districts have revealed significant differences. However, comparisons like these produce useful improvement ideas only after taking into account the differences in road characteristics between areas. Estimates on crash modification factors can be transferred from other countries but their benefit is greatly limited if the number of target accidents is not properly predicted. Our experience suggests that making predictions and evaluations using the same principle and tools will remarkably improve the quality and comparability of safety estimations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Test tools of physics radiography children as a support for safety radiation and safety patients

    International Nuclear Information System (INIS)

    Siti Masrochah; Yeti Kartikasari; Ardi Soesilo Wibowo

    2013-01-01

    Radiographic examination of the thorax children aged 1-3 years have a high sufficiently failure. This failure is caused by the movement and difficulty positioning the patient, resulting in the risk of repeat radiographs to patient safety particularly unnecessary radiation risks. It is therefore necessary to develop research on children design fixation devices. This research aims to create a design tool fixation on radiographs children to support radiation safety and patient safety. This research is a descriptive exploratory approach to tool design. The independent variables were the design tools, variable tool function test results, and radiographic variables controlled thorax. The procedure is done by designing data collection tools, further trials with 20 samples. Processing and analysis of data is done by calculating the performance assessment tool scores with range 1-3. The results showed that the design tool of fixation in the form of standard radiographic cassette equipped with chairs and some form of seat belt fixation. The procedure uses a tool fixation is routine radiographic follow thorax child in an upright position. Function test results aids fixation is to have an average score of 2.66, which means good. While the test results for each component, the majority of respondents stated that the reliability of the device is quite good with a score of 2.45 (60 %), convenience tool with a score of 2.60 (70 %), quality of the radiographs did not incontinence of the thorax radiograph with a score 2.55 (85 %), the child protection (security) with a score of 2.70 (70 %), good design aesthetic design with a score of 2.80 (80 %), addition of radiation from the others on the use of these tools do not need with a score of 2.80 (80 %), and there is no additional radiation due to repetitions with a score of 2.85 (90 %). (author)

  12. Initial development of a practical safety audit tool to assess fleet safety management practices.

    Science.gov (United States)

    Mitchell, Rebecca; Friswell, Rena; Mooren, Lori

    2012-07-01

    Work-related vehicle crashes are a common cause of occupational injury. Yet, there are few studies that investigate management practices used for light vehicle fleets (i.e. vehicles less than 4.5 tonnes). One of the impediments to obtaining and sharing information on effective fleet safety management is the lack of an evidence-based, standardised measurement tool. This article describes the initial development of an audit tool to assess fleet safety management practices in light vehicle fleets. The audit tool was developed by triangulating information from a review of the literature on fleet safety management practices and from semi-structured interviews with 15 fleet managers and 21 fleet drivers. A preliminary useability assessment was conducted with 5 organisations. The audit tool assesses the management of fleet safety against five core categories: (1) management, systems and processes; (2) monitoring and assessment; (3) employee recruitment, training and education; (4) vehicle technology, selection and maintenance; and (5) vehicle journeys. Each of these core categories has between 1 and 3 sub-categories. Organisations are rated at one of 4 levels on each sub-category. The fleet safety management audit tool is designed to identify the extent to which fleet safety is managed in an organisation against best practice. It is intended that the audit tool be used to conduct audits within an organisation to provide an indicator of progress in managing fleet safety and to consistently benchmark performance against other organisations. Application of the tool by fleet safety researchers is now needed to inform its further development and refinement and to permit psychometric evaluation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. OASIS: An automotive analysis and safety engineering instrument

    International Nuclear Information System (INIS)

    Mader, Roland; Armengaud, Eric; Grießnig, Gerhard; Kreiner, Christian; Steger, Christian; Weiß, Reinhold

    2013-01-01

    In this paper, we describe a novel software tool named OASIS (AutOmotive Analysis and Safety EngIneering InStrument). OASIS supports automotive safety engineering with features allowing the creation of consistent and complete work products and to simplify and automate workflow steps from early analysis through system development to software development. More precisely, it provides support for (a) model creation and reuse, (b) analysis and documentation and (c) configuration and code generation. We present OASIS as a part of a tool chain supporting the application of a safety engineering workflow aligned with the automotive safety standard ISO 26262. In particular, we focus on OASIS' (1) support for property checking and model correction as well as its (2) support for fault tree generation and FMEA (Failure Modes and Effects Analysis) table generation. Finally, based on the case study of hybrid electric vehicle development, we demonstrate that (1) and (2) are able to strongly support FTA (Fault Tree Analysis) and FMEA

  14. A study of software safety analysis system for safety-critical software

    International Nuclear Information System (INIS)

    Chang, H. S.; Shin, H. K.; Chang, Y. W.; Jung, J. C.; Kim, J. H.; Han, H. H.; Son, H. S.

    2004-01-01

    The core factors and requirements for the safety-critical software traced and the methodology adopted in each stage of software life cycle are presented. In concept phase, Failure Modes and Effects Analysis (FMEA) for the system has been performed. The feasibility evaluation of selected safety parameter was performed and Preliminary Hazards Analysis list was prepared using HAZOP(Hazard and Operability) technique. And the check list for management control has been produced via walk-through technique. Based on the evaluation of the check list, activities to be performed in requirement phase have been determined. In the design phase, hazard analysis has been performed to check the safety capability of the system with regard to safety software algorithm using Fault Tree Analysis (FTA). In the test phase, the test items based on FMEA have been checked for fitness guided by an accident scenario. The pressurizer low pressure trip algorithm has been selected to apply FTA method to software safety analysis as a sample. By applying CASE tool, the requirements traceability of safety critical system has been enhanced during all of software life cycle phases

  15. [Adaptation of the Medical Office Survey on Patient Safety Culture (MOSPSC) tool].

    Science.gov (United States)

    Silvestre-Busto, C; Torijano-Casalengua, M L; Olivera-Cañadas, G; Astier-Peña, M P; Maderuelo-Fernández, J A; Rubio-Aguado, E A

    2015-01-01

    To adapt the Medical Office Survey on Patient Safety Culture (MOSPSC) Excel(®) tool for its use by Primary Care Teams of the Spanish National Public Health System. The process of translation and adaptation of MOSPSC from the Agency for Healthcare and Research in Quality (AHRQ) was performed in five steps: Original version translation, Conceptual equivalence evaluation, Acceptability and viability assessment, Content validity and Questionnaire test and response analysis, and psychometric properties assessment. After confirming MOSPSC as a valid, reliable, consistent and useful tool for assessing patient safety culture in our setting, an Excel(®) worksheet was translated and adapted in the same way. It was decided to develop a tool to analyze the "Spanish survey" and to keep it linked to the "Original version" tool. The "Spanish survey" comparison data are those obtained in a 2011 nationwide Spanish survey, while the "Original version" comparison data are those provided by the AHRQ in 2012. The translated and adapted tool and the analysis of the results from a 2011 nationwide Spanish survey are available on the website of the Ministry of Health, Social Services and Equality. It allows the questions which are decisive in the different dimensions to be determined, and it provides a comparison of the results with graphical representation. Translation and adaptation of this tool enables a patient safety culture in Primary Care in Spain to be more effectively applied. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.

  16. Electronic Safety Resource Tools -- Supporting Hydrogen and Fuel Cell Commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Barilo, Nick F.

    2014-09-29

    The Pacific Northwest National Laboratory (PNNL) Hydrogen Safety Program conducted a planning session in Los Angeles, CA on April 1, 2014 to consider what electronic safety tools would benefit the next phase of hydrogen and fuel cell commercialization. A diverse, 20-person team led by an experienced facilitator considered the question as it applied to the eight most relevant user groups. The results and subsequent evaluation activities revealed several possible resource tools that could greatly benefit users. The tool identified as having the greatest potential for impact is a hydrogen safety portal, which can be the central location for integrating and disseminating safety information (including most of the tools identified in this report). Such a tool can provide credible and reliable information from a trustworthy source. Other impactful tools identified include a codes and standards wizard to guide users through a series of questions relating to application and specific features of the requirements; a scenario-based virtual reality training for first responders; peer networking tools to bring users from focused groups together to discuss and collaborate on hydrogen safety issues; and a focused tool for training inspectors. Table ES.1 provides results of the planning session, including proposed new tools and changes to existing tools.

  17. Dependability Assessment by Static Analysis of Software Important to Nuclear Power Plant Safety

    Energy Technology Data Exchange (ETDEWEB)

    Ourghanlian, Alain [EDF Lab, Chatou (France)

    2014-08-15

    We describe a practical experimentation of safety assessment of safety-critical software used in Nuclear Power Plants. To enhance the credibility of safety assessments and to optimize safety justification costs, Electricite de France (EDF) investigates the use of methods and tools for source code semantic analysis, to obtain indisputable evidence and help assessors focus on the most critical issues. EDF has been using the PolySpace tool for more than 10 years. Today, new industrial tools, based on the same formal approach, Abstract Interpretation, are available. Practical experimentation with these new tools shows that the precision obtained on one of our shutdown systems software is very significantly improved. In a first part, we present the analysis principles of the tools used in our experimentation. In a second part, we present the main characteristics of protection-system software, and why these characteristics are well adapted for the new analysis tools. In the last part, we present an overview of the results and the limitation of the tools.

  18. Analysing supercritical water reactor's (SCWR's) special safety systems using probabilistic tools

    International Nuclear Information System (INIS)

    Ituen, I.; Novog, D.R.

    2011-01-01

    The next generation of reactors, termed Generation IV, has very attractive features -- its superior safety characteristics, high thermal efficiency, and fuel cycle sustainability. A key element of the Generation IV designs is the improvement in safety, which in turn requires improvements in safety system performance and reliability, as well as a reduction in initiating event frequencies. This study compares the response of the systems important to safety in the CANDU-Supercritical Water Reactor to those of the generic CANDU under a main steamline break accident and loss of forced circulation events -- to quantify the improvements in safety for the pre-conceptual CANDU SCWR design. Probabilistic safety analysis is the tool used in this study to test the behavior of the pre- conceptual design during these events. (author)

  19. Safety Culture Assessment Tools in Nuclear and Non-Nuclear Domains

    International Nuclear Information System (INIS)

    Mkrtchyan, L.; Turcanu, C.

    2012-01-01

    Over the last decades, in many domains especially in high risk industries, the authorities paid increasing attention to safety management systems and, in particular, to safety culture. Consequently, in the applied and academic literature a huge amount of studies explored the main challenges, issues and obstacles related with safety culture. We undertake a survey of safety culture experiences in the main safety-critical industries such as nuclear, railways, offshore, aviation, airlines, health care, etc. We review both academic and applied literature up to the year 2011. Our results help to establish a comprehensive view on the subject, its main terminologies, existing tools, and main difficulties. The purpose of this report is to raise awareness about the current tools of safety culture assessment, both in the nuclear as well as in the non-nuclear domain. The report provides also practical recommendations about the possible use of each tool given different circumstances and different factors. We do not aim to rank the tools pointing the best one, but we highlight instead the unique features of these tools, pointing their strong and weak sides

  20. Safety Culture Assessment Tools in Nuclear and Non-Nuclear Domains

    Energy Technology Data Exchange (ETDEWEB)

    Mkrtchyan, L; Turcanu, C

    2012-03-15

    Over the last decades, in many domains especially in high risk industries, the authorities paid increasing attention to safety management systems and, in particular, to safety culture. Consequently, in the applied and academic literature a huge amount of studies explored the main challenges, issues and obstacles related with safety culture. We undertake a survey of safety culture experiences in the main safety-critical industries such as nuclear, railways, offshore, aviation, airlines, health care, etc. We review both academic and applied literature up to the year 2011. Our results help to establish a comprehensive view on the subject, its main terminologies, existing tools, and main difficulties. The purpose of this report is to raise awareness about the current tools of safety culture assessment, both in the nuclear as well as in the non-nuclear domain. The report provides also practical recommendations about the possible use of each tool given different circumstances and different factors. We do not aim to rank the tools pointing the best one, but we highlight instead the unique features of these tools, pointing their strong and weak sides.

  1. Triangulating case-finding tools for patient safety surveillance: a cross-sectional case study of puncture/laceration.

    Science.gov (United States)

    Taylor, Jennifer A; Gerwin, Daniel; Morlock, Laura; Miller, Marlene R

    2011-12-01

    To evaluate the need for triangulating case-finding tools in patient safety surveillance. This study applied four case-finding tools to error-associated patient safety events to identify and characterise the spectrum of events captured by these tools, using puncture or laceration as an example for in-depth analysis. Retrospective hospital discharge data were collected for calendar year 2005 (n=48,418) from a large, urban medical centre in the USA. The study design was cross-sectional and used data linkage to identify the cases captured by each of four case-finding tools. Three case-finding tools (International Classification of Diseases external (E) and nature (N) of injury codes, Patient Safety Indicators (PSI)) were applied to the administrative discharge data to identify potential patient safety events. The fourth tool was Patient Safety Net, a web-based voluntary patient safety event reporting system. The degree of mutual exclusion among detection methods was substantial. For example, when linking puncture or laceration on unique identifiers, out of 447 potential events, 118 were identical between PSI and E-codes, 152 were identical between N-codes and E-codes and 188 were identical between PSI and N-codes. Only 100 events that were identified by PSI, E-codes and N-codes were identical. Triangulation of multiple tools through data linkage captures potential patient safety events most comprehensively. Existing detection tools target patient safety domains differently, and consequently capture different occurrences, necessitating the integration of data from a combination of tools to fully estimate the total burden.

  2. Development of a Safety Management Web Tool for Horse Stables.

    Science.gov (United States)

    Leppälä, Jarkko; Kolstrup, Christina Lunner; Pinzke, Stefan; Rautiainen, Risto; Saastamoinen, Markku; Särkijärvi, Susanna

    2015-11-12

    Managing a horse stable involves risks, which can have serious consequences for the stable, employees, clients, visitors and horses. Existing industrial or farm production risk management tools are not directly applicable to horse stables and they need to be adapted for use by managers of different types of stables. As a part of the InnoEquine project, an innovative web tool, InnoHorse, was developed to support horse stable managers in business, safety, pasture and manure management. A literature review, empirical horse stable case studies, expert panel workshops and stakeholder interviews were carried out to support the design. The InnoHorse web tool includes a safety section containing a horse stable safety map, stable safety checklists, and examples of good practices in stable safety, horse handling and rescue planning. This new horse stable safety management tool can also help in organizing work processes in horse stables in general.

  3. RISMC Advanced Safety Analysis Project Plan – FY 2015 - FY 2019

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngblood, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    In this report, a project plan is developed, focused on industry applications, using Risk-Informed Safety Margin Characterization (RISMC) tools and methods applied to realistic, relevant, and current interest issues to the operating nuclear fleet. RISMC focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. This set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. The proposed plan will focus on application of the RISMC toolkit, in particular, solving realistic problems of important current issues to the nuclear industry, in collaboration with plant owners and operators to demonstrate the usefulness of these tools in decision making.

  4. Development of tools for safety analysis of control software in advanced reactors

    International Nuclear Information System (INIS)

    Guarro, S.; Yau, M.; Motamed, M.

    1996-04-01

    Software based control systems have gained a pervasive presence in a wide variety of applications, including nuclear power plant control and protection systems which are within the oversight and licensing responsibility of the US Nuclear Regulatory Commission. While the cost effectiveness and flexibility of software based plant process control is widely recognized, it is very difficult to achieve and prove high levels of demonstrated dependability and safety assurance for the functions performed by process control software, due to the very flexibility and potential complexity of the software itself. The development of tools to model, analyze and test software design and implementations in the context of the system that the software is designed to control can greatly assist the task of providing higher levels of assurance than those obtainable by software testing alone. This report presents and discusses the development of the Dynamic Flowgraph Methodology (DFM) and its application in the dependability and assurance analysis of software-based control systems. The features of the methodology and full-scale examples of application to both generic process and nuclear power plant control systems are presented and discussed in detail. The features of a workstation software tool developed to assist users in the application of DFM are also described

  5. Development of tools for safety analysis of control software in advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Guarro, S.; Yau, M.; Motamed, M. [Advanced Systems Concepts Associates, El Segundo, CA (United States)

    1996-04-01

    Software based control systems have gained a pervasive presence in a wide variety of applications, including nuclear power plant control and protection systems which are within the oversight and licensing responsibility of the US Nuclear Regulatory Commission. While the cost effectiveness and flexibility of software based plant process control is widely recognized, it is very difficult to achieve and prove high levels of demonstrated dependability and safety assurance for the functions performed by process control software, due to the very flexibility and potential complexity of the software itself. The development of tools to model, analyze and test software design and implementations in the context of the system that the software is designed to control can greatly assist the task of providing higher levels of assurance than those obtainable by software testing alone. This report presents and discusses the development of the Dynamic Flowgraph Methodology (DFM) and its application in the dependability and assurance analysis of software-based control systems. The features of the methodology and full-scale examples of application to both generic process and nuclear power plant control systems are presented and discussed in detail. The features of a workstation software tool developed to assist users in the application of DFM are also described.

  6. Safety and reliability analysis based on nonprobabilistic methods

    International Nuclear Information System (INIS)

    Kozin, I.O.; Petersen, K.E.

    1996-01-01

    Imprecise probabilities, being developed during the last two decades, offer a considerably more general theory having many advantages which make it very promising for reliability and safety analysis. The objective of the paper is to argue that imprecise probabilities are more appropriate tool for reliability and safety analysis, that they allow to model the behavior of nuclear industry objects more comprehensively and give a possibility to solve some problems unsolved in the framework of conventional approach. Furthermore, some specific examples are given from which we can see the usefulness of the tool for solving some reliability tasks

  7. Module Testing Techniques for Nuclear Safety Critical Software Using LDRA Testing Tool

    International Nuclear Information System (INIS)

    Moon, Kwon-Ki; Kim, Do-Yeon; Chang, Hoon-Seon; Chang, Young-Woo; Yun, Jae-Hee; Park, Jee-Duck; Kim, Jae-Hack

    2006-01-01

    The safety critical software in the I and C systems of nuclear power plants requires high functional integrity and reliability. To achieve those requirement goals, the safety critical software should be verified and tested according to related codes and standards through verification and validation (V and V) activities. The safety critical software testing is performed at various stages during the development of the software, and is generally classified as three major activities: module testing, system integration testing, and system validation testing. Module testing involves the evaluation of module level functions of hardware and software. System integration testing investigates the characteristics of a collection of modules and aims at establishing their correct interactions. System validation testing demonstrates that the complete system satisfies its functional requirements. In order to generate reliable software and reduce high maintenance cost, it is important that software testing is carried out at module level. Module testing for the nuclear safety critical software has rarely been performed by formal and proven testing tools because of its various constraints. LDRA testing tool is a widely used and proven tool set that provides powerful source code testing and analysis facilities for the V and V of general purpose software and safety critical software. Use of the tool set is indispensable where software is required to be reliable and as error-free as possible, and its use brings in substantial time and cost savings, and efficiency

  8. Safety-barrier diagrams as a safety management tool

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2009-01-01

    Safety-barrier diagrams and “bow-tie” diagrams have become popular methods in risk analysis and safety management. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The latter's relation to other methods such as fault trees and Bayesian...

  9. Use of reliability engineering tools in safety and risk assessment of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Raso, Amanda Laureano; Vasconcelos, Vanderley de; Marques, Raíssa Oliveira; Soares, Wellington Antonio; Mesquita, Amir Zacarias, E-mail: amandaraso@hotmail.com, E-mail: vasconv@cdtn.br, E-mail: raissaomarques@gmail.com, E-mail: soaresw@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Serviço de Tecnologia de Reatores

    2017-07-01

    Safety, reliability and availability are fundamental criteria in design, construction and operation of nuclear facilities, as nuclear power plants. Deterministic and probabilistic risk assessments of such facilities are required by regulatory authorities in order to meet licensing regulations, contributing to assure safety, as well as reduce costs and environmental impacts. Probabilistic Risk Assessment has become an important part of licensing requirements of the nuclear power plants in Brazil and in the world. Risk can be defined as a qualitative and/or quantitative assessment of accident sequence frequencies (or probabilities) and their consequences. Risk management is a systematic application of management policies, procedures and practices to identify, analyze, plan, implement, control, communicate and document risks. Several tools and computer codes must be combined, in order to estimate both probabilities and consequences of accidents. Event Tree Analysis (ETA), Fault Tree Analysis (FTA), Reliability Block Diagrams (RBD), and Markov models are examples of evaluation tools that can support the safety and risk assessment for analyzing process systems, identifying potential accidents, and estimating consequences. Because of complexity of such analyzes, specialized computer codes are required, such as the reliability engineering software develop by Reliasoft® Corporation. BlockSim (FTA, RBD and Markov models), RENO (ETA and consequence assessment), Weibull++ (life data and uncertainty analysis), and Xfmea (qualitative risk assessment) are some codes that can be highlighted. This work describes an integrated approach using these tools and software to carry out reliability, safety, and risk assessment of nuclear facilities, as well as, and application example. (author)

  10. Use of reliability engineering tools in safety and risk assessment of nuclear facilities

    International Nuclear Information System (INIS)

    Raso, Amanda Laureano; Vasconcelos, Vanderley de; Marques, Raíssa Oliveira; Soares, Wellington Antonio; Mesquita, Amir Zacarias

    2017-01-01

    Safety, reliability and availability are fundamental criteria in design, construction and operation of nuclear facilities, as nuclear power plants. Deterministic and probabilistic risk assessments of such facilities are required by regulatory authorities in order to meet licensing regulations, contributing to assure safety, as well as reduce costs and environmental impacts. Probabilistic Risk Assessment has become an important part of licensing requirements of the nuclear power plants in Brazil and in the world. Risk can be defined as a qualitative and/or quantitative assessment of accident sequence frequencies (or probabilities) and their consequences. Risk management is a systematic application of management policies, procedures and practices to identify, analyze, plan, implement, control, communicate and document risks. Several tools and computer codes must be combined, in order to estimate both probabilities and consequences of accidents. Event Tree Analysis (ETA), Fault Tree Analysis (FTA), Reliability Block Diagrams (RBD), and Markov models are examples of evaluation tools that can support the safety and risk assessment for analyzing process systems, identifying potential accidents, and estimating consequences. Because of complexity of such analyzes, specialized computer codes are required, such as the reliability engineering software develop by Reliasoft® Corporation. BlockSim (FTA, RBD and Markov models), RENO (ETA and consequence assessment), Weibull++ (life data and uncertainty analysis), and Xfmea (qualitative risk assessment) are some codes that can be highlighted. This work describes an integrated approach using these tools and software to carry out reliability, safety, and risk assessment of nuclear facilities, as well as, and application example. (author)

  11. Risk monitor - a tool for operational safety assessment risk monitor - user's manual

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Vinod, Gopika; Saraf, R.K.; Ghosh, A.K.

    2006-06-01

    Probabilistic Safety Assessment has become a key tool as on today to identify and understand Nuclear Power Plant vulnerabilities. As a result of the availability of these PSA studies, there is a desire to use them to enhance plant safety and to operate the nuclear stations in the most efficient manner. Risk Monitor is a PC based tool, which computes the real time safety level and assists plant personnel to manage day-to-day activities. Risk Monitor is a PC based user friendly software tool used for modification and re-analysis of a nuclear Power plant. Operation of Risk Monitor is based on PSA methods for assisting in day to day applications. Risk Monitoring programs can assess the risk profile and are used to optimize the operation of Nuclear Power Plants with respect to a minimum risk level over the operating time. This report presents the background activities of Risk Monitor, its application areas and the step by step procedure for the user.to interact with the software. This software can be used with the PSA model of any Nuclear Power Plant. (author)

  12. Occupational Safety. Hand Tools. Pre-Apprenticeship Phase 1 Training.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This self-paced student training module on safety when using hand tools is one of a number of modules developed for Pre-apprenticeship Phase 1 Training. Purpose of the module is to teach students the correct safety techniques for operating common hand- and arm-powered tools, including selection, maintenance, technique, and uses. The module may…

  13. Advanced Vibration Analysis Tool Developed for Robust Engine Rotor Designs

    Science.gov (United States)

    Min, James B.

    2005-01-01

    The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo- Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using natural-frequency curve veerings to identify ranges of operating conditions (rotational speeds and engine orders) in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued.

  14. APMS: An Integrated Set of Tools for Measuring Safety

    Science.gov (United States)

    Statler, Irving C.; Reynard, William D. (Technical Monitor)

    1996-01-01

    This is a report of work in progress. In it, I summarize the status of the research and development of the Aviation Performance Measuring System (APMS) for managing, processing, and analyzing digital flight-recorded data. The objectives of the NASA-FAA APMS research project are to establish a sound scientific and technological basis for flight-data analysis, to define an open and flexible architecture for flight-data-analysis systems, and to articulate guidelines for a standardized database structure on which to continue to build future flight-data-analysis extensions. APMS will offer to the air transport community an open, voluntary standard for flight-data-analysis software, a standard that will help to ensure suitable functionality, and data interchangeability, among competing software programs. APMS will develop and document the methodologies, algorithms, and procedures for data management and analyses to enable users to easily interpret the implications regarding safety and efficiency of operations. APMS does not entail the implementation of a nationwide flight-data-collection system. It is intended to provide technical tools to ease the large-scale implementation of flight-data analyses at both the air-carrier and the national-airspace levels in support of their Flight Operations and Quality Assurance (FOQA) Programs and Advanced Qualifications Programs (AQP). APMS cannot meet its objectives unless it develops tools that go substantially beyond the capabilities of the current commercially available software and supporting analytic methods that are mainly designed to count special events. These existing capabilities, while of proven value, were created primarily with the needs of air crews in mind. APMS tools must serve the needs of the government and air carriers, as well as air crews, to fully support the FOQA and AQP programs. They must be able to derive knowledge not only through the analysis of single flights (special-event detection), but through

  15. The Safety Assessment Framework Tool (SAFRAN) - Description, Overview and Applicability

    International Nuclear Information System (INIS)

    Alujevic, Luka

    2014-01-01

    The SAFRAN tool (Safety Assessment Framework) is a user-friendly software application that incorporates the methodologies developed in the SADRWMS (Safety Assessment Driven Radioactive Waste Management Solutions) project. The International Atomic Energy Agency (IAEA) organized the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) to examine international approaches to safety assessment for predisposal management of all types of radioactive waste, including disused sources, small volumes, legacy and decommissioning waste, operational waste, and large volume naturally occurring radioactive material residues. SAFRAN provides aid in: Describing the predisposal RW management activities in a systematic way, Conducting the SA (safety assessment) with clear documentation of the methodology, assumptions, input data and models, Establishing a traceable and transparent record of the safety basis for decisions on the proposed RW management solutions, Demonstrating clear consideration of and compliance with national and international safety standards and recommendations. The SAFRAN tool allows the user to visibly, systematically and logically address predisposal radioactive waste management and decommissioning challenges in a structured way. It also records the decisions taken in such a way that it constitutes a justifiable safety assessment of the proposed management solutions. The objective of this paper is to describe the SAFRAN architecture and features, properly define the terms safety case and safety assessment, and to predict the future development of the SAFRAN tool and assess its applicability to the construction of a future LILW (Low and Intermediate Level Waste) storage facility and repository in Croatia, taking into account all the capabilities and modelling features of the SAFRAN tool. (author)

  16. AN ADVANCED TOOL FOR APPLIED INTEGRATED SAFETY MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Potts, T. Todd; Hylko, James M.; Douglas, Terence A.

    2003-02-27

    WESKEM, LLC's Environmental, Safety and Health (ES&H) Department had previously assessed that a lack of consistency, poor communication and using antiquated communication tools could result in varying operating practices, as well as a failure to capture and disseminate appropriate Integrated Safety Management (ISM) information. To address these issues, the ES&H Department established an Activity Hazard Review (AHR)/Activity Hazard Analysis (AHA) process for systematically identifying, assessing, and controlling hazards associated with project work activities during work planning and execution. Depending on the scope of a project, information from field walkdowns and table-top meetings are collected on an AHR form. The AHA then documents the potential failure and consequence scenarios for a particular hazard. Also, the AHA recommends whether the type of mitigation appears appropriate or whether additional controls should be implemented. Since the application is web based, the information is captured into a single system and organized according to the >200 work activities already recorded in the database. Using the streamlined AHA method improved cycle time from over four hours to an average of one hour, allowing more time to analyze unique hazards and develop appropriate controls. Also, the enhanced configuration control created a readily available AHA library to research and utilize along with standardizing hazard analysis and control selection across four separate work sites located in Kentucky and Tennessee. The AHR/AHA system provides an applied example of how the ISM concept evolved into a standardized field-deployed tool yielding considerable efficiency gains in project planning and resource utilization. Employee safety is preserved through detailed planning that now requires only a portion of the time previously necessary. The available resources can then be applied to implementing appropriate engineering, administrative and personal protective equipment

  17. Tool to manage Road Safety Deficiencies and risk of highway crashes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Maldonado, G.; Baena Ruiz, L.; Garach Morcillo, L.; Oña Lopez, J. de

    2016-07-01

    In order to facilitate the management of the results obtained in the project “Analysis of the relationship between Road Safety Deficiencies, crashes and hazardous sections” financed by Public Works Agency of the Regional Government of Andalusia (AOPJA) and led by the research group TRYSE from University of Granada, a safety management tool has been developed. This application allows safety managers to consult some factors affecting crashes on two-lane rural highways.The main aim of that project was to analyze the influence of some road deficiencies on crashes and hazardous sections in the Complementary Road Network of Andalusia. These deficiencies were defined in a checklist and were identified by a road inspection. Decision Trees (DTs), that are a data mining technique that allows the extraction of Decision Rules (DRs), were used. DRs revealed the relationship between road deficiencies and crashes.The application allows two different analyses. A specific analysis of the Complementary Road Network of Andalusia, in which, particular safety problems can be identified, and the location of roads with those problems can be obtained. A more general analysis in which some characteristics related to road safety can be selected in order to know the combination of factors contributing to traffic crashes. Safety problems are based on data from Complementary Road Network of Andalusia but results can be extrapolated to other rural highways in Spain. (Author)

  18. BARC-risk monitor- a tool for operational safety assessment in nuclear power plants

    International Nuclear Information System (INIS)

    Vinod, Gopika; Saraf, R.K.; Babar, A.K.; Hadap, Nikhil

    2000-12-01

    Probabilistic safety assessment has become a key tool as on today to identify and understand nuclear power plant vulnerabilities. As a result of the availability of these PSA studies, there is a desire to use them to enhance plant safety and to operate the nuclear stations in the most efficient manner. Risk monitor is a PC based tool, which computes the real time safety level and assists plant personnel to manage day-to-day activities. Risk monitor is a PC based user friendly software tool used for modification and re-analysis of a nuclear power plant. Operation of risk monitor is based on PSA methods for assisting in day to day applications. Risk monitoring programs can assess the risk profile and are used to optimise the operation of nuclear power plants with respect to a minimum risk level over the operating time. This report presents the background activities of risk monitor, its application areas and also gives the status of such tools in international scenarios. The software is based on the PSA model of Kaiga generating station and would be applicable to similar design configuration. (author)

  19. Colossal Tooling Design: 3D Simulation for Ergonomic Analysis

    Science.gov (United States)

    Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid

    2003-01-01

    The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.

  20. Development of IFC based fire safety assesment tools

    DEFF Research Database (Denmark)

    Taciuc, Anca; Karlshøj, Jan; Dederichs, Anne

    2016-01-01

    Due to the impact that the fire safety design has on the building's layout and on other complementary systems, as installations, it is important during the conceptual design stage to evaluate continuously the safety level in the building. In case that the task is carried out too late, additional...... changes need to be implemented, involving supplementary work and costs with negative impact on the client. The aim of this project is to create a set of automatic compliance checking rules for prescriptive design and to develop a web application tool for performance based design that retrieves data from...... Building Information Models (BIM) to evacuate the safety level in the building during the conceptual design stage. The findings show that the developed tools can be useful in AEC industry. Integrating BIM from conceptual design stage for analyzing the fire safety level can ensure precision in further...

  1. The safety evaluation guide for laboratories and plants a tool for enhancing safety

    International Nuclear Information System (INIS)

    Lhomme, Veronique; Daubard, Jean-Paul

    2013-01-01

    of safety file (safety options file, general operating rules, on site emergency plan, periodic safety review documents, incident analysis...). In each chapter, the aforesaid Parts 1, 2 and 3 are developed. A first draft of the guide was published in March 2010 for use by assessment's teams of IRSN, and to obtain an operational feedback to improve it. Beyond that, the guide is also intended to be, on the topic of safety assessment for the fuel cycle facilities, laboratories, irradiators, particle accelerators, under-decommissioning reactors and radioactive waste management, a tool for tutoring (inside and outside the IRSN) and a reference to make available, outside of the IRSN, the approach of expertise and the 'know-how' of IRSN. In this context, the IRSN's methodology of assessment regarding 'criticality' and 'fire' have been put online, on the IRSN's web site. The paper presents the purpose and the structure of the guide and its interest for the safety assessment of fuel cycle facilities; in this frame, the chapters 'Assessment of the risk from handling operations' and 'Assessment of the periodic safety review documents' are presented in details as illustrations. It gives also information about its others uses. (authors)

  2. Safety balance: Analysis of safety systems

    International Nuclear Information System (INIS)

    Delage, M.; Giroux, C.

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses

  3. Advances in methods and applications of reliability and safety analysis

    International Nuclear Information System (INIS)

    Fieandt, J.; Hossi, H.; Laakso, K.; Lyytikaeinen, A.; Niemelae, I.; Pulkkinen, U.; Pulli, T.

    1986-01-01

    The know-how of the reliability and safety design and analysis techniques of Vtt has been established over several years in analyzing the reliability in the Finnish nuclear power plants Loviisa and Olkiluoto. This experience has been later on applied and developed to be used in the process industry, conventional power industry, automation and electronics. VTT develops and transfers methods and tools for reliability and safety analysis to the private and public sectors. The technology transfer takes place in joint development projects with potential users. Several computer-aided methods, such as RELVEC for reliability modelling and analysis, have been developed. The tool developed are today used by major Finnish companies in the fields of automation, nuclear power, shipbuilding and electronics. Development of computer-aided and other methods needed in analysis of operating experience, reliability or safety is further going on in a number of research and development projects

  4. The use of GIS tools for road infrastructure safety management

    Science.gov (United States)

    Budzyński, Marcin; Kustra, Wojciech; Okraszewska, Romanika; Jamroz, Kazimierz; Pyrchla, Jerzy

    2018-01-01

    There are many factors that influence accidents and their severity. They can be grouped within the system of man, vehicle and environment. The article focuses on how GIS tools can be used to manage road infrastructure safety. To ensure a better understanding and identification of road factors, GIS tools help with the acquisition of road parameter data. Their other role is helping with a clear and effective presentation of risk ranking. GIS is key to identifying high-risk sections and supports the effective communication of safety levels. This makes it a vital element of safety management. The article describes the use of GIS for the collection and visualisation of road parameter data which are not available in any of the existing databases, i.e. horizontal curve parameters. As we know from research and statistics, they are important factors that determine the safety of road infrastructure. Finally, new research is proposed as well as the possibilities for applying GIS tools for the purposes of road safety inspection.

  5. PWR core safety analysis with 3-dimensional methods

    International Nuclear Information System (INIS)

    Gensler, A.; Kühnel, K.; Kuch, S.

    2015-01-01

    Highlights: • An overview of AREVA’s safety analysis codes their coupling is provided. • The validation base and licensing applications of these codes are summarized. • Coupled codes and methods provide improved margins and non-conservative results. • Examples for REA and inadvertent opening of the pressurizer safety valve are given. - Abstract: The main focus of safety analysis is to demonstrate the required safety level of the reactor core. Because of the demanding requirements, the quality of the safety analysis strongly affects the confidence in the operational safety of a reactor. To ensure the highest quality, it is essential that the methodology consists of appropriate analysis tools, an extensive validation base, and last but not least highly educated engineers applying the methodology. The sophisticated 3-dimensional core models applied by AREVA ensure that all physical effects relevant for safety are treated and the results are reliable and conservative. Presently AREVA employs SCIENCE, CASMO/NEMO and CASCADE-3D for pressurized water reactors. These codes are currently being consolidated into the next generation 3D code system ARCADIA®. AREVA continuously extends the validation base, including measurement campaigns in test facilities and comparisons of the predictions of steady state and transient measured data gathered from plants during many years of operation. Thus, the core models provide reliable and comprehensive results for a wide range of applications. For the application of these powerful tools, AREVA is taking benefit of its interdisciplinary know-how and international teamwork. Experienced engineers of different technical backgrounds are working together to ensure an appropriate interpretation of the calculation results, uncertainty analysis, along with continuously maintaining and enhancing the quality of the analysis methodologies. In this paper, an overview of AREVA’s broad application experience as well as the broad validation

  6. Biosensor: an emerging safety tool for meat industry.

    Science.gov (United States)

    Singh, Pradeep Kumar; Jairath, Gauri; Ahlawat, Satyavir Singh; Pathera, Ashok; Singh, Prashant

    2016-04-01

    The meat industry associated with the health hazards like deadly pathogens, veterinary drugs, pesticide residues, toxins and heavy metals is in need of a tool to tackle the awful situation and ensure safer product to consumer. The growth in the industry, global trade scenario, stringent laws and consumer awareness has placed an extra onus on the meat industry to meet out the expectations and demands. Biosensors are the latest tool of detection in the fast growing industries including the food industry. Hence an attempt is envisaged here to review the possibility of harnessing biosensors as tool of safety to safe guard the consumer health and address safety issues in reference to the common threats of concern in the meat industry.

  7. Development Of Dynamic Probabilistic Safety Assessment: The Accident Dynamic Simulator (ADS) Tool

    International Nuclear Information System (INIS)

    Chang, Y.H.; Mosleh, A.; Dang, V.N.

    2003-01-01

    The development of a dynamic methodology for Probabilistic Safety Assessment (PSA) addresses the complex interactions between the behaviour of technical systems and personnel response in the evolution of accident scenarios. This paper introduces the discrete dynamic event tree, a framework for dynamic PSA, and its implementation in the Accident Dynamic Simulator (ADS) tool. Dynamic event tree tools generate and quantify accident scenarios through coupled simulation models of the plant physical processes, its automatic systems, the equipment reliability, and the human response. The current research on the framework, the ADS tool, and on Human Reliability Analysis issues within dynamic PSA, is discussed. (author)

  8. Development Of Dynamic Probabilistic Safety Assessment: The Accident Dynamic Simulator (ADS) Tool

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.H.; Mosleh, A.; Dang, V.N

    2003-03-01

    The development of a dynamic methodology for Probabilistic Safety Assessment (PSA) addresses the complex interactions between the behaviour of technical systems and personnel response in the evolution of accident scenarios. This paper introduces the discrete dynamic event tree, a framework for dynamic PSA, and its implementation in the Accident Dynamic Simulator (ADS) tool. Dynamic event tree tools generate and quantify accident scenarios through coupled simulation models of the plant physical processes, its automatic systems, the equipment reliability, and the human response. The current research on the framework, the ADS tool, and on Human Reliability Analysis issues within dynamic PSA, is discussed. (author)

  9. An overview-probabilistic safety analysis for research reactors

    International Nuclear Information System (INIS)

    Liu Jinlin; Peng Changhong

    2015-01-01

    For long-term application, Probabilistic Safety Analysis (PSA) has proved to be a valuable tool for improving the safety and reliability of power reactors. In China, 'Nuclear safety and radioactive pollution prevention 'Twelfth Five Year Plan' and the 2020 vision' raises clearly that: to develop probabilistic safety analysis and aging evaluation for research reactors. Comparing with the power reactors, it reveals some specific features in research reactors: lower operating power, lower coolant temperature and pressure, etc. However, the core configurations may be changed very often and human actions play an important safety role in research reactors due to its specific experimental requirement. As a result, there is a necessary to conduct the PSA analysis of research reactors. This paper discusses the special characteristics related to the structure and operation and the methods to develop the PSA of research reactors, including initiating event analysis, event tree analysis, fault tree analysis, dependent failure analysis, human reliability analysis and quantification as well as the experimental and external event evaluation through the investigation of various research reactors and their PSAs home and abroad, to provide the current situation and features of research reactors PSAs. (author)

  10. 2005 dossier: granite. Tome: safety analysis of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of the geologic disposal of high-level and long-lived (HLLL) radioactive wastes in granite formations. Content: 1 - safety approach: context and general goal, references, design approach by safety functions, safety approach during the construction-exploitation-observation-closure phase, safety analysis during the post-closure phase; 2 - general description: HLLL wastes, granitic environment, general structure of the architecture of a disposal facility; 3 - safety functions and disposal design: general context, safety functions of the long-term disposal, design dispositions retained to answer the functions; 4 - operational safety: people's protection, radiological risks during exploitation, risk analysis in accident situation; 5 - qualitative safety analysis: methodology, main results of the analysis of the features, events and processes (FEP) database; 6 - disposal efficiency evaluation during post-closure phase: calculation models, calculation tools used for the modeling of radionuclides transport, calculation results and main lessons. (J.S.)

  11. The use of current risk analysis tools evaluated towards preventing external domino accidents

    NARCIS (Netherlands)

    Reniers, Genserik L L; Dullaert, W.; Ale, B. J.M.; Soudan, K.

    Risk analysis is an essential tool for company safety policy. Risk analysis consists of identifying and evaluating all possible risks. The efficiency of risk analysis tools depends on the rigueur of identifying and evaluating all possible risks. The diversity in risk analysis procedures is such that

  12. Trends in HFE Methods and Tools and Their Applicability to Safety Reviews

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.M.; Plott, C.; Milanski, J.; Ronan, A.; Scheff, S.; Laux, L.; and Bzostek, J.

    2009-09-30

    The U.S. Nuclear Regulatory Commission's (NRC) conducts human factors engineering (HFE) safety reviews of applicant submittals for new plants and for changes to existing plants. The reviews include the evaluation of the methods and tools (M&T) used by applicants as part of their HFE program. The technology used to perform HFE activities has been rapidly evolving, resulting in a whole new generation of HFE M&Ts. The objectives of this research were to identify the current trends in HFE methods and tools, determine their applicability to NRC safety reviews, and identify topics for which the NRC may need additional guidance to support the NRC's safety reviews. We conducted a survey that identified over 100 new HFE M&Ts. The M&Ts were assessed to identify general trends. Seven trends were identified: Computer Applications for Performing Traditional Analyses, Computer-Aided Design, Integration of HFE Methods and Tools, Rapid Development Engineering, Analysis of Cognitive Tasks, Use of Virtual Environments and Visualizations, and Application of Human Performance Models. We assessed each trend to determine its applicability to the NRC's review by considering (1) whether the nuclear industry is making use of M&Ts for each trend, and (2) whether M&Ts reflecting the trend can be reviewed using the current design review guidance. We concluded that M&T trends that are applicable to the commercial nuclear industry and are expected to impact safety reviews may be considered for review guidance development. Three trends fell into this category: Analysis of Cognitive Tasks, Use of Virtual Environments and Visualizations, and Application of Human Performance Models. The other trends do not need to be addressed at this time.

  13. Trends in HFE Methods and Tools and Their Applicability to Safety Reviews

    International Nuclear Information System (INIS)

    O'Hara, J.M.; Plott, C.; Milanski, J.; Ronan, A.; Scheff, S.; Laux, L.; Bzostek, J.

    2009-01-01

    The U.S. Nuclear Regulatory Commission's (NRC) conducts human factors engineering (HFE) safety reviews of applicant submittals for new plants and for changes to existing plants. The reviews include the evaluation of the methods and tools (M and T) used by applicants as part of their HFE program. The technology used to perform HFE activities has been rapidly evolving, resulting in a whole new generation of HFE M and Ts. The objectives of this research were to identify the current trends in HFE methods and tools, determine their applicability to NRC safety reviews, and identify topics for which the NRC may need additional guidance to support the NRC's safety reviews. We conducted a survey that identified over 100 new HFE M and Ts. The M and Ts were assessed to identify general trends. Seven trends were identified: Computer Applications for Performing Traditional Analyses, Computer-Aided Design, Integration of HFE Methods and Tools, Rapid Development Engineering, Analysis of Cognitive Tasks, Use of Virtual Environments and Visualizations, and Application of Human Performance Models. We assessed each trend to determine its applicability to the NRC's review by considering (1) whether the nuclear industry is making use of M and Ts for each trend, and (2) whether M and Ts reflecting the trend can be reviewed using the current design review guidance. We concluded that M and T trends that are applicable to the commercial nuclear industry and are expected to impact safety reviews may be considered for review guidance development. Three trends fell into this category: Analysis of Cognitive Tasks, Use of Virtual Environments and Visualizations, and Application of Human Performance Models. The other trends do not need to be addressed at this time.

  14. Safety margins in deterministic safety analysis

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    The concept of safety margins has acquired certain prominence in the attempts to demonstrate quantitatively the level of the nuclear power plant safety by means of deterministic analysis, especially when considering impacts from plant ageing and discovery issues. A number of international or industry publications exist that discuss various applications and interpretations of safety margins. The objective of this presentation is to bring together and examine in some detail, from the regulatory point of view, the safety margins that relate to deterministic safety analysis. In this paper, definitions of various safety margins are presented and discussed along with the regulatory expectations for them. Interrelationships of analysis input and output parameters with corresponding limits are explored. It is shown that the overall safety margin is composed of several components each having different origins and potential uses; in particular, margins associated with analysis output parameters are contrasted with margins linked to the analysis input. While these are separate, it is possible to influence output margins through the analysis input, and analysis method. Preserving safety margins is tantamount to maintaining safety. At the same time, efficiency of operation requires optimization of safety margins taking into account various technical and regulatory considerations. For this, basic definitions and rules for safety margins must be first established. (author)

  15. A tool for assessment of animal health laboratory safety and biosecurity: The safety module of the Food and Agriculture Organization’s laboratory mapping tool

    OpenAIRE

    Mouillé, B; Dauphin, G; Wiersma, L; Blacksell, SD; Claes, F; Kalpravidh, W; Kabore, Y; Hietala, S

    2018-01-01

    The Laboratory Management Tool (LMT) is a standardized spreadsheet-based assessment tool developed to help support national, regional, and global efforts to maintain an effective network of animal health and veterinary public health laboratories. The safety and biosecurity module of the LMT (LMT-S) includes 98 measures covering administrative, operational, engineering, and personal protective equipment practices used to provide laboratory safety and biosecurity. Performance aspects of laborat...

  16. Model-based safety analysis of a control system using Simulink and Simscape extended models

    Directory of Open Access Journals (Sweden)

    Shao Nian

    2017-01-01

    Full Text Available The aircraft or system safety assessment process is an integral part of the overall aircraft development cycle. It is usually characterized by a very high timely and financial effort and can become a critical design driver in certain cases. Therefore, an increasing demand of effective methods to assist the safety assessment process arises within the aerospace community. One approach is the utilization of model-based technology, which is already well-established in the system development, for safety assessment purposes. This paper mainly describes a new tool for Model-Based Safety Analysis. A formal model for an example system is generated and enriched with extended models. Then, system safety analyses are performed on the model with the assistance of automation tools and compared to the results of a manual analysis. The objective of this paper is to improve the increasingly complex aircraft systems development process. This paper develops a new model-based analysis tool in Simulink/Simscape environment.

  17. Toxic release consequence analysis tool (TORCAT) for inherently safer design plant

    International Nuclear Information System (INIS)

    Shariff, Azmi Mohd; Zaini, Dzulkarnain

    2010-01-01

    Many major accidents due to toxic release in the past have caused many fatalities such as the tragedy of MIC release in Bhopal, India (1984). One of the approaches is to use inherently safer design technique that utilizes inherent safety principle to eliminate or minimize accidents rather than to control the hazard. This technique is best implemented in preliminary design stage where the consequence of toxic release can be evaluated and necessary design improvements can be implemented to eliminate or minimize the accidents to as low as reasonably practicable (ALARP) without resorting to costly protective system. However, currently there is no commercial tool available that has such capability. This paper reports on the preliminary findings on the development of a prototype tool for consequence analysis and design improvement via inherent safety principle by utilizing an integrated process design simulator with toxic release consequence analysis model. The consequence analysis based on the worst-case scenarios during process flowsheeting stage were conducted as case studies. The preliminary finding shows that toxic release consequences analysis tool (TORCAT) has capability to eliminate or minimize the potential toxic release accidents by adopting the inherent safety principle early in preliminary design stage.

  18. Network analytical tool for monitoring global food safety highlights China.

    Directory of Open Access Journals (Sweden)

    Tamás Nepusz

    Full Text Available BACKGROUND: The Beijing Declaration on food safety and security was signed by over fifty countries with the aim of developing comprehensive programs for monitoring food safety and security on behalf of their citizens. Currently, comprehensive systems for food safety and security are absent in many countries, and the systems that are in place have been developed on different principles allowing poor opportunities for integration. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a user-friendly analytical tool based on network approaches for instant customized analysis of food alert patterns in the European dataset from the Rapid Alert System for Food and Feed. Data taken from alert logs between January 2003-August 2008 were processed using network analysis to i capture complexity, ii analyze trends, and iii predict possible effects of interventions by identifying patterns of reporting activities between countries. The detector and transgressor relationships are readily identifiable between countries which are ranked using i Google's PageRank algorithm and ii the HITS algorithm of Kleinberg. The program identifies Iran, China and Turkey as the transgressors with the largest number of alerts. However, when characterized by impact, counting the transgressor index and the number of countries involved, China predominates as a transgressor country. CONCLUSIONS/SIGNIFICANCE: This study reports the first development of a network analysis approach to inform countries on their transgressor and detector profiles as a user-friendly aid for the adoption of the Beijing Declaration. The ability to instantly access the country-specific components of the several thousand annual reports will enable each country to identify the major transgressors and detectors within its trading network. Moreover, the tool can be used to monitor trading countries for improved detector/transgressor ratios.

  19. Safety analysis fundamentals

    International Nuclear Information System (INIS)

    Wright, A.C.D.

    2002-01-01

    This paper discusses the safety analysis fundamentals in reactor design. This study includes safety analysis done to show consequences of postulated accidents are acceptable. Safety analysis is also used to set design of special safety systems and includes design assist analysis to support conceptual design. safety analysis is necessary for licensing a reactor, to maintain an operating license, support changes in plant operations

  20. Evaluation of a survey tool to measure safety climate in Australian hospital pharmacy staff.

    Science.gov (United States)

    Walpola, Ramesh L; Chen, Timothy F; Fois, Romano A; Ashcroft, Darren M; Lalor, Daniel J

    Safety climate evaluation is increasingly used by hospitals as part of quality improvement initiatives. Consequently, it is necessary to have validated tools to measure changes. To evaluate the construct validity and internal consistency of a survey tool to measure Australian hospital pharmacy patient safety climate. A 42 item cross-sectional survey was used to evaluate the patient safety climate of 607 Australian hospital pharmacy staff. Survey responses were initially mapped to the factor structure previously identified in European community pharmacy. However, as the data did not adequately fit the community pharmacy model, participants were randomly split into two groups with exploratory factor analysis performed on the first group (n = 302) and confirmatory factor analyses performed on the second group (n = 305). Following exploratory factor analysis (59.3% variance explained) and confirmatory factor analysis, a 6-factor model containing 28 items was obtained with satisfactory model fit (χ 2 (335) = 664.61 p  0.643) and model nesting between the groups (Δχ 2 (22) = 30.87, p = 0.10). Three factors (blame culture, organisational learning and working conditions) were similar to those identified in European community pharmacy and labelled identically. Three additional factors (preoccupation with improvement; comfort to question authority; and safety issues being swept under the carpet) highlight hierarchical issues present in hospital settings. This study has demonstrated the validity of a survey to evaluate patient safety climate of Australian hospital pharmacy staff. Importantly, this validated factor structure may be used to evaluate changes in safety climate over time. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The application of new mathematical structures to safety analysis

    International Nuclear Information System (INIS)

    Cooper, J.A.; Ross, T.J.

    1997-10-01

    Probabilistic safety analyses (PSAs) often depend on significant subjectivity. The recent successes of fuzzy logic and fuzzy and hybrid mathematics in portraying subjectivity is a reminder that a selection made from the most applicable mathematical tools is more important than forced adaptation of conventional tools. In this paper, the authors consider new approaches that enhance conventional and fuzzy PSA by improved handling of subjectivity. The most significant of the mathematical structures were have investigated (from a standpoint of safety analysis applications) will be described, and the general types of applications will be outlined

  2. Safety margins of operating reactors. Analysis of uncertainties and implications for decision making

    International Nuclear Information System (INIS)

    2003-01-01

    Maintaining safety in the design and operation of nuclear power plants (NPPs) is a very important task under the conditions of a challenging environment, affected by the deregulated electricity market and implementation of risk informed regulations. In Member States, advanced computer codes are widely used as safety analysis tools in the framework of licensing of new NPP projects, safety upgrading programmes of existing NPPs, periodic safety reviews, renewal of operating licences, use of the safety margins for reactor power uprating, better utilization of nuclear fuel and higher operational flexibility, for justification of lifetime extensions, development of new emergency operating procedures, analysis of operational events, and development of accident management programmes. The issue of inadequate quality of safety analysis is becoming important due to a general tendency to use advanced tools for better establishment and utilization of safety margins, while the existence of such margins assure that NPPs operate safely in all modes of operation and at all times. The most important safety margins relate to physical barriers against release of radioactive material, such as fuel matrix and fuel cladding, reactor coolant system boundary, and the containment. Typically, safety margins are determined with use of computational tools for safety analysis. Advanced best estimate computer codes are suggested e.g. in the IAEA Safety Guide on Safety Assessment and Verification for Nuclear Power Plants to be used for current safety analysis. Such computer codes require their careful application to avoid unjustified reduction in robustness of the reactor safety. The issue of uncertainties in safety analyses and their impact on evaluation of safety margins is addressed in a number of IAEA guidance documents, in particular in the Safety Report on Accident Analysis for Nuclear Power Plants. It is also discussed in various technical meetings and workshops devoted to this area. The

  3. PSA - a tool for the nuclear safety

    International Nuclear Information System (INIS)

    Himanen, R.

    1992-01-01

    The PSA-model for BWR-type reactors of Finnish power company, Teollisuuden Voima Oy (TVO) was finished in year 1989. This basic PSA model included all safety systems, normal operating systems and auxiliary systems. Today TVO is working to enlarge the PSA to level 2 (environmental effects, for the fires, for the floodings and the outages). The TVO's experiences has been showed the PSA an useful tool for the developing the safety of BWR's (orig.)

  4. Use of the Home Safety Self-Assessment Tool (HSSAT) within Community Health Education to Improve Home Safety.

    Science.gov (United States)

    Horowitz, Beverly P; Almonte, Tiffany; Vasil, Andrea

    2016-10-01

    This exploratory research examined the benefits of a health education program utilizing the Home Safety Self-Assessment Tool (HSSAT) to increase perceived knowledge of home safety, recognition of unsafe activities, ability to safely perform activities, and develop home safety plans of 47 older adults. Focus groups in two senior centers explored social workers' perspectives on use of the HSSAT in community practice. Results for the health education program found significant differences between reported knowledge of home safety (p = .02), ability to recognize unsafe activities (p = .01), safely perform activities (p = .04), and develop a safety plan (p = .002). Social workers identified home safety as a major concern and the HSSAT a promising assessment tool. Research has implications for reducing environmental fall risks.

  5. Development of a multilevel health and safety climate survey tool within a mining setting.

    Science.gov (United States)

    Parker, Anthony W; Tones, Megan J; Ritchie, Gabrielle E

    2017-09-01

    This study aimed to design, implement and evaluate the reliability and validity of a multifactorial and multilevel health and safety climate survey (HSCS) tool with utility in the Australian mining setting. An 84-item questionnaire was developed and pilot tested on a sample of 302 Australian miners across two open cut sites. A 67-item, 10 factor solution was obtained via exploratory factor analysis (EFA) representing prioritization and attitudes to health and safety across multiple domains and organizational levels. Each factor demonstrated a high level of internal reliability, and a series of ANOVAs determined a high level of consistency in responses across the workforce, and generally irrespective of age, experience or job category. Participants tended to hold favorable views of occupational health and safety (OH&S) climate at the management, supervisor, workgroup and individual level. The survey tool demonstrated reliability and validity for use within an open cut Australian mining setting and supports a multilevel, industry specific approach to OH&S climate. Findings suggested a need for mining companies to maintain high OH&S standards to minimize risks to employee health and safety. Future research is required to determine the ability of this measure to predict OH&S outcomes and its utility within other mine settings. As this tool integrates health and safety, it may have benefits for assessment, monitoring and evaluation in the industry, and improving the understanding of how health and safety climate interact at multiple levels to influence OH&S outcomes. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  6. A Tool for Assessment of Animal Health Laboratory Safety and Biosecurity: The Safety Module of the Food and Agriculture Organization’s Laboratory Mapping Tool

    Directory of Open Access Journals (Sweden)

    Beatrice Mouillé

    2018-03-01

    Full Text Available The Laboratory Management Tool (LMT is a standardized spreadsheet-based assessment tool developed to help support national, regional, and global efforts to maintain an effective network of animal health and veterinary public health laboratories. The safety and biosecurity module of the LMT (LMT-S includes 98 measures covering administrative, operational, engineering, and personal protective equipment practices used to provide laboratory safety and biosecurity. Performance aspects of laboratory infrastructure and technical compliance considered fundamental for ensuring that a laboratory is able to appropriately function in a safe and biosecure manner are systematically queried and scored for compliance on a four-point scale providing for a semi-quantitative assessment. Data collected is used to generate graphs and tables mapping levels of compliance with international standards and good practices, as well as for documenting progress over time. The LMT-S was employed by trained auditors in 34 laboratories located in 19 countries between 2015 and 2017. The tool is intended to help standardize animal health laboratory assessments, document compliance with recognized laboratory safety and biosecurity measures, serve as a self-help and training tool, and assist global laboratory development efforts by providing an accurate measurement of laboratory safety and biosecurity at local, national, and regional levels.

  7. Tools for road infrastructure safety management in poland

    Directory of Open Access Journals (Sweden)

    Kustra Wojciech

    2017-01-01

    Full Text Available Road safety can be improved by implementing principles of road safety infrastructure management (RIS on the network of European roads as adopted in the Directive. The document recommends that member states should use tried and tested tools for road safety management such as: road safety impact assessment (RIA, road safety audit (RSA, safety management on existing road networks including road safety ranking (RSM and road safety inspection (RSI. The objective of the methods is to help road authorities to take rational decisions in the area of road safety and road infrastructure safety and understand the consequences occurring in the particular phases of road life cycle. To help with assessing the impact of a road project on the safety of related roads, a method was developed for long-term forecasts of accidents and accident cost estimation as well as a risk classification to identify risks that are not acceptable risks. With regard to road safety audits and road safety inspection, a set of principles was developed to identify risks and the basic classification of mistakes and omissions.

  8. A web-based tool for the Comprehensive Unit-based Safety Program (CUSP).

    Science.gov (United States)

    Pronovost, Peter J; King, Jay; Holzmueller, Christine G; Sawyer, Melinda; Bivens, Shauna; Michael, Michelle; Haig, Kathy; Paine, Lori; Moore, Dana; Miller, Marlene

    2006-03-01

    An organization's ability to change is driven by its culture, which in turn has a significant impact on safety. The six-step Comprehensive Unit-Based Safety Program (CUSP) is intended to improve local culture and safety. A Web-based project management tool for CUSP was developed and then pilot tested at two hospitals. HOW ECUSP WORKS: Once a patient safety concern is identified (step 3), a unit-level interdisciplinary safety committee determines issue criticality and starts up the projects (step 4), which are managed using project management tools within eCUSP (step 5). On a project's completion, the results are disseminated through a shared story (step 6). OSF St. Joseph's Medical Center-The Medical Birthing Center (Bloomington, Illinois), identified 11 safety issues, implemented 11 projects, and created 9 shared stories--including one for its Armband Project. The Johns Hopkins Hospital (Baltimore) Medical Progressive Care (MPC4) Unit identified 5 safety issues and implemented 4 ongoing projects, including the intravenous (IV) Tubing Compliance Project. The eCUSP tool's success depends on an organizational commitment to creating a culture of safety.

  9. Navigation Tools and Equipment and How They Have Improved Aviation Safety

    OpenAIRE

    Sulaiman D. S Alsahli FadalahassanALfadala

    2017-01-01

    This paper highlights the impact of navigation tools and equipment, such as the GPS, navigation radar, and other communications tools, which aid in ensuring aviation safety. It emphasizes the need for aviation safety and how these navigation methods are of great help to reduce the hazards and clearly indicate the problems related to the aircraft, aircraft traffic management, weather disturbances, among others. It also recommends how these tools and equipment must be further developed to promo...

  10. Advancement of Tools Supporting Improvement of Work Safety in Selected Industrial Company

    Science.gov (United States)

    Gembalska-Kwiecień, Anna

    2018-03-01

    In the presented article, the advancement of tools to improve the safety of work in the researched industrial company was taken into consideration. Attention was paid to the skillful analysis of the working environment, which includes the available technologies, work organization and human capital. These factors determine the development of the best prevention activities to minimize the number of accidents.

  11. APMS: An Integrated Suite of Tools for Measuring Performance and Safety

    Science.gov (United States)

    Statler, Irving C.; Lynch, Robert E.; Connors, Mary M. (Technical Monitor)

    1997-01-01

    This is a report of work in progress. In it, I summarize the status of the research and development of the Aviation Performance Measuring System (APMS) for managing, processing, and analyzing digital flight-recorded data. The objectives of the NASA-FAA APMS research project are to establish a sound scientific and technological basis for flight-data analysis, to define an open and flexible architecture for flight-data-analysis systems, and to articulate guidelines for a standardized database structure on which to continue to build future flight-data-analysis extensions. APMS will offer to the air transport community an open, voluntary standard for flight-data-analysis software, a standard that will help to ensure suitable functionality, and data interchangeability, among competing software programs. APMS will develop and document the methodologies, algorithms, and procedures for data management and analyses to enable users to easily interpret the implications regarding safety and efficiency of operations. APMS does not entail the implementation of a nationwide flight-data-collection system. It is intended to provide technical tools to ease the large-scale implementation of flight-data analyses at both the air-carrier and the national-airspace levels in support of their Flight Operations and Quality Assurance (FOQA) Programs and Advanced Qualifications Programs (AQP). APMS cannot meet its objectives unless it develops tools that go substantially beyond the capabilities of the current commercially available software and supporting analytic methods that are mainly designed to count special events. These existing capabilities, while of proven value, were created primarily with the needs of air crews in mind. APMS tools must serve the needs of the government and air carriers, as well as air crews, to fully support the FOQA and AQP programs. They must be able to derive knowledge not only through the analysis of single flights (special-event detection), but through

  12. Food Safety Practices Assessment Tool: An Innovative Way to Test Food Safety Skills among Individuals with Special Needs

    Science.gov (United States)

    Carbone, Elena T.; Scarpati, Stanley E.; Pivarnik, Lori F.

    2013-01-01

    This article describes an innovative assessment tool designed to evaluate the effectiveness of a food safety skills curriculum for learners receiving special education services. As schools respond to the increased demand for training students with special needs about food safety, the need for effective curricula and tools is also increasing. A…

  13. Tolerability of risk, safety assessment principles and their implications for probabilistic safety analysis

    International Nuclear Information System (INIS)

    Ewing, D.J.F.; Campbell, J.F.

    1994-01-01

    This paper gives a regulatory view of probabilistic safety assessment as seen by the Nuclear Installations Inspectorate (NII) and in the light of the general regulatory risk aims set out in the Health and Safety Executive's (HSE) The tolerability of risk from nuclear power stations (TOR) and in Safety assessment principles for nuclear plants (SAPs), prepared by NII on behalf of the HSE. Both of these publications were revised and republished in 1992. This paper describes the SAPs, together with the historical background, the motivation for review, the effects of the Sizewell and Hinkley Point C public inquiries, changes since the original versions, comparison with international standards and use in assessment. For new plant, probabilistic safety analysis (PSA) is seen as an essential tool in balancing the safety of the design and in demonstrating compliance with TOR and the SAPs. (Author)

  14. An Integrated Development Tool for a safety application using FBD language

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Jun; Lee, Jang Soo; Lee, Dong Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Regarding digitalizing the Nuclear Instrumentation and Control Systems, the application program responsible for the safety functions of Nuclear I and C Systems shall ensure the robustness of the safety function through development, testing, and validation roles for a life cycle process during software development. The importance of software in nuclear systems increases continuously. The integrated engineering tools to develop, test, and validate safety application programs require increasingly more complex parts among a number of components within nuclear digital I and C systems. This paper introduces the integrated engineering tool (SafeCASE-PLC) developed by our project. The SafeCASE-PLC is a kind of software engineering tool to develop, test, and validate the nuclear application program performed in an automatic controller

  15. Methods and tools used at the IPSN for the safety assessment of critical software

    International Nuclear Information System (INIS)

    Regnier, P.; Henry, J.Y.

    1998-01-01

    A significant feature of EDF's latest 1400MWe ''N4'' generation of pressurized water reactor (PWR) is the extensive use of computerized instrumentation and control, including a fully digital system for the reactor protection function. For the safety assessment of the software driving the operation of this digital reactor protection called SPIN, IPSN has developed and implemented a set of methods and tools. Using the lessons learned from this experience, IPSN has worked at improving those methods and tools, mainly trying to make them more automatic to use, and has participated in an international assessment exercise to test some other methods and tools, either new products on the market or self-developed products. As a result of these works, this paper presents an up to date overview of the IPSN methods and tools used for the assessment of safety critical software. This assessment, which consists of an analysis of all the documentation associated with the technical specifications and of a representative set of functions, is usually carried out in five steps: (1) critical examination of the documents, (2) evaluation of the quality of the code, (3) determination of the critical software components, (4) development of test cases and choice of testing strategy, (5) dynamic analysis (consistency and robustness). This paper also presents methods and tools developed or implemented by IPSN in order to: evaluate the completeness and consistency of specification and design documents written in natural language; build a model and simulate specification or design items; evaluate the quality of the source code; carry out FMEA analysis; run the binary code and perform tests (CLAIRE); perform random or mutational tests. (author)

  16. THE CONFORMITY OF MACHINE TOOLS WITH RESPECT TO EUROPEAN SAFETY STANDARDS

    CERN Multimedia

    TIS/TE

    2001-01-01

    European regulations require that all motorized machine tools conform to the latest safety standards by the end of the year 2000. CERN must follow these regulations and has already modified most of its machine tools accordingly. However, there is still a small number of machine tools which have not yet been modified as required. These machines should not be used until they are brought up to the required safety standards, failing which the machines should be discarded. One can recognise which machine tools conform with the latest standards by the indication 'CS' on the identification plate of the machine, see foto below. In cases of doubt about the status of a machine tool you should contact K. Altherr/EST or C. Margaroli/TIS for advice.

  17. THE CONFORMITY OF MACHINE TOOLS WITH RESPECT TO EUROPEAN SAFETY STANDARDS

    CERN Multimedia

    TIS/TE

    2000-01-01

    European regulations require that all motorized machine tools conform to the latest safety standards by the end of the year 2000. CERN must follow these regulations and has already modified most of its machine tools accordingly. However, there is still a small number of machine tools which have not yet been modified as required. These machines should not be used until they are brought up to the required safety standards, failing which the machines should be discarded. One can recognise which machine tools conform with the latest standards by the indication 'CS' on the identification plate of the machine, see foto below. In cases of doubt about the status of a machine tool you should contact K. Altherr/EST or C. Margaroli/TIS for advice.

  18. Adverse events analysis as an educational tool to improve patient safety culture in primary care: a randomized trial.

    Science.gov (United States)

    González-Formoso, Clara; Martín-Miguel, María Victoria; Fernández-Domínguez, Ma José; Rial, Antonio; Lago-Deibe, Fernando Isidro; Ramil-Hermida, Luis; Pérez-García, Margarita; Clavería, Ana

    2011-06-14

    Patient safety is a leading item on the policy agenda of both major international health organizations and advanced countries generally. The quantitative description of the phenomena has given rise to intense concern with the issue in institutions and organizations, leading to a number of initiatives and research projects and the promotion of patient safety culture, with training becoming a priority both in Spain and internationally. To date, most studies have been conducted in a hospital setting, even though primary care is the type most commonly used by the public, in our experience. Our study aims to achieve the following:--Assess the registry of adverse events as an education tool to improve patient safety culture in the Family and Community Teaching Units of Galicia.--Find and analyze educational tools to improve patient safety culture in primary care.--Evaluate the applicability of the Hospital Survey on Patient Safety Culture by the Agency for Healthcare Research and Quality, Spanish version, in the context of primary health care. Experimental unifactorial study of two groups, control and intervention. Tutors and residents in Family and Community Medicine in last year of studies in Galicia, Spain. From the population universe through voluntary participation. Twenty-seven tutor-resident units in each group required, randomly assigned. Residents and their respective tutor (tutor-resident pair) in teaching units on Family and Community Medicine from throughout Galicia will be invited to participate. Tutor-resident pair that agrees to participate will be sent the Hospital Survey on Patient Safety Culture. Then, tutor-resident pair will be assigned to each group--either intervention or control--through simple random sampling. The intervention group will receive specific training to record the adverse effects found in patients under their care, with subsequent feedback, after receiving instruction on the process. No action will be taken in the control group. After

  19. Statistical analysis applied to safety culture self-assessment

    International Nuclear Information System (INIS)

    Macedo Soares, P.P.

    2002-01-01

    Interviews and opinion surveys are instruments used to assess the safety culture in an organization as part of the Safety Culture Enhancement Programme. Specific statistical tools are used to analyse the survey results. This paper presents an example of an opinion survey with the corresponding application of the statistical analysis and the conclusions obtained. Survey validation, Frequency statistics, Kolmogorov-Smirnov non-parametric test, Student (T-test) and ANOVA means comparison tests and LSD post-hoc multiple comparison test, are discussed. (author)

  20. Pushing and pulling: an assessment tool for occupational health and safety practitioners.

    Science.gov (United States)

    Lind, Carl Mikael

    2018-03-01

    A tool has been developed for supporting practitioners when assessing manual pushing and pulling operations based on an initiative by two global companies in the manufacturing industry. The aim of the tool is to support occupational health and safety practitioners in risk assessment and risk management of pushing and pulling operations in the manufacturing and logistics industries. The tool is based on a nine-multiplier equation that includes a wide range of factors affecting an operator's health risk and capacity in pushing and pulling. These multipliers are based on psychophysical, physiological and biomechanical studies in combination with judgments from an expert group consisting of senior researchers and ergonomists. In order to consider usability, more than 50 occupational health and safety practitioners (e.g., ergonomists, managers, safety representatives and production personnel) participated in the development of the tool. An evaluation by 22 ergonomists supports that the push/pull tool is user friendly in general.

  1. RISMC advanced safety analysis project plan: FY2015 - FY2019. Light Water Reactor Sustainability Program

    International Nuclear Information System (INIS)

    Szilard, Ronaldo H; Smith, Curtis L; Youngblood, Robert

    2014-01-01

    In this report, the Advanced Safety Analysis Program (ASAP) objectives and value proposition is described. ASAP focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. The set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. As part of the discussion, we have identified three sets of stakeholders, the nuclear industry, the Department of Energy (DOE), and associated oversight organizations. These three groups would benefit from ASAP in different ways. For example, within the DOE complex, the possible applications that are seen include the safety of experimental reactors, facility life extension, safety-by-design in future generation advanced reactors, and managing security for the storage of nuclear material. This report provides information in five areas: (1) A value proposition (@@@why is this important?@@@) that will make the case for stakeholder's use of the ASAP research and development (R&D) products; (2) An identification of likely end users and pathway to adoption of enhanced tools by the end-users; (3) A proposed set of practical and achievable @@use case@@@ demonstrations; (4) A proposed plan to address ASAP verification and validation (V&V) needs; and (5) A proposed schedule for the multi-year ASAP.

  2. Random safety auditing, root cause analysis, failure mode and effects analysis.

    Science.gov (United States)

    Ursprung, Robert; Gray, James

    2010-03-01

    Improving quality and safety in health care is a major concern for health care providers, the general public, and policy makers. Errors and quality issues are leading causes of morbidity and mortality across the health care industry. There is evidence that patients in the neonatal intensive care unit (NICU) are at high risk for serious medical errors. To facilitate compliance with safe practices, many institutions have established quality-assurance monitoring procedures. Three techniques that have been found useful in the health care setting are failure mode and effects analysis, root cause analysis, and random safety auditing. When used together, these techniques are effective tools for system analysis and redesign focused on providing safe delivery of care in the complex NICU system. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Utilization of the MCNP-3A code for criticality safety analysis

    International Nuclear Information System (INIS)

    Maragni, M.G.; Moreira, J.M.L.

    1996-01-01

    In the last decade, Brazil started to operate facilities for processing and storing uranium in different forms. The necessity of criticality safety analysis appeared in the design phase of the uranium pilot process plants and also in the licensing of transportation and storage of fissile materials. The 2-MW research reactor and the Angra I power plant also required criticality safety assessments because their spent-fuel storage was approaching full-capacity utilization. The criticality safety analysis in Brazil has been based on KENO IV code calculations, which present some difficulties for correct geometry representation. The MCNP-3A code is not reported to be used frequently for criticality safety analysis in Brazil, but its good geometry representation makes it a possible tool for treating problems of complex geometry. A set of benchmark tests was performed to verify its applicability for criticality safety analysis in Brazil. This paper presents several benchmark tests aimed at selecting a set of options available in the MCNP-3A code that would be adequate for criticality safety analysis. The MCNP-3A code is also compared with the KENO-IV code regarding its performance for criticality safety analysis

  4. Automation for System Safety Analysis

    Science.gov (United States)

    Malin, Jane T.; Fleming, Land; Throop, David; Thronesbery, Carroll; Flores, Joshua; Bennett, Ted; Wennberg, Paul

    2009-01-01

    This presentation describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.

  5. OST: analysis tool for real time software by simulation of material and software environments

    International Nuclear Information System (INIS)

    Boulc'h; Le Meur; Lapassat; Salichon; Segalard

    1988-07-01

    The utilization of microprocessors systems in a nuclear installation control oblige a great operation safety in the installation operation and in the environment protection. For the safety analysis of these installations the Institute of Protection and Nuclear Safety (IPSN) will dispose tools which permit to make controls during all the life of the software. The simulation and test tool (OST) which have been created is completely made by softwares. It is used on VAX calculators and can be easily transportable on other calculators [fr

  6. Computational methods for criticality safety analysis within the scale system

    International Nuclear Information System (INIS)

    Parks, C.V.; Petrie, L.M.; Landers, N.F.; Bucholz, J.A.

    1986-01-01

    The criticality safety analysis capabilities within the SCALE system are centered around the Monte Carlo codes KENO IV and KENO V.a, which are both included in SCALE as functional modules. The XSDRNPM-S module is also an important tool within SCALE for obtaining multiplication factors for one-dimensional system models. This paper reviews the features and modeling capabilities of these codes along with their implementation within the Criticality Safety Analysis Sequences (CSAS) of SCALE. The CSAS modules provide automated cross-section processing and user-friendly input that allow criticality safety analyses to be done in an efficient and accurate manner. 14 refs., 2 figs., 3 tabs

  7. Tool for assistance in testing the safety logic section of nuclear plants

    International Nuclear Information System (INIS)

    Boulc'h, J.; Meur, M. le; Collart, J.M.; Segalard, J.; Uberschlag, J.

    1986-01-01

    The analysis of the protection system logic section (SPIN) of the PALUEL plant performed manually have led to the study of a logical tool for testing the safety logic section having or having not failures. It is a dynamic analyser which from a terminal in a sharing time system will be able to generate testing sequences, to simulate a processor and its environment and to analyse the logic sections with their workable code

  8. Improvement of safety by analysis of costs and benefits of the system

    OpenAIRE

    T. Karkoszka; M. Andraczke

    2011-01-01

    Purpose: of the paper has been the assessment of the dependence between improvement of the implemented occupational health and safety management system and both minimization of costs connected with occupational health and safety assurance and optimization of real work conditions.Design/methodology/approach: used for the analysis has included definition of the occupational health and safety system with regard to the rules and tool allowing for occupational safety assurance in the organisationa...

  9. Independent accident investigation: a modern safety tool

    International Nuclear Information System (INIS)

    Stoop, John A.

    2004-01-01

    Historically, safety has been subjected to a fragmented approach. In the past, every department has had its own responsibility towards safety, focusing either on working conditions, internal safety, external safety, rescue and emergency, public order or security. They each issued policy documents, which in their time were leading statements for elaboration and regulation. They also addressed safety issues with tools of various nature, often specifically developed within their domain. Due to a series of major accidents and disasters, the focus of attention is shifting from complying with quantitative risk standards towards intervention in primary operational processes, coping with systemic deficiencies and a more integrated assessment of safety in its societal context. In The Netherlands recognition of the importance of independent investigations has led to an expansion of this philosophy from the transport sector to other sectors. The philosophy now covers transport, industry, defense, natural disaster, environment and health and other major occurrences such as explosions, fires, and collapse of buildings or structures. In 2003 a multi-sector covering law will establish an independent safety board in The Netherlands. At a European level, mandatory investigation agencies are recognized as indispensable safety instruments for aviation, railways and the maritime sector, for which EU Directives are in place or being progressed [Transport accident and incident investigation in the European Union, European Transport Safety Council, ISBN 90-76024-10-3, Brussel, 2001]. Due to a series of major events, attention has been drawn to the consequences of disasters, highlighting the involvement of rescue and emergency services. They also have become subjected to investigative efforts, which in return, puts demands on investigation methodology. This paper comments on an evolutionary development in safety thinking and of safety boards, highlighting some consequences for strategic

  10. Incorporation of advanced accident analysis methodology into safety analysis reports

    International Nuclear Information System (INIS)

    2003-05-01

    The IAEA Safety Guide on Safety Assessment and Verification defines that the aim of the safety analysis should be by means of appropriate analytical tools to establish and confirm the design basis for the items important to safety, and to ensure that the overall plant design is capable of meeting the prescribed and acceptable limits for radiation doses and releases for each plant condition category. Practical guidance on how to perform accident analyses of nuclear power plants (NPPs) is provided by the IAEA Safety Report on Accident Analysis for Nuclear Power Plants. The safety analyses are performed both in the form of deterministic and probabilistic analyses for NPPs. It is customary to refer to deterministic safety analyses as accident analyses. This report discusses the aspects of using the advanced accident analysis methods to carry out accident analyses in order to introduce them into the Safety Analysis Reports (SARs). In relation to the SAR, purposes of deterministic safety analysis can be further specified as (1) to demonstrate compliance with specific regulatory acceptance criteria; (2) to complement other analyses and evaluations in defining a complete set of design and operating requirements; (3) to identify and quantify limiting safety system set points and limiting conditions for operation to be used in the NPP limits and conditions; (4) to justify appropriateness of the technical solutions employed in the fulfillment of predetermined safety requirements. The essential parts of accident analyses are performed by applying sophisticated computer code packages, which have been specifically developed for this purpose. These code packages include mainly thermal-hydraulic system codes and reactor dynamics codes meant for the transient and accident analyses. There are also specific codes such as those for the containment thermal-hydraulics, for the radiological consequences and for severe accident analyses. In some cases, codes of a more general nature such

  11. LESSONS LEARNED IN DEVELOPMENT OF THE HANFORD SWOC MASTER DOCUMENTED SAFETY ANALYSIS (MDSA) and IMPLEMENTATION VALIDATION REVIEW (IVR)

    International Nuclear Information System (INIS)

    MORENO, M.R.

    2004-01-01

    DOE set clear expectations on a cost-effective approach for achieving compliance with the Nuclear Safety Management requirements (20 CFR 830, Nuclear Safety Rule), which ensured long-term benefit to Hanford, via issuance of a nuclear safety strategy in February 2003. To facilitate implementation of these expectations, tools were developed to streamline and standardize safety analysis and safety document development with the goal of a shorter and more predictable DOE approval cycle. A Hanford Safety Analysis and Risk Assessment Handbook (SARAH) was approved to standardize methodologies for development of safety analyses. A Microsoft Excel spreadsheet (RADIDOSE) was approved for the evaluation of radiological consequences for accident scenarios often postulated at Hanford. Standard safety management program chapters were approved for use as a means of compliance with the programmatic chapters of DOE-STD-3009, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports''. An in-process review was developed between DOE and the Contractor to facilitate DOE approval and provide early course correction. The new Documented Safety Analysis (DSA) developed to address the operations of four facilities within the Solid Waste Operations Complex (SWOC) necessitated development of an Implementation Validation Review (IVR) process. The IVR process encompasses the following objectives: safety basis controls and requirements are adequately incorporated into appropriate facility documents and work instructions, facility personnel are knowledgeable of controls and requirements, and the DSA/TSR controls have been implemented. Based on DOE direction and safety analysis tools, four waste management nuclear facilities were integrated into one safety basis document. With successful completion of implementation of this safety document, lessons-learned from the in-process review, safety analysis tools and IVR process were documented for future action

  12. Linking Safety Analysis to Safety Requirements

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark

    Software for safety critical systems must deal with the hazards identified by safety analysistechniques: Fault trees, event trees,and cause consequence diagrams can be interpreted as safety requirements and used in the design activity. We propose that the safety analysis and the system design use...

  13. Measurement of Food Safety Culture using Survey and Maturity Profiling Tools

    OpenAIRE

    Jespersen, Lone; Griffiths, Mansel; Maclaurin, Tanya; Chapman, Ben; Wallace, Carol A.

    2016-01-01

    Organizational culture is defined by dimensions and characteristics that can be used to measure food safety culture in food manufacturing through a food safety maturity model. Maturity models from quality, health care, and information technology have been used since early 1970 and this work presents a novel food safety culture maturity model with five capability areas and food safety pinpointed behaviours specific to functions and levels in a food manufacturing company. A survey tool linked t...

  14. Development and application of a living probabilistic safety assessment tool: Multi-objective multi-dimensional optimization of surveillance requirements in NPPs considering their ageing

    International Nuclear Information System (INIS)

    Kančev, Duško; Čepin, Marko; Gjorgiev, Blaže

    2014-01-01

    The benefits of utilizing the probabilistic safety assessment towards improvement of nuclear power plant safety are presented in this paper. Namely, a nuclear power plant risk reduction can be achieved by risk-informed optimization of the deterministically-determined surveillance requirements. A living probabilistic safety assessment tool for time-dependent risk analysis on component, system and plant level is developed. The study herein focuses on the application of this living probabilistic safety assessment tool as a computer platform for multi-objective multi-dimensional optimization of the surveillance requirements of selected safety equipment seen from the aspect of the risk-informed reasoning. The living probabilistic safety assessment tool is based on a newly developed model for calculating time-dependent unavailability of ageing safety equipment within nuclear power plants. By coupling the time-dependent unavailability model with a commercial software used for probabilistic safety assessment modelling on plant level, the frames of the new platform i.e. the living probabilistic safety assessment tool are established. In such way, the time-dependent core damage frequency is obtained and is further on utilized as first objective function within a multi-objective multi-dimensional optimization case study presented within this paper. The test and maintenance costs are designated as the second and the incurred dose due to performing the test and maintenance activities as the third objective function. The obtained results underline, in general, the usefulness and importance of a living probabilistic safety assessment, seen as a dynamic probabilistic safety assessment tool opposing the conventional, time-averaged unavailability-based, probabilistic safety assessment. The results of the optimization, in particular, indicate that test intervals derived as optimal differ from the deterministically-determined ones defined within the existing technical specifications

  15. The use of efficiency assessment tools : solutions to barriers : Workpackage 3 of the European research project ROSEBUD (Road Safety and Environmental Cost-Benefit and Cost-Effectiveness Analysis for Use in Decision-making).

    NARCIS (Netherlands)

    Hakkert, A.S. & Wesemann, P. (eds.)

    2005-01-01

    In road safety, as in most other fields, efficiency is an important criterion in political and professional decision making. Efficiency Assessment Tools (EATs) like Cost Benefit Analysis and Cost Effectiveness Analysis are available to help choose the policy which gives the highest return on

  16. Risk analysis as a decision tool

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Chakraborty, S.

    1985-01-01

    From 1983 - 1985 a lecture series entitled ''Risk-benefit analysis'' was held at the Swiss Federal Institute of Technology (ETH), Zurich, in cooperation with the Central Department for the Safety of Nuclear Installations of the Swiss Federal Agency of Energy Economy. In that setting the value of risk-oriented evaluation models as a decision tool in safety questions was discussed on a broad basis. Experts of international reputation from the Federal Republic of Germany, France, Canada, the United States and Switzerland have contributed to report in this joint volume on the uses of such models. Following an introductory synopsis on risk analysis and risk assessment the book deals with practical examples in the fields of medicine, nuclear power, chemistry, transport and civil engineering. Particular attention is paid to the dialogue between analysts and decision makers taking into account the economic-technical aspects and social values. The recent chemical disaster in the Indian city of Bhopal again signals the necessity of such analyses. All the lectures were recorded individually. (orig./HP) [de

  17. A Tool for Safety Officers Investigating " simple" Accidents

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2010-01-01

    Most workplace accidents that happen in enterprises are simple and seldom result in serious injuries. Very often these kinds of workplace accidents are not investigated, and if they are, then the investigation is very brief, with comments such as that it was the victim’s own fault or just...... accidents normally caused by apparent banalities occur much more frequently and with a higher rate of fatalities, disablements and other serious injuries than the ostensibly most dangerous kinds of accidents. In 1999 a practical tool for use by safety officers was developed; this tool is based...... on the investigation methods applied in major accidents, but comprises a simpler and more user-friendly presentation. The tool involves three steps: Mapping the facts, analysing the events, and developing preventive solutions. Practical application of the tool has shown that it affords managers and workers...

  18. Tools for Developing a Quality Management Program: Proactive Tools (Process Mapping, Value Stream Mapping, Fault Tree Analysis, and Failure Mode and Effects Analysis)

    International Nuclear Information System (INIS)

    Rath, Frank

    2008-01-01

    This article examines the concepts of quality management (QM) and quality assurance (QA), as well as the current state of QM and QA practices in radiotherapy. A systematic approach incorporating a series of industrial engineering-based tools is proposed, which can be applied in health care organizations proactively to improve process outcomes, reduce risk and/or improve patient safety, improve through-put, and reduce cost. This tool set includes process mapping and process flowcharting, failure modes and effects analysis (FMEA), value stream mapping, and fault tree analysis (FTA). Many health care organizations do not have experience in applying these tools and therefore do not understand how and when to use them. As a result there are many misconceptions about how to use these tools, and they are often incorrectly applied. This article describes these industrial engineering-based tools and also how to use them, when they should be used (and not used), and the intended purposes for their use. In addition the strengths and weaknesses of each of these tools are described, and examples are given to demonstrate the application of these tools in health care settings

  19. [Safety Walkround as a risk assessment tool: the first Italian experience].

    Science.gov (United States)

    Levati, A; Amato, S; Adrario, E; De Flaviis, C; Delia, C; Milesi, S; Petrini, F; Bevilacqua, L

    2009-01-01

    implement in every ICU. A statistical analysis was performed to verify the correlation between the answers collected and the results of the other techniques of risk assessment previously used ( observations and Focus Group ) . The value of k Pearson found ( mean value 0,976) has demonstrated this correlation and the efficacy of SWR in detecting system vulnerabilities already found with the other assessment techniques. The value of a Cronbach ( mean value 0,798) has demonstrated an internal consistency reliability. The results of this study have demonstrated that the Italian translation is fit for the model by Frankel and makes available a lot of information useful to improve patient safety. The study has demonstrated the sensibility, efficacy and efficiency of this tool in detecting the vulnerabilities in every ICU of the four ones. SWR is marked by feasibility, high compliance of operators and low costs; besides increases safety culture in the staff and demonstrating.

  20. Time Based Workload Analysis Method for Safety-Related Operator Actions in Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eung Se [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-05-15

    During the design basis event, the safety system performs safety functions to mitigate the event. The most of safety system is actuated by automatic system however, there are operator manual actions that are needed for the plant safety. These operator actions are classified as important human actions in human factors engineering design. The human factors engineering analysis and evaluation is needed for these important human actions to assure that operator successfully perform their tasks for plant safety and operational goals. The work load analysis is one of the required analysis for the important human actions.

  1. Time Based Workload Analysis Method for Safety-Related Operator Actions in Safety Analysis

    International Nuclear Information System (INIS)

    Kim, Yun Goo; Oh, Eung Se

    2016-01-01

    During the design basis event, the safety system performs safety functions to mitigate the event. The most of safety system is actuated by automatic system however, there are operator manual actions that are needed for the plant safety. These operator actions are classified as important human actions in human factors engineering design. The human factors engineering analysis and evaluation is needed for these important human actions to assure that operator successfully perform their tasks for plant safety and operational goals. The work load analysis is one of the required analysis for the important human actions.

  2. Design and Testing of BACRA, a Web-Based Tool for Middle Managers at Health Care Facilities to Lead the Search for Solutions to Patient Safety Incidents

    Science.gov (United States)

    Mira, José Joaquín; Vicente, Maria Asuncion; Fernandez, Cesar; Guilabert, Mercedes; Ferrús, Lena; Zavala, Elena; Silvestre, Carmen; Pérez-Pérez, Pastora

    2016-01-01

    Background Lack of time, lack of familiarity with root cause analysis, or suspicion that the reporting may result in negative consequences hinder involvement in the analysis of safety incidents and the search for preventive actions that can improve patient safety. Objective The aim was develop a tool that enables hospitals and primary care professionals to immediately analyze the causes of incidents and to propose and implement measures intended to prevent their recurrence. Methods The design of the Web-based tool (BACRA) considered research on the barriers for reporting, review of incident analysis tools, and the experience of eight managers from the field of patient safety. BACRA’s design was improved in successive versions (BACRA v1.1 and BACRA v1.2) based on feedback from 86 middle managers. BACRA v1.1 was used by 13 frontline professionals to analyze incidents of safety; 59 professionals used BACRA v1.2 and assessed the respective usefulness and ease of use of both versions. Results BACRA contains seven tabs that guide the user through the process of analyzing a safety incident and proposing preventive actions for similar future incidents. BACRA does not identify the person completing each analysis since the password introduced to hide said analysis only is linked to the information concerning the incident and not to any personal data. The tool was used by 72 professionals from hospitals and primary care centers. BACRA v1.2 was assessed more favorably than BACRA v1.1, both in terms of its usefulness (z=2.2, P=.03) and its ease of use (z=3.0, P=.003). Conclusions BACRA helps to analyze incidents of safety and to propose preventive actions. BACRA guarantees anonymity of the analysis and reduces the reluctance of professionals to carry out this task. BACRA is useful and easy to use. PMID:27678308

  3. Design and Testing of BACRA, a Web-Based Tool for Middle Managers at Health Care Facilities to Lead the Search for Solutions to Patient Safety Incidents.

    Science.gov (United States)

    Carrillo, Irene; Mira, José Joaquín; Vicente, Maria Asuncion; Fernandez, Cesar; Guilabert, Mercedes; Ferrús, Lena; Zavala, Elena; Silvestre, Carmen; Pérez-Pérez, Pastora

    2016-09-27

    Lack of time, lack of familiarity with root cause analysis, or suspicion that the reporting may result in negative consequences hinder involvement in the analysis of safety incidents and the search for preventive actions that can improve patient safety. The aim was develop a tool that enables hospitals and primary care professionals to immediately analyze the causes of incidents and to propose and implement measures intended to prevent their recurrence. The design of the Web-based tool (BACRA) considered research on the barriers for reporting, review of incident analysis tools, and the experience of eight managers from the field of patient safety. BACRA's design was improved in successive versions (BACRA v1.1 and BACRA v1.2) based on feedback from 86 middle managers. BACRA v1.1 was used by 13 frontline professionals to analyze incidents of safety; 59 professionals used BACRA v1.2 and assessed the respective usefulness and ease of use of both versions. BACRA contains seven tabs that guide the user through the process of analyzing a safety incident and proposing preventive actions for similar future incidents. BACRA does not identify the person completing each analysis since the password introduced to hide said analysis only is linked to the information concerning the incident and not to any personal data. The tool was used by 72 professionals from hospitals and primary care centers. BACRA v1.2 was assessed more favorably than BACRA v1.1, both in terms of its usefulness (z=2.2, P=.03) and its ease of use (z=3.0, P=.003). BACRA helps to analyze incidents of safety and to propose preventive actions. BACRA guarantees anonymity of the analysis and reduces the reluctance of professionals to carry out this task. BACRA is useful and easy to use.

  4. An integrated framework for cost- benefit analysis in road safety projects using AHP method

    Directory of Open Access Journals (Sweden)

    Mahsa Mohamadian

    2011-10-01

    Full Text Available Cost benefit analysis (CBA is a useful tool for investment decision-making from economic point of view. When the decision involves conflicting goals, the multi-attribute analysis approach is more capable; because there are some social and environmental criteria that cannot be valued or monetized by cost benefit analysis. The complex nature of decision-making in road safety normally makes it difficult to reach a single alternative solution that can satisfy all decision-making problems. Generally, the application of multi-attribute analysis in road sector is promising; however, the applications are in preliminary stage. Some multi-attribute analysis techniques, such as analytic hierarchy process (AHP have been widely used in practice. This paper presents an integrated framework with CBA and AHP methods to select proper alternative in road safety projects. The proposed model of this paper is implemented for a case study of improving a road to reduce the accidents in Iran. The framework is used as an aid to cost benefit tool in road safety projects.

  5. Development of an Evaluation Tool for Online Food Safety Training Programs

    Science.gov (United States)

    Neal, Jack A., Jr.; Murphy, Cheryl A.; Crandall, Philip G.; O'Bryan, Corliss A.; Keifer, Elizabeth; Ricke, Steven C.

    2011-01-01

    The objective of this study was to provide the person in charge and food safety instructors an assessment tool to help characterize, identify strengths and weaknesses, determine the completeness of the knowledge gained by the employee, and evaluate the level of content presentation and usability of current retail food safety training platforms. An…

  6. LFR safety approach and main ELFR safety analysis results

    International Nuclear Information System (INIS)

    Bubelis, E.; Schikorr, M.; Frogheri, M.; Mansani, L.; Bandini, G.; Burgazzi, L.; Mikityuk, K.; Zhang, Y.; Lo Frano, R.; Forgione, N.

    2013-01-01

    LFR safety approach: → A global safety approach for the LFR reference plant has been assessed and the safety analyses methodology has been developed. → LFR follows the general guidelines of the Generation IV safety concept recommendations. Thus, improved safety and higher reliability are recognized as an essential priority. → The fundamental safety objectives and the Defence-in-Depth (DiD) approach, as described by IAEA Safety Guides, have been preserved. → The recommendations of the Risk and Safety Working Group (RSWG) of GEN-IV IF has been taken into account: • safety is to be “built-in” in the fundamental design rather than “added on”; • full implementation of the Defence-in-Depth principles in a manner that is demonstrably exhaustive, progressive, tolerant, forgiving and well-balanced; • “risk-informed” approach - deterministic approach complemented with a probabilistic one; • adoption of an integrated methodology that can be used to evaluate and document the safety of Gen IV nuclear systems - ISAM. In particular the OPT tool is the fundamental methodology used throughout the design process

  7. Measurement tools and process indicators of patient safety culture in primary care. A mixed methods study by the LINNEAUS collaboration on patient safety in primary care

    Science.gov (United States)

    Parker, Dianne; Wensing, Michel; Esmail, Aneez; Valderas, Jose M

    2015-01-01

    ABSTRACT Background: There is little guidance available to healthcare practitioners about what tools they might use to assess the patient safety culture. Objective: To identify useful tools for assessing patient safety culture in primary care organizations in Europe; to identify those aspects of performance that should be assessed when investigating the relationship between safety culture and performance in primary care. Methods: Two consensus-based studies were carried out, in which subject matter experts and primary healthcare professionals from several EU states rated (a) the applicability to their healthcare system of several existing safety culture assessment tools and (b) the appropriateness and usefulness of a range of potential indicators of a positive patient safety culture to primary care settings. The safety culture tools were field-tested in four countries to ascertain any challenges and issues arising when used in primary care. Results: The two existing tools that received the most favourable ratings were the Manchester patient safety framework (MaPsAF primary care version) and the Agency for healthcare research and quality survey (medical office version). Several potential safety culture process indicators were identified. The one that emerged as offering the best combination of appropriateness and usefulness related to the collection of data on adverse patient events. Conclusion: Two tools, one quantitative and one qualitative, were identified as applicable and useful in assessing patient safety culture in primary care settings in Europe. Safety culture indicators in primary care should focus on the processes rather than the outcomes of care. PMID:26339832

  8. Requirement analysis of the safety-critical software implementation for the nuclear power plant

    International Nuclear Information System (INIS)

    Chang, Hoon Seon; Jung, Jae Cheon; Kim, Jae Hack; Nam, Sang Ku; Kim, Hang Bae

    2005-01-01

    The safety critical software shall be implemented under the strict regulation and standards along with hardware qualification. In general, the safety critical software has been implemented using functional block language (FBL) and structured language like C in the real project. Software design shall comply with such characteristics as; modularity, simplicity, minimizing the use of sub-routine, and excluding the interrupt logic. To meet these prerequisites, we used the computer-aided software engineering (CASE) tool to substantiate the requirements traceability matrix that were manually developed using Word processors or Spreadsheets. And the coding standard and manual have been developed to confirm the quality of software development process, such as; readability, consistency, and maintainability in compliance with NUREG/CR-6463. System level preliminary hazard analysis (PHA) is performed by analyzing preliminary safety analysis report (PSAR) and FMEA document. The modularity concept is effectively implemented for the overall module configurations and functions using RTP software development tool. The response time imposed on the basis of the deterministic structure of the safety-critical software was measured

  9. Tools for the performance assessment and improvement of food safety management systems ; review

    NARCIS (Netherlands)

    Jacxsens, L.; Luning, P.A.; Marcelis, W.J.; Boekel, van M.A.J.S.; Rovira, J.; Oses Gomez, S.; Kousta, M.; Drosinos, E.H.; Jasson, V.; Uyttendaele, M.

    2011-01-01

    Food business operators are challenged to combine requirements from different stakeholders (e.g. government, retailers) into a company specific Food Safety Management System (FSMS). Tools to diagnose the performance of an implemented FSMS (diagnostic tools), tools to help a selection process

  10. Software analysis by simulation for nuclear plant availability and safety goals

    International Nuclear Information System (INIS)

    Lapassat, A.M.; Segalard, J.; Salichon, M.; Le Meur, M.; Boulc'h, J.

    1988-01-01

    The microprocessors utilisation for monitoring protection and safety of nuclear reactor has become reality in the eighties. The authorities responsible for reactor safety systems have considered the necessity of the correct functioning of reactor control systems. The problems take off, when analysis of software, has led us in a first time to develop a completely software tool of verification and validation of programs and specifications. The CEA (French Atomic Energie Commission) responsible of reliable distributed techniques of nuclear plant discusses in this paper the software test and simulation tools used to analyse real-time software. The tool O.S.T. make part of a big program of help for the conception and the evaluation for the systems' fault tolerance which the European ESPRIT SMART no. 1609 (System Measurement and Architecture Technique) will be the kernel [fr

  11. Compendium of computer codes for the safety analysis of LMFBR's

    International Nuclear Information System (INIS)

    1975-06-01

    A high level of mathematical sophistication is required in the safety analysis of LMFBR's to adequately meet the demands for realism and confidence in all areas of accident consequence evaluation. The numerical solution procedures associated with these analyses are generally so complex and time consuming as to necessitate their programming into computer codes. These computer codes have become extremely powerful tools for safety analysis, combining unique advantages in accuracy, speed and cost. The number, diversity and complexity of LMFBR safety codes in the U. S. has grown rapidly in recent years. It is estimated that over 100 such codes exist in various stages of development throughout the country. It is inevitable that such a large assortment of codes will require rigorous cataloguing and abstracting to aid individuals in identifying what is available. It is the purpose of this compendium to provide such a service through the compilation of code summaries which describe and clarify the status of domestic LMFBR safety codes. (U.S.)

  12. New risk metrics and mathematical tools for risk analysis: Current and future challenges

    International Nuclear Information System (INIS)

    Skandamis, Panagiotis N.; Andritsos, Nikolaos; Psomas, Antonios; Paramythiotis, Spyridon

    2015-01-01

    The current status of the food safety supply world wide, has led Food and Agriculture Organization (FAO) and World Health Organization (WHO) to establishing Risk Analysis as the single framework for building food safety control programs. A series of guidelines and reports that detail out the various steps in Risk Analysis, namely Risk Management, Risk Assessment and Risk Communication is available. The Risk Analysis approach enables integration between operational food management systems, such as Hazard Analysis Critical Control Points, public health and governmental decisions. To do that, a series of new Risk Metrics has been established as follows: i) the Appropriate Level of Protection (ALOP), which indicates the maximum numbers of illnesses in a population per annum, defined by quantitative risk assessments, and used to establish; ii) Food Safety Objective (FSO), which sets the maximum frequency and/or concentration of a hazard in a food at the time of consumption that provides or contributes to the ALOP. Given that ALOP is rather a metric of the public health tolerable burden (it addresses the total ‘failure’ that may be handled at a national level), it is difficult to be interpreted into control measures applied at the manufacturing level. Thus, a series of specific objectives and criteria for performance of individual processes and products have been established, all of them assisting in the achievement of FSO and hence, ALOP. In order to achieve FSO, tools quantifying the effect of processes and intrinsic properties of foods on survival and growth of pathogens are essential. In this context, predictive microbiology and risk assessment have offered an important assistance to Food Safety Management. Predictive modelling is the basis of exposure assessment and the development of stochastic and kinetic models, which are also available in the form of Web-based applications, e.g., COMBASE and Microbial Responses Viewer), or introduced into user

  13. New risk metrics and mathematical tools for risk analysis: Current and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Skandamis, Panagiotis N., E-mail: pskan@aua.gr; Andritsos, Nikolaos, E-mail: pskan@aua.gr; Psomas, Antonios, E-mail: pskan@aua.gr; Paramythiotis, Spyridon, E-mail: pskan@aua.gr [Laboratory of Food Quality Control and Hygiene, Department of Food Science and Technology, Agricultural University of Athens, Iera Odos 75, 118 55, Athens (Greece)

    2015-01-22

    The current status of the food safety supply world wide, has led Food and Agriculture Organization (FAO) and World Health Organization (WHO) to establishing Risk Analysis as the single framework for building food safety control programs. A series of guidelines and reports that detail out the various steps in Risk Analysis, namely Risk Management, Risk Assessment and Risk Communication is available. The Risk Analysis approach enables integration between operational food management systems, such as Hazard Analysis Critical Control Points, public health and governmental decisions. To do that, a series of new Risk Metrics has been established as follows: i) the Appropriate Level of Protection (ALOP), which indicates the maximum numbers of illnesses in a population per annum, defined by quantitative risk assessments, and used to establish; ii) Food Safety Objective (FSO), which sets the maximum frequency and/or concentration of a hazard in a food at the time of consumption that provides or contributes to the ALOP. Given that ALOP is rather a metric of the public health tolerable burden (it addresses the total ‘failure’ that may be handled at a national level), it is difficult to be interpreted into control measures applied at the manufacturing level. Thus, a series of specific objectives and criteria for performance of individual processes and products have been established, all of them assisting in the achievement of FSO and hence, ALOP. In order to achieve FSO, tools quantifying the effect of processes and intrinsic properties of foods on survival and growth of pathogens are essential. In this context, predictive microbiology and risk assessment have offered an important assistance to Food Safety Management. Predictive modelling is the basis of exposure assessment and the development of stochastic and kinetic models, which are also available in the form of Web-based applications, e.g., COMBASE and Microbial Responses Viewer), or introduced into user

  14. New risk metrics and mathematical tools for risk analysis: Current and future challenges

    Science.gov (United States)

    Skandamis, Panagiotis N.; Andritsos, Nikolaos; Psomas, Antonios; Paramythiotis, Spyridon

    2015-01-01

    The current status of the food safety supply world wide, has led Food and Agriculture Organization (FAO) and World Health Organization (WHO) to establishing Risk Analysis as the single framework for building food safety control programs. A series of guidelines and reports that detail out the various steps in Risk Analysis, namely Risk Management, Risk Assessment and Risk Communication is available. The Risk Analysis approach enables integration between operational food management systems, such as Hazard Analysis Critical Control Points, public health and governmental decisions. To do that, a series of new Risk Metrics has been established as follows: i) the Appropriate Level of Protection (ALOP), which indicates the maximum numbers of illnesses in a population per annum, defined by quantitative risk assessments, and used to establish; ii) Food Safety Objective (FSO), which sets the maximum frequency and/or concentration of a hazard in a food at the time of consumption that provides or contributes to the ALOP. Given that ALOP is rather a metric of the public health tolerable burden (it addresses the total `failure' that may be handled at a national level), it is difficult to be interpreted into control measures applied at the manufacturing level. Thus, a series of specific objectives and criteria for performance of individual processes and products have been established, all of them assisting in the achievement of FSO and hence, ALOP. In order to achieve FSO, tools quantifying the effect of processes and intrinsic properties of foods on survival and growth of pathogens are essential. In this context, predictive microbiology and risk assessment have offered an important assistance to Food Safety Management. Predictive modelling is the basis of exposure assessment and the development of stochastic and kinetic models, which are also available in the form of Web-based applications, e.g., COMBASE and Microbial Responses Viewer), or introduced into user-friendly softwares

  15. Use of safety analysis to site comfirmation procedure in case of hard rock repository

    International Nuclear Information System (INIS)

    Peltonen, E.K.

    1984-02-01

    The role of safety analysis in a confirmation procedure of a candidate disposal site of radioactive wastes is discussed. Items dealt with include principle reasons and practical goals of the use of safety analysis, methodology of safety analysis and assessment, as well as usefulness and adequacy of the present safety analysis. Safety analysis is a tool, which enables one to estimate quantitatively the possible radiological impacts from the disposal. The results can be compared with the criteria and the suitability conclusions drawn. Because of its systems analytical nature safety analysis is an effective method to reveal, what are the most important factors of the disposal system and the most critical site characteristics inside the lumped parameters often provided by the experimental site investigation methods. Furthermore it gives information on the accuracy needs of different site properties. This can be utilized to judge whether the quality and quantity of the measurements for the characterization are sufficient as well as to guide the further site investigations. A more practical discussion regarding the applicability of the use of safety analysis is presented by an example concerning the assessment of a Finnish candidate site for low- and intermediate-level radioactive waste repository. (author)

  16. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this Safety Guide is to provide harmonized guidance to designers, operators, regulators and providers of technical support on deterministic safety analysis for nuclear power plants. It provides information on the utilization of the results of such analysis for safety and reliability improvements. The Safety Guide addresses conservative, best estimate and uncertainty evaluation approaches to deterministic safety analysis and is applicable to current and future designs. Contents: 1. Introduction; 2. Grouping of initiating events and associated transients relating to plant states; 3. Deterministic safety analysis and acceptance criteria; 4. Conservative deterministic safety analysis; 5. Best estimate plus uncertainty analysis; 6. Verification and validation of computer codes; 7. Relation of deterministic safety analysis to engineering aspects of safety and probabilistic safety analysis; 8. Application of deterministic safety analysis; 9. Source term evaluation for operational states and accident conditions; References

  17. Development of the international status of science and technology concerning methods and tools for operational and long-term safety cases

    International Nuclear Information System (INIS)

    Seher, Holger; Beuth, Thomas; Bracke, Guido; Kock, Ingo; Mayer, Kim-Marisa; Moog, Helge C.; Uhlmann, Stephan; Weyand, Torben

    2016-09-01

    The project ''development of the international status of science and technology concerning methods and tools for operational and long-term safety cases'' covers the following key aspects: global aspects of the methodology for scenario assumption for the operational phase following closure, potential analysis of the derives safety cases for the project Gorleben, determination of the solid phase composition of high-level radioactive wastes using geochemical modeling calculations, search for an adequate approach for the calculation of density and viscosity of saline solutions for the future use in GRS computer codes, international approaches for an integral analysis for the host rocks clay and granite in relation to the safety requirements of BMUB.

  18. Analytical tool for the periodic safety analysis of NPP according to the PSA guideline. Vol. 1

    International Nuclear Information System (INIS)

    Balfanz, H.P.; Boehme, E.; Musekamp, W.; Hussels, U.; Becker, G.; Behr, H.; Luettgert, H.

    1994-01-01

    The SAIS (Safety Analysis and Informationssystem) Programme System is based on an integrated data base, which consists of a plant-data and a PSA related data part. Using SAIS analyses can be performed by special tools, which are connected directly to the data base. Two main editors, RISA+ and DEDIT, are used for data base management. The access to the data base is done via different types of pages, which are displayed on a displayed on a computer screen. The pages are called data sheets. Sets of input and output data sheets were implemented, such as system or component data sheets, fault trees or event trees. All input information, models and results needed for updated results of PSA (Living PSA) can be stored in the SAIS. The programme system contains the editor KVIEW which guarantees consistency of the stored data, e.g. with respect to names and codes of components and events. The information contained in the data base are called in by a standardized users guide programme, called Page Editor. (Brunsbuettel on reference NPP). (orig./HP) [de

  19. K Basin safety analysis

    International Nuclear Information System (INIS)

    Porten, D.R.; Crowe, R.D.

    1994-01-01

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall

  20. Evaluation of methods and tools to develop safety concepts and to demonstrate safety for an HLW repository in salt. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bollingerfehr, W.; Buhmann, D.; Doerr, S.; and others

    2017-03-15

    Salt formations have been the preferred option as host rocks for the disposal of high level radioactive waste in Germany for more than 40 years. During this period comprehensive geological investigations have been carried out together with a broad spectrum of concept and safety related R and D work. The behaviour of an HLW repository in salt formations, particularly in salt domes, has been analysed in terms of assessment of the total system performance. This was first carried out for concepts of generic waste repositories in salt and, since 1998, for a repository concept with specific boundary conditions, taking the geology of the Gorleben salt dome as an example. Suitable repository concepts and designs were developed, the technical feasibility has been proven and operational and long-term safety evaluated. Numerical modelling is an important input into the development of a comprehensive safety case for a waste repository. Significant progress in the development of numerical tools and their application for long-term safe ty assessment has been made in the last two decades. An integrated approach has been used in which the repository concept and relevant scientific and engineering data are combined with the results from iterative safety assessments to increase the clarity and the traceability of the evaluation. A safety concept that takes full credit of the favourable properties of salt formations was developed in the course of the R and D project ISIBEL, which started in 2005. This concept is based on the safe containment of radioactive waste in a specific part of the host rock formation, termed the containment providing rock zone, which comprises the geological barrier, the geotechnical barriers and the compacted backfill. The future evolution of the repository system will be analysed using a catalogue of Features, Events and Processes (FEP), scenario development and numerical analysis, all of which are adapted to suit the safety concept. Key elements of the

  1. Evaluation of methods and tools to develop safety concepts and to demonstrate safety for an HLW repository in salt. Final report

    International Nuclear Information System (INIS)

    Bollingerfehr, W.; Buhmann, D.; Doerr, S.

    2017-03-01

    Salt formations have been the preferred option as host rocks for the disposal of high level radioactive waste in Germany for more than 40 years. During this period comprehensive geological investigations have been carried out together with a broad spectrum of concept and safety related R and D work. The behaviour of an HLW repository in salt formations, particularly in salt domes, has been analysed in terms of assessment of the total system performance. This was first carried out for concepts of generic waste repositories in salt and, since 1998, for a repository concept with specific boundary conditions, taking the geology of the Gorleben salt dome as an example. Suitable repository concepts and designs were developed, the technical feasibility has been proven and operational and long-term safety evaluated. Numerical modelling is an important input into the development of a comprehensive safety case for a waste repository. Significant progress in the development of numerical tools and their application for long-term safe ty assessment has been made in the last two decades. An integrated approach has been used in which the repository concept and relevant scientific and engineering data are combined with the results from iterative safety assessments to increase the clarity and the traceability of the evaluation. A safety concept that takes full credit of the favourable properties of salt formations was developed in the course of the R and D project ISIBEL, which started in 2005. This concept is based on the safe containment of radioactive waste in a specific part of the host rock formation, termed the containment providing rock zone, which comprises the geological barrier, the geotechnical barriers and the compacted backfill. The future evolution of the repository system will be analysed using a catalogue of Features, Events and Processes (FEP), scenario development and numerical analysis, all of which are adapted to suit the safety concept. Key elements of the

  2. Safety analysis for 'Fugen'

    International Nuclear Information System (INIS)

    1997-10-01

    The improvement of safety in nuclear power stations is an important proposition. Therefore also as to the safety evaluation, it is important to comprehensively and systematically execute it by referring to the operational experience and the new knowledge which is important for the safety throughout the period of use as well as before the construction and the start of operation of nuclear power stations. In this report, the results when the safety analysis for ''Fugen'' was carried out by referring to the newest technical knowledge are described. As the result, it was able to be confirmed that the safety of ''Fugen'' has been secured by the inherent safety and the facilities which were designed for securing the safety. The basic way of thinking on the safety analysis including the guidelines to be conformed to is mentioned. As to the abnormal transient change in operation and accidents, their definition, the events to be evaluated and the standards for judgement are reported. The matters which were taken in consideration at the time of the analysis are shown. The computation programs used for the analysis were REACT, HEATUP, LAYMON, FATRAC, SENHOR, LOTRAC, FLOOD and CONPOL. The analyses of the abnormal transient change in operation and accidents are reported on the causes, countermeasures, protective functions and results. (K.I.)

  3. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    2000-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of two main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents. Main achievements in 1999 are reported

  4. The Aviation Performance Measuring System (APMS): An Integrated Suite of Tools for Measuring Performance and Safety

    Science.gov (United States)

    Statler, Irving C.; Connor, Mary M. (Technical Monitor)

    1998-01-01

    This is a report of work in progress. In it, I summarize the status of the research and development of the Aviation Performance Measuring System (APMS) for managing, processing, and analyzing digital flight-recorded data, The objectives of the NASA-FAA APMS research project are to establish a sound scientific and technological basis for flight-data analysis, to define an open and flexible architecture for flight-data analysis systems, and to articulate guidelines for a standardized database structure on which to continue to build future flight-data-analysis extensions. APMS offers to the air transport community an open, voluntary standard for flight-data-analysis software; a standard that will help to ensure suitable functionality and data interchangeability among competing software programs. APMS will develop and document the methodologies, algorithms, and procedures for data management and analyses to enable users to easily interpret the implications regarding safety and efficiency of operations. APMS does not entail the implementation of a nationwide flight-data-collection system. It is intended to provide technical tools to ease the large-scale implementation of flight-data analyses at both the air-carrier and the national-airspace levels in support of their Flight Operations and Quality Assurance (FOQA) Programs and Advanced Qualifications Programs (AQP). APMS cannot meet its objectives unless it develops tools that go substantially beyond the capabilities of the current commercially available software and supporting analytic methods that are mainly designed to count special events. These existing capabilities, while of proven value, were created primarily with the needs-of aircrews in mind. APMS tools must serve the needs of the government and air carriers, as well as aircrews, to fully support the FOQA and AQP programs. They must be able to derive knowledge not only through the analysis of single flights (special-event detection), but also through

  5. TEL4Health – Mobile tools to improve patient safety

    NARCIS (Netherlands)

    Drachsler, Hendrik; Kalz, Marco; Specht, Marcus

    2013-01-01

    Drachsler, H., Kalz, M., & Specht, M. (2013, 10 October). TEL4Health – Mobile tools to improve patient safety. Presentation given at the blended learning platform of the Netherlands Organisation for Hospitals (Nederlandse Vereniging van Ziekenhuizen), Utrecht, The Netherlands.

  6. Reliability analysis of PLC safety equipment

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.; Kim, J. Y. [Chungnam Nat. Univ., Daejeon (Korea, Republic of)

    2006-06-15

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system.

  7. Reliability analysis of PLC safety equipment

    International Nuclear Information System (INIS)

    Yu, J.; Kim, J. Y.

    2006-06-01

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system

  8. Uncertain added value of Global Trigger Tool for monitoring of patient safety in cancer care

    DEFF Research Database (Denmark)

    Lipczak, Henriette; Neckelmann, Kirsten; Steding-Jessen, Marianne

    2011-01-01

    Monitoring patient safety is a challenging task. The lack of a golden standard has contributed to the recommendation and introduction of several methods. In 2000 the Danish Lung Cancer Registry (DLCR) was established to monitor the clinical management of lung cancer. In 2008 the Global Trigger Tool...... (GTT) was recommended in Denmark as a tool for the monitoring of patient safety. Ideally, the recommendation of a new tool should be preceded by a critical assessment of its added value....

  9. Reactor safety analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    Risk assessments of nuclear installations require accurate safety and reliability analyses to estimate the consequences of accidental events and their probability of occurrence. The objective of the work performed in this field at the Belgian Nuclear Research Centre SCK-CEN is to develop expertise in probabilistic and deterministic reactor safety analysis. The four main activities of the research project on reactor safety analysis are: (1) the development of software for the reliable analysis of large systems; (2) the development of an expert system for the aid to diagnosis; (3) the development and the application of a probabilistic reactor-dynamics method, and (4) to participate in the international PHEBUS-FP programme for severe accidents. Progress in research during 1997 is described

  10. Bayesian-network-based safety risk analysis in construction projects

    International Nuclear Information System (INIS)

    Zhang, Limao; Wu, Xianguo; Skibniewski, Miroslaw J.; Zhong, Jingbing; Lu, Yujie

    2014-01-01

    This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical

  11. Safety management - policy, analysis and implementation

    International Nuclear Information System (INIS)

    Allen, F.R.

    1993-01-01

    The nuclear industry is moving towards a period of ever increasing emphasis on business performance and profitability. Safety has, of course, always been a major concern of management in the nuclear industry and elsewhere. The civil aviation industry , for example, has had a similar concern for safety. Other industry sectors are also developing safety management as a response to events within and outside their sectors. In this paper the way that the risk management process as a whole is being addressed is looked at. Can we use risk management, initially a safety-orientated tool, to improve business performance? (author)

  12. Periodic safety review of the HTR-10 safety analysis

    International Nuclear Information System (INIS)

    Chen Fubing; Zheng Yanhua; Shi Lei; Li Fu

    2015-01-01

    Designed by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University, the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) is the first modular High Temperature Gas-cooled Reactor (HTGR) in China. According to the nuclear safety regulations of China, the periodic safety review (PSR) of the HTR-10 was initiated by INET after approved by the National Nuclear Safety Administration (NNSA) of China. Safety analysis of the HTR-10 is one of the key safety factors of the PSR. In this paper, the main contents in the review of safety analysis are summarized; meanwhile, the internal evaluation on the review results is presented by INET. (authors)

  13. Physics analysis tools

    International Nuclear Information System (INIS)

    Kunz, P.F.

    1991-04-01

    There are many tools used in analysis in High Energy Physics (HEP). They range from low level tools such as a programming language to high level such as a detector simulation package. This paper will discuss some aspects of these tools that are directly associated with the process of analyzing HEP data. Physics analysis tools cover the whole range from the simulation of the interactions of particles to the display and fitting of statistical data. For purposes of this paper, the stages of analysis is broken down to five main stages. The categories are also classified as areas of generation, reconstruction, and analysis. Different detector groups use different terms for these stages thus it is useful to define what is meant by them in this paper. The particle generation stage is a simulation of the initial interaction, the production of particles, and the decay of the short lived particles. The detector simulation stage simulates the behavior of an event in a detector. The track reconstruction stage does pattern recognition on the measured or simulated space points, calorimeter information, etc., and reconstructs track segments of the original event. The event reconstruction stage takes the reconstructed tracks, along with particle identification information and assigns masses to produce 4-vectors. Finally the display and fit stage displays statistical data accumulated in the preceding stages in the form of histograms, scatter plots, etc. The remainder of this paper will consider what analysis tools are available today, and what one might expect in the future. In each stage, the integration of the tools with other stages and the portability of the tool will be analyzed

  14. Computational Methods for Sensitivity and Uncertainty Analysis in Criticality Safety

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Childs, R.L.; Rearden, B.T.

    1999-01-01

    Interest in the sensitivity methods that were developed and widely used in the 1970s (the FORSS methodology at ORNL among others) has increased recently as a result of potential use in the area of criticality safety data validation procedures to define computational bias, uncertainties and area(s) of applicability. Functional forms of the resulting sensitivity coefficients can be used as formal parameters in the determination of applicability of benchmark experiments to their corresponding industrial application areas. In order for these techniques to be generally useful to the criticality safety practitioner, the procedures governing their use had to be updated and simplified. This paper will describe the resulting sensitivity analysis tools that have been generated for potential use by the criticality safety community

  15. Safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Selvatici, E.

    1981-01-01

    A study about the safety analysis of nuclear power plant, giving emphasis to how and why to do is presented. The utilization of the safety analysis aiming to perform the licensing requirements is discussed, and an example of the Angra 2 and 3 safety analysis is shown. Some presented tendency of the safety analysis are presented and examples are shown.(E.G.) [pt

  16. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Science.gov (United States)

    2010-01-01

    ...; (iv) Potential accident sequences caused by process deviations or other events internal to the... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process... this safety program; namely, process safety information, integrated safety analysis, and management...

  17. The practical implementation of integrated safety management for nuclear safety analysis and fire hazards analysis documentation

    International Nuclear Information System (INIS)

    COLLOPY, M.T.

    1999-01-01

    In 1995 Mr. Joseph DiNunno of the Defense Nuclear Facilities Safety Board issued an approach to describe the concept of an integrated safety management program which incorporates hazard and safety analysis to address a multitude of hazards affecting the public, worker, property, and the environment. Since then the U S . Department of Energy (DOE) has adopted a policy to systematically integrate safety into management and work practices at all levels so that missions can be completed while protecting the public, worker, and the environment. While the DOE and its contractors possessed a variety of processes for analyzing fire hazards at a facility, activity, and job; the outcome and assumptions of these processes have not always been consistent for similar types of hazards within the safety analysis and the fire hazard analysis. Although the safety analysis and the fire hazard analysis are driven by different DOE Orders and requirements, these analyses should not be entirely independent and their preparation should be integrated to ensure consistency of assumptions, consequences, design considerations, and other controls. Under the DOE policy to implement an integrated safety management system, identification of hazards must be evaluated and agreed upon to ensure that the public. the workers. and the environment are protected from adverse consequences. The DOE program and contractor management need a uniform, up-to-date reference with which to plan. budget, and manage nuclear programs. It is crucial that DOE understand the hazards and risks necessarily to authorize the work needed to be performed. If integrated safety management is not incorporated into the preparation of the safety analysis and the fire hazard analysis, inconsistencies between assumptions, consequences, design considerations, and controls may occur that affect safety. Furthermore, confusion created by inconsistencies may occur in the DOE process to grant authorization of the work. In accordance with

  18. Development of a computer tool to support scenario analysis for safety assessment of HLW geological disposal

    International Nuclear Information System (INIS)

    Makino, Hitoshi; Kawamura, Makoto; Wakasugi, Keiichiro; Okubo, Hiroo; Takase, Hiroyasu

    2007-02-01

    In 'H12 Project to Establishing Technical Basis for HLW Disposal in Japan' a systematic approach that was based on an international consensus was adopted to develop scenarios to be considered in performance assessment. Adequacy of the approach was, in general term, appreciated through the domestic and international peer review. However it was also suggested that there were issues related to improving transparency and traceability of the procedure. To achieve this, improvement of scenario analysis method has been studied. In this study, based on an improvement method for treatment of FEP interaction a computer tool to support scenario analysis by specialists of performance assessment has been developed. Anticipated effects of this tool are to improve efficiency of complex and time consuming scenario analysis work and to reduce possibility of human errors in this work. This tool also enables to describe interactions among a vast number of FEPs and the related information as interaction matrix, and analysis those interactions from a variety of perspectives. (author)

  19. The LaSalle probabilistic safety analysis

    International Nuclear Information System (INIS)

    Frederick, L.G.; Massin, H.L.; Crane, G.R.

    1987-01-01

    A probabilistic safety analysis has been performed for LaSalle County Station, a twin-unit General Electric BWR5 Mark II nuclear power plant. A primary objective of this PSA is to provide engineers with a useful and useable tool for making design decisions, performing technical specification optimization, evaluating proposed regulatory changes to equipment and procedures, and as an aid in operator training. Other objectives are to identify the hypothetical accident sequences that would contribute to core damage frequency, and to provide assurance that the total expected frequency of core-damaging accidents is below 10 -4 per reactor-year in response to suggested goals. (orig./HSCH)

  20. ESSAA: Embedded system safety analysis assistant

    Science.gov (United States)

    Wallace, Peter; Holzer, Joseph; Guarro, Sergio; Hyatt, Larry

    1987-01-01

    The Embedded System Safety Analysis Assistant (ESSAA) is a knowledge-based tool that can assist in identifying disaster scenarios. Imbedded software issues hazardous control commands to the surrounding hardware. ESSAA is intended to work from outputs to inputs, as a complement to simulation and verification methods. Rather than treating the software in isolation, it examines the context in which the software is to be deployed. Given a specified disasterous outcome, ESSAA works from a qualitative, abstract model of the complete system to infer sets of environmental conditions and/or failures that could cause a disasterous outcome. The scenarios can then be examined in depth for plausibility using existing techniques.

  1. Safety analysis on Non-LOCA events for the revision of Wolsong NPP unit 2,3,4 sar

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Jin, Dong Sik; Ryu, Eui Seung; Kho, Dong Wook; Kim, Sung Min

    2015-01-01

    Korean Wolsong Nuclear Power Plant Units 2,3,4 (CANDU-6 Type) has prepared the revision of safety analysis report (Final Safety Analysis Report (FSAR) chapter 15) from the original performed in the year of 1990s, using the updated and state-of-the-art methodology and tools including IST safety analysis codes and more detail modelling. Compared with the original FSAR15, the revised FSAR15 has significant improvement in both the scope and the depth of safety analysis, which has demonstrated the safety analysis results have complied with the safety requirements(acceptance criteria). This paper will present the analysis scope for Non-LOCA events re-analyzed or added for the FSAR15 revision, methodologies applied such as codes and modelling and some important analysis results will be demonstrated with comparison to acceptance criteria. Application of more detail and near-realistic assumptions and method including Dev-PDO options and uncertainty related to the CHF correlations has altogether brought about more safety margin compared with the original FSAR15 with respect to SDS trip effectiveness etc. (author)

  2. IAEA Review for Gap Analysis of Safety Analysis Capability

    International Nuclear Information System (INIS)

    Basic, Ivica; Kim, Manwoong; Huges, Peter; Lim, B-K; D'Auria, Francesco; Louis, Vidard Michael

    2014-01-01

    The IAEA Asian Nuclear Safety Network (ANSN) was launched in 2002 in the framework of the Extra Budgetary Programme (EBP) on the Safety of Nuclear Installations in the South East Asia, Pacific and Far East Countries. The main objective is to strengthen and expand human and advanced Information Technology (IT) network to pool, analyse and share nuclear safety knowledge and practical experience for peaceful uses in this region. Under the ANSN framework, a technical group on Safety Analysis (SATG) was established in 2004 aimed to providing a forum for the exchange of experience in the following areas of safety analysis: · To provide a forum for an exchange of experience in the area of safety analysis, · To maintain and improve the knowledge on safety analysis method, · To enhance the utilization of computer codes, · To pool and analyse the issues related with safety analysis of research reactor, and · To facilitate mutual interested on safety analysis among member countries. A sustainable and successful nuclear energy programme requires a strong technical infrastructure, including a workforce made up of highly specialized and well-educated professionals. A significant portion of this technical capacity must be dedicated to safety- especially to safety analysis- as only then can it serve as the basis for making the right decisions during the planning, licensing, construction and operation of new nuclear facilities. In this regard, the IAEA has provided ANSN member countries with comprehensive training opportunities for capacity building in safety analysis. Nevertheless, the SATG recognizes that it is difficult to achieve harmonization in this area among all member countries because of their different competency levels. Therefore, it is necessary to quickly identify the most obvious gaps in safety analysis capability and then to use existing resources to begin to fill those gaps. The goal of this Expert Mission (EM) for gap finding service is to facilitate

  3. Using the electronic health record to build a culture of practice safety: evaluating the implementation of trigger tools in one general practice.

    Science.gov (United States)

    Margham, Tom; Symes, Natalie; Hull, Sally A

    2018-04-01

    Identifying patients at risk of harm in general practice is challenging for busy clinicians. In UK primary care, trigger tools and case note reviews are mainly used to identify rates of harm in sample populations. This study explores how adaptions to existing trigger tool methodology can identify patient safety events and engage clinicians in ongoing reflective work around safety. Mixed-method quantitative and narrative evaluation using thematic analysis in a single East London training practice. The project team developed and tested five trigger searches, supported by Excel worksheets to guide the case review process. Project evaluation included summary statistics of completed worksheets and a qualitative review focused on ease of use, barriers to implementation, and perception of value to clinicians. Trigger searches identified 204 patients for GP review. Overall, 117 (57%) of cases were reviewed and 62 (53%) of these cases had patient safety events identified. These were usually incidents of omission, including failure to monitor or review. Key themes from interviews with practice members included the fact that GPs' work is generally reactive and GPs welcomed an approach that identified patients who were 'under the radar' of safety. All GPs expressed concern that the tool might identify too many patients at risk of harm, placing further demands on their time. Electronic trigger tools can identify patients for review in domains of clinical risk for primary care. The high yield of safety events engaged clinicians and provided validation of the need for routine safety checks. © British Journal of General Practice 2018.

  4. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of four main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents, the development of an expert system for the aid to diagnosis; the development and application of a probabilistic reactor dynamics method. Main achievements in 1999 are reported

  5. Setting clear expectations for safety basis development

    International Nuclear Information System (INIS)

    MORENO, M.R.

    2003-01-01

    DOE-RL has set clear expectations for a cost-effective approach for achieving compliance with the Nuclear Safety Management requirements (10 CFR 830, Nuclear Safety Rule) which will ensure long-term benefit to Hanford. To facilitate implementation of these expectations, tools were developed to streamline and standardize safety analysis and safety document development resulting in a shorter and more predictable DOE approval cycle. A Hanford Safety Analysis and Risk Assessment Handbook (SARAH) was issued to standardized methodologies for development of safety analyses. A Microsoft Excel spreadsheet (RADIDOSE) was issued for the evaluation of radiological consequences for accident scenarios often postulated for Hanford. A standard Site Documented Safety Analysis (DSA) detailing the safety management programs was issued for use as a means of compliance with a majority of 3009 Standard chapters. An in-process review was developed between DOE and the Contractor to facilitate DOE approval and provide early course correction. As a result of setting expectations and providing safety analysis tools, the four Hanford Site waste management nuclear facilities were able to integrate into one Master Waste Management Documented Safety Analysis (WM-DSA)

  6. Accident prediction models for rural junctions on four European countries. Road Infrastructure Safety Management Evaluation Tools (RISMET), Deliverable No. 6.1.

    NARCIS (Netherlands)

    Azeredo Lopes, S. de & Lourenço Cardoso, J.

    2014-01-01

    The "Road Infrastructure Safety Management Evaluation Tools (RISMET)" project targets objective A (Development of evaluation tools) of the Joint Call for Proposals for Safety at the Heart of Road Design ("The Call"). This project aims at developing suitable road safety engineering evaluation tools

  7. Risk-based evaluation tool for safety-related maintenance involving scaffolding

    International Nuclear Information System (INIS)

    Stevens, C.; Azizi, M.; Massman, M.

    1988-01-01

    The US Nuclear Regulatory Commission (NRC) has expressed a general concern that transient materials in and around safety systems at nuclear power plants represent a seismic safety hazard to the plant, in particular, the uncontrolled use of scaffolding during maintenance activities. Currently, most plants perform a seismic safety analysis for all uses of scaffolding near safety-related equipment to determine appropriate tie-down locations, scaffolding reinforcements, etc. This is both time-consuming and, for the most part, unnecessary. A workable engineering solution based on risk analysis techniques has been developed and is being used at the Palo Verde nuclear generating station (PVNGS)

  8. SFR Safety Considerations

    International Nuclear Information System (INIS)

    Glatz, Jean-Paul

    2012-01-01

    Objectives of the Safety and Operation Project: • analysis and experiments that support approaches and assess performance of specific safety features, • development and verification of computational tools and validation of models employed in safety assessment and facility licensing, and • valorisation of reactor operation, from experience and testing in operating SFR plants

  9. Application of factor analysis in psychological diagnostics (sample: study of students’ social safety

    Directory of Open Access Journals (Sweden)

    Pavel Aleksandrovich Kislyakov

    2015-10-01

    Our recommendations for the use of factor analysis, with necessary restrictions and clear reasons of a possible ambiguity of solutions, will be useful to everyone interested in mastering an adequate mathematical tool for solving problems pertaining to the humanities, in particular, those of practical psychology. As a practical example is presented the research of the psychological factors which provide students’ social safety. With the help of the factor analysis relevant personal and professional qualities of a teacher were revealed which are the subjective factors of students’ social safety, namely: social anticipation, socio-psychological stress resistance, social tolerance, professional orientation, responsibility, communication skills.

  10. Systems engineered health and safety criteria for safety analysis reports

    International Nuclear Information System (INIS)

    Beitel, G.A.; Morcos, N.

    1993-01-01

    The world of safety analysis is filled with ambiguous words: codes and standards, consequences and risks, hazard and accident, and health and safety. These words have been subject to disparate interpretations by safety analysis report (SAR) writers, readers, and users. open-quotes Principal health and safety criteriaclose quotes has been one of the most frequently misused phrases; rarely is it used consistently or effectively. This paper offers an easily understood definition for open-quotes principal health and safety criteriaclose quotes and uses systems engineering to convert an otherwise mysterious topic into the primary means of producing an integrated SAR. This paper is based on SARs being written for environmental restoration and waste management activities for the U.S. Department of Energy (DOE). Requirements for these SARs are prescribed in DOE Order 5480-23, open-quotes Nuclear Safety Analysis Reports.close quotes

  11. Safety assessment driving radioactive waste management solutions (SADRWMS Methodology) implemented in a software tool (SAFRAN)

    Energy Technology Data Exchange (ETDEWEB)

    Kinker, M., E-mail: M.Kinker@iaea.org [International Atomic Energy Agency (IAEA), Vienna (Austria); Avila, R.; Hofman, D., E-mail: rodolfo@facilia.se [FACILIA AB, Stockholm (Sweden); Jova Sed, L., E-mail: jovaluis@gmail.com [Centro Nacional de Seguridad Nuclear (CNSN), La Habana (Cuba); Ledroit, F., E-mail: frederic.ledroit@irsn.fr [IRSN PSN-EXP/SSRD/BTE, (France)

    2013-07-01

    In 2004, the International Atomic Energy Agency (IAEA) organized the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) to examine international approaches to safety assessment for predisposal management of radioactive waste. The initial outcome of the SADRWMS Project was achieved through the development of flowcharts which could be used to improve the mechanisms for applying safety assessment methodologies to predisposal management of radioactive waste. These flowcharts have since been incorporated into DS284 (General Safety Guide on the Safety Case and Safety Assessment for Predisposal Management of Radioactive Waste), and were also considered during the early development stages of the Safety Assessment Framework (SAFRAN) Tool. In 2009 the IAEA presented DS284 to the IAEA Waste Safety Standards Committee, during which it was proposed that the graded approach to safety case and safety assessment be illustrated through the development of Safety Reports for representative predisposal radioactive waste management facilities and activities. To oversee the development of these reports, it was agreed to establish the International Project on Complementary Safety Reports: Development and Application to Waste Management Facilities (CRAFT). The goal of the CRAFT project is to develop complementary reports by 2014, which the IAEA could then publish as IAEA Safety Reports. The present work describes how the DS284 methodology and SAFRAN Tool can be applied in the development and review of the safety case and safety assessment to a range of predisposal waste management facilities or activities within the Region. (author)

  12. Safety assessment driving radioactive waste management solutions (SADRWMS Methodology) implemented in a software tool (SAFRAN)

    International Nuclear Information System (INIS)

    Kinker, M.; Avila, R.; Hofman, D.; Jova Sed, L.; Ledroit, F.

    2013-01-01

    In 2004, the International Atomic Energy Agency (IAEA) organized the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) to examine international approaches to safety assessment for predisposal management of radioactive waste. The initial outcome of the SADRWMS Project was achieved through the development of flowcharts which could be used to improve the mechanisms for applying safety assessment methodologies to predisposal management of radioactive waste. These flowcharts have since been incorporated into DS284 (General Safety Guide on the Safety Case and Safety Assessment for Predisposal Management of Radioactive Waste), and were also considered during the early development stages of the Safety Assessment Framework (SAFRAN) Tool. In 2009 the IAEA presented DS284 to the IAEA Waste Safety Standards Committee, during which it was proposed that the graded approach to safety case and safety assessment be illustrated through the development of Safety Reports for representative predisposal radioactive waste management facilities and activities. To oversee the development of these reports, it was agreed to establish the International Project on Complementary Safety Reports: Development and Application to Waste Management Facilities (CRAFT). The goal of the CRAFT project is to develop complementary reports by 2014, which the IAEA could then publish as IAEA Safety Reports. The present work describes how the DS284 methodology and SAFRAN Tool can be applied in the development and review of the safety case and safety assessment to a range of predisposal waste management facilities or activities within the Region. (author)

  13. Ignalina Safety Analysis Group

    International Nuclear Information System (INIS)

    Ushpuras, E.

    1995-01-01

    The article describes the fields of activities of Ignalina NPP Safety Analysis Group (ISAG) in the Lithuanian Energy Institute and overview the main achievements gained since the group establishment in 1992. The group is working under the following guidelines: in-depth analysis of the fundamental physical processes of RBMK-1500 reactors; collection, systematization and verification of the design and operational data; simulation and analysis of potential accident consequences; analysis of thermohydraulic and neutronic characteristics of the plant; provision of technical and scientific consultations to VATESI, Governmental authorities, and also international institutions, participating in various projects aiming at Ignalina NPP safety enhancement. The ISAG is performing broad scientific co-operation programs with both Eastern and Western scientific groups, supplying engineering assistance for Ignalina NPP. ISAG is also participating in the joint Lithuanian - Swedish - Russian project - Barselina, the first Probabilistic Safety Assessment (PSA) study of Ignalina NPP. The work is underway together with Maryland University (USA) for assessment of the accident confinement system for a range of breaks in the primary circuit. At present the ISAG personnel is also involved in the project under the grant from the Nuclear Safety Account, administered by the European Bank for reconstruction and development for the preparation and review of an in-depth safety assessment of the Ignalina plant

  14. Preliminary safety analysis methodology for the SMART

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoo Hwan; Chung, Y. J.; Kim, H. C.; Sim, S. K.; Lee, W. J.; Chung, B. D.; Song, J. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This technical report was prepared for a preliminary safety analysis methodology of the 330MWt SMART (System-integrated Modular Advanced ReacTor) which has been developed by Korea Atomic Energy Research Institute (KAERI) and funded by the Ministry of Science and Technology (MOST) since July 1996. This preliminary safety analysis methodology has been used to identify an envelope for the safety of the SMART conceptual design. As the SMART design evolves, further validated final safety analysis methodology will be developed. Current licensing safety analysis methodology of the Westinghouse and KSNPP PWRs operating and under development in Korea as well as the Russian licensing safety analysis methodology for the integral reactors have been reviewed and compared to develop the preliminary SMART safety analysis methodology. SMART design characteristics and safety systems have been reviewed against licensing practices of the PWRs operating or KNGR (Korean Next Generation Reactor) under construction in Korea. Detailed safety analysis methodology has been developed for the potential SMART limiting events of main steam line break, main feedwater pipe break, loss of reactor coolant flow, CEA withdrawal, primary to secondary pipe break and the small break loss of coolant accident. SMART preliminary safety analysis methodology will be further developed and validated in parallel with the safety analysis codes as the SMART design further evolves. Validated safety analysis methodology will be submitted to MOST as a Topical Report for a review of the SMART licensing safety analysis methodology. Thus, it is recommended for the nuclear regulatory authority to establish regulatory guides and criteria for the integral reactor. 22 refs., 18 figs., 16 tabs. (Author)

  15. A formative evaluation of the implementation of a medication safety data collection tool in English healthcare settings: A qualitative interview study using normalisation process theory.

    Science.gov (United States)

    Rostami, Paryaneh; Ashcroft, Darren M; Tully, Mary P

    2018-01-01

    Reducing medication-related harm is a global priority; however, impetus for improvement is impeded as routine medication safety data are seldom available. Therefore, the Medication Safety Thermometer was developed within England's National Health Service. This study aimed to explore the implementation of the tool into routine practice from users' perspectives. Fifteen semi-structured interviews were conducted with purposely sampled National Health Service staff from primary and secondary care settings. Interview data were analysed using an initial thematic analysis, and subsequent analysis using Normalisation Process Theory. Secondary care staff understood that the Medication Safety Thermometer's purpose was to measure medication safety and improvement. However, other uses were reported, such as pinpointing poor practice. Confusion about its purpose existed in primary care, despite further training, suggesting unsuitability of the tool. Decreased engagement was displayed by staff less involved with medication use, who displayed less ownership. Nonetheless, these advocates often lacked support from management and frontline levels, leading to an overall lack of engagement. Many participants reported efforts to drive scale-up of the use of the tool, for example, by securing funding, despite uncertainty around how to use data. Successful improvement was often at ward-level and went unrecognised within the wider organisation. There was mixed feedback regarding the value of the tool, often due to a perceived lack of "capacity". However, participants demonstrated interest in learning how to use their data and unexpected applications of data were reported. Routine medication safety data collection is complex, but achievable and facilitates improvements. However, collected data must be analysed, understood and used for further work to achieve improvement, which often does not happen. The national roll-out of the tool has accelerated shared learning; however, a number of

  16. A formative evaluation of the implementation of a medication safety data collection tool in English healthcare settings: A qualitative interview study using normalisation process theory.

    Directory of Open Access Journals (Sweden)

    Paryaneh Rostami

    Full Text Available Reducing medication-related harm is a global priority; however, impetus for improvement is impeded as routine medication safety data are seldom available. Therefore, the Medication Safety Thermometer was developed within England's National Health Service. This study aimed to explore the implementation of the tool into routine practice from users' perspectives.Fifteen semi-structured interviews were conducted with purposely sampled National Health Service staff from primary and secondary care settings. Interview data were analysed using an initial thematic analysis, and subsequent analysis using Normalisation Process Theory.Secondary care staff understood that the Medication Safety Thermometer's purpose was to measure medication safety and improvement. However, other uses were reported, such as pinpointing poor practice. Confusion about its purpose existed in primary care, despite further training, suggesting unsuitability of the tool. Decreased engagement was displayed by staff less involved with medication use, who displayed less ownership. Nonetheless, these advocates often lacked support from management and frontline levels, leading to an overall lack of engagement. Many participants reported efforts to drive scale-up of the use of the tool, for example, by securing funding, despite uncertainty around how to use data. Successful improvement was often at ward-level and went unrecognised within the wider organisation. There was mixed feedback regarding the value of the tool, often due to a perceived lack of "capacity". However, participants demonstrated interest in learning how to use their data and unexpected applications of data were reported.Routine medication safety data collection is complex, but achievable and facilitates improvements. However, collected data must be analysed, understood and used for further work to achieve improvement, which often does not happen. The national roll-out of the tool has accelerated shared learning; however

  17. Transient analysis for resolving safety issues

    International Nuclear Information System (INIS)

    Chao, J.; Layman, W.

    1987-01-01

    The Nuclear Safety Analysis Center (NSAC) has a Generic Safety Analysis Program to help resolve high priority generic safety issues. This paper describes several high priority safety issues considered at NSAC and how they were resolved by transient analysis using thermal hydraulics and neutronics codes. These issues are pressurized thermal shock (PTS), anticipated transients without scram (ATWS), steam generator tube rupture (SGTR), and reactivity transients in light of the Chernobyl accident

  18. Persuasive appeals in road safety communication campaigns: Theoretical frameworks and practical implications from the analysis of a decade of road safety campaign materials.

    Science.gov (United States)

    Guttman, Nurit

    2015-11-01

    Communication campaigns are employed as an important tool to promote road safety practices. Researchers maintain road safety communication campaigns are more effective when their persuasive appeals, which are central to their communicative strategy, are based on explicit theoretical frameworks. This study's main objectives were to develop a detailed categorization of persuasive appeals used in road safety communication campaigns that differentiate between appeals that appear to be similar but differ conceptually, and to indicate the advantages, limitations and ethical issues associated with each type, drawing on behavior change theories. Materials from over 300 campaigns were obtained from 41 countries, mainly using road safety organizations' websites. Drawing on the literature, five types of main approaches were identified, and the analysis yielded a more detailed categorizations of appeals within these general categories. The analysis points to advantages, limitations, ethical issues and challenges in using different types of appeals. The discussion summarizes challenges in designing persuasive-appeals for road safety communication campaigns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Experiences with the implementation of measures and tools for road safety improvement

    Energy Technology Data Exchange (ETDEWEB)

    Mikusova, M.

    2016-07-01

    The paper presents an overview on the road safety measures implemented in the framework of the “SOL – Save our lives” project. It contains summarization of general knowledge regarding the efficiency of the measures applied and conclusions from the analyses of developed strategies and action plans, including common issues, strengths and weaknesses of developed tools and puts these in the context of wider European Road Safety strategies. The purpose of the paper is to provide recommendations for an effective professional development of road safety programs at community level in the context of sustainable mobility. (Author)

  20. Review of criticality safety and shielding analysis issues for transportation packages

    International Nuclear Information System (INIS)

    Parks, C.V.; Broadhead, B.L.

    1995-01-01

    The staff of the Nuclear Engineering Applications Section (NEAS) at Oak Ridge National Laboratory (ORNL) have been involved for over 25 years with the development and application of computational tools for use in analyzing the criticality safety and shielding features of transportation packages carrying radioactive material (RAM). The majority of the computational tools developed by ORNL/NEAS have been included within the SCALE modular code system (SCALE 1995). This code system has been used throughout the world for the evaluation of nuclear facility and package designs. With this development and application experience as a basis, this paper highlights a number of criticality safety and shielding analysis issues that confront the designer and reviewer of a new RAM package. Changes in the types and quantities of material that need to be shipped will keep these issues before the technical community and provide challenges to future package design and certification

  1. Oscillation Baselining and Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-27

    PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).

  2. Analysis of safety impacts from external flooding using the risk-informed safety margin characterization (RISMC) Toolkit

    International Nuclear Information System (INIS)

    Smith, Curtis L.; Mandelli, Diego; Prescott, Steve

    2015-01-01

    The existing fleet of U.S. nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impact of these factors on the safety of the plant, the Risk-Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This paper demonstrates how Idaho National Laboratory (INL) researchers use the RISMC Toolkit to investigate complex nuclear plant phenomena using RAVEN and RELAP-7. The analysis focused on a highly relevant topic currently facing some nuclear power plants – specifically flooding issues. This research and development looked at challenges to a hypothetical pressurized water reactor, including: (1) a potential loss of off-site power followed by the possible loss of all diesel generators (i.e., a station black-out event), (2) earthquake induced station-blackout, and (3) a potential earthquake induced tsunami flood. The analysis is performed by using a set of codes: a thermal-hydraulic code (RELAP-7), a flooding simulation tool (NEUTRINO) and a stochastic analysis tool (RAVEN) – these are currently under development at INL. Using RAVEN, we were able to perform multiple RELAP-7 simulation runs by changing specific parts of the model in order to reflect specific aspects of different scenarios, including both the failure and recovery of critical components. The simulation employed traditional statistical tools (such as Monte-Carlo sampling) and more advanced machine-learning based algorithms to perform uncertainty quantification in order to understand changes in system performance and limitations as a consequence of power uprate. Qualitative and quantitative results obtained gave a detailed picture of the issues associated with potential accident scenarios. These types of

  3. Probabilistic safety assessment of Tehran Research Reactor using systems analysis programs for hands-on integrated reliability evaluations

    International Nuclear Information System (INIS)

    Hosseini, M.H.; Nematollahi, M.R.; Sepanloo, K.

    2004-01-01

    Probabilistic safety assessment application is found to be a practical tool for research reactor safety due to intense involvement of human interactions in an experimental facility. In this document the application of the probabilistic safety assessment to the Tehran Research Reactor is presented. The level 1 practicabilities safety assessment application involved: Familiarization with the plant, selection of accident initiators, mitigating functions and system definitions, event tree constructions and quantifications, fault tree constructions and quantification, human reliability, component failure data base development and dependent failure analysis. Each of the steps of the analysis given above is discussed with highlights from the selected results. Quantification of the constructed models is done using systems analysis programs for hands-on integrated reliability evaluations software

  4. Assessment of the global trigger tool to measure, monitor and evaluate pateint safety in cancer patients

    DEFF Research Database (Denmark)

    Otto Mattsson, Thea; Lehmann-Knudsen, Janne; Lauritsen, Jens M

    2013-01-01

    BACKGROUND: Countries around the world are currently aiming to improve patient safety by means of the Institute for Healthcare Improvement global trigger tool (GTT), which is considered a valid tool for evaluating and measuring patient safety within organisations. So far, only few data....... RESULTS: Only 31% of adverse events (AE) were identified by both teams, and further differences in categorisation of identical events was found. Moderate interrater agreement (κ=0.45) between teams gave rise to different conclusions on the patient safety process when monitoring using SPC charts. The Bland......-Altman plot suggests little systematic error but large random error. CONCLUSIONS: Review teams may identify different AE and reach different conclusions on the safety process when using the GTT on identical charts. Tracking true change in the safety level is difficult due to measurement error of the GTT...

  5. Analysis of occupational accidents: prevention through the use of additional technical safety measures for machinery.

    Science.gov (United States)

    Dźwiarek, Marek; Latała, Agata

    2016-01-01

    This article presents an analysis of results of 1035 serious and 341 minor accidents recorded by Poland's National Labour Inspectorate (PIP) in 2005-2011, in view of their prevention by means of additional safety measures applied by machinery users. Since the analysis aimed at formulating principles for the application of technical safety measures, the analysed accidents should bear additional attributes: the type of machine operation, technical safety measures and the type of events causing injuries. The analysis proved that the executed tasks and injury-causing events were closely connected and there was a relation between casualty events and technical safety measures. In the case of tasks consisting of manual feeding and collecting materials, the injuries usually occur because of the rotating motion of tools or crushing due to a closing motion. Numerous accidents also happened in the course of supporting actions, like removing pollutants, correcting material position, cleaning, etc.

  6. Safety analysis of autonomous excavator functionality

    International Nuclear Information System (INIS)

    Seward, D.; Pace, C.; Morrey, R.; Sommerville, I.

    2000-01-01

    This paper presents an account of carrying out a hazard analysis to define the safety requirements for an autonomous robotic excavator. The work is also relevant to the growing generic class of heavy automated mobile machinery. An overview of the excavator design is provided and the concept of a safety manager is introduced. The safety manager is an autonomous module responsible for all aspects of system operational safety, and is central to the control system's architecture. Each stage of the hazard analysis is described, i.e. system model creation, hazard definition and hazard analysis. Analysis at an early stage of the design process, and on a system that interfaces directly to an unstructured environment, exposes certain issues relevant to the application of current hazard analysis methods. The approach taken in the analysis is described. Finally, it is explained how the results of the hazard analysis have influenced system design, in particular, safety manager specifications. Conclusions are then drawn about the applicability of hazard analysis of requirements in general, and suggestions are made as to how the approach can be taken further

  7. Solid waste burial grounds interim safety analysis

    International Nuclear Information System (INIS)

    Saito, G.H.

    1994-01-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment

  8. Solid waste burial grounds interim safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  9. Process hazards analysis (PrHA) program, bridging accident analyses and operational safety

    International Nuclear Information System (INIS)

    Richardson, J.A.; McKernan, S.A.; Vigil, M.J.

    2003-01-01

    safety are incorporated so the worker can readily identify the safety parameters of the their work. System safety tools such as Preliminary Hazard Analysis, What-If Analysis, Hazard and Operability Analysis as well as other techniques as necessary provide the groundwork for both determining bounding conditions for facility safety, operational safety, and day-to-clay worker safety.

  10. Assessment of multi-version NPP I and C systems safety. Metric-based approach, technique and tool

    International Nuclear Information System (INIS)

    Kharchenko, Vyacheslav; Volkovoy, Andrey; Bakhmach, Eugenii; Siora, Alexander; Duzhyi, Vyacheslav

    2011-01-01

    The challenges related to problem of assessment of actual diversity level and evaluation of diversity-oriented NPP I and C systems safety are analyzed. There are risks of inaccurate assessment and problems of insufficient decreasing probability of CCFs. CCF probability of safety-critical systems may be essentially decreased due to application of several different types of diversity (multi-diversity). Different diversity types of FPGA-based NPP I and C systems, general approach and stages of diversity and safety assessment as a whole are described. Objectives of the report are: (a) analysis of the challenges caused by use of diversity approach in NPP I and C systems in context of FPGA and other modern technologies application; (b) development of multi-version NPP I and C systems assessment technique and tool based on check-list and metric-oriented approach; (c) case-study of the technique: assessment of multi-version FPGA-based NPP I and C developed by use of Radiy TM Platform. (author)

  11. OPAD: An expert system for research reactor operations and fault diagnosis using probabilistic safety assessment tools

    International Nuclear Information System (INIS)

    Verma, A.K.; Varde, P.V.; Sankar, S.; Prakash, P.

    1996-01-01

    A prototype Knowledge Based (KB) operator Adviser (OPAD) system has been developed for 100 MW(th) Heavy Water moderated, cooled and Natural Uranium fueled research reactor. The development objective of this system is to improve reliability of operator action and hence the reactor safety at the time of crises as well as normal operation. The jobs performed by this system include alarm analysis, transient identification, reactor safety status monitoring, qualitative fault diagnosis and procedure generation in reactor operation. In order to address safety objectives at various stages of the Operator Adviser (OPAD) system development the Knowledge has been structured using PSA tools/information in an shell environment. To demonstrate the feasibility of using a combination of KB approach with PSA for operator adviser system, salient features of some of the important modules (viz. FUELEX, LOOPEX and LOCAEX) have been discussed. It has been found that this system can serve as an efficient operator support system

  12. Criticality safety and shielding analysis of WWER-440 fuel configurations

    International Nuclear Information System (INIS)

    Christoskov, I.

    2008-01-01

    An overview is made of some studies performed on the criticality safety and radiation shielding analysis of irradiated WWER-440 fuel storage and handling configurations. The analytical tools are based on the SCALE 4.4a code system, in combination with the TORT discrete ordinates transport code and the BUGLE-96 cross-sections library. The accuracy of some important results is assessed through comparison with independent evaluations and with measurement data. (author)

  13. The 7 basic tools of quality applied to radiological safety

    International Nuclear Information System (INIS)

    Gonzalez F, J.A.

    1991-01-01

    This work seeks to establish a series of correspondences among the search of the quality and the optimization of the doses received by the occupationally exposed personnel. There are treated about the seven basic statistic tools of the quality: the Pareto technique, Cause effect diagrams, Stratification, Verification sheet, Histograms, Dispersion diagrams and Graphics and control frames applied to the Radiological Safety

  14. Aviation’s Normal Operations Safety Audit: a safety management and educational tool for health care? Results of a small-scale trial

    Directory of Open Access Journals (Sweden)

    Bennett SA

    2017-08-01

    Full Text Available Simon A Bennett Civil Safety and Security Unit, School of Business, University of Leicester, Leicester, UK Background: A National Health Service (NHS contingent liability for medical error claims of over £26 billion. Objectives: To evaluate the safety management and educational benefits of adapting aviation’s Normal Operations Safety Audit (NOSA to health care. Methods: In vivo research, a NOSA was performed by medical students at an English NHS Trust. After receiving training from the author, the students spent 6 days gathering data under his supervision. Results: The data revealed a threat-rich environment, where errors – some consequential – were made (359 threats and 86 errors were recorded over 2 weeks. The students claimed that the exercise improved their observational, investigative, communication, teamworking and other nontechnical skills. Conclusion: NOSA is potentially an effective safety management and educational tool for health care. It is suggested that 1 the UK General Medical Council mandates that all medical students perform a NOSA in fulfillment of their degree; 2 the participating NHS Trusts be encouraged to act on students’ findings; and 3 the UK Department of Health adopts NOSA as a cornerstone risk assessment and management tool. Keywords: aviation, safety audit, health care, management benefits, educational benefits

  15. Implementation of a risk assessment tool based on a probabilistic safety assessment developed for radiotherapy practices

    International Nuclear Information System (INIS)

    Paz, A.; Godinez, V.; Lopez, R.

    2010-10-01

    The present work describes the implementation process and main results of the risk assessment to the radiotherapy practices with Linear Accelerators (Linac), with cobalt 60, and with brachytherapy. These evaluations were made throughout the risk assessment tool for radiotherapy practices SEVRRA (risk evaluation system for radiotherapy), developed at the Mexican National Commission in Nuclear Safety and Safeguards derived from the outcome obtained with the Probabilistic Safety Analysis developed at the Ibero-American Regulators Forum for these radiotherapy facilities. The methodology used is supported by risk matrices method, a mathematical tool that estimates the risk to the patient, radiation workers and public from mechanical failures, mis calibration of the devices, human mistakes, and so. The initiating events are defined as those undesirable events that, together with other failures, can produce a delivery of an over-dose or an under-dose of the medical prescribed dose, to the planned target volume, or a significant dose to non prescribed human organs. Initiating events frequency and reducer of its frequency (actions intended to avoid the accident) are estimated as well as robustness of barriers to those actions, such as mechanical switches, which detect and prevent the accident from occurring. The spectrum of the consequences is parameterized, and the actions performed to reduce the consequences are identified. Based on this analysis, a software tool was developed in order to simplify the evaluations to radiotherapy installations and it has been applied as a first step forward to some Mexican installations, as part of a national implementation process, the final goal is evaluation of all Mexican facilities in the near future. The main target and benefits of the SEVRRA implementation are presented in this paper. (Author)

  16. Implementation of a risk assessment tool based on a probabilistic safety assessment developed for radiotherapy practices

    Energy Technology Data Exchange (ETDEWEB)

    Paz, A.; Godinez, V.; Lopez, R., E-mail: abpaz@cnsns.gob.m [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2010-10-15

    The present work describes the implementation process and main results of the risk assessment to the radiotherapy practices with Linear Accelerators (Linac), with cobalt 60, and with brachytherapy. These evaluations were made throughout the risk assessment tool for radiotherapy practices SEVRRA (risk evaluation system for radiotherapy), developed at the Mexican National Commission in Nuclear Safety and Safeguards derived from the outcome obtained with the Probabilistic Safety Analysis developed at the Ibero-American Regulators Forum for these radiotherapy facilities. The methodology used is supported by risk matrices method, a mathematical tool that estimates the risk to the patient, radiation workers and public from mechanical failures, mis calibration of the devices, human mistakes, and so. The initiating events are defined as those undesirable events that, together with other failures, can produce a delivery of an over-dose or an under-dose of the medical prescribed dose, to the planned target volume, or a significant dose to non prescribed human organs. Initiating events frequency and reducer of its frequency (actions intended to avoid the accident) are estimated as well as robustness of barriers to those actions, such as mechanical switches, which detect and prevent the accident from occurring. The spectrum of the consequences is parameterized, and the actions performed to reduce the consequences are identified. Based on this analysis, a software tool was developed in order to simplify the evaluations to radiotherapy installations and it has been applied as a first step forward to some Mexican installations, as part of a national implementation process, the final goal is evaluation of all Mexican facilities in the near future. The main target and benefits of the SEVRRA implementation are presented in this paper. (Author)

  17. Survey on the use of configuration risk and safety management tools at nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Fleming, K.N.; Read, J.W.; Dagan, W.J.; Bidwell, D.A.

    1998-09-01

    In order to provide input to Electricite de France's (EDF) evaluation of the use of configuration safety and risk management tools in the French plants and to collect information to guide the EPRI efforts to provide useful tools for the EPRI member utilities and international partners, a joint effort to survey US and selected non-US nuclear power stations was conducted. This survey examined the use of various approaches, techniques, and software tools that are being used to evaluate the safety and risk aspects of plant configuration changes and configuration changes during plant outages as well as during power operation. The use of these tools has increased in recent years as a result of efforts to optimize plant maintenance programs, improve plant safety, and increase plant reliability and availability. This report provides the results of the survey of 37 organizations covering 54 nuclear plant sites and 97 reactor units

  18. Expressing best practices in (risk) analysis and testing of safety-critical systems using patterns

    DEFF Research Database (Denmark)

    Herzner, Wolfgang; Sieverding, Sven; Kacimi, Omar

    2014-01-01

    The continuing pervasion of our society with safety-critical cyber-physical systems not only demands for adequate (risk) analysis, testing and verification techniques, it also generates growing experience on their use, which can be considered as important as the tools themselves for their efficient...

  19. Safety analysis procedures for PHWR

    International Nuclear Information System (INIS)

    Min, Byung Joo; Kim, Hyoung Tae; Yoo, Kun Joong

    2004-03-01

    The methodology of safety analyses for CANDU reactors in Canada, a vendor country, uses a combination of best-estimate physical models and conservative input parameters so as to minimize the uncertainty of the plant behavior predictions. As using the conservative input parameters, the results of the safety analyses are assured the regulatory requirements such as the public dose, the integrity of fuel and fuel channel, the integrity of containment and reactor structures, etc. However, there is not the comprehensive and systematic procedures for safety analyses for CANDU reactors in Korea. In this regard, the development of the safety analyses procedures for CANDU reactors is being conducted not only to establish the safety analyses system, but also to enhance the quality assurance of the safety assessment. In the first phase of this study, the general procedures of the deterministic safety analyses are developed. The general safety procedures are covered the specification of the initial event, selection of the methodology and accident sequences, computer codes, safety analysis procedures, verification of errors and uncertainties, etc. Finally, These general procedures of the safety analyses are applied to the Large Break Loss Of Coolant Accident (LBLOCA) in Final Safety Analysis Report (FSAR) for Wolsong units 2, 3, 4

  20. 2005 dossier: granite. Tome: safety analysis of the geologic disposal; Dossier 2005: granite. Tome analyse de surete du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of the geologic disposal of high-level and long-lived (HLLL) radioactive wastes in granite formations. Content: 1 - safety approach: context and general goal, references, design approach by safety functions, safety approach during the construction-exploitation-observation-closure phase, safety analysis during the post-closure phase; 2 - general description: HLLL wastes, granitic environment, general structure of the architecture of a disposal facility; 3 - safety functions and disposal design: general context, safety functions of the long-term disposal, design dispositions retained to answer the functions; 4 - operational safety: people's protection, radiological risks during exploitation, risk analysis in accident situation; 5 - qualitative safety analysis: methodology, main results of the analysis of the features, events and processes (FEP) database; 6 - disposal efficiency evaluation during post-closure phase: calculation models, calculation tools used for the modeling of radionuclides transport, calculation results and main lessons. (J.S.)

  1. 2005 dossier: granite. Tome: safety analysis of the geologic disposal; Dossier 2005: granite. Tome analyse de surete du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of the geologic disposal of high-level and long-lived (HLLL) radioactive wastes in granite formations. Content: 1 - safety approach: context and general goal, references, design approach by safety functions, safety approach during the construction-exploitation-observation-closure phase, safety analysis during the post-closure phase; 2 - general description: HLLL wastes, granitic environment, general structure of the architecture of a disposal facility; 3 - safety functions and disposal design: general context, safety functions of the long-term disposal, design dispositions retained to answer the functions; 4 - operational safety: people's protection, radiological risks during exploitation, risk analysis in accident situation; 5 - qualitative safety analysis: methodology, main results of the analysis of the features, events and processes (FEP) database; 6 - disposal efficiency evaluation during post-closure phase: calculation models, calculation tools used for the modeling of radionuclides transport, calculation results and main lessons. (J.S.)

  2. IT-CARES: an interactive tool for case-crossover analyses of electronic medical records for patient safety.

    Science.gov (United States)

    Caron, Alexandre; Chazard, Emmanuel; Muller, Joris; Perichon, Renaud; Ferret, Laurie; Koutkias, Vassilis; Beuscart, Régis; Beuscart, Jean-Baptiste; Ficheur, Grégoire

    2017-03-01

    The significant risk of adverse events following medical procedures supports a clinical epidemiological approach based on the analyses of collections of electronic medical records. Data analytical tools might help clinical epidemiologists develop more appropriate case-crossover designs for monitoring patient safety. To develop and assess the methodological quality of an interactive tool for use by clinical epidemiologists to systematically design case-crossover analyses of large electronic medical records databases. We developed IT-CARES, an analytical tool implementing case-crossover design, to explore the association between exposures and outcomes. The exposures and outcomes are defined by clinical epidemiologists via lists of codes entered via a user interface screen. We tested IT-CARES on data from the French national inpatient stay database, which documents diagnoses and medical procedures for 170 million inpatient stays between 2007 and 2013. We compared the results of our analysis with reference data from the literature on thromboembolic risk after delivery and bleeding risk after total hip replacement. IT-CARES provides a user interface with 3 columns: (i) the outcome criteria in the left-hand column, (ii) the exposure criteria in the right-hand column, and (iii) the estimated risk (odds ratios, presented in both graphical and tabular formats) in the middle column. The estimated odds ratios were consistent with the reference literature data. IT-CARES may enhance patient safety by facilitating clinical epidemiological studies of adverse events following medical procedures. The tool's usability must be evaluated and improved in further research. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  3. FY2017 Updates to the SAS4A/SASSYS-1 Safety Analysis Code

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, T. H. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-30

    The SAS4A/SASSYS-1 safety analysis software is used to perform deterministic analysis of anticipated events as well as design-basis and beyond-design-basis accidents for advanced fast reactors. It plays a central role in the analysis of U.S. DOE conceptual designs, proposed test and demonstration reactors, and in domestic and international collaborations. This report summarizes the code development activities that have taken place during FY2017. Extensions to the void and cladding reactivity feedback models have been implemented, and Control System capabilities have been improved through a new virtual data acquisition system for plant state variables and an additional Block Signal for a variable lag compensator to represent reactivity feedback for novel shutdown devices. Current code development and maintenance needs are also summarized in three key areas: software quality assurance, modeling improvements, and maintenance of related tools. With ongoing support, SAS4A/SASSYS-1 can continue to fulfill its growing role in fast reactor safety analysis and help solidify DOE’s leadership role in fast reactor safety both domestically and in international collaborations.

  4. Analysis of occupational accidents: prevention through the use of additional technical safety measures for machinery

    Science.gov (United States)

    Dźwiarek, Marek; Latała, Agata

    2016-01-01

    This article presents an analysis of results of 1035 serious and 341 minor accidents recorded by Poland's National Labour Inspectorate (PIP) in 2005–2011, in view of their prevention by means of additional safety measures applied by machinery users. Since the analysis aimed at formulating principles for the application of technical safety measures, the analysed accidents should bear additional attributes: the type of machine operation, technical safety measures and the type of events causing injuries. The analysis proved that the executed tasks and injury-causing events were closely connected and there was a relation between casualty events and technical safety measures. In the case of tasks consisting of manual feeding and collecting materials, the injuries usually occur because of the rotating motion of tools or crushing due to a closing motion. Numerous accidents also happened in the course of supporting actions, like removing pollutants, correcting material position, cleaning, etc. PMID:26652689

  5. Safety evaluation by living probabilistic safety assessment. Procedures and applications for planning of operational activities and analysis of operating experience

    International Nuclear Information System (INIS)

    Johanson, Gunnar; Holmberg, J.

    1994-01-01

    Living Probabilistic Safety Assessment (PSA) is a daily safety management system and it is based on a plant-specific PSA and supporting information systems. In the living use of PSA, plant status knowledge is used to represent actual plant safety status in monitoring or follow-up perspective. The PSA model must be able to express the risk at a given time and plant configuration. The process, to update the PSA model to represent the current or planned configuration and to use the model to evaluate and direct the changes in the configuration, is called living PSA programme. The main purposes to develop and increase the usefulness of living PSA are: Long term safety planning: To continue the risk assessment process started with the basic PSA by extending and improving the basic models and data to provide a general risk evaluation tool for analyzing the safety effects of changes in plant design and procedures. Risk planning of operational activities: To support the operational management by providing means for searching optimal operational maintenance and testing strategies from the safety point of view. The results provide support for risk decision making in the short term or in a planning mode. The operational limits and conditions given by technical specifications can be analyzed by evaluating the risk effects of alternative requirements in order to balance the requirements with respect to operational flexibility and plant economy. Risk analysis of operating experience: To provide a general risk evaluation tool for analyzing the safety effects of incidents and plant status changes. The analyses are used to: identify possible high risk situations, rank the occurred events from safety point of view, and get feedback from operational events for the identification of risk contributors. This report describes the methods, models and applications required to continue the process towards a living use of PSA. 19 tabs, 20 figs

  6. Reprint of "Persuasive appeals in road safety communication campaigns: Theoretical frameworks and practical implications from the analysis of a decade of road safety campaign materials".

    Science.gov (United States)

    Guttman, Nurit

    2016-12-01

    Communication campaigns are employed as an important tool to promote road safety practices. Researchers maintain road safety communication campaigns are more effective when their persuasive appeals, which are central to their communicative strategy, are based on explicit theoretical frameworks. This study's main objectives were to develop a detailed categorization of persuasive appeals used in road safety communication campaigns that differentiate between appeals that appear to be similar but differ conceptually, and to indicate the advantages, limitations and ethical issues associated with each type, drawing on behavior change theories. Materials from over 300 campaigns were obtained from 41 countries, mainly using road safety organizations' websites. Drawing on the literature, five types of main approaches were identified, and the analysis yielded a more detailed categorizations of appeals within these general categories. The analysis points to advantages, limitations, ethical issues and challenges in using different types of appeals. The discussion summarizes challenges in designing persuasive-appeals for road safety communication campaigns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Research on application of system of neutron, thermohydraulic and safety analysis codes in order to simulation of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Pham Van Lam; Le Vinh Vinh; Huynh Ton Nghiem

    2004-01-01

    Requirements of neutron, thermohydraulic and safety analysis calculation are very important because of issuing new version of SAR for DNRR, research on construction of new research reactor and nuclear power plant. Research on application of system of neutron, thermohydraulic and safety analysis codes in order to simulation of the Dalat Nuclear Research Reactor has been done in the frame work of research theme in the year 2002-2003. The purposes of the research are maintaining safety operation of the DNRR and enhancement of man power and calculation and safety analysis tool potential. (author)

  8. Presentation of a method for the sequential analysis of incidents - NPP safety

    Energy Technology Data Exchange (ETDEWEB)

    Delage, M; Giroux, C; Quentin, P

    1989-04-01

    This paper presents a method which is designed to assist in the analysis of safety and based on the graphic representation of the occurrence of incidents significant for safety in 900-MWe PWR units. The graphs obtained are linked together to produce a general tree of events. With this tool, and on the basis of operating experience, it is then possible to imagine complex incident scenarios, to evaluate the potential consequences of a particular incident, or to seed out the causes which could lead to a given event. Interactions between systems or common mode faults can also be evidenced with this method.

  9. Failure Modes Effects and Criticality Analysis, an Underutilized Safety, Reliability, Project Management and Systems Engineering Tool

    Science.gov (United States)

    Mullin, Daniel Richard

    2013-09-01

    The majority of space programs whether manned or unmanned for science or exploration require that a Failure Modes Effects and Criticality Analysis (FMECA) be performed as part of their safety and reliability activities. This comes as no surprise given that FMECAs have been an integral part of the reliability engineer's toolkit since the 1950s. The reasons for performing a FMECA are well known including fleshing out system single point failures, system hazards and critical components and functions. However, in the author's ten years' experience as a space systems safety and reliability engineer, findings demonstrate that the FMECA is often performed as an afterthought, simply to meet contract deliverable requirements and is often started long after the system requirements allocation and preliminary design have been completed. There are also important qualitative and quantitative components often missing which can provide useful data to all of project stakeholders. These include; probability of occurrence, probability of detection, time to effect and time to detect and, finally, the Risk Priority Number. This is unfortunate as the FMECA is a powerful system design tool that when used effectively, can help optimize system function while minimizing the risk of failure. When performed as early as possible in conjunction with writing the top level system requirements, the FMECA can provide instant feedback on the viability of the requirements while providing a valuable sanity check early in the design process. It can indicate which areas of the system will require redundancy and which areas are inherently the most risky from the onset. Based on historical and practical examples, it is this author's contention that FMECAs are an immense source of important information for all involved stakeholders in a given project and can provide several benefits including, efficient project management with respect to cost and schedule, system engineering and requirements management

  10. Economic and Financial Analysis Tools | Energy Analysis | NREL

    Science.gov (United States)

    Economic and Financial Analysis Tools Economic and Financial Analysis Tools Use these economic and . Job and Economic Development Impact (JEDI) Model Use these easy-to-use, spreadsheet-based tools to analyze the economic impacts of constructing and operating power generation and biofuel plants at the

  11. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  12. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    International Nuclear Information System (INIS)

    E.N. Lindner

    2004-01-01

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  13. INTEGRATED SAFETY MANAGEMENT SYSTEM IN AIR TRAFFIC SERVICES

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2014-06-01

    Full Text Available The article deals with the analysis of the researches conducted in the field of safety management systems.Safety management system framework, methods and tools for safety analysis in Air Traffic Control have been reviewed.Principles of development of Integrated safety management system in Air Traffic Services have been proposed.

  14. A comparison of integrated safety analysis and probabilistic risk assessment

    International Nuclear Information System (INIS)

    Damon, Dennis R.; Mattern, Kevin S.

    2013-01-01

    The U.S. Nuclear Regulatory Commission conducted a comparison of two standard tools for risk informing the regulatory process, namely, the Probabilistic Risk Assessment (PRA) and the Integrated Safety Analysis (ISA). PRA is a calculation of risk metrics, such as Large Early Release Frequency (LERF), and has been used to assess the safety of all commercial power reactors. ISA is an analysis required for fuel cycle facilities (FCFs) licensed to possess potentially critical quantities of special nuclear material. A PRA is usually more detailed and uses more refined models and data than an ISA, in order to obtain reasonable quantitative estimates of risk. PRA is considered fully quantitative, while most ISAs are typically only partially quantitative. The extension of PRA methodology to augment or supplant ISAs in FCFs has long been considered. However, fuel cycle facilities have a wide variety of possible accident consequences, rather than a few surrogates like LERF or core damage as used for reactors. It has been noted that a fuel cycle PRA could be used to better focus attention on the most risk-significant structures, systems, components, and operator actions. ISA and PRA both identify accident sequences; however, their treatment is quite different. ISA's identify accidents that lead to high or intermediate consequences, as defined in 10 Code of Federal Regulations (CFR) 70, and develop a set of Items Relied on For Safety (IROFS) to assure adherence to performance criteria. PRAs identify potential accident scenarios and estimate their frequency and consequences to obtain risk metrics. It is acceptable for ISAs to provide bounding evaluations of accident consequences and likelihoods in order to establish acceptable safety; but PRA applications usually require a reasonable quantitative estimate, and often obtain metrics of uncertainty. This paper provides the background, features, and methodology associated with the PRA and ISA. The differences between the

  15. Safety balance: Analysis of safety systems; Bilans de surete: analyse par les organismes de surete

    Energy Technology Data Exchange (ETDEWEB)

    Delage, M; Giroux, C

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses.

  16. Sources of Safety Data and Statistical Strategies for Design and Analysis: Postmarket Surveillance.

    Science.gov (United States)

    Izem, Rima; Sanchez-Kam, Matilde; Ma, Haijun; Zink, Richard; Zhao, Yueqin

    2018-03-01

    Safety data are continuously evaluated throughout the life cycle of a medical product to accurately assess and characterize the risks associated with the product. The knowledge about a medical product's safety profile continually evolves as safety data accumulate. This paper discusses data sources and analysis considerations for safety signal detection after a medical product is approved for marketing. This manuscript is the second in a series of papers from the American Statistical Association Biopharmaceutical Section Safety Working Group. We share our recommendations for the statistical and graphical methodologies necessary to appropriately analyze, report, and interpret safety outcomes, and we discuss the advantages and disadvantages of safety data obtained from passive postmarketing surveillance systems compared to other sources. Signal detection has traditionally relied on spontaneous reporting databases that have been available worldwide for decades. However, current regulatory guidelines and ease of reporting have increased the size of these databases exponentially over the last few years. With such large databases, data-mining tools using disproportionality analysis and helpful graphics are often used to detect potential signals. Although the data sources have many limitations, analyses of these data have been successful at identifying safety signals postmarketing. Experience analyzing these dynamic data is useful in understanding the potential and limitations of analyses with new data sources such as social media, claims, or electronic medical records data.

  17. Technology and Tool Development to Support Safety and Mission Assurance

    Science.gov (United States)

    Denney, Ewen; Pai, Ganesh

    2017-01-01

    The Assurance Case approach is being adopted in a number of safety-mission-critical application domains in the U.S., e.g., medical devices, defense aviation, automotive systems, and, lately, civil aviation. This paradigm refocuses traditional, process-based approaches to assurance on demonstrating explicitly stated assurance goals, emphasizing the use of structured rationale, and concrete product-based evidence as the means for providing justified confidence that systems and software are fit for purpose in safely achieving mission objectives. NASA has also been embracing assurance cases through the concepts of Risk Informed Safety Cases (RISCs), as documented in the NASA System Safety Handbook, and Objective Hierarchies (OHs) as put forth by the Agency's Office of Safety and Mission Assurance (OSMA). This talk will give an overview of the work being performed by the SGT team located at NASA Ames Research Center, in developing technologies and tools to engineer and apply assurance cases in customer projects pertaining to aviation safety. We elaborate how our Assurance Case Automation Toolset (AdvoCATE) has not only extended the state-of-the-art in assurance case research, but also demonstrated its practical utility. We have successfully developed safety assurance cases for a number of Unmanned Aircraft Systems (UAS) operations, which underwent, and passed, scrutiny both by the aviation regulator, i.e., the FAA, as well as the applicable NASA boards for airworthiness and flight safety, flight readiness, and mission readiness. We discuss our efforts in expanding AdvoCATE capabilities to support RISCs and OHs under a project recently funded by OSMA under its Software Assurance Research Program. Finally, we speculate on the applicability of our innovations beyond aviation safety to such endeavors as robotic, and human spaceflight.

  18. Application of CFD Codes in Nuclear Reactor Safety Analysis

    Directory of Open Access Journals (Sweden)

    T. Höhne

    2010-01-01

    Full Text Available Computational Fluid Dynamics (CFD is increasingly being used in nuclear reactor safety (NRS analyses as a tool that enables safety relevant phenomena occurring in the reactor coolant system to be described in more detail. Numerical investigations on single phase coolant mixing in Pressurised Water Reactors (PWR have been performed at the FZD for almost a decade. The work is aimed at describing the mixing phenomena relevant for both safety analysis, particularly in steam line break and boron dilution scenarios, and mixing phenomena of interest for economical operation and the structural integrity. For the experimental investigation of horizontal two phase flows, different non pressurized channels and the TOPFLOW Hot Leg model in a pressure chamber was build and simulated with ANSYS CFX. In a common project between the University of Applied Sciences Zittau/Görlitz and FZD the behaviour of insulation material released by a LOCA released into the containment and might compromise the long term emergency cooling systems is investigated. Moreover, the actual capability of CFD is shown to contribute to fuel rod bundle design with a good CHF performance.

  19. Software Safety and Security

    CERN Document Server

    Nipkow, T; Hauptmann, B

    2012-01-01

    Recent decades have seen major advances in methods and tools for checking the safety and security of software systems. Automatic tools can now detect security flaws not only in programs of the order of a million lines of code, but also in high-level protocol descriptions. There has also been something of a breakthrough in the area of operating system verification. This book presents the lectures from the NATO Advanced Study Institute on Tools for Analysis and Verification of Software Safety and Security; a summer school held at Bayrischzell, Germany, in 2011. This Advanced Study Institute was

  20. The significance of the probabilistic safety analysis (PSA) in administrative procedures under nuclear law

    International Nuclear Information System (INIS)

    Berg, H.P.

    1994-01-01

    The probabilistic safety analysis (PSA) is a useful tool for safety relevant evaluation of nuclear power plant designed on the basis of deterministic specifications. The PSA yields data identifying reliable or less reliable systems, or frequent or less frequent failure modes to be taken into account for safety engineering. Performance of a PSA in administrative procedures under nuclear law, e.g. licensing, is an obligation laid down in a footnote to criterion 1.1 of the BMI safety criteria catalogue, which has been in force unaltered since 1977. The paper explains the application and achievements of PSA in the phase of reactor development concerned with the conceptual design basis and design features, using as an example the novel PWR. (orig./HP) [de

  1. Safety indicators as a tool for operational safety evaluation of nuclear power plants

    International Nuclear Information System (INIS)

    Araujo, Jefferson Borges; Melo, Paulo Fernando Ferreira Frutuoso e; Schirru, Roberto

    2009-01-01

    Performance indicators have found a wide use in the conventional and nuclear industries. For the conventional industry, the goal is to optimize production, reducing loss of time with accidents, human error and equipment downtimes. In the nuclear industry, nuclear safety is an additional goal. This paper presents a general methodology to the establishment, selection and use of safety indicators for a two loop PWR plant, as Angra 1. The use of performance indicators is not new. The NRC has its own methodology and the IAEA presents methodology suggestions, but there is no detailed documentation about indicators selection, criteria and bases used. Additionally, only the NRC methodology performs a limited integrated evaluation. The study performed identifies areas considered critical for the plant operational safety. For each of these areas, strategic sub-areas are defined. For each strategic sub-area, specific safety indicators are defined. These proposed Safety Indicators are based on the contribution to risk considering a quantitative risk analysis. For each safety indicator, a goal, a bounded interval and proper bases are developed, to allow for a clear and comprehensive individual behavior evaluation. On the establishment of the intervals and boundaries, a probabilistic safety study, operational experience, international and national standards and technical specifications were used. Additionally, an integrated evaluation of the indicators, using expert systems, was done to obtain an overview of the plant general safety. This evaluation uses well-defined and clear rules and weights for each indicator to be considered. These rules were implemented by means of a computational language, on a friendly interface, so that it is possible to obtain a quick response about operational safety. This methodology can be used to identify situations where the plant safety is challenged, by giving a general overview of the plant operational condition. Additionally, this study can

  2. Assessing organisational culture for quality and safety improvement: a national survey of tools and tool use.

    Science.gov (United States)

    Mannion, R; Konteh, F H; Davies, H T O

    2009-04-01

    There is growing international interest in managing organisational culture as a lever for healthcare improvement. This has prompted a practical need to understand what instruments and tools exist for assessing cultures in healthcare contexts. The present study was undertaken to determine the culture assessment tools being used in the English NHS and assess their fitness for purpose. Postal questionnaire survey of clinical governance leads in 275 English NHS organisations, with a response rate of 77%. A third of the organisations were currently using a culture assessment instrument to support their clinical governance activity. Although we found a high degree of satisfaction with existing instruments, in terms of ease of use and relevance, there is an immediate practical need to develop new and better bespoke culture assessment tools to bridge the gap between the cultural domains covered by extant instruments and the broader range of concerns of clinical governance managers. There is growing interest in understanding and shaping local cultures in healthcare, which is not yet matched by widespread use of available instruments. Even though extant tools cover many of the most important cultural attributes identified by clinical governance managers, the over-riding focus of tools in use is on safety rather than a holistic assessment of the dimensions of healthcare quality and performance.

  3. Fault Tree Analysis for Safety/Security Verification in Aviation Software

    Directory of Open Access Journals (Sweden)

    Andrew J. Kornecki

    2013-01-01

    Full Text Available The Next Generation Air Traffic Management system (NextGen is a blueprint of the future National Airspace System. Supporting NextGen is a nation-wide Aviation Simulation Network (ASN, which allows integration of a variety of real-time simulations to facilitate development and validation of the NextGen software by simulating a wide range of operational scenarios. The ASN system is an environment, including both simulated and human-in-the-loop real-life components (pilots and air traffic controllers. Real Time Distributed Simulation (RTDS developed at Embry Riddle Aeronautical University, a suite of applications providing low and medium fidelity en-route simulation capabilities, is one of the simulations contributing to the ASN. To support the interconnectivity with the ASN, we designed and implemented a dedicated gateway acting as an intermediary, providing logic for two-way communication and transfer messages between RTDS and ASN and storage for the exchanged data. It has been necessary to develop and analyze safety/security requirements for the gateway software based on analysis of system assets, hazards, threats and attacks related to ultimate real-life future implementation. Due to the nature of the system, the focus was placed on communication security and the related safety of the impacted aircraft in the simulation scenario. To support development of safety/security requirements, a well-established fault tree analysis technique was used. This fault tree model-based analysis, supported by a commercial tool, was a foundation to propose mitigations assuring the gateway system safety and security. 

  4. Developing tools for the safety specification in risk management plans: lessons learned from a pilot project.

    Science.gov (United States)

    Cooper, Andrew J P; Lettis, Sally; Chapman, Charlotte L; Evans, Stephen J W; Waller, Patrick C; Shakir, Saad; Payvandi, Nassrin; Murray, Alison B

    2008-05-01

    Following the adoption of the ICH E2E guideline, risk management plans (RMP) defining the cumulative safety experience and identifying limitations in safety information are now required for marketing authorisation applications (MAA). A collaborative research project was conducted to gain experience with tools for presenting and evaluating data in the safety specification. This paper presents those tools found to be useful and the lessons learned from their use. Archive data from a successful MAA were utilised. Methods were assessed for demonstrating the extent of clinical safety experience, evaluating the sensitivity of the clinical trial data to detect treatment differences and identifying safety signals from adverse event and laboratory data to define the extent of safety knowledge with the drug. The extent of clinical safety experience was demonstrated by plots of patient exposure over time. Adverse event data were presented using dot plots, which display the percentages of patients with the events of interest, the odds ratio, and 95% confidence interval. Power and confidence interval plots were utilised for evaluating the sensitivity of the clinical database to detect treatment differences. Box and whisker plots were used to display laboratory data. This project enabled us to identify new evidence-based methods for presenting and evaluating clinical safety data. These methods represent an advance in the way safety data from clinical trials can be analysed and presented. This project emphasises the importance of early and comprehensive planning of the safety package, including evaluation of the use of epidemiology data.

  5. Development of safety analysis technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Suk K.; Song, J. H.; Chung, Y. J. and others

    1999-03-01

    Inherent safety features and safety system characteristics of the SMART integral reactor are investigated in this study. Performance and safety of the SMART conceptual design have been evaluated and confirmed through the performance and safety analyses using safety analysis system codes as well as a preliminary performance and safety analysis methodology. SMART design base events and their acceptance criteria are identified to develop a preliminary PIRT for the SMART integral reactor. Using the preliminary PIRT, a set of experimental program for the thermal hydraulic separate effect tests and the integral effect tests was developed for the thermal hydraulic model development and the system code validation. Safety characteristics as well as the safety issues of the integral reactor has been identified during the study, which will be used to resolve the safety issues and guide the regulatory criteria for the integral reactor. The results of the performance and safety analyses performed during the study were used to feedback for the SMART conceptual design. The performance and safety analysis code systems as well as the preliminary safety analysis methodology developed in this study will be validated as the SMART design evolves. The performance and safety analysis technology developed during the study will be utilized for the SMART basic design development. (author)

  6. Computer aided safety analysis 1989

    International Nuclear Information System (INIS)

    1990-04-01

    The meeting was conducted in a workshop style, to encourage involvement of all participants during the discussions. Forty-five (45) experts from 19 countries, plus 22 experts from the GDR participated in the meeting. A list of participants can be found at the end of this volume. Forty-two (42) papers were presented and discussed during the meeting. Additionally an open discussion was held on the possible directions of the IAEA programme on Computer Aided Safety Analysis. A summary of the conclusions of these discussions is presented in the publication. The remainder of this proceedings volume comprises the transcript of selected technical papers (22) presented in the meeting. It is the intention of the IAEA that the publication of these proceedings will extend the benefits of the discussions held during the meeting to a larger audience throughout the world. The Technical Committee/Workshop on Computer Aided Safety Analysis was organized by the IAEA in cooperation with the National Board for Safety and Radiological Protection (SAAS) of the German Democratic Republic in Berlin. The purpose of the meeting was to provide an opportunity for discussions on experiences in the use of computer codes used for safety analysis of nuclear power plants. In particular it was intended to provide a forum for exchange of information among experts using computer codes for safety analysis under the Technical Cooperation Programme on Safety of WWER Type Reactors (RER/9/004) and other experts throughout the world. A separate abstract was prepared for each of the 22 selected papers. Refs, figs tabs and pictures

  7. Subseabed disposal safety analysis

    International Nuclear Information System (INIS)

    Koplick, C.M.; Kabele, T.J.

    1982-01-01

    This report summarizes the status of work performed by Analytic Sciences Corporation (TASC) in FY'81 on subseabed disposal safety analysis. Safety analysis for subseabed disposal is divided into two phases: pre-emplacement which includes all transportation, handling, and emplacement activities; and long-term (post-emplacement), which is concerned with the potential hazard after waste is safely emplaced. Details of TASC work in these two areas are provided in two technical reports. The work to date, while preliminary, supports the technical and environmental feasibility of subseabed disposal of HLW

  8. 14 CFR 33.75 - Safety analysis.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Safety analysis. 33.75 Section 33.75... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.75 Safety analysis. (a... consequences of all failures that can reasonably be expected to occur. This analysis will take into account, if...

  9. 14 CFR 35.15 - Safety analysis.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Safety analysis. 35.15 Section 35.15... STANDARDS: PROPELLERS Design and Construction § 35.15 Safety analysis. (a)(1) The applicant must analyze the.... This analysis will take into account, if applicable: (i) The propeller system in a typical installation...

  10. Safety analysis of spent fuel packaging

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi; Taniuchi, Hiroaki; Tai, Hideto

    1987-01-01

    Many types of spent fuel packagings have been manufactured and been used for transport of spent fuels discharged from nuclear power plant. These spent fuel packagings need to be assesed thoroughly about safety transportation because spent fuels loaded into the packaging have high radioactivity and generation of heat. This paper explains the outline of safety analysis of a packaging, Safety analysis is performed for structural, thermal, containment, shielding and criticality factors, and MARC-CDC, TRUMP, ORIGEN, QAD, ANISN, KENO, etc computer codes are used for such analysis. (author)

  11. Statistical considerations on safety analysis

    International Nuclear Information System (INIS)

    Pal, L.; Makai, M.

    2004-01-01

    The authors have investigated the statistical methods applied to safety analysis of nuclear reactors and arrived at alarming conclusions: a series of calculations with the generally appreciated safety code ATHLET were carried out to ascertain the stability of the results against input uncertainties in a simple experimental situation. Scrutinizing those calculations, we came to the conclusion that the ATHLET results may exhibit chaotic behavior. A further conclusion is that the technological limits are incorrectly set when the output variables are correlated. Another formerly unnoticed conclusion of the previous ATHLET calculations that certain innocent looking parameters (like wall roughness factor, the number of bubbles per unit volume, the number of droplets per unit volume) can influence considerably such output parameters as water levels. The authors are concerned with the statistical foundation of present day safety analysis practices and can only hope that their own misjudgment will be dispelled. Until then, the authors suggest applying correct statistical methods in safety analysis even if it makes the analysis more expensive. It would be desirable to continue exploring the role of internal parameters (wall roughness factor, steam-water surface in thermal hydraulics codes, homogenization methods in neutronics codes) in system safety codes and to study their effects on the analysis. In the validation and verification process of a code one carries out a series of computations. The input data are not precisely determined because measured data have an error, calculated data are often obtained from a more or less accurate model. Some users of large codes are content with comparing the nominal output obtained from the nominal input, whereas all the possible inputs should be taken into account when judging safety. At the same time, any statement concerning safety must be aleatory, and its merit can be judged only when the probability is known with which the

  12. Recent development and application of a new safety analysis code for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad J., E-mail: Brad.Merrill@inl.gov; Humrickhouse, Paul W.; Shimada, Masashi

    2016-11-01

    Highlights: • This paper presents recent code development activities for the MELCOR for fusion and Tritium Migration Analysis Program computer codes at the Idaho National Engineering Laboratory. • The capabilities of these computer codes are being merged into a single safety analysis tool for fusion reactor accidents. • The result of benchmarking these codes against previous code versions is presented by the authors of this paper. • This new capability is applied to study the tritium inventory and permeation rate for a water cold tungsten divertor that has neutron damage at 0.3 dpa. - Abstract: This paper describes the recent progress made in the development of two codes for fusion reactor safety assessments at the Idaho National Laboratory (INL): MELCOR for fusion and the Tritium Migration Analysis Program (TMAP). During the ITER engineering design activity (EDA), the INL Fusion Safety Program (FSP) modified the MELCOR 1.8.2 code for fusion applications to perform ITER thermal hydraulic safety analyses. Because MELCOR has undergone many improvements at SNL-NM since version 1.8.2 was released, the INL FSP recently imported these same fusion modifications into the MELCOR 1.8.6 code, along with the multiple fluids modifications of MELCOR 1.8.5 for fusion used in US advanced fusion reactor design studies. TMAP has also been under development for several decades at the INL by the FSP. TMAP treats multi-specie surface absorption and diffusion in composite materials with dislocation traps, plus the movement of these species from room to room by fluid flow within a given facility. Recently, TMAP was updated to consider multiple trap site types to allow the simulation of experimental data from neutron irradiated tungsten. The natural development path for both of these codes is to merge their capabilities into one computer code to provide a more comprehensive safety tool for analyzing accidents in fusion reactors. In this paper we detail recent developments in this

  13. Recent development and application of a new safety analysis code for fusion reactors

    International Nuclear Information System (INIS)

    Merrill, Brad J.; Humrickhouse, Paul W.; Shimada, Masashi

    2016-01-01

    Highlights: • This paper presents recent code development activities for the MELCOR for fusion and Tritium Migration Analysis Program computer codes at the Idaho National Engineering Laboratory. • The capabilities of these computer codes are being merged into a single safety analysis tool for fusion reactor accidents. • The result of benchmarking these codes against previous code versions is presented by the authors of this paper. • This new capability is applied to study the tritium inventory and permeation rate for a water cold tungsten divertor that has neutron damage at 0.3 dpa. - Abstract: This paper describes the recent progress made in the development of two codes for fusion reactor safety assessments at the Idaho National Laboratory (INL): MELCOR for fusion and the Tritium Migration Analysis Program (TMAP). During the ITER engineering design activity (EDA), the INL Fusion Safety Program (FSP) modified the MELCOR 1.8.2 code for fusion applications to perform ITER thermal hydraulic safety analyses. Because MELCOR has undergone many improvements at SNL-NM since version 1.8.2 was released, the INL FSP recently imported these same fusion modifications into the MELCOR 1.8.6 code, along with the multiple fluids modifications of MELCOR 1.8.5 for fusion used in US advanced fusion reactor design studies. TMAP has also been under development for several decades at the INL by the FSP. TMAP treats multi-specie surface absorption and diffusion in composite materials with dislocation traps, plus the movement of these species from room to room by fluid flow within a given facility. Recently, TMAP was updated to consider multiple trap site types to allow the simulation of experimental data from neutron irradiated tungsten. The natural development path for both of these codes is to merge their capabilities into one computer code to provide a more comprehensive safety tool for analyzing accidents in fusion reactors. In this paper we detail recent developments in this

  14. Taking ownership of safety. What are the active ingredients of safety coaching and how do they impact safety outcomes in critical offshore working environments?

    Science.gov (United States)

    Krauesslar, Victoria; Avery, Rachel E; Passmore, Jonathan

    2015-01-01

    Safety coaching interventions have become a common feature in the safety critical offshore working environments of the North Sea. Whilst the beneficial impact of coaching as an organizational tool has been evidenced, there remains a question specifically over the use of safety coaching and its impact on behavioural change and producing safe working practices. A series of 24 semi-structured interviews were conducted with three groups of experts in the offshore industry: safety coaches, offshore managers and HSE directors. Using a thematic analysis approach, several significant themes were identified across the three expert groups including connecting with and creating safety ownership in the individual, personal significance and humanisation, ingraining safety and assessing and measuring a safety coach's competence. Results suggest clear utility of safety coaching when applied by safety coaches with appropriate coach training and understanding of safety issues in an offshore environment. The current work has found that the use of safety coaching in the safety critical offshore oil and gas industry is a powerful tool in managing and promoting a culture of safety and care.

  15. Software FMEA analysis for safety-related application software

    International Nuclear Information System (INIS)

    Park, Gee-Yong; Kim, Dong Hoon; Lee, Dong Young

    2014-01-01

    Highlights: • We develop a modified FMEA analysis suited for applying to software architecture. • A template for failure modes on a specific software language is established. • A detailed-level software FMEA analysis on nuclear safety software is presented. - Abstract: A method of a software safety analysis is described in this paper for safety-related application software. The target software system is a software code installed at an Automatic Test and Interface Processor (ATIP) in a digital reactor protection system (DRPS). For the ATIP software safety analysis, at first, an overall safety or hazard analysis is performed over the software architecture and modules, and then a detailed safety analysis based on the software FMEA (Failure Modes and Effect Analysis) method is applied to the ATIP program. For an efficient analysis, the software FMEA analysis is carried out based on the so-called failure-mode template extracted from the function blocks used in the function block diagram (FBD) for the ATIP software. The software safety analysis by the software FMEA analysis, being applied to the ATIP software code, which has been integrated and passed through a very rigorous system test procedure, is proven to be able to provide very valuable results (i.e., software defects) that could not be identified during various system tests

  16. Development of Safety-Critical Software for Nuclear Power Plant using a CASE Tool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Ho; Oh, Do Young; Kim, Koh Eun; Choi, Woong Seock; Sohn, Se Do; Kim, Jae Hack; Kim, Hang Bae [KEPCO E and C, Daejeon (Korea, Republic of)

    2011-08-15

    The Integrated SOftware Development Environment (ISODE) is developed to provide the major S/W life cycle processes that are composed of development process, V/V process, requirements traceability process, and automated document generation process and target importing process to Programmable Logic Controller (PLC) platform. This provides critical safety software developers with a certified, domain optimized, model-based development environment, and the associated services to reduce time and efforts to develop software such as debugging, simulation, code generation and document generation. This also provides critical safety software verifiers with integrated V/V features of each phase of the software life cycle using appropriate tools such as model test coverage, formal verification, and automated report generation. In addition to development and verification, the ISODE gives a complete traceability solution from the SW design phase to the testing phase. Using this information, the coverage and impact analysis can be done easily whenever software modification is necessary. The final source codes of ISODE are imported into the newly developed PLC environment, as a module based after automatically converted into the format required by PLC. Additional tests for module and unit level are performed on the target platform.

  17. Development of Safety-Critical Software for Nuclear Power Plant using a CASE Tool

    International Nuclear Information System (INIS)

    Kim, Chang Ho; Oh, Do Young; Kim, Koh Eun; Choi, Woong Seock; Sohn, Se Do; Kim, Jae Hack; Kim, Hang Bae

    2011-01-01

    The Integrated SOftware Development Environment (ISODE) is developed to provide the major S/W life cycle processes that are composed of development process, V/V process, requirements traceability process, and automated document generation process and target importing process to Programmable Logic Controller (PLC) platform. This provides critical safety software developers with a certified, domain optimized, model-based development environment, and the associated services to reduce time and efforts to develop software such as debugging, simulation, code generation and document generation. This also provides critical safety software verifiers with integrated V/V features of each phase of the software life cycle using appropriate tools such as model test coverage, formal verification, and automated report generation. In addition to development and verification, the ISODE gives a complete traceability solution from the SW design phase to the testing phase. Using this information, the coverage and impact analysis can be done easily whenever software modification is necessary. The final source codes of ISODE are imported into the newly developed PLC environment, as a module based after automatically converted into the format required by PLC. Additional tests for module and unit level are performed on the target platform

  18. Probabilistic analysis of safety in industrial irradiation plants

    International Nuclear Information System (INIS)

    Alderete, F.; Elechosa, C.

    2006-01-01

    The Argentinean Nuclear Regulatory Authority is carrying out the Probabilistic Safety Analysis (PSA) of the two industrial irradiation plants existent in the country. The objective of this presentation is to show from the regulatory point of view, the advantages of applying this tool, as well as the appeared difficulties; for it will be made a brief description of the facilities, of the method and of the normative one. Both plants are multipurpose facilities classified as 'industrial irradiator category IV' (panoramic irradiator with source deposited in pool). Basically, the execution of an APS consists of the following stages: 1. Identification of initiating events. 2. Modeling of Accidental Sequences (Event Trees). 3. Analysis of Systems (Fault trees). 4. Quantification of Accidental Sequences. The argentine normative doesn't demand to these facilities the realization of an APS, however the basic standard of Radiological Safety establishes that in the design of this type of facilities in the cases that is justified, should make sure that the annual probability of occurrence of an accidental sequence and the resulting dose in a person gives as result an radiological risk inferior to the risk limit adopted as acceptance criteria. On the other hand the design standard specifies for these irradiators it demands a maximum fault rate of 10 -2 for the related components with the systems of radiological safety. In our case, the possible initiating events have been identified that carried out to not wanted situations (about people exposure, radioactive contamination). Then, for each one of the significant initiating events, the corresponding accidental sequences were modeled and the safety systems that intervene in this sequences by means of fault trees were analyzed, for then to determine the fault probabilities of the same ones. At the moment they are completing these fault trees, but the difficulty resides in the impossibility of obtaining real data of the reliability

  19. Gas-cooled reactor safety and accident analysis

    International Nuclear Information System (INIS)

    1985-12-01

    The Specialists' Meeting on Gas-Cooled Reactor Safety and Accident Analysis was convened by the International Atomic Energy Agency in Oak Ridge on the invitation of the Department of Energy in Washington, USA. The meeting was hosted by the Oak Ridge National Laboratory. The purpose of the meeting was to provide an opportunity to compare and discuss results of safety and accident analysis of gas-cooled reactors under development, construction or in operation, to review their lay-out, design, and their operational performance, and to identify areas in which additional research and development are needed. The meeting emphasized the high safety margins of gas-cooled reactors and gave particular attention to the inherent safety features of small reactor units. The meeting was subdivided into four technical sessions: Safety and Related Experience with Operating Gas-Cooled Reactors (4 papers); Risk and Safety Analysis (11 papers); Accident Analysis (9 papers); Miscellaneous Related Topics (5 papers). A separate abstract was prepared for each of these papers

  20. Safety analysis - current and future regulatory challenges

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, T., E-mail: Terry.Jamieson@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2015-07-01

    'Full text:' The current and future regulatory challenges associated with deterministic safety analysis are reviewed, including: 1. The CNSC's and safety control areas. 2. Traditional safety analysis approach. 3. Experience gained and impact. 4. Current analysis and regulatory approaches. 5. Current status. 6. Complexity and challenges In particular, the technical, regulatory and strategic aspects of these challenges are discussed. (author)

  1. Safety analysis - current and future regulatory challenges

    International Nuclear Information System (INIS)

    Jamieson, T.

    2015-01-01

    'Full text:' The current and future regulatory challenges associated with deterministic safety analysis are reviewed, including: 1. The CNSC's and safety control areas. 2. Traditional safety analysis approach. 3. Experience gained and impact. 4. Current analysis and regulatory approaches. 5. Current status. 6. Complexity and challenges In particular, the technical, regulatory and strategic aspects of these challenges are discussed. (author)

  2. Organic Tanks Safety Program: Advanced organic analysis FY 1996 progress report

    International Nuclear Information System (INIS)

    1996-09-01

    Major focus during the first part of FY96 was to evaluate using organic functional group concentrations to screen for energetics. Fourier transform infrared and Raman spectroscopy would be useful screening tools for determining C-H and COO- organic content in tank wastes analyzed in a hot cell. These techniques would be used for identifying tanks of potential safety concern that may require further analysis. Samples from Tanks 241-C-106 and -C-204 were analyzed; the major organic in C-106 was B2EHPA and in C-204 was TBP. Analyses of simulated wastes were also performed for the Waste Aging Studies Task; organics formed as a result of degradation were identified, and the original starting components were monitored quantitatively. Sample analysis is not routine and required considerable methods adaptation and optimization. Several techniques have been evaluated for directly analyzing chelator and chelator fragments in tank wastes: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and liquid chromatography with ultraviolet detection using Cu complexation. Although not directly funded by the Tanks Safety Program, the success of these techniques have implications for both the Flammable Gas and Organic Tanks Safety Programs

  3. Development of safety analysis technology for LMR

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kwon, Y. M.; Kim, K. D.

    2000-05-01

    The analysis methodologies as well as the analysis computer code system for the transient, HCDA, and containment performance analyses, which are required for KALIMER safety analyses, have been developed. The SSC-K code has been developed based on SSC-L which is an analysis code for loop type LMR, by improving models necessary for the KALIMER system analysis, and additional models have been added to the code. In addition, HCDA analysis model has been developed and the containment performance analysis code has been also improved. The preliminary basis for the safety analysis has been established, and the preliminary safety analyses for the key design features have been performed. In addition, a state-of-art analysis for LMR PSA and overseas safety and licensing requirements have been reviewed. The design database for the systematic management of the design documents as well as design processes has been established as well

  4. Development of safety analysis technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kwon, Y. M.; Kim, K. D. [and others

    2000-05-01

    The analysis methodologies as well as the analysis computer code system for the transient, HCDA, and containment performance analyses, which are required for KALIMER safety analyses, have been developed. The SSC-K code has been developed based on SSC-L which is an analysis code for loop type LMR, by improving models necessary for the KALIMER system analysis, and additional models have been added to the code. In addition, HCDA analysis model has been developed and the containment performance analysis code has been also improved. The preliminary basis for the safety analysis has been established, and the preliminary safety analyses for the key design features have been performed. In addition, a state-of-art analysis for LMR PSA and overseas safety and licensing requirements have been reviewed. The design database for the systematic management of the design documents as well as design processes has been established as well.

  5. Evaluating control displays with the Engineering Control Analysis Tool (ECAT)

    International Nuclear Information System (INIS)

    Plott, B.

    2006-01-01

    In the Nuclear Power Industry increased use of automated sensors and advanced control systems is expected to reduce and/or change manning requirements. However, critical questions remain regarding the extent to which safety will be compromised if the cognitive workload associated with monitoring multiple automated systems is increased. Can operators/engineers maintain an acceptable level of performance if they are required to supervise multiple automated systems and respond appropriately to off-normal conditions? The interface to/from the automated systems must provide the information necessary for making appropriate decisions regarding intervention in the automated process, but be designed so that the cognitive load is neither too high nor too low for the operator who is responsible for the monitoring and decision making. This paper will describe a new tool that was developed to enhance the ability of human systems integration (HSI) professionals and systems engineers to identify operational tasks in which a high potential for human overload and error can be expected. The tool is entitled the Engineering Control Analysis Tool (ECAT). ECAT was designed and developed to assist in the analysis of: Reliability Centered Maintenance (RCM), operator task requirements, human error probabilities, workload prediction, potential control and display problems, and potential panel layout problems. (authors)

  6. Evaluating control displays with the Engineering Control Analysis Tool (ECAT)

    Energy Technology Data Exchange (ETDEWEB)

    Plott, B. [Alion Science and Technology, MA and D Operation, 4949 Pearl E. Circle, 300, Boulder, CO 80301 (United States)

    2006-07-01

    In the Nuclear Power Industry increased use of automated sensors and advanced control systems is expected to reduce and/or change manning requirements. However, critical questions remain regarding the extent to which safety will be compromised if the cognitive workload associated with monitoring multiple automated systems is increased. Can operators/engineers maintain an acceptable level of performance if they are required to supervise multiple automated systems and respond appropriately to off-normal conditions? The interface to/from the automated systems must provide the information necessary for making appropriate decisions regarding intervention in the automated process, but be designed so that the cognitive load is neither too high nor too low for the operator who is responsible for the monitoring and decision making. This paper will describe a new tool that was developed to enhance the ability of human systems integration (HSI) professionals and systems engineers to identify operational tasks in which a high potential for human overload and error can be expected. The tool is entitled the Engineering Control Analysis Tool (ECAT). ECAT was designed and developed to assist in the analysis of: Reliability Centered Maintenance (RCM), operator task requirements, human error probabilities, workload prediction, potential control and display problems, and potential panel layout problems. (authors)

  7. Extended Testability Analysis Tool

    Science.gov (United States)

    Melcher, Kevin; Maul, William A.; Fulton, Christopher

    2012-01-01

    The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.

  8. Safety analysis reports - new strategies

    International Nuclear Information System (INIS)

    Booth, J.A.

    1994-01-01

    Within the past year there have been many external changes in the requirements of safety analysis reports. Now there is emphasis on open-quotes graded approachesclose quotes depending on the Hazard Classification of the project. The Energy Facility Contractors Group (EFCOG) has a Safety Analysis Working Group. The results of this group for the past year are discussed as well as the implications for EG ampersand G. New strategies include ideas for incorporating the graded approach, auditable safety documents, additional guidance for Hazard Classification per DOE-STD-1027-92. The emphasis in the paper is on those projects whose hazard classification is category three or less

  9. Channel CAT: A Tactical Link Analysis Tool

    National Research Council Canada - National Science Library

    Coleman, Michael

    1997-01-01

    .... This thesis produced an analysis tool, the Channel Capacity Analysis Tool (Channel CAT), designed to provide an automated tool for the analysis of design decisions in developing client-server software...

  10. Deep Borehole Disposal Safety Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Tillman, Jack Bruce [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.

  11. Patient Safety Culture Survey in Pediatric Complex Care Settings: A Factor Analysis.

    Science.gov (United States)

    Hessels, Amanda J; Murray, Meghan; Cohen, Bevin; Larson, Elaine L

    2017-04-19

    Children with complex medical needs are increasing in number and demanding the services of pediatric long-term care facilities (pLTC), which require a focus on patient safety culture (PSC). However, no tool to measure PSC has been tested in this unique hybrid acute care-residential setting. The objective of this study was to evaluate the psychometric properties of the Nursing Home Survey on Patient Safety Culture tool slightly modified for use in the pLTC setting. Factor analyses were performed on data collected from 239 staff at 3 pLTC in 2012. Items were screened by principal axis factoring, and the original structure was tested using confirmatory factor analysis. Exploratory factor analysis was conducted to identify the best model fit for the pLTC data, and factor reliability was assessed by Cronbach alpha. The extracted, rotated factor solution suggested items in 4 (staffing, nonpunitive response to mistakes, communication openness, and organizational learning) of the original 12 dimensions may not be a good fit for this population. Nevertheless, in the pLTC setting, both the original and the modified factor solutions demonstrated similar reliabilities to the published consistencies of the survey when tested in adult nursing homes and the items factored nearly identically as theorized. This study demonstrates that the Nursing Home Survey on Patient Safety Culture with minimal modification may be an appropriate instrument to measure PSC in pLTC settings. Additional psychometric testing is recommended to further validate the use of this instrument in this setting, including examining the relationship to safety outcomes. Increased use will yield data for benchmarking purposes across these specialized settings to inform frontline workers and organizational leaders of areas of strength and opportunity for improvement.

  12. National Waste Repository Novi Han operational safety analysis report. Safety assessment methodology

    International Nuclear Information System (INIS)

    2003-01-01

    The scope of the safety assessment (SA), presented includes: waste management functions (acceptance, conditioning, storage, disposal), inventory (current and expected in the future), hazards (radiological and non-radiological) and normal and accidental modes. The stages in the development of the SA are: criteria selection, information collection, safety analysis and safety assessment documentation. After the review the facilities functions and the national and international requirements, the criteria for safety level assessment are set. As a result from the 2nd stage actual parameters of the facility, necessary for safety analysis are obtained.The methodology is selected on the base of the comparability of the results with the results of previous safety assessments and existing standards and requirements. The procedure and requirements for scenarios selection are described. A radiological hazard categorisation of the facilities is presented. Qualitative hazards and operability analysis is applied. The resulting list of events are subjected to procedure for prioritization by method of 'criticality analysis', so the estimation of the risk is given for each event. The events that fall into category of risk on the boundary of acceptability or are unacceptable are subjected to the next steps of the analysis. As a result the lists with scenarios for PSA and possible design scenarios are established. PSA logical modeling and quantitative calculations of accident sequences are presented

  13. Physics Analysis Tools Workshop 2007

    CERN Multimedia

    Elizabeth Gallas,

    The ATLAS PAT (Physics Analysis Tools) group evaluates, develops and tests software tools for the analysis of physics data, consistent with the ATLAS analysis and event data models. Following on from earlier PAT workshops in London (2004), Tucson (2005) and Tokyo (2006), this year's workshop was hosted by the University of Bergen in Norway on April 23-28 with more than 60 participants. The workshop brought together PAT developers and users to discuss the available tools with an emphasis on preparing for data taking. At the start of the week, workshop participants, laptops and power converters in-hand, jumped headfirst into tutorials, learning how to become trigger-aware and how to use grid computing resources via the distributed analysis tools Panda and Ganga. The well organised tutorials were well attended and soon the network was humming, providing rapid results to the users and ample feedback to the developers. A mid-week break was provided by a relaxing and enjoyable cruise through the majestic Norwegia...

  14. Channel CAT: A Tactical Link Analysis Tool

    Science.gov (United States)

    1997-09-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS CHANNEL CAT : A TACTICAL LINK ANALYSIS TOOL by Michael Glenn Coleman September 1997 Thesis...REPORT TYPE AND DATES COVERED September 1997 Master’s Thesis 4. TITLE AND SUBTITLE CHANNEL CAT : A TACTICAL LINK ANALYSIS TOOL 5. FUNDING NUMBERS 6...tool, the Channel Capacity Analysis Tool (Channel CAT ), designed to provide an automated tool for the anlysis of design decisions in developing client

  15. Techniques and tools for software qualification in KNICS

    International Nuclear Information System (INIS)

    Cha, Kyung H.; Lee, Yeong J.; Cheon, Se W.; Kim, Jang Y.; Lee, Jang S.; Kwon, Kee C.

    2004-01-01

    This paper describes techniques and tools for qualifying safety software in Korea Nuclear Instrumentation and Control System (KNICS). Safety software are developed and applied for a Reactor Protection System (RPS), an Engineered Safety Features and Component Control System (ESF-CCS), and a safety Programmable Logic Controller (PLC) in the KNICS. Requirements and design specifications of safety software are written by both natural language and formal specification languages. Statechart is used for formal specification of software of the ESF-CCS and the safety PLC while NuSCR is used for formal specification of them of the RPS. pSET (POSCON Software Engineering Tool) as a software development tool has been developed and utilized for the IEC61131-3 based PLC programming. The qualification of the safety software consists of software verification and validation (V and V) through software life cycle, software safety analysis, and software configuration management, software quality assurance, and COTS (Commercial-Off-The-Shelf) dedication. The criteria and requirements for qualifying the safety software have been established with them in Software Review Plan (SRP)/Branch Technical Positions (BTP)-14, IEEE Std. 7-4.3.2-1998, NUREG/CR-6463, IEEE Std. 1012-1998, and so on. Figure 1 summarizes qualification techniques and tools for the safety software

  16. System analysis: Developing tools for the future

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, K.; clever, J.; Draper, J.V.; Davies, B.; Lonks, A.

    1996-02-01

    This report introduces and evaluates system analysis tools that were developed, or are under development, for the Robotics Technology Development Program (RTDP). Additionally, it discusses system analysis work completed using these tools aimed at completing a system analysis of the retrieval of waste from underground storage tanks on the Hanford Reservation near Richland, Washington. The tools developed and evaluated include a mixture of commercially available tools adapted to RTDP requirements, and some tools developed in house. The tools that are included in this report include: a Process Diagramming Tool, a Cost Modeling Tool, an Amortization Modeling Tool, a graphical simulation linked to the Cost Modeling Tool, a decision assistance tool, and a system thinking tool. Additionally, the importance of performance testing to the RTDP and the results of such testing executed is discussed. Further, the results of the Tank Waste Retrieval (TWR) System Diagram, the TWR Operations Cost Model, and the TWR Amortization Model are presented, and the implication of the results are discussed. Finally, the RTDP system analysis tools are assessed and some recommendations are made regarding continuing development of the tools and process.

  17. NPP Temelin safety analysis reports and PSA status

    International Nuclear Information System (INIS)

    Mlady, O.

    1999-01-01

    To enhance the safety level of Temelin NPP, recommendations of the international reviews were implemented into the design as well as into organization of the plant construction and preparation for operation. The safety assessment of these design changes has been integrated and reflected in the Safety Analysis Reports, which follow the internationally accepted guidelines. All safety analyses within Safety Analysis Reports were repeated carefully considering technical improvements and replacements to complement preliminary safety documentation. These analyses were performed by advanced western computer codes to the depth and in the structure required by western standards. The Temelin NPP followed a systematic approach in the functional design of the Reactor Protection System and related safety analyses. Modifications of reactor protection system increase defense in depth and facilitate demonstrating that LOCA and radiological limits are met for non-LOCA events. The rigorous safety analysis methodology provides assurance that LOCA and radiological limits are met. Established and accepted safety analysis methodology and accepted criteria were applied to Temelin NPP meeting US NRC and Czech Republic requirements. IAEA guidelines and recommendations

  18. Latest developments on safety analysis methodologies at the Juzbado plant

    International Nuclear Information System (INIS)

    Zurron-Cifuentes, Oscar; Ortiz-Trujillo, Diego; Blanco-Fernandez, Luis A.

    2010-01-01

    Over the last few years the Juzbado Plant has developed and implemented several analysis methodologies to cope with specific issues regarding safety management. This paper describes the three most outstanding of them, so as to say, the Integrated Safety Analysis (ISA) project, the adaptation of the MARSSIM methodology for characterization surveys of radioactive contamination spots, and the programme for the Systematic Review of the Operational Conditions of the Safety Systems (SROCSS). Several reasons motivated the decision to implement such methodologies, such as Regulator requirements, operational experience and of course, the strong commitment of ENUSA to maintain the highest standards of nuclear industry on all the safety relevant activities. In this context, since 2004 ENUSA is undertaking the ISA project, which consists on a systematic examination of plant's processes, equipment, structures and personnel activities to ensure that all relevant hazards that could result in unacceptable consequences have been adequately evaluated and the appropriate protective measures have been identified. On the other hand and within the framework of a current programme to ensure the absence of radioactive contamination spots on unintended areas, the MARSSIM methodology is being applied as a tool to conduct the radiation surveys and investigation of potentially contaminated areas. Finally, the SROCSS programme was initiated earlier this year 2009 to assess the actual operating conditions of all the systems with safety relevance, aiming to identify either potential non-conformities or areas for improvement in order to ensure their high performance after years of operation. The following paragraphs describe the key points related to these three methodologies as well as an outline of the results obtained so far. (authors)

  19. System safety engineering analysis handbook

    Science.gov (United States)

    Ijams, T. E.

    1972-01-01

    The basic requirements and guidelines for the preparation of System Safety Engineering Analysis are presented. The philosophy of System Safety and the various analytic methods available to the engineering profession are discussed. A text-book description of each of the methods is included.

  20. Current status of safety analysis report for ANPP

    International Nuclear Information System (INIS)

    Amirjanyan, A.

    1999-01-01

    Current situation concerning Armenian NPP safety analysis report is considered within the frame of accepted safety practice. Licensing procedure is being developed. Technical support group was established in the Armenian Nuclear Regulatory Authority (ANRA). The task of the group is to study modern methods of NPP in depth safety analysis for technical assistance for the ANRA, and perform independent safety assessments. ANRA will be obliged to demand assistance from various foreign organisations for preparation of different parts of the Safety Analysis Report like determination though certain parts can be prepared in Armenia

  1. Selection of safety officers in an indian construction organization by using grey relational analysis

    Directory of Open Access Journals (Sweden)

    Sunku Venkata Siva Rajaprasad

    2018-03-01

    Full Text Available Stakeholders are responsible for implementing the occupational health and safety provisions in an organization. Irrespective of organization, the role of safety department is purely advisory as it coordinates with all the departments, and this is crucial to improve the performance. Selection of safety officer is vital job for any organization; it should not only be based on qualifications of the applicant, the incumbent should also have sufficient exposure in implementing proactive measures. The process of selection is complex and choosing the right safety professional is a vital decision. The safety performance of an organization relies on the systems being implemented by the safety officer. Application of multi criteria decision-making tools is helpful as a selection process. The present study proposes the grey relational analysis(GRA for selection of the safety officers in an Indian construction organization. This selection method considers fourteen criteria appropriate to the organization and has ranked the results. The data was also analyzed by using technique for order Preference by Similarity to an Ideal solution (TOPSIS and results of both the methods are strongly correlated

  2. NKS/SOS-1 seminar on safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, K. [Risoe National Lab., Roskilde (Denmark); Anderson, K. [Karinta-Konsult (Sweden); Pulkkinen, U. [VTT Automation (Finland)

    2001-05-01

    The report describes presentations and discussions at a seminar held at Risoe on March 22-23, 2000. The title of the seminar was NKS/SOS-1 - Safety Analysis. It dealt with issues of relevance for the safety analysis for the entire nuclear safety field (notably reactors and nuclear waste repositories). Such issues were: objectives of safety analysis, risk criteria, decision analysis, expert judgement and risk communication. In addition, one talk dealt with criteria for chemical industries in Europe. The seminar clearly showed that the concept of risk is multidimensional, which makes clarity and transparency essential elements in risk communication, and that there are issues of common concern between different applications, such as how to deal with different kinds of uncertainty and expert judgement. (au)

  3. HANFORD SAFETY ANALYSIS & RISK ASSESSMENT HANDBOOK (SARAH)

    Energy Technology Data Exchange (ETDEWEB)

    EVANS, C B

    2004-12-21

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S&M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard.

  4. Methodology assessment and recommendations for the Mars science laboratory launch safety analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Sturgis, Beverly Rainwater; Metzinger, Kurt Evan; Powers, Dana Auburn; Atcitty, Christopher B.; Robinson, David B; Hewson, John C.; Bixler, Nathan E.; Dodson, Brian W.; Potter, Donald L.; Kelly, John E.; MacLean, Heather J.; Bergeron, Kenneth Donald (Sala & Associates); Bessette, Gregory Carl; Lipinski, Ronald J.

    2006-09-01

    The Department of Energy has assigned to Sandia National Laboratories the responsibility of producing a Safety Analysis Report (SAR) for the plutonium-dioxide fueled Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) proposed to be used in the Mars Science Laboratory (MSL) mission. The National Aeronautic and Space Administration (NASA) is anticipating a launch in fall of 2009, and the SAR will play a critical role in the launch approval process. As in past safety evaluations of MMRTG missions, a wide range of potential accident conditions differing widely in probability and seventy must be considered, and the resulting risk to the public will be presented in the form of probability distribution functions of health effects in terms of latent cancer fatalities. The basic descriptions of accident cases will be provided by NASA in the MSL SAR Databook for the mission, and on the basis of these descriptions, Sandia will apply a variety of sophisticated computational simulation tools to evaluate the potential release of plutonium dioxide, its transport to human populations, and the consequent health effects. The first step in carrying out this project is to evaluate the existing computational analysis tools (computer codes) for suitability to the analysis and, when appropriate, to identify areas where modifications or improvements are warranted. The overall calculation of health risks can be divided into three levels of analysis. Level A involves detailed simulations of the interactions of the MMRTG or its components with the broad range of insults (e.g., shrapnel, blast waves, fires) posed by the various accident environments. There are a number of candidate codes for this level; they are typically high resolution computational simulation tools that capture details of each type of interaction and that can predict damage and plutonium dioxide release for a range of choices of controlling parameters. Level B utilizes these detailed results to study many

  5. Safety analysis reports. Current status (third key report)

    International Nuclear Information System (INIS)

    1999-01-01

    A review of Ukrainian regulations and laws concerned with Nuclear power and radiation safety is presented with an overview of the requirements for the Safety Analysis Report Contents. Status of Safety Analysis Reports (SAR) is listed for each particular Ukrainian NPP including SAR development schedules. Organisational scheme of SAR development works includes: general technical co-ordination on Safety Analysis Report development; list of leading organisations and utilization of technical support within international projects

  6. Road safety audit tools, procedures, and experiences : a literature review and recommendations : research in the framework of the European research project Safety Standards for Road Design and Redesign SAFESTAR, Workpackage 8.

    NARCIS (Netherlands)

    Kooi, R.M. van der

    1999-01-01

    This report describes tools and procedures established in different countries which apply Road Safety Audits (RSA). These RSAs are utilized to identify potential safety problems and they concentrate on safety measures to overcome these problems. This technique is used to detect possible safety

  7. Use of a collaborative tool to simplify the outsourcing of preclinical safety studies: an insight into the AstraZeneca-Charles River Laboratories strategic relationship.

    Science.gov (United States)

    Martin, Frederic D C; Benjamin, Amanda; MacLean, Ruth; Hollinshead, David M; Landqvist, Claire

    2017-12-01

    In 2012, AstraZeneca entered into a strategic relationship with Charles River Laboratories whereby preclinical safety packages comprising safety pharmacology, toxicology, formulation analysis, in vivo ADME, bioanalysis and pharmacokinetics studies are outsourced. New processes were put in place to ensure seamless workflows with the aim of accelerating the delivery of new medicines to patients. Here, we describe in more detail the AstraZeneca preclinical safety outsourcing model and the way in which a collaborative tool has helped to translate the processes in AstraZeneca and Charles River Laboratories into simpler integrated workflows that are efficient and visible across the two companies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Probabilistic safety assessment goals in Canada

    International Nuclear Information System (INIS)

    Snell, V.G.

    1986-01-01

    CANDU safety philosphy, both in design and in licensing, has always had a strong bias towards quantitative probabilistically-based goals derived from comparative safety. Formal probabilistic safety assessment began in Canada as a design tool. The influence of this carried over later on into the definition of the deterministic safety guidelines used in CANDU licensing. Design goals were further developed which extended the consequence/frequency spectrum of 'acceptable' events, from the two points defined by the deterministic single/dual failure analysis, to a line passing through lower and higher frequencies. Since these were design tools, a complete risk summation was not necessary, allowing a cutoff at low event frequencies while preserving the identification of the most significant safety-related events. These goals gave a logical framework for making decisions on implementing design changes proposed as a result of the Probabilistic Safety Analysis. Performing this analysis became a regulatory requirement, and the design goals remained the framework under which this was submitted. Recently, there have been initiatives to incorporate more detailed probabilistic safety goals into the regulatory process in Canada. These range from far-reaching safety optimization across society, to initiatives aimed at the nuclear industry only. The effectiveness of the latter is minor at very low and very high event frequencies; at medium frequencies, a justification against expenditures per life saved in other industries should be part of the goal setting

  9. Legal basis for risk analysis methodology while ensuring food safety in the Eurasian Economic union and the Republic of Belarus

    Directory of Open Access Journals (Sweden)

    E.V. Fedorenko

    2015-09-01

    Full Text Available Health risk analysis methodology is an internationally recognized tool for ensuring food safety. Three main elements of risk analysis are risk assessment, risk management and risk communication to inform the interested parties on the risk, are legislated and implemented in the Eurasian Economic Union and the Republic of Belarus. There is a corresponding organizational and functional framework for the application of risk analysis methodology as in the justification of production safety indicators and the implementation of public health surveillance. Common methodological approaches and criteria for evaluating public health risk are determined, which are used in the development and application of food safety requirements. Risk assessment can be used in justifying the indicators of safety (contaminants, food additives, and evaluating the effectiveness of programs on enrichment of food with micronutrients.

  10. Towards an Industrial Application of Statistical Uncertainty Analysis Methods to Multi-physical Modelling and Safety Analyses

    International Nuclear Information System (INIS)

    Zhang, Jinzhao; Segurado, Jacobo; Schneidesch, Christophe

    2013-01-01

    Since 1980's, Tractebel Engineering (TE) has being developed and applied a multi-physical modelling and safety analyses capability, based on a code package consisting of the best estimate 3D neutronic (PANTHER), system thermal hydraulic (RELAP5), core sub-channel thermal hydraulic (COBRA-3C), and fuel thermal mechanic (FRAPCON/FRAPTRAN) codes. A series of methodologies have been developed to perform and to license the reactor safety analysis and core reload design, based on the deterministic bounding approach. Following the recent trends in research and development as well as in industrial applications, TE has been working since 2010 towards the application of the statistical sensitivity and uncertainty analysis methods to the multi-physical modelling and licensing safety analyses. In this paper, the TE multi-physical modelling and safety analyses capability is first described, followed by the proposed TE best estimate plus statistical uncertainty analysis method (BESUAM). The chosen statistical sensitivity and uncertainty analysis methods (non-parametric order statistic method or bootstrap) and tool (DAKOTA) are then presented, followed by some preliminary results of their applications to FRAPCON/FRAPTRAN simulation of OECD RIA fuel rod codes benchmark and RELAP5/MOD3.3 simulation of THTF tests. (authors)

  11. Status of Ignalina's safety analysis reports

    International Nuclear Information System (INIS)

    Uspuras, E.

    1999-01-01

    Ignalina NPP is unique among RBMK type reactors in the scope and comprehensiveness of international studies which have been performed to verify its design parameters and analyze risk levels. International assistance took several forms, a very valuable mod of assistance utilized the knowledge of international experts in extensive international studies whose purpose was: collection, systematization and verification of plant design data; analysis of risk levels; recommendations leading to improvements in the safety lave; transfer of state of the art analytical methodology to Lithuanian specialists. The major large scale international studies include: probabilistic risk analysis; extensive international study meant to provide comprehensive overview of plant status with special emphasis on safety aspects; an extensive review of the Safety Analysis Report by an independent group of international experts. In spite of the safety improvements and analyses which have been performed at the Ignalina NPP, much remains to be done in the nearest future

  12. Archetypes for Organisational Safety

    Science.gov (United States)

    Marais, Karen; Leveson, Nancy G.

    2003-01-01

    We propose a framework using system dynamics to model the dynamic behavior of organizations in accident analysis. Most current accident analysis techniques are event-based and do not adequately capture the dynamic complexity and non-linear interactions that characterize accidents in complex systems. In this paper we propose a set of system safety archetypes that model common safety culture flaws in organizations, i.e., the dynamic behaviour of organizations that often leads to accidents. As accident analysis and investigation tools, the archetypes can be used to develop dynamic models that describe the systemic and organizational factors contributing to the accident. The archetypes help clarify why safety-related decisions do not always result in the desired behavior, and how independent decisions in different parts of the organization can combine to impact safety.

  13. Hot Cell Facility (HCF) Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  14. Approach to uncertainty evaluation for safety analysis

    International Nuclear Information System (INIS)

    Ogura, Katsunori

    2005-01-01

    Nuclear power plant safety used to be verified and confirmed through accident simulations using computer codes generally because it is very difficult to perform integrated experiments or tests for the verification and validation of the plant safety due to radioactive consequence, cost, and scaling to the actual plant. Traditionally the plant safety had been secured owing to the sufficient safety margin through the conservative assumptions and models to be applied to those simulations. Meanwhile the best-estimate analysis based on the realistic assumptions and models in support of the accumulated insights could be performed recently, inducing the reduction of safety margin in the analysis results and the increase of necessity to evaluate the reliability or uncertainty of the analysis results. This paper introduces an approach to evaluate the uncertainty of accident simulation and its results. (Note: This research had been done not in the Japan Nuclear Energy Safety Organization but in the Tokyo Institute of Technology.) (author)

  15. Hot Cell Facility (HCF) Safety Analysis Report

    International Nuclear Information System (INIS)

    MITCHELL, GERRY W.; LONGLEY, SUSAN W.; PHILBIN, JEFFREY S.; MAHN, JEFFREY A.; BERRY, DONALD T.; SCHWERS, NORMAN F.; VANDERBEEK, THOMAS E.; NAEGELI, ROBERT E.

    2000-01-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR

  16. The Surgical Safety Checklist and Teamwork Coaching Tools: a study of inter-rater reliability.

    Science.gov (United States)

    Huang, Lyen C; Conley, Dante; Lipsitz, Stu; Wright, Christopher C; Diller, Thomas W; Edmondson, Lizabeth; Berry, William R; Singer, Sara J

    2014-08-01

    To assess the inter-rater reliability (IRR) of two novel observation tools for measuring surgical safety checklist performance and teamwork. Data surgical safety checklists can promote adherence to standards of care and improve teamwork in the operating room. Their use has been associated with reductions in mortality and other postoperative complications. However, checklist effectiveness depends on how well they are performed. Authors from the Safe Surgery 2015 initiative developed a pair of novel observation tools through literature review, expert consultation and end-user testing. In one South Carolina hospital participating in the initiative, two observers jointly attended 50 surgical cases and independently rated surgical teams using both tools. We used descriptive statistics to measure checklist performance and teamwork at the hospital. We assessed IRR by measuring percent agreement, Cohen's κ, and weighted κ scores. The overall percent agreement and κ between the two observers was 93% and 0.74 (95% CI 0.66 to 0.79), respectively, for the Checklist Coaching Tool and 86% and 0.84 (95% CI 0.77 to 0.90) for the Surgical Teamwork Tool. Percent agreement for individual sections of both tools was 79% or higher. Additionally, κ scores for six of eight sections on the Checklist Coaching Tool and for two of five domains on the Surgical Teamwork Tool achieved the desired 0.7 threshold. However, teamwork scores were high and variation was limited. There were no significant changes in the percent agreement or κ scores between the first 10 and last 10 cases observed. Both tools demonstrated substantial IRR and required limited training to use. These instruments may be used to observe checklist performance and teamwork in the operating room. However, further refinement and calibration of observer expectations, particularly in rating teamwork, could improve the utility of the tools. Published by the BMJ Publishing Group Limited. For permission to use (where not already

  17. Manpower analysis in transportation safety. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.S.; Bowden, H.M.; Colford, C.A.; DeFilipps, P.J.; Dennis, J.D.; Ehlert, A.K.; Popkin, H.A.; Schrader, G.F.; Smith, Q.N.

    1977-05-01

    The project described provides a manpower review of national, state and local needs for safety skills, and projects future manning levels for transportation safety personnel in both the public and private sectors. Survey information revealed that there are currently approximately 121,000 persons employed directly in transportation safety occupations within the air carrier, highway and traffic safety, motor carrier, pipeline, rail carrier, and marine carrier transportation industry groups. The projected need for 1980 is over 145,000 of which over 80 percent will be in highway safety. An analysis of transportation tasks is included, and shows ten general categories about which the majority of safety activities are focused. A skills analysis shows a generally high level of educational background and several years of experience are required for most transportation safety jobs. An overall review of safety programs in the transportation industry is included, together with chapters on the individual transportation modes.

  18. Identification of Behavior Based Safety by Using Traffic Light Analysis to Reduce Accidents

    Science.gov (United States)

    Mansur, A.; Nasution, M. I.

    2016-01-01

    This work present the safety assessment of a case study and describes an important area within the field production in oil and gas industry, namely behavior based safety (BBS). The company set a rigorous BBS and its intervention program that implemented and deployed continually. In this case, observers requested to have discussion and spread a number of determined questions related with work behavior to the workers during observation. Appraisal of Traffic Light Analysis (TLA) as one tools of risk assessment used to determine the estimated score of BBS questionnaire. Standardization of TLA appraisal in this study are based on Regulation of Minister of Labor and Occupational Safety and Health No:PER.05/MEN/1996. The result shown that there are some points under 84%, which categorized in yellow category and should corrected immediately by company to prevent existing bad behavior of workers. The application of BBS expected to increase the safety performance at work time-by-time and effective in reducing accidents.

  19. Safety analysis of a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shimazu, Akira; Morimoto, Toshio

    1975-01-01

    In recent years, in order to satisfy the social requirements of environment and safety and also to cope with the current energy stringency, the installation of safe nuclear power plants is indispensable. Herein, safety analysis and evaluation to confirm quantitatively the safety design of a nuclear power plant become more and more important. The safety analysis and its methods for a high temperature gas-cooled reactor are described, with emphasis placed on the practices by Fuji Electric Manufacturing Co. Fundamental rule of securing plant safety ; safety analysis in normal operation regarding plant dynamic characteristics and radioactivity evaluation ; and safety analysis at the time of accidents regarding plant response to the accidents and radioactivity evaluation are explained. (Mori, K.)

  20. Methods of checking general safety criteria in UML statechart specifications

    International Nuclear Information System (INIS)

    Pap, Zsigmond; Majzik, Istvan; Pataricza, Andras; Szegi, Andras

    2005-01-01

    This paper describes methods and tools for safety analysis of UML statechart specifications. A comprehensive set of general safety criteria including completeness and consistency is applied in automated analysis. Analysis techniques are based on OCL expressions, graph transformations and reachability analysis. Two canonical intermediate representations of the statechart specification are introduced. They are suitable for straightforward implementation of checker methods and for the support of the proof of the correctness and soundness of the applied analysis. One of them also serves as a basis of the metamodel of a variant of UML statecharts proposed for the specification of safety-critical control systems. The analysis is extended to object-oriented specifications. Examples illustrate the application of the checker methods implemented by an automated tool-set

  1. Safety analysis SFR 1. Long-term safety

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the regulatory

  2. Safety analysis SFR 1. Long-term safety

    International Nuclear Information System (INIS)

    2008-12-01

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the regulatory

  3. Safety analysis SFR 1. Long-term safety

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the

  4. Development of Application Programming Tool for Safety Grade PLC (POSAFE-Q)

    International Nuclear Information System (INIS)

    Koo, Kyungmo; You, Byungyong; Kim, Tae-Wook; Cho, Sengjae; Lee, Jin S.

    2006-01-01

    The pSET (POSAFE-Q Software Engineering Tool) is an application programming tool of the POSAFE-Q which is a safety graded programmable logic controller (PLC) developed for the reactor protect system of the nuclear power plant. The pSET provides an integrated development environment (IDE) which includes editors, compiler, simulator, down loader, debugger, and monitor. The pSET supports the IEC61131-3 standard software model and languages such as LD (ladder diagram) and FBD (function block diagram) which are two of the most widely used PLC programming languages in industry fields. The pSET will also support SFC (sequential function chart) language. The pSET is developed as a part of a Korea Nuclear Instrumentation and Control System (KNICS) project

  5. Applications of probabilistic risk analysis in nuclear criticality safety design

    International Nuclear Information System (INIS)

    Chang, J.K.

    1992-01-01

    Many documents have been prepared that try to define the scope of the criticality analysis and that suggest adding probabilistic risk analysis (PRA) to the deterministic safety analysis. The report of the US Department of Energy (DOE) AL 5481.1B suggested that an accident is credible if the occurrence probability is >1 x 10 -6 /yr. The draft DOE 5480 safety analysis report suggested that safety analyses should include the application of methods such as deterministic safety analysis, risk assessment, reliability engineering, common-cause failure analysis, human reliability analysis, and human factor safety analysis techniques. The US Nuclear Regulatory Commission (NRC) report NRC SG830.110 suggested that major safety analysis methods should include but not be limited to risk assessment, reliability engineering, and human factor safety analysis. All of these suggestions have recommended including PRA in the traditional criticality analysis

  6. Software safety hazard analysis

    International Nuclear Information System (INIS)

    Lawrence, J.D.

    1996-02-01

    Techniques for analyzing the safety and reliability of analog-based electronic protection systems that serve to mitigate hazards in process control systems have been developed over many years, and are reasonably well understood. An example is the protection system in a nuclear power plant. The extension of these techniques to systems which include digital computers is not well developed, and there is little consensus among software engineering experts and safety experts on how to analyze such systems. One possible technique is to extend hazard analysis to include digital computer-based systems. Software is frequently overlooked during system hazard analyses, but this is unacceptable when the software is in control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully cover the software. A method for performing software hazard analysis is proposed in this paper

  7. Infusing Reliability Techniques into Software Safety Analysis

    Science.gov (United States)

    Shi, Ying

    2015-01-01

    Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.

  8. Patient safety in the clinical laboratory: a longitudinal analysis of specimen identification errors.

    Science.gov (United States)

    Wagar, Elizabeth A; Tamashiro, Lorraine; Yasin, Bushra; Hilborne, Lee; Bruckner, David A

    2006-11-01

    Patient safety is an increasingly visible and important mission for clinical laboratories. Attention to improving processes related to patient identification and specimen labeling is being paid by accreditation and regulatory organizations because errors in these areas that jeopardize patient safety are common and avoidable through improvement in the total testing process. To assess patient identification and specimen labeling improvement after multiple implementation projects using longitudinal statistical tools. Specimen errors were categorized by a multidisciplinary health care team. Patient identification errors were grouped into 3 categories: (1) specimen/requisition mismatch, (2) unlabeled specimens, and (3) mislabeled specimens. Specimens with these types of identification errors were compared preimplementation and postimplementation for 3 patient safety projects: (1) reorganization of phlebotomy (4 months); (2) introduction of an electronic event reporting system (10 months); and (3) activation of an automated processing system (14 months) for a 24-month period, using trend analysis and Student t test statistics. Of 16,632 total specimen errors, mislabeled specimens, requisition mismatches, and unlabeled specimens represented 1.0%, 6.3%, and 4.6% of errors, respectively. Student t test showed a significant decrease in the most serious error, mislabeled specimens (P patient safety projects. Trend analysis demonstrated decreases in all 3 error types for 26 months. Applying performance-improvement strategies that focus longitudinally on specimen labeling errors can significantly reduce errors, therefore improving patient safety. This is an important area in which laboratory professionals, working in interdisciplinary teams, can improve safety and outcomes of care.

  9. Physics Analysis Tools Workshop Report

    CERN Multimedia

    Assamagan, K A

    A Physics Analysis Tools (PAT) workshop was held at the University of Tokyo in Tokyo Japan on May 15-19, 2006. Unlike the previous ones, this workshop brought together the core PAT developers and ATLAS users. The workshop was attended by 69 people from various institutions: Australia 5 Canada 1 China 6 CERN 4 Europe 7 Japan 32 Taiwan 3 USA 11 The agenda consisted of a 2-day tutorial for users, a 0.5-day user feedback discussion session between users and developers, and a 2-day core PAT workshop devoted to issues in Physics Analysis Tools activities. The tutorial, attended by users and developers, covered the following grounds: Event Selection with the TAG Event Selection Using the Athena-Aware NTuple Event Display Interactive Analysis within ATHENA Distributed Analysis Monte Carlo Truth Tools Trigger-Aware Analysis Event View By many accounts, the tutorial was useful. This workshop was the first time that the ATLAS Asia-Pacific community (Taiwan, Japan, China and Australia) go...

  10. Building energy analysis tool

    Science.gov (United States)

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  11. Software safety analysis practice in installation phase

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. W.; Chen, M. H.; Shyu, S. S., E-mail: hwhwang@iner.gov.t [Institute of Nuclear Energy Research, No. 1000 Wenhua Road, Chiaan Village, Longtan Township, 32546 Taoyuan County, Taiwan (China)

    2010-10-15

    This work performed a software safety analysis in the installation phase of the Lung men nuclear power plant in Taiwan, under the cooperation of Institute of Nuclear Energy Research and Tpc. The US Nuclear Regulatory Commission requests licensee to perform software safety analysis and software verification and validation in each phase of software development life cycle with Branch Technical Position 7-14. In this work, 37 safety grade digital instrumentation and control systems were analyzed by failure mode and effects analysis, which is suggested by IEEE standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The failure mode and effects analysis showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (Author)

  12. Software safety analysis practice in installation phase

    International Nuclear Information System (INIS)

    Huang, H. W.; Chen, M. H.; Shyu, S. S.

    2010-10-01

    This work performed a software safety analysis in the installation phase of the Lung men nuclear power plant in Taiwan, under the cooperation of Institute of Nuclear Energy Research and Tpc. The US Nuclear Regulatory Commission requests licensee to perform software safety analysis and software verification and validation in each phase of software development life cycle with Branch Technical Position 7-14. In this work, 37 safety grade digital instrumentation and control systems were analyzed by failure mode and effects analysis, which is suggested by IEEE standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The failure mode and effects analysis showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (Author)

  13. Guidelines for nuclear reactor equipments safety-analysis

    International Nuclear Information System (INIS)

    1978-01-01

    The safety analysis in approving the applications for nuclear reactor constructions (or alterations) is performed by the Committee on Examination of Reactor Safety in accordance with various guidelines prescribed by the Atomic Energy Commission. In addition, the above Committee set forth its own regulations for the safety analysis on common problems among various types of nuclear reactors. This book has collected and edited those guidelines and regulations. It has two parts: Part I includes the guidelines issued to date by the Atomic Energy Commission: and Part II - regulations of the Committee. Part I has collected 8 categories of guidelines which relate to following matters: nuclear reactor sites analysis guidelines and standards for their applications; standard exposure dose of plutonium; nuclear ship operation guidelines; safety design analysis guidelines for light-water type, electricity generating nuclear reactor equipments; safety evaluation guidelines for emergency reactor core cooling system of light-water type power reactors; guidelines for exposure dose target values around light-water type electricity generating nuclear reactor equipments, and guidelines for evaluation of above target values; and meteorological guidelines for the safety analysis of electricity generating nuclear reactor equipments. Part II includes regulations of the Committee concerning - the fuel assembly used in boiling-water type and in pressurized-water type reactors; techniques of reactor core heat designs, etc. in boiling-water reactors; and others

  14. Two NextGen Air Safety Tools: An ADS-B Equipped UAV and a Wake Turbulence Estimator

    Science.gov (United States)

    Handley, Ward A.

    Two air safety tools are developed in the context of the FAA's NextGen program. The first tool addresses the alarming increase in the frequency of near-collisions between manned and unmanned aircraft by equipping a common hobby class UAV with an ADS-B transponder that broadcasts its position, speed, heading and unique identification number to all local air traffic. The second tool estimates and outputs the location of dangerous wake vortex corridors in real time based on the ADS-B data collected and processed using a custom software package developed for this project. The TRansponder based Position Information System (TRAPIS) consists of data packet decoders, an aircraft database, Graphical User Interface (GUI) and the wake vortex extension application. Output from TRAPIS can be visualized in Google Earth and alleviates the problem of pilots being left to imagine where invisible wake vortex corridors are based solely on intuition or verbal warnings from ATC. The result of these two tools is the increased situational awareness, and hence safety, of human pilots in the National Airspace System (NAS).

  15. Preliminary Integrated Safety Analysis Status Report

    International Nuclear Information System (INIS)

    Gwyn, D.

    2001-01-01

    This report provides the status of the potential Monitored Geologic Repository (MGR) Integrated Safety Analysis (EA) by identifying the initial work scope scheduled for completion during the ISA development period, the schedules associated with the tasks identified, safety analysis issues encountered, and a summary of accomplishments during the reporting period. This status covers the period from October 1, 2000 through March 30, 2001

  16. Knowledge and perceived implementation of food safety risk analysis framework in Latin America and the Caribbean region.

    Science.gov (United States)

    Cherry, C; Mohr, A Hofelich; Lindsay, T; Diez-Gonzalez, F; Hueston, W; Sampedro, F

    2014-12-01

    Risk analysis is increasingly promoted as a tool to support science-based decisions regarding food safety. An online survey comprising 45 questions was used to gather information on the implementation of food safety risk analysis within the Latin American and Caribbean regions. Professionals working in food safety in academia, government, and private sectors in Latin American and Caribbean countries were contacted by email and surveyed to assess their individual knowledge of risk analysis and perceptions of its implementation in the region. From a total of 279 participants, 97% reported a familiarity with risk analysis concepts; however, fewer than 25% were able to correctly identify its key principles. The reported implementation of risk analysis among the different professional sectors was relatively low (46%). Participants from industries in countries with a long history of trade with the United States and the European Union, such as Mexico, Brazil, and Chile, reported perceptions of a higher degree of risk analysis implementation (56, 50, and 20%, respectively) than those from the rest of the countries, suggesting that commerce may be a driver for achieving higher food safety standards. Disagreement among respondents on the extent of the use of risk analysis in national food safety regulations was common, illustrating a systematic lack of understanding of the current regulatory status of the country. The results of this survey can be used to target further risk analysis training on selected sectors and countries.

  17. Application of coupled codes for safety analysis and licensing issues

    International Nuclear Information System (INIS)

    Langenbuch, S.; Velkov, K.

    2006-01-01

    An overview is given on the development and the advantages of coupled codes which integrate 3D neutron kinetics into thermal-hydraulic system codes. The work performed within GRS by coupling the thermal-hydraulic system code ATHLET and the 3D neutronics code QUABOX/CUBBOX is described as an example. The application of the coupled codes as best-estimate simulation tools for safety analysis is discussed. Some examples from German licensing practices are given which demonstrate how the improved analytical methods of coupled codes have contributed to solve licensing issues related to optimized and more economical use of fuel. (authors)

  18. Ares-I-X Vehicle Preliminary Range Safety Malfunction Turn Analysis

    Science.gov (United States)

    Beaty, James R.; Starr, Brett R.; Gowan, John W., Jr.

    2008-01-01

    Ares-I-X is the designation given to the flight test version of the Ares-I rocket (also known as the Crew Launch Vehicle - CLV) being developed by NASA. As part of the preliminary flight plan approval process for the test vehicle, a range safety malfunction turn analysis was performed to support the launch area risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could cause the vehicle trajectory to deviate from its normal flight path, and the effects of these failures were evaluated with an Ares-I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version 2 (POST2) simulation framework. The Ares-I-X simulation analysis provides output files containing vehicle state information, which are used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at Kennedy Space Center (KSC), and to develop the vehicle destruct criteria used by the flight test range safety officer. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study, and preliminary results are presented, determined by analysis of the trajectory deviation of the failure cases, compared with the expected vehicle trajectory.

  19. Safety performance indicators used by the Russian Safety Regulatory Authority in its practical activities on nuclear power plant safety regulation

    International Nuclear Information System (INIS)

    Khazanov, A.L.

    2005-01-01

    The Sixth Department of the Nuclear, Industrial and Environmental Regulatory Authority of Russia, Scientific and Engineering Centre for Nuclear and Radiation Safety process, analyse and use the information on nuclear power plants (NPPs) operational experience or NPPs safety improvement. Safety performance indicators (SPIs), derived from processing of information on operational violations and analysis of annual NPP Safety Reports, are used as tools to determination of trends towards changing of characteristics of operational safety, to assess the effectiveness of corrective measures, to monitor and evaluate the current operational safety level of NPPs, to regulate NPP safety. This report includes a list of the basic SPIs, those used by the Russian safety regulatory authority in regulatory activity. Some of them are absent in list of IAEA-TECDOC-1141 ('Operational safety performance indicators for nuclear power plants'). (author)

  20. A formal safety analysis for PLC software-based safety critical system using Z

    International Nuclear Information System (INIS)

    Koh, Jung Soo; Seong, Poong Hyun

    1997-01-01

    This paper describes a formal safety analysis technique which is demonstrated by performing empirical formal safety analysis with the case study of beamline hutch door Interlock system that is developed by using PLC (Programmable Logic Controller) systems at the Pohang Accelerator Laboratory. In order to perform formed safety analysis, we have built the Z formal specifications representation from user requirement written in ambiguous natural language and target PLC ladder logic, respectively. We have also studied the effective method to express typical PLC timer component by using specific Z formal notation which is supported by temporal history. We present a formal proof technique specifying and verifying that the hazardous states are not introduced into ladder logic in the PLC-based safety critical system

  1. Development of a Nursing Handoff Tool: A Web-Based Application to Enhance Patient Safety

    Science.gov (United States)

    Goldsmith, Denise; Boomhower, Marc; Lancaster, Diane R.; Antonelli, Mary; Kenyon, Mary Anne Murphy; Benoit, Angela; Chang, Frank; Dykes, Patricia C.

    2010-01-01

    Dynamic and complex clinical environments present many challenges for effective communication among health care providers. The omission of accurate, timely, easily accessible vital information by health care providers significantly increases risk of patient harm and can have devastating consequences for patient care. An effective nursing handoff supports the standardized transfer of accurate, timely, critical patient information, as well as continuity of care and treatment, resulting in enhanced patient safety. The Brigham and Women’s/Faulkner Hospital Healthcare Information Technology Innovation Program (HIP) is supporting the development of a web based nursing handoff tool (NHT). The goal of this project is to develop a “proof of concept” handoff application to be evaluated by nurses on the inpatient intermediate care units. The handoff tool would enable nurses to use existing knowledge of evidence-based handoff methodology in their everyday practice to improve patient care and safety. In this paper, we discuss the results of nursing focus groups designed to identify the current state of handoff practice as well as the functional and data element requirements of a web based Nursing Handoff Tool (NHT). PMID:21346980

  2. A formal safety analysis for PLC software-based safety critical system using Z

    International Nuclear Information System (INIS)

    Koh, Jung Soo

    1997-02-01

    This paper describes a formal safety analysis technique which is demonstrated by performing empirical formal safety analysis with the case study of beamline hutch door Interlock system that is developed by using PLC (Programmable Logic Controller) systems at the Pohang Accelerator Laboratory. In order to perform formal safety analysis, we have built the Z formal specifications representation from user requirement written in ambiguous natural language and target PLC ladder logic, respectively. We have also studied the effective method to express typical PLC timer component by using specific Z formal notation which is supported by temporal history. We present a formal proof technique specifying and verifying that the hazardous states are not introduced into ladder logic in the PLC-based safety critical system. And also, we have found that some errors or mismatches in user requirement and final implemented PLC ladder logic while analyzing the process of the consistency and completeness of Z translated formal specifications. In the case of relatively small systems like Beamline hutch door interlock system, a formal safety analysis including explicit proof is highly recommended so that the safety of PLC-based critical system may be enhanced and guaranteed. It also provides a helpful benefits enough to comprehend user requirement expressed by ambiguous natural language

  3. SustainPro - A tool for systematic process analysis, generation and evaluation of sustainable design alternatives

    DEFF Research Database (Denmark)

    Carvalho, Ana; Matos, Henrique A.; Gani, Rafiqul

    2013-01-01

    the user through the necessary steps according to work-flow of the implemented methodology. At the end the design alternatives, are evaluated using environmental impact assessment tools and safety indices. The extended features of the methodology incorporate Life Cycle Assessment analysis and economic....... The software tool is based on the implementation of an extended systematic methodology for sustainable process design (Carvalho et al. 2008 and Carvalho et al. 2009). Using process information/data such as the process flowsheet, the associated mass / energy balance data and the cost data, SustainPro guides...... analysis. The application and the main features of SustainPro are illustrated through a case study of ß-Galactosidase production....

  4. Ignalina Safety Analysis Group's report for the year 1998

    International Nuclear Information System (INIS)

    Uspuras, E.; Augutis, J.; Bubelis, E.; Cesna, B.; Kaliatka, A.

    1999-02-01

    Results of Ignalina NPP Safety Analysis Group's research are presented. The main fields of group's activities in 1998 were following: safety analysis of reactor's cooling system, safety analysis of accident localization system, investigation of the problem graphite - fuel channel, reactor core modelling, assistance to the regulatory body VATESI in drafting regulations and reviewing safety reports presented by Ignalina NPP during the process of licensing of unit 1

  5. Software system safety

    Science.gov (United States)

    Uber, James G.

    1988-01-01

    Software itself is not hazardous, but since software and hardware share common interfaces there is an opportunity for software to create hazards. Further, these software systems are complex, and proven methods for the design, analysis, and measurement of software safety are not yet available. Some past software failures, future NASA software trends, software engineering methods, and tools and techniques for various software safety analyses are reviewed. Recommendations to NASA are made based on this review.

  6. Operating plant safety analysis needs

    International Nuclear Information System (INIS)

    Young, M.Y.; Love, D.S.

    1992-01-01

    The primary objective for nuclear power station owners is to operate and manage their plants safely. However, there is also a need to provide economical electric power, which requires that the unit be operated as efficiently as possible, consistent with the safety requirements. The objectives cited above can be achieved through the identification and use of available margins inherent in the plant design. As a result of conservative licensing and analytical approaches taken in the past, many of these margins may be found in the safety analysis limits within which plants currently operate. Improvements in the accuracy of the safety analysis, and a more realistic treatment of plant initial and boundary conditions, can make this margin available for a variety of uses which enhance plant performance, help to reduce O and M costs, and may help to extend licensed operation. Opportunities for improvement exist in several areas in the accident analysis normally performed for Chapter 15 of the FSAR. For example, recent modifications to the ECCS rule, 10CFR50.46 and Appendix K, allow use of margins previously unavailable in the analysis of the Loss of Coolant Accident (LOCA). To take advantage of this regulatory change, new methods are being developed to analyze both the large and small break loss of coolant accident (LOCA). As this margin is used, enhancements in the analysis of other transients will become necessary. The paper discusses accident analysis methods, future development needs, and analysis margin utilization in specific accident scenarios

  7. Computer codes for safety analysis

    International Nuclear Information System (INIS)

    Holland, D.F.

    1986-11-01

    Computer codes for fusion safety analysis have been under development in the United States for about a decade. This paper will discuss five codes that are currently under development by the Fusion Safety Program. The purpose and capability of each code will be presented, a sample given, followed by a discussion of the present status and future development plans

  8. Removing unreasonable conservatisms in DOE safety analysis

    International Nuclear Information System (INIS)

    BISHOP, G.E.

    1999-01-01

    While nuclear safety analyses must always be conservative, invoking excessive conservatisms does not provide additional margins of safety. Rather, beyond a fairly narrow point, conservatisms skew a facility's true safety envelope by exaggerating risks and creating unreasonable bounds on what is required for safety. The conservatism has itself become unreasonable. A thorough review of the assumptions and methodologies contained in a facility's safety analysis can provide substantial reward, reducing both construction and operational costs without compromising actual safety

  9. HANFORD SAFETY ANALYSIS and RISK ASSESSMENT HANDBOOK (SARAH)

    International Nuclear Information System (INIS)

    EVANS, C.B.

    2004-01-01

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S and M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard

  10. Establishing the value of occupational health nurses' contributions to worker health and safety: a pilot test of a user-friendly estimation tool.

    Science.gov (United States)

    Graeve, Catherine; McGovern, Patricia; Nachreiner, Nancy M; Ayers, Lynn

    2014-01-01

    Occupational health nurses use their knowledge and skills to improve the health and safety of the working population; however, companies increasingly face budget constraints and may eliminate health and safety programs. Occupational health nurses must be prepared to document their services and outcomes, and use quantitative tools to demonstrate their value to employers. The aim of this project was to create and pilot test a quantitative tool for occupational health nurses to track their activities and potential cost savings for on-site occupational health nursing services. Tool developments included a pilot test in which semi-structured interviews with occupational health and safety leaders were conducted to identify currents issues and products used for estimating the value of occupational health nursing services. The outcome was the creation of a tool that estimates the economic value of occupational health nursing services. The feasibility and potential value of this tool is described.

  11. The Use Of Computational Human Performance Modeling As Task Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    Jacuqes Hugo; David Gertman

    2012-07-01

    During a review of the Advanced Test Reactor safety basis at the Idaho National Laboratory, human factors engineers identified ergonomic and human reliability risks involving the inadvertent exposure of a fuel element to the air during manual fuel movement and inspection in the canal. There were clear indications that these risks increased the probability of human error and possible severe physical outcomes to the operator. In response to this concern, a detailed study was conducted to determine the probability of the inadvertent exposure of a fuel element. Due to practical and safety constraints, the task network analysis technique was employed to study the work procedures at the canal. Discrete-event simulation software was used to model the entire procedure as well as the salient physical attributes of the task environment, such as distances walked, the effect of dropped tools, the effect of hazardous body postures, and physical exertion due to strenuous tool handling. The model also allowed analysis of the effect of cognitive processes such as visual perception demands, auditory information and verbal communication. The model made it possible to obtain reliable predictions of operator performance and workload estimates. It was also found that operator workload as well as the probability of human error in the fuel inspection and transfer task were influenced by the concurrent nature of certain phases of the task and the associated demand on cognitive and physical resources. More importantly, it was possible to determine with reasonable accuracy the stages as well as physical locations in the fuel handling task where operators would be most at risk of losing their balance and falling into the canal. The model also provided sufficient information for a human reliability analysis that indicated that the postulated fuel exposure accident was less than credible.

  12. Real-Time Estimation for Cutting Tool Wear Based on Modal Analysis of Monitored Signals

    Directory of Open Access Journals (Sweden)

    Yongjiao Chi

    2018-05-01

    Full Text Available There is a growing body of literature that recognizes the importance of product safety and the quality problems during processing. The working status of cutting tools may lead to project delay and cost overrun if broken down accidentally, and tool wear is crucial to processing precision in mechanical manufacturing, therefore, this study contributes to this growing area of research by monitoring condition and estimating wear. In this research, an effective method for tool wear estimation was constructed, in which, the signal features of machining process were extracted by ensemble empirical mode decomposition (EEMD and were used to estimate the tool wear. Based on signal analysis, vibration signals that had better linear relationship with tool wearing process were decomposed, then the intrinsic mode functions (IMFs, frequency spectrums of IMFs and the features relating to amplitude changes of frequency spectrum were obtained. The trend that tool wear changes with the features was fitted by Gaussian fitting function to estimate the tool wear. Experimental investigation was used to verify the effectiveness of this method and the results illustrated the correlation between tool wear and the modal features of monitored signals.

  13. Safety assessment of research reactors and preparation of the safety analysis report

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide presents guidelines, approved by international consensus, for the preparation, review and assessment of safety documentation for research reactors such as the Safety Analysis Report. While the Guide is most applicable to research reactors in the design and construction stage, it is also recommended for use during relicensing or reassessment of existing reactors

  14. The surgical safety checklist and patient outcomes after surgery: a prospective observational cohort study, systematic review and meta-analysis

    NARCIS (Netherlands)

    Abbott, T. E. F.; Ahmad, T.; Phull, M. K.; Fowler, A. J.; Hewson, R.; Biccard, B. M.; Chew, M. S.; Gillies, M.; Pearse, R. M.; Pearse, Rupert M.; Beattie, Scott; Clavien, Pierre-Alain; Demartines, Nicolas; Fleisher, Lee A.; Grocott, Mike; Haddow, James; Hoeft, Andreas; Holt, Peter; Moreno, Rui; Pritchard, Naomi; Rhodes, Andrew; Wijeysundera, Duminda; Wilson, Matt; Ahmed, Tahania; Everingham, Kirsty; Hewson, Russell; Januszewska, Marta; Phull, Mandeep-Kaur; Halliwell, Richard; Shulman, Mark; Myles, Paul; Schmid, Werner; Hiesmayr, Michael; Wouters, Patrick; de Hert, Stefan; Lobo, Suzana; Fang, Xiangming; Rasmussen, Lars; Futier, Emmanuel; Biais, Matthieu; Venara, Aurélien; Slim, Karem; Sander, Michael; Koulenti, Despoina; Arvaniti, Kostoula; Chan, Mathew; Kulkarni, Atul; Chandra, Susilo; Tantri, Aida; Geddoa, Emad; Abbas, Muntadhar; Della Rocca, Giorgio; Sivasakthi, Datin; Mansor, Marzida; Luna, Pastor; Bouwman, Arthur; Buhre, Wolfgang; Beavis, Vanessa; Campbell, Douglas; Short, Tim; Osinaike, Tunde; Matos, Ricardo; Grigoras, Ioana; Kirov, Mikhail; Protsenko, Denis; Biccard, Bruce; Aldecoa, Cesar; Chew, Michelle; Hofer, Christoph; Hubner, Martin; Ditai, James; Szakmany, Tamas; Fleisher, Lee; Ferguson, Marissa; MacMahon, Michael; Cherian, Ritchie; Currow, Helen; Kanathiban, Kathirgamanathan; Gillespie, David; Pathmanathan, Edward; Phillips, Katherine; Reynolds, Jenifer; Rowley, Joanne; Douglas, Jeanene; Kerridge, Ross; Garg, Sameer; Bennett, Michael; Jain, Megha; Alcock, David; Terblanche, Nico; Cotter, Rochelle; Leslie, Kate; Stewart, Marcelle; Zingerle, Nicolette; Clyde, Antony; Hambidge, Oliver; Rehak, Adam; Cotterell, Sharon; Huynh, Wilson Binh Quan; McCulloch, Timothy; Ben-Menachem, Erez; Egan, Thomas; Cope, Jennifer; Fellinger, Paul; Haisjackl, Markus; Haselberger, Simone; Holaubek, Caroline; Lichtenegger, Paul; Scherz, Florian; Hoffer, Franz; Cakova, Veronika; Eichwalder, Andreas; Fischbach, Norbert; Klug, Reinhold; Schneider, Elisabeth; Vesely, Martin; Wickenhauser, Reinhart; Grubmueller, Karl Gernot; Leitgeb, Marion; Lang, Friedrich; Toro, Nancy; Bauer, Marlene; Laengle, Friedrich; Haberl, Claudia; Mayrhofer, Thomas; Trybus, Christoph; Buerkle, Christian; Forstner, Karin; Germann, Reinhard; Rinoesl, Harald; Schindler, Elke; Trampitsch, Ernst; Bogner, Gerhard; Dankl, Daniel; Duenser, Martin; Fritsch, Gerhard; Gradwohl-Matis, Ilse; Hartmann, Andreas; Hoelzenbein, Thomas; Jaeger, Tarkan; Landauer, Franz; Lindl, Gregor; Lux, Michael; Steindl, Johannes; Stundner, Ottokar; Szabo, Christian; Bidgoli, Jawad; Verdoodt, Hans; Forget, Patrice; Kahn, David; Lois, Fernande; Momeni, Mona; Prégardien, Caroline; Pospiech, Audrey; Steyaert, Arnaud; Veevaete, Laurent; de Kegel, Dirk; de Jongh, Karen; Foubert, Luc; Smitz, Carine; Vercauteren, Marcel; Poelaert, Jan; van Mossevelde, Veerle; Abeloos, Jacques; Bouchez, Stefaan; Coppens, Marc; de Baerdemaeker, Luc; Deblaere, Isabel; de Bruyne, Ann; Fonck, Kristine; Heyse, Bjorn; Jacobs, Tom; Lapage, Koen; Moerman, Anneliese; Neckebroek, Martine; Parashchanka, Aliaksandra; Roels, Nathalie; van den Eynde, Nancy; Vandenheuvel, Michael; Limmen, JurgenVan; Vanluchene, Ann; Vanpeteghem, Caroline; Wyffels, Piet; Huygens, Christel; Vandenbempt, Punitha; van de Velde, Marc; Dylst, Dimitri; Janssen, Bruno; Schreurs, Evelien; Aleixo, Fábia Berganton; Candido, Keulle; Batista, Hugo Dias; Guimarães, Mario; Guizeline, Jaqueline; Hoffmann, João; Lobo, Francisco Ricardo Marques; Nascimento, Vinícius; Nishiyama, Katia; Pazetto, Lucas; Souza, Daniela; Rodrigues, Rodrigo Souza; Vilela Dos Santos, Ana Maria; Jardim, Jaquelline; Sá Malbouisson, Luiz Marcelo; Silva, Joao; Nascimento Junior, Paulo do; Baio, Thalissa Hermínia; Pereira de Castro, Gabriel Isaac; Watanabe Oliveira, Henri Roger; Amendola, Cristina Prata; Cardoso, Gutemberg; Ortega, Daniela; Brotto, Ana Flavia; de Oliveira, Mirella Cristine; Réa-Neto, Álvaro; Dias, Fernando; Travi, Maria Eduarda; Zerman, Luiza; Azambuja, Pedro; Knibel, Marcos Freitas; Martins, Antonio; Almeida, William; Neto, Calim Neder; Tardelli, Maria Angela; Caser, Eliana; Machado, Marcio; Aguzzoli, Crisitiano; Baldisserotto, Sérgio; Tabajara, Fernanda Beck; Bettega, Fernanda; Rodrigues Júnior, La Hore Correa; de Gasperi, Julia; Faina, Lais; Nolasco, Marcos Farias; Ferreira da Costa Fischer, Bruna; Fosch de Campos Ferreira, Mariana; Hartmann, Cristina; Kliemann, Marta; Hubert Ribeiro, Gustavo Luis; Fraga, Julia Merladete; Netto, Thiago Motta; Pozza, Laura Valduga; Wendling, Paulo Rafael; Azevedo, Caroline; Garcia, Juliana; Lopes, Marcel; Maia, Bernardo; Maselli, Paula; Melo, Ralph; Mendes, Weslley; Neves, Matheus; Ney, Jacqueline; Piras, Claudio; Applewhaite, Christopher; Carr, Adrienne; Chow, Lorraine; Duttchen, Kaylene; Foglia, Julena; Greene, Michael; Hinther, Ashley; Houston, Kendra; McCormick, Thomas Jared; Mikhayel, Jennifer; Montasser, Sam; Ragan, Alex; Suen, Andrew; Woolsey, Adrianna; Yu, Hai Chuan; Funk, Duane; Kowalski, Stephen; Legaspi, Regina; McDonald, Heather; Siddiqui, Faisal; Pridham, Jeremy; Rowe, Bernadette; Sampson, Sonia; Thiessen, Barton; Zbitnew, Geoff; Bernard, Andre; George, Ronald; Jones, Philip; Moor, Rita; Siddiqui, Naveed; Wolfer, Alexandra; Tran, Diem; Winch, Denyse; Dobson, Gary; McCormick, Thomas; Montasser, Osama; Hall, Richard; Baghirzada, Leyla; Curley, Gerard; Dai, Si Yuan; Hare, Gregory; Lee, Esther; Shastri, Uma; Tsui, Albert; Yagnik, Anmol; Alvares, Danielle; Choi, Stephen; Dwyer, Heather; Flores, Kathrina; McCartney, Colin; Somascanthan, Priya; Carroll, Jo; Pazmino-Canizares, Janneth; Ami, Noam; Chan, Vincent; Perlas, Anahi; Argue, Ruth; Huang, Yang; Lavis, Katie; Mayson, Kelly; Cao, Ying; Gao, Hong; Hu, Tingju; Lv, Jie; Yang, Jian; Yang, Yang; Zhong, Yi; Zhou, Jing; Zou, Xiaohua; He, Miao; Li, Xiaoying; Luo, Dihuan; Wang, Haiying; Yu, Tian; Chen, Liyong; Wang, Lijun; Cai, Yunfei; Cao, Zhongming; Li, Yanling; Lian, Jiaxin; Sun, Haiyun; Wang, Sheng; Wang, Zhipeng; Wang, Kenru; Zhu, Yi; Du, Xindan; Fan, Hao; Fu, Yunbin; Huang, Lixia; Huang, Yanming; Hwan, Haifang; Luo, Hong; Qu, Pi-Sheng; Tao, Fan; Wang, Zhen; Wang, Guoxiang; Wang, Shun; Zhang, Yan; Zhang, Xiaolin; Chen, Chao; Wang, Weixing; Liu, Zhengyuan; Fan, Lihua; Tang, Jing; Chen, Yijun; Chen, Yongjie; Han, Yangyang; Huang, Changshun; Liang, Guojin; Shen, Jing; Wang, Jun; Yang, Qiuhong; Zhen, Jungang; Zhou, Haidong; Chen, Junping; Chen, Zhang; Li, Xiaoyu; Meng, Bo; Ye, Haiwang; Zhang, Xiaoyan; Bi, Yanbing; Cao, Jianqiao; Guo, Fengying; Lin, Hong; Liu, Yang; Lv, Meng; Shi, Pengcai; Song, Xiumei; Sun, Chuanyu; Sun, Yongtao; Wang, Yuelan; Wang, Shenhui; Zhang, Min; Chen, Rong; Hou, Jiabao; Leng, Yan; Meng, Qing-Tao; Qian, Li; Shen, Zi-Ying; Xia, Zhong-Yuan; Xue, Rui; Zhang, Yuan; Zhao, Bo; Zhou, Xian-Jin; Chen, Qiang; Guo, Huinan; Guo, Yongqing; Qi, Yuehong; Wang, Zhi; Wei, Jianfeng; Zhang, Weiwei; Zheng, Lina; Bao, Qi; Chen, Yaqiu; Chen, Yijiao; Fei, Yue; Hu, Nianqiang; Hu, Xuming; Lei, Min; Li, Xiaoqin; Lv, Xiaocui; Miao, Fangfang; Ouyang, Lingling; Qian, Lu; Shen, Conyu; Sun, Yu; Wang, Yuting; Wang, Dong; Wu, Chao; Xu, Liyuan; Yuan, Jiaqi; Zhang, Lina; Zhang, Huan; Zhang, Yapping; Zhao, Jinning; Zhao, Chong; Zhao, Lei; Zheng, Tianzhao; Zhou, Dachun; Zhou, Haiyan; Zhou, Ce; Lu, Kaizhi; Zhao, Ting; He, Changlin; Chen, Hong; Chen, Shasha; Cheng, Baoli; He, Jie; Jin, Lin; Li, Caixia; Li, Hui; Pan, Yuanming; Shi, Yugang; Wen, Xiao Hong; Wu, Shuijing; Xie, Guohao; Zhang, Kai; Zhao, Bing; Lu, Xianfu; Chen, Feifei; Liang, Qisheng; Lin, Xuewu; Ling, Yunzhi; Liu, Gang; Tao, Jing; Yang, Lu; Zhou, Jialong; Chen, Fumei; Cheng, Zhonggui; Dai, Hanying; Feng, Yunlin; Hou, Benchao; Gong, Haixia; Hu, Chun Hua; Huang, Haijin; Huang, Jian; Jiang, Zhangjie; Li, Mengyuan; Lin, Jiamei; Liu, Mei; Liu, Weicheng; Liu, Zhen; Liu, Zhiyi; Luo, Foquan; Ma, Longxian; Min, Jia; Shi, Xiaoyun; Song, Zhiping; Wan, Xianwen; Xiong, Yingfen; Xu, Lin; Yang, Shuangjia; Zhang, Qin; Zhang, Hongyan; Zhang, Huaigen; Zhang, Xuekang; Zhao, Lili; Zhao, Weihong; Zhao, Weilu; Zhu, Xiaoping; Bai, Yun; Chen, Linbi; Chen, Sijia; Dai, Qinxue; Geng, Wujun; Han, Kunyuan; He, Xin; Huang, Luping; Ji, Binbin; Jia, Danyun; Jin, Shenhui; Li, Qianjun; Liang, Dongdong; Luo, Shan; Lwang, Lulu; Mo, Yunchang; Pan, Yuanyuan; Qi, Xinyu; Qian, Meizi; Qin, Jinling; Ren, Yelong; Shi, Yiyi; Wang, Junlu; Wang, Junkai; Wang, Leilei; Xie, Junjie; Yan, Yixiu; Yao, Yurui; Zhang, Mingxiao; Zhao, Jiashi; Zhuang, Xiuxiu; Ai, Yanqiu; Du, Fang; He, Long; Huang, Ledan; Li, Zhisong; Li, Huijuan; Li, Yetong; Li, Liwei; Meng, Su; Yuan, Yazhuo; Zhang, Enman; Zhang, Jie; Zhao, Shuna; Ji, Zhenrong; Pei, Ling; Wang, Li; Chen, Chen; Dong, Beibei; Li, Jing; Miao, Ziqiang; Mu, Hongying; Qin, Chao; Su, Lin; Wen, Zhiting; Xie, Keliang; Yu, Yonghao; Yuan, Fang; Hu, Xianwen; Zhang, Ye; Xiao, Wangpin; Zhu, Zhipeng; Dai, Qingqing; Fu, Kaiwen; Hu, Rong; Hu, Xiaolan; Huang, Song; Li, Yaqi; Liang, Yingping; Yu, Shuchun; Guo, Zheng; Jing, Yan; Tang, Na; Wu, Jie; Yuan, Dajiang; Zhang, Ruilin; Zhao, Xiaoying; Li, Yuhong; Bai, Hui-Ping; Liu, Chun-Xiao; Liu, Fei-Fei; Ren, Wei; Wang, Xiu-Li; Xu, Guan-Jie; Hu, Na; Li, Bo; Ou, Yangwen; Tang, Yongzhong; Yao, Shanglong; Zhang, Shihai; Kong, Cui-Cui; Liu, Bei; Wang, Tianlong; Xiao, Wei; Lu, Bo; Xia, Yanfei; Zhou, Jiali; Cai, Fang; Chen, Pushan; Hu, Shuangfei; Wang, Hongfa; Xu, Qiong; Hu, Liu; Jing, Liang; Li, Bin; Liu, Qiang; Liu, Yuejiang; Lu, Xinjian; Peng, Zhen Dan; Qiu, Xiaodong; Ren, Quan; Tong, Youliang; Wang, Jin; Wen, Yazhou; Wu, Qiong; Xia, Jiangyan; Xie, Jue; Xiong, Xiapei; Xu, Shixia; Yang, Tianqin; Ye, Hui; Yin, Ning; Yuan, Jing; Zeng, Qiuting; Zhang, Baoling; Zheng, Kang; Cang, Jing; Chen, Shiyu; Fan, Yu; Fu, Shuying; Ge, Xiaodong; Guo, Baolei; Huang, Wenhui; Jiang, Linghui; Jiang, Xinmei; Liu, Yi; Pan, Yan; Ren, Yun; Shan, Qi; Wang, Jiaxing; Wang, Fei; Wu, Chi; Zhang, Xiaoguang; Christiansen, Ida Cecilie; Granum, Simon Nørgaard; Rasmussen, Bodil Steen; Daugaard, Morten; Gambhir, Rajiv; Brandsborg, Birgitte; Steingrímsdóttir, Guðný Erla; Jensen-Gadegaard, Peter; Olsen, Karsten Skovgaard; Siegel, Hanna; Eskildsen, Katrine Zwicky; Gätke, Mona Ring; Wibrandt, Ida; Heintzelmann, Simon Bisgaard; Wiborg Lange, Kai Henrik; Lundsgaard, Rune Sarauw; Amstrup-Hansen, Louise; Hovendal, Claus; Larsen, Michael; Lenstrup, Mette; Kobborg, Tina; Larsen, Jens Rolighed; Pedersen, Anette Barbre; Smith, Søren Hübertz; Oestervig, Rebecca Monett; Afshari, Arash; Andersen, Cheme; Ekelund, Kim; Secher, Erik Lilja; Beloeil, Helene; Lasocki, Sigismond; Ouattara, Alexandre; Sineus, Marlene; Molliex, Serge; Legouge, Marie Lim; Wallet, Florent; Tesniere, Antoine; Gaudin, Christophe; Lehur, Paul; Forsans, Emma; de Rudnicki, Stéphane; Maudet, Valerie Serra; Mutter, Didier; Sojod, Ghassan; Ouaissi, Mehdi; Regimbeau, Jean-Marc; Desbordes, Jacques; Comptaer, Nicolas; Manser, Diae El; Ethgen, Sabine; Lebuffe, Gilles; Auer, Patrick; Härtl, Christine; Deja, Maria; Legashov, Kirill; Sonnemann, Susanne; Wiegand-Loehnert, Carola; Falk, Elke; Habicher, Marit; Angermair, Stefan; Laetsch, Beatrix; Schmidt, Katrin; von Heymann, Christian; Ramminger, Axel; Jelschen, Florian; Pabel, Svenja; Weyland, Andreas; Czeslick, Elke; Gille, Jochen; Malcharek, Michael; Sablotzki, Armin; Lueke, Katharina; Wetzel, Peter; Weimann, Joerg; Lenhart, Franz-Peter; Reichle, Florian; Schirmer, Frederike; Hüppe, Michael; Klotz, Karl; Nau, Carla; Schön, Julika; Mencke, Thomas; Wasmund, Christina; Bankewitz, Carla; Baumgarten, Georg; Fleischer, Andreas; Guttenthaler, Vera; Hack, Yvonne; Kirchgaessner, Katharina; Männer, Olja; Schurig-Urbaniak, Marlen; Struck, Rafael; van Zyl, Rebekka; Wittmann, Maria; Goebel, Ulrich; Harris, Sarah; Veit, Siegfried; Andreadaki, Evangelia; Souri, Flora; Katsiadramis, Ioannis; Skoufi, Anthi; Vasileiou, Maria; Aimoniotou-Georgiou, Eleni; Katsourakis, Anastasios; Veroniki, Fotini; Vlachogianni, Glyceria; Petra, Konstantina; Chlorou, Dimitra; Oloktsidou, Eirini; Ourailoglou, Vasileios; Papapostolou, Konstantinos; Tsaousi, Georgia; Daikou, Panagoula; Dedemadi, Georgia; Kalaitzopoulos, Ioannis; Loumpias, Christos; Bristogiannis, Sotirios; Dafnios, Nikolaos; Gkiokas, Georgios; Kontis, Elissaios; Kozompoli, Dimitra; Papailia, Aspasia; Theodosopoulos, Theodosios; Bizios, Christol; Koutsikou, Anastasia; Moustaka, Aleaxandra; Plaitakis, Ioannis; Armaganidis, Apostolos; Christodoulopoulou, Theodora; Lignos, Mihail; Theodorakopoulou, Maria; Asimakos, Andreas; Ischaki, Eleni; Tsagkaraki, Angeliki; Zakynthinos, Spyros; Antoniadou, Eleni; Koutelidakis, Ioannis; Lathyris, Dimitrios; Pozidou, Irene; Voloudakis, Nikolaos; Dalamagka, Maria; Elena, Gkonezou; Chronis, Christos; Manolakaki, Dimitra; Mosxogiannidis, Dimitris; Slepova, Tatiana; Tsakiridou, Isaia-Sissy; Lampiri, Claire; Vachlioti, Anastasia; Panagiotakis, Christos; Sfyras, Dimitrios; Tsimpoukas, Fotios; Tsirogianni, Athanasia; Axioti, Elena; Filippopoulos, Andreas; Kalliafa, Elli; Kassavetis, George; Katralis, Petros; Komnos, Ioannis; Pilichos, Georgios; Ravani, Ifigenia; Totis, Antonis; Apagaki, Eymorfia; Efthymiadi, Andromachi; Kampagiannis, Nikolaos; Paraforou, Theoniki; Tsioka, Agoritsa; Georgiou, Georgios; Vakalos, Aristeidis; Bairaktari, Aggeliki; Charitos, Efthimios; Markou, George; Niforopoulou, Panagiota; Papakonstantinou, Nikolaos; Tsigou, Evdoxia; Xifara, Archontoula; Zoulamoglou, Menelaos; Gkioni, Panagiota; Karatzas, Stylianos; Kyparissi, Aikaterini; Mainas, Efstratios; Papapanagiotou, Ioannis; Papavasilopoulou, Theonymfi; Fragandreas, George; Georgopoulou, Eleni; Katsika, Eleni; Psarras, Kyriakos; Synekidou, Eirini; Verroiotou, Maria; Vetsiou, Evangelia; Zaimi, Donika; Anagnou, Athina; Apostolou, Konstantinos; Melissopoulou, Theodora; Rozenberg, Theophilos; Tsigris, Christos; Boutsikos, Georgios; Kalles, Vasileios; Kotsalas, Nikolaos; Lavdaiou, Christina; Paikou, Fotini; Panagou, Georgia-Laura; Spring, Anna; Botis, Ioannis; Drimala, Maria; Georgakakis, Georgios; Kiourtzieva, Ellada; Ntouma, Panagiota; Prionas, Apostolos; Xouplidis, Kyriakos; Dalampini, Eleftheria; Giannaki, Chrysavgi; Iasonidou, Christina; Ioannidis, Orestis; Lavrentieva, Athina; Lavrentieva, Athena; Papageorgiou, George; Kokkinoy, Maria; Stafylaraki, Maria; Gaitanakis, Stylianos; Karydakis, Periclis; Paltoglou, Josef; Ponireas, Panagiotis; Chaloulis, Panagiotis; Provatidis, Athanasios; Sousana, Anisoglou; Gardikou, Varvara Vanessa; Konstantivelli, Maria; Lataniotou, Olga; Lisari, Elisavet; Margaroni, Maria; Stamatiou, Konstantinos; Nikolaidis, Edouardos; Pnevmatikos, Ioannis; Sertaridou, Eleni; Andreou, Alexandros; Arkalaki, Eleni; Athanasakis, Elias; Chaniotaki, Fotini; Chatzimichali, Chatzimichali Aikaterini; Christofaki, Maria; Dermitzaki, Despina; Fiorentza, Klara; Frantzeskos, Georgios; Geromarkaki, Elisavet; Kafkalaki, Kalliopi; Kalogridaki, Marina; Karydi, Konstyllia; Kokkini, Sofia; Kougentakis, Georgios; Lefaki, Tatiana; Lilitsis, Emmanouhl; Makatounaki, Aikaterini; Malliotakis, Polychronis; Michelakis, Dimosthenis; Neonaki, Maria; Nyktari, Vasileia; Palikyra, Iliana; Papadakis, Eleftherios; Papaioannou, Alexandra; Sfakianakis, Konstantinos; Sgouraki, Maria; Souvatzis, Xenia; Spartinou, Anastasia; Stefanidou, Nefeli; Syrogianni, Paulina; Tsagkaraki, Georgia; Arnaoutoglou, Elena; Arnaoutoglou, Christina; Bali, Christina; Bouris, Vasilios; Doumos, Rodamanthos; Gkini, Konstantia-Paraskevi; Kapaktsi, Clio; Koulouras, Vasilios; Lena, Arian; Lepida, Dimitra; Michos, Evangelos; Papadopoulos, Dimitrios; Paschopoulos, Minas; Rompou, Vaia Aliki; Siouti, Ioanna; Tsampalas, Stavros; Ververidou, Ourania; Zilis, Georgios; Charlalampidoy, Alexandra; Christodoulidis, Gregory; Flossos, Andreas; Stamoulis, Konstantinos; Chan, Matthew; Tsang, Man Shing Caleb; Tsang, Man Shing; Lai, Man Ling; Yip, Chi Pang; Heymans Chan, Hey Man; Law, Bassanio; Li, Wing Sze; Chu, Hiu Man; Koo, Emily Gar Yee; Lam, Chi Cheong Joe; Cheng, Ka Ho; Lam, Tracy; Chu, Susanna; Lam, Wing Yan; Wong, Kin Wai Kevin; Kwok, Dilys; Hung, Ching Yue Janice; Chan, Wai Kit Jacky; Wong, Wing Lam; Chung, Chun Kwong Eric; Ma, Shu Kai; Kaushik, Shuchi; Shah, Bhagyesh; Shah, Dhiren; Shah, Sanjay; Ar, Praburaj; Muthuchellappan, Radhakrishnan; Agarwal, Vandana; Divatia, Jigeeshu; Mishra, Sanghamitra; Nimje, Ganesh; Pande, Swati; Savarkar, Sukhada; Shrivastava, Aditi; Thomas, Martin; Yegnaram, Shashikant; Hidayatullah, Rahmat; Puar, Nasman; Niman, Sumara; Indra, Imai; Hamzah, Zulkarnain; Yuliana, Annika; Abidin, Ucu Nurhadiat; Dursin, Ade Nurkacan; Kurnia, Andri; Susanti, Ade; Handayani, Dini; Alit, Mahaalit Aribawa; Arya, Aryabiantara; Senapathi, Tjokorda Gde Agung; Utara, Utara Hartawan; Wid, Widnyana Made; Wima, Semarawima; Wir, Wiryana Made; Jehosua, Brillyan; Kaunang, Jonathan; Lantang, Eka Yudha; Najoan, Rini; Waworuntu, Neil; Awad, Hadi; Fuad, Akram; Geddoa, Burair; Khalaf, Abdel Razzaq; Al Hussaini, Sabah; Albaj, Safauldeensalem; Kenber, Maithem; Bettinelli, Alessandra; Spadaro, Savino; AlbertoVolta, Carlo; Giancarlo, Luigi; Sottosanti, Vicari; Copetti, Elisa; Spagnesi, Lorenzo; Toretti, Ilaria; Alloj, Chiara; Cardellino, Silvano; Carmino, Livio; Costanzo, Eleonora; Fanfani, Lucia Caterina; Novelli, Maria Teresa; Roasio, Agostino; Bellandi, Mattia; Beretta, Luigi; Bignami, Elena; Bocchino, Speranza; Cabrini, Luca; Corti, Daniele; Landoni, Giovanni; Meroni, Roberta; Moizo, Elena; Monti, Giacomo; Pintaudi, Margherita; Plumari, Valentina Paola; Taddeo, Daiana; Testa, Valentina; Winterton, Dario; Zangrillo, Alberto; Cloro, Luigi Maria; Colangelo, Chiara; Colangelo, Antonio; Rotunno, Giuseppe; Paludi, Miguel Angel; Maria, Cloro Paolo; Pata, Antonio; Parrini, Vieri; Gatta, Alessandro; Nastasi, Mauro; Tinti, Carla; Baroselli, Antonio; Arrigo, Mario; Benevento, Angelo; Bottini, Corrado; Cannavo', Maurizio; Gastaldi, Christian; Marchesi, Alessandro; Pascazio, Angelantonio; Pata, Francesco; Pozzi, Emilio; Premoli, Alberto; Tessera, Gaetano; Boschi, Luca; D'Andrea, Rocco; Ghignone, Federico; Poggioli, Gilberto; Sibilio, Andrea; Taffurelli, Mario; Ugolini, Giampaolo; Ab Majid, Mohd Azuan; Ab Rahman, Rusnah; Joseph, James; Pathan, Furquan; Sybil Shah, Mohammad Hafizshah; Yap, Huey Ling; Cheah, Seleen; Chin, Im Im; Looi, Ji Keon; Tan, Siew Ching; Visvalingam, Sheshendrasurian; Kwok, Fan Yin; Lee, Chew Kiok; Tan, Tse Siang; Wong, Sze Meng; Abdullah, Noor Hairiza; Liew, Chiat Fong; Luxuman, Lovenia; Mohd Zin, Nor Hafizah; Norddin, Muhamad Faiz; Raja Alias, Raja Liza; Wong, Juan Yong; Yong, Johnny; Bin Mustapha, Mohd Tarmimi; Chan, Weng Ken; Dzulkipli, Norizawati; Kuan, Pei Xuan; Lee, Yew Ching; Alias, Anita; Guok, Eng Ching; Jee, Chiun Chen; Ramon, Brian Rhadamantyne; Wong, Cheng Weng; Abd Ghafar, Fara Nur Idayu; Aziz, Faizal Zuhri; Hussain, Nabilah; Lee, Hooi Sean; Sukawi, Ismawaty; Woon, Yuan Liang; Abd Hadi, Husni Zaeem; Ahmad Azam, Ummi Azmira; Alias, Abdul Hafiz; Kesut, Saiful Aizar; Lee, Jun May; Ooi, Dar Vin; Sulaiman, Hetty Ayuni; Lih, Tengku Alini Tengku; Veerakumaran, Jeyaganesh; Rojas, Eder; Resendiz, Gerardo Esteban Alvarez; Zapata, Darcy Danitza Mari; López, Julio Cesar Jesús Aguilar; Flores, Armando Adolfo Alvarez; Amador, Juan Carlos Bravo; Avila, Erendira Jocelin Dominguez; Aquino, Laura Patricia González; Rodriguez, Ricardo Lopez; Landa, Mariana Torres; Urias, Emma; Hollmann, Markus; Hulst, Abraham; Preckel, Benedikt; Koopman-van Gemert, Ankie; Buise, Marc; Tolenaar, Noortje; Weber, Eric; de Fretes, Jennifer; Houweling, Peter; Ormskerk, Patricia; van Bommel, Jasper; Lance, Marcus; Smit-Fun, Valerie; van Zundert, Tom; Baas, Peter; Donald de Boer, Hans; Sprakel, Joost; Elferink-Vonk, Renske; Noordzij, Peter; van Zeggeren, Laura; Brand, Bastiaan; Spanjersberg, Rob; ten Bokkel-Andela, Janneke; Numan, Sandra; van Klei, Wilton; van Zaane, Bas; Boer, Christa; van Duivenvoorde, Yoni; Hering, Jens Peter; van Rossum, Sylvia; Zonneveldt, Harry; Campbell, Doug; Hoare, Siobhan; Santa, Sahayam; Ali, Marlynn; Allen, Sara Jane; Bell, Rachel; Choi, Hyun-Min David; Drake, Matthew; Farrell, Helen; Hayes, Katia; Higgie, Kushlin; Holmes, Kerry; Jenkins, Nicole; Kim, Chang Joon; Kim, Steven; Law, Kiew Chai; McAllister, Davina; Park, Karen; Pedersen, Karen; Pfeifer, Leesa; Pozaroszczyk, Anna; Salmond, Timothy; Steynor, Martin; Tan, Michael; Waymouth, Ellen; Ab Rahman, Ahmad Sufian; Armstrong, John; Dudson, Rosie; Jenkins, Nia; Nilakant, Jayashree; Richard, Seigne; Virdi, Pardeep; Dixon, Liane; Donohue, Roana; Farrow, Mehreen; Kennedy, Ross; Marissa, Henderson; McKellow, Margie; Nicola, Delany; Pascoe, Rebecca; Roberts, Stephen John; Rowell, George; Sumner, Matthew; Templer, Paul; Chandrasekharan, Shardha; Fulton, Graham; Jammer, Ib; More, Richard; Wilson, Leona; Chang, Yuan Hsuan; Foley, Julia; Fowler, Carolyn; Panckhurst, Jonathan; Sara, Rachel; Stapelberg, Francois; Cherrett, Veronica; Ganter, Donna Louise; McCann, Lloyd; Gilmour, Fiona; Lumsden, Rachelle; Moores, Mark; Olliff, Sue; Sardareva, Elitza; Tai, Joyce; Wikner, Matthew; Wong, Christopher; Chaddock, Mark; Czepanski, Carolyn; McKendry, Patrick; Polakovic, Daniel; Polakovich, Daniel; Robert, Axe; Belda, Margarita Tormo; Norton, Tracy; Alherz, Fadhel; Barneto, Lisa; Ramirez, Alberto; Sayeed, Ahmed; Smith, Nicola; Bennett, Cambell; McQuoid, Shane; Jansen, Tracy-Lee; Nico, Zin; Scott, John; Freschini, David; Freschini, Angela; Hopkins, Brian; Manson, Lara; Stoltz, Deon; Bates, Alexander; Davis, Simon; Freeman, Victoria; McGaughran, Lynette; Williams, Maya; Sharma, Swarna Baskar; Burrows, Tom; Byrne, Kelly; English, Duane; Johnson, Robert; Manikkam, Brendon; Naidoo, Shaun; Rumball, Margot; Whittle, Nicola; Franks, Romilla; Gibson-Lapsley, Hannah; Salter, Ryan; Walsh, Dean; Cooper, Richard; Perry, Katherine; Obobolo, Amos; Sule, Umar Musa; Ahmad, Abdurrahman; Atiku, Mamuda; Mohammed, Alhassan Datti; Sarki, Adamu Muhammad; Adekola, Oyebola; Akanmu, Olanrewaju; Durodola, Adekunle; Olukoju, Olusegun; Raji, Victor; Olajumoke, Tokunbo; Oyebamiji, Emmanuel; Adenekan, Anthony; Adetoye, Adedapo; Faponle, Folayemi; Olateju, Simeon; Owojuyigbe, Afolabi; Talabi, Ademola; Adenike, Odewabi; Adewale, Badru; Collins, Nwokoro; Ezekiel, Emmanuel; Fatungase, Oluwabunmi Motunrayo; Grace, Anuforo; Sola, Sotannde; Stella, Ogunmuyiwa; Ademola, Adeyinka; Adeolu, Augustine A.; Adigun, Tinuola; Akinwale, Mukaila; Fasina, Oluyemi; Gbolahan, Olalere; Idowu, Olusola; Olonisakin, Rotimi Peter; Osinaike, Babatunde Babasola; Asudo, Felicia; Mshelia, Danladi; Abdur-Rahman, Lukman; Agodirin, Olayide; Bello, Jibril; Bolaji, Benjamin; Oyedepo, Olanrewaju Olubukola; Ezike, Humphrey; Iloabachie, Ikechukwu; Okonkwo, Ikemefuna; Onuora, Elias; Onyeka, Tonia; Ugwu, Innocent; Umeh, Friday; Alagbe-Briggs, Olubusola; Dodiyi-Manuel, Amabra; Echem, Richard; Obasuyi, Bright; Onajin-Obembe, Bisola; Bandeira, Maria Expedito; Martins, Alda; Tomé, Miguel; Costa, Ana Cristina Miranda Martins; Krystopchuk, Andriy; Branco, Teresa; Esteves, Simao; Melo, Marco António; Monte, Júlia; Rua, Fernando; Martins, Isabel; Pinho-Oliveira, Vítor Miguel; Rodrigues, Carla Maria; Cabral, Raquel; Marques, Sofia; Rêgo, Sara; Jesus, Joana Sofia Teixeira; Marques, Maria Conceição; Romao, Cristina; Dias, Sandra; Santos, Ana Margarida; Alves, Maria Joao; Salta, Cristina; Cruz, Salome; Duarte, Célia; Paiva, António Armando Furtado; Cabral, Tiago do Nascimento; Faria E Maia, Dionisio; Correia da Silva, Rui Freitas Mendonça; Langner, Anuschka; Resendes, Hernâni Oliveira; Soares, Maria da Conceição; Abrunhosa, Alexandra; Faria, Filomena; Miranda, Lina; Pereira, Helena; Serra, Sofia; Ionescu, Daniela; Margarit, Simona; Mitre, Calin; Vasian, Horatiu; Manga, Gratiela; Stefan, Andreea; Tomescu, Dana; Filipescu, Daniela; Paunescu, Marilena-Alina; Stefan, Mihai; Stoica, Radu; Gavril, Laura; Pătrășcanu, Emilia; Ristescu, Irina; Rusu, Daniel; Diaconescu, Ciresica; Iosep, Gabriel Florin; Pulbere, Dorin; Ursu, Irina; Balanescu, Andreea; Grintescu, Ioana; Mirea, Liliana; Rentea, Irina; Vartic, Mihaela; Lupu, Mary-Nicoleta; Stanescu, Dorin; Streanga, Lavinea; Antal, Oana; Hagau, Natalia; Patras, Dumitru; Petrisor, Cristina; Tosa, Flaviu; Tranca, Sebastian; Copotoiu, Sanda Maria; Ungureanu, Liviu Lucian; Harsan, Cristian Remus; Papurica, Marius; Cernea, Daniela Denisa; Dragoescu, Nicoleta Alice; CarmenVaida, Laura Aflori; Ciobotaru, Oana Roxana; Aignatoaie, Mariana; Carp, Cristina Paula; Cobzaru, Isabelle; Mardare, Oana; Purcarin, Bianca; Tutunaru, Valentin; Ionita, Victor; Arustei, Mirela; Codita, Anisoara; Busuioc, Mihai; Chilinciuc, Ion; Ciobanu, Cristina; Belciu, Ioana; Tincu, Eugen; Blaj, Mihaela; Grosu, Ramona-Mihaela; Sandu, Gigel; Bruma, Dana; Corneci, Dan; Dutu, Madalina; Krepil, Adriana; Copaciu, Elena; Dumitrascu, Clementina Oana; Jemna, Ramona; Mihaescu, Florentina; Petre, Raluca; Tudor, Cristina; Ursache, Elena; Kulikov, Alexander; Lubnin, Andrey; Grigoryev, Evgeny; Pugachev, Stanislav; Tolmasov, Alexander; Hussain, Ayyaz; Ilyina, Yana; Roshchina, Anna; Iurin, Aleksandr; Chazova, Elena; Dunay, Artem; Karelov, Alexey; Khvedelidze, Irina; Voldaeva, Olga; Belskiy, Vladislav; Dzhamullaev, Parvin; Grishkowez, Elena; Kretov, Vladimir; Levin, Valeriy; Molkov, Aleksandr; Puzanov, Sergey; Samoilenko, Aleksandr; Tchekulaev, Aleksandr; Tulupova, Valentina; Utkin, Ivan; Allorto, Nikki Leigh; Bishop, David Gray; Builu, Pierre Monji; Cairns, Carel; Dasrath, Ashish; de Wet, Jacques; Hoedt, Marielle den; Grey, Ben; Hayes, Morgan Philip; Küsel, Belinda Senta; Shangase, Nomcebo; Wise, Robert; Cacala, Sharon; Farina, Zane; Govindasamy, Vishendran; Kruse, Carl-Heinz; Lee, Carolyn; Marais, Leonard; Naidoo, Thinagrin Dhasarthun; Rajah, Chantal; Rodseth, Reitze Nils; Ryan, Lisa; von Rhaden, Richard; Adam, Suwayba; Alphonsus, Christella; Ameer, Yusuf; Anderson, Frank; Basanth, Sujith; Bechan, Sudha; Bhula, Chettan; Biccard, Bruce M.; Biyase, Thuli; Buccimazza, Ines; Cardosa, Jorge; Chen, James; Daya, Bhavika; Drummond, Leanne; Elabib, Ali; Abdel Goad, Ehab Helmy; Goga, Ismail E.; Goga, Riaz; Harrichandparsad, R.; Hodgson, Richard E.; Jordaan, J.; Kalafatis, Nicky; Kampik, Christian; Landers, A. T.; Loots, Emil; Madansein, Rajhmum; Madaree, Anil; Madiba, Thandinkosi E.; Manzini, Vukani T.; Mbuyisa, Mbali; Moodley, Rajan; Msomi, Mduduzi; Mukama, Innocent; Naidoo, Desigan; Naidoo, Rubeshan; Naidu, Tesuven K.; Ntloko, Sindiswa; Padayachee, Eneshia; Padayachee, Lucelle; Phaff, Martijn; Pillay, Bala; Pillay, Desigan; Pillay, Lutchmee; Ramnarain, Anupa; Ramphal, Suren R.; Ryan, Paul; Saloojee, Ahmed; Sebitloane, Motshedisi; Sigcu, Noluyolo; Taylor, Jenna L.; Torborg, Alexandra; Visser, Linda; Anderson, Philip; Conradie, Alae; de Swardt, Mathew; de Villiers, Martin; Eikman, Johan; Liebenberg, Riaan; Mouton, Johan; Paton, Abbey; van der Merwe, Louwrence; Wilscott-Davids, Candice; Barrett, Wendy Joan; Bester, Marlet; de Beer, Johan; Geldenhuys, Jacques; Gouws, Hanni; Potgieter, Jan-Hendrik; Strydom, Magdel; WilberforceTurton, Edwin; Chetty, Rubendraj R.; Chirkut, Subash; Cronje, Larissa; de Vasconcellos, Kim; Dube, Nokukhanya Z.; Gama, N. Sibusiso; Green, Garyth M.; Green-Thompson, Randolph; Kinoo, Suman Mewa; Kistnasami, Prenolin; Maharaj, Kapil; Moodley, Manogaran S.; Mothae, Sibongile J.; Naidoo, Ruvashni; Aslam F Noorbhai, M.; Rughubar, Vivesh; Reddy, Jenendhiran; Singh, Avesh; Skinner, David L.; Smith, Murray J.; Singh, Bhagwan; Misra, Ravi; Naidoo, Maheshwar; Ramdharee, Pireshin; Selibea, Yvonne; Sewpersad, Selina; Sham, Shailendra; Wessels, Joseph D.; Africander, Cucu; Bejia, Tarek; Blakemore, Stephen P.; Botes, Marisa; Bunwarie, Bimalshakth; Hernandez, Carlos B.; Jeeraz, Mohammud A.; Legutko, Dagmara A.; Lopez, Acela G.; de Meyer, Jenine N.; Muzenda, Tanaka; Naidoo, Noel; Patel, Maryam; Pentela, Rao; Junge, Marina; Mansoor, Naj; Rademan, Lana; Scislowski, Pawel; Seedat, Ismail; van den Berg, Bianca; van der Merwe, Doreen; van Wyk, Steyn; Govender, Komalan; Naicker, Darshan; Ramjee, Rajesh; Saley, Mueen; Kuhn, Warren Paul; Matos-Puig, Roel; Alberto Lisi, Zaheer Moolla; Perez, Gisela; Beltran, Anna Valle; Lozano, Angels; Navarro, Carlos Delgado; Duca, Alejandro; Ernesto, Ernesto Pastor Martinez; Ferrando, Carlos; Fuentes, Isabel; García-Pérez, Maria Luisa; Gracia, Estefania; Palomares, Ana Izquierdo; Katime, Antonio; Miñana, Amanda; Incertis, Raul Raul; Romero, Esther; Romero Garcia, Carolina Soledad; Rubio, Concepcion; Artiles, Tania Socorro; Soro, Marina; Valls, Paola; Laguarda, Gisela Alaman; Benavent, Pau; Cuenca, Vicente Chisbert; Cueva, Andreu; Lafuente, Matilde; Parra, Asuncion Marques; Rodrigo, Alejandra Romero; Sanchez-Morcillo, Silvia; Tormo, Sergi; Redondo, Francisco Javier; de Andrés Ibanez, José Antonio; Diago, Lorena Gómez; José Hernández Cádiz, Maria; Manuel, Granell Gil; Peris, Raquel; Saiz, Cristina; Vivo, Jose Tatay; Soto, Maria Teresa Tebar; Brunete, Tamara; Cancho, David; Delgado García, David R.; Zamudio, Diana; del Valle, Santiago Garcia; Serrano, M. Luz; Alonso, Eduardo; Anillo, Victor; Maseda, Emilio; Salgado, Patricia; Suarez, Luis; Suarez-de-la-Rica, Alejandro; Villagrán, María José; Alonso, José Ignacio; Cabezuelo, Estefania; Garcia-Saiz, Irene; Lopez del Moral, Olga; Martín, Silvia; Gonzalez, Alba Perez; Doncel, Ma Sherezade Tovar; Vera, Martin Agüero; José Ávila Sánchez, Francisco; Castaño, Beatriz; Moreira, Beatriz Castaño; Risco, Sahely Flores; Martín, Daniel Paz; Martín, Fernando Pérez; Poza, Paloma; Ruiz, Adela; Serna Martínez, Wilson Fabio; Vicente, Bárbara Vázquez; Dominguez, Saul Velaz; Fernández, Salvador; Munoz-López, Alfonso; Bernat, Maria Jose; Mas, Arantxa; Planas, Kenneth; Jawad, Monir; Saeed, Yousif; Hedin, Annika; Levander, Helena; Holmström, Sandra; Lönn, David; Zoerner, Frank; Åkring, Irene; Widmark, Carl; Zettergren, Jan; Liljequist, Victor Aspelund; Nystrom, Lena; Odeberg-Wernerman, Suzanne; Oldner, Anders; Fagerlund, Malin Jonsson; Reje, Patrik; Lyckner, Sara; Sperber, Jesper; Adolfsson, Anne; Klarin, Bengt; Ögren, Katrin; Barras, Jean-Pierre; Bührer, Thomas; Despotidis, Vasileios; Helmy, Naeder; Holliger, Stephan; Raptis, Dimitri Aristotle; Schmid, Roger; Meyer, Antoine; Jaquet, Yves; Kessler, Ulf; Muradbegovic, Mirza; Nahum, Solange R.; Rotunno, Teresa; Schiltz, Boris; Voruz, François; Worreth, Marc; Christoforidis, Dimitri; Popeskou, Sotirios Georgios; Furrer, Markus; Prevost, Gian Andrea; Stocker, Andrea; Lang, Klaus; Breitenstein, Stefan; Ganter, Michael T.; Geisen, Martin; Soll, Christopher; Korkmaz, Michelle; Lubach, Iris; Schmitz, Michael; Meyer Zu Schwabedissen, Moritz; Moritz, Meyer Zu Schwabedissen; Zingg, Urs; Hillermann, Thomas; Wildi, Stefan; Pinto, Bernardo Bollen; Walder, Bernhard; Mariotti, Giustina; Slankamenac, Ksenija; Namuyuga, Mirioce; Kyomugisha, Edward; Kituuka, Olivia; Shikanda, Anne Wesonga; Kakembo, Nasser; Tom, Charles Otim; Antonina, Webombesa; Bua, Emmanuel; Ssettabi, Eden Michael; Epodoi, Joseph; Kabagenyi, Fiona; Kirya, Fred; Dempsey, Ged; Seasman, Colette; Nawaz Khan, Raja Basit; Kurasz, Claire; Macgregor, Mark; Shawki, Burhan; Francis, Daren; Hariharan, Vimal; Chau, Simon; Ellis, Kate; Butt, Georgina; Chicken, Dennis-Wayne; Christmas, Natasha; Allen, Samantha; Daniel, Gayatri Daniel; Dempster, Angie; Kemp, Juliette; Matthews, Lewis; Mcglone, Philip; Tambellini, Joanne; Trodd, Dawn; Freitas, Katie; Garg, Atul; Gupta, Janesh Kumar; Karpate, Shilpaja; Kulkarni, Aditi; O'Hara, Chloe; Troko, Jtroko; Angus, Kirsty; Bradley, Jacqueline; Brennan, Emma; Brooks, Carolyn; Brown, Janette; Brown, Gemma; Finch, Amanda; Gratrix, Karen; Hesketh, Sue; Hill, Gillian; Jeffs, Carol; Morgan, Maureen; Pemberton, Chris; Slawson, Nicola; Spickett, Helen; Swarbrick, Gemma; Thomas, Megan; van Duyvenvoorde, Greta; Brennan, Andrew; Briscoe, Richard; Cooper, Sarah; Lawton, Tom; Northey, Martin; Senaratne, Rashmi; Stanworth, Helen; Burrows, Lorna; Cain, Helen; Craven, Rachael; Davies, Keith; Jonas, Attila; Pachucki, Marcin; Walkden, Graham; Davies, Helen; Gudaca, Mariethel; Hobrok, Maria; Arawwawala, Dilshan; Fergey, Lauren; Gardiner, Matthew; Gunn, Jacqueline; Johnson, Lyndsay; Lofting, Amanda; Lyle, Amanda; Neela, Fiona Mc; Smolen, Susan; Topliffe, Joanne; Williams, Sarah; Bland, Martin; Balaji, Packianathaswamy; Kaura, Vikas; Lanka, Prasad; Smith, Neil; Ahmed, Ahmed; Myatt, John; Shenoy, Ravikiran; Soon, Wai Cheong; Tan, Jessica; Karadia, Sunny; Self, James; Durant, Emma; Tripathi, Shiva; Bullock, Clare; Campbell, Debbie; Ghosh, Alison; Hughes, Thomas; Zsisku, Lajos; Bengeri, Sheshagiri; Cowton, Amanda; Khalid, Mohammed Shazad; Limb, James; McAdam, Colin; Porritt, Mandy; Rafi, M. Amir; Shekar, Priya; Adams, David; Harden, Catherine; Hollands, Heidi; King, Angela; March, Linda; Minto, Gary; Patrick, Abigail; Squire, Rosalyn; Waugh, Darren; Kumara, Paramesh; Simeson, Karen; Yarwood, Jamie; Browning, Julie; Hatton, Jonathan; Julian, Howes; Mitra, Atideb; Newton, Maria; Pernu, Pawan Kootelu; Wilson, Alison; Commey, Thelma; Foot, Helen; Glover, Lyn; Gupta, Ajay; Lancaster, Nicola; Levin, Jill; Mackenzie, Felicity; Mestanza, Claire; Nofal, Emma; Pout, Lauren; Varden, Rosanna; Wild, Jonathan; Jones, Stephanie; Moreton, Sarah; Pulletz, Mark; Davies, Charlotte; Martin, Matthew; Thomas, Sian; Burns, Karen; McArthur, Carol; Patel, Panna; Lau, Gary; Rich, Natalie; Davis, Fiona; Lyons, Rachel; Port, Beth; Prout, Rachel; Smith, Christopher; Adelaja, Yemi; Bennett, Victoria; Bidd, Heena; Dumitrescu, Alexandra; Murphy, Jacqui Fox; Keen, Abigail; Mguni, Nhlanhla; Ong, Cheng; Adams, George; Boshier, Piers; Brown, Richard; Butryn, Izabella; Chatterjee, Jayanta; Freethy, Alexander; Lockwood, Geoffrey; Tsakok, Maria; Tsiligiannis, Sophia; Peat, William; Stephenson, Lorraine; Bradburn, Mike; Pick, Sara; Cunha, Pedro; Olagbaiye, Olufemi; Tayeh, Salim; Packianathaswamy, Balaji; Abernethy, Caroline; Balasubramaniam, Madhu; Bennett, Rachael; Bolton, David; Martinson, Victoria; Naylor, Charde; Bell, Stephanie; Heather, Blaylock; Kushakovsky, Vlad; Alcock, Liam; Alexander, Hazel; Anderson, Colette; Baker, Paul; Brookes, Morag; Cawthorn, Louise; Cirstea, Emanuel; Clarkson, Rachel; Colling, Kerry; Coulter, Ian; Das, Suparna; Haigh, Kathryn; Hamdan, Alhafidz; Hugill, Keith; Kottam, Lucksy; Lisseter, Emily; Mawdsley, Matthew; McGivern, Julie; Padala, Krishnaveni; Phelps, Victoria; Ramesh Kumar, Vineshykaa; Stewart, Kirsten; Towse, Kayley; Tregonning, Julie; Vahedi, Ali; Walker, Alycon; Baines, Duncan; Bilolikar, Anjali; Chande, Shiv; Copley, Edward; Dunk, Nigel; Kulkarni, Raghavendra; Kumar, Pawan; Metodiev, Yavor; Ncomanzi, Dumisani; Raithatha, Bhavesh; Raymode, Parizade; Szafranski, Jan; Twohey, Linda; Watt, Philip; Weatherall, Lucie; Weatherill, J.; Whitman, Zoe; Wighton, Elinor; Abayasinghe, Chamika; Chan, Alexander; Darwish, Sharif; Gill, James; Glasgow, Emma; Hadfield, Daniel; Harris, Clair; Hopkins, Phil; Kochhar, Arun; Kunst, Gudrun; Mellis, Clare; Pool, Andrew; Riozzi, Paul; Selman, Andrew; Smith, Emma-Jane; Vele, Liana; Gercek, Yuksel; Guy, Kramer; Holden, Douglas; Watson, Nicholas; Whysall, Karen; Andreou, Prematie; Hales, Dawn; Thompson, Jonathan; Bowrey, Sarah; McDonald, Shara; Gilmore, Jemma; Hills, Vicky; Kelly, Chan; Kelly, Sinead; Lloyd, Geraint; Abbott, Tom; Gall, Lewis; Torrance, Hew; Vivian, Mark; Berntsen, Emer; Nolan, Tracey; Turner, Angus; Vohra, Akbar; Brown, Andrew; Clark, Richard; Coughlan, Elaine; Daniel, Conway; Patvardhan, Chinmay; Pearson, Rachel; Predeep, Sheba; Saad, Hesham; Shanmugam, Mohanakrishnan; Varley, Simon; Wylie, Katharine; Cooper, Lucy; Makowski, Arystarch; Misztal, Beata; Moldovan, Eliza; Pegg, Claire; Donovan, Andrew; Foot, Jayne; Large, Simon; Claxton, Andrew; Netke, Bhagyashree; Armstrong, Richard; Calderwood, Claire; Kwok, Andy; Mohr, Otto; Oyeniyi, Peter; Patnaik, Lisa; Post, Benjamin; Ali, Sarah; Arshad, Homa; Baker, Gerard; Brenner, Laura; Brincat, Maximilian; Brunswicker, Annemarie; Cox, Hannah; Cozar, Octavian Ionut; Cheong, Edward; Durst, Alexander; Fengas, Lior; Flatt, Jim; Glister, Georgina; Narwani, Vishal; Photi, Evangelos; Rankin, Adeline; Rosbergen, Melissa; Tan, Mark; Beaton, Ceri; Horn, Rachel; Hunt, Jane; Rousseau, Guy; Stancombe, Lucia; Absar, Mohammed; Allsop, Joanne; Drinkwater, Zoe; Hodgkiss, Tracey; Smith, Kirsty; Brown, Jamie; Alexander-Sefre, Farhad; Campey, Lorraine; Dudgeon, Lucy; Hall, Kathryn; Hitchcock, Rachael; James, Lynne; Smith, Kate; Winstone, Ulrika; Ahmad, Norfaizan; Bauchmuller, Kris; Harrison, Jonathan; Jeffery, Holly; Miller, Duncan; Pinder, Angela; Pothuneedi, Sailaja; Rosser, Jonathan; Sanghera, Sumayer; Swift, Diane; Walker, Rachel; Bester, Delia; Cavanagh, Sarah; Cripps, Heather; Daniel, Harvey; Lynch, Julie; Paton, Alison; Pyke, Shirley; Scholefield, John; Whitworth, Helen; Bottrill, Fiona; Ramalingam, Ganesh; Webb, Stephen; Akerman, Nik; Antill, Philip; Bourner, Lynsey; Buckley, Sarah; Castle, Gail; Charles, Rob; Eggleston, Christopher; Foster, Rebecca; Gill, Satwant; Lindley, Kate; Lklouk, Mohamed; Lowery, Tracey; Martin, Oliver; Milne, David; O'Connor, Patrick; Ratcliffe, Andrew; Rose, Alastair; Smith, Annie; Varma, Sandeep; Ward, Jackie; Barcraft-Barnes, Helena; Camsooksai, Julie; Colvin, Carolyn; Reschreiter, Henrik; Tbaily, Lee; Venner, Nicola; Hamilton, Caroline; Kelly, Lewis; Toth-Tarsoly, Piroska; Dodsworth, Kerry; Foord, Denise; Gordon, Paul; Hawes, Elizabeth; Lamb, Nikki; Mouland, Johanna; Nightingale, Jeremy; Rose, Steve; Schrieber, Joe; Al'Amri, Khalid; Aladin, Hafiz; Arshad, Mohammed Asif; Barraclough, James; Bentley, Conor; Bergin, Colin; Carrera, Ronald; Clarkson, Aisling; Collins, Michelle; Cooper, Lauren; Denham, Samuel; Griffiths, Ewen; Ip, Peter; Jeyanthan, Somasundaram; Joory, Kavita; Kaur, Satwant; Marriott, Paul; Mitchell, Natalie; Nagaiah, Sukumar; Nilsson, Annette; Parekh, Nilesh; Pope, Martin; Seager, Joseph; Serag, Hosam; Tameem, Alifia; Thomas, Anna; Thunder, Joanne; Torrance, Andrew; Vohra, Ravinder; Whitehouse, Arlo; Wong, Tony; Blunt, Mark; Wong, Kate; Giles, Julian; Reed, Isabelle; Weller, Debbie; Bell, Gillian; Birch, Julie; Damant, Rose; Maiden, Jane; Mewies, Clare; Prince, Claire; Radford, Jane; Reynolds, Tim; Balain, Birender; Banerjee, Robin; Barnett, Andrew; Burston, Ben; Davies, Kirsty; Edwards, Jayne; Evans, Chris; Ford, David; Gallacher, Pete; Hill, Simon; Jaffray, David; Karlakki, Sudheer; Kelly, Cormac; Kennedy, Julia; Kiely, Nigel; Lewthwaite, Simon; Marquis, Chris; Ockendon, Matthew; Phillips, Stephen; Pickard, Simon; Richardson, James; Roach, Richard; Smith, Tony; Spencer-Jones, Richard; Steele, Niall; Steen, Julie; van Liefland, Marck; White, Steve; Faulds, Matthew; Harris, Meredyth; Kelly, Carrie; Nicol, Scott; Pearson, Sally Anne; Chukkambotla, Srikanth; Andrew, Alyson; Attrill, Elizabeth; Campbell, Graham; Datson, Amanda; Fouracres, Anna; Graterol, Juan; Graves, Lynne; Hong, Bosun; Ishimaru, Alexander; Karthikeyan, Arvind; King, Helen; Lawson, Tom; Lee, Gregory; Lyons, Saoirse; Hall, Andrew Macalister; Mathoulin, Sophie; Mcintyre, Eilidh; Mclaughlin, Danny; Mulcahy, Kathleen; Paddle, Jonathan; Ratcliffe, Anna; Robbins, James; Sung, Weilin; Tayo, Adeoluwa; Trembath, Lisa; Venugopal, Suneetha; Walker, Robert; Wigmore, Geoffrey; Boereboom, Catherine; Downes, Charlotte; Humphries, Ryan; Melbourne, Susan; Smith, Coral; Tou, Samson; Ullah, Shafa; Batchelor, Nick; Boxall, Leigh; Broomby, Rupert; Deen, Tariq; Hellewell, Alistair; Helliwell, Laurence; Hutchings, Melanie; Hutchins, David; Keenan, Samantha; Mackie, Donna; Potter, Alison; Smith, Frances; Stone, Lucy; Thorpe, Kevin; Wassall, Richard; Woodgate, Andrew; Baillie, Shelley; Campbell, Tara; James, Sarah; King, Chris; Marques de Araujo, Daniela; Martin, Daniel; Morkane, Clare; Neely, Julia; Rajendram, Rajkumar; Burton, Megan; James, Kathryn; Keevil, Edward; Minik, Orsolya; Morgan, Jenna; Musgrave, Anna; Rajanna, Harish; Roberts, Tracey; Adamson, Michael; Jumbe, Sandra; Kendall, Jennie; Muthuswamy, Mohan Babu; Anderson, Charlotte; Cruikshanks, Andrew; Wrench, Ian; Zeidan, Lisa; Ardern, Diane; Harris, Benjamin; Hellstrom, Johanna; Martin, Jane; Thomas, Richard; Varsani, Nimu; Brown, Caroline Wrey; Docherty, Philip; Gillies, Michael; McGregor, Euan; Usher, Helen; Craig, Jayne; Smith, Andrew; Ahmad, Tahania; Bodger, Phoebe; Creary, Thais; Fowler, Alexander; Hewson, Russ; Ijuo, Eke; Jones, Timothy; Kantsedikas, Ilya; Lahiri, Sumitra; McLean, Aaron Lawson; Niebrzegowska, Edyta; Phull, Mandeep; Wang, Difei; Wickboldt, Nadine; Baldwin, Jacqueline; Doyle, Donna; Mcmullan, Sean; Oladapo, Michelle; Owen, Thomas; Williams, Alexandra; Daniel, Hull; Gregory, Peter; Husain, Tauqeer; Kirk-Bayley, Justin; Mathers, Edward; Montague, Laura; Harper, Mark; White, Stuart; Jack, James; Ridley, Carrie; Avis, Joanne; Cook, Tim; Dali-Kemmery, Lola; Kerslake, Ian; Lambourne, Victoria; Pearson, Annabel; Boyd, Christine; Callaghan, Mark; Lawson, Cathy; McCrossan, Roopa; Nesbitt, Vanessa; O'connor, Laura; Scott, Julia; Sinclair, Rhona; Farid, Nahla; Morgese, Ciro; Bhatia, Kailash; Karmarkar, Swati; Ahmed, Jamil; Branagan, Graham; Hutton, Monica; Swain, Andrew; Brookes, Jamie; Cornell, Jonathan; Dolan, Rachael; Hulme, Jonathan; Jansen van Vuuren, Amanda; Jowitt, Tom; Kalashetty, Gunasheela; Lloyd, Fran; Patel, Kiran; Sherwood, Nicholas; Brown, Lynne; Chandler, Ben; Deighton, Kerry; Emma, Temlett; Haunch, Kirsty; Cheeseman, Michelle; Dent, Kathy; Garg, Sanjeev; Gray, Carol; Hood, Marion; Jones, Dawn; Juj, Joanne; Rao, Roshan; Walker, Tara; Al Anizi, Mashel; Cheah, Clarissa; Cheing, Yushio; Coutinho, Francisco; Gondo, Prisca; Hadebe, Bernard; Hove, Mazvangu Onie; Khader, Ahamed; Krishnachetty, Bobby; Rhodes, Karen; Sokhi, Jagdish; Baker, Katie-Anne; Bertram, Wendy; Looseley, Alex; Mouton, Ronelle; Hanna, George; Arnold, Glenn; Arya, Shobhit; Balfoussia, Danai; Baxter, Linden; Harris, James; Jones, Craig; Knaggs, Alison; Markar, Sheraz; Perera, Anisha; Scott, Alasdair; Shida, Asako; Sirha, Ravneet; Wright, Sally; Frost, Victoria; Gray, Catherine; Andrews, Emma; Arrandale, Lindsay; Barrett, Stephen; Cifra, Elna; Cooper, Mariese; Dragnea, Dragos; Elna, Cifra; Maclean, Jennifer; Meier, Sonja; Milliken, Donald; Munns, Christopher; Ratanshi, Nadir; Ramessur, Suneil; Salvana, Abegail; Watson, Anthony; Ali, Hani; Campbell, Gill; Critchley, Rebecca; Endersby, Simon; Hicks, Catherine; Liddle, Alison; Pass, Marc; Ritchie, Charlotte; Thomas, Charlotte; Too, Lingxi; Welsh, Sarah; Gill, Talvinder; Johnson, Joanne; Reed, Joanne; Davis, Edward; Papadopoullos, Sam; Attwood, Clare; Biffen, Andrew; Boulton, Kerenza; Gray, Sophie; Hay, David; Mills, Sarah; Montgomery, Jane; Riddell, Rory; Simpson, James; Bhardwaj, Neeraj; Paul, Elaine; Uwubamwen, Nosakhare; Alexander, Maini; Arrich, James; Arumugam, Swarna; Blackwood, Douglas; Boggiano, Victoria; Brown, Robyn; Chan, Yik Lam; Chatterjee, Devnandan; Chhabra, Ashok; Christian, Rachel; Costelloe, Hannah; Matthewman, Madeline Coxwell; Dalton, Emma; Darko, Julia; Davari, Maria; Dave, Tejal; Deacon, Matthew; Deepak, Shantal; Edmond, Holly; Ellis, Jessica; El-Sayed, Ahmed; Eneje, Philip; English, Rose; Ewe, Renee; Foers, William; Franklin, John; Gallego, Laura; Garrett, Emily; Goldberg, Olivia; Goss, Harry; Greaves, Rosanna; Harris, Rudy; Hennings, Charles; Jones, Eleanor; Kamali, Nelson; Kokkinos, Naomi; Lewis, Carys; Lignos, Leda; Malgapo, Evaleen Victoria; Malik, Rizwana; Milne, Andrew; Mulligan, John-Patrick; Nicklin, Philippa; Palipane, Natasha; Parsons, Thomas; Piper, Rebecca; Prakash, Rohan; Ramesh, Byron; Rasip, Sarah; Reading, Jacob; Rela, Mariam; Reyes, Anna; Stephens, Robert; Rooms, Martin; Shah, Karishma; Simons, Henry; Solanki, Shalil; Spowart, Emma; Stevens, Amy; Thomas, Christopher; Waggett, Helena; Yassaee, Arrash; Kennedy, Anthony; Scott, Sara; Somanath, Sameer; Berg, Andrew; Hernandez, Miguel; Nanda, Rajesh; Tank, Ghanshyambhai; Wilson, Natalie; Wilson, Debbie; Al-Soudaine, Yassr; Baldwin, Matthew; Cornish, Julie; Davies, Zoe; Davies, Leigh; Edwards, Marc; Frewer, Natasha; Gallard, Sian; Glasbey, James; Harries, Rhiannon; Hopkins, Luke; Kim, Taeyang; Koompirochana, Vilavan; Lawson, Simon; Lewis, Megan; Makzal, Zaid; Scourfield, Sarah; Ahmad, Yousra; Bates, Sarah; Blackwell, Clare; Bryant, Helen; Collins, Hannah; Coulter, Suzanne; Cruickshank, Ross; Daniel, Sonya; Daubeny, Thomas; Edwards, Mark; Golder, Kim; Hawkins, Lesley; Helen, Bryant; Hinxman, Honor; Levett, Denny; Salmon, Karen; Seaward, Leanne; Skinner, Ben; Tyrell, Bryony; Wadams, Beverley; Walsgrove, Joseph; Dickson, Jane; Constantin, Kathryn; Karen, Markwell; O'Brien, Peter; O'Donohoe, Lynn; Payne, Hannah; Sundayi, Saul; Walker, Elaine; Brooke, Jenny; Cardy, Jon; Humphreys, Sally; Kessack, Laura; Kubitzek, Christiane; Kumar, Suhas; Cotterill, Donna; Hodzovic, Emil; Hosdurga, Gurunath; Miles, Edward; Saunders, Glenn; Campbell, Marta; Chan, Peter; Jemmett, Kim; Raj, Ashok; Naik, Aditi; Oshowo, Ayo; Ramamoorthy, Rajarajan; Shah, Nimesh; Sylvan, Axel; Blyth, Katharine; Burtenshaw, Andrew; Freeman, David; Johnson, Emily; Lo, Philip; Martin, Terry; Plunkett, Emma; Wollaston, Julie; Allison, Joanna; Carroll, Christine; Craw, Nicholas; Craw, Sarah; Pitt-Kerby, Tressy; Rowland-Axe, Rebecca; Spurdle, Katie; McDonald, Andrew; Simon, Davies; Sinha, Vivek; Smith, Thomas; Banner-Goodspeed, Valerie; Boone, Myles; Campbell, Kathleen; Lu, Fengxin; Scannell, Joseph; Sobol, Julia; Balajonda, Naraida; Clemmons, Karen; Conde, Carlos; Elgasim, Magdi; Funk, Bonita; Hall, Roger; Hopkins, Thomas; Olaleye, Omowunmi; Omer, Omer; Pender, Michelle; Porto, Angelo; Stevens, Alice; Waweru, Peter; Yeh, Erlinda; Bodansky, Daniella; Evans, Adam; Kleopoulos, Steven; Maril, Robert; Mathney, Edward; Sanchez, Angela; Tinuoye, Elizabeth; Bateman, Brian; Eng, Kristen; Jiang, Ning; Ladha, Karim; Needleman, Joseph; Chen, Lee-Lynn; Lane, Rondall; Robinowitz, David; Ghushe, Neil; Irshad, Mariam; O'Connor, John; Patel, Samir; Takemoto, Steven; Wallace, Art; Mazzeffi, Michael; Rock, Peter; Wallace, Karin; Zhu, Xiaomao; Chua, Pandora; Mattera, Matthew; Sharar, Rebecca; Thilen, Stephan; Treggiari, Miriam; Morgan, Angela; Sofjan, Iwan; Subramaniam, Kathirvel; Avidan, Michael; Maybrier, Hannah; Muench, Maxwell; Wildes, Troy

    2018-01-01

    The surgical safety checklist is widely used to improve the quality of perioperative care. However, clinicians continue to debate the clinical effectiveness of this tool. Prospective analysis of data from the International Surgical Outcomes Study (ISOS), an international observational study of

  15. Application of Software Safety Analysis Methods

    International Nuclear Information System (INIS)

    Park, G. Y.; Hur, S.; Cheon, S. W.; Kim, D. H.; Lee, D. Y.; Kwon, K. C.; Lee, S. J.; Koo, Y. H.

    2009-01-01

    A fully digitalized reactor protection system, which is called the IDiPS-RPS, was developed through the KNICS project. The IDiPS-RPS has four redundant and separated channels. Each channel is mainly composed of a group of bistable processors which redundantly compare process variables with their corresponding setpoints and a group of coincidence processors that generate a final trip signal when a trip condition is satisfied. Each channel also contains a test processor called the ATIP and a display and command processor called the COM. All the functions were implemented in software. During the development of the safety software, various software safety analysis methods were applied, in parallel to the verification and validation (V and V) activities, along the software development life cycle. The software safety analysis methods employed were the software hazard and operability (Software HAZOP) study, the software fault tree analysis (Software FTA), and the software failure modes and effects analysis (Software FMEA)

  16. FMCSA safety program effectiveness measurement : carrier intervention effectiveness model, version 1.0 : [analysis brief].

    Science.gov (United States)

    2015-01-01

    The Carrier Intervention Effectiveness Model (CIEM) : provides the Federal Motor Carrier Safety : Administration (FMCSA) with a tool for measuring : the safety benefits of carrier interventions conducted : under the Compliance, Safety, Accountability...

  17. Nuclear safety in Slovak Republic. Safety analysis reports for WWER 440 reactors

    International Nuclear Information System (INIS)

    Rohar, S.

    1999-01-01

    Implementation of nuclear power program is connected to establishment of regulatory body for safe regulation of siting, construction, operation and decommissioning of nuclear installations. Licensing being one of the most important regulatory surveillance activity is based on independent regulatory review and assessment of information on nuclear safety for particular nuclear facility. Documents required to be submitted to the regulatory body by the licensee in Slovakia for the review and assessment usually named Safety Analysis Report (SAR) are presented in detail in this paper. Current status of Safety Analysis Reports for Bohunice V-1, Bohunice V-2 and Mochovce NPP is shown

  18. A Student Assessment Tool for Standardized Patient Simulations (SAT-SPS): Psychometric analysis.

    Science.gov (United States)

    Castro-Yuste, Cristina; García-Cabanillas, María José; Rodríguez-Cornejo, María Jesús; Carnicer-Fuentes, Concepción; Paloma-Castro, Olga; Moreno-Corral, Luis Javier

    2018-05-01

    The evaluation of the level of clinical competence acquired by the student is a complex process that must meet various requirements to ensure its quality. The psychometric analysis of the data collected by the assessment tools used is a fundamental aspect to guarantee the student's competence level. To conduct a psychometric analysis of an instrument which assesses clinical competence in nursing students at simulation stations with standardized patients in OSCE-format tests. The construct of clinical competence was operationalized as a set of observable and measurable behaviors, measured by the newly-created Student Assessment Tool for Standardized Patient Simulations (SAT-SPS), which was comprised of 27 items. The categories assigned to the items were 'incorrect or not performed' (0), 'acceptable' (1), and 'correct' (2). 499 nursing students. Data were collected by two independent observers during the assessment of the students' performance at a four-station OSCE with standardized patients. Descriptive statistics were used to summarize the variables. The difficulty levels and floor and ceiling effects were determined for each item. Reliability was analyzed using internal consistency and inter-observer reliability. The validity analysis was performed considering face validity, content and construct validity (through exploratory factor analysis), and criterion validity. Internal reliability and inter-observer reliability were higher than 0.80. The construct validity analysis suggested a three-factor model accounting for 37.1% of the variance. These three factors were named 'Nursing process', 'Communication skills', and 'Safe practice'. A significant correlation was found between the scores obtained and the students' grades in general, as well as with the grades obtained in subjects with clinical content. The assessment tool has proven to be sufficiently reliable and valid for the assessment of the clinical competence of nursing students using standardized patients

  19. Application of Modern Tools and Techniques for Mine Safety & Disaster Management

    Science.gov (United States)

    Kumar, Dheeraj

    2016-04-01

    The implementation of novel systems and adoption of improvised equipment in mines help mining companies in two important ways: enhanced mine productivity and improved worker safety. There is a substantial need for adoption of state-of-the-art automation technologies in the mines to ensure the safety and to protect health of mine workers. With the advent of new autonomous equipment used in the mine, the inefficiencies are reduced by limiting human inconsistencies and error. The desired increase in productivity at a mine can sometimes be achieved by changing only a few simple variables. Significant developments have been made in the areas of surface and underground communication, robotics, smart sensors, tracking systems, mine gas monitoring systems and ground movements etc. Advancement in information technology in the form of internet, GIS, remote sensing, satellite communication, etc. have proved to be important tools for hazard reduction and disaster management. This paper is mainly focused on issues pertaining to mine safety and disaster management and some of the recent innovations in the mine automations that could be deployed in mines for safe mining operations and for avoiding any unforeseen mine disaster.

  20. From Safety Analysis to Formal Specification

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark; Ravn, Anders P.; Stavridou, Victoria

    1998-01-01

    Software for safety critical systems must deal with the hazards identified bysafety analysis. This paper investigates, how the results of onesafety analysis technique, fault trees, are interpreted as software safetyrequirements to be used in the program design process. We propose thatfault tree...... analysis and program development use the samesystem model. This model is formalized in areal-time, interval logic, based on a conventional dynamic systems modelwith state evolving over time. Fault trees are interpreted astemporal formulas, and it is shown how such formulas can be usedfor deriving safety...

  1. Use of computational fluid dynamics codes for safety analysis of nuclear reactor systems, including containment. Summary report of a technical meeting

    International Nuclear Information System (INIS)

    2003-11-01

    Safety analysis is an important tool for justifying the safety of nuclear power plants. Typically, this type of analysis is performed by means of system computer codes with one dimensional approximation for modelling real plant systems. However, in the nuclear area there are issues for which traditional treatment using one dimensional system codes is considered inadequate for modelling local flow and heat transfer phenomena. There is therefore increasing interest in the application of three dimensional computational fluid dynamics (CFD) codes as a supplement to or in combination with system codes. There are a number of both commercial (general purpose) CFD codes as well as special codes for nuclear safety applications available. With further progress in safety analysis techniques, the increasing use of CFD codes for nuclear applications is expected. At present, the main objective with respect to CFD codes is generally to improve confidence in the available analysis tools and to achieve a more reliable approach to safety relevant issues. An exchange of views and experience can facilitate and speed up progress in the implementation of this objective. Both the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA) believed that it would be advantageous to provide a forum for such an exchange. Therefore, within the framework of the Working Group on the Analysis and Management of Accidents of the NEA's Committee on the Safety of Nuclear Installations, the IAEA and the NEA agreed to jointly organize the Technical Meeting on the Use of Computational Fluid Dynamics Codes for Safety Analysis of Reactor Systems, including Containment. The meeting was held in Pisa, Italy, from 11 to 14 November 2002. The publication constitutes the report of the Technical Meeting. It includes short summaries of the presentations that were made and of the discussions as well as conclusions and

  2. Road Safety Data, Collection, Transfer and Analysis DaCoTa. Deliverable 1.5. Vol.1 — Analysis of the stakeholder survey: perceived priority and availability of data and tools and relation to the stakeholders' characteristics. Vol.II: Analysis of Road Safety Management in the European countries.

    NARCIS (Netherlands)

    Papadimitriou, E. Yannis, G. Muhlrad, N. Vallet, G. Butler, I. Gitelman, V. Doveh, E. Dupont, E. Thomas, P. Talbot, R. Giustiniani, G. Machata, K. & Bax, C.

    2015-01-01

    Volume I: This report is part of the ‘Policy’ Work Package of the DaCoTA project (www.dacotaproject.eu). The ‘Policy’ Work Package is designed to fill in the gap in knowledge on road safety policy making processes, their institutional framework and the data, methods and technical tools needed to

  3. Software reference for SaTool - a Tool for Structural Analysis of Automated Systems

    DEFF Research Database (Denmark)

    Lorentzen, Torsten; Blanke, Mogens

    2004-01-01

    This software reference details the functions of SaTool – a tool for structural analysis of technical systems. SaTool is intended used as part of an industrial systems design cycle. Structural analysis is a graph-based technique where principal relations between variables express the system’s...... of the graph. SaTool makes analysis of the structure graph to provide knowledge about fundamental properties of the system in normal and faulty conditions. Salient features of SaTool include rapid analysis of possibility to diagnose faults and ability to make autonomous recovery should faults occur........ The list of such variables and functional relations constitute the system’s structure graph. Normal operation means all functional relations are intact. Should faults occur, one or more functional relations cease to be valid. In a structure graph, this is seen as the disappearance of one or more nodes...

  4. Efficient runner safety assessment during early design phase and root cause analysis

    International Nuclear Information System (INIS)

    Liang, Q W; Lais, S; Gentner, C; Braun, O

    2012-01-01

    Fatigue related problems in Francis turbines, especially high head Francis turbines, have been published several times in the last years. During operation the runner is exposed to various steady and unsteady hydraulic loads. Therefore the analysis of forced response of the runner structure requires a combined approach of fluid dynamics and structural dynamics. Due to the high complexity of the phenomena and due to the limitation of computer power, the numerical prediction was in the past too expensive and not feasible for the use as standard design tool. However, due to continuous improvement of the knowledge and the simulation tools such complex analysis has become part of the design procedure in ANDRITZ HYDRO. This article describes the application of most advanced analysis techniques in runner safety check (RSC), including steady state CFD analysis, transient CFD analysis considering rotor stator interaction (RSI), static FE analysis and modal analysis in water considering the added mass effect, in the early design phase. This procedure allows a very efficient interaction between the hydraulic designer and the mechanical designer during the design phase, such that a risk of failure can be detected and avoided in an early design stage.The RSC procedure can also be applied to a root cause analysis (RCA) both to find out the cause of failure and to quickly define a technical solution to meet the safety criteria. An efficient application to a RCA of cracks in a Francis runner is quoted in this article as an example. The results of the RCA are presented together with an efficient and inexpensive solution whose effectiveness could be proven again by applying the described RSC technics. It is shown that, with the RSC procedure developed and applied as standard procedure in ANDRITZ HYDRO such a failure is excluded in an early design phase. Moreover, the RSC procedure is compatible with different commercial and open source codes and can be easily adapted to apply for

  5. Efficient runner safety assessment during early design phase and root cause analysis

    Science.gov (United States)

    Liang, Q. W.; Lais, S.; Gentner, C.; Braun, O.

    2012-11-01

    Fatigue related problems in Francis turbines, especially high head Francis turbines, have been published several times in the last years. During operation the runner is exposed to various steady and unsteady hydraulic loads. Therefore the analysis of forced response of the runner structure requires a combined approach of fluid dynamics and structural dynamics. Due to the high complexity of the phenomena and due to the limitation of computer power, the numerical prediction was in the past too expensive and not feasible for the use as standard design tool. However, due to continuous improvement of the knowledge and the simulation tools such complex analysis has become part of the design procedure in ANDRITZ HYDRO. This article describes the application of most advanced analysis techniques in runner safety check (RSC), including steady state CFD analysis, transient CFD analysis considering rotor stator interaction (RSI), static FE analysis and modal analysis in water considering the added mass effect, in the early design phase. This procedure allows a very efficient interaction between the hydraulic designer and the mechanical designer during the design phase, such that a risk of failure can be detected and avoided in an early design stage.The RSC procedure can also be applied to a root cause analysis (RCA) both to find out the cause of failure and to quickly define a technical solution to meet the safety criteria. An efficient application to a RCA of cracks in a Francis runner is quoted in this article as an example. The results of the RCA are presented together with an efficient and inexpensive solution whose effectiveness could be proven again by applying the described RSC technics. It is shown that, with the RSC procedure developed and applied as standard procedure in ANDRITZ HYDRO such a failure is excluded in an early design phase. Moreover, the RSC procedure is compatible with different commercial and open source codes and can be easily adapted to apply for

  6. Business of Nuclear Safety Analysis Office, Nuclear Technology Test Center

    International Nuclear Information System (INIS)

    Hayakawa, Masahiko

    1981-01-01

    The Nuclear Technology Test Center established the Nuclear Safety Analysis Office to execute newly the works concerning nuclear safety analysis in addition to the works related to the proving tests of nuclear machinery and equipments. The regulations for the Nuclear Safety Analysis Office concerning its organization, business and others were specially decided, and it started the business formally in August, 1980. It is a most important subject to secure the safety of nuclear facilities in nuclear fuel cycle as the premise of developing atomic energy. In Japan, the strict regulation of safety is executed by the government at each stage of the installation, construction, operation and maintenance of nuclear facilities, based on the responsibility for the security of installers themselves. The Nuclear Safety Analysis Office was established as the special organ to help the safety examination related to the installation of nuclear power stations and others by the government. It improves and puts in order the safety analysis codes required for the cross checking in the safety examination, and carries out safety analysis calculation. It is operated by the cooperation of the Science and Technology Agency and the Agency of Natural Resources and Energy. The purpose of establishment, the operation and the business of the Nuclear Safety Analysis Office, the plan of improving and putting in order of analysis codes, and the state of the similar organs in foreign countries are described. (Kako, I.)

  7. Analysis of adverse events as a contribution to safety culture in the context of practice development

    Science.gov (United States)

    Hoffmann, Susanne; Frei, Irena Anna

    2017-01-01

    Background: Analysing adverse events is an effective patient safety measure. Aim: We show, how clinical nurse specialists have been enabled to analyse adverse events with the „Learning from Defects-Tool“ (LFD-Tool). Method: Our multi-component implementation strategy addressed both, the safety knowledge of clinical nurse specialists and their attitude towards patient safety. The culture of practice development was taken into account. Results: Clinical nurse specialists relate competency building on patient safety due to the application of the LFD-tool. Applying the tool, fosters the reflection of adverse events in care teams. Conclusion: Applying the „Learning from Defects-Tool“ promotes work-based learning. Analysing adverse events with the „Learning from Defects-Tool“ contributes to the safety culture in a hospital.

  8. Adapting Cognitive Task Analysis to Investigate Clinical Decision Making and Medication Safety Incidents.

    Science.gov (United States)

    Russ, Alissa L; Militello, Laura G; Glassman, Peter A; Arthur, Karen J; Zillich, Alan J; Weiner, Michael

    2017-05-03

    Cognitive task analysis (CTA) can yield valuable insights into healthcare professionals' cognition and inform system design to promote safe, quality care. Our objective was to adapt CTA-the critical decision method, specifically-to investigate patient safety incidents, overcome barriers to implementing this method, and facilitate more widespread use of cognitive task analysis in healthcare. We adapted CTA to facilitate recruitment of healthcare professionals and developed a data collection tool to capture incidents as they occurred. We also leveraged the electronic health record (EHR) to expand data capture and used EHR-stimulated recall to aid reconstruction of safety incidents. We investigated 3 categories of medication-related incidents: adverse drug reactions, drug-drug interactions, and drug-disease interactions. Healthcare professionals submitted incidents, and a subset of incidents was selected for CTA. We analyzed several outcomes to characterize incident capture and completed CTA interviews. We captured 101 incidents. Eighty incidents (79%) met eligibility criteria. We completed 60 CTA interviews, 20 for each incident category. Capturing incidents before interviews allowed us to shorten the interview duration and reduced reliance on healthcare professionals' recall. Incorporating the EHR into CTA enriched data collection. The adapted CTA technique was successful in capturing specific categories of safety incidents. Our approach may be especially useful for investigating safety incidents that healthcare professionals "fix and forget." Our innovations to CTA are expected to expand the application of this method in healthcare and inform a wide range of studies on clinical decision making and patient safety.

  9. Establishment of Safety Analysis System and Technology for CANDU Reactors

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Rhee, B. W.; Min, B. J.; Kim, H. T.; Kim, W. Y.; Yoon, C.; Chun, J. S.; Cho, M. S.; Jeong, J. Y.; Kang, H. S.

    2007-06-01

    The following 4 research items have been studied to establish a CANDU safety analysis system and to develop the relevant elementary technology for CANDU reactors. First, to improve and validate the CANDU design and operational safety analysis codes, the CANDU physics cell code WIMS-CANDU was improved, and validated, and an analysis of the moderator subcooling and pressure tube integrity has been performed for the large break LOCAs without ECCS. Also a CATHENA model and a CFD model for a post-blowdown fuel channel analysis have been developed and validated against two high temperature thermal-chemical experiments, CS28-1 and 2. Second, to improve the integrated operating system of the CANDU safety analysis codes, an extension has been made to them to include the core and fuel accident analyses, and a web-based CANDU database, CANTHIS version 2.0 was completed. Third, to assess the applicability of the ACR-7 safety analysis methodology to CANDU-6 the ACR-7 safety analysis methods were reviewed and the safety analysis methods of ACR-7 applicable to CANDU-6 were recommended. Last, to supplement and improve the existing CANDU safety analysis procedures, detailed analysis procedures have been prepared for individual accident scenarios. The results of this study can be used to resolve the CANDU safety issues, to improve the current design and operational safety analysis codes, and to technically support the Wolsong site to resolve their problems

  10. Establishment of Safety Analysis System and Technology for CANDU Reactors

    International Nuclear Information System (INIS)

    Min, Byung Joo; Kim, W. Y.; Kim, H. T.; Rhee, B. W.; Yoon, C.; Kang, H. S.; Yoo, K. J.

    2005-03-01

    To improve the CANDU design/operation safety analysis codes and the CANDU safety analysis methodology, the following works have been done. From the development of the lattice codes (WIMS/CANDU), the lattice model simulates the real core lattice geometry and the effect of the pressure tube creep to the core lattice parameter has been evaluated. From the development of the 3-dimensional thermal-hydraulic analysis model of the moderator behavior (CFX4-CAMO), validation of the model against STERN Lab experiment has been executed. The butterfly-shaped grid structure and the 3-dimensional flow resistance model for porous media were developed and applied to the moderator analysis for Wolsong units 2/3/4. The single fuel channel analysis codes for blowdown and post-blowdown were unified by CATHENA. The 3-dimensional fuel channel analysis model (CFX-CACH) has been developed for validation of CATHENA fuel channel analysis model. The interlinking analysis system (CANVAS) of the thermal-hydraulic safety analysis codes for the primary heat transport system and containment system has been executed. The database system of core physics and thermal-hydraulics experimental data for safety analysis has been established on the URL: http://CANTHIS.kaeri.re.kr. For documentation and Standardization of the general safety analysis procedure, the general safety analysis procedure is developed and applied to a large break LOCA. The present research results can be utilized for establishment of the independent safety analysis technology and acquisition of the optimal safety analysis technology

  11. Ignalina NPP Safety Analysis: Models and Results

    International Nuclear Information System (INIS)

    Uspuras, E.

    1999-01-01

    Research directions, linked to safety assessment of the Ignalina NPP, of the scientific safety analysis group are presented: Thermal-hydraulic analysis of accidents and operational transients; Thermal-hydraulic assessment of Ignalina NPP Accident Localization System and other compartments; Structural analysis of plant components, piping and other parts of Main Circulation Circuit; Assessment of RBMK-1500 reactor core and other. Models and main works carried out last year are described. (author)

  12. OECD/NEA expert group on uncertainty analysis for criticality safety assessment: Results of benchmark on sensitivity calculation (phase III)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, T.; Laville, C. [Institut de Radioprotection et de Surete Nucleaire IRSN, BP 17, 92262 Fontenay aux Roses (France); Dyrda, J. [Atomic Weapons Establishment AWE, Aldermaston, Reading, RG7 4PR (United Kingdom); Mennerdahl, D. [E Mennerdahl Systems EMS, Starvaegen 12, 18357 Taeby (Sweden); Golovko, Y.; Raskach, K.; Tsiboulia, A. [Inst. for Physics and Power Engineering IPPE, 1, Bondarenko sq., 249033 Obninsk (Russian Federation); Lee, G. S.; Woo, S. W. [Korea Inst. of Nuclear Safety KINS, 62 Gwahak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Bidaud, A.; Sabouri, P. [Laboratoire de Physique Subatomique et de Cosmologie LPSC, CNRS-IN2P3/UJF/INPG, Grenoble (France); Patel, A. [U.S. Nuclear Regulatory Commission (NRC), Washington, DC 20555-0001 (United States); Bledsoe, K.; Rearden, B. [Oak Ridge National Laboratory ORNL, M.S. 6170, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Gulliford, J.; Michel-Sendis, F. [OECD/NEA, 12, Bd des Iles, 92130 Issy-les-Moulineaux (France)

    2012-07-01

    The sensitivities of the k{sub eff} eigenvalue to neutron cross sections have become commonly used in similarity studies and as part of the validation algorithm for criticality safety assessments. To test calculations of the sensitivity coefficients, a benchmark study (Phase III) has been established by the OECD-NEA/WPNCS/EG UACSA (Expert Group on Uncertainty Analysis for Criticality Safety Assessment). This paper presents some sensitivity results generated by the benchmark participants using various computational tools based upon different computational methods: SCALE/TSUNAMI-3D and -1D, MONK, APOLLO2-MORET 5, DRAGON-SUSD3D and MMKKENO. The study demonstrates the performance of the tools. It also illustrates how model simplifications impact the sensitivity results and demonstrates the importance of 'implicit' (self-shielding) sensitivities. This work has been a useful step towards verification of the existing and developed sensitivity analysis methods. (authors)

  13. Food safety performance indicators to benchmark food safety output of food safety management systems.

    Science.gov (United States)

    Jacxsens, L; Uyttendaele, M; Devlieghere, F; Rovira, J; Gomez, S Oses; Luning, P A

    2010-07-31

    There is a need to measure the food safety performance in the agri-food chain without performing actual microbiological analysis. A food safety performance diagnosis, based on seven indicators and corresponding assessment grids have been developed and validated in nine European food businesses. Validation was conducted on the basis of an extensive microbiological assessment scheme (MAS). The assumption behind the food safety performance diagnosis is that food businesses which evaluate the performance of their food safety management system in a more structured way and according to very strict and specific criteria will have a better insight in their actual microbiological food safety performance, because food safety problems will be more systematically detected. The diagnosis can be a useful tool to have a first indication about the microbiological performance of a food safety management system present in a food business. Moreover, the diagnosis can be used in quantitative studies to get insight in the effect of interventions on sector or governmental level. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Software safety analysis application in installation phase

    International Nuclear Information System (INIS)

    Huang, H. W.; Yih, S.; Wang, L. H.; Liao, B. C.; Lin, J. M.; Kao, T. M.

    2010-01-01

    This work performed a software safety analysis (SSA) in the installation phase of the Lungmen nuclear power plant (LMNPP) in Taiwan, under the cooperation of INER and TPC. The US Nuclear Regulatory Commission (USNRC) requests licensee to perform software safety analysis (SSA) and software verification and validation (SV and V) in each phase of software development life cycle with Branch Technical Position (BTP) 7-14. In this work, 37 safety grade digital instrumentation and control (I and C) systems were analyzed by Failure Mode and Effects Analysis (FMEA), which is suggested by IEEE Standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The FMEA showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (authors)

  15. Software safety analysis techniques for developing safety critical software in the digital protection system of the LMR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Soo; Cheon, Se Woo; Kim, Chang Hoi; Sim, Yun Sub

    2001-02-01

    This report has described the software safety analysis techniques and the engineering guidelines for developing safety critical software to identify the state of the art in this field and to give the software safety engineer a trail map between the code and standards layer and the design methodology and documents layer. We have surveyed the management aspects of software safety activities during the software lifecycle in order to improve the safety. After identifying the conventional safety analysis techniques for systems, we have surveyed in details the software safety analysis techniques, software FMEA(Failure Mode and Effects Analysis), software HAZOP(Hazard and Operability Analysis), and software FTA(Fault Tree Analysis). We have also surveyed the state of the art in the software reliability assessment techniques. The most important results from the reliability techniques are not the specific probability numbers generated, but the insights into the risk importance of software features. To defend against potential common-mode failures, high quality, defense-in-depth, and diversity are considered to be key elements in digital I and C system design. To minimize the possibility of CMFs and thus increase the plant reliability, we have provided D-in-D and D analysis guidelines.

  16. Software safety analysis techniques for developing safety critical software in the digital protection system of the LMR

    International Nuclear Information System (INIS)

    Lee, Jang Soo; Cheon, Se Woo; Kim, Chang Hoi; Sim, Yun Sub

    2001-02-01

    This report has described the software safety analysis techniques and the engineering guidelines for developing safety critical software to identify the state of the art in this field and to give the software safety engineer a trail map between the code and standards layer and the design methodology and documents layer. We have surveyed the management aspects of software safety activities during the software lifecycle in order to improve the safety. After identifying the conventional safety analysis techniques for systems, we have surveyed in details the software safety analysis techniques, software FMEA(Failure Mode and Effects Analysis), software HAZOP(Hazard and Operability Analysis), and software FTA(Fault Tree Analysis). We have also surveyed the state of the art in the software reliability assessment techniques. The most important results from the reliability techniques are not the specific probability numbers generated, but the insights into the risk importance of software features. To defend against potential common-mode failures, high quality, defense-in-depth, and diversity are considered to be key elements in digital I and C system design. To minimize the possibility of CMFs and thus increase the plant reliability, we have provided D-in-D and D analysis guidelines

  17. Status of SPACE Safety Analysis Code Development

    International Nuclear Information System (INIS)

    Lee, Dong Hyuk; Yang, Chang Keun; Kim, Se Yun; Ha, Sang Jun

    2009-01-01

    In 2006, the Korean the Korean nuclear industry started developing a thermal-hydraulic analysis code for safety analysis of PWR(Pressurized Water Reactor). The new code is named as SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). The SPACE code can solve two-fluid, three-field governing equations in one dimensional or three dimensional geometry. The SPACE code has many component models required for modeling a PWR, such as reactor coolant pump, safety injection tank, etc. The programming language used in the new code is C++, for new generation of engineers who are more comfortable with C/C++ than old FORTRAN language. This paper describes general characteristics of SPACE code and current status of SPACE code development

  18. Systems Analysis of NASA Aviation Safety Program: Final Report

    Science.gov (United States)

    Jones, Sharon M.; Reveley, Mary S.; Withrow, Colleen A.; Evans, Joni K.; Barr, Lawrence; Leone, Karen

    2013-01-01

    A three-month study (February to April 2010) of the NASA Aviation Safety (AvSafe) program was conducted. This study comprised three components: (1) a statistical analysis of currently available civilian subsonic aircraft data from the National Transportation Safety Board (NTSB), the Federal Aviation Administration (FAA), and the Aviation Safety Information Analysis and Sharing (ASIAS) system to identify any significant or overlooked aviation safety issues; (2) a high-level qualitative identification of future safety risks, with an assessment of the potential impact of the NASA AvSafe research on the National Airspace System (NAS) based on these risks; and (3) a detailed, top-down analysis of the NASA AvSafe program using an established and peer-reviewed systems analysis methodology. The statistical analysis identified the top aviation "tall poles" based on NTSB accident and FAA incident data from 1997 to 2006. A separate examination of medical helicopter accidents in the United States was also conducted. Multiple external sources were used to develop a compilation of ten "tall poles" in future safety issues/risks. The top-down analysis of the AvSafe was conducted by using a modification of the Gibson methodology. Of the 17 challenging safety issues that were identified, 11 were directly addressed by the AvSafe program research portfolio.

  19. Software Tool for Automated Failure Modes and Effects Analysis (FMEA) of Hydraulic Systems

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Oh, B.

    2002-01-01

    Offshore, marine,aircraft and other complex engineering systems operate in harsh environmental and operational conditions and must meet stringent requirements of reliability, safety and maintability. To reduce the hight costs of development of new systems in these fields improved the design...... management techniques and a vast array of computer aided techniques are applied during design and testing stages. The paper present and discusses the research and development of a software tool for automated failure mode and effects analysis - FMEA - of hydraulic systems. The paper explains the underlying...

  20. Application of the integrated analysis of safety (ISA) to sequences of Total loss of feed water in a PWR Reactor

    International Nuclear Information System (INIS)

    Moreno Chamorro, P.; Gallego Diaz, C.

    2011-01-01

    The main objective of this work is to show the current status of the implementation of integrated analysis of safety (ISA) methodology and its SCAIS associated tool (system of simulation codes for ISA) to the sequence analysis of total loss of feedwater in a PWR reactor model Westinghouse of three loops with large, dry containment.

  1. Safety-critical Java for embedded systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Dalsgaard, Andreas Engelbredt; Hansen, René Rydhof

    2016-01-01

    This paper presents the motivation for and outcomes of an engineering research project on certifiable Javafor embedded systems. The project supports the upcoming standard for safety-critical Java, which defines asubset of Java and libraries aiming for development of high criticality systems....... The outcome of this projectinclude prototype safety-critical Java implementations, a time-predictable Java processor, analysis tools formemory safety, and example applications to explore the usability of safety-critical Java for this applicationarea. The text summarizes developments and key contributions...

  2. Qualification of safety-critical software for digital reactor safety system in nuclear power plants

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Park, Gee-Yong; Kim, Jang-Yeol; Lee, Jang-Soo

    2013-01-01

    This paper describes the software qualification activities for the safety-critical software of the digital reactor safety system in nuclear power plants. The main activities of the software qualification processes are the preparation of software planning documentations, verification and validation (V and V) of the software requirements specifications (SRS), software design specifications (SDS) and codes, and the testing of the integrated software and integrated system. Moreover, the software safety analysis and software configuration management are involved in the software qualification processes. The V and V procedure for SRS and SDS contains a technical evaluation, licensing suitability evaluation, inspection and traceability analysis, formal verification, software safety analysis, and an evaluation of the software configuration management. The V and V processes for the code are a traceability analysis, source code inspection, test case and test procedure generation. Testing is the major V and V activity of the software integration and system integration phases. The software safety analysis employs a hazard operability method and software fault tree analysis. The software configuration management in each software life cycle is performed by the use of a nuclear software configuration management tool. Through these activities, we can achieve the functionality, performance, reliability, and safety that are the major V and V objectives of the safety-critical software in nuclear power plants. (author)

  3. Status of generic actions items and safety analysis system of PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Min, Byung Joo

    2001-05-01

    This report described the review results of a GAIs(Generic Action Item) currently issued on safety analysis of PHWR(Pressurized Heavy Water Reactor) and the research activities and positions to solve the GAIs in each country which possess PHWRs. eviewing the Final Safety Analysis Report for Wolsong-2/3/4 Units, the safety analysis methodology, classification for accident scenarios, safety analysis codes, their interface, etc.. were described. From the present review report, it is intended to establish the CANDU safety analysis system by providing the better understandings and development plans for the safety analysis of PHWR. esults.

  4. Research for enhancing reactor safety

    International Nuclear Information System (INIS)

    1989-05-01

    Recent research for enhanced reactor safety covers extensive and numerous experiments and computed modelling activities designed to verify and to improve existing design requirements. The lectures presented at the meeting report GRS research results and the current status of reactor safety research in France. The GRS experts present results concerning expert systems and their perspectives in safety engineering, large-scale experiments and their significance in the development and verification of computer codes for thermohydraulic modelling of safety-related incidents, the advanced system code ATHLET for analysis of thermohydraulic processes of incidents, the analysis simulator which is a tool for fast evaluation of accident management measures, and investigations into event sequences and the required preventive emergency measures within the German Risk Study. (DG) [de

  5. Paediatric Automatic Phonological Analysis Tools (APAT).

    Science.gov (United States)

    Saraiva, Daniela; Lousada, Marisa; Hall, Andreia; Jesus, Luis M T

    2017-12-01

    To develop the pediatric Automatic Phonological Analysis Tools (APAT) and to estimate inter and intrajudge reliability, content validity, and concurrent validity. The APAT were constructed using Excel spreadsheets with formulas. The tools were presented to an expert panel for content validation. The corpus used in the Portuguese standardized test Teste Fonético-Fonológico - ALPE produced by 24 children with phonological delay or phonological disorder was recorded, transcribed, and then inserted into the APAT. Reliability and validity of APAT were analyzed. The APAT present strong inter- and intrajudge reliability (>97%). The content validity was also analyzed (ICC = 0.71), and concurrent validity revealed strong correlations between computerized and manual (traditional) methods. The development of these tools contributes to fill existing gaps in clinical practice and research, since previously there were no valid and reliable tools/instruments for automatic phonological analysis, which allowed the analysis of different corpora.

  6. NuFTA: A CASE Tool for Automatic Software Fault Tree Analysis

    International Nuclear Information System (INIS)

    Yun, Sang Hyun; Lee, Dong Ah; Yoo, Jun Beom

    2010-01-01

    Software fault tree analysis (SFTA) is widely used for analyzing software requiring high-reliability. In SFTA, experts predict failures of system through HA-ZOP (Hazard and Operability study) or FMEA (Failure Mode and Effects Analysis) and draw software fault trees about the failures. Quality and cost of the software fault tree, therefore, depend on knowledge and experience of the experts. This paper proposes a CASE tool NuFTA in order to assist experts of safety analysis. The NuFTA automatically generate software fault trees from NuSCR formal requirements specification. NuSCR is a formal specification language used for specifying software requirements of KNICS RPS (Reactor Protection System) in Korea. We used the SFTA templates proposed by in order to generate SFTA automatically. The NuFTA also generates logical formulae summarizing the failure's cause, and we have a plan to use the formulae usefully through formal verification techniques

  7. Plotting and analysis of fault trees in safety evaluation of nuclear power plants

    International Nuclear Information System (INIS)

    Wild, A.

    1979-12-01

    Fault tree analysis is a useful tool in determining the safety and reliability of nuclear power plants. The main strength of the fault tree method, its ability to detect cross-links between systems, can be used only if fault trees are constructed for complete nuclear generating stations. Such trees are large and have to be handled by computers. A system is described for handling fault trees using small computers such as the HP-1000 with disc drive, graphics terminal and x-y plotter

  8. Integrated framework for dynamic safety analysis

    International Nuclear Information System (INIS)

    Kim, Tae Wan; Karanki, Durga R.

    2012-01-01

    In the conventional PSA (Probabilistic Safety Assessment), detailed plant simulations by independent thermal hydraulic (TH) codes are used in the development of accident sequence models. Typical accidents in a NPP involve complex interactions among process, safety systems, and operator actions. As independent TH codes do not have the models of operator actions and full safety systems, they cannot literally simulate the integrated and dynamic interactions of process, safety systems, and operator responses. Offline simulation with pre decided states and time delays may not model the accident sequences properly. Moreover, when stochastic variability in responses of accident models is considered, defining all the combinations for simulations will be cumbersome task. To overcome some of these limitations of conventional safety analysis approach, TH models are coupled with the stochastic models in the dynamic event tree (DET) framework, which provides flexibility to model the integrated response due to better communication as all the accident elements are in the same model. The advantages of this framework also include: Realistic modeling in dynamic scenarios, comprehensive results, integrated approach (both deterministic and probabilistic models), and support for HRA (Human Reliability Analysis)

  9. Safety analysis of the UTSI-CFFF superconducting magnet

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Smith, R.P.; VanderArend, P.C.; Hsu, Y.H.

    1979-01-01

    In designing a large superconducting magnet such as the UTSI-CFFF dipole, great attention must be devoted to the safety of the magnet and personnel. The conductor for the UTSI-CFFF magnet incorporates much copper stabilizer, which both insures its cryostability, and contributes to the magnet safety. The quench analysis and the cryostat fault condition analysis are presented. Two analyses of exposed turns follow; the first shows that gas cooling protects uncovered turns; the second, that the cryostat pressure relief system protects them. Finally the failure mode and safety analysis is presented

  10. Identification of potential safety-related incidents applicable to a breeder fuel reprocessing plant

    International Nuclear Information System (INIS)

    Perkins, W.C.

    1980-01-01

    The current emphasis on safety in all phases of the nuclear fuel cycle requires that safety features be identified and included in designs of nuclear facilities at the earliest possible stage. A popular method for the early identification of these safety features is the Preliminary Hazards Analysis. An extension of this analysis is to illustrate the nature of a hazard by its effects in accident situations, that is, to identify what are called safety-related incidents. Some useful tools are described which have been used at the Savannah River Laboratory, SRL, to make Preliminary Hazards Analyses as well as safety analyses of facilities for processing spent nuclear fuels from both power and production reactors. These tools have also been used in safety studies of waste handling operations at the Savannah River Plant. The tools are the SRL Incidents Data Bank and the What If meeting. The application of this methodology to a proposed facility which has breeder fuel reprocessing capability, the Hot Experimental Facility (HEF) is illustrated

  11. Capillary electrophoresis for the analysis of contaminants in emerging food safety issues and food traceability.

    Science.gov (United States)

    Vallejo-Cordoba, Belinda; González-Córdova, Aarón F

    2010-07-01

    This review presents an overview of the applicability of CE in the analysis of chemical and biological contaminants involved in emerging food safety issues. Additionally, CE-based genetic analyzers' usefulness as a unique tool in food traceability verification systems was presented. First, analytical approaches for the determination of melamine and specific food allergens in different foods were discussed. Second, natural toxin analysis by CE was updated from the last review reported in 2008. Finally, the analysis of prion proteins associated with the "mad cow" crises and the application of CE-based genetic analyzers for meat traceability were summarized.

  12. Structural analysis of ITER sub-assembly tools

    International Nuclear Information System (INIS)

    Nam, K.O.; Park, H.K.; Kim, D.J.; Ahn, H.J.; Lee, J.H.; Kim, K.K.; Im, K.; Shaw, R.

    2011-01-01

    The ITER Tokamak assembly tools are purpose-built assembly tools to complete the ITER Tokamak machine which includes the cryostat and the components contained therein. The sector sub-assembly tools descried in this paper are main assembly tools to assemble vacuum vessel, thermal shield and toroidal filed coils into a complete 40 o sector. The 40 o sector sub-assembly tools are composed of sector sub-assembly tool, including radial beam, vacuum vessel supports and mid-plane brace tools. These tools shall have sufficient strength to transport and handle heavy weight of the ITER Tokamak machine reached several hundred tons. Therefore these tools should be designed and analyzed to confirm both the strength and structural stability even in the case of conservative assumptions. To verify structural stabilities of the sector sub-assembly tools in terms of strength and deflection, ANSYS code was used for linear static analysis. The results of the analysis show that these tools are designed with sufficient strength and stiffness. The conceptual designs of these tools are briefly described in this paper also.

  13. The RUBA Watchdog Video Analysis Tool

    DEFF Research Database (Denmark)

    Bahnsen, Chris Holmberg; Madsen, Tanja Kidholm Osmann; Jensen, Morten Bornø

    We have developed a watchdog video analysis tool called RUBA (Road User Behaviour Analysis) to use for processing of traffic video. This report provides an overview of the functions of RUBA and gives a brief introduction into how analyses can be made in RUBA.......We have developed a watchdog video analysis tool called RUBA (Road User Behaviour Analysis) to use for processing of traffic video. This report provides an overview of the functions of RUBA and gives a brief introduction into how analyses can be made in RUBA....

  14. Contamination Analysis Tools

    Science.gov (United States)

    Brieda, Lubos

    2015-01-01

    This talk presents 3 different tools developed recently for contamination analysis:HTML QCM analyzer: runs in a web browser, and allows for data analysis of QCM log filesJava RGA extractor: can load in multiple SRS.ana files and extract pressure vs. time dataC++ Contamination Simulation code: 3D particle tracing code for modeling transport of dust particulates and molecules. Uses residence time to determine if molecules stick. Particulates can be sampled from IEST-STD-1246 and be accelerated by aerodynamic forces.

  15. Integrated Radiation Analysis and Design Tools

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Radiation Analysis and Design Tools (IRADT) Project develops and maintains an integrated tool set that collects the current best practices, databases,...

  16. Exploration of High-Dimensional Scalar Function for Nuclear Reactor Safety Analysis and Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer; Michael Pernice; Robert Nourgaliev

    2013-05-01

    The next generation of methodologies for nuclear reactor Probabilistic Risk Assessment (PRA) explicitly accounts for the time element in modeling the probabilistic system evolution and uses numerical simulation tools to account for possible dependencies between failure events. The Monte-Carlo (MC) and the Dynamic Event Tree (DET) approaches belong to this new class of dynamic PRA methodologies. A challenge of dynamic PRA algorithms is the large amount of data they produce which may be difficult to visualize and analyze in order to extract useful information. We present a software tool that is designed to address these goals. We model a large-scale nuclear simulation dataset as a high-dimensional scalar function defined over a discrete sample of the domain. First, we provide structural analysis of such a function at multiple scales and provide insight into the relationship between the input parameters and the output. Second, we enable exploratory analysis for users, where we help the users to differentiate features from noise through multi-scale analysis on an interactive platform, based on domain knowledge and data characterization. Our analysis is performed by exploiting the topological and geometric properties of the domain, building statistical models based on its topological segmentations and providing interactive visual interfaces to facilitate such explorations. We provide a user’s guide to our software tool by highlighting its analysis and visualization capabilities, along with a use case involving dataset from a nuclear reactor safety simulation.

  17. Pandora - a simulation tool for safety assessments. Technical description and user's guide

    International Nuclear Information System (INIS)

    Ekstroem, Per-Anders

    2010-12-01

    This report documents a flexible simulation tool, Pandora, used in several post closure safety assessments in both Sweden and Finland to assess the radiological dose to man due to releases from radioactive waste repositories. Pandora allows the user to build compartment models to represent the migration and fate of radionuclides in the environment. The tool simplifies the implementation and simulation of radioecological biosphere models in which there exist a large set of radionuclides and input variables. Based on the well-known technical computing software MATLAB and especially its interactive graphical environment Simulink, Pandora receives many benefits. MATLAB/Simulink is a highly flexible tool used for simulations of practically any type of dynamic system; it is widely used, continuously maintained, and often upgraded. By basing the tool on this commercial software package, we gain both the graphical interface provided by Simulink, as well as the ability to access the advanced numerical equation solving routines in MATLAB. Since these numerical methods are well established and quality assured in their MATLAB implementation, the solution methods used in Pandora can be considered to have high level of quality assurance. The structure of Pandora provides clarity in the model format, which means the model itself assists its own documentation, since the model can be understood by inspecting its structure. With the introduction of the external tool Pandas (Pandora assessment tool), version handling and an integrated way of performing the entire calculation chain has been added. Instead of being dependent on other commercial statistical software as Risk for performing probabilistic assessments, they can now be performed within the tool

  18. Reliability Analysis for Safety Grade PLC(POSAFE-Q)

    International Nuclear Information System (INIS)

    Choi, Kyung Chul; Song, Seung Whan; Park, Gang Min; Hwang, Sung Jae

    2012-01-01

    Safety Grade PLC(Programmable Logic Controller), POSAFE-Q, was developed recently in accordance with nuclear regulatory and requirements. In this paper, describe reliability analysis for digital safety grade PLC (especially POSAFE-Q). Reliability analysis scope is Prediction, Calculation of MTBF (Mean Time Between Failure), FMEA (Failure Mode Effect Analysis), PFD (Probability of Failure on Demand). (author)

  19. Status of safety analysis reports

    Energy Technology Data Exchange (ETDEWEB)

    Cserhati, A

    1999-06-01

    The safety regulation connected to both of the Atomic Acts from 1980 and 1996 requires preparation of the Preliminary Safety Analysis Report (PSAR) as well as Final SAR (FSAR). In this respect the licensing procedure for the construction and commissioning of Paks NPP did not formally deviate from the standards applied in developed countries; this is particularly true if comparison is made with the standards applied for commissioning NPPs in the second half of the seventies. By the time the overall development of internationally accepted safety standards and some existing deficiencies of earlier SAR made necessary a general reassessment of the plant safety (AGNES project). The carried out PSR for Paks-1 and 2 also added a valuable contribution to the SAR content, however a formal update of SAR is not made yet. A Hungarian nuclear authority decree from 1997 obligates the licensee to prepare and submit a major upgrade of FSAR until the mid of 2000, after finishing the PSR for Paks-3 and 4. From this date a periodic update of FSAR is required every year. The operational license renewal affects only the PSR but not the FSAR updating. The new Nuclear Safety Code outlines the contents of PSAR and FSAR, based on US NRC Reg. Guide 1. 70. Rev. 3. Hungary by now can fulfill the upgrading of SAR without major external technical or financial help. The AGNES project covered the safety analysis chapters of SAR. It was financed mainly by the country. In the project there have been involved in limited cases as performers the VTT (Finland), Belgatom (Belgium), GRS (Germany), etc., the IVO (Finland) fulfilled tasks of an independent reviewer for safety analysis. The AGNES had certain interconnection with the similar IAEA RER safety reassessment project for WWER-440/213. The PSR for Paks-1 and 2 have been carried out by the Paks staff from the resources of the plant. During the evaluation of several parts of Paks-3 and 4 PSR documentation the authority intends to use certain

  20. Status of safety analysis reports

    International Nuclear Information System (INIS)

    Cserhati, A.

    1999-01-01

    The safety regulation connected to both of the Atomic Acts from 1980 and 1996 requires preparation of the Preliminary Safety Analysis Report (PSAR) as well as Final SAR (FSAR). In this respect the licensing procedure for the construction and commissioning of Paks NPP did not formally deviate from the standards applied in developed countries; this is particularly true if comparison is made with the standards applied for commissioning NPPs in the second half of the seventies. By the time the overall development of internationally accepted safety standards and some existing deficiencies of earlier SAR made necessary a general reassessment of the plant safety (AGNES project). The carried out PSR for Paks-1 and 2 also added a valuable contribution to the SAR content, however a formal update of SAR is not made yet. A Hungarian nuclear authority decree from 1997 obligates the licensee to prepare and submit a major upgrade of FSAR until the mid of 2000, after finishing the PSR for Paks-3 and 4. From this date a periodic update of FSAR is required every year. The operational license renewal affects only the PSR but not the FSAR updating. The new Nuclear Safety Code outlines the contents of PSAR and FSAR, based on US NRC Reg. Guide 1. 70. Rev. 3. Hungary by now can fulfill the upgrading of SAR without major external technical or financial help. The AGNES project covered the safety analysis chapters of SAR. It was financed mainly by the country. In the project there have been involved in limited cases as performers the VTT (Finland), Belgatom (Belgium), GRS (Germany), etc., the IVO (Finland) fulfilled tasks of an independent reviewer for safety analysis. The AGNES had certain interconnection with the similar IAEA RER safety reassessment project for WWER-440/213. The PSR for Paks-1 and 2 have been carried out by the Paks staff from the resources of the plant. During the evaluation of several parts of Paks-3 and 4 PSR documentation the authority intends to use certain

  1. Safety analysis of the nuclear chemistry Building 151

    International Nuclear Information System (INIS)

    Kvam, D.

    1984-01-01

    This report summarizes the results of a safety analysis that was done on Building 151. The report outlines the methodology, the analysis, and the findings that led to the low hazard classification. No further safety evaluation is indicated at this time. 5 tables

  2. DESIGN PACKAGE 1E SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    M. Salem

    1995-06-23

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1E, Surface Facilities, (for a list of design items included in the package 1E system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1E structures/systems/components(S/S/Cs) in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions.

  3. The influence of sodium fires on LMFBRs safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Justin, F [DSN/Centre de Fontenay-aux-Roses, Fontenay-aux-Roses (France)

    1979-03-01

    In a sodium cooled reactor, sodium fires are accidental conditions to be taken into account in safety analysis. For the various sodium categories, fire conditions, associated risks, safety analysis objectives and detailed corresponding issues are indicated, An experimental research program can be deduced from these considerations. This report covers the following: safety analysis methodology; primary sodium fires; secondary sodium fires; auxiliary sodium fires, and related experimental research programs.

  4. The influence of sodium fires on LMFBRs safety analysis

    International Nuclear Information System (INIS)

    Justin, F.

    1979-01-01

    In a sodium cooled reactor, sodium fires are accidental conditions to be taken into account in safety analysis. For the various sodium categories, fire conditions, associated risks, safety analysis objectives and detailed corresponding issues are indicated, An experimental research program can be deduced from these considerations. This report covers the following: safety analysis methodology; primary sodium fires; secondary sodium fires; auxiliary sodium fires, and related experimental research programs

  5. Meta-analysis of surgical safety checklist effects on teamwork, communication, morbidity, mortality, and safety.

    Science.gov (United States)

    Lyons, Vanessa E; Popejoy, Lori L

    2014-02-01

    The purpose of this study is to examine the effectiveness of surgical safety checklists on teamwork, communication, morbidity, mortality, and compliance with safety measures through meta-analysis. Four meta-analyses were conducted on 19 studies that met the inclusion criteria. The effect size of checklists on teamwork and communication was 1.180 (p = .003), on morbidity and mortality was 0.123 (p = .003) and 0.088 (p = .001), respectively, and on compliance with safety measures was 0.268 (p teamwork and communication, reduce morbidity and mortality, and improve compliance with safety measures. This meta-analysis is limited in its generalizability based on the limited number of studies and the inclusion of only published research. Future research is needed to examine possible moderating variables for the effects of surgical safety checklists.

  6. Reliability analysis of software based safety functions

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1993-05-01

    The methods applicable in the reliability analysis of software based safety functions are described in the report. Although the safety functions also include other components, the main emphasis in the report is on the reliability analysis of software. The check list type qualitative reliability analysis methods, such as failure mode and effects analysis (FMEA), are described, as well as the software fault tree analysis. The safety analysis based on the Petri nets is discussed. The most essential concepts and models of quantitative software reliability analysis are described. The most common software metrics and their combined use with software reliability models are discussed. The application of software reliability models in PSA is evaluated; it is observed that the recent software reliability models do not produce the estimates needed in PSA directly. As a result from the study some recommendations and conclusions are drawn. The need of formal methods in the analysis and development of software based systems, the applicability of qualitative reliability engineering methods in connection to PSA and the need to make more precise the requirements for software based systems and their analyses in the regulatory guides should be mentioned. (orig.). (46 refs., 13 figs., 1 tab.)

  7. The adaptive safety analysis and monitoring system

    Science.gov (United States)

    Tu, Haiying; Allanach, Jeffrey; Singh, Satnam; Pattipati, Krishna R.; Willett, Peter

    2004-09-01

    The Adaptive Safety Analysis and Monitoring (ASAM) system is a hybrid model-based software tool for assisting intelligence analysts to identify terrorist threats, to predict possible evolution of the terrorist activities, and to suggest strategies for countering terrorism. The ASAM system provides a distributed processing structure for gathering, sharing, understanding, and using information to assess and predict terrorist network states. In combination with counter-terrorist network models, it can also suggest feasible actions to inhibit potential terrorist threats. In this paper, we will introduce the architecture of the ASAM system, and discuss the hybrid modeling approach embedded in it, viz., Hidden Markov Models (HMMs) to detect and provide soft evidence on the states of terrorist network nodes based on partial and imperfect observations, and Bayesian networks (BNs) to integrate soft evidence from multiple HMMs. The functionality of the ASAM system is illustrated by way of application to the Indian Airlines Hijacking, as modeled from open sources.

  8. Radiological Safety Analysis Computer (RSAC) Program Version 7.0 Users’ Manual

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Bradley J Schrader

    2009-03-01

    The Radiological Safety Analysis Computer (RSAC) Program Version 7.0 (RSAC-7) is the newest version of the RSAC legacy code. It calculates the consequences of a release of radionuclides to the atmosphere. A user can generate a fission product inventory from either reactor operating history or a nuclear criticality event. RSAC-7 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates the decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for inhalation, air immersion, ground surface, ingestion, and cloud gamma pathways. RSAC-7 can be used as a tool to evaluate accident conditions in emergency response scenarios, radiological sabotage events and to evaluate safety basis accident consequences. This users’ manual contains the mathematical models and operating instructions for RSAC-7. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-7. This program was designed for users who are familiar with radiological dose assessment methods.

  9. Radiological Safety Analysis Computer (RSAC) Program Version 7.2 Users’ Manual

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Bradley J Schrader

    2010-10-01

    The Radiological Safety Analysis Computer (RSAC) Program Version 7.2 (RSAC-7) is the newest version of the RSAC legacy code. It calculates the consequences of a release of radionuclides to the atmosphere. A user can generate a fission product inventory from either reactor operating history or a nuclear criticality event. RSAC-7 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates the decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for inhalation, air immersion, ground surface, ingestion, and cloud gamma pathways. RSAC-7 can be used as a tool to evaluate accident conditions in emergency response scenarios, radiological sabotage events and to evaluate safety basis accident consequences. This users’ manual contains the mathematical models and operating instructions for RSAC-7. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-7. This program was designed for users who are familiar with radiological dose assessment methods.

  10. Radiological Safety Analysis Computer (RSAC) Program Version 7.0 Users Manual

    International Nuclear Information System (INIS)

    Schrader, Bradley J.

    2009-01-01

    The Radiological Safety Analysis Computer (RSAC) Program Version 7.0 (RSAC-7) is the newest version of the RSAC legacy code. It calculates the consequences of a release of radionuclides to the atmosphere. A user can generate a fission product inventory from either reactor operating history or a nuclear criticality event. RSAC-7 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates the decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for inhalation, air immersion, ground surface, ingestion, and cloud gamma pathways. RSAC-7 can be used as a tool to evaluate accident conditions in emergency response scenarios, radiological sabotage events and to evaluate safety basis accident consequences. This users manual contains the mathematical models and operating instructions for RSAC-7. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-7. This program was designed for users who are familiar with radiological dose assessment methods

  11. Issues affecting advanced passive light-water reactor safety analysis

    International Nuclear Information System (INIS)

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented

  12. Safety analysis methodology for OPR 1000

    International Nuclear Information System (INIS)

    Hwang-Yong, Jun

    2005-01-01

    Full text: Korea Electric Power Research Institute (KEPRI) has been developing inhouse safety analysis methodology based on the delicate codes available to KEPRI to overcome the problems arising from currently used vendor oriented methodologies. For the Loss of Coolant Accident (LOCA) analysis, the KREM (KEPRI Realistic Evaluation Methodology) has been developed based on the RELAP-5 code. The methodology was approved for the Westinghouse 3-loop plants by the Korean regulatory organization and the project to extent the methodology to the Optimized Power Reactor 1000 (OPR1000) has been ongoing since 2001. Also, for the Non-LOCA analysis, the KNAP (Korea Non-LOCA Analysis Package) has been developed using the UNICORN-TM code system. To demonstrate the feasibility of these codes systems and methodologies, some typical cases of the design basis accidents mentioned in the final safety analysis report (FSAR) were analyzed. (author)

  13. Swimming pool reactor reliability and safety analysis

    International Nuclear Information System (INIS)

    Li Zhaohuan

    1997-01-01

    A reliability and safety analysis of Swimming Pool Reactor in China Institute of Atomic Energy is done by use of event/fault tree technique. The paper briefly describes the analysis model, analysis code and main results. Meanwhile it also describes the impact of unassigned operation status on safety, the estimation of effectiveness of defense tactics in maintenance against common cause failure, the effectiveness of recovering actions on the system reliability, the comparison of occurrence frequencies of the core damage by use of generic and specific data

  14. Road Safety Data, Collection, Transfer and Analysis DaCoTa. Deliverable 1.2: Road safety management investigation model and questionnaire.

    NARCIS (Netherlands)

    Dupont, H. Martensen, H. Papadimitriou, E. Yannis, G. Muhlrad, N. Jähi, H. Vallet, G. Giustiniani, G. Tripodi, A. Usami, D. Bax, C. Wijnen, W. Schöne, M.-L. Machata, K. Buttler, I. Zysinska, M. Talbot, R. Gitelman, V. & Hakkert, S. & Muhlrad, N. Gitelman, V. & Buttler, I. (Eds.)

    2012-01-01

    The aim of the DaCoTA Work Package 1 is to investigate road safety policy-making and management processes in Europe. In the Deliverables released previously, the Work Package 1 assessed the experts’ needs in terms of road safety knowledge, data and decision support tools (Deliverable 1.1/4.1), as

  15. Analysis on safety production in coal mines Henan Province

    Institute of Scientific and Technical Information of China (English)

    KONG Liu-an; ZHANG Wen-yong

    2006-01-01

    Based on the rigorous situation of safety production in coal mines, the paper analyzed the statistical data of recent accidents indexes in Henan's coal mines. Using investigation and comparison analysis methods, a specified analysis on mining conditions, technical facility level, safety input and vocational quality of workers in Henan's coal mines was conducted. The result indicates that there have been existing such main safety production problems as weak safety management, low-level facilities, inadequate safety input and poor vocational quality and so on. Finally it proposes such reference solutions as to establish and perfect coal mining supervision and management system, to increase safety investment into techniques and facilities and to strengthen workers' safety education and introduction of more high-level professional talents.

  16. Preliminary safety analysis of unscrammed events for KLFR

    International Nuclear Information System (INIS)

    Kim, S.J.; Ha, G.S.

    2005-01-01

    The report presents the design features of KLFR; Safety Analysis Code; steady-state calculation results and analysis results of unscrammed events. The calculations of the steady-state and unscrammed events have been performed for the conceptual design of KLFR using SSC-K code. UTOP event results in no fuel damage and no centre-line melting. The inherent safety features are demonstrated through the analysis of ULOHS event. Although the analysis of ULOF has much uncertainties in the pump design, the analysis results show the inherent safety characteristics. 6% flow of rated flow of natural circulation is formed in the case of ULOF. In the metallic fuel rod, the cladding temperature is somewhat high due to the low heat transfer coefficient of lead. ULOHS event should be considered in design of RVACS for long-term cooling

  17. SACS2: Dynamic and Formal Safety Analysis Method for Complex Safety Critical System

    International Nuclear Information System (INIS)

    Koh, Kwang Yong; Seong, Poong Hyun

    2009-01-01

    Fault tree analysis (FTA) is one of the most widely used safety analysis technique in the development of safety critical systems. However, over the years, several drawbacks of the conventional FTA have become apparent. One major drawback is that conventional FTA uses only static gates and hence can not capture dynamic behaviors of the complex system precisely. Although several attempts such as dynamic fault tree (DFT), PANDORA, formal fault tree (FFT) and so on, have been made to overcome this problem, they can not still do absolute or actual time modeling because they adapt relative time concept and can capture only sequential behaviors of the system. Second drawback of conventional FTA is its lack of rigorous semantics. Because it is informal in nature, safety analysis results heavily depend on an analyst's ability and are error-prone. Finally reasoning process which is to check whether basic events really cause top events is done manually and hence very labor-intensive and timeconsuming for the complex systems. In this paper, we propose a new safety analysis method for complex safety critical system in qualitative manner. We introduce several temporal gates based on timed computational tree logic (TCTL) which can represent quantitative notion of time. Then, we translate the information of the fault trees into UPPAAL query language and the reasoning process is automatically done by UPPAAL which is the model checker for time critical system

  18. MSSV Modeling for Wolsong-1 Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Bok Ja; Choi, Chul Jin; Kim, Seoung Rae [KEPCO EandC, Daejeon (Korea, Republic of)

    2010-10-15

    The main steam safety valves (MSSVs) are installed on the main steam line to prevent the overpressurization of the system. MSSVs are held in closed position by spring force and the valves pop open by internal force when the main steam pressure increases to open set pressure. If the overpressure condition is relieved, the valves begin to close. For the safety analysis of anticipated accident condition, the safety systems are modeled conservatively to simulate the accident condition more severe. MSSVs are also modeled conservatively for the analysis of over-pressurization accidents. In this paper, the pressure transient is analyzed at over-pressurization condition to evaluate the conservatism for MSSV models

  19. [Model of Analysis and Prevention of Accidents - MAPA: tool for operational health surveillance].

    Science.gov (United States)

    de Almeida, Ildeberto Muniz; Vilela, Rodolfo Andrade de Gouveia; da Silva, Alessandro José Nunes; Beltran, Sandra Lorena

    2014-12-01

    The analysis of work-related accidents is important for accident surveillance and prevention. Current methods of analysis seek to overcome reductionist views that see these occurrences as simple events explained by operator error. The objective of this paper is to analyze the Model of Analysis and Prevention of Accidents (MAPA) and its use in monitoring interventions, duly highlighting aspects experienced in the use of the tool. The descriptive analytical method was used, introducing the steps of the model. To illustrate contributions and or difficulties, cases where the tool was used in the context of service were selected. MAPA integrates theoretical approaches that have already been tried in studies of accidents by providing useful conceptual support from the data collection stage until conclusion and intervention stages. Besides revealing weaknesses of the traditional approach, it helps identify organizational determinants, such as management failings, system design and safety management involved in the accident. The main challenges lie in the grasp of concepts by users, in exploring organizational aspects upstream in the chain of decisions or at higher levels of the hierarchy, as well as the intervention to change the determinants of these events.

  20. Measuring patient safety culture in Taiwan using the Hospital Survey on Patient Safety Culture (HSOPSC).

    Science.gov (United States)

    Chen, I-Chi; Li, Hung-Hui

    2010-06-07

    Patient safety is a critical component to the quality of health care. As health care organizations endeavour to improve their quality of care, there is a growing recognition of the importance of establishing a culture of patient safety. In this research, the authors use the Hospital Survey on Patient Safety Culture (HSOPSC) questionnaire to assess the culture of patient safety in Taiwan and attempt to provide an explanation for some of the phenomena that are unique in Taiwan. The authors used HSOPSC to measure the 12 dimensions of the patient safety culture from 42 hospitals in Taiwan. The survey received 788 respondents including physicians, nurses, and non-clinical staff. This study used SPSS 15.0 for Windows and Amos 7 software tools to perform the statistical analysis on the survey data, including descriptive statistics and confirmatory factor analysis of the structural equation model. The overall average positive response rate for the 12 patient safety culture dimensions of the HSOPSC survey was 64%, slightly higher than the average positive response rate for the AHRQ data (61%). The results showed that hospital staff in Taiwan feel positively toward patient safety culture in their organization. The dimension that received the highest positive response rate was "Teamwork within units", similar to the results reported in the US. The dimension with the lowest percentage of positive responses was "Staffing". Statistical analysis showed discrepancies between Taiwan and the US in three dimensions, including "Feedback and communication about error", "Communication openness", and "Frequency of event reporting". The HSOPSC measurement provides evidence for assessing patient safety culture in Taiwan. The results show that in general, hospital staffs in Taiwan feel positively toward patient safety culture within their organization. The existence of discrepancies between the US data and the Taiwanese data suggest that cultural uniqueness should be taken into

  1. RELAP5 - a new tool for pressurized water reactor safety analysis

    International Nuclear Information System (INIS)

    Perneczky, L.

    1988-11-01

    The RELAP type pressurized water reactor safety system codes are used world wide for the loss of coolant accident analyses. In this paper the RELAP5, the advanced generation of the code family is presented. The relationship to RELAP4/mod6 version is discussed. The capability of the RELAP5/mod1-EUR version for small, medium and large break LOCA is investigated based on international user experience. (author) 30 refs

  2. Economic consideration of nuclear safety and cost benefit analysis in nuclear safety regulation

    International Nuclear Information System (INIS)

    Choi, Y. S.; Choi, K. S.; Choi, K. W.; Song, I. J.; Park, D. K.

    2001-01-01

    For the optimization of nuclear safety regulation, understanding of economic aspects of it becomes increasingly important together with the technical approach used so far to secure nuclear safety. Relevant economic theories on private and public goods were reviewed to re-illuminate nuclear safety from the economic perspective. The characteristics of nuclear safety as a public good was reviewed and discussed in comparison with the car safety as a private safety good. It was shown that the change of social welfare resulted from the policy change induced can be calculated by the summation of compensating variation(CV) of individuals. It was shown that the value of nuclear safety could be determined in monetary term by this approach. The theoretical background and history of cost benefit analysis of nuclear safety regulation were presented and topics for future study were suggested

  3. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    International Nuclear Information System (INIS)

    Rao, Suman

    2007-01-01

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly

  4. The PEC reactor. Safety analysis: Detailed reports

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In the safety-analysis of the PEC Brasimone reactor (Italy), attention was focused on the role of plant-incident analysis during the design stage and the conclusions reached. The analysis regarded the following: thermohydraulic incidents at full power; incidents with the reactor shut down; reactivity incidents; core local faults; analysis of fuel-handling incidents; engineered safeguards and passive safety features; coolant leakage and sodium fires; research and development studies on the seismic behaviour of the PEC fast reactor; generalized sodium fire; severe accidents, accident sequences with shudown; reference accident. Both the theoretical and experimental analyses demonstrated the adequacy of the design of the PEC fast reactor, aimed at minimizing the consequences of a hypothetical disruptive core accident with mechanical energy release. It was shown that the containment barriers were sized correctly and that the residual heat from a disassembled core would be removed. The re-evaluation of the source term emphasized the conservative nature of the hypotheses assumed in the preliminary safety analysis for calculating the risk to the public.

  5. Assessment of food safety practices of food service food handlers (risk assessment data): testing a communication intervention (evaluation of tools).

    Science.gov (United States)

    Chapman, Benjamin; Eversley, Tiffany; Fillion, Katie; Maclaurin, Tanya; Powell, Douglas

    2010-06-01

    Globally, foodborne illness affects an estimated 30% of individuals annually. Meals prepared outside of the home are a risk factor for acquiring foodborne illness and have been implicated in up to 70% of traced outbreaks. The Centers for Disease Control and Prevention has called on food safety communicators to design new methods and messages aimed at increasing food safety risk-reduction practices from farm to fork. Food safety infosheets, a novel communication tool designed to appeal to food handlers and compel behavior change, were evaluated. Food safety infosheets were provided weekly to food handlers in working food service operations for 7 weeks. It was hypothesized that through the posting of food safety infosheets in highly visible locations, such as kitchen work areas and hand washing stations, that safe food handling behaviors of food service staff could be positively influenced. Using video observation, food handlers (n = 47) in eight food service operations were observed for a total of 348 h (pre- and postintervention combined). After the food safety infosheets were introduced, food handlers demonstrated a significant increase (6.7%, P < 0.05, 95% confidence interval) in mean hand washing attempts, and a significant reduction in indirect cross-contamination events (19.6%, P < 0.05, 95% confidence interval). Results of the research demonstrate that posting food safety infosheets is an effective intervention tool that positively influences the food safety behaviors of food handlers.

  6. Safety assessment methodologies for near surface disposal facilities. Results of a co-ordinated research project (ISAM). Volume 1: Review and enhancement of safety assessment approaches and tools. Volume 2: Test cases

    International Nuclear Information System (INIS)

    2004-07-01

    For several decades, countries have made use of near surface facilities for the disposal of low and intermediate level radioactive waste. In line with the internationally agreed principles of radioactive waste management, the safety of these facilities needs to be ensured during all stages of their lifetimes, including the post-closure period. By the mid 1990s, formal methodologies for evaluating the long term safety of such facilities had been developed, but intercomparison of these methodologies had revealed a number of discrepancies between them. Consequently, in 1997, the International Atomic Energy Agency launched a Co-ordinated Research Project (CRP) on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM). The particular objectives of the CRP were to provide a critical evaluation of the approaches and tools used in post-closure safety assessment for proposed and existing near-surface radioactive waste disposal facilities, enhance the approaches and tools used and build confidence in the approaches and tools used. The CRP ran until 2000 and resulted in the development of a harmonized assessment methodology (the ISAM project methodology), which was applied to a number of test cases. Over seventy participants from twenty-two Member States played an active role in the project and it attracted interest from around seven hundred persons involved with safety assessment in seventy-two Member States. The results of the CRP have contributed to the Action Plan on the Safety of Radioactive Waste Management which was approved by the Board of Governors and endorsed by the General Conference in September 2001. Specifically, they contribute to Action 5, which requests the IAEA Secretariat to 'develop a structured and systematic programme to ensure adequate application of the Agency's waste safety standards', by elaborating on the Safety Requirements on 'Near Surface Disposal of Radioactive Waste' (Safety Standards Series No. WS-R-1) and

  7. Rad waste disposal safety analysis / Integrated safety assessment of a waste repository

    International Nuclear Information System (INIS)

    Jeong, Jongtae; Choi, Jongwon; Kang, Chulhyung

    2012-04-01

    We developed CYPRUS+and adopted PID and RES method for the development of scenario. Safety performance assessment program was developed using GoldSim for the safety assessment of disposal system for the disposal of spnet fuels and wastes resulting from the pyrpoprocessing. Biosphere model was developed and verified in cooperation with JAEA. The capability to evaluate post-closure performance and safety was added to the previously developed program. And, nuclide migration and release to the biosphere considering site characteristics was evaluated by using deterministic and probabilistic approach. Operational safety assessment for drop, fire, and earthquake was also statistically evaluated considering well-established input parameter distribution. Conservative assessment showed that dose rate is below the limit value of low- and intermediate-level repository. Gas generation mechanism within engineered barrier was defined and its influence on safety was evaluated. We made probabilistic safety assessment by obtaining the probability distribution functions of important input variables and also made a sensitivity analysis. The maximum annual dose rate was shown to be below the safety limit value of 10 mSv/yr. The structure and element of safety case was developed to increase reliability of safety assessment methodology for a deep geological repository. Finally, milestone for safety case development and implementation strategy for each safety case element was also proposed

  8. Implications of power uprates on safety margins of nuclear power plants. Report of a technical meeting

    International Nuclear Information System (INIS)

    2004-09-01

    The safety of nuclear power plants (NPPs) is based on the defence in depth concept, which relies on successive physical barriers (fuel matrix, cladding, primary system pressure boundary and containment) and other provisions to control radioactive materials and on multiple levels of protection against damage to these barriers. Deterministic safety analysis is an important tool for conforming the adequacy and efficiency of provisions within the defence in depth concept and is used to predict the response of an NPP in predetermined operational states. This type of safety analysis applies a specific set of rules and specific acceptance criteria. Deterministic analysis is typically focused on neutronic, thermohydraulic, radiological and structural aspects, which are often analysed with different computational tools. The advanced computational tools developed for deterministic safety analysis are used for better establishment and utilization of licensing margins or safety margins in consideration of analysis results. At the same time, the existence of such margins ensures that NPPs operate safely in all modes of operation and at all times. To properly assess and address the existing margins and to be able to take advantage of unnecessary conservatisms, state of the art analytical tools intended for safety assessment have been developed. Progress made in the development and application of modern codes for safety analysis and better understanding of phenomena involved in plant design and operation enable the analysts to determine safety margins in consideration of analysis results (licensing margins) with higher precision. There is a general tendency for utilities to take advantage of unnecessarily large conservatisms in safety analyses and to utilize them for reactor power uprates, better utilization of nuclear fuel, higher operational flexibility and for justification of lifetime extension. The present publication sets forth the results of a Technical Meeting on the

  9. Dimensions of Safety Climate among Iranian Nurses.

    Science.gov (United States)

    Konjin, Z Naghavi; Shokoohi, Y; Zarei, F; Rahimzadeh, M; Sarsangi, V

    2015-10-01

    Workplace safety has been a concern of workers and managers for decades. Measuring safety climate is crucial in improving safety performance. It is also a method of benchmarking safety perception. To develop and validate a psychometrics scale for measuring nurses' safety climate. Literature review, subject matter experts and nurse's judgment were used in items developing. Content validity and reliability for new tool were tested by content validity index (CVI) and test-retest analysis, respectively. Exploratory factor analysis (EFA) with varimax rotation was used to improve the interpretation of latent factors. A 40-item scale in 6 factors was developed, which could explain 55% of the observed variance. The 6 factors included employees' involvement in safety and management support, compliance with safety rules, safety training and accessibility to personal protective equipment, hindrance to safe work, safety communication and job pressure, and individual risk perception. The proposed scale can be used in identifying the needed areas to implement interventions in safety climate of nurses.

  10. Applying decision trial and evaluation laboratory as a decision tool for effective safety management system in aviation transport

    Directory of Open Access Journals (Sweden)

    Ifeanyichukwu Ebubechukwu Onyegiri

    2016-10-01

    Full Text Available In recent years, in the aviation industry, the weak engineering controls and lapses associated with safety management systems (SMSs are responsible for the seemingly unprecedented disasters. A previous study has confirmed the difficulties experienced by safety managers with SMSs and the need to direct research to this area of investigation for more insights and progress in the evaluation and maintenance of SMSs in the aviation industry. The purpose of this work is to examine the application of Decision Trial and Evaluation Laboratory (DEMATEL to the aviation industry in developing countries with illustration using the Nigerian aviation survey data for the validation of the method. The advantage of the procedure over other decision making methods is in its ability to apply feedback in its decision making. It also affords us the opportunity of breaking down the complex aviation SMS components and elements which are multi-variate in nature through the analysis of the contributions of the diverse system criteria from the perspective of cause and effects, which in turn yields easier and yet more effective aviation transportation accident pre-corrective actions. In this work, six revised components of an SMS were identified and DEMATEL was applied to obtain their direct and indirect impacts and influences on the overall SMS performance. Data collection was by the survey questionnaire, which served as the initial direct-relation matrix, coded in Matlab software for establishing the impact relation map (IRM. The IRM was then plotted in MS Excel spread-sheet software. From our results, safety structure and regulation has the highest impact level on an SMS with a corresponding positive relation level value. In conclusion, the results agree with those of previous researchers that used grey relational analysis. Thus, DEMATEL serves as a great tool and resource for the safety manager.

  11. Electric capacitance tomography and two-phase flow for the nuclear reactor safety analysis

    International Nuclear Information System (INIS)

    Lee, Jae Young

    2008-01-01

    Recently electric capacitance tomography has been developed to be used in the analysis of two-phase flow. Although its electric field is not focused as the hard ray tomography such as the X-ray or gamma ray, its convenience of easy access to the system and easy maintenance due to no requirement of radiation shielding benefits us in its application in the two-phase flow study, one of important area in the nuclear safety analysis. In the present paper, the practical technologies in the electric capacitance tomography are represented in both parts of hardware and software. In the software part, both forward problem and inverse problem are discussed and the method of regularization. In the hardware part, the brief discussion of the electronics circuits is made which provides femto farad resolution with a reasonable speed (150 frame/sec for 16 electrodes). Some representative ideal cases are studied to demonstrate its potential capability for the two-phase flow analysis. Also, some variations of the tomography such as axial tomography, and three dimensional tomography are discussed. It was found that the present ECT is expected to become a useful tool to understand the complicated three dimensional two-phase flow which may be an important feature to be equipped by the safety analysis codes. (author)

  12. Cost benefit analysis of reactor safety systems

    International Nuclear Information System (INIS)

    Maurer, H.A.

    1984-01-01

    Cost/benefit analysis of reactor safety systems is a possibility appropriate to deal with reactor safety. The Commission of the European Communities supported a study on the cost-benefit or cost effectiveness of safety systems installed in modern PWR nuclear power plants. The following systems and their cooperation in emergency cases were in particular investigated in this study: the containment system (double containment), the leakage exhaust and control system, the annulus release exhaust system and the containment spray system. The benefit of a safety system is defined according to its contribution to the reduction of the radiological consequences for the environment after a LOCA. The analysis is so far performed in two different steps: the emergency core cooling system is considered to function properly, failure of the emergency core cooling system is assumed (with the possible consequence of core melt-down) and the results may demonstrate the evidence that striving for cost-effectiveness can produce a safer end result than the philosophy of safety at any cost. (orig.)

  13. Nuclear safety chains

    International Nuclear Information System (INIS)

    Robbins, M.C.; Eames, G.F.; Mayell, J.R.

    1981-01-01

    An original scheme has been developed for expressing the complex interrelationships associated with the engineered safeguards provided for a nuclear power station. This management tool, based upon network diagrams called Nuclear Safety Chains, looks at the function required of a particular item of safety plant, defines all of the vital supplies and support features necessary for successful operation, and expresses them in visual form, to facilitate analysis and optimisation for operations and maintenance staff. The safety chains are confined to manual schemes at present, although they are designed to be compatible with modern computer techniques. Their usefulness with any routine maintenance planning application on high technology plant is already being appreciated. (author)

  14. Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel-Induced Pipeline Damage.

    Science.gov (United States)

    Zhang, Limao; Wu, Xianguo; Qin, Yawei; Skibniewski, Miroslaw J; Liu, Wenli

    2016-02-01

    Tunneling excavation is bound to produce significant disturbances to surrounding environments, and the tunnel-induced damage to adjacent underground buried pipelines is of considerable importance for geotechnical practice. A fuzzy Bayesian networks (FBNs) based approach for safety risk analysis is developed in this article with detailed step-by-step procedures, consisting of risk mechanism analysis, the FBN model establishment, fuzzification, FBN-based inference, defuzzification, and decision making. In accordance with the failure mechanism analysis, a tunnel-induced pipeline damage model is proposed to reveal the cause-effect relationships between the pipeline damage and its influential variables. In terms of the fuzzification process, an expert confidence indicator is proposed to reveal the reliability of the data when determining the fuzzy probability of occurrence of basic events, with both the judgment ability level and the subjectivity reliability level taken into account. By means of the fuzzy Bayesian inference, the approach proposed in this article is capable of calculating the probability distribution of potential safety risks and identifying the most likely potential causes of accidents under both prior knowledge and given evidence circumstances. A case concerning the safety analysis of underground buried pipelines adjacent to the construction of the Wuhan Yangtze River Tunnel is presented. The results demonstrate the feasibility of the proposed FBN approach and its application potential. The proposed approach can be used as a decision tool to provide support for safety assurance and management in tunnel construction, and thus increase the likelihood of a successful project in a complex project environment. © 2015 Society for Risk Analysis.

  15. Safety systems and safety analysis of the Qinshan phase III CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Cai Jianping; Shen Sen; Barkman, N.

    1999-01-01

    The author introduces the Canadian nuclear reactor safety philosophy and the Qinshan Phase III CANDU NPP safety systems and safety analysis, which are designed and performed according to this philosophy. The concept of 'defence-in-depth' is a key element of the Canadian nuclear reactor safety philosophy. The design concepts of redundancy, diversity, separation, equipment qualification, quality assurance, and use of appropriate design codes and standards are adopted in the design. Four special safety systems as well as a set of reliable safety support systems are incorporated in the design of Qinshan phase III CANDU for accident mitigation. The assessment results for safety systems performance show that the fundamental safety criteria for public dose, and integrity of fuel, channels and the reactor building, are satisfied

  16. Development and applications of a safety assessment system for promoting safety culture in nuclear power plants

    International Nuclear Information System (INIS)

    Takano, Ken-ichi; Hasegawa, Naoko; Hirose, Ayako; Hayase, Ken-ichi

    2004-01-01

    For past five years, CRIEPI has been continuing efforts to develop and make applications of a 'safety assessment system' which enable to measure the safety level of organization. This report describe about frame of the system, assessment results and its reliability, and relation between labor accident rate in the site and total safety index (TSI), which can be obtained by the principal factors analysis. The safety assessment in this report is based on questionnaire survey of employee. The format and concrete questionnaires were developed using existing literatures including organizational assessment tools. The tailored questionnaire format involved 124 questionnaire items. The assessment results could be considered as a well indicator of the safety level of organization, safety management, and safety awareness of employee. (author)

  17. Experiment on safety software evaluation

    International Nuclear Information System (INIS)

    Soubies, B.; Henry, J.Y.

    1994-06-01

    The licensing procedures process of nuclear plants includes compulsory steps which bring about a thorough exam of the commands control system. In this context the IPSN uses a tool called MALPAS to carry out an analysis of the quality of the software involved in safety control. The IPSN also try to obtain the automation of the generation of test games necessary for dynamical analysis. The MALPAS tool puts forward the particularities of programing which can influence the testability and the upholding of the studied software. (TEC). 4 refs

  18. Analysis of logging data from nuclear borehole tools

    International Nuclear Information System (INIS)

    Hovgaard, J.; Oelgaard, P.L.

    1989-12-01

    The processing procedure for logging data from a borehole of the Stenlille project of Dansk Naturgas A/S has been analysed. The tools considered in the analysis were an integral, natural-gamma tool, a neutron porosity tool, a gamma density tool and a caliper tool. It is believed that in most cases the processing procedure used by the logging company in the interpretation of the raw data is fully understood. An exception is the epithermal part of the neutron porosity tool where all data needed for an interpretation were not available. The analysis has shown that some parts of the interpretation procedure may not be consistent with the physical principle of the tools. (author)

  19. Challenges on innovations of newly-developed safety analysis codes

    International Nuclear Information System (INIS)

    Yang, Yanhua; Zhang, Hao

    2016-01-01

    With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.

  20. Challenges on innovations of newly-developed safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yanhua [Shanghai Jiao Tong Univ. (China). School of Nuclear Science and Engineering; Zhang, Hao [State Nuclear Power Software Development Center, Beijing (China). Beijing Future Science and Technology City

    2016-05-15

    With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.

  1. Safety Analysis Report for Ignalina NPP

    International Nuclear Information System (INIS)

    Negrivoda, G.

    1997-01-01

    In December 1994 an agreement was signed between the European Bank for Reconstruction and Development and the Republic of Lithuania for the grant of 32.86 MECU for the safety Improvement at Ignalina NPP. One of the conditions for the provision of the grant, was a requirement for an in-depth analysis of the safety level at Ignalina NPP in the scope and according to the standards acceptable for a western nuclear power plant, and to publish a Safety Analysis Report (SAR). The report should investigate and analyze any factor that could limit a safe operation of the plant, and provide recommendations for actual safety improvements. According to the agreement, Lithuania had to finalize the SAR until 31 December, 1995. The bank has also organized and financed investigation of safety at Ignalina NPP and preparation of the SAR. EBRD made an agreement with Sweden's Vattenfall, which subcontracted well-known companies from Canada, USA, Germany, etc., and also the Russian Research and Development Institute of Power Engineering (NIKIET), reactor designer of Ignalina NPP. The SAR is a very comprehensive document and contains about 8000 pages of text, diagrams and tables. The main findings of the SAR are provided in the article. A large number of discrepancies with modern rules and western practices was detected, but they were not proved to be serious enough to require reactors shutdown. Based on the recommendations of the SAR Ignalina NPP has worked out Safety Improvement Program No. 2 (SIP-2), which is planned for three years and will cost 486 MLT. (author)

  2. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Suman [Risk Analyst (India)]. E-mail: sumanashokrao@yahoo.co.in

    2007-04-11

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly.

  3. Pointer Analysis for JavaScript Programming Tools

    DEFF Research Database (Denmark)

    Feldthaus, Asger

    Tools that can assist the programmer with tasks, such as, refactoring or code navigation, have proven popular for Java, C#, and other programming languages. JavaScript is a widely used programming language, and its users could likewise benefit from such tools, but the dynamic nature of the language...... is an obstacle for the development of these. Because of this, tools for JavaScript have long remained ineffective compared to those for many other programming languages. Static pointer analysis can provide a foundation for more powerful tools, although the design of this analysis is itself a complicated endeavor....... In this work, we explore techniques for performing pointer analysis of JavaScript programs, and we find novel applications of these techniques. In particular, we demonstrate how these can be used for code navigation, automatic refactoring, semi-automatic refactoring of incomplete programs, and checking of type...

  4. Construction safety and waste management an economic analysis

    CERN Document Server

    Li, Rita Yi Man

    2015-01-01

    This monograph presents an analysis of construction safety problems and on-site safety measures from an economist’s point of view. The book includes examples from both emerging countries, e.g. China and India, and developed countries, e.g. Australia and Hong Kong. Moreover, the author covers an analysis on construction safety knowledge sharing by means of updatable mobile technology such as apps in Androids and iOS platform mobile devices. The target audience comprises primarily researchers and experts in the field but the book may also be beneficial for graduate students.

  5. Using Addenda in Documented Safety Analysis Reports

    International Nuclear Information System (INIS)

    Swanson, D.S.; Thieme, M.A.

    2003-01-01

    This paper discusses the use of addenda to the Radioactive Waste Management Complex (RWMC) Documented Safety Analysis (DSA) located at the Idaho National Engineering and Environmental Laboratory (INEEL). Addenda were prepared for several systems and processes at the facility that lacked adequate descriptive information and hazard analysis in the DSA. They were also prepared for several new activities involving unreviewed safety questions (USQs). Ten addenda to the RWMC DSA have been prepared since the last annual update

  6. System safety analysis of an autonomous mobile robot

    International Nuclear Information System (INIS)

    Bartos, R.J.

    1994-01-01

    Analysis of the safety of operating and maintaining the Stored Waste Autonomous Mobile Inspector (SWAMI) II in a hazardous environment at the Fernald Environmental Management Project (FEMP) was completed. The SWAMI II is a version of a commercial robot, the HelpMate trademark robot produced by the Transitions Research Corporation, which is being updated to incorporate the systems required for inspecting mixed toxic chemical and radioactive waste drums at the FEMP. It also has modified obstacle detection and collision avoidance subsystems. The robot will autonomously travel down the aisles in storage warehouses to record images of containers and collect other data which are transmitted to an inspector at a remote computer terminal. A previous study showed the SWAMI II has economic feasibility. The SWAMI II will more accurately locate radioactive contamination than human inspectors. This thesis includes a System Safety Hazard Analysis and a quantitative Fault Tree Analysis (FTA). The objectives of the analyses are to prevent potentially serious events and to derive a comprehensive set of safety requirements from which the safety of the SWAMI II and other autonomous mobile robots can be evaluated. The Computer-Aided Fault Tree Analysis (CAFTA copyright) software is utilized for the FTA. The FTA shows that more than 99% of the safety risk occurs during maintenance, and that when the derived safety requirements are implemented the rate of serious events is reduced to below one event per million operating hours. Training and procedures in SWAMI II operation and maintenance provide an added safety margin. This study will promote the safe use of the SWAMI II and other autonomous mobile robots in the emerging technology of mobile robotic inspection

  7. The CANDU alarm analysis tool (CAAT)

    Energy Technology Data Exchange (ETDEWEB)

    Davey, E C; Feher, M P; Lupton, L R [Control Centre Technology Branch, ON (Canada)

    1997-09-01

    AECL undertook the development of a software tool to assist alarm system designers and maintainers based on feedback from several utilities and design groups. The software application is called the CANDU Alarm Analysis Tool (CAAT) and is being developed to: Reduce by one half the effort required to initially implement and commission alarm system improvements; improve the operational relevance, consistency and accuracy of station alarm information; record the basis for alarm-related decisions; provide printed reports of the current alarm configuration; and, make day-to-day maintenance of the alarm database less tedious and more cost-effective. The CAAT assists users in accessing, sorting and recording relevant information, design rules, decisions, and provides reports in support of alarm system maintenance, analysis of design changes, or regulatory inquiry. The paper discusses the need for such a tool, outlines the application objectives and principles used to guide tool development, describes the how specific tool features support user design and maintenance tasks, and relates the lessons learned from early application experience. (author). 4 refs, 2 figs.

  8. The CANDU alarm analysis tool (CAAT)

    International Nuclear Information System (INIS)

    Davey, E.C.; Feher, M.P.; Lupton, L.R.

    1997-01-01

    AECL undertook the development of a software tool to assist alarm system designers and maintainers based on feedback from several utilities and design groups. The software application is called the CANDU Alarm Analysis Tool (CAAT) and is being developed to: Reduce by one half the effort required to initially implement and commission alarm system improvements; improve the operational relevance, consistency and accuracy of station alarm information; record the basis for alarm-related decisions; provide printed reports of the current alarm configuration; and, make day-to-day maintenance of the alarm database less tedious and more cost-effective. The CAAT assists users in accessing, sorting and recording relevant information, design rules, decisions, and provides reports in support of alarm system maintenance, analysis of design changes, or regulatory inquiry. The paper discusses the need for such a tool, outlines the application objectives and principles used to guide tool development, describes the how specific tool features support user design and maintenance tasks, and relates the lessons learned from early application experience. (author). 4 refs, 2 figs

  9. Preliminary Safety Analysis Report for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Motloch, C.G.; Bonney, R.F.; Levine, J.D.; Masson, L.S.; Commander, J.C.

    1995-04-01

    This Preliminary Safety Analysis Report (PSAR), includes an indication of the magnitude of facility hazards, complexity of facility operations, and the stage of the facility life-cycle. It presents the results of safety analyses, safety assurance programs, identified vulnerabilities, compensatory measures, and, in general, the rationale describing why the Tokamak Physics Experiment (TPX) can be safely operated. It discusses application of the graded approach to the TPX safety analysis, including the basis for using Department of Energy (DOE) Order 5480.23 and DOE-STD-3009-94 in the development of the PSAR

  10. Affordances of agricultural systems analysis tools

    NARCIS (Netherlands)

    Ditzler, Lenora; Klerkx, Laurens; Chan-Dentoni, Jacqueline; Posthumus, Helena; Krupnik, Timothy J.; Ridaura, Santiago López; Andersson, Jens A.; Baudron, Frédéric; Groot, Jeroen C.J.

    2018-01-01

    The increasingly complex challenges facing agricultural systems require problem-solving processes and systems analysis (SA) tools that engage multiple actors across disciplines. In this article, we employ the theory of affordances to unravel what tools may furnish users, and how those affordances

  11. Reliability analysis of diverse safety logic systems of fast breeder reactor

    International Nuclear Information System (INIS)

    Ravi Kumar, Bh.; Apte, P.R.; Srivani, L.; Ilango Sambasivan, S.; Swaminathan, P.

    2006-01-01

    Safety Logic for Fast Breeder Reactor (FBR) is designed to initiate safety action against Design Basis Events. Based on the outputs of various processing circuits, Safety logic system drives the control rods of the shutdown system. So, Safety Logic system is classified as safety critical system. Therefore, reliability analysis has to be performed. This paper discusses the Reliability analysis of Diverse Safety logic systems of FBRs. For this literature survey on safety critical systems, system reliability approach and standards to be followed like IEC-61508 are discussed in detail. For Programmable Logic device based systems, Hardware Description Languages (HDL) are used. So this paper also discusses the Verification and Validation for HDLs. Finally a case study for the Reliability analysis of Safety logic is discussed. (author)

  12. Operational safety performance indicator system - a management tool for the self assessment of safety and reliability of nuclear power plants

    International Nuclear Information System (INIS)

    Anil Kumar; Mandowara, S.L.; Mittal, S.

    2006-01-01

    Operational Safety Performance Indicator system is one of the self assessment tools for station management to monitor safety and reliability of nuclear power plants. It provides information to station management about the performance of various areas of the plants by means of different colours of relevant performance indicators. Such systems have been implemented at many nuclear power plants in the world and have been considered as strength during WANO Peer Review. IAEA had a Coordinated Research Programme (CRP) on this with several countries participating including India. In NPCIL this system has been implemented in KAPS about a year back and found very useful in identifying areas which needs to be given more attention. Based on the KAPS feedback Implementation of this system has been taken up in RAPS-3 and 4 and KGS-l and 2. (author)

  13. msBiodat analysis tool, big data analysis for high-throughput experiments.

    Science.gov (United States)

    Muñoz-Torres, Pau M; Rokć, Filip; Belužic, Robert; Grbeša, Ivana; Vugrek, Oliver

    2016-01-01

    Mass spectrometry (MS) are a group of a high-throughput techniques used to increase knowledge about biomolecules. They produce a large amount of data which is presented as a list of hundreds or thousands of proteins. Filtering those data efficiently is the first step for extracting biologically relevant information. The filtering may increase interest by merging previous data with the data obtained from public databases, resulting in an accurate list of proteins which meet the predetermined conditions. In this article we present msBiodat Analysis Tool, a web-based application thought to approach proteomics to the big data analysis. With this tool, researchers can easily select the most relevant information from their MS experiments using an easy-to-use web interface. An interesting feature of msBiodat analysis tool is the possibility of selecting proteins by its annotation on Gene Ontology using its Gene Id, ensembl or UniProt codes. The msBiodat analysis tool is a web-based application that allows researchers with any programming experience to deal with efficient database querying advantages. Its versatility and user-friendly interface makes easy to perform fast and accurate data screening by using complex queries. Once the analysis is finished, the result is delivered by e-mail. msBiodat analysis tool is freely available at http://msbiodata.irb.hr.

  14. Structural safety - Is the safety margin measurable

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-01-01

    In ensuring the structural safety of the nuclear components one must be aware of the uncertainties related to the material deorientation, loadings and other operational conditions, geometrical dimensions as well as the service environment. Furthermore, the validation of the analysis tools and procedures is of great importance in overall safety assessment of a pressure retaining component. In order to identify and quantify the concerns and risks arising from the uncertainties in the safety related issue intensive research is being carried out all over the world, in particular, on the ageing, plant life extension and management of old nuclear power plants. The presentation includes a general survey of the factors relevant to the assessment of safe and reliable operation of a nuclear component throughout its planned service life. Certain aspects are outlined based on the research work being carried out at the Technical Research Centre of Finland (VTT)(orig.)

  15. Uncertainty analysis for Ulysses safety evaluation report

    International Nuclear Information System (INIS)

    Frank, M.V.

    1991-01-01

    As part of the effort to review the Ulysses Final Safety Analysis Report and to understand the risk of plutonium release from the Ulysses spacecraft General Purpose Heat Source---Radioisotope Thermal Generator (GPHS-RTG), the Interagency Nuclear Safety Review Panel (INSRP) and the author performed an integrated, quantitative analysis of the uncertainties of the calculated risk of plutonium release from Ulysses. Using state-of-art probabilistic risk assessment technology, the uncertainty analysis accounted for both variability and uncertainty of the key parameters of the risk analysis. The results show that INSRP had high confidence that risk of fatal cancers from potential plutonium release associated with calculated launch and deployment accident scenarios is low

  16. Preparing suitable climate scenario data to assess impacts on local food safety

    NARCIS (Netherlands)

    Liu, C.; Hofstra, N.; Leemans, R.

    2015-01-01

    Quantification of climate change impacts on food safety requires food safety assessment with different past and future climate scenario data to compare current and future conditions. This study presents a tool to prepare climate and climate change data for local food safety scenario analysis and

  17. Safety Assessment in the AREVA Group: Operating Experience from a Self-Assessment Tool

    International Nuclear Information System (INIS)

    Coye de Brunélis, T.; Mignot, E.; Sidaner, J.-F.

    2016-01-01

    The expression “safety culture” first appeared following analysis of the Chernobyl accident in 1986. It was first defined in INSAG-4 (International Nuclear Safety Advisory Group safety series) in 1991. Other events have occurred in nuclear facilities and during transportation since Chernobyl: Tokai Mura in 1999, Roissy Transport in 2002, Davis Besse in 2002, Thorp in 2005. These events show that the initial approach was too simplistic. Based on this observation, the definition of safety culture was supplemented by including concepts of cultural value (associated with the country and the company) and human and organizational factors, and was integrated in that form with the emergence and implementation of integrated management systems (IMS). Today, the concept of nuclear safety culture covers a wide set of factors such as safety, quality, corporate culture, defined processes and policies, organizations and related resources. Any assessment of people’s safety culture, particularly people directly involved in facility operations, is thus part of a comprehensive policy and contributes to a de facto demonstration of the priority which management assigns to safety.

  18. Dynamic Contingency Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    2016-01-14

    The Dynamic Contingency Analysis Tool (DCAT) is an open-platform and publicly available methodology to help develop applications that aim to improve the capabilities of power system planning engineers to assess the impact and likelihood of extreme contingencies and potential cascading events across their systems and interconnections. Outputs from the DCAT will help find mitigation solutions to reduce the risk of cascading outages in technically sound and effective ways. The current prototype DCAT implementation has been developed as a Python code that accesses the simulation functions of the Siemens PSS/E planning tool (PSS/E). It has the following features: It uses a hybrid dynamic and steady-state approach to simulating the cascading outage sequences that includes fast dynamic and slower steady-state events. It integrates dynamic models with protection scheme models for generation, transmission, and load. It models special protection systems (SPSs)/remedial action schemes (RASs) and automatic and manual corrective actions. Overall, the DCAT attempts to bridge multiple gaps in cascading-outage analysis in a single, unique prototype tool capable of automatically simulating and analyzing cascading sequences in real systems using multiprocessor computers.While the DCAT has been implemented using PSS/E in Phase I of the study, other commercial software packages with similar capabilities can be used within the DCAT framework.

  19. COLD-SAT feasibility study safety analysis

    Science.gov (United States)

    Mchenry, Steven T.; Yost, James M.

    1991-01-01

    The Cryogenic On-orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite presents some unique safety issues. The feasibility study conducted at NASA-Lewis desired a systems safety program that would be involved from the initial design in order to eliminate and/or control the inherent hazards. Because of this, a hazards analysis method was needed that: (1) identified issues that needed to be addressed for a feasibility assessment; and (2) identified all potential hazards that would need to be controlled and/or eliminated during the detailed design phases. The developed analysis method is presented as well as the results generated for the COLD-SAT system.

  20. The dynamic flowgraph methodology as a safety analysis tool : programmable electronic system design and verification

    NARCIS (Netherlands)

    Houtermans, M.J.M.; Apostolakis, G.E.; Brombacher, A.C.; Karydas, D.M.

    2002-01-01

    The objective of this paper is to demonstrate the use of the Dynamic Flowgraph Methodology (DFM) during the design and verification of programmable electronic safety-related systems. The safety system consists of hardware as well as software. This paper explains and demonstrates the use of DFM, and

  1. Guidance for preparation of safety analysis reports for nonreactor facilities and operations

    International Nuclear Information System (INIS)

    1992-01-01

    Department of Energy (DOE) Orders 5480.23, ''Nuclear Safety Analysis Reports,'' and 5481.1B, ''Safety Analysis and Review System'' require the preparation of appropriate safety analyses for each DOE operation and subsequent significant modifications including decommissioning, and independent review of each safety analysis. The purpose of this guide is to assist in the preparation and review of safety documentation for Oak Ridge Field Office (OR) nonreactor facilities and operation. Appendix A lists DOE Orders, NRC Regulatory Guides and other documents applicable to the preparation of safety analysis reports

  2. Safety analysis and risk assessment handbook

    International Nuclear Information System (INIS)

    Peterson, V.L.; Colwell, R.G.; Dickey, R.L.

    1997-01-01

    This Safety Analysis and Risk Assessment Handbook (SARAH) provides guidance to the safety analyst at the Rocky Flats Environmental Technology Site (RFETS) in the preparation of safety analyses and risk assessments. Although the older guidance (the Rocky Flats Risk Assessment Guide) continues to be used for updating the Final Safety Analysis Reports developed in the mid-1980s, this new guidance is used with all new authorization basis documents. With the mission change at RFETS came the need to establish new authorization basis documents for its facilities, whose functions had changed. The methodology and databases for performing the evaluations that support the new authorization basis documents had to be standardized, to avoid the use of different approaches and/or databases for similar accidents in different facilities. This handbook presents this new standardized approach. The handbook begins with a discussion of the requirements of the different types of authorization basis documents and how to choose the one appropriate for the facility to be evaluated. It then walks the analyst through the process of identifying all the potential hazards in the facility, classifying them, and choosing the ones that need to be analyzed further. It then discusses the methods for evaluating accident initiation and progression and covers the basic steps in a safety analysis, including consequence and frequency binning and risk ranking. The handbook lays out standardized approaches for determining the source terms of the various accidents (including airborne release fractions, leakpath factors, etc.), the atmospheric dispersion factors appropriate for Rocky Flats, and the methods for radiological and chemical consequence assessments. The radiological assessments use a radiological open-quotes templateclose quotes, a spreadsheet that incorporates the standard values of parameters, whereas the chemical assessments use the standard codes ARCHIE and ALOHA

  3. Multivariate time series analysis of SafetyNet data. SafetyNet, Building the European Road Safety Observatory, Workpackage 7, Deliverable 7.7.

    NARCIS (Netherlands)

    Commandeur, J.J.F. Bijleveld, F.D. & Bergel, R.

    2009-01-01

    This deliverable provides an application of theories and methods documented in Deliverables 7.4 and 7.5 of work package 7 of the SafetyNet project. In this deliverable, use of select analysis techniques is demonstrated through real world road safety analysis problems, using aggregate data which may

  4. Risk D and D Rapid Prototype: Scenario Documentation and Analysis Tool

    International Nuclear Information System (INIS)

    Unwin, Stephen D.; Seiple, Timothy E.

    2009-01-01

    Report describes process and methodology associated with a rapid prototype tool for integrating project risk analysis and health and safety risk analysis for decontamination and decommissioning projects. The objective of the Decontamination and Decommissioning (D and D) Risk Management Evaluation and Work Sequencing Standardization Project under DOE EM-23 is to recommend or develop practical risk-management tools for decommissioning of nuclear facilities. PNNL has responsibility under this project for recommending or developing computer-based tools that facilitate the evaluation of risks in order to optimize the sequencing of D and D work. PNNL's approach is to adapt, augment, and integrate existing resources rather than to develop a new suite of tools. Methods for the evaluation of H and S risks associated with work in potentially hazardous environments are well-established. Several approaches exist which, collectively, are referred to as process hazard analysis (PHA). A PHA generally involves the systematic identification of accidents, exposures, and other adverse events associated with a given process or work flow. This identification process is usually achieved in a brainstorming environment or by other means of eliciting informed opinion. The likelihoods of adverse events (scenarios) and their associated consequence severities are estimated against pre-defined scales, based on which risk indices are then calculated. A similar process is encoded in various project risk software products that facilitate the quantification of schedule and cost risks associated with adverse scenarios. However, risk models do not generally capture both project risk and H and S risk. The intent of the project reported here is to produce a tool that facilitates the elicitation, characterization, and documentation of both project risk and H and S risk based on defined sequences of D and D activities. By considering alternative D and D sequences, comparison of the predicted risks can

  5. Engineered safeguards and passive safety features (safety analysis detailed report no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-15

    The Safety-Analysis Summary lists the reactor's safety aspects for passive and active prevention of severe accidents and mitigation of accident consequences, i.e., intrinsic and passive protections of the plant; intrinsic and passive protections of the core; inherent decay-heat removal systems; rapid-shutdown systems; four physical containment barriers. This report goes into further details regarding some of this aspects.

  6. Bow tie methodology: a tool to enhance the visibility and understanding of nuclear safety cases

    International Nuclear Information System (INIS)

    Vannerem, Marc

    2013-01-01

    improve the visibility and accessibility of complex safety cases. The bow tie method is a purely qualitative technique, which could be successfully introduced (or similar methodologies) to the nuclear industry as an additional tool to improve the visibility and understanding of the safety case, and thus complement (not substitute) the more rigorous safety analysis techniques which are the norm in this industry. By making the diagrams readily accessible in the control room, the operators of nuclear facilities could further improve their understanding of the safety significance of their role in preventing major accidents and mitigating consequences. (authors)

  7. Computer aided safety analysis

    International Nuclear Information System (INIS)

    1988-05-01

    The document reproduces 20 selected papers from the 38 papers presented at the Technical Committee/Workshop on Computer Aided Safety Analysis organized by the IAEA in co-operation with the Institute of Atomic Energy in Otwock-Swierk, Poland on 25-29 May 1987. A separate abstract was prepared for each of these 20 technical papers. Refs, figs and tabs

  8. Holistic safety analysis for advanced nuclear power plants

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.; Guimaraes, A.C.F.

    1992-01-01

    This paper reviews the basic methodology of safety analysis used in the ANGRA-I and ANGRA-II nuclear power plants, its weaknesses, the problems with public acceptance of the risks, the future of the nuclear energy in Brazil, as well as recommends a new methodology, HOLISTIC SAFETY ANALYSIS, to be used both in the design and licensing phases, for advanced reactors. (author)

  9. Special characteristics of the safety analysis of HWRs

    International Nuclear Information System (INIS)

    Kugler, G.

    1980-01-01

    Two lectures are presented in this report. The CANDU-PHW reactor is used as a model for discussion. The first lecture describes the distinctive features of the CANDU reactor, and how they impact on reactor safety. In the second lecture the Canadian safety philosophy, the safety design objective, and other selected topics on reactor safety analysis are discussed. The material in this report was selected with a view to assisting those not familiar with the CANDU heavy water reactor design in evaluating the distinctive safety aspects of these reactors. (orig./RW)

  10. [Development and validation of the Korean patient safety culture scale for nursing homes].

    Science.gov (United States)

    Yoon, Sook Hee; Kim, Byungsoo; Kim, Se Young

    2013-06-01

    The purpose of this study was to develop a tool to evaluate patient safety culture in nursing homes and to test its validity and reliability. A preliminary tool was developed through interviews with focus group, content validity tests, and a pilot study. A nationwide survey was conducted from February to April, 2011, using self-report questionnaires. Participants were 982 employees in nursing homes. Data were analyzed using Cronbach's alpha, item analysis, factor analysis, and multitrait/multi-Item analysis. From the results of the analysis, 27 final items were selected from 49 items on the preliminary tool. Items with low correlation with total scale were excluded. The 4 factors sorted by factor analysis contributed 63.4% of the variance in the total scale. The factors were labeled as leadership, organizational system, working attitude, management practice. Cronbach's alpha for internal consistency was .95 and the range for the 4 factors was from .86 to .93. The results of this study indicate that the Korean Patient Safety Culture Scale has reliability and validity and is suitable for evaluation of patient safety culture in Korean nursing homes.

  11. Human factors and fuzzy set theory for safety analysis

    International Nuclear Information System (INIS)

    Nishiwaki, Y.

    1987-01-01

    Human reliability and performance is affected by many factors: medical, physiological and psychological, etc. The uncertainty involved in human factors may not necessarily be probabilistic, but fuzzy. Therefore, it is important to develop a theory by which both the non-probabilistic uncertainties, or fuzziness, of human factors and the probabilistic properties of machines can be treated consistently. In reality, randomness and fuzziness are sometimes mixed. From the mathematical point of view, probabilistic measures may be considered a special case of fuzzy measures. Therefore, fuzzy set theory seems to be an effective tool for analysing man-machine systems. The concept 'failure possibility' based on fuzzy sets is suggested as an approach to safety analysis and fault diagnosis of a large complex system. Fuzzy measures and fuzzy integrals are introduced and their possible applications are also discussed. (author)

  12. Software design specification and analysis(NuFDS) approach for the safety critical software based on porgrammable logic controller(PLC)

    International Nuclear Information System (INIS)

    Koo, Seo Ryong; Seong, Poong Hyun; Jung, Jin Yong; Choi, Seong Soo

    2004-01-01

    This paper introduces the software design specification and analysis technique for the safety-critical system based on Programmable Logic Controller (PLC). During software development phases, the design phase should perform an important role to connect between requirements phase and implementation phase as a process of translating problem requirements into software structures. In this work, the Nuclear FBD-style Design Specification and analysis (NuFDS) approach was proposed. The NuFDS approach for nuclear Instrumentation and Control (I and C) software are suggested in a straight forward manner. It consists of four major specifications as follows; Database, Software Architecture, System Behavior, and PLC Hardware Configuration. Additionally, correctness, completeness, consistency, and traceability check techniques are also suggested for the formal design analysis in NuFDS approach. In addition, for the tool supporting, we are developing NuSDS tool based on the NuFDS approach which is a tool, especially for the software design specification in nuclear fields

  13. Application of best estimate thermalhydraulic codes for the safety analysis of research reactors

    International Nuclear Information System (INIS)

    Adorni, M.; Bousbia-salah, A.; D'Auria, F.; Hamidouche, T.

    2006-01-01

    An established international expertise in relation to computational tools, procedures for their application including Best Estimate (BE) methods supported by uncertainty evaluation, and comprehensive experimental database exists within the safety technology of Nuclear Power Plant (NPP). The importance of transferring NPP safety technology tools and methods to RR safety technology has been noted in recent IAEA activities. However, the ranges of parameters of interest to RR are different from those for NPP: this is namely true for fuel composition, system pressure, adopted materials and overall system geometric configuration. The large variety of research reactors prevented so far the achievement of systematic and detailed lists of initiating events based upon qualified Probabilistic Safety Assessment (PSA) studies with results endorsed by the international community. However, bounding and generalized lists of events are available from IAEA documents and can be considered for deeper studies in the area. In the area of acceptance criteria, established standards accepted by the international community are available. Therefore no major effort is needed, but an effort appears worthwhile to check that those standards are adopted and that the related thresholds are fulfilled. The importance of suitable experimental assessment is recognized. A large amount of data exists as the kinetic dynamic core behaviour form SPERT reactors tests. However, not all data are accessible to all institutions and the relationship between the range of parameters of experiments and the range of parameters relevant to RR technology is not always established. However, code-assessment through relevant set of experimental data are recorded and properly stored. An established technology exists for development, qualification and application of system thermal-hydraulics codes suitable to be adopted for accident analysis in research reactors. This derives from NPP technology. The applicability of

  14. Software Users Manual (SUM): Extended Testability Analysis (ETA) Tool

    Science.gov (United States)

    Maul, William A.; Fulton, Christopher E.

    2011-01-01

    This software user manual describes the implementation and use the Extended Testability Analysis (ETA) Tool. The ETA Tool is a software program that augments the analysis and reporting capabilities of a commercial-off-the-shelf (COTS) testability analysis software package called the Testability Engineering And Maintenance System (TEAMS) Designer. An initial diagnostic assessment is performed by the TEAMS Designer software using a qualitative, directed-graph model of the system being analyzed. The ETA Tool utilizes system design information captured within the diagnostic model and testability analysis output from the TEAMS Designer software to create a series of six reports for various system engineering needs. The ETA Tool allows the user to perform additional studies on the testability analysis results by determining the detection sensitivity to the loss of certain sensors or tests. The ETA Tool was developed to support design and development of the NASA Ares I Crew Launch Vehicle. The diagnostic analysis provided by the ETA Tool was proven to be valuable system engineering output that provided consistency in the verification of system engineering requirements. This software user manual provides a description of each output report generated by the ETA Tool. The manual also describes the example diagnostic model and supporting documentation - also provided with the ETA Tool software release package - that were used to generate the reports presented in the manual

  15. Support analysis for safety analysis development for CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Bedreaga, L.; Florescu, Gh.; Apostol, M.; Nitoi, M.

    2004-01-01

    Probabilistic Safety Assessment analysis (PSA) is a technique used to assess the safety of a nuclear power plant. Assessments of the nuclear plant systems/components from safety point of view consist in accomplishment of a lot of support analyses that are the base for the main analysis, in order to evaluate the impact of occurrences of abnormal states for these systems. Evaluation of initiating events frequency and components failure rate is based on underlying probabilistic theory and mathematic statistics. Some of these analyses are detailed analyses and are known very well in PSA. There are also some analyses, named support analyses for PSA, which are very important but less applicable because they involve a huge human effort and hardware facilities to accomplish. The usual methods applicable in PSA such as input data extracted from the specific documentation (operation procedures, testing procedures, maintenance procedures and so on) or conservative evaluation provide a high level of uncertainty for both input and output data. The paper describes support analysis required to improve the certainty level in evaluation of reliability parameters and also in the final results (either risk, reliability or safety assessment). (author)

  16. Criticality safety enhancements for SCALE 6.2 and beyond

    International Nuclear Information System (INIS)

    Rearden, Bradley T.; Bekar, Kursat B.; Celik, Cihangir; Clarno, Kevin T.; Dunn, Michael E.; Hart, Shane W.; Ibrahim, Ahmad M.; Johnson, Seth R.; Langley, Brandon R.; Lefebvre, Jordan P.; Lefebvre, Robert A.; Marshall, William J.; Mertyurek, Ugur; Mueller, Don; Peplow, Douglas E.; Perfetti, Christopher M.; Petrie Jr, Lester M.; Thompson, Adam B.; Wiarda, Dorothea; Wieselquist, William A.; Williams, Mark L.

    2015-01-01

    SCALE is a widely used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. Since 1980, regulators, industry, and research institutions around the world have relied on SCALE for nuclear safety analysis and design. SCALE 6.2 provides several new capabilities and significant improvements in many existing features for criticality safety analysis. Enhancements are realized for nuclear data; multigroup resonance self-shielding; continuous-energy Monte Carlo analysis for sensitivity/uncertainty analysis, radiation shielding, and depletion; and graphical user interfaces. An overview of these capabilities is provided in this paper, and additional details are provided in several companion papers.

  17. Safety Analysis in Design and Assessment of the Physical Protection of the OKG NPP

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, P., E-mail: par.lindahl@okg.eon.se [OKG Aktiebolag, Oskarshamn (Sweden)

    2014-10-15

    OKG AB operates a three unit nuclear power plant in the southern parts of Sweden. As a result of recent development of the legislation regarding physical protection of nuclear facilities, OKG has upgraded the protection against antagonistic actions. The new legislation includes requirements both on specific protective measures and on the performance of the physical protection as a whole. In short, the performance related requirements state that sufficient measures shall be implemented to protect against antagonistic actions, as defined by the regulator in the “Design Basis Threat” (DBT). Historically, physical protection and nuclear safety has been managed much as separate issues with different, sometimes contradicting, objectives. Now, insights from the work with the security upgrade have emphasized that physical protection needs to be regarded as an important part of the Defence-In-Depth (DiD) against nuclear accidents. Specifically, OKG has developed new DBT-based analysis methods, which may be characterized as probabilistically informed deterministic analysis, conformed to a format similar to the one used for conventional internal events analysis. The result is a powerful tool for design and assessment of the performance of the protection against antagonistic actions, using a nuclear safety perspective. (author)

  18. A Methodology To Incorporate The Safety Culture Into Probabilistic Safety Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sunghyun; Kim, Namyeong; Jae, Moosung [Hanyang University, Seoul (Korea, Republic of)

    2015-10-15

    In order to incorporate organizational factors into PSA, a methodology needs to be developed. Using the AHP to weigh organizational factors as well as the SLIM to rate those factors, a methodology is introduced in this study. The safety issues related to nuclear safety culture have occurred increasingly. The quantification tool has to be developed in order to include the organizational factor into Probabilistic Safety Assessments. In this study, the state-of-the-art for the organizational evaluation methodologies has been surveyed. This study includes the research for organizational factors, maintenance process, maintenance process analysis models, a quantitative methodology using Analytic Hierarchy Process, Success Likelihood Index Methodology. The purpose of this study is to develop a methodology to incorporate the safety culture into PSA for obtaining more objective risk than before. The organizational factor considered in nuclear safety culture might affect the potential risk of human error and hardware-failure. The safety culture impact index to monitor the plant safety culture can be assessed by applying the developed methodology into a nuclear power plant.

  19. A Methodology To Incorporate The Safety Culture Into Probabilistic Safety Assessments

    International Nuclear Information System (INIS)

    Park, Sunghyun; Kim, Namyeong; Jae, Moosung

    2015-01-01

    In order to incorporate organizational factors into PSA, a methodology needs to be developed. Using the AHP to weigh organizational factors as well as the SLIM to rate those factors, a methodology is introduced in this study. The safety issues related to nuclear safety culture have occurred increasingly. The quantification tool has to be developed in order to include the organizational factor into Probabilistic Safety Assessments. In this study, the state-of-the-art for the organizational evaluation methodologies has been surveyed. This study includes the research for organizational factors, maintenance process, maintenance process analysis models, a quantitative methodology using Analytic Hierarchy Process, Success Likelihood Index Methodology. The purpose of this study is to develop a methodology to incorporate the safety culture into PSA for obtaining more objective risk than before. The organizational factor considered in nuclear safety culture might affect the potential risk of human error and hardware-failure. The safety culture impact index to monitor the plant safety culture can be assessed by applying the developed methodology into a nuclear power plant

  20. FURAX: assistance tools for the qualitative and quantitative analysis of systems reliability

    International Nuclear Information System (INIS)

    Moureau, R.

    1995-01-01

    FURAX is a set of tools for the qualitative and quantitative safety analysis of systems functioning. It is particularly well adapted to the study of networks (fluids, electrical..), i.e. systems in which importance is functionally given to a flux. The analysis is based on modeling which privileges these fluxes (skeleton representation of the system for a network, functional diagram for a non single-flux system) and on the representation of components support systems. Qualitative analyses are based on the research for possible flux ways and on the technical domain knowledge. The results obtained correspond to a simplified failure mode analysis, to fault-trees relative to the events expected by the user and to minimum sections. The possible calculations on these models are: tree calculations, Markov diagram calculations of the system reliability, and probabilistic calculation of a section viewed as a tree, as a well-ordered sequence of failures, or as the absorbing state of a Markov diagram. (J.S.). 6 refs

  1. The physics analysis tools project for the ATLAS experiment

    International Nuclear Information System (INIS)

    Lenzi, Bruno

    2012-01-01

    The Large Hadron Collider is expected to start colliding proton beams in 2009. The enormous amount of data produced by the ATLAS experiment (≅1 PB per year) will be used in searches for the Higgs boson and Physics beyond the standard model. In order to meet this challenge, a suite of common Physics Analysis Tools has been developed as part of the Physics Analysis software project. These tools run within the ATLAS software framework, ATHENA, covering a wide range of applications. There are tools responsible for event selection based on analysed data and detector quality information, tools responsible for specific physics analysis operations including data quality monitoring and physics validation, and complete analysis tool-kits (frameworks) with the goal to aid the physicist to perform his analysis hiding the details of the ATHENA framework. (authors)

  2. Safety and Convergence Analysis of Intersecting Aircraft Flows Under Decentralized Collision Avoidance

    Science.gov (United States)

    Dallal, Ahmed H.

    Safety is an essential requirement for air traffic management and control systems. Aircraft are not allowed to get closer to each other than a specified safety distance, to avoid any conflicts and collisions between aircraft. Forecast analysis predicts a tremendous increase in the number of flights. Subsequently, automated tools are needed to help air traffic controllers resolve air born conflicts. In this dissertation, we consider the problem of conflict resolution of aircraft flows with the assumption that aircraft are flowing through a fixed specified control volume at a constant speed. In this regard, several centralized and decentralized resolution rules have been proposed for path planning and conflict avoidance. For the case of two intersecting flows, we introduce the concept of conflict touches, and a collaborative decentralized conflict resolution rule is then proposed and analyzed for two intersecting flows. The proposed rule is also able to resolved airborne conflicts that resulted from resolving another conflict via the domino effect. We study the safety conditions under the proposed conflict resolution and collision avoidance rule. Then, we use Lyapunov analysis to analytically prove the convergence of conflict resolution dynamics under the proposed rule. The analysis show that, under the proposed conflict resolution rule, the system of intersecting aircraft flows is guaranteed to converge to safe, conflict free, trajectories within a bounded time. Simulations are provided to verify the analytically derived conclusions and study the convergence of the conflict resolution dynamics at different encounter angles. Simulation results show that lateral deviations taken by aircraft in each flow, to resolve conflicts, are bounded, and aircraft converged to safe and conflict free trajectories, within a finite time.

  3. Preparing a Safety Analysis Report using the building block approach

    International Nuclear Information System (INIS)

    Herrington, C.C.

    1990-01-01

    The credibility of the applicant in a licensing proceeding is severely impacted by the quality of the license application, particularly the Safety Analysis Report. To ensure the highest possible credibility, the building block approach was devised to support the development of a quality Safety Analysis Report. The approach incorporates a comprehensive planning scheme that logically ties together all levels of the investigation and provides the direction necessary to prepare a superior Safety Analysis Report

  4. Safety analysis of tritium processing system based on PHA

    International Nuclear Information System (INIS)

    Fu Wanfa; Luo Deli; Tang Tao

    2012-01-01

    Safety analysis on primary confinement of tritium processing system for TBM was carried out with Preliminary Hazard Analysis. Firstly, the basic PHA process was given. Then the function and safe measures with multiple confinements about tritium system were described and analyzed briefly, dividing the two kinds of boundaries of tritium transferring through, that are multiple confinement systems division and fluid loops division. Analysis on tritium releasing is the key of PHA. Besides, PHA table about tritium releasing was put forward, the causes and harmful results being analyzed, and the safety measures were put forward also. On the basis of PHA, several kinds of typical accidents were supposed to be further analyzed. And 8 factors influencing the tritium safety were analyzed, laying the foundation of evaluating quantitatively the safety grade of various nuclear facilities. (authors)

  5. The ISAM Tool “Objective Provision Tree (OPT)”, for the Identification of the Design Basis and he Construction of the Safety Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Fiorini, G.L., E-mail: gian-luigi.fiorini@orange.fr; Ammirabile, L., E-mail: luca.ammirabile@ec.europa.eu [European Commission - Joint Research Centre Institute for Energy and Transport (Belgium); Ranguelova, V., E-mail: vesselina.ranguelova@ec.europa.eu [European Commission - Joint Research Centre Headquarters, Brussels (Belgium)

    2014-10-15

    The design of the safety architecture of innovative as well as the assessment of existing nuclear systems needs to integrate the constraints related to the safety principles, requirements and objectives. Among these constraints, the compliance of the installation’s architecture with the principles of Defence in Depth (DiD), and its different levels, is certainly one of the most structuring. Defence in depth is the key to achieve safety robustness, thereby helping to ensure that nuclear systems do not exhibit any particularly dominant risk vulnerability. To help designers of innovative systems to correctly implement the defence-in-depth, or to assess how well the latter has been applied for existing reactor systems, the Objection-Provision Tree (OPT) methodology, which is part of the Integrated Safety Assessment Methodology (ISAM) promoted by the Generation IV Risk and Safety Working Group (GIF/RSWG), is suggested as a useful tool to complement the required traditional deterministic and probabilistic safety assessments. The document recalls the content of the OPT method and gives some details for its implementation, including for the systematic identification of the initiating events to be considered in designing the system. This step is essential especially for new systems for which there is no sufficient operational to support their design. The interactions with other tools (e.g. Failure Mode and Effect Analyses (FMEA) or ISAM Tools) are also commented. (author)

  6. Examination of issues related to the development and implementation of real-time operational safety monitoring tools in the nuclear power industry

    International Nuclear Information System (INIS)

    Puglia, William J.; Atefi, Bahman

    1995-01-01

    In recent years, risk and reliability techniques have been increasingly used to optimize deterministic requirements and to improve the operational safety of nuclear power stations. This paper discusses the historical development and current status of implementation of real-time operational safety monitoring tools in the nuclear power industry worldwide. A safety monitor is defined as a PC-based risk management tool, based on a plant specific PSA, which can be used to manage plant safety during the day-to-day operation of a nuclear power plant by planning maintenance activities and providing advisory information to plant operational staff in order to avoid high risk plant configurations. As this technique has only been applied in a few plants worldwide, the technology is still evolving and there are several technical and implementation-related issues which still need to be resolved. This paper attempts to summarize all such issues and describe how they have been addressed in several different applications of this technology around the world

  7. Dimensions of Safety Climate among Iranian Nurses

    Directory of Open Access Journals (Sweden)

    Z Naghavi Konjin

    2015-10-01

    Full Text Available Background: Workplace safety has been a concern of workers and managers for decades. Measuring safety climate is crucial in improving safety performance. It is also a method of benchmarking safety perception. Objective: To develop and validate a psychometrics scale for measuring nurses' safety climate. Methods: Literature review, subject matter experts and nurse's judgment were used in items developing. Content validity and reliability for new tool were tested by content validity index (CVI and test-retest analysis, respectively. Exploratory factor analysis (EFA with varimax rotation was used to improve the interpretation of latent factors. Results: A 40-item scale in 6 factors was developed, which could explain 55% of the observed variance. The 6 factors included employees' involvement in safety and management support, compliance with safety rules, safety training and accessibility to personal protective equipment, hindrance to safe work, safety communication and job pressure, and individual risk perception. Conclusion: The proposed scale can be used in identifying the needed areas to implement interventions in safety climate of nurses.

  8. NASA System Safety Handbook. Volume 1; System Safety Framework and Concepts for Implementation

    Science.gov (United States)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Smith, Curtis; Stamatelatos, Michael; Youngblood, Robert

    2011-01-01

    System safety assessment is defined in NPR 8715.3C, NASA General Safety Program Requirements as a disciplined, systematic approach to the analysis of risks resulting from hazards that can affect humans, the environment, and mission assets. Achievement of the highest practicable degree of system safety is one of NASA's highest priorities. Traditionally, system safety assessment at NASA and elsewhere has focused on the application of a set of safety analysis tools to identify safety risks and formulate effective controls.1 Familiar tools used for this purpose include various forms of hazard analyses, failure modes and effects analyses, and probabilistic safety assessment (commonly also referred to as probabilistic risk assessment (PRA)). In the past, it has been assumed that to show that a system is safe, it is sufficient to provide assurance that the process for identifying the hazards has been as comprehensive as possible and that each identified hazard has one or more associated controls. The NASA Aerospace Safety Advisory Panel (ASAP) has made several statements in its annual reports supporting a more holistic approach. In 2006, it recommended that "... a comprehensive risk assessment, communication and acceptance process be implemented to ensure that overall launch risk is considered in an integrated and consistent manner." In 2009, it advocated for "... a process for using a risk-informed design approach to produce a design that is optimally and sufficiently safe." As a rationale for the latter advocacy, it stated that "... the ASAP applauds switching to a performance-based approach because it emphasizes early risk identification to guide designs, thus enabling creative design approaches that might be more efficient, safer, or both." For purposes of this preface, it is worth mentioning three areas where the handbook emphasizes a more holistic type of thinking. First, the handbook takes the position that it is important to not just focus on risk on an individual

  9. International benchmark study of advanced thermal hydraulic safety analysis codes against measurements on IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hainoun, A., E-mail: pscientific2@aec.org.sy [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Doval, A. [Nuclear Engineering Department, Av. Cmdt. Luis Piedrabuena 4950, C.P. 8400 S.C de Bariloche, Rio Negro (Argentina); Umbehaun, P. [Centro de Engenharia Nuclear – CEN, IPEN-CNEN/SP, Av. Lineu Prestes 2242-Cidade Universitaria, CEP-05508-000 São Paulo, SP (Brazil); Chatzidakis, S. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Ghazi, N. [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Park, S. [Research Reactor Design and Engineering Division, Basic Science Project Operation Dept., Korea Atomic Energy Research Institute (Korea, Republic of); Mladin, M. [Institute for Nuclear Research, Campului Street No. 1, P.O. Box 78, 115400 Mioveni, Arges (Romania); Shokr, A. [Division of Nuclear Installation Safety, Research Reactor Safety Section, International Atomic Energy Agency, A-1400 Vienna (Austria)

    2014-12-15

    Highlights: • A set of advanced system thermal hydraulic codes are benchmarked against IFA of IEA-R1. • Comparative safety analysis of IEA-R1 reactor during LOFA by 7 working teams. • This work covers both experimental and calculation effort and presents new out findings on TH of RR that have not been reported before. • LOFA results discrepancies from 7% to 20% for coolant and peak clad temperatures are predicted conservatively. - Abstract: In the framework of the IAEA Coordination Research Project on “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal hydraulic computational methods and tools for operation and safety analysis of research reactors” the Brazilian research reactor IEA-R1 has been selected as reference facility to perform benchmark calculations for a set of thermal hydraulic codes being widely used by international teams in the field of research reactor (RR) deterministic safety analysis. The goal of the conducted benchmark is to demonstrate the application of innovative reactor analysis tools in the research reactor community, validation of the applied codes and application of the validated codes to perform comprehensive safety analysis of RR. The IEA-R1 is equipped with an Instrumented Fuel Assembly (IFA) which provided measurements for normal operation and loss of flow transient. The measurements comprised coolant and cladding temperatures, reactor power and flow rate. Temperatures are measured at three different radial and axial positions of IFA summing up to 12 measuring points in addition to the coolant inlet and outlet temperatures. The considered benchmark deals with the loss of reactor flow and the subsequent flow reversal from downward forced to upward natural circulation and presents therefore relevant phenomena for the RR safety analysis. The benchmark calculations were performed independently by the participating teams using different thermal hydraulic and safety

  10. A Study of Time Response for Safety-Related Operator Actions in Non-LOCA Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Seok; Lee, Sang Seob; Park, Min Soo; Lee, Gyu Cheon; Kim, Shin Whan [KEPCO E and C Company, Daejeon (Korea, Republic of)

    2014-10-15

    The classification of initiating events for safety analysis report (SAR) chapter 15 is categorized into moderate frequency events (MF), infrequent events (IF), and limiting faults (LF) depending on the frequency of its occurrence. For the non-LOCA safety analysis with the purpose to get construction or operation license, however, it is assumed that the operator response action to mitigate the events starts at 30 minutes after the initiation of the transient regardless of the event categorization. Such an assumption of corresponding operator response time may have over conservatism with the MF and IF events and results in a decrease in the safety margin compared to its acceptance criteria. In this paper, the plant conditions (PC) are categorized with the definitions in SAR 15 and ANS 51.1. Then, the consequence of response for safety-related operator action time is determined based on the PC in ANSI 58.8. The operator response time for safety analysis regarding PC are reviewed and suggested. The clarifying alarm response procedure would be required for the guideline to reduce the operator response time when the alarms indicate the occurrence of the transient.

  11. A Development of the Calibration Tool Applied on Analog I/O Modules for Safety-related Controller

    International Nuclear Information System (INIS)

    Kim, Jong-Kyun; Yun, Dong-Hwa; Lee, Myeong-Kyun; Yoo, Kwan-Woo

    2016-01-01

    The purpose of this paper is to develop the calibration tool for analog input/output(I/O) modules. Those modules are components in POSAFE-Q which is a programmable logic controller(PLC) that has been developed for the evaluation of safety-related. In this paper, performance improvement of analog I/O modules is presented by developing and applying the calibration tool for each channel in analog I/O modules. With this tool, the input signal to an analog input module and the output signal from an analog output module are able to be satisfied with a reference value of sensor type and an accuracy of all modules. With RS-232 communication, the manual calibration tool is developed for analog I/O modules of an existing and up-to-date version in POSAFE-Q PLC. As a result of applying this tool, the converted value is performant for a type of input sensor and an accuracy of analog I/O modules

  12. SCALE Graphical Developments for Improved Criticality Safety Analyses

    International Nuclear Information System (INIS)

    Barnett, D.L.; Bowman, S.M.; Horwedel, J.E.; Petrie, L.M.

    1999-01-01

    New computer graphic developments at Oak Ridge National Ridge National Laboratory (ORNL) are being used to provide visualization of criticality safety models and calculational results as well as tools for criticality safety analysis input preparation. The purpose of this paper is to present the status of current development efforts to continue to enhance the SCALE (Standardized Computer Analyses for Licensing Evaluations) computer software system. Applications for criticality safety analysis in the areas of 3-D model visualization, input preparation and execution via a graphical user interface (GUI), and two-dimensional (2-D) plotting of results are discussed

  13. Development of safety analysis technology for LMR

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kwon, Y. M.; Suk, S. D.

    2002-05-01

    In the present study, the KALIMER safety analysis has been made for the transients considered in the design concept, hypothetical core disruptive accident (HCDA), and containment performance with the establishment of the design basis. Such analyses have not been possible without the computer code improvement, and the experience attained during this research period must have greatly contributed to the achievement of the self reliance in the domestic technology establishment on the safety analysis areas of the conceptual design. The safety analysis codes have been improved to extend their applicable ranges for detailed conceptual design, and a basic computer code system has been established for HCDA analysis. A code-to-code comparison analysis has been performed as a part of code verification attempt, and the leading edge technology of JNC also has been brought for the technology upgrade. In addition, the research and development on the area of the database establishment has been made for the efficient and systematic project implementation of the conceptual design, through performances on the development of a project scheduling management, integration of the individually developed technology, establishment of the product database, and so on, taking into account coupling of the activities conducted in each specific area

  14. Preclosure Safety Analysis Guide

    International Nuclear Information System (INIS)

    D.D. Orvis

    2003-01-01

    A preclosure safety analysis (PSA) is a required element of the License Application (LA) for the high- level radioactive waste repository at Yucca Mountain. This guide provides analysts and other Yucca Mountain Repository Project (the Project) personnel with standardized methods for developing and documenting the PSA. The definition of the PSA is provided in 10 CFR 63.2, while more specific requirements for the PSA are provided in 10 CFR 63.112, as described in Sections 1.2 and 2. The PSA requirements described in 10 CFR Part 63 were developed as risk-informed performance-based regulations. These requirements must be met for the LA. The PSA addresses the safety of the Geologic Repository Operations Area (GROA) for the preclosure period (the time up to permanent closure) in accordance with the radiological performance objectives of 10 CFR 63.111. Performance objectives for the repository after permanent closure (described in 10 CFR 63.113) are not mentioned in the requirements for the PSA and they are not considered in this guide. The LA will be comprised of two phases: the LA for construction authorization (CA) and the LA amendment to receive and possess (R and P) high-level radioactive waste (HLW). PSA methods must support the safety analyses that will be based on the differing degrees of design detail in the two phases. The methods described herein combine elements of probabilistic risk assessment (PRA) and deterministic analyses that comprise a risk-informed performance-based safety analysis. This revision to the PSA guide was prepared for the following objectives: (1) To correct factual and typographical errors. (2) To provide additional material suggested from reviews by the Project, the U.S. Department of Energy (DOE), and U.S. Nuclear Regulatory Commission (NRC) Staffs. (3) To update material in accordance with approaches and/or strategies adopted by the Project. In addition, a principal objective for the planned revision was to ensure that the methods and

  15. Socio-economic analysis: a tool for assessing the potential of nanotechnologies

    International Nuclear Information System (INIS)

    Brignon, Jean-Marc

    2011-01-01

    Cost-Benefit Analysis (CBA) has a long history, especially in the USA, of being used for the assessment of new regulation, new infrastructure and more recently for new technologies. Under the denomination of Socio-Economic Analysis (SEA), this concept is used in EU safety and environmental regulation, especially for the placing of chemicals on the market (REACh regulation) and the operation of industrial installations (Industrial Emissions Directive). As far as REACh and other EU legislation apply specifically to nanomaterials in the future, SEA might become an important assessment tool for nanotechnologies. The most important asset of SEA regarding nanomaterials, is the comparison with alternatives in socio-economic scenarios, which is key for the understanding of how a nanomaterial 'socially' performs in comparison with its alternatives. 'Industrial economics' methods should be introduced in SEAs to make industry and the regulator share common concepts and visions about economic competitiveness implications of regulating nanotechnologies, SEA and Life Cycle Analysis (LCA) can complement each other : Socio-Economic LCA are increasingly seen as a complete assessment tool for nanotechnologies, but the perspective between Social LCA and SEA are different and the respective merits and limitations of both approaches should be kept in mind. SEA is a 'pragmatic regulatory impact analysis', that uses a cost/benefit framework analysis but remains open to other disciplines than economy, and open to the participation of stakeholders for the construction of scenarios of the deployment of technologies and the identification of alternatives. SEA is 'pragmatic' in the sense that it is driven by the purpose to assess 'what happens' with the introduction of nanotechnology, and uses methodologies such as Life Cycle Analysis only as far as they really contribute to that goal. We think that, being pragmatic, SEA is also adaptative, which is a key quality to handle the novelty of

  16. Socio-economic analysis: a tool for assessing the potential of nanotechnologies

    Science.gov (United States)

    Brignon, Jean-Marc

    2011-07-01

    Cost-Benefit Analysis (CBA) has a long history, especially in the USA, of being used for the assessment of new regulation, new infrastructure and more recently for new technologies. Under the denomination of Socio-Economic Analysis (SEA), this concept is used in EU safety and environmental regulation, especially for the placing of chemicals on the market (REACh regulation) and the operation of industrial installations (Industrial Emissions Directive). As far as REACh and other EU legislation apply specifically to nanomaterials in the future, SEA might become an important assessment tool for nanotechnologies. The most important asset of SEA regarding nanomaterials, is the comparison with alternatives in socio-economic scenarios, which is key for the understanding of how a nanomaterial "socially" performs in comparison with its alternatives. "Industrial economics" methods should be introduced in SEAs to make industry and the regulator share common concepts and visions about economic competitiveness implications of regulating nanotechnologies, SEA and Life Cycle Analysis (LCA) can complement each other : Socio-Economic LCA are increasingly seen as a complete assessment tool for nanotechnologies, but the perspective between Social LCA and SEA are different and the respective merits and limitations of both approaches should be kept in mind. SEA is a "pragmatic regulatory impact analysis", that uses a cost/benefit framework analysis but remains open to other disciplines than economy, and open to the participation of stakeholders for the construction of scenarios of the deployment of technologies and the identification of alternatives. SEA is "pragmatic" in the sense that it is driven by the purpose to assess "what happens" with the introduction of nanotechnology, and uses methodologies such as Life Cycle Analysis only as far as they really contribute to that goal. We think that, being pragmatic, SEA is also adaptative, which is a key quality to handle the novelty of

  17. Abstract interfaces for data analysis - component architecture for data analysis tools

    International Nuclear Information System (INIS)

    Barrand, G.; Binko, P.; Doenszelmann, M.; Pfeiffer, A.; Johnson, A.

    2001-01-01

    The fast turnover of software technologies, in particular in the domain of interactivity (covering user interface and visualisation), makes it difficult for a small group of people to produce complete and polished software-tools before the underlying technologies make them obsolete. At the HepVis'99 workshop, a working group has been formed to improve the production of software tools for data analysis in HENP. Beside promoting a distributed development organisation, one goal of the group is to systematically design a set of abstract interfaces based on using modern OO analysis and OO design techniques. An initial domain analysis has come up with several categories (components) found in typical data analysis tools: Histograms, Ntuples, Functions, Vectors, Fitter, Plotter, analyzer and Controller. Special emphasis was put on reducing the couplings between the categories to a minimum, thus optimising re-use and maintainability of any component individually. The interfaces have been defined in Java and C++ and implementations exist in the form of libraries and tools using C++ (Anaphe/Lizard, OpenScientist) and Java (Java Analysis Studio). A special implementation aims at accessing the Java libraries (through their Abstract Interfaces) from C++. The authors give an overview of the architecture and design of the various components for data analysis as discussed in AIDA

  18. SBAT. A stochastic BPMN analysis tool

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Hansen, Zaza Nadja Lee; Jacobsen, Peter

    2014-01-01

    This paper presents SBAT, a tool framework for the modelling and analysis of complex business workflows. SBAT is applied to analyse an example from the Danish baked goods industry. Based upon the Business Process Modelling and Notation (BPMN) language for business process modelling, we describe...... a formalised variant of this language extended to support the addition of intention preserving stochastic branching and parameterised reward annotations. Building on previous work, we detail the design of SBAT, a software tool which allows for the analysis of BPMN models. Within SBAT, properties of interest...

  19. PROMOTION OF PRODUCTS AND ANALYSIS OF MARKET OF POWER TOOLS

    Directory of Open Access Journals (Sweden)

    Sergey S. Rakhmanov

    2014-01-01

    Full Text Available The article describes the general situation of power tools on the market, both in Russia and in the world. A comparative analysis of competitors, market structure analysis of power tools, as well as assessment of competitiveness of some major product lines. Also the analysis methods of promotion used by companies selling tools, competitive analysis range Bosch, the leader in its segment, power tools available on the market in Russia.

  20. Analysis of high burnup fuel safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development.

  1. Analysis of high burnup fuel safety issues

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development

  2. Vehicle Technology Simulation and Analysis Tools | Transportation Research

    Science.gov (United States)

    Analysis Tools NREL developed the following modeling, simulation, and analysis tools to investigate novel design goals (e.g., fuel economy versus performance) to find cost-competitive solutions. ADOPT Vehicle Simulator to analyze the performance and fuel economy of conventional and advanced light- and

  3. LOCA analysis of SCWR-M with passive safety system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.J., E-mail: xiaojingliu@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China); Fu, S.W. [Navy University of Engineering, Wuhan, Hubei (China); Xu, Z.H. [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China); Yang, Y.H. [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China); Cheng, X. [Institute of Fusion and Nuclear Technology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe (Germany)

    2013-06-15

    Highlights: • Application of the ATHLET-SC code to the trans-critical analysis for SCWR. • Development of a passive safety system for SCWR-M. • Analysis of hot/cold leg LOCA behaviour with different break size. • Introduction of some mitigation measures for SCWR-M -- Abstract: A new SCWR conceptual design (mixed spectrum supercritical water cooled reactor: SCWR-M) is proposed by Shanghai Jiao Tong University (SJTU). R and D activities covering core design, safety system design and code development of SCWR-M are launched at SJTU. Safety system design and analysis is one of the key tasks during the development of SCWR-M. Considering the current advanced reactor design, a new passive safety system for SCWR-M including isolation cooling system (ICS), accumulator injection system (ACC), gravity driven cooling system (GDCS) and automatic depressurization system (ADS) is proposed. Based on the modified and preliminarily assessed system code ATHLET-SC, loss of coolant accident (LOCA) analysis for hot and cold leg is performed in this paper. Three different break sizes are analyzed to clarify the hot and cold LOCA characteristics of the SCWR-M. The influence of the break location and break size on the safety performance of SCWR-M is also concluded. Several measures to induce the core coolant flow and to mitigate core heating up are also discussed. The results achieved so far demonstrate the feasibility of the proposed passive safety system to keep the SCWR-M core at safety condition during loss of coolant accident.

  4. Work-related stress risk assessment in Italy: the validation study of health safety and executive indicator tool.

    Science.gov (United States)

    Rondinone, Bruna Maria; Persechino, Benedetta; Castaldi, Tiziana; Valenti, Antonio; Ferrante, Pierpaolo; Ronchetti, Matteo; Iavicoli, Sergio

    2012-01-01

    In compliance with the Italian occupational health and safety regulatory framework, as provided by the Lgs. Decree 81/2008, the "work-related stress" risk assessment should follow the same principles as other risk assessments, in accordance with the European Agreement of 8 October 2004; therefore, validated and scientifically proven methodological tools are needed to conduct an adequate work-related stress risk assessment. The UK's Health Safety and Executive (HSE) Indicator Tool (IT) is used for assessing the risk of work-related stress. The aim of this study is to test the factor structure of IT as a measure of work-related stress in a sample of Italian workers. Data collected from 65 Italian organizations (6378 workers) was used for a Confirmatory Factor Analysis (CFA) on the 35-item seven-factor model. The results showed acceptable fit to the data (CFI .90; TLI .89, RMSEA .045). A second CFA was done to test a 35-item six-factor model (CFI .89, TLI .87, RMSEA .047). Both models were tested after removing six items (factor loadings less than .50.), resulting in a 29-item model. Here again, there was an acceptable fit to the data (29-item seven-factor model: CFI .93, TLI .91, RMSEA .044; 29-item six-factor model: CFI .92, TLI .90, RMSEA .046). These findings show that the HSE model satisfactorily adapts to use in a sample of Italian workers. One of the most important innovations introduced in the assessment of work-related stress with the HSE IT is the global approach for identifying work-related stress risk factors, aimed at establishing the best strategy from the viewpoints of prevention officers and also of workers.

  5. PA activity by using nuclear power plant safety demonstration and analysis

    International Nuclear Information System (INIS)

    Tsuchiya, Mitsuo; Kamimae, Rie

    1999-01-01

    INS/NUPEC presents one of Public acceptance (PA) methods for nuclear power in Japan, 'PA activity by using Nuclear Power Plant Safety Demonstration and Analysis', by using one of videos which is explained and analyzed accident events (Loss of Coolant Accident). Safety regulations of The National Government are strictly implemented in licensing at each of basic design and detailed design. To support safety regulation activities conducted by the National Government, INS/NLTPEC continuously implement Safety demonstration and analysis. With safety demonstration and analysis, made by assuming some abnormal conditions, what impacts could be produced by the assumed conditions are forecast based on specific design data on a given nuclear power plants. When analysis results compared with relevant decision criteria, the safety of nuclear power plants is confirmed. The decision criteria are designed to help judge if or not safety design of nuclear power plants is properly made. The decision criteria are set in the safety examination guidelines by taking sufficient safety allowance based on the latest technical knowledge obtained from a wide range of tests and safety studies. Safety demonstration and analysis is made by taking the procedure which are summarized in this presentation. In Japan, various PA (Public Acceptance) pamphlets and videos on nuclear energy have been published. But many of them focused on such topics as necessity or importance of nuclear energy, basic principles of nuclear power generation, etc., and a few described safety evaluation particularly of abnormal and accident events in accordance with the regulatory requirements. In this background, INS/NUPEC has been making efforts to prepare PA pamphlets and videos to explain the safety of nuclear power plants, to be simple and concrete enough, using various analytical computations for abnormal and accident events. In results, PA activity of INS/NUPEC is evaluated highly by the people

  6. Decision Analysis Tools for Volcano Observatories

    Science.gov (United States)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  7. Protein analysis tools and services at IBIVU

    Directory of Open Access Journals (Sweden)

    Brandt Bernd W.

    2011-06-01

    Full Text Available During the last years several new tools applicable to protein analysis have made available on the IBIVU web site. Recently, a number of tools, ranging from multiple sequence alignment construction to domain prediction, have been updated and/or extended with services for programmatic access using SOAP. We provide an overview of these tools and their application.

  8. Waste Isolation Pilot Plant Safety Analysis Report

    International Nuclear Information System (INIS)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions'' (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.'' This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment

  9. Waste Isolation Pilot Plant Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  10. Posttest analysis of the FFTF inherent safety tests

    International Nuclear Information System (INIS)

    Padilla, A. Jr.; Claybrook, S.W.

    1987-01-01

    Inherent safety tests were performed during 1986 in the 400-MW (thermal) Fast Flux Test Facility (FFTF) reactor to demonstrate the effectiveness of an inherent shutdown device called the gas expansion module (GEM). The GEM device provided a strong negative reactivity feedback during loss-of-flow conditions by increasing the neutron leakage as a result of an expanding gas bubble. The best-estimate pretest calculations for these tests were performed using the IANUS plant analysis code (Westinghouse Electric Corporation proprietary code) and the MELT/SIEX3 core analysis code. These two codes were also used to perform the required operational safety analyses for the FFTF reactor and plant. Although it was intended to also use the SASSYS systems (core and plant) analysis code, the calibration of the SASSYS code for FFTF core and plant analysis was not completed in time to perform pretest analyses. The purpose of this paper is to present the results of the posttest analysis of the 1986 FFTF inherent safety tests using the SASSYS code

  11. The safety monitor and RCM workstation as complementary tools in risk based maintenance optimization

    International Nuclear Information System (INIS)

    Rawson, P.D.

    2000-01-01

    Reliability Centred Maintenance (RCM) represents a proven technique for rendering maintenance activities safer, more effective, and less expensive, in terms of systems unavailability and resource management. However, it is believed that RCM can be enhanced by the additional consideration of operational plant risk. This paper discusses how two computer-based tools, i.e., the RCM Workstation and the Safety Monitor, can complement each other in helping to create a living preventive maintenance strategy. (author)

  12. SNF fuel retrieval sub project safety analysis document

    International Nuclear Information System (INIS)

    BERGMANN, D.W.

    1999-01-01

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed

  13. SNF fuel retrieval sub project safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    BERGMANN, D.W.

    1999-02-24

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

  14. Development and improvement of safety analysis code for geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In order to confirm the long-term safety concerning geological disposal, probabilistic safety assessment code and other analysis codes, which can evaluate possibility of each event and influence on engineered barrier and natural barrier by the event, were introduced. We confirmed basic functions of those codes and studied the relation between those functions and FEP/PID which should be taken into consideration in safety assessment. We are planning to develop 'Nuclide Migration Assessment System' for the purpose of realizing improvement in efficiency of assessment work, human error prevention for analysis, and quality assurance of the analysis environment and analysis work for safety assessment by using it. As the first step, we defined the system requirements and decided the system composition and functions which should be mounted in them based on those requirements. (author)

  15. Safety analysis of control rod drive computers

    International Nuclear Information System (INIS)

    Ehrenberger, W.; Rauch, G.; Schmeil, U.; Maertz, J.; Mainka, E.U.; Nordland, O.; Gloee, G.

    1985-01-01

    The analysis of the most significant user programmes revealed no errors in these programmes. The evaluation of approximately 82 cumulated years of operation demonstrated that the operating system of the control rod positioning processor has a reliability that is sufficiently good for the tasks this computer has to fulfil. Computers can be used for safety relevant tasks. The experience gained with the control rod positioning processor confirms that computers are not less reliable than conventional instrumentation and control system for comparable tasks. The examination and evaluation of computers for safety relevant tasks can be done with programme analysis or statistical evaluation of the operating experience. Programme analysis is recommended for seldom used and well structured programmes. For programmes with a long, cumulated operating time a statistical evaluation is more advisable. The effort for examination and evaluation is not greater than the corresponding effort for conventional instrumentation and control systems. This project has also revealed that, where it is technologically sensible, process controlling computers or microprocessors can be qualified for safety relevant tasks without undue effort. (orig./HP) [de

  16. Safety evaluation report of the Waste Isolation Pilot Plant safety analysis report: Contact-handled transuranic waste disposal operations

    International Nuclear Information System (INIS)

    1997-02-01

    DOE 5480.23, Nuclear Safety Analysis Reports, requires that the US Department of Energy conduct an independent, defensible, review in order to approve a Safety Analysis Report (SAR). That review and the SAR approval basis is documented in this formal Safety Evaluation Report (SER). This SER documents the DOE's review of the Waste Isolation Pilot Plant SAR and provides the Carlsbad Area Office Manager, the WIPP SAR approval authority, with the basis for approving the safety document. It concludes that the safety basis documented in the WIPP SAR is comprehensive, correct, and commensurate with hazards associated with planned waste disposal operations

  17. Using Cognitive Work Analysis to fit decision support tools to nurse managers' work flow.

    Science.gov (United States)

    Effken, Judith A; Brewer, Barbara B; Logue, Melanie D; Gephart, Sheila M; Verran, Joyce A

    2011-10-01

    To better understand the environmental constraints on nurse managers that impact their need for and use of decision support tools, we conducted a Cognitive Work Analysis (CWA). A complete CWA includes system analyses at five levels: work domain, decision-making procedures, decision-making strategies, social organization/collaboration, and worker skill level. Here we describe the results of the Work Domain Analysis (WDA) portion in detail then integrate the WDA with other portions of the CWA, reported previously, to generate a more complete picture of the nurse manager's work domain. Data for the WDA were obtained from semi-structured interviews with nurse managers, division directors, CNOs, and other managers (n = 20) on 10 patient care units in three Arizona hospitals. The WDA described the nurse manager's environment in terms of the constraints it imposes on the nurse manager's ability to achieve targeted outcomes through organizational goals and priorities, functions, processes, as well as work objects and resources (e.g., people, equipment, technology, and data). Constraints were identified and summarized through qualitative thematic analysis. The results highlight the competing priorities, and external and internal constraints that today's nurse managers must satisfy as they try to improve quality and safety outcomes on their units. Nurse managers receive a great deal of data, much in electronic format. Although dashboards were perceived as helpful because they integrated some data elements, no decision support tools were available to help nurse managers with planning or answering "what if" questions. The results suggest both the need for additional decision support to manage the growing complexity of the environment, and the constraints the environment places on the design of that technology if it is to be effective. Limitations of the study include the small homogeneous sample and the reliance on interview data targeting safety and quality. Copyright © 2011

  18. Medical decision making tools: Bayesian analysis and ROC analysis

    International Nuclear Information System (INIS)

    Lee, Byung Do

    2006-01-01

    During the diagnostic process of the various oral and maxillofacial lesions, we should consider the following: 'When should we order diagnostic tests? What tests should be ordered? How should we interpret the results clinically? And how should we use this frequently imperfect information to make optimal medical decision?' For the clinicians to make proper judgement, several decision making tools are suggested. This article discusses the concept of the diagnostic accuracy (sensitivity and specificity values) with several decision making tools such as decision matrix, ROC analysis and Bayesian analysis. The article also explain the introductory concept of ORAD program

  19. Safety analysis of the existing 850 Firing Facility

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 850 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but one of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exception was explosives, which was classified as a moderate hazard per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public

  20. Safety analysis of the existing 851 Firing Facility

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 851 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but two of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exceptions were the linear accelerator and explosives, which were classified as moderate hazards per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public

  1. Safety Management of a Clinical Process Using Failure Mode and Effect Analysis: Continuous Renal Replacement Therapies in Intensive Care Unit Patients.

    Science.gov (United States)

    Sanchez-Izquierdo-Riera, Jose Angel; Molano-Alvarez, Esteban; Saez-de la Fuente, Ignacio; Maynar-Moliner, Javier; Marín-Mateos, Helena; Chacón-Alves, Silvia

    2016-01-01

    The failure mode and effect analysis (FMEA) may improve the safety of the continuous renal replacement therapies (CRRT) in the intensive care unit. We use this tool in three phases: 1) Retrospective observational study. 2) A process FMEA, with implementation of the improvement measures identified. 3) Cohort study after FMEA. We included 54 patients in the pre-FMEA group and 72 patients in the post-FMEA group. Comparing the risks frequencies per patient in both groups, we got less cases of under 24 hours of filter survival time in the post-FMEA group (31 patients 57.4% vs. 21 patients 29.6%; p FMEA, there were several improvements in the management of intensive care unit patients receiving CRRT, and we consider it a useful tool for improving the safety of critically ill patients.

  2. Assessing the impact of safety monitoring on the efficacy analysis in large Phase III group sequential trials with non-trivial safety event rate.

    Science.gov (United States)

    Weng, Yanqiu; Palesch, Yuko Y; DeSantis, Stacia M; Zhao, Wenle

    2016-01-01

    In Phase III clinical trials for life-threatening conditions, some serious but expected adverse events, such as early deaths or congestive heart failure, are often treated as the secondary or co-primary endpoint, and are closely monitored by the Data and Safety Monitoring Committee (DSMC). A naïve group sequential design (GSD) for such a study is to specify univariate statistical boundaries for the efficacy and safety endpoints separately, and then implement the two boundaries during the study, even though the two endpoints are typically correlated. One problem with this naïve design, which has been noted in the statistical literature, is the potential loss of power. In this article, we develop an analytical tool to evaluate this negative impact for trials with non-trivial safety event rates, particularly when the safety monitoring is informal. Using a bivariate binary power function for the GSD with a random-effect component to account for subjective decision-making in safety monitoring, we demonstrate how, under common conditions, the power loss in the naïve design can be substantial. This tool may be helpful to entities such as the DSMCs when they wish to deviate from the prespecified stopping boundaries based on safety measures.

  3. Nutrition screening tools: an analysis of the evidence.

    Science.gov (United States)

    Skipper, Annalynn; Ferguson, Maree; Thompson, Kyle; Castellanos, Victoria H; Porcari, Judy

    2012-05-01

    In response to questions about tools for nutrition screening, an evidence analysis project was developed to identify the most valid and reliable nutrition screening tools for use in acute care and hospital-based ambulatory care settings. An oversight group defined nutrition screening and literature search criteria. A trained analyst conducted structured searches of the literature for studies of nutrition screening tools according to predetermined criteria. Eleven nutrition screening tools designed to detect undernutrition in patients in acute care and hospital-based ambulatory care were identified. Trained analysts evaluated articles for quality using criteria specified by the American Dietetic Association's Evidence Analysis Library. Members of the oversight group assigned quality grades to the tools based on the quality of the supporting evidence, including reliability and validity data. One tool, the NRS-2002, received a grade I, and 4 tools-the Simple Two-Part Tool, the Mini-Nutritional Assessment-Short Form (MNA-SF), the Malnutrition Screening Tool (MST), and Malnutrition Universal Screening Tool (MUST)-received a grade II. The MST was the only tool shown to be both valid and reliable for identifying undernutrition in the settings studied. Thus, validated nutrition screening tools that are simple and easy to use are available for application in acute care and hospital-based ambulatory care settings.

  4. Dual-use tools and systematics-aware analysis workflows in the ATLAS Run-II analysis model

    CERN Document Server

    FARRELL, Steven; The ATLAS collaboration

    2015-01-01

    The ATLAS analysis model has been overhauled for the upcoming run of data collection in 2015 at 13 TeV. One key component of this upgrade was the Event Data Model (EDM), which now allows for greater flexibility in the choice of analysis software framework and provides powerful new features that can be exploited by analysis software tools. A second key component of the upgrade is the introduction of a dual-use tool technology, which provides abstract interfaces for analysis software tools to run in either the Athena framework or a ROOT-based framework. The tool interfaces, including a new interface for handling systematic uncertainties, have been standardized for the development of improved analysis workflows and consolidation of high-level analysis tools. This presentation will cover the details of the dual-use tool functionality, the systematics interface, and how these features fit into a centrally supported analysis environment.

  5. Dual-use tools and systematics-aware analysis workflows in the ATLAS Run-2 analysis model

    CERN Document Server

    FARRELL, Steven; The ATLAS collaboration; Calafiura, Paolo; Delsart, Pierre-Antoine; Elsing, Markus; Koeneke, Karsten; Krasznahorkay, Attila; Krumnack, Nils; Lancon, Eric; Lavrijsen, Wim; Laycock, Paul; Lei, Xiaowen; Strandberg, Sara Kristina; Verkerke, Wouter; Vivarelli, Iacopo; Woudstra, Martin

    2015-01-01

    The ATLAS analysis model has been overhauled for the upcoming run of data collection in 2015 at 13 TeV. One key component of this upgrade was the Event Data Model (EDM), which now allows for greater flexibility in the choice of analysis software framework and provides powerful new features that can be exploited by analysis software tools. A second key component of the upgrade is the introduction of a dual-use tool technology, which provides abstract interfaces for analysis software tools to run in either the Athena framework or a ROOT-based framework. The tool interfaces, including a new interface for handling systematic uncertainties, have been standardized for the development of improved analysis workflows and consolidation of high-level analysis tools. This paper will cover the details of the dual-use tool functionality, the systematics interface, and how these features fit into a centrally supported analysis environment.

  6. Statistical margin to DNB safety analysis approach for LOFT

    International Nuclear Information System (INIS)

    Atkinson, S.A.

    1982-01-01

    A method was developed and used for LOFT thermal safety analysis to estimate the statistical margin to DNB for the hot rod, and to base safety analysis on desired DNB probability limits. This method is an advanced approach using response surface analysis methods, a very efficient experimental design, and a 2nd-order response surface equation with a 2nd-order error propagation analysis to define the MDNBR probability density function. Calculations for limiting transients were used in the response surface analysis thereby including transient interactions and trip uncertainties in the MDNBR probability density

  7. A framework for the system-of-systems analysis of the risk for a safety-critical plant exposed to external events

    International Nuclear Information System (INIS)

    Zio, E.; Ferrario, E.

    2013-01-01

    We consider a critical plant exposed to risk from external events. We propose an original framework of analysis, which extends the boundaries of the study to the interdependent infrastructures which support the plant. For the purpose of clearly illustrating the conceptual framework of system-of-systems analysis, we work out a case study of seismic risk for a nuclear power plant embedded in the connected power and water distribution, and transportation networks which support its operation. The technical details of the systems considered (including the nuclear power plant) are highly simplified, in order to preserve the purpose of illustrating the conceptual, methodological framework of analysis. Yet, as an example of the approaches that can be used to perform the analysis within the proposed framework, we consider the Muir Web as system analysis tool to build the system-of-systems model and Monte Carlo simulation for the quantitative evaluation of the model. The numerical exercise, albeit performed on a simplified case study, serves the purpose of showing the opportunity of accounting for the contribution of the interdependent infrastructure systems to the safety of a critical plant. This is relevant as it can lead to considerations with respect to the decision making related to safety critical-issues. -- Highlights: ► We consider a critical plant exposed to risk from external events. ► We consider also the interdependent infrastructures that support the plant. ► We use Muir Web as system analysis tool to build the system-of-systems model. ► We use Monte Carlo simulation for the quantitative evaluation of the model. ► We find that the interdependent infrastructures should be considered as they can be a support for the critical plant safety

  8. Development of regulatory technology for thermal-hydraulic safety analysis

    International Nuclear Information System (INIS)

    Bang, Young Seok; Lee, S. H.; Ryu, Y. H.

    2001-02-01

    The present study aims to develop the regulation capability in thermal-hydraulic safety analysis which was required for the reasonable safety regulation in the current NPP, the next generation reactors, and the future-type reactors. The fourth fiscal year of the first phase of the research was focused on the following research topics: Investigation on the current status of the thermal-hydraulic safety analysis technology outside and inside of the country; Review on the improved features of the thermal-hydraulic safety analysis regulatory audit code, RELAP5/MOD3; Assessments of code with LOFT L9-3 ATWS experiment and LSTF SB-SG-10 multiple SGTR experiment; Application of the RELAP5/CANDU code to analyses of SLB and LBLOCA and evaluation of its effect on safety; Application of the code to IAEA PHWR ISP analysis; Assessments of RELAP5 and TRAC with UPTF downcomer injection test and Analysis of LBLOCA with RELAP5 for the performance evaluation of KNGR DVI; Setup of a coupled 3-D kinetics and thermal-hydraulics and application it to a reactivity accident analysis; and Extension of database and improvement of plant input decks. For supporting the resolution of safety issues, loss of RHR event during midloop operation was analyzed for Kori Unit 3, issues on high burnup fuel were reviewed and performance of FRAPCON-3 assessed. Also MSLB was analyzed to figure out the sensitivity of downcomer temperature supporting the PTS risk evaluation of Kori Unit 1. Thermal stratification in pipe was analyzed using the method proposed. And a method predicting the thermal-hydraulic performance of IRWST of KNGR was explored. The PWR ECCS performance criteria was issued as a MOST Article 200-19.and a regulatory guide on evaluation methodology was improved to cover concerns raised from the related licensing review process

  9. Safety analysis in support of regulatory decision marking

    International Nuclear Information System (INIS)

    Pomier Baez, L.; Troncoso Fleitas, M.; Valhuerdi Debesa, C.; Valle Cepero, R.; Hernandez, J.L.

    1996-01-01

    Features of different safety analysis techniques by means of calculation thermohydraulic a probabilistic and severe accidents used in the safety assessment, as well as the development of these techniques in Cuba and their use in support of regulatory decision making are presented

  10. Operational safety analysis status of Novi Han repository

    International Nuclear Information System (INIS)

    Boiadjiev, A.

    2000-01-01

    This article presents the status of the safety studies and activities related to Novi Han repository. The case of this facility is such that no clear boundary exists between post-closure safety assessment and operational safety assessment. The major findings of these activities are given. The Safety Analysis Report (SAR) for Novi Han repository is developed by Risk Engineering Ltd. under a contract with the Committee on the Use of Atomic Energy for Peaceful Purposes. The general structure and main conclusions and recommendations of the SAR are presented. (author)

  11. Safety analysis and evaluation methodology for fusion systems

    International Nuclear Information System (INIS)

    Fujii-e, Y.; Kozawa, Y.; Namba, C.

    1987-03-01

    Fusion systems which are under development as future energy systems have reached a stage that the break even is expected to be realized in the near future. It is desirable to demonstrate that fusion systems are well acceptable to the societal environment. There are three crucial viewpoints to measure the acceptability, that is, technological feasibility, economy and safety. These three points have close interrelation. The safety problem is more important since three large scale tokamaks, JET, TFTR and JT-60, start experiment, and tritium will be introduced into some of them as the fusion fuel. It is desirable to establish a methodology to resolve the safety-related issues in harmony with the technological evolution. The promising fusion system toward reactors is not yet settled. This study has the objective to develop and adequate methodology which promotes the safety design of general fusion systems and to present a basis for proposing the R and D themes and establishing the data base. A framework of the methodology, the understanding and modeling of fusion systems, the principle of ensuring safety, the safety analysis based on the function and the application of the methodology are discussed. As the result of this study, the methodology for the safety analysis and evaluation of fusion systems was developed. New idea and approach were presented in the course of the methodology development. (Kako, I.)

  12. Sustainability Tools Inventory - Initial Gaps Analysis | Science ...

    Science.gov (United States)

    This report identifies a suite of tools that address a comprehensive set of community sustainability concerns. The objective is to discover whether "gaps" exist in the tool suite’s analytic capabilities. These tools address activities that significantly influence resource consumption, waste generation, and hazard generation including air pollution and greenhouse gases. In addition, the tools have been evaluated using four screening criteria: relevance to community decision making, tools in an appropriate developmental stage, tools that may be transferrable to situations useful for communities, and tools with requiring skill levels appropriate to communities. This document provides an initial gap analysis in the area of community sustainability decision support tools. It provides a reference to communities for existing decision support tools, and a set of gaps for those wishing to develop additional needed tools to help communities to achieve sustainability. It contributes to SHC 1.61.4

  13. Gap Analysis Approach for Construction Safety Program Improvement

    Directory of Open Access Journals (Sweden)

    Thanet Aksorn

    2007-06-01

    Full Text Available To improve construction site safety, emphasis has been placed on the implementation of safety programs. In order to successfully gain from safety programs, factors that affect their improvement need to be studied. Sixteen critical success factors of safety programs were identified from safety literature, and these were validated by safety experts. This study was undertaken by surveying 70 respondents from medium- and large-scale construction projects. It explored the importance and the actual status of critical success factors (CSFs. Gap analysis was used to examine the differences between the importance of these CSFs and their actual status. This study found that the most critical problems characterized by the largest gaps were management support, appropriate supervision, sufficient resource allocation, teamwork, and effective enforcement. Raising these priority factors to satisfactory levels would lead to successful safety programs, thereby minimizing accidents.

  14. SaTool - a Software Tool for Structural Analysis of Complex Automation Systems

    DEFF Research Database (Denmark)

    Blanke, Mogens; Lorentzen, Torsten

    2006-01-01

    The paper introduces SaTool, a tool for structural analysis, the use of the Matlab (R)-based implementation is presented and special features are introduced, which were motivated by industrial users. Salient features of tool are presented, including the ability to specify the behavior of a complex...... system at a high level of functional abstraction, analyze single and multiple fault scenarios and automatically generate parity relations for diagnosis for the system in normal and impaired conditions. User interface and algorithmic details are presented....

  15. SECIMTools: a suite of metabolomics data analysis tools.

    Science.gov (United States)

    Kirpich, Alexander S; Ibarra, Miguel; Moskalenko, Oleksandr; Fear, Justin M; Gerken, Joseph; Mi, Xinlei; Ashrafi, Ali; Morse, Alison M; McIntyre, Lauren M

    2018-04-20

    Metabolomics has the promise to transform the area of personalized medicine with the rapid development of high throughput technology for untargeted analysis of metabolites. Open access, easy to use, analytic tools that are broadly accessible to the biological community need to be developed. While technology used in metabolomics varies, most metabolomics studies have a set of features identified. Galaxy is an open access platform that enables scientists at all levels to interact with big data. Galaxy promotes reproducibility by saving histories and enabling the sharing workflows among scientists. SECIMTools (SouthEast Center for Integrated Metabolomics) is a set of Python applications that are available both as standalone tools and wrapped for use in Galaxy. The suite includes a comprehensive set of quality control metrics (retention time window evaluation and various peak evaluation tools), visualization techniques (hierarchical cluster heatmap, principal component analysis, modular modularity clustering), basic statistical analysis methods (partial least squares - discriminant analysis, analysis of variance, t-test, Kruskal-Wallis non-parametric test), advanced classification methods (random forest, support vector machines), and advanced variable selection tools (least absolute shrinkage and selection operator LASSO and Elastic Net). SECIMTools leverages the Galaxy platform and enables integrated workflows for metabolomics data analysis made from building blocks designed for easy use and interpretability. Standard data formats and a set of utilities allow arbitrary linkages between tools to encourage novel workflow designs. The Galaxy framework enables future data integration for metabolomics studies with other omics data.

  16. Post-Flight Data Analysis Tool

    Science.gov (United States)

    George, Marina

    2018-01-01

    A software tool that facilitates the retrieval and analysis of post-flight data. This allows our team and other teams to effectively and efficiently analyze and evaluate post-flight data in order to certify commercial providers.

  17. Incorporating Traffic Control and Safety Hardware Performance Functions into Risk-based Highway Safety Analysis

    Directory of Open Access Journals (Sweden)

    Zongzhi Li

    2017-04-01

    Full Text Available Traffic control and safety hardware such as traffic signs, lighting, signals, pavement markings, guardrails, barriers, and crash cushions form an important and inseparable part of highway infrastructure affecting safety performance. Significant progress has been made in recent decades to develop safety performance functions and crash modification factors for site-specific crash predictions. However, the existing models and methods lack rigorous treatments of safety impacts of time-deteriorating conditions of traffic control and safety hardware. This study introduces a refined method for computing the Safety Index (SI as a means of crash predictions for a highway segment that incorporates traffic control and safety hardware performance functions into the analysis. The proposed method is applied in a computation experiment using five-year data on nearly two hundred rural and urban highway segments. The root-mean square error (RMSE, Chi-square, Spearman’s rank correlation, and Mann-Whitney U tests are employed for validation.

  18. Pandora - a simulation tool for safety assessments. Technical description and user's guide

    Energy Technology Data Exchange (ETDEWEB)

    Ekstroem, Per-Anders (Facilia AB (Sweden))

    2010-12-15

    This report documents a flexible simulation tool, Pandora, used in several post closure safety assessments in both Sweden and Finland to assess the radiological dose to man due to releases from radioactive waste repositories. Pandora allows the user to build compartment models to represent the migration and fate of radionuclides in the environment. The tool simplifies the implementation and simulation of radioecological biosphere models in which there exist a large set of radionuclides and input variables. Based on the well-known technical computing software MATLAB and especially its interactive graphical environment Simulink, Pandora receives many benefits. MATLAB/Simulink is a highly flexible tool used for simulations of practically any type of dynamic system; it is widely used, continuously maintained, and often upgraded. By basing the tool on this commercial software package, we gain both the graphical interface provided by Simulink, as well as the ability to access the advanced numerical equation solving routines in MATLAB. Since these numerical methods are well established and quality assured in their MATLAB implementation, the solution methods used in Pandora can be considered to have high level of quality assurance. The structure of Pandora provides clarity in the model format, which means the model itself assists its own documentation, since the model can be understood by inspecting its structure. With the introduction of the external tool Pandas (Pandora assessment tool), version handling and an integrated way of performing the entire calculation chain has been added. Instead of being dependent on other commercial statistical software as @Risk for performing probabilistic assessments, they can now be performed within the tool

  19. Applications of noise analysis to nuclear safety

    International Nuclear Information System (INIS)

    Aguilar Martinez, Omar

    2000-01-01

    Noise Analysis techniques (analysis of the fluctuation of physical parameters) have been successfully applied to the operational vigilance of the technical equipment that plays a decisive role in the production cycle of a very complex industry. Although fluctuation measurements in nuclear installations started almost at the start of the nuclear era (see works by Feynman and Rossi on the development of neutron methodology), only recently have neutron noise diagnostic applications begun to be a part of the standard procedures for the performance of some modern nuclear installations. Following the relevant technical advances made in information sciences and analogical electronics, measuring the fluctuation of physical parameters has become a very effective tool for detecting, guarding and following up possible defects in a nuclear system. As the processing techniques for the fluctuation of a nuclear reactor's physical-neutron parameters have evolved (temporal and frequency analysis, multi-parameter self -regression analysis, etc.), the applications of the theory of non-lineal dynamics and chaos theory have progressed by focusing on the problem from another perspective. This work reports on those nuclear applications of noise analysis that increase nuclear safety in all types of nuclear facilities and that have been carried out by the author over the last decade, such as: -Void Force Critical Set Applications (Zero Power Reactor Applications, Central Institute of Physical Research, Budapest, Hungary); -Research Reactor Applications (Triga Mark III Reactor, National Institute of Nuclear Research, ININ, Mexico); -Power Reactor Applications in a Nuclear Power Plant (First Circuit of Block II, Paks Nuclear Center, Hungary); -Second Loop applications in a Nuclear Power Plant (Block I Paks Nuclear Center, Hungary; Block II Kalinin Nuclear Center, Russia); -Shield System Applications for the Transport of Radioisotopes (Nuclear Technology Center, Havana, Cuba) New trends in

  20. Development of a quality assurance safety assessment database for near surface radioactive waste disposal

    International Nuclear Information System (INIS)

    Park, J. W.; Kim, C. L.; Park, J. B.; Lee, E. Y.; Lee, Y. M.; Kang, C. H.; Zhou, W.; Kozak, M. W.

    2003-01-01

    A quality assurance safety assessment database, called QUARK (QUality Assurance program for Radioactive waste management in Korea), has been developed to manage both analysis information and parameter database for safety assessment of Low- and Intermediate-Level radioactive Waste (LILW) disposal facility in Korea. QUARK is such a tool that serves QA purposes for managing safety assessment information properly and securely. In QUARK, the information is organized and linked to maximize the integrity of information and traceability. QUARK provides guidance to conduct safety assessment analysis, from scenario generation to result analysis, and provides a window to inspect and trace previous safety assessment analysis and parameter values. QUARK also provides default database for safety assessment staff who construct input data files using SAGE(Safety Assessment Groundwater Evaluation), a safety assessment computer code