WorldWideScience

Sample records for safeguards inspections final

  1. Developing the information management system for safeguards national inspection

    International Nuclear Information System (INIS)

    Park, S. J.; Jeon, I.; Park, W. S.; Min, K. S.

    2003-01-01

    The inspection information management system for safeguards national inspection is aimed to do the national safeguards inspection with efficiency, and to decrease the inspector's load to write inspection report by systematizing the inspection jobs and sharing the inspection data. National safeguards inspection is consisted two large jobs. The first is the national safeguards supporting job of managing to support the national inspection mission. The other is the writing a national inspection report after completing the national inspection. Before the developing of inspection information management system, the official tools(spread sheet, word processor) are usually used. But there is problem to share the data, to produce the statistics data. To solve the these problem, we developed the inspection information management system that process the job from initial to final inspection work, and opened user education. This paper explain the procedure of developing the inspection information management system for safeguards national inspection

  2. Developing the information management system for safeguards national inspection

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. J.; Jeon, I.; Park, W. S.; Min, K. S. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    The inspection information management system for safeguards national inspection is aimed to do the national safeguards inspection with efficiency, and to decrease the inspector's load to write inspection report by systematizing the inspection jobs and sharing the inspection data. National safeguards inspection is consisted two large jobs. The first is the national safeguards supporting job of managing to support the national inspection mission. The other is the writing a national inspection report after completing the national inspection. Before the developing of inspection information management system, the official tools(spread sheet, word processor) are usually used. But there is problem to share the data, to produce the statistics data. To solve the these problem, we developed the inspection information management system that process the job from initial to final inspection work, and opened user education. This paper explain the procedure of developing the inspection information management system for safeguards national inspection.

  3. Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections

    International Nuclear Information System (INIS)

    Toquam, J.L.; Morris, F.A.

    1994-09-01

    This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in open-quotes Observational Skillsclose quotes. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one or more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector's job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector's job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA's consideration in further developing its Safeguards training program

  4. Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections

    Energy Technology Data Exchange (ETDEWEB)

    Toquam, J.L.; Morris, F.A.

    1994-09-01

    This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in {open_quotes}Observational Skills{close_quotes}. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one or more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector`s job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector`s job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA`s consideration in further developing its Safeguards training program.

  5. Inspection technologies -Development of national safeguards technology-

    International Nuclear Information System (INIS)

    Hong, J. S.; Kim, B. K.; Kwack, E. H.

    1996-12-01

    17 facility regulations prepared by nuclear facilities according to the Ministerial Notices were evaluated. Safeguards inspection activities under Safeguards are described. Safeguards inspection equipments and operation manuals to be used for national inspection are also described. Safeguards report are produced and submitted to MOST by using the computerized nuclear material accounting system at state level. National inspection support system are developed to produce the on-site information for domestic inspection. Planning and establishment of policy for nuclear control of nuclear materials, international cooperation for nuclear control, CTBT, strengthening of international safeguards system, and the supply of PWRs to North Korea are also described. (author). 43 tabs., 39 figs

  6. International inspection activity impacts upon DOE safeguards requirements

    International Nuclear Information System (INIS)

    Zack, N.R.

    1995-01-01

    The US has placed certain special nuclear materials declared excess to their strategic needs under international safeguards through the International Atomic Energy Agency (IAEA). This Presidential initiative has obligated materials at several Department of Energy (DOE) facilities for these safeguards activities to demonstrate the willingness of the US to ban production or use of nuclear materials outside of international safeguards. However, IAEA inspection activities generally tend to be intrusive in nature and are not consistent with several domestic safeguards procedures implemented to reduce worker radiation exposures and increase the cost-effectiveness and efficiency of accounting for and storing of special nuclear materials. To help identify and provide workable solutions to these concerns, the Office of Safeguards and Security has conducted a program to determine possible changes to the DOE safeguards and security requirements designed to help facilities under international safeguards inspections more easily comply with domestic safeguards goals during international inspection activities. This paper will discuss the impact of international inspection activities on facility safeguards operations and departmental safeguards procedures and policies

  7. Safeguards management inspection procedures

    International Nuclear Information System (INIS)

    Barth, M.J.; Dunn, D.R.

    1984-08-01

    The objective of this inspection module is to independently assess the contributions of licensee management to overall safeguards systems performance. The inspector accomplishes this objective by comparing the licensee's safeguards management to both the 10 CFR, parts 70 and 73, requirements and to generally accepted management practices. The vehicle by which this comparison is to be made consists of assessment questions and key issues which point the inspector to areas of primary concern to the NRC and which raise additional issues for the purpose of exposing management ineffectiveness. Further insight into management effectiveness is obtained through those assessment questions specifically directed toward the licensee's safeguards system performance. If the quality of the safeguards is poor, then the inspector should strongly suspect that management's role is ineffective and should attempt to determine management's influence (or lack thereof) on the underlying safeguards deficiencies. (The converse is not necessarily true, however.) The assessment questions in essence provide an opportunity for the inspector to identify, to single out, and to probe further, questionable management practices. Specific issues, circumstances, and concerns which point to questionable or inappropriate practices should be explicitly identified and referenced against the CFR and the assessment questions. The inspection report should also explain why the inspector feels certain management practices are poor, counter to the CFR, and/or point to ineffecive management. Concurrent with documenting the inspection results, the inspector should provide recommendations for alleviating observed management practices that are detrimental to effective safeguards. The recommendations could include: specific changes in the practices of the licensee, followup procedures on the part of NRC, and proposed license changes

  8. Advancement of safeguards inspection technology for CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Park, W S; Cha, H R; Ham, Y S; Lee, Y G; Kim, K P; Hong, Y D

    1999-04-01

    The objectives of this project are to develop both inspection technology and safeguards instruments, related to CANDU safeguards inspection, through international cooperation, so that those outcomes are to be applied in field inspections of national safeguards. Furthermore, those could contribute to the improvement of verification correctness of IAEA inspections. Considering the level of national inspection technology, it looked not possible to perform national inspections without the joint use of containment and surveillance equipment conjunction with the IAEA. In this connection, basic studies for the successful implementation of national inspections was performed, optimal structure of safeguards inspection was attained, and advancement of safeguards inspection technology was forwarded. The successful implementation of this project contributed to both the improvement of inspection technology on CANDU reactors and the implementation of national inspection to be performed according to the legal framework. In addition, it would be an opportunity to improve the ability of negotiating in equal shares in relation to the IAEA on the occasion of discussing or negotiating the safeguards issues concerned. Now that the national safeguards technology for CANDU reactors was developed, the safeguards criteria, procedure and instruments as to the other item facilities and fabrication facilities should be developed for the perfection of national inspections. It would be desirable that the recommendations proposed and concreted in this study, so as to both cope with the strengthened international safeguards and detect the undeclared nuclear activities, could be applied to national safeguards scheme. (author)

  9. Inspection methods for safeguards systems at nuclear facilities

    International Nuclear Information System (INIS)

    Minichino, C.; Richard, E.W.

    1981-01-01

    A project team at Lawrence Livermore National Laboratory has been developing inspection procedures and training materials for the NRC inspectors of safeguards systems at licensed nuclear facilities. This paper describes (1) procedures developed for inspecting for compliance with the Code of Federal Regulations, (2) training materials for safeguards inspectors on technical topics related to safeguards systems, such as computer surety, alarm systems, sampling techniques, and power supplies, and (3) an inspector-oriented methodology for evaluating the overall effectiveness of safeguards systems

  10. INSPECT: a package of computer programs for planning and evaluating safeguards inspections

    International Nuclear Information System (INIS)

    Mullen, M.F.

    1980-01-01

    As part of the US Program of Technical Assistance to IAEA Safeguards, PNL has developed a package of computer programs, called INSPECT, that can be used in planning and evaluating safeguards inspections of various types of nuclear facilities. The programs are based on the statistical methods described in Part F of the IAEA Safeguards Technical Manual and can be used to calculate the variance components of the MUF (Material Unaccounted For) statistic, the variance components of the D (difference) statistic, attribute and variables sampling plans, and a measure of the effectiveness of the inspection plan. The paper describes the programs, reviews a number of applications, and indicates areas for future work

  11. International Nuclear Safeguards Inspection Support Tool (INSIST)

    International Nuclear Information System (INIS)

    St. Pierre, D.E.; Steinmaus, K.L.; Moon, B.D.

    1994-07-01

    DOE is committed to providing technologies to the International Atomic Energy Agency (IAEA) to meet escalating monitoring and inspection requirements associated with the Non-Proliferation Treaty (NPT). One example of technology provided to the IAEA is the information management and remote monitoring capabilities being customized for the IAEA by the International Safeguards Division of the Office of Non-Proliferation and National Security. The ongoing Safeguards Information Management Systems (SIMS) program is an interlaboratory effort providing the IAEA with a range of information management capabilities designed to enhance the effectiveness of their nuclear inspection activities. The initial commitment involved the customization of computer capabilities to provide IAEA with the basic capability to geographically organize, store, and retrieve the large quantity of information involved in their nuclear on site inspection activities in Iraq. This initial system, the International Nuclear Safeguards Inspection Support Tool (INSIST), was developed by DOE's Pacific Northwest Laboratory (PNL). To date, two INSIST workstations have been deployed at the IAEA. The first has been used to support the IAEA Action Team in the inspection of Iraqi nuclear facilities since August 1993. A second, and similar, workstation has been deployed to support environmental monitoring under the IAEA 93+2 Programme. Both INSIST workstations geographically integrate analog (video) and digital data to provide an easy to use and effective tool for storing retrieving and displaying multimedia site and facility information including world-wide maps, satellite and aerial imagery, on site photography, live inspection videos, and treaty and inspection textual information. The interactive, UNIX-based workstations have a variety of peripheral devices for information input and output. INSIST software includes commercial-off-the-shelf (COTS) modules and application-specific code developed at PNL

  12. INSPECT: a package of computer programs for planning safeguards inspections

    International Nuclear Information System (INIS)

    Wincek, M.A.; Mullen, M.F.

    1979-04-01

    As part of the U.S. program to provide technical assistance to the International Atomic Energy Agency, a package of computer programs was developed for use in planning safeguards inspections of various types of nuclear facilities. The INSPECT software package is a set of five interactive FORTRAN programs which can be used to calculate the variance components of the MUF (Material Unaccounted For) statistic, the variance components of the D (difference) statistic, attribute and variables sampling plans, a measure of the effectiveness of the inspection, and a measurement of the cost of implementing the inspection plan. This report describes the programs and explains how to use them

  13. Optimizing and joining future safeguards efforts by 'remote inspections'

    International Nuclear Information System (INIS)

    Zendel, M.; Khlebnikov, N.

    2009-01-01

    Full-text: Remote inspections have a large potential to save inspection effort in future routine safeguards implementation. Such inspections involve remote activities based on the analysis of data acquired in the field without the physical presence of an inspector, shifting the inspectors' priorities further toward unannounced inspections, complementary access activities and data evaluation. Large, automated and complex facilities require facility resident and specific safeguards equipment systems with features for unattended and remotely controlled operation as well as being integrated in the nuclear process. In many instances the use of such equipment jointly with the SSAC/RSAC and the operator is foreseen to achieve affordable effectiveness with a minimum level of intrusiveness to the facility operation. Where it becomes possible to achieve independent conclusions by this approach, the IAEA would make full use of the SSAC/RSAC, involving State inspectors and/or facility operators to operate inspection systems under remotely controlled IAEA mechanisms. These mechanisms would include documented procedures for routine joint-use, defining arrangements for data sharing, physical security and authentication mechanisms, recalibration and use of standards and software, maintenance, repair, storage and transportation. The level of cooperation and willingness of a State to implement such measures requested and properly justified by the IAEA will demonstrate its commitment to full transparency in its nuclear activities. Examples of existing remote inspection activities, including joint-use activities will be discussed. The future potential of remote inspections will be assessed considering technical developments and increased needs for process monitoring. Enhanced cooperation with SSAC/RSAC within the framework of remote inspections could further optimize the IAEA's inspection efforts while at the same time maintaining effective safeguards implementation. (author)

  14. Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation

    International Nuclear Information System (INIS)

    Boyer, Brian David; Erpenbeck, Heather H.; Miller, Karen A.; Ianakiev, Kiril D.; Reimold, Benjamin A.; Ward, Steven L.; Howell, John

    2010-01-01

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and 235 U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

  15. Unannounced inspection for integrated safeguards: A theoretical perspective

    International Nuclear Information System (INIS)

    Canty, M.J.; Avenhaus, R.

    2001-01-01

    Full text: The application of a safeguards verification regime based on existing agreements under INFCIRC/153 and on the Additional Protocol, INFCIRC/540, has the potential to allow the International Atomic Energy Agency (IAEA) to relax its traditional facility and material-oriented inspection procedures. The relaxation will take into account the IAEA's enhanced access to information as well as complementary access to locations gained through the application of extended measures foreseen under the Additional Protocol. It will reflect the associated confidence achieved at the State level. It is generally agreed that such a trade-off between the new strengthening measures and the traditional measures is reasonable and desirable, both from the point of view of the inspected State, which would like to receive tangible credit for providing increased openness and transparency in its peaceful nuclear activities, and from the viewpoint of the IAEA, which must apportion its limited inspection resources efficiently. An often-discussed proposal to reduce routine inspection effort while maintaining safeguards effectiveness is to replace scheduled interim inspections with a smaller number of random, unannounced visits. Intuitively, the unpredictability aspect is appealing, as it places the potential diverter in a permanent state of uncertainty. There are also some disadvantages, however, such as the difficulty of planning and implementing truly random inspections and the burden experienced by facility operators obliged to accommodate them. An objective evaluation of a randomized inspection regime vis-a-vis conventional routine inspections requires an objective measure of effectiveness and a means of optimizing that measure - in other words a theoretical framework for analyzing verification problems. In our paper we provide such a framework by quantifying the notion of timely detection and by treating the problem consistently a strategic one. We present a series of models which

  16. IAEA safeguards technical manual

    International Nuclear Information System (INIS)

    1982-03-01

    Part F of the Safeguards Technical Manual is being issued in three volumes. Volume 1 was published in 1977 and revised slightly in 1979. Volume 1 discusses basic probability concepts, statistical inference, models and measurement errors, estimation of measurement variances, and calibration. These topics of general interest in a number of application areas, are presented with examples drawn from nuclear materials safeguards. The final two chapters in Volume 1 deal with problem areas unique to safeguards: calculating the variance of MUF and of D respectively. Volume 2 continues where Volume 1 left off with a presentation of topics of specific interest to Agency safeguards. These topics include inspection planning from a design and effectiveness evaluation viewpoint, on-facility site inspection activities, variables data analysis as applied to inspection data, preparation of inspection reports with respect to statistical aspects of the inspection, and the distribution of inspection samples to more than one analytical laboratory. Volume 3 covers generally the same material as Volumes 1 and 2 but with much greater unity and cohesiveness. Further, the cook-book style of the previous two volumes has been replaced by one that makes use of equations and formulas as opposed to computational steps, and that also provides the bases for the statistical procedures discussed. Hopefully, this will help minimize the frequency of misapplications of the techniques

  17. Safeguards Implementation at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juang; Lee, Sung Ho; Lee, Byung-Doo; Kim, Hyun-Sook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The main objective of the safeguards implementation activities is to assure that there are no diversions of declared nuclear material and/or no undeclared activity. The purpose of safeguards implementation activities is the assistance facility operators to meet the safeguards criteria set forth by the Atomic Energy Safety Acts and Regulations. In addition, the nuclear material and technology control team has acted as a contact point for domestic and international safeguards inspection activities and for the relevant safeguards cooperation. Domestic inspections were successfully carried out at the KAERI nuclear facilities pursuant to the domestic laws and regulations in parallel with the IAEA safeguards inspections. It is expected that safeguards work will be increased due to the pyro-related facilities such as PRIDE, ACPF and DUPIC, for which the IAEA is making an effort to establish safeguards approach. KAERI will actively cope with the plan of the NSSC by changing its domestic inspection regulations on the accounting and control of nuclear materials.

  18. Safeguards '85

    International Nuclear Information System (INIS)

    Gruemm, H.

    1981-01-01

    IAEA safeguards watch over the pledge of those non-nuclear weapon countries, which are signatories to the NPT, to refrain from using nuclear installations for military purposes. At present, some 700 installations are inspected in 50 countries, among them 117 nuclear power plants. Further advancement of these safeguards measures serves to develop new methods and equipment for safeguards inspection, ensure that the growing numbers of new plants are inspected, and achieve complete coverage of the eleven countries not signatories to the NPT. However, the long term effectiveness of safeguards will depend on progress being made in the contractual obligations fur nuclear disarmament and in assuring the continuity of supply to non-nuclear weapon countries by the atomic powers and the supplier countries. (orig.) [de

  19. United States Program for Technical assistance to IAEA Standards. Concept Paper: Knowledge Acquisition, Skills training for enhanced IAEA safeguards inspections

    Energy Technology Data Exchange (ETDEWEB)

    Morris, F.A.; Toquam, J.L.

    1993-11-01

    This concept paper explores the potential contribution of ``Knowledge Acquisition Skills`` in enhancing the effectiveness of international safeguards inspections by the International Atomic energy Agency (IAEA, or Agency) and identifies types of training that could be provided to develop or improve such skills. For purposes of this concept paper, Knowledge Acquisition Skills are defined broadly to include all appropriate techniques that IAEA safeguards inspectors can use to acquire and analyze information relevant to the performance of successful safeguards inspections. These techniques include a range of cognitive, analytic, judgmental, interpersonal, and communications skills that have the potential to help IAEA safeguards inspectors function more effectively.

  20. Future issues in international safeguards

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Markin, J.T.; Mullen, M.F.

    1991-01-01

    The introduction of large bulk-handling facilities into the internationally safeguarded, commercial nuclear fuel cycle, increased concerns for radiation exposure, and the constant level of resources available to the International Atomic Energy Agency (IAEA) are driving new and innovative approaches to international safeguards. Inspector resources have traditionally been allocated on a facility-type basis. Approaches such as randomization of inspections either within a facility or across facilities in a State or the application of a fuel-cycle approach within a State are being considered as means of conserving resources. Large bulk-handling facilities require frequent material balance closures to meet IAEA timeliness goals. Approaches such as near-real-time accounting, running book inventories, and adjusted running book inventories are considered as means to meet these goals. The automated facilities require that safeguards measures also be automated, leading to more reliance on operator-supplied equipment that must be authenticated by the inspectorate. New Non-Proliferation Treaty signatory States with advanced nuclear programs will further drain IAEA resources. Finally, the role of special inspections in IAEA safeguards may be expanded. This paper discusses these issues in terms of increasing safeguards effectiveness and the possible impact on operators. 14 refs

  1. The application of state-level integration of safeguards in Sweden. Final report

    International Nuclear Information System (INIS)

    Dahlin, G.; Haeggblom, E.; Larsson, Mats; Rehn, I.

    2000-12-01

    parties; Operator, SSAC/SKI, Euratom and IAEA shall be reviewed and modified as appropriate, to ensure optimal resource utilisation for implementation of integrated safeguards. The infrastructures of the SSAC/SKI and the RSAC/Euratom and their current implementation practices shall be also reviewed and improved or modified as necessary, to ensure adequate response to the new requirements. Sweden has actively supported the strengthening of IAEA safeguards in the past and is interested in continuing to give its support, in order to facilitate early implementation of integrated safeguards in Sweden and elsewhere. During the 1950's and 1960's a political battle about procurement of nuclear weapons took place. It was finally ended in 1968, when Sweden signed the NPT. Before 1968, the Swedish nuclear programme concentrated on building heavy water reactors and exploiting the vast but low-graded uranium resources. Since 1970, the nuclear programme has been clearly oriented towards light water reactors. Nuclear material with US obligation has been verified in Sweden since 1960, and IAEA control has been applied since 1972. The Safeguards Agreement (153-type) came into force in 1975 (INFCIRC-234). A proposal for how integrated safeguards could be applied in Sweden is submitted, (Annex 3). The recommendations are: One PIV per MBA annually, no other routine inspections. Two unannounced inspections; Neither seals nor surveillance cameras; Advanced technology under certain conditions

  2. Integrated Safeguards proposal for Finland. Final report on Task FIN C 1264 of the Finnish Support Programme to IAEA Safeguards

    International Nuclear Information System (INIS)

    Anttila, M.

    2000-08-01

    Finland under the national and international safeguards is very limited, the main objects under control being four light-water reactors with a once-through uranium based fuel cycle. On the other hand, the national safeguards system is strong and competent. Therefore, Finland should be able to fulfill the provisions of the Additional Protocol fast and well. Also the state-level evaluation of Finland by the IAEA can be assumed to be quite straightforward. An IS system suitable to the Finnish conditions would put an end to the interim routine inspections and to the use of permanent camera surveillance. On the other hand, the IAEA could carry out one unannounced or short-notice inspection per year in Finland. The Agency would also get continuously up-to-date information of all nuclear activities in the country. The Finnish SSAC is assumed to be maintained and further developed also in the future. The national safeguards inspections and measurements by Finnish Radiation and Nuclear Safety Authority (STUK) would be continued. The implementation of the provisions of the Additional Protocol and the application of the IS system in Finland requires good cooperation, mutual trust and division of work between four actors of the play: the operators of the nuclear facilities, STUK, Euratom and the IAEA. Each of them shall have the well-specified roles and functional responsibilities. The international safeguards agencies should utilise the national resources more effectively than before. (orig.)

  3. Safeguards aspects for future fuel management alternatives

    International Nuclear Information System (INIS)

    Richter, B.; Stein, G.; Gerstler, R.

    1987-01-01

    In the future, more flexible fuel management strategies will be realized in light-water reactor power stations. The incentives for this development are based on considerations related to safe and economic plant operation, e.g. improved fuel strategies can save fuel resources and waste management efforts. A further important aspect of the nuclear fuel cycle deals with recycling strategies. At the back-end of the fuel cycle, the direct final disposal of spent fuel will have to be assessed as an alternative to recycling strategies. These major development fields will also have consequences for international safeguards. In particular, reactor fuel strategies may involve higher burn-up, conditioning of spent fuel directly in the power plant, gadolinium-poisoned fuel and different levels of enrichment. These strategies will have an impact on inspection activities, especially on the applicability of NDA techniques. The inspection frequency could also be affected in recycling strategies using MOX fuel. There may be problems with NDA methods if reprocessed feed is used in enrichment plants. On the other hand, the direct final disposal of spent fuel will raise safeguards problems regarding design verification, long-term safeguarding and the very feasibility of inaccessible nuclear material

  4. Integrated safeguards: Australian views and experience

    International Nuclear Information System (INIS)

    Carlson, J.; Bragin, V.; Leslie, R.

    2001-01-01

    Full text: Australia has had a pioneering role in assisting the IAEA to develop the procedures and methods for strengthened safeguards, both before and after the conclusion of Australia's additional protocol. Australia played a key role in the negotiation of the model additional protocol, and made ratification a high priority in order to encourage early ratification by other States. Australia was the first State to ratify an additional protocol, on 10 December 1997, and was the first State in which the IAEA exercised complementary access and managed access under an additional protocol. Australia has undergone three full cycles of evaluation under strengthened safeguards measures, enabling the Agency to conclude it was appropriate to commence implementation of integrated safeguards. In January 2001 Australia became the first State in which integrated safeguards are being applied. As such, Australia's experience will be of interest to other States as they consult with the IAEA on the modalities for the introduction of integrated safeguards in their jurisdictions. The purpose of the paper is to outline Australia's experience with strengthened safeguards and Australia's views on the implementation of integrated safeguards. Australia has five Material Balance Areas (MBAs), the principal one covering the 10 MWt research reactor at Lucas Heights and the associated inventory of fresh and irradiated HEU fuel. Under classical safeguards, generally Australia was subject to annual Physical Inventory Verifications (PIVs) for the four MBAs at Lucas Heights, plus quarterly interim inspections, making a total of four inspections a year (PIVs for the different MBAs were conducted concurrently with each other or with interim inspections in other MBAs), although there was a period when the fresh fuel inventory exceeded one SQ, requiring monthly inspections. Under strengthened safeguards, this pattern of four inspections a year was maintained, with the addition of complementary

  5. Randomization of inspections

    International Nuclear Information System (INIS)

    Markin, J.T.

    1989-01-01

    As the numbers and complexity of nuclear facilities increase, limitations on resources for international safeguards may restrict attainment of safeguards goals. One option for improving the efficiency of limited resources is to expand the current inspection regime to include random allocation of the amount and frequency of inspection effort to material strata or to facilities. This paper identifies the changes in safeguards policy, administrative procedures, and operational procedures that would be necessary to accommodate randomized inspections and identifies those situations where randomization can improve inspection efficiency and those situations where the current nonrandom inspections should be maintained. 9 refs., 1 tab

  6. EURATOM safeguards. Safeguards verifications in reprocessing plants

    International Nuclear Information System (INIS)

    Heppleston, M.

    1999-01-01

    This paper provides a brief historical view of the legal basis for EURATOM. The specific application of safeguards to large scale reprocessing plants, from the theoretical model to the practical application of inspection is considered. The challenge to adequately safeguard major commercial reprocessing facilities has led to many novel approaches being developed. These lessons will also benefit other safeguard projects as a result. Good cooperation between the operator and regulator is essential for the satisfactory installation of adequate safeguard controls. The use of modern data processing technology combined with other diverse monitoring techniques has shown that a major industrial scale reprocessing plant can be controlled under international safeguards to provide a high level of assurance [ru

  7. IAEA Safeguards: Status and prospects

    International Nuclear Information System (INIS)

    Gruemm, H.

    1983-01-01

    The IAEA has just celebrated its 25th anniversary, and the first safeguards inspections were performed twenty years ago. Counting only since 1978, some 5100 inspections had been performed up to mid-1982, using a staff which now includes about 130 inspectors. Despite these impressive figures, and the fact that the IAEA has never detected any apparent diversion of nuclear materials, there are increasing public allegations that safeguards lack effectiveness. After briefly reviewing the nature of IAEA safeguards agreements, the paper examines the political and technical objectives of safeguards together with some of the criticisms which have been voiced. Allocation of limited safeguards resources is examined in terms of the sometimes conflicting allocation criteria which are contained in various safeguards documents. The paper argues that the credibility and deterrent effect of IAEA safeguards should not be underestimated. It should be of greater concern that a few States are known to be operating or constructing non-safeguarded nuclear facilities capable of producing weapons-grade nuclear materials. Thus the risk of safeguards would appear to be greatest at exactly the point where safeguards end. (author)

  8. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Louise G., E-mail: evanslg@ornl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Swinhoe, Martyn T.; Menlove, Howard O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Schwalbach, Peter; Baere, Paul De [European Commission, Euratom Safeguards Office (Luxembourg); Browne, Michael C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-11-21

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd{sub 2}O{sub 3}) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available {sup 241}AmLi (α,n) interrogation source strength of 5.7×10{sup 4} s{sup −1}. Furthermore, the calibration range of the new collar has been extended to verify {sup 235}U content in variable PWR fuel

  9. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    International Nuclear Information System (INIS)

    Evans, Louise G.; Swinhoe, Martyn T.; Menlove, Howard O.; Schwalbach, Peter; Baere, Paul De; Browne, Michael C.

    2013-01-01

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd 2 O 3 ) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241 AmLi (α,n) interrogation source strength of 5.7×10 4 s −1 . Furthermore, the calibration range of the new collar has been extended to verify 235 U content in variable PWR fuel designs in the presence of up to

  10. Safeguards for final disposal of spent nuclear fuel. Methods and technologies for the Olkiluoto site

    International Nuclear Information System (INIS)

    Okko, O.

    2003-05-01

    The final disposal of the nuclear material shall introduce new safeguards concerns which have not been addressed previously in IAEA safeguards approaches for spent fuel. The encapsulation plant to be built at the site will be the final opportunity for verification of spent fuel assemblies prior to their transfer to the geological repository. Moreover, additional safety and safeguards measures are considered for the underground repository. Integrated safeguards verification systems will also concentrate on environmental monitoring to observe unannounced activities related to possible diversion schemes at the repository site. The final disposal of spent nuclear fuel in geological formation will begin in Finland within 10 years. After the geological site investigations and according to legal decision made in 2001, the final repository of the spent nuclear fuel shall be located at the Olkiluoto site in Eurajoki. The next phase of site investigations contains the construction of an underground facility, called ONKALO, for rock characterisation purposes. The excavation of the ONKALO is scheduled to start in 2004. Later on, the ONKALO may form a part of the final repository. The plans to construct the underground facility for nuclear material signify that the first safeguards measures, e.g. baseline mapping of the site area, need to take prior to the excavation phase. In order to support the development and implementation of the regulatory control of the final disposal programme, STUK established an independent expert group, LOSKA. The group should support the STUK in the development of the technical safeguards requirements, in the implementation of the safeguards and in the evaluation of the plans of the facility operator. This publication includes four background reports produced by this group. The first of these 'NDA verification of spent fuel, monitoring of disposal canisters, interaction of the safeguards and safety issues in the final disposal' describes the new

  11. Nuclear safeguards implementations in Taiwan

    International Nuclear Information System (INIS)

    Hou, R-H.; Chang, C-K.; Lin, C-R.; Gone, J-K.; Chen, W-L.; Yao, D.

    2006-01-01

    Full text: Now with six Nuclear Power Plant (NPP) units in operation, two Advanced Boiling Water Reactor (ABWR) units under construction, and other peaceful applications of nuclear and radiation technology expanding in great pace, the Atomic Energy Council (AEC) has been focused on reactor safety regulation, radiation protection, radioactive waste administration, environmental monitoring and R and D for technology development and other civilian nuclear applications. Despite Taiwan's departure from the United Nations and therefore its family member International Atomic Energy Agency (IAEA) in 1971, Taiwan remains its commitment to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). To date, Taiwan is still part of the international nuclear safeguards system and accepts IAEA's inspections in accordance with its regulations on nuclear safeguards. In 1998, Taiwan further agreed, through exchange of letters between the AEC and IAEA, to implementation of the measures provided for in the model Protocol Additional to its safeguards agreement. In this paper, we will introduce Taiwan's nuclear safeguards history and describe some highlights of safeguards implementation in recent years, such as complementary accesses, transparency visits, remote monitoring inspections, unannounced inspections, facility attachment termination for the decommissioned facilities, and annual safeguards implementation meeting with IAEA

  12. IAEA safeguards and classified materials

    International Nuclear Information System (INIS)

    Pilat, J.F.; Eccleston, G.W.; Fearey, B.L.; Nicholas, N.J.; Tape, J.W.; Kratzer, M.

    1997-01-01

    The international community in the post-Cold War period has suggested that the International Atomic Energy Agency (IAEA) utilize its expertise in support of the arms control and disarmament process in unprecedented ways. The pledges of the US and Russian presidents to place excess defense materials, some of which are classified, under some type of international inspections raises the prospect of using IAEA safeguards approaches for monitoring classified materials. A traditional safeguards approach, based on nuclear material accountancy, would seem unavoidably to reveal classified information. However, further analysis of the IAEA's safeguards approaches is warranted in order to understand fully the scope and nature of any problems. The issues are complex and difficult, and it is expected that common technical understandings will be essential for their resolution. Accordingly, this paper examines and compares traditional safeguards item accounting of fuel at a nuclear power station (especially spent fuel) with the challenges presented by inspections of classified materials. This analysis is intended to delineate more clearly the problems as well as reveal possible approaches, techniques, and technologies that could allow the adaptation of safeguards to the unprecedented task of inspecting classified materials. It is also hoped that a discussion of these issues can advance ongoing political-technical debates on international inspections of excess classified materials

  13. Secure Video Surveillance System (SVSS) for unannounced safeguards inspections

    International Nuclear Information System (INIS)

    Galdoz, Erwin G.; Pinkalla, Mark

    2010-01-01

    The Secure Video Surveillance System (SVSS) is a collaborative effort between the U.S. Department of Energy (DOE), Sandia National Laboratories (SNL), and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC). The joint project addresses specific requirements of redundant surveillance systems installed in two South American nuclear facilities as a tool to support unannounced inspections conducted by ABACC and the International Atomic Energy Agency (IAEA). The surveillance covers the critical time (as much as a few hours) between the notification of an inspection and the access of inspectors to the location in facility where surveillance equipment is installed. ABACC and the IAEA currently use the EURATOM Multiple Optical Surveillance System (EMOSS). This outdated system is no longer available or supported by the manufacturer. The current EMOSS system has met the project objective; however, the lack of available replacement parts and system support has made this system unsustainable and has increased the risk of an inoperable system. A new system that utilizes current technology and is maintainable is required to replace the aging EMOSS system. ABACC intends to replace one of the existing ABACC EMOSS systems by the Secure Video Surveillance System. SVSS utilizes commercial off-the shelf (COTS) technologies for all individual components. Sandia National Laboratories supported the system design for SVSS to meet Safeguards requirements, i.e. tamper indication, data authentication, etc. The SVSS consists of two video surveillance cameras linked securely to a data collection unit. The collection unit is capable of retaining historical surveillance data for at least three hours with picture intervals as short as 1sec. Images in .jpg format are available to inspectors using various software review tools. SNL has delivered two SVSS systems for test and evaluation at the ABACC Safeguards Laboratory. An additional 'proto-type' system remains

  14. Inspection activities of other strategic points (OSPs) at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Kaifuki, Yukinobu; Ebata, Takashi; Nakano, Sadayuki; Fujimaki, Kazunori

    2008-01-01

    At Rokkasho Reprocessing Plant (RRP), Active Test (AT) using actual spent fuels for the final confirmation of the equipment and the system has been performed since March 31, 2006 toward the commercial operation. The safeguards inspection during AT is required in the same manner as commercial operation condition because plutonium is handled. In RRP automated verification systems are established by using unattended verification systems including a number of process monitoring systems along with main plutonium handling process from the spent fuel storage until the MOX product storages. Even under the modernized safeguards, inspection activities at Other Strategic Points (OSPs) are required to confirm plant status in accordance with requirements of the IAEA safeguards criteria. This paper presents procedures and inspection activities at OSPs which has been implemented in RRP since start of AT. (author)

  15. The development of safeguards for geological repositories

    International Nuclear Information System (INIS)

    Van der Meer, K.

    2009-01-01

    Traditionally, research and development on geological repositories for High Level Waste (HLW) focuses on the short- and long-term safety aspects of the repository. If the repository will also be used for the disposal of spent fuel, safeguards aspects have to be taken into account. Safety and safeguards requirements may be contradictory; the safety of a geological repository is based on the non-intrusion of the geological containment, while safeguards require regular inspections of position and amount of the spent fuel. Examples to reconcile these contradictory requirements are the use of information required for the safety assessment of the geological repository for safeguards purposes and the adaptation of the safeguards approach to use non-intrusive inspection techniques. The principles of an inspection approach for a geological repository are now generally accepted within the IAEA. The practical applicability of the envisaged inspection techniques is still subject to investigation. It is specifically important for the Belgian situation that an inspection technique can be used in clay, the geological medium in which Belgium intends to dispose its HLW and spent fuel. The work reported in this chapter is the result of an international cooperation in the framework of the IAEA, in which SCK-CEN participates

  16. Safeguards against use of nuclear material for weapons

    International Nuclear Information System (INIS)

    Sanders, B.; Rometsch, R.

    1975-01-01

    The history of safeguards is traced from the first session of the United Nations Atomic Energy Commission in 1946, through the various stages of the IAEA safeguard system for nuclear materials and to the initiation of the Treaty on the Non-proliferation of Nuclear Weapons in 1968. The role of the IAEA under the treaty is discussed. The structure and content of safeguards agreements in connection with the treaty were laid down and the objective of safeguards clearly defined. The methods of verification by the IAEA of the facility operator's material accountancy through inspection and statistical analysis and evaluation of 'material unaccounted for' are explained. The extent to which the IAEA may make use of the State's system of accounting and control of nuclear materials is considered. Reference is also made to the question of protection against theft and sabotage. Finally the scope of safeguards work for the next 15 years is forecast. (U.K.)

  17. Information-Driven Inspections

    International Nuclear Information System (INIS)

    Laughter, Mark D.; Whitaker, J. Michael; Lockwood, Dunbar

    2010-01-01

    New uranium enrichment capacity is being built worldwide in response to perceived shortfalls in future supply. To meet increasing safeguards responsibilities with limited resources, the nonproliferation community is exploring next-generation concepts to increase the effectiveness and efficiency of safeguards, such as advanced technologies to enable unattended monitoring of nuclear material. These include attribute measurement technologies, data authentication tools, and transmission and security methods. However, there are several conceptual issues with how such data would be used to improve the ability of a safeguards inspectorate such as the International Atomic Energy Agency (IAEA) to reach better safeguards conclusions regarding the activities of a State. The IAEA is pursuing the implementation of information-driven safeguards, whereby all available sources of information are used to make the application of safeguards more effective and efficient. Data from continuous, unattended monitoring systems can be used to optimize on-site inspection scheduling and activities at declared facilities, resulting in fewer, better inspections. Such information-driven inspections are the logical evolution of inspection planning - making use of all available information to enhance scheduled and randomized inspections. Data collection and analysis approaches for unattended monitoring systems can be designed to protect sensitive information while enabling information-driven inspections. A number of such inspections within a predetermined range could reduce inspection frequency while providing an equal or greater level of deterrence against illicit activity, all while meeting operator and technology holder requirements and reducing inspector and operator burden. Three options for using unattended monitoring data to determine an information-driven inspection schedule are to (1) send all unattended monitoring data off-site, which will require advances in data analysis techniques to

  18. The IAEA safeguards information system

    International Nuclear Information System (INIS)

    Gmelin, W.R.; Parsick, R.

    1976-01-01

    The IAEA safeguards under the Non-Proliferation Treaty is meant to follow the model agreement developed by the Safeguards Committee in 1970 and formulated in document INFCIRC/153, which contains provisions that Member States, having concluded Safeguards Agreements with the Agency, should provide design information and reports on initial inventories, changes in the inventories and material balances in respect of each nuclear facility and material balance area for all nuclear materials subject to safeguards. The Agency, on the other hand, should establish and maintain an accountancy system which would provide the data on the location and the movements of all nuclear material subject to safeguards on the basis of the reported information and information obtained during inspections in order to support the Agency's verification activities in the field, to enable the preparation of safeguards statements and to adjust the inspection intensity. Following these requirements, a computer-based information system has been developed and is being implemented and used routinely for input manipulations and queries on a limited scale. This information system comprises two main parts: Part 1 for processing the information as provided by the States, and Part 2 (still under development) for processing the inspection data obtained during verification. This paper describes the characteristics of the Agency information system for processing data under the Non-Proliferation Treaty as well as recent operational experience. (author)

  19. Safeguards in the Slovak Republic

    International Nuclear Information System (INIS)

    Vaclav, J.

    2010-01-01

    The former Czechoslovakia acceded to the Non-Proliferation Treaty in 1968. Based on requirements of the Safeguard Agreement the State System of Accounting for and Control of nuclear material has been established. After dissolution of Czechoslovakia the Slovak Republic succeeded to the Safeguards Agreement. As a regulator the Nuclear Regulatory Authority of the Slovak Republic (UJD) has been constituted. After European Union (EU) accession EU legislation became valid in the Slovak republic. Atomic Law No. 541/2004 Coll. on Peaceful Use of Nuclear Energy adopts this legislation. In the frame of strengthening the IAEA safeguards an implementation of the Protocol Additional became actual. The Protocol Additional was signed by the government of the Slovak Republic in September 1999. On 1 December 2005 safeguards agreement INFCIRC/193 including the relevant Additional Protocol entered into force. As an instrument supporting non-proliferation of nuclear weapons a control of export/import of nuclear material, nuclear related and dual-use material following the EC regulation 428/2009 of 5 May 2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual use items. The execution of accountancy and control of nuclear material inspection activities has been considerably influenced by the implementation of integrated safeguards, implemented in the Slovak Republic on 1 September 2009. The aim of mentioned integrated safeguards regime is to decrease the amount and difficulty of inspections. At the same time the possibility of accountancy and control of nuclear material inspections announced 24 hours in advance took effect. The execution of Protocol Additional inspections remains the same. Additionally to international safeguards system UJD has kept the national safeguards system which observes all nuclear material on the territory of the Slovak Republic. The government of the Slovak Republic plays active role within activities of the NSG

  20. Safeguards by Design Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-13

    The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA’s limited budget. Dose to workers should always be as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).

  1. Safeguards by Design Challenge

    International Nuclear Information System (INIS)

    Alwin, Jennifer Louise

    2016-01-01

    The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA's limited budget. Dose to workers should always be as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).

  2. Safeguards implementation at US facilities during 1986 and 1987

    International Nuclear Information System (INIS)

    Wredberg, L.

    1987-01-01

    Safeguards procedures were implemented at three nuclear facilities in the United States during 1986 and 1987, namely, the Westinghouse fuel fabrication plant in Columbia, South Carolina; the Salem No. 1 light water reactor (LWR) in New Jersey; and the Turkey Point No. 4 LWR in Florida. These three facilities have been under International Atomic Energy Agency (IAEA) safeguards since early 1986 in accordance with the voluntary offer agreement between the IAEA and the United States, which went into force in 1980. Because of limited manpower and budget resources allocated to safeguards in nuclear weapon states, only a limited number of facilities can be under IAEA safeguards inspections at a time. Facilities are, therefore, subject to inspection only during a 2-yr period in the case of the United States. After that period other facilities are selected for another 2-yr period from the list of facilities subject to safeguards under the agreement. The facilities have been selected so that they form a fuel cycle, i.e., the inspected reactors are fueled with fuel assemblies manufactured by the inspected fabrication plant. The IAEA applies full scope safeguards at the selected facilities based upon established implementation practice for the facility types

  3. International safeguards for critical facilities

    International Nuclear Information System (INIS)

    Ney, J.F.; Todd, J.L.

    1979-01-01

    A study was undertaken to investigate various approaches to provide international safeguards for critical facilities and to select an optimized system. Only high-inventory critical facilities were considered. The goal of the study was to detect and confirm the protracted or abrupt diversion of 8kg of plutonium or 25kg of the uranium isotope 235 within approximately a week of the diversion. The general safeguards alternatives considered were (1) continuous inspections by resident inspectors, with varying degrees of comprehensiveness, (2) periodic inspections by regional inspectors at varying time intervals, (3) unattended containment/surveillance measures, and (4) various combinations of the above. It was concluded that a practical and effective international safeguards system can be achieved by employing a method of continuously monitoring facility activities which could lead to diversion. This is in addition to the routine inspections typical of current international safeguards. Monitoring detects inventory discrepancies and violations of agreed-upon procedural restrictions, as well as unauthorized removal of Special Nuclear Materials (SNM). A special inventory is used following detection to confirm any suspected diversion. Comparison of 28 safeguards options led to the selection of a system for further development which uses a combination of surveillance and inspection by resident IAEA personnel, containment/surveillance by unattended equipment, and routine inventory sampling. A development programme is described which is intended to demonstrate the feasibility of several containment and surveillance measures proposed in the study. Included are a personnel portal and an instrument/material pass-through as well as associated recording and tamper-protection features. (author)

  4. Fuel cycle based safeguards

    International Nuclear Information System (INIS)

    De Montmollin, J.M.; Higinbotham, W.A.; Gupta, D.

    1985-07-01

    In NPT safeguards the same model approach and absolute-quantity inspection goals are applied at present to all similar facilities, irrespective of the State's fuel cycle. There is a continuing interest and activity on the part of the IAEA in new NPT safeguards approaches that more directly address a State's nuclear activities as a whole. This fuel cycle based safeguards system is expected to a) provide a statement of findings for the entire State rather than only for individual facilities; b) allocate inspection efforts so as to reflect more realistically the different categories of nuclear materials in the different parts of the fuel cycle and c) provide more timely and better coordinated information on the inputs, outputs and inventories of nuclear materials in a State. (orig./RF) [de

  5. Safeguarding the atom

    International Nuclear Information System (INIS)

    Fischer, D.; Szasz, P.

    1985-01-01

    Safeguards play a key role in verifying the effectiveness of restraints on the spread of nuclear weapons. This book is a study of the safeguards system of the International Atomic Energy Agency, an important element of the non-proliferation regime. It focuses on the politics of safeguards, especially the political problems of the IAEA and of the day-to-day application of safeguards. It contains a critical appraisal and proposals for ways of improving existing procedures and of adapting them to the political and technological changes of recent years. IAEA safeguards represent the world's first and so far only attempt to verify an arms control agreement by systematic on-site inspection, and their applicability to other arms control measures is examined. (author)

  6. Integrated Safeguards Information System for Japan (ISIS-J) - Strengthening SSAC for Enhancing Confidence in Compliance with Safeguards Obligations -

    International Nuclear Information System (INIS)

    Iso, S.; Nishiyama, N.; Kumakura, S.; Takizawa, K.; Yoshida, H.; Kobayashi, I.; Kikuchi, M.; Kimura, N.; Matsubara, T.; Yatsu, S.

    2010-01-01

    IAEA has stated the importance of enhancing cooperation with SSAC. Therefore, Japan has developed the Integrated Safeguards Information System for enhancing confidence in compliance with the national obligation under the safeguards agreement and the additional protocol. Japan already established the National System including national inspections with NDA and DA verification functions and evaluation of data obtained from national inspections and has maintained the National System of safeguards as a SSAC in accordance with the safeguards agreement. Nuclear Material Control Center (NMCC) is engaged in national safeguards activities as designated organization of national inspectorate and information treatment including safeguards data analysis. Recently, purpose of IAEA's safeguards activities may shift to detection of proliferation based on plausible proliferation paths from detection of diversion by certain material accountancy measures. Major safeguards activities of IAEA have changed from quantitative aspects to qualitative them. As supplements for declining the quantitative measures such as the activities based on the safeguards criteria the IAEA would expect the SSAC functions for maintaining the activities of quantitative manners. Japan believes that the State's responsibility for enhancing cooperation between the National System and the IAEA must assure the confidence level of correctness and completeness of the State declarations with accurate and precise accountability as findings from SSAC. Japan has started the development of the strengthened and autonomous national system namely the Integrated safeguards Information System for Japan (ISIS-J) in order to fulfil our responsibility. Japan would seek to improve quality of information including nuclear material accounting data as well as expanded declaration relevant to nuclear activities in Japan, and to increase abilities for explaining safeguards relevant events in Japan. The enhanced findings could include

  7. The application of state-level integration of safeguards in Sweden. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, G.; Haeggblom, E.; Larsson, Mats; Rehn, I

    2000-12-01

    results of SSAC/SKI activities as well as activities of the Euratom inspectorate. IAEA would be required to carry out the necessary measures, including sufficient independent verification activities, to assure that the results obtained are correct, and that they correctly represent the actual inventory of nuclear material. One or two unannounced inspections are foreseen to provide, as applicable, material balance verification and quality assurance, as well as to contribute to deterrence. It is expected, however, that such inspections will be co-ordinated between IAEA and Euratom to ensure the cost-effectiveness. The use of advanced technology, C/S and NDA instruments, with or without remote monitoring capability, would be limited to situations where repetition of costly verification measurements could be avoided. As regards fresh MOX, such instruments could be used to avoid costly measurements and to increase the detection capability of diversion, thus providing additional deterrence. Such technology and measures may also be used in special safeguard situations. The implementation of integrated safeguards in a cost-effective manner in Sweden would depend, on one hand, on the ability of the IAEA to ensure the application of all measures so that 'there is credible assurance of the absence of undeclared nuclear materials' in Sweden. On the other hand, the increased use of SSAC/SKI and RSAC/Euratom would facilitate the optimal use of all resources involved in implementation of integrated safeguards in Sweden. In order to add credibility to any decision that would reduce measures aimed at assuring the absence of diversion of declared nuclear materials, the value of the measures of the Additional Protocol should be better understood in that respect. The confidence in the ability of the IAEA to draw conclusions on the absence of undeclared nuclear materials and activities in a State is expected to increase as experience is gained. The roles and functional

  8. Optimal allocation of International Atomic Energy Agency inspection resources

    International Nuclear Information System (INIS)

    Markin, J.T.

    1987-12-01

    The Safeguards Department of the International Atomic Energy Agency (IAEA) conducts inspections to assure the peaceful use of a state's nuclear materials and facilities. Because of limited resources for conducting inspections, the careful disposition of inspection effort among these facilities is essential if the IAEA is to attain its safeguards goals. This report describes an optimization procedure for assigning an inspection effort to maximize attainment of IAEA goals. The procedure does not require quantitative estimates of safeguards effectiveness, material value, or facility importance. Instead, the optimization is based on qualitative, relative prioritizations of inspection activities and materials to be safeguarded. This allocation framework is applicable to an arbitrary group of facilities such as a state's fuel cycle, the facilities inspected by an operations division, or all of the facilities inspected by the IAEA

  9. Optimal allocation of international atomic energy agency inspection resources

    International Nuclear Information System (INIS)

    Markin, J.T.

    1987-01-01

    Each year the Department of Safeguards of the International Atomic Energy Agency (IAEA) conducts inspections to confirm that nuclear materials and facilities are employed for peaceful purposes. Because of limited inspection resources, however, the IAEA cannot fully attain its safeguards goals either quantitatively as measured by the inspection effort negotiated in the facility attachments or qualitatively as measured by the IAEA criteria for evaluating attainment of safeguards goals. Under current IAEA procedures the allocation of inspection resources assigns essentially equal inspection effort to facilities of the same type. An alternative approach would incorporate consideration of all material categories and facilities to be assigned inspection resources when allocating effort to a particular facility. One such method for allocating inspection resources is based on the IAEA criteria. The criteria provide a framework for allocating inspection effort that includes a ranking of material types according to their safeguards importance, an implicit definition of inspection activities for each material and facility type, and criteria for judging the attainment of safeguards goals in terms of the quality and frequency of these inspection activities. This framework is applicable to resource allocation for an arbitrary group of facilities such as a state's fuel cycle, the facilities inspected by an operations division, or all of the facilities inspected by the IAEA

  10. Safeguards approaches for conversion and gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Stanuch, C.; Whitaker, M.; Lockwood, D.; Boyer, B.

    2013-01-01

    This paper describes recent studies and investigations of new safeguards measures and inspection tools to strengthen international safeguards at GCEPs (Gas Centrifuge Enrichment Plants) and conversion plants. The IAEA has indicated that continuous, unattended process monitoring should play a central role in future safeguards approaches for conversion plants and GCEPs. Monitoring safeguards relevant information from accountancy scales, process load cells, and unit header pipes can make existing safeguards approaches more efficient by replacing repetitive, routine, labor-intensive inspection activities with automated systems. These systems can make the safeguards approach more effective by addressing more completely the safeguards objectives at these facilities. Automated collection and analysis of the data can further enable the IAEA to move towards a fully-information driven inspection regime with randomized (from the operator's perspective), short-notice inspections. The reduction in repetitive on-site inspection activities would also be beneficial to plant operators, but only if sensitive and proprietary information can be protected and the new systems prove to be reliable. New facilities that incorporate Safeguards by Design into the earliest design stages can facilitate the effective DIV (Design Information Verification) of the plant to allow the inspectors to analyze the capacity of the plant, to project maximum production from the plant, and to provide a focus on the areas in the plant where credible diversion scenarios could be attempted. Facilitating efficient nuclear material accountancy by simplifying process pipework and making flow measurement points more accessible can allow for easier estimation of plant holdup and a potential reduction in the number of person-days of inspection. Lastly, a universal monitoring standard that tracks the location, movement, and use of UF 6 cylinders may enhance the efficiency of operations at industry sites and would

  11. IAEA safeguards: some pros and cons

    International Nuclear Information System (INIS)

    Kelly, P.

    1986-01-01

    The author gives a personal view of the International Atomic Energy Agency's (IAEA) safeguards. The IAEA safeguards system is described (including containment, surveillance and inspection), and the limitations and strengths of the system are examined. (U.K.)

  12. Safeguards surveillance equipment and data sharing between IAEA and a member state

    International Nuclear Information System (INIS)

    Park, Seung Sik

    1999-01-01

    Efficiency and reliability are two prongs of implementation of safeguards policy. Unattended surveillance is getting wide acceptance through its field trials and technical advances. In achieving goal of safeguards, new safeguards system should provide less intrusiveness than conventional inspection. Unattended surveillance data share will be a major issue among some countries that have own national inspection scheme in place in parallel with international safeguards to check the resources consuming incurred by the repeated installations. Nonetheless, the issue has not been focussed yet among the States concerned, especially for the country like Korea with national inspection in operation. For balanced development in safeguards regime between IAEA and Korea, sharing of unattended surveillance data with SSAC needs to be worked out in conjunction with the joint use of safeguards instruments that is in the process

  13. Preliminary concepts: safeguards for spent light-water reactor fuels

    International Nuclear Information System (INIS)

    Cobb, D.D.; Dayem, H.A.; Dietz, R.J.

    1979-06-01

    The technology available for safeguarding spent nuclear fuels from light-water power reactors is reviewed, and preliminary concepts for a spent-fuel safeguards system are presented. Essential elements of a spent-fuel safeguards system are infrequent on-site inspections, containment and surveillance systems to assure the integrity of stored fuel between inspections, and nondestructive measurements of the fuel assemblies. Key safeguards research and development activities necessary to implement such a system are identified. These activities include the development of tamper-indicating fuel-assembly identification systems and the design and development of nondestructive spent-fuel measurement systems

  14. Survey of nuclear safeguards in the European Community

    International Nuclear Information System (INIS)

    Gmelin, W.

    1992-01-01

    The control of the peaceful use of nuclear energy comprises activities related to nuclear safety, to the protection of persons and of the environment, to physical protection of the nuclear materials against theft or terrorism and to nuclear safeguards. Nuclear safeguards means the set of measures performed by the IAEA in the context of non-proliferation safeguards and, in the framework of the Euratom Treaty, those measures enabling the European Commission to satisfy itself that the nuclear material is not diverted from its intended and declared uses (particularly to unlawful non-peaceful applications) and that the obligations arising from International Agreements are complied with. This contribution to the International Conference on Peaceful Application of Nuclear Energy at Liege briefly reviews the history of nuclear safeguards in Europe since the early 1960ies. It also notes the practical aspects for, constraints and impacts to the nuclear operators imposed on them by the European law such as inspections, accountancy, reporting and describes the trend of the future development of the safeguards operation. The paper finally addresses non-proliferation issues and, notably, the relations between the IAEA and Euratom which in an exemplary way resulted in effective international safeguards and high non-proliferation credentials of the European Community. (author)

  15. Safeguarding research reactors

    International Nuclear Information System (INIS)

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  16. International safeguards for reprocessing plants. Final report

    International Nuclear Information System (INIS)

    Kratzer, M.; Scheinman, L.; Sievering, N.; Wonder, E.; Lipman, D.; Immerman, W.; Elliott, J.M.; Crane, F.

    1981-04-01

    Proliferation risks inherent in reprocessing show the need to employ technically effective safeguards which can detect, with a high degree of assurance and on a timely basis, the diversion of significant quantities of fissionable material. A balance must be struck between what is technically feasible and effective and what is institutionally acceptable. Purpose of this report is to examine the several technical approaches to safeguards in light of their prospective acceptability. This study defines the economic, political and institutional nature of the safeguards problem; surveys generically alternative technical approaches to international safeguards including their effectiveness and relative development; characterizes the institutional implications and uncertainties associated with the acceptance and implementation of each technical alternative; and integrates these assessments into a set of overall judgments on feasible directions for reprocessing plant safeguards systems

  17. International safeguards for reprocessing plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, M.; Scheinman, L.; Sievering, N.; Wonder, E.; Lipman, D.; Immerman, W.; Elliott, J.M.; Crane, F.

    1981-04-01

    Proliferation risks inherent in reprocessing show the need to employ technically effective safeguards which can detect, with a high degree of assurance and on a timely basis, the diversion of significant quantities of fissionable material. A balance must be struck between what is technically feasible and effective and what is institutionally acceptable. Purpose of this report is to examine the several technical approaches to safeguards in light of their prospective acceptability. This study defines the economic, political and institutional nature of the safeguards problem; surveys generically alternative technical approaches to international safeguards including their effectiveness and relative development; characterizes the institutional implications and uncertainties associated with the acceptance and implementation of each technical alternative; and integrates these assessments into a set of overall judgments on feasible directions for reprocessing plant safeguards systems.

  18. The 50 Years of Safeguards and Non-Proliferation in Poland

    International Nuclear Information System (INIS)

    Pawlak, A.; Jurkowski, M.; Zagrajek, M.

    2015-01-01

    Milestones of safeguards and non-proliferation activities are presented. Poland has declared its compliance with non-proliferation regime by ratification of Treaty of Nonproliferation of Nuclear Weapons in 1969. Poland concluded in 1972 Agreement with IAEA for application of safeguards — INFCIRC/153. Next steps in implementation of international safeguards were: ratification of Additional Protocol and introduction of Integrated Safeguards. After accession to European Union, Poland fulfils its safeguards obligations according to following international legal instruments: Treaty establishing Euratom, Agreement between Poland, European Commission and International Atomic Energy Agency in connection with implementation of Article III of Treaty of Non-proliferation of Nuclear Weapons — INFCIRC/193 and Additional Protocol to this Agreement — INFCIRC/193 Add.8. Detailed safeguards requirements are established by domestic Act of Parliament of 29th November 2000 — Atomic law and European Union's Regulations of Commission (Euratom) No 302/2005 on application of Euratom safeguards and the Commission Recommendation on guidelines for the application of Regulation (Euratom) No 302/2005. SSAC was established in 1972 as required by CSA. Activities related to accounting for and control of nuclear material were conducted from 1970s till 1990s by Central Laboratory for Radiological Protection and National Inspectorate for Radiation and Nuclear Safety. Currently, NAEA is responsible for collecting and maintenance of accounting data and safeguards inspections at all MBAs. Around 30 routine inspections/year are performed by the NAEA, Euratom and IAEA. In addition, usually 2 unannounced inspections/year under framework of Integrated Safeguards are conducted. In accordance with implementation of Global Threat Reduction Initiative seven shipments of high enriched nuclear fuel from research reactor to Russian Federation under supervision of safeguards inspectors from NAEA

  19. Safeguard sleuths

    International Nuclear Information System (INIS)

    Lowry, D.

    1989-01-01

    A report of the conference of the European Safeguards Research and Development Association, which tries to prevent the diversion of nuclear materials to military uses is given. Some of the problems encountered by safeguards inspectors are mentioned, such as being able to follow the material through the maze of piping in a reprocessing plant, the linguistic difficulties if the inspector does not speak the operator's language, the difference between precision and accuracy and the necessity of human inspection, containment and surveillance systems. Unexplained outages at a reprocessing plant are always treated as suspicious, as are power failures which prevent normal surveillance. The UK practice of allocating civil fuel temporarily to military use at Harwell also makes safeguard policing more difficult. (UK)

  20. Computer-based safeguards information and accounting system

    International Nuclear Information System (INIS)

    1977-01-01

    Acquiring, processing and analysing information about inventories and flow of nuclear materials are essential parts of IAEA safeguards. Safeguards information originates from several sources. The information to be provided is specified in the various safeguards agreements between the States and the IAEA, including both NPT agreements and safeguards trilateral agreements. Most of the safeguards information currently received by the IAEA is contained in accounting reports from the States party to the NPT. Within the frame of the material balance concept of NPT, three types of reports are provided to the IAEA by the States: Physical Inventory Listings (PIL); Inventory Change Reports (ICR); Material Balance Reports (MBR). In addition, facility design information is reported when NPT safeguards are applied and whenever there is a change in the facility or its operation. Based on this data, an accounting system is used to make available such information as the book inventories of nuclear material as a function of time, material balance evaluations, and analysis of shipments versus receipts of nuclear material. A second source of NPT safeguards information is the inspection activities carried out in the field as a necessary counterpart for verification of the data presented by the States in their accounting reports. The processing of inspection reports and other inspection data is carried out by the present system in a provisional manner until a new system, which is under development is available. The major effort currently is directed not to computer processing but toward developing and applying uniform inspection procedures and information requirements. A third source of NPT safeguards information is advanced notifications and notifications of transfer of source materials before the starting point of safeguards. Since, however, the States are not completely aware of the need and requirement to provide these data, this is a point to be emphasized in future workshops and

  1. Evaluation of safeguards inspection techniques--a time for change

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The adequacy of safeguards is a subject of highest concern--not only to the public and the government but to the nuclear community as a whole. The unusual nature of safeguards with its potential for risk, even to hypothetical and severe threats which have never occurred but are nevertheless being postulated, requires that the highest attention be given. It is with this thought in mind that this paper was written to endorse a new approach to safeguards which not only permits more flexibility for the industry but in large measure should provide a significantly increased assurance to the public and to the world that the nuclear industry can safeguard plutonium and other strategic nuclear material in a fully acceptable manner. The costs of these changes will undoubtedly be high. However, the benefits to be derived from the long-term utilization of nuclear resources, such as those embodied in plutonium, will more than compensate for these additional costs. It may be only with such strict attention to safeguards that the long-term nuclear option will be permitted to prevail

  2. Some basic concepts of fast breeder reactor safeguards

    International Nuclear Information System (INIS)

    Tkharev, E.; Walford, F.J.

    1987-04-01

    The range of discussion topics of this report is restricted to a few key areas of safeguards importance at Fast Breeder Reactors (FBR) only. The differences between thermal and fast reactors that may have safeguards significance in the case of FBRs are listed. The FBR principles of design are mentioned. The relevant safeguards objectives and criteria are given. The fundamental issues for safeguarding FBR are treated. An outline safeguards approach is presented. Model inspection activities are mentioned. 4 figs

  3. Development of an international safeguards approach to the final disposal of spent fuel in geological repositories

    International Nuclear Information System (INIS)

    Murphey, W.M.; Moran, B.W.; Fattah, A.

    1996-01-01

    The International Atomic Energy Agency (IAEA) is currently pursuing development of an international safeguards approach for the final disposal of spent fuel in geological repositories through consultants meetings and through the Program for Development of Safeguards for Final Disposal of Spent Fuel in Geological Repositories (SAGOR). The consultants meetings provide policy guidance to IAEA; SAGOR recommends effective approaches that can be efficiently implemented by IAEA. The SAGOR program, which is a collaboration of eight Member State Support Programs (MSSPs), was initiated in July 1994 and has identified 15 activities in each of three areas (i.e. conditioning facilities, active repositories, and closed repositories) that must be performed to ensure an efficient, yet effective safeguards approach. Two consultants meetings have been held: the first in May 1991 and the last in November 1995. For nuclear materials emplaced in a geological repository, the safeguards objectives were defined to be (1) to detect the diversion of spent fuel, whether concealed or unconcealed, from the repository and (2) to detect undeclared activities of safeguards concern (e.g., tunneling, underground reprocessing, or substitution in containers)

  4. Safeguards instrumentation: a computer-based catalog

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available

  5. Safeguards instrumentation: a computer-based catalog

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available.

  6. Introduction of designated organization to safeguards implementation in Japan

    International Nuclear Information System (INIS)

    Terada, Hiromi; Akiba, Mitsunori; Ando, Hisataka; Okazaki, Shuji; Irikura, Masatoshi; Kurihara, Hiroyoshi

    2000-01-01

    With domestic application of the IAEA new measures (program 93+2) for strengthening the effectiveness and improving the efficiency of the safeguards system, the Nuclear Regulation Laws was amended for implementation of the new measures based upon the Additional Protocol, and also the new Designated Organization System was introduced to the SSAC (States' System of Accounting for and Control of Nuclear Materials) for safeguards implementation in Japan since beginning of January 2000. On the basis of accumulated experiences of the state safeguards implementation for more than 20 years and then established standardization of the inspection procedures, the Japan's Government is able to utilize the expertise of private organizations for the safeguards implementation. Any capable organizations can be designated by the Government as the Designated Organization for all or a part of safeguards implementations on behalf of the Government. According to the amended Law, the Prime Minister can make the Designated Organization implement safeguards implementations that are defined firstly as safeguards inspections which can be done along the Government instructions without any discussions and decisions, secondarily as destructive analysis of safeguards samples, and thirdly as technical research on advanced safeguards measures. The amendment of the Law was approved by the National Diet on June 9th 1999 and entered into force on December 16th 1999. The Additional Protocol also entered into force in Japan at the same time. The NMCC (Nuclear Material Control Center) was designated as the Organization on December 27th 1999 and started the safeguards implementation in January 7th 2000. In order to prepare for the Designated Organization, the NMCC rearranged the organizational system and kept capable human resources enough for the safeguards implementations. Also the NMCC carried out many programs of education and training for the inspectors. Furthermore, manuals and criteria for the

  7. Promoting transparency: The Korean national inspection experience

    International Nuclear Information System (INIS)

    Kim, B.K.

    1999-01-01

    The Republic of Korea started the LAMA full-scope safeguards inspection with the TRIGA research reactor in 1976 when the nuclear industry was at its infancy. Over two decades of rapid economic growth was propelled by stable supply of electricity, substantially from nuclear energy. Today nearly half of the nations electricity comes from sixteen operating nuclear power plants (12 LWRs + 4 OLRs). Total number of facilities under IAEA inspection reaches 30 where the Agency conducts about 400 PDIs annually. Within the last decade, nuclear transparency in Korea has transformed into the international norm primarily from the needs of rapidly expanding domestic nuclear program. In addition, possibility of North/South mutual inspection helped initiate the national inspection regime in addition to the IAEA inspection. The Technology Center for Nuclear Control was established at KAERI in 1994 in order to maintain the nation's nuclear verification expertise in support of the Korean government. National inspections have been carried out simultaneously with the IAEA inspection since 1997 with trial facilities, and all domestic facilities are being inspected from this year. Necessary legal framework and working procedures were developed and field-tried for LWRs, OLRs, fuel fabrication plants and research reactor facilities. Although the inspection equipment and technology along with the safeguards criteria are quite similar to those of the Agency, it is essential to maintain the independent conclusion capabilities between IAEA and the national authority. Substantial improvements in the IAEA safeguards inspection goal attainments since 1997 are credited to the increasing safeguards awareness among operators and SSAC. Further work is necessary to develop the evaluation criteria based on the field inspection results to meet the national inspection goals. The Korean Government signed the Additional Protocol with IAEA on June, 1999 after much deliberation since it involves facilities

  8. The international safeguards profession

    International Nuclear Information System (INIS)

    Sanders, K.E.

    1986-01-01

    The International Atomic Energy Agency has established a staff of safeguards professionals who are responsible for carrying out on-site inspections to determine compliance with international safeguards agreements. By IAEA Statute, the paramount consideration in recruiting IAEA staff is to secure employees of the highest standards of efficiency, technical competence, and integrity. An analysis of the distribution of professionals in the IAEA Department of Safeguards has revealed some interesting observations regarding the distribution of grade levels, age, time in service, gender, and geographical origin. Following several earlier studies performed by contractors for ACDA, U.S. efforts have been undertaken to attract and better prepare candidates for working at the IAEA

  9. Safeguards technology research and development at CIAE

    International Nuclear Information System (INIS)

    Yang Qun

    2001-01-01

    Full text: China Institute of Atomic Energy (CIAE) is a multi-disciplinary institute under the leadership of China National Nuclear Corporation (CNNC). The Laboratory of Technical Research for Nuclear Safeguards was established at CIAE in 1991 to develop safeguards technology and to provide technical assistance to competent authorities for nuclear material management and control, which became one of the key laboratories approved by CNNC in 1993. The main research works for safeguards at CIAE include: nuclear material control and accounting, facilities license review and assessment, domestic inspection, NDA and DA analysis, physical protection and technical training. Research and development of equipment and technique for safeguards has been continuing at CIAE. A variety of NDA equipment that has different resolution and analysis capability has been developed. Method of NDA measurement has been investigated for nuclear material with different characteristics. Mathematics method such as Monte Carlo simulation is applied in NDA. Advanced destructive analysis (DA) instrument is installed at laboratory of CIAE, such as TIMS, ICP-MS and electronic chemistry analyzing system. The high accuracy results of element analysis and isotopic analysis for nuclear material can be obtained. It is possible to measure the types and quantities of nuclear material in a given area by means of NDA and DA. Physical protection system has also been developed. It consists of access control and management, various alarm (including perimeter alarm, intrusion alarms, fire alarms), video and audio monitors, intercommunication set and central console. The system can meet technical requirement for safeguards of first rank. Nuclear material accounting is an important aspect of safeguards research at CIAE. The computer software related to material accounting has been developed. It is the important task for scientists at CIAE to design and review nuclear accounting systems in various facilities. For

  10. A study on the national safeguards system -Current status and suggested development-

    International Nuclear Information System (INIS)

    Park, Wan Su; Kwack, Eun Ho; An, Jong Sung; Kim, Hyun Tae; Min, Kyung Sik; Park, Chan Sik

    1995-03-01

    In Korea, 17 nuclear facilities are currently under IAEA's safeguards and it is expected that more than 25 nuclear facilities will be under IAEA's safeguards in the year 2000 according to nuclear R and D and industry expansion. In connection with unlimited extension of NPT in 1995 and IAEA's measures to strengthen the safeguards like 'Programme 93+2', the international non-proliferation regime will be strengthened more and nuclear advanced countries will require the transparency and credibility of nuclear activities in recipient countries instead of transferring advanced nuclear technologies and nuclear material. In 1995, the Korean government had revised the Atomic Energy Law to control increasing nuclear facilities and nuclear material effectively and to establish international transparency and credibility. In the revised Atomic Energy Law, it is provided that the national inspection, other than IAEA inspection, will be started from 1996. Currently, necessary arrangements for national inspection are being prepared by MOST and TCNC at KAERI. However, the safeguards system in Korea is still beginning stage, Korea's safeguards activity was passive and fragmentary that leads non-attainment of safeguards goal in many facilities. The reasons were; absence of systematic safeguards system (SSAC); lack of understanding safeguards concepts; lack of manpower, designated organization for safeguards, etc. As Korea ranked world top 10 nuclear power generation country and has a plan to be a nuclear advanced country, Korea should have appropriate safeguards system and should not spare necessary assistance to that system. 14 tabs., 15 figs., 29 refs. (Author)

  11. Authentication method for safeguards instruments securing data transmission

    International Nuclear Information System (INIS)

    Richter, B.; Stein, G.; Neumann, G.; Gartner, K.J.

    1986-01-01

    Because of the worldwide increase in nuclear fuel cycle activities, the need arises to reduce inspection effort by increasing the inspection efficiency per facility. Therefore, more and more advanced safeguards instruments will be designed for automatic operation. In addition, sensoring and recording devices may be well separated from each other within the facility, while the data transmission medium is a cable. The basic problem is the authenticity of the transmitted information. It has to be ensured that no potential adversary is able to falsify the transmitted safeguards data, i.e. the data transmission is secured. At present, predominantly C/S-devices are designed for automatic and remote interrogation. Also in other areas of safeguards instrumentation authentication will become a major issue, in particular, where the facility operator may offer his process instrumentation to be used also for safeguards purposes. In this paper possibilities to solve the problem of authentication are analysed

  12. IAEA safeguards information system

    International Nuclear Information System (INIS)

    Nardi, J.

    1984-01-01

    The basic concepts, structure, and operation of the Agency Safeguards Information System is discussed with respect to its role in accomplishing the overall objectives of safeguards. The basis and purposes of the Agency's information system, the structure and flow of information within the Agency's system, the relationship of the components is the Agency system, the requirements of Member States in respect of their reporting to the Agency, and the relationship of accounting data vis-a-vis facility and inspection data are described

  13. Routine inspection effort required for verification of a nuclear material production cutoff convention

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Sanborn, J.

    1994-12-01

    Preliminary estimates of the inspection effort to verify a Nuclear Material Cutoff Convention are presented. The estimates are based on (1) a database of about 650 facilities a total of eight states, i.e., the five nuclear-weapons states and three ''threshold'' states; (2) typical figures for inspection requirements for specific facility types derived from IAEA experience, where applicable; and (3) alternative estimates of inspection effort in cutoff options where full IAEA safeguards are not stipulated. Considerable uncertainty must be attached to the effort estimates. About 50--60% of the effort for each option is attributable to 16 large-scale reprocessing plants assumed to be in operation in the eight states; it is likely that some of these will be shut down by the time the convention enters into force. Another important question involving about one third of the overall effort is whether Euratom inspections in France and the U.K. could obviate the need for full-scale IAEA inspections at these facilities. Finally, the database does not yet contain many small-scale and military-related facilities. The results are therefore not presented as predictions but as the consequences of alternative assumptions. Despite the preliminary nature of the estimates, it is clear that a broad application of NPT-like safeguards to the eight states would require dramatic increases in the IAEA's safeguards budget. It is also clear that the major component of the increased inspection effort would occur at large reprocessing plants (and associated plutonium facilities). Therefore, significantly bounding the increased effort requires a limitation on the inspection effort in these facility types

  14. Defense Treaty Inspection Readiness Program

    International Nuclear Information System (INIS)

    Cronin, J.J.; Kohen, M.D.; Rivers, J.D.

    1996-01-01

    The Defense Treaty Inspection Readiness Program (DTIRP) was established by the Department of Defense in 1990 to assist defense facilities in preparing for treaty verification activities. Led by the On-Site Inspection Agency (OSIA), an element of the Department of Defense, DTIRP''s membership includes representatives from other Department of Defense agencies, the Department of Energy (DOE), the Central Intelligence Agency, the Federal Bureau of Investigation, the Department of Commerce, and others. The Office of Safeguards and Security has a significant interest in this program, due to the number of national defense facilities within its purview that are candidates for future inspections. As a result, the Office of Safeguards and Security has taken a very active role in DTIRP. This paper discusses the Office of Safeguards and Security''s increasing involvement in various elements of the DTIRP, ranging from facility assessments to training development and implementation

  15. Basic visual observation skills training course: Appendix B. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Toquam, J.L.; Morris, F.A.; Griggs, J.R.

    1995-06-01

    The purpose of the basic visual observation skills course is to help safeguards inspectors evaluate and improve their skills in making observations during inspections and in evaluating and interpreting this information. The first 12 hours of the course provide training in five skill areas: perception and recognition; attention to detail; memory; mental imaging, mapping, and modeling skills; and judgment and decision making. Following this training is an integrating exercise involving a simulated safeguards inspection. This report contains the in-class exercises in the five skill areas; pre- and post-course exercises in closure, hidden figures, map memory, and mental rotations; the final examination; a training evaluation form; and the integrating exercise.

  16. Basic visual observation skills training course: Appendix B. Final report

    International Nuclear Information System (INIS)

    Toquam, J.L.; Morris, F.A.; Griggs, J.R.

    1995-06-01

    The purpose of the basic visual observation skills course is to help safeguards inspectors evaluate and improve their skills in making observations during inspections and in evaluating and interpreting this information. The first 12 hours of the course provide training in five skill areas: perception and recognition; attention to detail; memory; mental imaging, mapping, and modeling skills; and judgment and decision making. Following this training is an integrating exercise involving a simulated safeguards inspection. This report contains the in-class exercises in the five skill areas; pre- and post-course exercises in closure, hidden figures, map memory, and mental rotations; the final examination; a training evaluation form; and the integrating exercise

  17. OSE inspection of materials control and accountability: Review

    International Nuclear Information System (INIS)

    Coady, K.J.

    1987-01-01

    As part of its task to confirm that Department of Energy (DOE) field offices provide levels of security and safeguards commensurate with defined threats, the DOE Office of Security Evaluations (OSE) conducts inspections of the nuclear materials control and accountability (MC and A) systems at DOE facilities throughout the United States. Inspections are based on the DOE Safeguards and Security Standards and Criteria, tailored to the specific aspects at and threats to each individual site. This paper reviews the process of inspecting MC and A systems during the planning, preinspection, and inspection/reporting phases

  18. MC ampersand A policy issues for international inspections at DOE nuclear facilities

    International Nuclear Information System (INIS)

    Crawford, D.W.; Zack, N.R.

    1994-01-01

    Recent initiatives and executive decisions within the US have included an offer to place certain special nuclear materials from the former weapons stockpile under international safeguards inspections. The nuclear materials at issue are excess materials; other materials characterized as strategic reserve will not be subject to these international activities. Current Department of Energy requirements and procedures to account for and control these nuclear materials may need to be modified to accommodate these inspections. Safeguards issues, such as physical inventory frequency and verification requirements, may rise from the collateral safeguards activities in support of both domestic and international safeguards. This paper will discuss Office of Safeguards and Security policy and views on these international inspection activities at former nuclear weapons facilities, including implications for current domestic safeguards approaches currently implemented at these facilities

  19. Estimation of inspection effort

    International Nuclear Information System (INIS)

    Mullen, M.F.; Wincek, M.A.

    1979-06-01

    An overview of IAEA inspection activities is presented, and the problem of evaluating the effectiveness of an inspection is discussed. Two models are described - an effort model and an effectiveness model. The effort model breaks the IAEA's inspection effort into components; the amount of effort required for each component is estimated; and the total effort is determined by summing the effort for each component. The effectiveness model quantifies the effectiveness of inspections in terms of probabilities of detection and quantities of material to be detected, if diverted over a specific period. The method is applied to a 200 metric ton per year low-enriched uranium fuel fabrication facility. A description of the model plant is presented, a safeguards approach is outlined, and sampling plans are calculated. The required inspection effort is estimated and the results are compared to IAEA estimates. Some other applications of the method are discussed briefly. Examples are presented which demonstrate how the method might be useful in formulating guidelines for inspection planning and in establishing technical criteria for safeguards implementation

  20. Agreement reached on integrated safeguards in European Union

    International Nuclear Information System (INIS)

    2010-01-01

    Full text: The International Atomic Energy Agency (IAEA), in cooperation with the European Commission, has reached agreement on arrangements to implement 'integrated safeguards' in all non-nuclear-weapon States of the European Union with significant nuclear activities. 'This important milestone is the result of the constructive common efforts of all parties concerned. It is a clear signal of the importance attributed by the EU and its Member States, as well as the IAEA, to the reinforcement of the nuclear non-proliferation regime,' said Andris Piebalgs, Member of the European Commission in charge of Energy. 'Once we have sufficient confidence that a State' s nuclear activities are purely peaceful, we can apply safeguards measures in a less prescriptive, more customised manner. This reduces the inspection burden on the State and the inspection effort of the IAEA, while enabling the IAEA to maintain the conclusion that all nuclear material has remained in peaceful activities,' said Olli Heinonen, Deputy Director General and Head of IAEA Safeguards Department. Background The Nuclear Non-Proliferation Treaty (NPT) is the main international Treaty prohibiting the spread of nuclear weapons. It entrusts the IAEA to verify that nuclear material is not diverted to nuclear weapons or other nuclear explosive devices through the application of 'safeguards'. IAEA safeguards include comprehensive safeguards agreements and additional protocols that enable the IAEA to conclude that all nuclear material has remained in peaceful activities in a State. Integrated Safeguards refers to the optimum combination of all safeguards measures available to the Agency under comprehensive safeguards agreements and additional protocols to achieve maximum effectiveness and efficiency in meeting the Agency ' s safeguards obligations. In the European Union, nuclear safeguards are implemented on the basis of the Euratom Treaty and trilateral agreements between Euratom, its Member States and the IAEA

  1. Information-Driven Safeguards: A Country Officer's Perspective

    International Nuclear Information System (INIS)

    Gyane, E.

    2010-01-01

    Since the transition from 'traditional' to strengthened safeguards, the evaluation and analysis of information has played an increasingly important role in the Agency's safeguards activities. During the State evaluation process, the Agency utilizes all available information for drawing credible safeguards conclusions. Besides State declared information and data gathered during inspections, a large number of information sources are reviewed for any indications of safeguards relevance. The State level approach - in contrast to the facility-based approach under traditional safeguards - considers the acquisition paths available to a State and adjusts safeguards intensity accordingly. An additional protocol widens the information base available to the Agency for analysis and evaluation and it extends the Agency's access rights in the field. The use of information for determining safeguards activities is often referred to as 'information-driven safeguards'. Country officers are inspectors in the Department of Safeguards Operations Divisions who are responsible for States and thus form the base of the Agency's information chain. The information-driven safeguards approach has led to a significant change in the role of inspector country officers: While the verification of declared nuclear material remains the cornerstone of the IAEA Safeguards System, country officers are now not only expected to be knowledgeable about the inspection-related aspects in their countries. They also need to act on information on their States coming from a variety of sources on an ongoing basis, in order to identify proliferation indicators at an early stage. Country officers thus analyse developments in their States as well as their States' relations with other States. They review scientific literature for research that could potentially be of safeguards relevance. They observe their States' nuclear facilities from satellite imagery. They evaluate reports on nuclear trade between their States

  2. Operation of inspection data acquisition and evaluation system

    International Nuclear Information System (INIS)

    Takahashi, Yoichi; Harada, Hiroshi; Watanabe, Masayuki; Sakaguchi, Makoto; Ishikawa, Masayuki

    2016-01-01

    Rokkasho Reprocessing Plant (RRP) is a large scale plant to treat a huge amount of Plutonium significant for safeguards. The LArge SCAle Reprocessing plant safeguards (LASCAR) Forum recommended an effective utilization of unattended verification systems and automated data acquisition system etc. Based on LASCAR recommendation, Nuclear Material Control Center (NMCC) has developed the inspection data acquisition system as the automated data acquisition system from the unattended verification systems (including non-destructive assay equipment, solution monitoring system and surveillance camera). The data gathered from the unattended verification system are provided to the inspection data evaluation system for the State and the IAEA. In this development, redundancy concepts for data transfer line, in order to prevent inspection data missing, were introduced, and the timely confirmation of solution behaver such as material flows and inventories by the solution monitoring can be achieved. Furthermore, for purpose of efficiency of evaluation of inspection activity for the State, NMCC has developed the inspection data evaluation system which operates automated partition of inspection data coming from each verification equipment. Additionally, the inspection data system evaluation can manage the inspection activities and their efforts. These development and operation have been funded by JSGO (Japan Safeguards Office). This paper describes development history and operation of the inspection data acquisition and evaluation system. (author)

  3. Testimony from a former safeguards inspector

    International Nuclear Information System (INIS)

    Richter, R.

    1981-01-01

    Testimony by a former inspector relates the ineffectiveness and deficiencies of International Atomic Energy Agency (IAEA) safeguards inspections to Iraq's controversial nuclear program. He notes that all Iraqi inspections since 1976 were conducted by Soviet and Hungarian nationals and that the procedures require prior notice, limited authority, and other loopholes that permit numerous opportunities for materials to be diverted to facilities not subject to inspection. Granting that IAEA inspections are essential, he urges removing some of the constraints that permit noncooperating nations to thwart the intent of the Non-Proliferation Treaty

  4. Recent advances in IAEA safeguards systems analysis

    International Nuclear Information System (INIS)

    Bahm, W.; Ermakov, S.; Kaniewski, J.; Lovett, J.; Pushkarjov, V.; Rosenthal, M.D.

    1983-01-01

    Efficient implementation of effective safeguards, the objective of the IAEA's Department of Safeguards, would be unthinkable without carrying out systematic studies on many different problems related to technical and other aspects of safeguards. The System Studies Section of the Department concentrates its efforts on such studies with the purpose of elaborating concepts, criteria, approaches and rules for the implementation of safeguards. In particular, the Section elaborates concepts and approaches for applying safeguards at the complex facilities that are expected to enter under safeguards in the future, develops approaches and rules in the areas where the Agency is still gaining experience, and assists in the implementation of safeguards whenever problems requiring non-routine solutions arise. This paper presents examples of the present activities of the System Studies Section: development of guidelines for use by facility designers in order to make safeguards easier and more effective, studies on near-real-time material accountancy, preparation of safeguards approaches for specific facility types, preparation of model inspection activity lists for different facility types and alternative safeguards approaches and preparation of safeguards policy papers containing the rules and regulations to be followed in the design and implementation of safeguards. (author)

  5. US enrichment safeguards program development activities with potential International Atomic Energy Agency safeguards applications. Part 1. Executive summaries

    International Nuclear Information System (INIS)

    Swindle, D.W. Jr.

    1984-07-01

    The most recent progress, results, and plans for future work on the US Enrichment Safeguards Program's principal development activities are summarized. Nineteen development activities are reported that have potential International Atomic Energy Agency (IAEA) safeguards applications. Part 1 presents Executive Summaries for these, each of which includes information on (1) the purpose and scope of the development activity; (2) the potential IAEA safeguards application and/or use if adopted; (3) significant development work, results, and/or conclusions to date; and where appropriate (4) future activities and plans for continued work. Development activities cover: measurement technology for limited-frequency-unannounced-access stategy inspections; integrated data acquisition system; enrichment-monitoring system; load-cell-based weighing system for UF 6 cylinder mass verifications; vapor phase versus liquid phase sampling of UF 6 cylinders; tamper-safing hardware and systems; an alternative approach to IAEA nuclear material balance verifications resulting from intermittent inspections; UF 6 sample bottle enrichment analyzer; crated waste assay monitor; and compact 252 Cf shuffler for UF 6 measurements

  6. JOINT STUDY OF IMPROVED SAFEGUARDS METHODOLOGY USING NO-NOTICE RANDOMIZED INSPECTION AT JNC'S Pu HANDLING FACILITIES

    International Nuclear Information System (INIS)

    LU, M.S.; SANBORN, J.B.

    2000-01-01

    After the Iraq war, the International Atomic Energy Agency (IAEA) 93+2 Program was developed to strengthen and improve the cost-effectiveness of the existing safeguards system. In particular, the Program aims to enhance the IAEA ability to detect undeclared nuclear activities and materials. The IAEA 93+2 Program includes: (1) Increased access to information and its effective use; (2) Increased physical access; (3) Optimum use of the existing system. The measures considered are divided in two parts: measures in Part 1 are those, which may be implemented within the existing IAEA authority; Part 2 measures require complementary legal authority, in the form of an additional Protocol, INFCIRC/540. A description of the status of its implementation can be found in ''Implementation of the Additional Protocol'' (Cooley, 1999). In particular, increased physical access includes access beyond locations requiring additional authorities derived from the INFCIRC/540 and no-notice randomized inspections. No-notice randomized inspections could enhance the inspection effectiveness and efficiency by increasing the coverage of the material involved, providing better confirmation of the operational status of the facilities and higher degree of confidence that no undeclared activities or materials existed at the facilities--including the detection of possible measures to conceal diversions

  7. UF/sub 6/ test loop for evaluation and implementation of international enrichment plant safeguards

    International Nuclear Information System (INIS)

    Cooley, J.N.; Fields, L.W.; Swindle, D.W. Jr.

    1987-01-01

    A functional test loop capable of simulating UF/sub 6/ flows, pressures, and pipe deposits characteristic of gas centrifuge enrichment plant piping has been designed and fabricated by the Enrichment Safeguards Program of Martin Marietta Energy Systems, Inc., for use by the International Atomic Energy Agency (IAEA) at its Safeguards Analytical Laboratory in Seibersdorf, Austria. The purpose of the test loop is twofold: (1) to enable the IAEA to evaluate and to calibrate enrichment safeguards measurement instrumentation to be used in limited frequency-unannounced access (LFUA) inspection strategy measurements at gas centrifuge enrichment plants and (2) to train IAEA inspectors in the use of such instrumentation. The test loop incorporates actual sections of cascade header pipes from the centrifuge enrichment plants subject to IAEA inspections. The test loop is described, applications for its use by the IAEA are detailed, and results from an initial demonstration session using the test loop are summarized. By giving the IAEA the in-house capability to evaluate LFUA inspection strategy approaches, to develop inspection procedures, to calibrate instrumentation, and to train inspectors, the UF/sub 6/ cascade header pipe test loop will contribute to the IAEA's success in implementing LFUA strategy inspections at gas centrifuge enrichment facilities subject to international safeguards inspections

  8. The evolution of safeguards

    International Nuclear Information System (INIS)

    Heinonen, O.

    1999-01-01

    The Agency's safeguards system has demonstrated a flexibility capable of responding to the verification demands of its Member States. It is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The Agency is in the process of strengthening safeguards in its verification of declared activities. Since the early 1990's the Board of Governors took up the issue of strengthening measures such as inspections at undeclared locations, the early provision of design information, a system of universal reporting on nuclear material and certain nuclear-related equipment and non-nuclear material. Following the Agency's 'Programme 93+2', a major step forward was the adoption by the Board of Governors of the Additional Protocol in May 1997. This included important strengthened safeguards measures based on greater access to information and locations. A number of member states have already indicated their willingness to participate in this system by signing the Additional Protocol and this is now in the early stages of implementation for a few states. (author)

  9. International safeguards

    International Nuclear Information System (INIS)

    1995-01-01

    The system of international safeguards carried out by the IAEA is designed to verify that governments are living up to pledges to use nuclear energy only for peaceful purposes under the NPT (Treaty on the non-proliferation of nuclear weapons) and similar agreements. The film illustrates the range of field inspections and analytical work involved. It also shows how new approaches are helping to strengthen the system

  10. Processing large sensor data sets for safeguards : the knowledge generation system.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Maikel A.; Smartt, Heidi Anne; Matthews, Robert F.

    2012-04-01

    Modern nuclear facilities, such as reprocessing plants, present inspectors with significant challenges due in part to the sheer amount of equipment that must be safeguarded. The Sandia-developed and patented Knowledge Generation system was designed to automatically analyze large amounts of safeguards data to identify anomalous events of interest by comparing sensor readings with those expected from a process of interest and operator declarations. This paper describes a demonstration of the Knowledge Generation system using simulated accountability tank sensor data to represent part of a reprocessing plant. The demonstration indicated that Knowledge Generation has the potential to address several problems critical to the future of safeguards. It could be extended to facilitate remote inspections and trigger random inspections. Knowledge Generation could analyze data to establish trust hierarchies, to facilitate safeguards use of operator-owned sensors.

  11. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    International Nuclear Information System (INIS)

    Pepper, S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

    2009-01-01

    Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agency's (IAEA's) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNL's International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

  12. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pepper,S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

    2009-07-12

    Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agency’s (IAEA’s) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNL’s International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

  13. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To

  14. IAEA safeguards for the Fissile Materials Disposition Project

    International Nuclear Information System (INIS)

    Close, D.A.

    1995-06-01

    This document is an overview of International Atomic Energy Agency (IAEA) safeguards and the basic requirements or elements of an IAEA safeguards regime. The primary objective of IAEA safeguards is the timely detection of the diversion of a significant quantity of material and the timely detection of undeclared activities. The two important components of IAEA safeguards to accomplish their primary objective are nuclear material accountancy and containment and surveillance. This overview provides guidance to the Fissile Materials Disposition Project for IAEA inspection requirements. IAEA requirements, DOE Orders, and Nuclear Regulatory Commission regulations will be used as the basis for designing a safeguards and security system for the facilities recommended by the Fissile Materials Disposition Project

  15. Development of inspection data collection and evaluation system for large scale MOX fuel fabrication plant safeguards (3)

    International Nuclear Information System (INIS)

    Kumakura, Shinichi; Masuda, Shoichiro; Iso, Shoko; Hisamatsu, Yoshinori; Kurobe, Hiroko; Nakajima, Shinji

    2015-01-01

    Inspection Data Collection and Evaluation System is the system to store inspection data and operator declaration data collected from various measurement equipment, which is installed in fuel fabrication processes of the large-scale MOX fuel fabrication plant, and to make safeguards evaluation based on Near Real Time Accountancy (NRTA) using these data. Nuclear Material Control Center developed the simulator to simulate fuel fabrication process, in-process material inventory/flow data and the measurement data and the adequacy/impact to the uncertainty of the material balance using the simulation results, such as the facility operation and the operational status, has been reviewed. Following the 34th INMM Japan chapter presentation, the model similar to the real nuclear material accountancy during the fuel fabrication process was simulated and the nuclear material accountancy and its uncertainty (Sigma MUF) have been reviewed. Some findings have been obtained, such as regarding evaluation related indicators for verification under a more realistic accountancy which could be applied by operator. (author)

  16. Implementation of the INSPECT software package for statistical calculation in nuclear material accountability

    International Nuclear Information System (INIS)

    Marzo, M.A.S.

    1986-01-01

    The INSPECT software package was developed in the Pacific Northwest Laboratory for statistical calculations in nuclear material accountability. The programs apply the inspection and evaluation methodology described in Part of the Safeguards Technical Manual. In this paper the implementation of INSPECT at the Safeguards Division of CNEN, and the main characteristics of INSPECT are described. The potential applications of INSPECT to the nuclear material accountability is presented. (Author) [pt

  17. Optimizing the design of international safeguards inspection systems

    International Nuclear Information System (INIS)

    Markin, J.T.; Coulter, C.A.; Gutmacher, R.G.; Whitty, W.J.

    1983-01-01

    Efficient implementation of international inspections for verifying the operation of a nuclear facility requires that available resources be allocated among inspection activities to maximize detection of misoperation. This report describes a design and evaluation method for selecting an inspection system that is optimal for accomplishing inspection objectives. The discussion includes methods for identifying system objectives, defining performance measures, and choosing between candidate systems. Optimization theory is applied in selecting the most preferred inspection design for a single nuclear facility, and an extension to optimal allocation of inspection resources among States containing multiple facilities is outlined. 3 figures, 5 tables

  18. Application of safeguards procedures

    International Nuclear Information System (INIS)

    1977-01-01

    The earliest applications of safeguards procedures took place in a political and technical climate far different from that of today. In the early 1960's there was a fear of the proliferation possibilities which could arise as more and more countries acquired nuclear power plants. Today nuclear power is being produced in some 20 countries without resulting in nuclear weapons proliferation. The export of equipment and technology for the nuclear fuel cycle, however, has become the subject of current concern. In view of these developments, it is not surprising that techniques in the application of safeguards have also changed. In order to appreciate the nature of these changes, it is important to be aware of the original general attitude towards the technical problems of safeguards applications. Originally, the common attitude was that the objectives of safeguards were self-evident and the methods, while in need of development, were known at least in outline. Today, it has become evident that before a safeguards procedure can be applied, the objectives must first be carefully defined, and the criteria against which success in meeting those objectives can be measured must also be developed. In line with this change, a significant part of the effort of the safeguards inspectorate is concerned with work preliminary and subsequent to the actual inspection work in the field. Over the last two years, for example, a considerable part of the work of experienced safeguards staff has been spent in analysing the possibilities of diverting material at each facility to be safeguarded. These analyses are carried out in depth by a 'facility officer' and are subjected to constructive criticism by teams composed of staff responsible for similar types of facilities as well as other technical experts. The analyses consider the measures currently considered practicable, to meet the diversion possibilities and where necessary list the development work needed to overcome any present

  19. Experience of Brazilian safeguards analytical laboratory in DA analysis

    International Nuclear Information System (INIS)

    Bezerra, J.H.B.; Araujo, R.M.S.; Pereira, J.C.A.

    2001-01-01

    Full text: The Brazilian Safeguards Analytical Laboratory, inaugurated in September 1983, performs uranium analysis in samples of nuclear materials taken during national safeguards inspections as well as in samples taken during ABACC's inspections performed in Argentina. The Laboratory analyzes Intercomparison samples provided by IAEA, NBL, ABACC, CEN and EQRAIN. The method used to perform uranium analysis is the Davies and Gray/NBL. All the steps of the analytical procedures, such as chemical kinetics of the reactions and instrumental parameters, are rigorously controlled. An internal Quality Control of the measurements is made by means of analysis of Certified Reference Materials and the performance of the results meets the ESARDA's Target Values for Random and Systematic Components both in Intercomparison Samples and in samples taken during inspections. The typical precision, expressed as relative standard deviation, and accuracy obtained in a routine basis for nuclear grade materials is 0.1% and 0.14% respectively. The performance of the results obtained are comparable to the best international laboratories which perform uranium analysis in nuclear materials for safeguards purposes. (author)

  20. IAEA safeguards for geological repositories

    International Nuclear Information System (INIS)

    Moran, B.W.

    2005-01-01

    In September. 1988, the IAEA held its first formal meeting on the safeguards requirements for the final disposal of spent fuel and nuclear material-bearing waste. The consensus recommendation of the 43 participants from 18 countries at this Advisory Group Meeting was that safeguards should not terminate of spent fuel even after emplacement in, and closure of, a geologic repository.' As a result of this recommendation, the IAEA initiated a series of consultants' meetings and the SAGOR Programme (Programme for the Development of Safeguards for the Final Disposal of Spent Fuel in Geologic Repositories) to develop an approach that would permit IAEA safeguards to verify the non-diversion of spent fuel from a geologic repository. At the end of this process, in December 1997, a second Advisory Group Meeting, endorsed the generic safeguards approach developed by the SAGOR Programme. Using the SAGOR Programme results and consultants' meeting recommendations, the IAEA Department of Safeguards issued a safeguards policy paper stating the requirements for IAEA safeguards at geologic repositories. Following approval of the safeguards policy and the generic safeguards approach, the Geologic Repository Safeguards Experts Group was established to make recommendations on implementing the safeguards approach. This experts' group is currently making recommendations to the IAEA regarding the safeguards activities to be conducted with respect to Finland's repository programme. (author)

  1. IAEA safeguards and the additional protocol in the Eurasia Region

    International Nuclear Information System (INIS)

    Murakami, K.

    2001-01-01

    Developing and implementing safeguards against misuse of nuclear material and facilities has always been the Agency's main activities. Like the nuclear non-proliferation regime itself, the development of the safeguards system has been an evolutionary process. The first safeguards inspection was carried out in 1962 (in Norway). In the sixties, the basic concepts behind safeguards were developed (INFCIRC/26, adopted in 1961, for some of you it might still have a familiar ring) and the number of inspections and types of facilities inspected grew slowly. With the advent of INFCIRC/66/Rev. 2, a more complete, albeit limited, system of safeguards covering nuclear material, equipment and facilities emerged. But the quantum leap came, of course, wit the entry into force of the NPT. Today, the IAEA has 224 safeguards agreements in force with 140 States. Nearly all of these States are NPT States. In the Eurasia Region, particularly the Newly Independent States (NIS) significant achievements have been made in the Safeguards Implementation. States with nuclear activities have the SG Agreement in force. Some states are already signing the Additional Protocol and it is in force in two of these States in the NIS region. Much progress has been made in the area of nuclear material and accountancy through the IAEA Coordinated Technical Support Programme (CTSP). The programme was organized to co-ordinate the donor states activities and has been successful for the last seven years in providing assistance in the area of nuclear legislation establishment of the State System of Accountancy of nuclear material (SSAC) and other related areas. Improvement is still foreseen in these areas, particularly as more states in the region will be signing and implementing the Additional Protocols

  2. Current technical issues in international safeguards

    International Nuclear Information System (INIS)

    Bennett, C.A.

    1977-01-01

    Safeguards systems, and the associated need for technical and systems development, reflect changing conditions and concerns associated with the nuclear fuel cycle and the safety and security of nuclear materials and facilities. In particular, the implementation of international safeguards has led to the recognition of certain technical issues, both old and new, which are in need of resolution. These are: 1. The grading of nuclear materials and facilities with respect to their relative safeguards significance. 2. The extension and upgrading of safeguards techniques to maintain adequate protection in view of constantly increasing amounts of material to be safeguarded. 3. The balance between safeguards mechanisms based on physical protection and material accounting, and the role of surveillance and containment in each case. 4. The role of information systems as a basis for both analytical feedback and the determination of the factors affecting system effectiveness and their interrelationship. 5. A determination of the degree to which the overall technical effectiveness of international inspection activities can be quantified. Each of these technical issues must be considered in light of the specific objectives of international safeguards, which differ from domestic safeguards in terms of the level of the threat, the safeguards mechanisms available, and the diversion strategies assumed. Their resolution in this international context is essential if the effectiveness and viability of international safeguards are to be maintained

  3. Video image processing for nuclear safeguards

    International Nuclear Information System (INIS)

    Rodriguez, C.A.; Howell, J.A.; Menlove, H.O.; Brislawn, C.M.; Bradley, J.N.; Chare, P.; Gorten, J.

    1995-01-01

    The field of nuclear safeguards has received increasing amounts of public attention since the events of the Iraq-UN conflict over Kuwait, the dismantlement of the former Soviet Union, and more recently, the North Korean resistance to nuclear facility inspections by the International Atomic Energy Agency (IAEA). The role of nuclear safeguards in these and other events relating to the world's nuclear material inventory is to assure safekeeping of these materials and to verify the inventory and use of nuclear materials as reported by states that have signed the nuclear Nonproliferation Treaty throughout the world. Nuclear safeguards are measures prescribed by domestic and international regulatory bodies such as DOE, NRC, IAEA, and EURATOM and implemented by the nuclear facility or the regulatory body. These measures include destructive and non destructive analysis of product materials/process by-products for materials control and accountancy purposes, physical protection for domestic safeguards, and containment and surveillance for international safeguards

  4. Safeguards systems parameters

    International Nuclear Information System (INIS)

    Avenhaus, R.; Heil, J.

    1979-01-01

    In this paper analyses are made of the values of those parameters that characterize the present safeguards system that is applied to a national fuel cycle; those values have to be fixed quantitatively so that all actions of the safeguards authority are specified precisely. The analysis starts by introducing three categories of quantities: The design parameters (number of MBAs, inventory frequency, variance of MUF, verification effort and false-alarm probability) describe those quantities whose values have to be specified before the safeguards system can be implemented. The performance criteria (probability of detection, expected detection time, goal quantity) measure the effectiveness of a safeguards system; and the standards (threshold amount and critical time) characterize the magnitude of the proliferation problem. The means by which the values of the individual design parameters can be determined with the help of the performance criteria; which qualitative arguments can narrow down the arbitrariness of the choice of values of the remaining parameters; and which parameter values have to be fixed more or less arbitrarily, are investigated. As a result of these considerations, which include the optimal allocation of a given inspection effort, the problem of analysing the structure of the safeguards system is reduced to an evaluation of the interplay of only a few parameters, essentially the quality of the measurement system (variance of MUF), verification effort, false-alarm probability, goal quantity and probability of detection

  5. Safeguards research at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Dunn, D.R.; Huebel, J.G.; Poggio, A.J.

    1980-01-01

    The LLL safeguards research program includes inspection methods, facility assessment methodologies, value-impact analysis, vulnerability analysis of accounting systems, compliance with regulations, process monitoring, etc. Each of those projects is described as are their goals and progress

  6. Inspection program for U.S. research reactors

    International Nuclear Information System (INIS)

    Isaac, Patrick J.

    2010-01-01

    This paper presents an established program for inspection of nuclear research reactors to ensure that systems and techniques are in accordance with regulatory requirements and to provide protection for the health and safety of the public. The inspection program, implemented from the time a facility gets licensed, remains in effect through operations, shutdown, decommissioning, and until the license is terminated. The program establishes inspection methodology for operating, safeguards, and decommissioning activities. Using a performance- based approach, inspectors focus their attention on activities important to safety. Inspection procedures allow the inspectors to assess facility safety and compliance to applicable requirements. A well designed inspection program is an integral part of the mechanism to ensure that the level of performance in the strategic areas of reactor safety, radiation safety, and safeguards is acceptable and provides adequate protection of public health and safety. (author)

  7. Towards more efficient safeguards approach of transfer campaign in Wolsong CANDU reactor

    International Nuclear Information System (INIS)

    Park, S. K.; Na, W. W.; Park, W. S.; Jung, S. T.; Park, S. J.

    2002-01-01

    Due to the unique character of the CANDU reactor, a transfer campaign has been carried out every year for 2 months or so in Wolsong unit 1. It is expected to require performance of the transfer campaign for 4 units of Wolsong site in 2006 and more than 50% of the ROK safeguards inspection efforts. The IAEA and TCNC have gained several years of experience in safeguards approach during transfer campaign. Occasionally the deterrence and interference of operator transfer work have been occurred in order to attain safeguards inspection goal. These could be minimized using optimum C/S applications, NDA and RDT techniques. This paper shows the interrelationship and combinations of these resources and proposes new safeguards approach to maintain the continuity of knowledge from fuel loading in the spent fuel pond to the point of canister loading and closure during transfer campaign

  8. Safeguarding uranium enrichment facilities. Review and analysis of the status of safeguards technology for uranium enrichment facilities

    International Nuclear Information System (INIS)

    1977-09-01

    The objective of this paper is to examine critically the diversion potential at uranium enrichment facilities and to outline a basic safeguards strategy which counters all identified hazards as completely as possible yet with a minimum of non-essential redundancy. Where existing technology does not appear to be adequate for effective safeguards, the limitations are examined, and suggestions for further R and D effort are made. Parts of this report are generally applicable to all currently known enrichment processes, while other parts are specifically directed toward facilities based on the gas centrifuge process. It is hoped that additional sections discussing a safeguards strategy for gas diffusion facilities can be added later. It should be emphasized that this is a technical report, and does not reflect any legal positions. The safeguards strategy and subsequent inspection procedures are intended as guidelines, not as negotiating positions

  9. Lessons Learned in International Safeguards - Implementation of Safeguards at the Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Ehinger, Michael H.; Johnson, Shirley

    2010-01-01

    The focus of this report is lessons learned at the Rokkasho Reprocessing Plant (RRP). However, the subject of lessons learned for application of international safeguards at reprocessing plants includes a cumulative history of inspections starting at the West Valley (New York, U.S.A.) reprocessing plant in 1969 and proceeding through all of the efforts over the years. The RRP is the latest and most challenging application the International Atomic Energy Agency has faced. In many ways the challenges have remained the same, timely inspection and evaluation with limited inspector resources, with the continuing realization that planning and preparations can never start early enough in the life cycle of a facility. Lessons learned over the years have involved the challenges of using ongoing advances in technology and dealing with facilities with increased throughput and continuous operation. This report will begin with a review of historical developments and lessons learned. This will provide a basis for a discussion of the experiences and lessons learned from the implementation of international safeguards at RRP.

  10. Regional safeguards arrangements: The Argentina-Brazil experience

    International Nuclear Information System (INIS)

    Marzo, M.; Gonzales, H.L.; Iskin, M.C.L.; Vicens, H.

    1997-01-01

    A Common System of Accounting and Control of Nuclear Material (SCCC) was established by Argentina and Brazil in July 1992. It is a full scope safeguard's system in both countries. The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was created to apply the SCCC. The main elements of the SCCC are presented. The main safeguards' procedures are described. A brief discussion of the inspection methodology and its impact for facility operators is performed. The safeguard's implementation from the operator's point of view is commented, taking as example a fuel fabrication plant in Argentina and a uranium enrichment plant in Brazil. (author)

  11. The development of in-process inventory walk-through examination system in the process at borrowing inspection between LEU fuel fabrication plants

    International Nuclear Information System (INIS)

    Nakamura, Norihito; Namekawa, Masaru; Owada, Isao; Kikuchi, Masaru; Kodani, Yoshiki; Nozawa, Yukio

    2005-01-01

    Since the Nuclear Material Control Center (NMCC) was designed the safeguards inspection organization by Ministry of Education, Culture, Sports, Science and Technology (MEXT) in December 1999, the NMCC has been performing safeguards inspection for the Nuclear Facilities in Japan. The NMCC has carried out the safeguards inspections to LEU Fuel Fabrication Plants (FFPs) and the NMCC has improved the method of safeguards inspection as it has changed over to the integrated safeguards from the year of 2005. Concerning the Borrowing inspection between LEU FFPs, which is the precondition to change over to the integrated safeguards, it is needed to estimate the entire inventory in the facility within the limited time. Therefore, the NMCC has developed the system called IWES (In-process inventory Walk-through Examination System) to examine the inventory in process smoothly, quickly and correctly at borrowing inspection, check the entire inventory quantity and evaluate them. This report describes how IWES aiming at effective/efficient confirmation of in-process inventory has been developed and how it is applied to the borrowing inspection activities. (author)

  12. Nuclear facility safeguards as specified by the Czechoslovak administrative law

    International Nuclear Information System (INIS)

    Elias, J.; Svab, J.

    1978-01-01

    A study is presented of the legal aspects of nuclear safeguards for the operation of nuclear power facilities evaluating the development of the legal arrangement over the past five years, i.e., encoding nuclear safeguards for nuclear facilities in the new building regulations (Act No. 50/1976 Coll. of Laws on Urban Planning and Building Regulations and implementing provisions). It also discusses the juridical position of State surveillance over the nuclear safety of nuclear facilities and its relation to surveillance carried out by specialized bodies of the State work safety inspection and to surveillance carried out by hygiene inspection bodies. (J.S.)

  13. Verification and the safeguards legacy

    International Nuclear Information System (INIS)

    Perricos, Demetrius

    2001-01-01

    A number of inspection or monitoring systems throughout the world over the last decades have been structured drawing upon the IAEA experience of setting up and operating its safeguards system. The first global verification system was born with the creation of the IAEA safeguards system, about 35 years ago. With the conclusion of the NPT in 1968, inspections were to be performed under safeguards agreements, concluded directly between the IAEA and non-nuclear weapon states parties to the Treaty. The IAEA developed the safeguards system within the limitations reflected in the Blue Book (INFCIRC 153), such as limitations of routine access by the inspectors to 'strategic points', including 'key measurement points', and the focusing of verification on declared nuclear material in declared installations. The system, based as it was on nuclear material accountancy. It was expected to detect a diversion of nuclear material with a high probability and within a given time and therefore determine also that there had been no diversion of nuclear material from peaceful purposes. The most vital element of any verification system is the inspector. Technology can assist but cannot replace the inspector in the field. Their experience, knowledge, intuition and initiative are invaluable factors contributing to the success of any inspection regime. The IAEA inspectors are however not part of an international police force that will intervene to prevent a violation taking place. To be credible they should be technically qualified with substantial experience in industry or in research and development before they are recruited. An extensive training program has to make sure that the inspectors retain their professional capabilities and that it provides them with new skills. Over the years, the inspectors and through them the safeguards verification system gained experience in: organization and management of large teams; examination of records and evaluation of material balances

  14. Facility safeguards at an LEU fuel fabrication facility in Japan

    International Nuclear Information System (INIS)

    Kuroi, H.; Osabe, T.

    1984-01-01

    A facility description of a Japanese LEU BWR-type fuel fabrication plant focusing on safeguards viewpoints is presented. Procedures and practices of MC and A plan, measurement program, inventory taking, and the report and record system are described. Procedures and practices of safeguards inspection are discussed and lessons learned from past experiences are reviewed

  15. The European experience in safeguarding nuclear fuel recycle processes and Pu stores

    International Nuclear Information System (INIS)

    Synetos, Sotiris

    2013-01-01

    Civil nuclear programs in the European Union member states have from their onset included fuel recycling as an option. The EURATOM Treaty gives to the European Commission the obligation to apply safeguards controls to all civil Nuclear Material in the European Union, and to facilitate the implementation of IAEA safeguards. The European Commission (EURATOM) has thus gained years of experience in safeguarding reprocessing plants, Pu storages, and MOX fuel fabrication plants and is currently participating in the development of approaches and measures for safeguarding long term repositories. The aim of this paper is to present the regulator's views and experience on safeguarding nuclear fuel recycle processes and Pu stores, which is based on the following principles: -) Early involvement of the control organizations in the design of the safeguards measures to be developed for a plant (currently referred to as Safeguards by Design); -) Early definition of a safeguards strategy including key measurement points; -) The design and development of plant specific Safeguards equipment, including an on site laboratory for sample analysis; -) The development by the operator of an appropriate Nuclear Material accountancy system to facilitate their declaration obligations; -) The introduction of an inspection regime allowing comprehensive controls under the restrictions imposed by financial and Human Resources limitations; -) Optimization of the inspection effort by using unattended measuring stations, containment and surveillance systems and secure remote transmission of data to the regulator's headquarters. The paper is followed by the slides of the presentation. (authors)

  16. Safeguarding on-power fuelled reactors - instrumentation and techniques

    International Nuclear Information System (INIS)

    Waligura, A.; Konnov, Y.; Smith, R.M.; Head, D.A.

    1977-01-01

    Instrumentation and techniques applicable to safeguarding reactors that are fuelled on-power, particularly the CANDU type, have been developed. A demonstration is being carried out at the Douglas Point Nuclear Generating Station in Canada. Irradiated nuclear materials in certain areas - the reactor and spent fuel storage bays - are monitored using photographic and television cameras, and seals. Item accounting is applied by counting spent-fuel bundles during transfer from the reactor to the storage bay and by placing these spent-fuel bundles in a sealed enclosure. Provision is made for inspection and verification of the bundles before sealing. The reactor's power history is recorded by a track-etch power monitor. Redundancy is provided so that the failure of any single piece of equipment does not invalidate the entire safeguards system. Several safeguards instruments and devices have beeen developed and evaluated. These include a super-8 mm surveillance camera system, a television surveillance system, a spent-fuel bundle counter, a device to detect dummy fuel bundles, a cover for enclosing a stack of spent-fuel bundles, and a seal suitable for underwater installation and ultrasonic interrogation. The information provided by these different instruments should increase the effectiveness of Agency safeguards and, when used in combination with other measures, will facilitate inspection at reactor sites

  17. Technology of remote nuclear activity monitoring for national safeguards

    International Nuclear Information System (INIS)

    Kwack, Eun Ho; Kim, B. K.; Kim, J. S.; Yoon, W. K.; Kim, J. S.; Kim, J. S.; Cha, H. R.; Na, W. W.; Choi, Y. M.

    2001-07-01

    This project mainly focused on technical development on remote monitoring. It covers optical fiber scintillator to be used as NDA sensor to targets to be applied. Optical fiber scintillator was tested at the high radioactive environment. It is the first try in its kind for spent fuel measurement. It is confirmed that optical fiber sensor can be used for safeguards verification. Its feasibility for spent fuel storage silo at Wolsong reactor was studied. And to optimize remote transmission cost which can be regarded as a major barrier, virtual private network was studied for possible application for safeguards purpose. It can drastically reduce transmission cost and upgrade information surety. As target for remote monitoring, light water reactor and heavy water reactor were feasibly studied. Especially heavy water reactor has much potential for reduction of inspection efforts if remote monitoring is introduced. In overall remote monitoring can play a pivotal role to streamline safeguards inspection

  18. Safeguards techniques and equipment. 2003 ed

    International Nuclear Information System (INIS)

    2003-01-01

    The 1990s saw significant non-proliferation related developments in the world, resulting in a new period of safeguards development. Over several years an assessment was made of how to strengthen the effectiveness and improve the efficiency of IAEA safeguards. In May 1997 this culminated in the adoption by the IAEA Board of Governors of a Protocol Additional to Safeguards Agreements which significantly broadens the role of IAEA safeguards. As a consequence, the IAEA safeguards system entered a new era. In 1997 the IAEA began to publish a new series of booklets on safeguards, called the International Nuclear Verification Series (NVS). The objective of these booklets was to help in explaining IAEA safeguards, especially the new developments in safeguards, particularly for facility operators and government officers involved with these topics. The current booklet, which is a revision and update of IAEA/NVS/1, is intended to give a full and balanced description of the techniques and equipment used for both nuclear material accountancy and containment and surveillance measures, and for the new safeguards measure of environmental sampling. A completely new section on data security has been added to describe the specific features that are included in installed equipment systems in order to ensure the authenticity and confidentiality of information. As new verification measures continue to be developed the material in this booklet will be periodically reviewed and updated versions issued. The basic verification measure used by the IAEA is nuclear material accountancy. In applying nuclear material accountancy, IAEA safeguards inspectors make independent measurements to verify quantitatively the amount of nuclear material presented in the State's accounts. For this purpose, inspectors count items (e.g. fuel assemblies, bundles or rods, or containers of powdered compounds of uranium or plutonium) and measure attributes of these items during their inspections using non

  19. The European Safeguards Research and Development Association Addresses Safeguards and Nonproliferation

    International Nuclear Information System (INIS)

    Janssens-Maenhout, Greet; Kusumi, R.; Daures, Pascal A.; Janssens, Willem; Dickman, Deborah A.

    2010-01-01

    The renaissance of efforts to expand the use of nuclear energy requires the parallel development of a renewed and more sophisticated work force. Growth in the nuclear sector with high standard of safety, safeguards and security requires skilled staff for design, operations, inspections etc. High-quality nuclear technology educational programs are diminished from past years, and the ability of universities to attract students and to meet future staffing requirements of the nuclear industry is becoming seriously compromised. Thus, education and training in nuclear engineering and sciences is one of the cornerstones for the nuclear sector. Teaching in the nuclear field still seems strongly influenced by national history but it is time to strengthen resources and collaborate. Moreover with the current nuclear security threats it becomes critical that nuclear technology experts master the basic principles not only of safety, but also of nuclear safeguards, nonproliferation and nuclear security. In Europe the European Nuclear Education Network (ENEN) Association has established the certificate 'European Master of Science in Nuclear Engineering (EMSNE)' as the classic nuclear engineering program covering reactor operation and nuclear safety. However, it does not include courses on nonproliferation, safeguards, or dual-use technologies. The lack of education in nuclear safeguards was tackled by the European Safeguards Research and Development Association (ESARDA), through development and implementation of safeguards course modules. Since 2005 the ESARDA Working Group, called the Training and Knowledge Management Working Group, (TKMWG) has worked with the Joint Research Centre (JRC) in Ispra, Italy to organize a Nuclear Safeguards and Nonproliferation course. This five-day course is held each spring at the JRC, and continues to show increasing interest as evidenced by the positive responses of international lecturers and students. The standard set of lectures covers a broad

  20. Safeguards systems concepts for nuclear material transportation. Final report

    International Nuclear Information System (INIS)

    Baldonado, O.C.; Kevany, M.; Rodney, D.; Pitts, D.; Mazur, M.

    1977-09-01

    The report describes the development of system concepts for the safeguarding of special strategic nuclear materials (SNM) against malevolent adversary action during the interfacility transport of the SNM. The methodology used includes techniques for defining, classifying, and analyzing adversary action sequences; defining safeguards system components; assessing the vulnerability of various safeguards systems and their component parts to the potential adversary action sequences, and conceptualizing system design requirements. The method of analysis is based primarily on a comparison of adversary actions with safeguards measures, to estimate vulnerability. Because of the paucity of the data available for assessing vulnerability, the Delphi approach was used to generate data: values were estimated in a structured exercise by a panel of experts in the safeguards and terrorist fields. It is concluded that the probability of successful attack against a truck/escort convoy manned by well-trained, well-armed personnel is low enough to discourage all but the strongest adversaries. Secrecy of operations and careful screening of personnel are very important. No reliance should be placed on current capabilities of local law enforcement agencies. The recommendation of the study is the use of road transport in the near future and air transport at a later time when the number of shipments reaches a level to justify it, and when present safety problems are resolved

  1. Introduction to nuclear material safeguards

    International Nuclear Information System (INIS)

    Kuroi, Hideo

    1986-01-01

    This article is aimed at outlining the nuclear material safeguards. The International Atomic Energy Agency (IAEA) was established in 1957 and safeguards inspection was started in 1962. It is stressed that any damage resulting from nuclear proliferation would be triggered by a human intentional act. Various measures have been taken by international societies and nations, of which the safeguards are the only means which relay mainly on technical procedures. There are two modes of diversing nuclear materials to military purposes. One would be done by national intension while the other by indivisulas or expert groups, i.e., sub-national intention. IAEA is responsible for the prevention of diversification by nations, for which the international safeguards are being used. Measures against the latter mode of diversification are called nuclear protection, for which each nation is responsible. The aim of the safeguards under the Nonproliferation Treaty is to detect the diversification of a significant amount of nuclear materials from non-military purposes to production of nuclear explosion devices such as atomic weapons or to unidentified uses. Major technical methods used for the safeguards include various destructive and non-destructive tests as well as containment and monitoring techniques. System techniques are to be employed for automatic containment and monitoring procedures. Appropriate nuclear protection system techniques should also be developed. (Nogami, K.)

  2. Report on the 8. ESARDA course on nuclear safeguards and non-proliferation

    International Nuclear Information System (INIS)

    Grape, S.; Jonter, T.

    2013-01-01

    The 8. ESARDA course on nuclear safeguards and non-proliferation took place in Uppsala, Sweden, on September 12-16, 2011. 44 participants from 15 countries followed the one week long course, comprising four days of lectures, one group exercise and one full day visit to the Swedish final repository (SFR) for short-lived radioactive waste. The lectures covered political and technical aspects related to the general background of safeguards legislation and treaties, the nuclear fuel cycle, destructive and non-destructive safeguards techniques, physical protection, verification technologies such as nuclear material accountancy and control, safeguards inspections, remote monitoring, containment and surveillance, export control, illicit trafficking and nuclear forensics. The course also contained a group exercise, whereby the participants learnt about different nonproliferation treaties on/or related to Weapons of Mass Destruction (WMD): the Chemical Weapons Convention (CWC), the Biological and Toxin Weapons Convention (BWC), the nuclear Non-Proliferation Treaty (NPT) as well as the Comprehensive Nuclear Test Ban Treaty (CTBT) and the Fissile Material Cut-off Treaty (FMCT). The task of the group exercise was to discuss and compare the treaties with respect to obligations and rights of state parties, verification of compliance, membership, terrorism, similarities/differences, successes and failures. The paper is followed by the slides of the presentation

  3. Containment and surveillance - A principal IAEA safeguards measure

    International Nuclear Information System (INIS)

    Drayer, D.D.; Dupree, S.A.; Sonnier, C.S.

    1997-01-01

    The growth of the safeguards inspectorate of the Agency, spanning more than 40 years, has produced a variety of interesting subjects (legal, technical, political, etc.) for recollection, discussion, and study. Although the Agency was established in 1957, the first practical inspections did not occur until the early 1960s. In the early inspections, thee was little C/S equipment available, and no optical surveillance was used. However, by the third decade of the IAEA, the 1980s, many technology advances were made, and the level of C/S equipment activities increased. By the late 1980s, some 200 Twin Minolta film camera systems were deployed by the Agency for safeguards use. At the present time, the Agency is evaluating and beginning to implement remote monitoring as part of the Strengthened Safeguards System. However, adoption of remote monitoring by international agencies cannot occur rapidly because of the many technical and policy issues associated with this activity. A glimpse into the future indicates that an important element of safeguards instrumentation will be the merging of C/S and NDA equipment into integrated systems. The use of modern interior area monitors in International Safeguards also offers a great potential for advancing C/S measures. The research in microsensors is in its infancy, and the opportunities for their reducing the cost, increasing the life time, and increasing the reliability of sensors for safeguards applications are manifold. A period may be approaching in which the terminology of C/S will no longer have its original meaning, as integrated systems combining NDA instruments and C/S instruments are already in use and are expected to be the norm in the near future

  4. Inspection Methods for Physical Protection Project: annual report, March-December 1981

    International Nuclear Information System (INIS)

    Bowden, D.D.; Green, J.N.; Minichino, C.; Thatcher, R.M.; Tyler, G.C.

    1982-01-01

    The report details the current production status of the expanded replacement inspection procedures for physical protection of power reactors, for strategic special nuclear material fixed sites, and for transportation of special nuclear material. In addition to the expanded replacement procedures, the final production status is reported for the new series of inspection procedures for special nuclear material of moderate and low strategic significance at fixed sites, for personnel training and qualifications plan (Appendix B to 10 CFR 73), for safeguards contingency plan (Appendix C to 10 CFR 73), and for licensee implementing procedures evaluation. Other deliverables, trips, management meetings, training, and changes in personnel are discussed

  5. Proposal of a national system to supervise nuclear installations out of international safeguards

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1990-01-01

    It is proposed a national system to safeguard, supervise and inspect nuclear facilities in Brazil, apart from international safeguards. It discusses also the military nuclear activities and the uranium enrichment plants. The system should be controlled by Brazilian CNEN. (A.C.A.S.)

  6. Getting ready for final disposal in Finland - Independent verification of spent fuel

    International Nuclear Information System (INIS)

    Tarvainen, Matti; Honkamaa, Tapani; Martikka, Elina; Varjoranta, Tero; Hautamaeki, Johanna; Tiitta, Antero

    2001-01-01

    Full text: Final disposal of spent nuclear fuel has been known to be the solution for the back-end of the fuel cycle in Finland already for a long time. This has allowed the State system for accounting and control (SSAC) to prepare for the safeguards requirements in time. The Finnish SSAC includes the operator, the State authority STUK and the parties above them e.g. the Ministry for Trade and Industry. Undisputed responsibility of the safe disposal of spent fuel is on the operator. The role of the safety authority STUK. is to set up detailed requirements, to inspect the operator plans and by using different tools of a quality audit approach to verity that the requirements will be complied with in practice. Responsibility on the safeguards issues is similar with the addition of the role of the regional and the international verification organizations represented by Euratom and the IAEA, As the competent safeguards authority, STUK has decided to maintain its active role also in the future. This will be reflected in the future in the increasing cooperation between the SSAC and the IAEA in the new safeguards activities related to the Additional Protocol. The role of Euratom will remain the same concerning the implementation of conventional safeguards. Based on its SSAC role, STUK has continued carrying out safeguards inspections including independent verification measurements on spent fuel also after joining the EU and Euratom safeguards in 1995. Verification of the operator declared data is the key verification element of safeguards. This will remain to be the case also under the Integrated Safeguards (IS) in the future. It is believed that the importance of high quality measurements will rather increase than decrease when the frequency of interim inspections will decrease. Maintaining the continuity of knowledge makes sense only when the knowledge is reliable and independently verified. One of the corner stones of the high quality of the Finnish SSAC activities is

  7. Symposium on International Safeguards: Preparing for Future Verification Challenges

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of the symposium is to foster dialogue and information exchange involving Member States, the nuclear industry and members of the broader nuclear non-proliferation community to prepare for future verification challenges. Topics addressed during the 2010 symposium include the following: - Supporting the global nuclear non-proliferation regime: Building support for strengthening international safeguards; Enhancing confidence in compliance with safeguards obligations; Legal authority as a means to enhance effectiveness and efficiency; Verification roles in support of arms control and disarmament. - Building collaboration and partnerships with other international forums: Other verification and non-proliferation regimes; Synergies between safety, security and safeguards regimes. - Improving cooperation between IAEA and States for safeguards implementation: Strengthening State systems for meeting safeguards obligations; Enhancing safeguards effectiveness and efficiency through greater cooperation; Lessons learned: recommendations for enhancing integrated safeguards implementation. - Addressing safeguards challenges in an increasingly interconnected world: Non-State actors and covert trade networks; Globalization of nuclear information and technology. - Preparing for the global nuclear expansion and increasing safeguards workload: Furthering implementation of the State-level concept and integrated safeguards; Information-driven safeguards; Remote data-driven safeguards inspections; Safeguards in States without comprehensive safeguards agreements. - Safeguarding advanced nuclear facilities and innovative fuel cycles: Proliferation resistance; Safeguards by design; Safeguards approaches for advanced facilities. - Advanced technologies and methodologies: For verifying nuclear material and activities; For detecting undeclared nuclear material and activities; For information collection, analysis and integration. - Enhancing the development and use of safeguards

  8. Safeguards sealing systems for Zebra

    International Nuclear Information System (INIS)

    Ingram, G.; Jamieson, G.R.

    1983-01-01

    A relatively simple design has been produced for safeguards seals to be applied throughout the fuel containing areas at Zebra. It is based on the use of wire seals and regular Inspector surveillance. The application of the system would allow an Inspector to establish to a high degree of confidence that significant quantities of fuel had not been diverted during an intensive experimental programme. It would add about 5% to the time required for experiments, and careful planning would reduce this value. The inspection effort required to witness element movements during the experimental programme would average about 2 hours per day, with a further 2 hours spent each week on NDA of the fuel exposed. The Safeguards Inspector would require to spend about 25% of his time in the reactor area and would have ample time to deal with the relatively small number of fuel movements taking place in the storage area and with his duties elsewhere in the plant. During a core change, full-time inspection effort would be required for about 6 weeks each year. (author)

  9. The nuclear safeguards data flow for the item facilities

    International Nuclear Information System (INIS)

    Wang Hongjun; Chen Desheng

    1994-04-01

    The constitution of nuclear safeguards data flow for the item facilities is introduced and the main contents are the data flow of nuclear safeguards. If the data flow moves positively, i.e. from source data →supporting documents→accounting records→accounting reports, the systems of records and reports will be constituted. If the data flow moves negatively, the way to trace inspection of nuclear material accounting quality will be constituted

  10. Legal instruments related to the application of safeguards

    International Nuclear Information System (INIS)

    Rockwood, Laura

    2001-01-01

    The legal framework of IAEA safeguards consists of a number of elements, not at all of which are documents. These elements include the Statute of the IAEA; treaties and supply agreements calling for verification of nonproliferation undertakings; the basic safeguards documents, the safeguards agreements themselves, along with the relevant protocols and subsidiary arrangements; and finally, the decisions, interpretations and practices of the Board of Governors. After a discussion of these elements the major differences between the various types of IAEA safeguards agreements are outlined. Finally the procedures involved in the initiation, negotiation, conclusion and amendment of safeguards agreements are described. (author)

  11. OSE inspections: A different perspective

    International Nuclear Information System (INIS)

    Ware, J.H.

    1987-01-01

    The Office of Security Evaluation (OSE) is a staff activity of the Assistant Secretary for Defense Programs (ASDP) and is responsible for the conduct of an inspection and evaluation program. The OSE Inspection Division conducts assessments of the effectiveness of Department of Energy (DOE) Safeguards and Security policies and protection programs. The inspections are conducted by OSE Inspectors and Support Specialists. Prior to the author's participation in the inspection of the San Francisco Operations Office, a DOE Field Office employee had never played an active role in an OSE Inspection of another field office. This paper discloses his experience as an OSE Inspector

  12. Experience on inspection at PFPF

    International Nuclear Information System (INIS)

    Aoki, I.; Yamamoto, Y.; Takahashi, Saburo; Ooshima, Hirofumi; Kuniyasu, Kazufusa.

    1993-01-01

    In order to reduce a personal radiation exposure, Plutonium Fuel Production Facility (PFPF) introduced an automated MOX fabrication technology. Safeguards system for the PFPF was designed and installed so as to be compatible with automated process operation as much as possible. Introduction of these system in PFPF made possible to do the inspection measurements with unattended mode and Near Real Time Material Accountancy (NRTA), consequently inspection has been carrying out effectively and efficiently. This paper describes the new Inspection activities as a comparison with old Inspection activities based on our experience. (author)

  13. Safeguards on nuclear waste

    International Nuclear Information System (INIS)

    Crawford, D.W.

    1995-01-01

    Safeguards and security policies within the Department of Energy (DOE) have been implemented in a graded fashion for the protection, control and accountability of nuclear materials. This graded philosophy has meant that safeguards on low-equity nuclear materials, typically considered of low diversion attractiveness such as waste, has been relegated to minimal controls. This philosophy has been and remains today an acceptable approach for the planning and implementation of safeguards on this material. Nuclear waste protection policy and guidance have been issued due to a lack of clear policy and guidance on the identification and implementation of safeguards controls on waste. However, there are issues related to safe-guarding waste that need to be clarified. These issues primarily stem from increased budgetary and resource pressures to remove materials from safeguards. Finally, there may be an unclear understanding, as to the scope and content of vulnerability assessments required prior to terminating safeguards on waste and other discardable materials and where the authority should lie within the Department for making decisions regarding safeguards termination. This paper examines these issues and the technical basis for Departmental policy for terminating safeguards on waste

  14. Concept for fuel-cycle based safeguards

    International Nuclear Information System (INIS)

    deMontmollin, J.M.; Higinbotham, W.A.; Gupta, D.

    1985-01-01

    Although the guidelines for NPT safeguards specify that the State's fuel cycle and degree of international independence are to be taken into account, the same model approach and absolute-quantity inspection goals are applied to all similar facilities, irrespective of the State's fuel cycle, and the findings are reported in those terms. A concept whereby safeguards might more effectively and efficiently accomplish the purposes of NPT safeguards is explored. The principal features are: (1) division of the fuel cycle into three zones, each containing material having a different degree of significance for safeguards; (2) closing a verified material balance around each zone, supplementing the present MBA balances for more sensitive facilities and replacing them for others; (3) maintenance by the IAEA of a current book inventory for each facility by means of immediate, abbreviated reporting of interfacility transfers; (4) near real-time analysis of material flow patterns through the fuel cycle; and (5) a periodic statement of the findings for the entire State that takes the form that there is assurance that all nuclear materials under safeguards are accounted for to some stated degree of uncertainty

  15. The Canadian experience in implementing the State-level integrated safeguards concept

    International Nuclear Information System (INIS)

    Kent, M.A.; Ellacott, T.

    2013-01-01

    After receiving the Broad Safeguards Conclusion in 2005 that all nuclear material remained in peaceful activities, Canada began implementing the State-level Integrated Safeguards Approach for Canada (SLISAC) on a Sector-by-Sector basis, culminating in the full State-wide implementation of Integrated Safeguards in January 2010. The Approach has resulted in a significant reduction in IAEA person days of inspection, a shift from scheduled routine inspections to randomized, short-notice and unannounced inspections, increased information streams on operational activities and inventory flows to the IAEA, and closer collaboration between the Agency and the SSAC (State System of Accounting and Control). This paper will describe the implementation of this new approach, touching on: the main features of the Canadian SLA (State-level Approach); the agreed order of priority in the transition to the approach within the various sectors of the Canadian fuel cycle; the work plan established for moving forward in a logical and orderly manner, thereby allowing all parties to put in place the necessary protocols and procedures; and some initial thoughts on the lessons learned throughout this process. The paper is followed by the slides of the presentation. (authors)

  16. Safeguarding the fuel cycle: Methodologies

    International Nuclear Information System (INIS)

    Gruemm, H.

    1984-01-01

    The effectiveness of IAEA safeguards is characterized by the extent to which they achieve their basic purpose - credible verification that no nuclear material is diverted from peaceful uses. This effectiveness depends inter alia but significantly on manpower in terms of the number and qualifications of inspectors. Staff increases will be required to improve effectiveness further, if this is requested by Member States, as well as to take into account new facilities expected to come under safeguards in the future. However, they are difficult to achieve due to financial constraints set by the IAEA budget. As a consequence, much has been done and is being undertaken to improve utilization of available manpower, including standardization of inspection procedures; improvement of management practices and training; rationalization of planning, reporting, and evaluation of inspection activities; and development of new equipment. This article focuses on certain aspects of the verification methodology presently used and asks: are any modifications of this methodology conceivable that would lead to economies of manpower, without loss of effectiveness. It has been stated in this context that present safeguards approaches are ''facility-oriented'' and that the adoption of a ''fuel cycle-oriented approach'' might bring about the desired savings. Many studies have been devoted to this very interesting suggestion. Up to this moment, no definite answer is available and further studies will be necessary to come to a conclusion. In what follows, the essentials of the problem are explained and some possible paths to a solution are discussed

  17. Feasibility Study of Implementing a Mobile Collaborative Information Platform for International Safeguards Inspections

    Energy Technology Data Exchange (ETDEWEB)

    Gastelum, Zoe N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gitau, Ernest T. N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doehle, Joel R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Toomey, Christopher M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    In response to the growing pervasiveness of mobile technologies such as tablets and smartphones, the International Atomic Energy Agency and the U.S. Department of Energy National Laboratories have been exploring the potential use of these platforms for international safeguards activities. Specifically of interest are information systems (software, and accompanying servers and architecture) deployed on mobile devices to increase the situational awareness and productivity of an IAEA safeguards inspector in the field, while simultaneously reducing paperwork and pack weight of safeguards equipment. Exploratory development in this area has been met with skepticism regarding the ability to overcome technology deployment challenges for IAEA safeguards equipment. This report documents research conducted to identify potential challenges for the deployment of a mobile collaborative information system to the IAEA, and proposes strategies to mitigate those challenges.

  18. Experience in safeguarding nuclear material at the Rheinsberg nuclear power station

    International Nuclear Information System (INIS)

    Winkler, R.

    1976-01-01

    The three years' experience that has been gained in application of the Safeguards Agreement shows that the carrying out of inspections at the nuclear power plant has virtually no effect on operating conditions. In future it will be possible to reduce this effect even further and still maintain the operational reliability of the station. Verification of the transfer of nuclear material and detection of possible violations have proved relatively simple. The labour requirement of each unit at the station for the performance of inspections is not more that thirty man-days. Constructive collaboration between power station staff and inspectors is of great importance in improving the safeguards procedures. (author)

  19. International safeguards for spent fuel storage

    International Nuclear Information System (INIS)

    Kratzer, M.; Wonder, E.; Immerman, W.; Crane, F.

    1981-08-01

    This report analyzes the nonproliferation effectiveness and political and economic acceptability of prospective improvements in international safeguard techniques for LWR spent fuel storage. Although the applicability of item accounting considerably eases the safeguarding of stored spent fuel, the problem of verification is potentially serious. A number of simple gamma and neutron nondestructive assay techniques were found to offer considerable improvements, of a qualitative rather than quantitative nature, in verification-related data and information, and possess the major advantage of intruding very little on facility operations. A number of improved seals and monitors appear feasible as well, but improvements in the timeliness of detection will not occur unless the frequency of inspection is increased or a remote monitoring capability is established. Limitations on IAEA Safeguards resources and on the integration of results from material accounting and containment and surveillance remain problems

  20. Next Generation Safeguards Initiative: 2010 and Beyond

    International Nuclear Information System (INIS)

    Whitney, J.M.; LaMontagne, S.; Sunshine, A.; Lockwood, D.; Peranteau, D.; Dupuy, G.

    2010-01-01

    Strengthening the international safeguards system is a key element of the U.S. non-proliferation policy agenda as evidenced by President Obama's call for more 'resources and authority to strengthen international inspections' in his April 2009 Prague speech. Through programs such as the recently-launched Next Generation Safeguards Initiative (NGSI) and the long standing U.S. Program of Technical Assistance to IAEA Safeguards, the United States is working to implement this vision. The U.S. Department of Energy's National Nuclear Security Administration launched NGSI in 2008 to develop the policies, concepts, technologies, expertise, and international safeguards infrastructure necessary to strengthen and sustain the international safeguards system as it evolves to meet new challenges. Following a successful 2009, NGSI has made significant progress toward these goals in 2010. NGSI has recently completed a number of policy studies on advanced safeguards concepts and sponsored several workshops, including a second international meeting on Harmonization of International Safeguards Infrastructure Development in Vienna. The program is also continuing multi-year projects to investigate advanced non-destructive assay techniques, enhance recruitment and training efforts, and strengthen international cooperation on safeguards. In December 2010, NGSI will host the Third Annual International Meeting on International Safeguards in Washington, DC, which will draw together key stakeholders from government, the nuclear industry, and the IAEA to further develop and promote a common understanding of Safeguards by Design principles and goals, and to identify opportunities for practical application of the concept. This paper presents a review of NGSI program activities in 2010 and previews plans for upcoming activities. (author)

  1. ABACC: A regional safeguards agency

    International Nuclear Information System (INIS)

    Palacios, E.

    1998-01-01

    Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was created as a common system of accounting and control. It is based on Bilateral Agreement between the two countries and the agreement with the IAEA. After a few years of experience it might be concluded that a regional system may contribute in many ways to enhance the safeguards system. The most relevant are: to improve the effectiveness and efficiency of safeguards by sending as professionals who are experts in the process involved in installations that are to be inspected; to have much more information on nuclear activities in each of the two countries than available to the IAEA; and to maintain formal and informal channels of communication

  2. Reporting of safeguards events

    International Nuclear Information System (INIS)

    Dwyer, P.A.; Ervin, N.E.

    1988-02-01

    On June 9, 1987, the Commission published in the Federal Register a final rule revising the reporting requirements for safeguards events. Safeguards events include actual or attempted theft of special nuclear material (SNM); actual or attempted acts or events which interrupt normal operations at power reactors due to unauthorized use of or tampering with machinery, components, or controls; certain threats made against facilities possessing SNM; and safeguards system failures impacting the effectiveness of the system. The revised rule was effective October 8, 1987. On September 14, 1987, the NRC held a workshop in Bethesda, MD, to answer affected licensees' questions on the final rule. This report documents questions discussed at the September 14 meeting, reflects a completed staff review of the answers, and supersedes previous oral comment on the topics covered

  3. IFSS: The IAEA's inspection field support system

    International Nuclear Information System (INIS)

    Muller, R.; Heinonen, O.J.; Schriefer, D.

    1990-01-01

    Recently, highly automated nuclear facilities with enormous volumes of nuclear material accounting data have come into operation. A few others will become operational shortly. Analysis and verification of the data for safeguards purposes is manageable only with improved computer support in the field. To assist its safeguards inspectors, the IAEA has developed the Inspection Field Support System (IFSS). It allows safeguards inspectors to collect, maintain, analyse, and evaluate inspection data on site at nuclear facilities. Previously, field computer support to safeguards inspectors concentrated on providing measurement instrumentation with data storage, but data analysis capabilities were elementary. Also, generic statistical tools were available to handle data that inspectors could (usually manually) input into a computer. Electronic links between these two directions were rudimentary. IFSS integrates the data required for verification and accounting so that inspectors will be able to devote more time to measurements and to derive conclusions at the site in a more timely manner. The system operates on stationary personal computers as well as on portable ones. Its introduction reflects the IAEA Department of Safeguards determination to further improve operational efficiency. It should be emphasized that IFSS implementation is still under development. Several field installations have been made to obtain practical experience and to determine the system's effectiveness

  4. Steps of Ukrainian SSAC to Integrated Safeguards

    International Nuclear Information System (INIS)

    Lopatin, S.

    2010-01-01

    Strengthening of SSAC is a necessary condition for application of integrated safeguards. Ukrainian State System has been working since 1994 and passed several stages in its development: At the early stage it allowed us to conclude the first Safeguards Agreement; In 2003 SSAC covered also all nuclear material at locations outside facilities; In 2006 Additional Protocol (AP) entered into force. The significant contribution to strengthening of SSAC has been made by ISSAS mission carried out in Ukraine in 2007. The mission helped us to evaluate the State Safeguards System, provided us recommendations on improving of legislation, in particular to establish the system of personnel training. Cooperation between the IAEA and Ukrainian SSAC is carried out in following directions. Annual meeting of Safeguards Implementation Review Group takes place in Kiev. Participants discuss current tasks or problem issues of Safeguards implementation and work out Action Plan in order to resolve a problem or find a way for improving situation. Ukrainian State inspectors organize and take part in each IAEA inspection and complementary access. Ukraine has got considerable experience in the AP implementation, to a certain extent determined by peculiarities of Ukraine as a former part of a nuclear weapon state. For 5 years we have accumulated a significant amount of AP information and it became a problem to keep track of it. Due to Protocol Reporter software has limited possibilities there was a need to develop additional software for AP information management. The transmission of encrypted data on nuclear materials from surveillance systems installed at all NPPs directly to the IAEA Headquarters has started recently. Since September 2010 the IAEA plans to use these data for drawing conclusion of safeguards implementation that will allow to reduce the number of IAEA inspections to the Ukrainian NPPs. While implementing the AP we got a question about correspondence of efforts spent for

  5. A technical analysis of the IAEA nuclear safeguards

    International Nuclear Information System (INIS)

    Yoon, J. W.

    1998-01-01

    In the post-Cold War era, the threats of horizontal nuclear proliferation emerge as the forefront security issue while the nuclear arms races among existing nuclear weapon states reduce to a remarkable extent. In this context, there arises lots of research attention to the IAEA nuclear safeguards which have been viewed as the core of international monitoring on the clandestine nuclear activities of potential proliferators. However, previous attention tended to highlight the political aspects of the IAEA nuclear safeguards, centering on the possibilities and limitations of the IAEA's inspection authority. In contrast, this paper purports to focus on the technical aspects of the IAEA nuclear safeguards, so it can show the intrinsic problems of those safeguards in stemming the proliferation of nuclear weapons. This paper mainly deals with the technical objectives and options of the IAEA nuclear safeguards, the technical indices of clandestine nuclear activities, and some measures to improve the efficacy of the IAEA nuclear safeguards. Hopefully, this paper is expected to lead us to approach the issue of the North Korean nuclear transparency from the technical perspective as well as the political one

  6. Dynamic analysis of nuclear safeguards systems

    International Nuclear Information System (INIS)

    Wilson, J.R.; Rasmuson, D.M.; Tingey, F.H.

    1978-01-01

    The assessment of the safeguards/adversary system poses a unique challenge as evolving technology affects the capabilities of both. The method discussed meets this challenge using a flexible analysis which can be updated by system personnel. The automatically constructed event tree provides a rapid overview analysis for initial assessment, evaluation of changes, cost/benefit study and inspection and audit

  7. Using Process Load Cell Information for IAEA Safeguards at Enrichment Plants

    International Nuclear Information System (INIS)

    Laughter, Mark D.; Whitaker, J. Michael; Howell, John

    2010-01-01

    Uranium enrichment service providers are expanding existing enrichment plants and constructing new facilities to meet demands resulting from the shutdown of gaseous diffusion plants, the completion of the U.S.-Russia highly enriched uranium downblending program, and the projected global renaissance in nuclear power. The International Atomic Energy Agency (IAEA) conducts verification inspections at safeguarded facilities to provide assurance that signatory States comply with their treaty obligations to use nuclear materials only for peaceful purposes. Continuous, unattended monitoring of load cells in UF 6 feed/withdrawal stations can provide safeguards-relevant process information to make existing safeguards approaches more efficient and effective and enable novel safeguards concepts such as information-driven inspections. The IAEA has indicated that process load cell monitoring will play a central role in future safeguards approaches for large-scale gas centrifuge enrichment plants. This presentation will discuss previous work and future plans related to continuous load cell monitoring, including: (1) algorithms for automated analysis of load cell data, including filtering methods to determine significant weights and eliminate irrelevant impulses; (2) development of metrics for declaration verification and off-normal operation detection ('cylinder counting,' near-real-time mass balancing, F/P/T ratios, etc.); (3) requirements to specify what potentially sensitive data is safeguards relevant, at what point the IAEA gains on-site custody of the data, and what portion of that data can be transmitted off-site; (4) authentication, secure on-site storage, and secure transmission of load cell data; (5) data processing and remote monitoring schemes to control access to sensitive and proprietary information; (6) integration of process load cell data in a layered safeguards approach with cross-check verification; (7) process mock-ups constructed to provide simulated load

  8. Gamma techniques for IAEA [International Atomic Energy Agency] safeguards at centrifuge enrichment cascades

    International Nuclear Information System (INIS)

    Aaldijk, J.K.; de Betue, P.A.C.; van der Meer, K.; Harry, R.J.S.

    1987-01-01

    On February 4, 1983, the Hexapartite Safeguards Project (HSP) concluded that the safeguards approach involving limited frequency unannounced access (LFUA) by International Atomic Energy Agency (IAEA) inspectors to cascades areas together with inspection activities outside the cascade areas meets the IAEA safeguards objectives in an effective and efficient way. In this way, the risks of revealing sensitive information were also minimized. The approach has been defined clearly and unambiguously, and it should be applied equally to all technology holders. One of the conclusions of the HSP was that a nondestructive assay go/no-go technique should be used during the LFUA inspections in the cascade areas of centrifuge enrichment plants. The purpose is to verify that the enrichment of the product UF 6 gas is in the range of low-enriched uranium (LEU), i.e., the enrichment is below 20%

  9. Current Status of J-MOX Safeguards Design and Future Prospects

    International Nuclear Information System (INIS)

    Sampei, T.; Hiruta, K.; Shimizu, J.; Ikegame, K.

    2015-01-01

    The construction of JNFL MOX Fuel Fabrication Plant (J-MOX) is proceeding toward active test using uranium and MOX in July 2017, and completion of construction in October 2017. Although the construction schedule is largely impacted by progress of licencing, according to domestic law, JNFL is making every effort to get necessary permission of business licence and authorization of design and construction method as soon as possible. On the other hand, it is desirable that integrated safeguards approach is effective, efficient and consistent with J-MOX facility features. Discussion about the approach is going on among IAEA, Japan Safeguards Office (JSGO) and JNFL, and IAEA is planning to introduce the measures into the approach such as application of Near Real-Time Accountancy with frequent declaration from operator, Containment/Surveillance measures to storages, internal flow verification with 100%, random interim inspection (RII) and so on. RII scheme is intended to increase efficiency without compromising effectiveness and makes interruption of facility operation minimum. Also newly developed and improved safeguards equipment will be employed and it is possible to realize to increase credibility and efficiency of inspection by introduction of unattended/automatic safeguards equipment. Especially IAEA and JSGO share the development of non-destructive assay systems which meet the requirements from both parties. These systems will be jointly utilized at the flow verification, RII and PIV. JNFL will continue to provide enough design information in a timely manner toward early establishment of safeguards approach for J-MOX. Also JNFL will implement the coordination of installation and commissioning of safeguards equipment, and Design Information Verification activities for completion of construction in October 2017

  10. Zone approaches to international safeguards of a nuclear fuel cycle

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Higinbotham, W.A.

    1986-01-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a State are derived by combining the results of safeguards verifications for the individual facilities within it. The authors have examined safeguards approaches for a State nuclear fuel cycle that take into account the existence of all of the nuclear facilities in the State. They have focused on the fresh-fuel zone of an advanced nuclear fuel cycle, the several facilities of which use or process low-enriched uranium. The intention is to develop an approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the zone approach and for some reasonable intermediate safeguards approaches

  11. Inspections talks with IAEA again broken off

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    North Korea again appears likely to resist more detailed safeguards inspections of its disputed nuclear facilities by the International Atomic Energy Agency. The country's loner status was reinforced during the IAEA General Conference in September, when no other nation joined North Korea in voting against the placement of the inspection issue on the conference's agenda

  12. Middle term prospects for Japan's safeguards

    International Nuclear Information System (INIS)

    Ogawa, T.

    2001-01-01

    Japan has responded to IAEA requirements on reinforced safeguard regulations. The IAEA additional protocol entered in force in Japan on December 1999. Japan submitted a preliminary information report to IAEA on June 2000 after joint works with the Nuclear Material Control Center (NMCC) of Japan. The first annual report was submitted to IAEA on May 2001. Another activity for the additional protocol is complementary accesses. The total 36 accesses to facilities have been done from November 2000 to September 2001. Procedures of access to managements are under discussion. MEXT (Ministry of Education, Culture, Sports, Science and Technology) has been constructing the Rokkasho Safeguards On-Site Laboratory from 1997, and the Rokkasho Safeguards Center from 2000. The Design Information Verification (DIV) is now ongoing. Much more personal resources will be needed for future inspections. Therefore, the budget for safeguards is increasing in contrast to the flat base budget for the total atomic energy. As for future activity, a MOX (Mixed Oxide Fuels) fuel processing plant is one of the issues for discussion. The construction of the MOX processing plant is supposed to begin on around 2004. The conclusion of additional protocol will be given by IAEA until end of 2002. Shift to integrated safeguards are under discussions by MEXT, NMCC and utilities of Japan parallel with IAEA. Key issues of discussion are cost saving for safeguards, development of personal resources for inspectors and the role of NMCC. (Y. Tanaka)

  13. Summary of safeguards interactions between Los Alamos and Chinese scientists

    International Nuclear Information System (INIS)

    Eccleston, G.W.

    1994-01-01

    Los Alamos has been collaborating since 1984 with scientists from the Chinese Institute of Atomic Energy (CIAE) to develop nuclear measurement instrumentation and safeguards systems technologies that will help China support implementation of the nonproliferation treaty (NPT). To date, four Chinese scientists have visited Los Alamos, for periods of six months to two years, where they have studied nondestructive assay instrumentation and learned about safeguards systems and inspection techniques that are used by International Atomic Energy Agency (IAEA) inspectors. Part of this collaboration involves invitations from the CIAE to US personnel to visit China and interact with a larger number of Institute staff and to provide a series of presentations on safeguards to a wider audience. Typically, CIAE scientists, Beijing Institute of Nuclear Engineering (BINE) staff, and officials from the Government Safeguards Office attend the lectures. The BINE has an important role in developing the civilian nuclear power fuel cycle. BINE is designing a reprocessing plant for spent nuclear fuel from Chinese nuclear Power reactors. China signed the nonproliferation treaty in 1992 and is significantly expanding its safeguards expertise and activities. This paper describes the following: DOE support for US and Chinese interactions on safeguards; Chinese safeguards; impacts of US-China safeguards interactions; and possible future safeguards interactions

  14. Optimizing the IAEA safeguards system

    International Nuclear Information System (INIS)

    Drobysz, Sonia; Sitt, Bernard

    2011-09-01

    During the 2010 Non-Proliferation Treaty Review Conference, States parties recognized that the Additional Protocol (AP) provides increased confidence about the absence of undeclared nuclear material and activities in a State as a whole. They agreed in action 28 of the final document to encourage 'all States parties that have not yet done so to conclude and bring into force an AP as soon as possible and to implement them provisionally pending their entry into force'. Today, 109 out of 189 States parties to the NPT have brought an AP in force. The remaining outliers have not yet done so for three types of reasons: they do not clearly understand what the AP entails; when they do, they refuse to accept new non-proliferation obligations either on the ground of lack of progress in the realm of disarmament, or simply because they are not ready to bear the burden of additional safeguards measures. Strong incentives are thus needed in order to facilitate universalization of the AP. While external incentives would help make the AP a de facto norm and encourage its conclusion by reducing the deplored imbalanced implementation of non-proliferation and disarmament obligations, internal incentives developed by the Agency and its member States can also play an important role. In this respect, NPT States parties recommended in action 32 of the Review Conference final document 'that IAEA safeguards should be assessed and evaluated regularly. Decisions adopted by the IAEA policy bodies aimed at further strengthening the effectiveness and improving the efficiency of IAEA safeguards should be supported and implemented'. The safeguards system should therefore be optimized: the most effective use of safeguards measures as well as safeguards human, financial and technical resources would indeed help enhance the acceptability and even attractiveness of the AP. Optimization can be attractive for States committed to a stronger verification regime independently from other claims, but still

  15. DOE assessment guide for safeguards and security

    International Nuclear Information System (INIS)

    Bennett, C.A.; Christorpherson, W.E.; Clark, R.J.; Martin, F.; Hodges, Jr.

    1978-04-01

    DOE operations are periodically assessed to assure that special nuclear material, restricted data, and other classified information and DOE facilities are executed toward continuing the effectiveness of the International Atomic Energy Agency safeguards. A guide to describe the philosophy and mechanisms through which these assessments are conducted is presented. The assessment program is concerned with all contractor, field office, and Headquarters activities which are designed to assure that safeguards and security objectives are reached by contractors at DOE facilities and operations. The guide takes into account the interlocking relationship between many of the elements of an effective safeguards and security program. Personnel clearance programs are a part of protecting classified information as well as nuclear materials. Barriers that prevent or limit access may contribute to preventing theft of government property as well as protecting against sabotage. Procedures for control and surveillance need to be integrated with both information systems and procedures for mass balance accounting. Wherever possible, assessment procedures have been designed to perform integrated inspection, evaluation, and follow-up for the safeguards and security program

  16. Evaluation for the status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Sook; Lee, Byung Doo

    2007-11-15

    Safeguards implementation of nuclear material was carried out at facility level in an effect to support the peaceful nuclear activities in KAERI. Safeguards implementation is to fulfill the obligations associated with international agreements such as IAEA comprehensive safeguards agreement and additional protocol. IAEA inspection is the most important and basic factor of the safeguards implementation for the purpose of verifying whether all source or special fissionable material is diverted to nuclear weapons or other nuclear explosive devices. The status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor during 2001-2006 is evaluated in this report.

  17. Evaluation for the status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor

    International Nuclear Information System (INIS)

    Kim, Hyun Sook; Lee, Byung Doo

    2007-11-01

    Safeguards implementation of nuclear material was carried out at facility level in an effect to support the peaceful nuclear activities in KAERI. Safeguards implementation is to fulfill the obligations associated with international agreements such as IAEA comprehensive safeguards agreement and additional protocol. IAEA inspection is the most important and basic factor of the safeguards implementation for the purpose of verifying whether all source or special fissionable material is diverted to nuclear weapons or other nuclear explosive devices. The status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor during 2001-2006 is evaluated in this report

  18. Basic visual observation skills training course. Final report

    International Nuclear Information System (INIS)

    Toquam, J.L.; Morris, F.A.; Griggs, J.R.

    1995-06-01

    This is the third report in a series prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in Observation Skills. The first report (Phase 1) was essentially exploratory. It defined Observation Skills' broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. The second report (Phase 2) provided a more specific basis for the actual design and delivery of Observation Skills training to IAEA inspectors. The present report (Phase 3) documents the design of a Basic Visual Observation Skills course and delivery of the course to safeguards inspectors at IAEA Headquarters Vienna in February and May of 1995. The purpose of the course is to help safeguards inspectors evaluate and improve their skills in making observations during inspections and in evaluating and interpreting this information. The course is basic in the sense that it provides training in skills which are generally applicable to inspections of all types of facilities and activities subject to safeguards. The course is designed for 16 hours of classroom delivery, ideally in four 4-hour sessions over a period of four days. The first 12 hours provide training in five skill areas: perception and recognition; attention and attention to detail; memory; mental imaging, mapping, and modeling skills; and judgment and decision making. Following the training in each of the five skill areas is an Integrating Exercise involving a simulated safeguards inspection

  19. Mass-spectrometric measurements for nuclear safeguards

    International Nuclear Information System (INIS)

    Carter, J.A.; Smith, D.H.; Walker, R.L.

    1982-01-01

    The need of an on-site inspection device to provide isotopic ratio measurements led to the development of a quadrupole mass spectrometer mounted in a van. This mobile laboratory has the ability, through the use of the resin bead technique, to acquire, prepare, and analyze samples of interest to nuclear safeguards. Precision of the measurements is about 1 to 2%

  20. All-Source Information Acquisition and Analysis in the IAEA Department of Safeguards

    International Nuclear Information System (INIS)

    Ferguson, Matthew; Norman, Claude

    2010-01-01

    All source information analysis enables proactive implementation of in-field verification activities, supports the State Evaluation process, and is essential to the IAEA's strengthened safeguards system. Information sources include State-declared nuclear material accounting and facility design information; voluntarily supplied information such as nuclear procurement data; commercial satellite imagery; open source information and information/results from design information verifications (DIVs), inspections and complementary accesses (CAs). The analysis of disparate information sources directly supports inspections, design information verifications and complementary access, and enables both more reliable cross-examination for consistency and completeness as well as in-depth investigation of possible safeguards compliance issues. Comparison of State-declared information against information on illicit nuclear procurement networks, possible trafficking in nuclear materials, and scientific and technical information on nuclear-related research and development programmes, provides complementary measures for monitoring nuclear developments and increases Agency capabilities to detect possible undeclared nuclear activities. Likewise, expert analysis of commercial satellite imagery plays a critical role for monitoring un-safeguarded sites and facilities. In sum, the combination of these measures provides early identification of possible undeclared nuclear material or activities, thus enhancing deterrence of safeguards system that is fully information driven, and increasing confidence in Safeguards conclusions. By increasing confidence that nuclear materials and technologies in States under Safeguards are used solely for peaceful purposes, information-driven safeguards will strengthen the nuclear non-proliferation system. Key assets for Agency collection, processing, expert analysis, and integration of these information sources are the Information Collection and Analysis

  1. Safeguards agreements - their legal and conceptual basis

    International Nuclear Information System (INIS)

    Sanders, B.; Rainer, R.

    1977-01-01

    The application of Agency safeguards requires treaty arrangements (''Safeguards Agreements'') between the State or States concerned and the Agency. The authority for the Agency to conclude such agreements and to implement them is provided for in the Agency's Statute (Articles II, III A.5 and XII). On the basis of the statutory provisions safeguards principles and procedures have been elaborated. These have been laid down in: (a) The Agency's Safeguards System 1965, extended in 1966 and 1968 (INFCIRC/66/Rev.2); and (b) The basis for negotiating safeguards agreements with NNWS pursuant to NPT (INFCIRC/153). The verification of the undertaking by the State concerned not to use items subject to safeguards for purposes contrary to the terms of the agreement is verified through the application of various safeguards measures (design review, records, reports and inspection). Containment and surveillance measures are expected to play an increasingly important role. NPT Safeguards Agreements foresee as one of their specific features the establishment of national systems of accounting and control of nuclear material. The majority of the agreements concluded under document INFCIRC/66/Rev.2 - i.e. the non-NPT safeguards agreements - implement obligations undertaken under co-operation agreements between States for peaceful uses of nuclear energy. These agreements naturally reflect approaches adopted by the parties, in particular as to the circumstances under which safeguards should be applied. Thus, the concepts used in the non-NPT safeguards agreements and the safeguards system of document INFCIRC/66/Rev.2 which is incorporated in these agreements by reference are in continuous evolution. Document INFCIRC/66/Rev.2 continues to be supplemented in practical application and through explicit decision by the Board. The non-NPT safeguards agreements contain, besides technical safeguards provisions from document INFCIRC/66/Rev.2, and further provision for notification, inventories

  2. UF6 test loop for evaluation and implementation of international enrichment plant safeguards

    International Nuclear Information System (INIS)

    Cooley, J.N.; Fields, L.W.; Swindle, D.W. Jr.

    1987-06-01

    A functional test loop capable of simulating UF 6 flows, pressures, and pipe deposits characteristic of gas centrifuge enrichment plant piping has been designed and fabricated by the Enrichment Safeguards Program of Martin Marietta Energy Systems, Inc., for use by International Atomic Energy Agency (IAEA) at its Safeguards Analytical Laboratory in Seibersdorf, Austria. Purpose of the test loop is twofold: (1) to enable the IAEA to evaluate and to calibrate enrichment safeguards measurement instrumentation to be used in limited frequency-unannounced access (LFUA) inspection strategy measurements at gas centrifuge enrichment plants and (2) to train IAEA inspectors in the use of such instrumentation. The test loop incorporates actual sections of cascade header pipes from the centrifuge enrichment plants subject to IAEA inspections. The test loop is described, applications for its use by the IAEA are detailed, and results from an initial demonstration session using the test loop are summarized

  3. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS

    International Nuclear Information System (INIS)

    JOE, J.

    2007-01-01

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders

  4. Safeguards for geological repositories

    International Nuclear Information System (INIS)

    Fattah, A.

    2000-01-01

    substantially large. Change in social, economic, environmental and other scenarios might demand recovery of nuclear and other material from the repository sometime in the future. To this end, the Department of Safeguards has developed a policy paper to guide the planner, designer and operator to incorporate safeguards related features, as appropriate. In parallel, a programme for the Development of Safeguards for Final Disposal of Spent Fuel in Geological Repositories (SAGOR) was launched to foster technological advancement. The mission of SAGOR has been to ensure that the safeguards systems developed for the final disposal of spent fuel effectively meet the objectives of IAEA safeguards, optimise IAEA resources, and make best use of existing technologies while still meeting the requirements for safety and environmental protection. (author)

  5. Nuclear safeguards in Brazil and Argentina: 25 years of ABACC

    Science.gov (United States)

    Kassenova, Togzhan

    2017-11-01

    As possessors of advanced nuclear technology, Brazil and Argentina bear special responsibility for helping the international community and neighbors in their region feel confident that their nuclear programs are peaceful, secure, and safe. Over the past 25 years, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) has played an indispensable role in strengthening such confidence by implementing nuclear safeguards in the two countries. Today, ABACC carries out safeguards inspections at a total of 76 nuclear facilities in Brazil and Argentina. This article describes how Brazil and Argentina view trends in the global nonproliferation regime and international nuclear safeguards, and explains how these trends relate to unique challenges and opportunities facing Brazil, Argentina, and ABACC.

  6. IAEA preparations for the year 2000 compliance of safeguards equipment systems

    International Nuclear Information System (INIS)

    Aparo, M.; Barnes, B.; Lewis, W.; Hsiung, Sue

    1999-01-01

    The Department of Safeguards, IAEA, has used equipment systems for acquiring relevant data to support safeguards evaluation and verification activities. Typically an equipment system consists of EPROM (embedded system), a connecting personal computer with instrument software for data acquisition, and may include data evaluation software. Complementing the equipment systems is a collection of general evaluation software systems (application software) which support the analysis of the acquired data. In preparing for the year 2000 compliance of all safeguards systems, SGTS (Safeguards Division of Technical Services) in IAEA, must ascertain the equipment systems and the evaluation software authorised for inspection use can properly operate through the passage of year 2000. We present the year 2000 challenge for these systems, the approach we use to tackle the problem, and the status of our year 2000 project. (author)

  7. Non cooperative games applied to nuclear safeguards

    International Nuclear Information System (INIS)

    Goutal, P.

    1997-01-01

    This study presents the utilization of the non cooperative games in the nuclear safeguards. In order to dissuade from possible diversions of nuclear materials, an inspector has to realize a certain number of inspections in a nuclear installation. The inspector has to minimize the detection time of a diversion and the diverter has to maximize this time. A software, JADIS, is realized to obtain optimum inspection strategy for a great number of periods. Another game is studied: the infiltration game. An infiltration agent has to brake into the installation without being headed off. (A.L.B.)

  8. Application of a portable briefcase personal computer to research reactor safeguards

    International Nuclear Information System (INIS)

    Ryan, R.D.

    1985-01-01

    The Kookaburra Portable Briefcase Personal Computer (PBPC) has been applied to safeguards inspections at the HIFAR research reactor. A complete portable measuring system provides for non-destructive assay on both fresh and spent fuel. Application programs developed for the PBPC make it possible to immediately analyse the results of the measurements to verify the amounts of nuclear material declared by the operator. This contributes significantly to meeting the essential safeguards criteria of timely detection of diversion

  9. Legal instruments related to the application of safeguards

    International Nuclear Information System (INIS)

    Rames, J.

    1999-01-01

    This presentation discusses the legal framework of IAEA Safeguards which consists of a number of elements, including agreements calling for verification of nonproliferation undertakings, basic safeguards documents (INFCIRC/66/Rev.2, INFCIRC/153 (Corr..), INFCIRC/540 (Corr.), INFCIRC/9/Rev.2, GC(V)/INF/39), the safeguards agreements themselves, along with the relevant protocols and subsidiary arrangements, and finally the decisions, interpretations and practices of the Boards of Governors. Major differences between the various types of IAEA safeguards agreements are outlined. Procedures involved in the initiation, negotiation, conclusion and amendment of safeguard agreements are described

  10. Phase 2 Final Report. IAEA Safeguards: Implementation blueprint of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Solna (Sweden)

    2000-01-01

    areas: production of 'dossiers'; generation of reference information; monitoring and verification; and finally organisation of an imagery database. Each work area could be dedicated to one staff member running one of the four main tasks. We recommend the Agency to introduce a full service imagery supply routine, where the image supplier(s) take the responsibility and risks in delivering the best possible set of imagery from a chosen facility. This routine should be the basis for an effective imagery purchasing approach at the Unit. Successful negotiations regarding price and service with the suppliers will substantially influence the overall cost. The implementation of the satellite imagery system is suggested to be performed in a controlled way, by creating clear implementation phases with firm milestones, and by evaluating each step before going further: Initial phase 6-12 months; Pre-operational phase 1-2 years; Operational phase after 3 years. The significant customisation of the Imagery Unit system that is envisaged must be well specified and documented. The following points are the main items arising during the study of the Implementation Blueprint. The findings are an aggregated summary from this Phase 2 study as well as the main points from the Phase 1 Cost/Benefit analysis. The studies confirm that the proposed concept of relatively small and efficient Imagery Units using high-resolution data within the Agency will be a sound and feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency a new and effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. One important prerequisite for the success of the implementation and the operation of the Imagery Unit is that the Agency clearly and in measurable terms defines documents and distributes the objectives and role of the Imagery Unit internally to all concerned, and

  11. Phase 2 Final Report. IAEA Safeguards: Implementation blueprint of commercial satellite imagery

    International Nuclear Information System (INIS)

    Andersson, Christer

    2000-01-01

    areas: production of 'dossiers'; generation of reference information; monitoring and verification; and finally organisation of an imagery database. Each work area could be dedicated to one staff member running one of the four main tasks. We recommend the Agency to introduce a full service imagery supply routine, where the image supplier(s) take the responsibility and risks in delivering the best possible set of imagery from a chosen facility. This routine should be the basis for an effective imagery purchasing approach at the Unit. Successful negotiations regarding price and service with the suppliers will substantially influence the overall cost. The implementation of the satellite imagery system is suggested to be performed in a controlled way, by creating clear implementation phases with firm milestones, and by evaluating each step before going further: Initial phase 6-12 months; Pre-operational phase 1-2 years; Operational phase after 3 years. The significant customisation of the Imagery Unit system that is envisaged must be well specified and documented. The following points are the main items arising during the study of the Implementation Blueprint. The findings are an aggregated summary from this Phase 2 study as well as the main points from the Phase 1 Cost/Benefit analysis. The studies confirm that the proposed concept of relatively small and efficient Imagery Units using high-resolution data within the Agency will be a sound and feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency a new and effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. One important prerequisite for the success of the implementation and the operation of the Imagery Unit is that the Agency clearly and in measurable terms defines documents and distributes the objectives and role of the Imagery Unit internally to all concerned, and to the

  12. Present status and progress of safeguards activities and physical protection on the eve of year 2000 in Bulgaria

    International Nuclear Information System (INIS)

    Simov, R.; Gotzev, A.

    1999-01-01

    From the very beginning of the IAEA safeguards implementation in Bulgaria, up to now the IAEA inspections verified no deviations or uncertainties in accounting of the nuclear materials. According to the official IAEA reports Bulgaria has fulfilled completely its duties under the safeguards and the Non-proliferation Treaty and has fully assisted the IAEA inspection activity. As for the physical protection, the complicated up-to-date system was established contributing to the safety of Kozloduy NPP and the plant operation

  13. Future directions for international safeguards - ESARDA WG on integrated safeguards

    International Nuclear Information System (INIS)

    Rezniczek, A.

    2013-01-01

    Reducing IAEA inspection effort does not mean that the overall safeguards effort will be reduced. There will be compensation and additional effort spent by states and SSACs (State Systems of Accounting and Control). State and/or regional authorities take very serious their responsibilities to safeguard the nuclear material. Enhanced cooperation between all players should be more seriously considered by the IAEA. A more effective implementation of the principle 'one job - one person' and sub-delegation of verification tasks should be taken into account for future evolution. At present, the state level approach is still based on a bottom up approach and not developed top down. The basis is still an aggregation of the facility specific safeguards approaches with some minor adjustments by state specific factors. The touchstone for a true state level approach would be a top-down development process with the result that safeguards effort spent in a state is no longer strongly correlated to the amount and quality of nuclear material in that state. The limitation of the Physical Model is that only the technical aspects are reflected. To actually perform a proliferation, the technical capability is a necessary but insufficient condition. Besides the pure technical capabilities, one has to consider the feasibility for a state to actually implement a proliferation action in its given environment. Factors to be considered are for example institutional factors, ownership of facilities and social and political structures in the state. The help a purely technical assessment can provide is also limited in cases where states have a well developed fuel cycle and thus have at their disposal all required technical capabilities. The paper is followed by the slides of the presentation. (authors)

  14. Short notice inspections

    International Nuclear Information System (INIS)

    Pouchkarev, V.

    1998-01-01

    For 30 years the IAEA safeguards system have evolved and have been strengthened by the regular introduction of new methods and techniques, improving both its effectiveness and efficiency. The member States of the IAEA have indicated their willingness to accept new obligations and associated technical measure that greatly strengthen the nuclear safeguards system. One element of this is the extent to which the IAEA inspectors have physical access to relevant locations for the purpose of providing independent verification of the exclusively peaceful intent of a State nuclear program. The Protocol to Safeguards granted new legal authority with respect to information on, and short notice inspector access to, all buildings on a nuclear site and administrative agreements that improve the process of designating inspectors and IAEA access to modern means of communication. This report is a short description of unannounced or short notice inspections as measures on which the new strengthened and cost efficient system will be based

  15. Analysis on the status of the application of satellite remote sensing technology to nuclear safeguards

    International Nuclear Information System (INIS)

    Tao Zhangsheng; Zhao Yingjun

    2008-01-01

    Based on the application status of satellite remote sensing technology to nuclear safeguards, advantage of satellite remote sensing technology is analyzed, main types of satellite image used in nuclear safeguards are elaborated and the main application of satellite images is regarded to detect, verify and monitor nuclear activities; verify additional protocol declaration and design information, support performing complementary access inspections; investigate alleged undeclared activities based on open source or the third party information. Application examples of satellite image in nuclear safeguards to analyze nuclear facilities by other countries, the ability of remote sensing technology in nuclear safeguards is discussed. (authors)

  16. International safeguards: Accounting for nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.

    1988-09-28

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs.

  17. International safeguards: Accounting for nuclear materials

    International Nuclear Information System (INIS)

    Fishbone, L.G.

    1988-01-01

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the ''non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs

  18. Fuel cycle of nuclear power plants and safeguards system of nuclear weapon nonproliferation

    International Nuclear Information System (INIS)

    Malek, Z.

    1980-10-01

    The international safeguard system of nuclear weapon nonproliferation and the IAEA safeguard system are briefly described. In Czechoslovakia, a decree was issued in 1977 governing the accounting for and control of nuclear materials. The contents of the decree are presented. Described are computer processing of accounting data, technical criteria for the safeguard system application, containment and inspection in the IAEA safeguard system. The method is shown of the control of and accounting for nuclear materials in nuclear power plants and in fuel manufacturing, reprocessing and enrichment plants. Nondestructive and destructive methods of nuclear materials analysis are discussed. Nondestructive methods used include gamma spectrometry, neutron techniques, X-ray fluores--cence techniques. (J.P.)

  19. IAEA concerns about advanced containment and surveillance concepts or other alternative safeguards concepts

    International Nuclear Information System (INIS)

    von Baeckmann, A.; Powers, J.

    1981-01-01

    Nuclear material accountancy is used in IAEA safeguards as a measure of fundamental importance, with containment and surveillance as important complementary measures. Over the past five years the IAEA has worked with its Standing Advisory Group on Safeguards Implementation (SAGSI) to quantify major terms of the objectives, i.e., timeliness of detection, significant quantities and detection probabilities. The Agency is using those quantifications, as recommended by SAGSI, as guidelines for inspection planning and for evaluating the effectiveness of safeguards. The guidelines are used in this paper, together with other criteria like cost-effectiveness, compliance with legal limitation and non-intrusiveness, as yard-sticks for the assessment of the potential capabilities of alternative safeguards approaches. 4 refs

  20. Lessons learned: Experiences with Integrated Safeguards in Norway

    International Nuclear Information System (INIS)

    Sekse, T.; Hornkjol, S.

    2010-01-01

    Integrated safeguards (IS) was implemented in Norway in 2002 as one of the first countries in the world. The implementation of IS has provided both advantages and disadvantages for Norway. Lessons learned will be discussed. The concept of unannounced inspections under the integrated safeguards regime compared to traditional safeguards is one of the major issues. Small users with depleted uranium as shielding containers and the effort used to safeguard them is an aspect of this issue. Recently there has been an interest from the IAEA to investigate the historical boundaries between a research reactor site and a neighboring defense research site. The paper will address this issue as a part of the implementation of IS. Lately, we have seen that several commercial parties have started research on nuclear fuel cycle related projects. This raises some questions concerning what to declare under Article 2 of the Additional Protocol (AP). Today anyone with a computer connected to the internet could carry out research amenable to declaration under the AP. This paper will discuss this issue. (author)

  1. Annual report of the Director of Safeguards 1988-1989

    International Nuclear Information System (INIS)

    1989-01-01

    The Australian Safeguards Office (ASO) operates Australia's state system of accounting for and control of nuclear material. It also contributes to the IAEA safeguards network, in support of the Australian Government's committment to the international nuclear non-proliferation regime. Activities carried out during the year ended 30 June 1989 in each of these areas are reviewed. It is reported that 54 export shipments of uranium ore concentrates containing 5061 tonnes of uranium oxide were made by Australia's three producers and that no unreconcilied differences in quantities of Australian obligated nuclear material, wherever situated, or nuclear material within Australia, regardless of origin, as at 30 June 1989. The report also includes copies of IAEA's statements related to the verification inspections pursuant to the requirements of the Non-Proliferation Treaty Safeguards Agreement

  2. Strengthened safeguards: Present and future challenges

    International Nuclear Information System (INIS)

    Goldschmidt, Pierre

    2001-01-01

    Full text: The safeguards system is experiencing what has been seen as a revolution and, in doing so, it is confronting a series of challenges. These can be grouped into three areas. Drawing and maintaining safeguards conclusions - The process by which the safeguards conclusions are derived is based upon the analysis, evaluation and review of all the information available to the Agency. This process is on- going, but the State Evaluation Reports are compiled and reviewed periodically. For States with an additional protocol in force, the absence of indicators of the presence of undeclared nuclear material or activities provides the basis for the safeguards conclusion. Future challenges center on States' expectations of, and reactions to, the results of the evaluation and review process. Designing and implementing integrated safeguards - The conceptual framework of integrated safeguards is being actively pursued. Basic principles have been defined and integrated safeguards approaches have been developed for various types of facilities. Work is also progressing on the design of integrated safeguards approaches for specific States. Complementary access is being successfully implemented, and procedures for the use of unannounced inspections are being developed with the prospect of cost- effectiveness gains. Costs neutrality vs. quality and credibility - The Department faces serious staff and financial challenges. It has succeeded so far in 'doing more' and 'doing better' within a zero-real growth budget, but the scope for further significant efficiency gains is exhausted. There is no capacity to absorb new or unexpected tasks. Difficulties in recruiting and retaining qualified and experienced staff exacerbate the problems and add to costs. The Director General of the IAEA has referred to the need for new initiatives to bridge the budgetary gap; a possible measure is proposed. The tasks of meeting the challenges and demands of strengthened safeguards have been added to

  3. Review of the nuclear safeguards problem

    International Nuclear Information System (INIS)

    Poch, L.A.; Wolsko, T.D.

    1979-10-01

    The issues surrounding nuclear safeguards are proliferation and terrorism. Protecting the nuclear fuel cycle against nuclear materials diversion has been the function of the NPT and the IAEA. However, because all nations have not signed the NPT and IAEA safeguarding inspections are not foolproof, the fuel cycle itself has been looked to as a possible way to alleviate concerns over proliferation. A civilian nuclear industry is not needed to produce weapon material, since research reactors can provide the necessary weapon-grade uranium or plutonium much cheaper and easier than commercial power reactors. Thus, altering the nuclear fuel cycle does not necessarily reduce the possibility of proliferation of nuclear weapons. Only strict enforcement of the NPT and of the safeguard guidelines of the IAEA can achieve nonproliferation. Changing the fuel cycle does not present terrorists from stealing highly radioactive material to be used for weapons or from sabotaging nuclear facilities. Policing a nuclear facility by using guards, alarms, barriers, and searching and screening of employees is the only way to protect against terrorism, but these actions raise questions regarding civil liberties

  4. International Atomic Energy Agency Safeguards: Challenge and response

    Science.gov (United States)

    Spector, Leonard S.

    2017-11-01

    This article provides a critical review of the nuclear accounting and inspection system of the International Atomic Energy Agency (IAEA), known as "IAEA safeguards." The article focuses on the multiple challenges the Agency confronts in verifying that all nuclear activities in the countries under its safeguards system are being pursued for exclusively peaceful purposes. The principal challenges noted are those posed by: undeclared facilities, the development of enrichment and reprocessing capabilities, illicit procurement activities, denial of inspector access, difficulties in verifying absence of weaponization activities, and difficulties in establishing that all nuclear-relevant activities in a state are peaceful. The article is in the form of annotated PowerPoint briefing slides.

  5. State system experience with safeguarding power reactors

    International Nuclear Information System (INIS)

    Roehnsch, W.

    1982-01-01

    This session describes the development and operation of the State System of Accountancy and Control in the German Democratic Republic, and summarizes operating experience with safeguards at power reactor facilities. Overall organization and responsibilities, containment and surveillance measures, materials accounting, and inspection procedures will be outlined. Cooperation between the IAEA, State system, facility, and supplier authorities will also be addressed

  6. Safeguards-By-Design: Guidance and Tools for Stakeholders

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schanfein; Shirley Johnson

    2012-02-01

    Effective implementation of the Safeguards-by-Design (SBD) approach can help meet the challenges of global nuclear energy growth, by designing facilities that have improved safeguardability and reduced safeguards-related life cycle costs. The ultimate goal of SBD is to implement effective and efficient safeguards that reduce the burden to both the facility operator and the International Atomic Energy Agency. Since 2008, the National Nuclear Security Administration's Next Generation Safeguards Initiative's Safeguards By Design Project has initiated multiple studies and workshops with industry and regulatory stakeholders, including the IAEA, to develop relevant documents to support the implementation of SBD. These 'Good Practices Guides' describe facility and process design features that will facilitate implementation of effective nuclear material safeguards starting in the earliest phases of design through to final design. These guides, which are in their final editorial stages, start at a high level and then narrow down to specific nuclear fuel cycle facilities such as Light Water Reactors, Generation III/IV Reactors, High Temperature Gas Cooled Reactors, and Gas Centrifuge Enrichment Plants. Most recently, NGSI has begun development of a facility safeguardability assessment toolkit to assist the designer. This paper will review the current status of these efforts, provide some examples of these documents, and show some standard IAEA Unattended Instrumentation that is permanently installed in nuclear facilities for monitoring.

  7. Safeguards-By-Design: Guidance and Tools for Stakeholders

    International Nuclear Information System (INIS)

    Schanfein, Mark; Johnson, Shirley

    2012-01-01

    Effective implementation of the Safeguards-by-Design (SBD) approach can help meet the challenges of global nuclear energy growth, by designing facilities that have improved safeguardability and reduced safeguards-related life cycle costs. The ultimate goal of SBD is to implement effective and efficient safeguards that reduce the burden to both the facility operator and the International Atomic Energy Agency. Since 2008, the National Nuclear Security Administration's Next Generation Safeguards Initiative's Safeguards By Design Project has initiated multiple studies and workshops with industry and regulatory stakeholders, including the IAEA, to develop relevant documents to support the implementation of SBD. These 'Good Practices Guides' describe facility and process design features that will facilitate implementation of effective nuclear material safeguards starting in the earliest phases of design through to final design. These guides, which are in their final editorial stages, start at a high level and then narrow down to specific nuclear fuel cycle facilities such as Light Water Reactors, Generation III/IV Reactors, High Temperature Gas Cooled Reactors, and Gas Centrifuge Enrichment Plants. Most recently, NGSI has begun development of a facility safeguardability assessment toolkit to assist the designer. This paper will review the current status of these efforts, provide some examples of these documents, and show some standard IAEA Unattended Instrumentation that is permanently installed in nuclear facilities for monitoring.

  8. Consideration regarding the scheduling of unannounced or randomized inspections

    International Nuclear Information System (INIS)

    Sanborn, J.

    2001-01-01

    Full text: Randomized inspection strategies, including unannounced, short notice, or randomly selected scheduled inspections can play an useful role in integrated safeguards by allowing a reduction in the number of inspections without sacrificing coverage of diversion scenarios. The Agency and member states have proposed such strategies as important elements of integrated safeguards proposals at reactors as well as bulk handling facilities. The Agency, however, has limited experience with such inspections, and a number of issues need to be addressed before effective implementation can occur; how these issues are resolved will determine how effective the inspections will be. This paper focuses on the question of how to determine the timing of such inspections. It is pointed out that there are a large number of variants of the idea of 'randomized inspection,' and that each option will have advantages and disadvantages from the points of view of the operator, the logistics of inspection scheduling, and the capabilities for detection. The method chosen should depend on the type of scenarios that the Agency wishes to detect. The mathematically purest form of randomized schedule will have broad theoretical applicability, but may prove more difficult to put into practice, and may be unnecessary, or even sub-optimal, depending on the inspection objective. On the other hand, each restriction on inspection that provides the operator with information on when the inspection will occur must be taken into account when assessing detection probability. The paper reviews a number of scheduling approaches in the context of different objectives and considers effectiveness, operational impact, and practicality. (author)

  9. In-Born Radio Frequency Identification Devices for Safeguards Use at Gas-Centrifuge Enrichment Plants

    International Nuclear Information System (INIS)

    Ward, R.; Rosenthal, M.

    2009-01-01

    Global expansion of nuclear power has made the need for improved safeguards measures at Gas Centrifuge Enrichment Plants (GCEPs) imperative. One technology under consideration for safeguards applications is Radio Frequency Identification Devices (RFIDs). RFIDs have the potential to increase IAEA inspector's efficiency and effectiveness either by reducing the number of inspection visits necessary or by reducing inspection effort at those visits. This study assesses the use of RFIDs as an integral component of the 'Option 4' safeguards approach developed by Bruce Moran, U.S. Nuclear Regulatory Commission (NRC), for a model GCEP [1]. A previous analysis of RFIDs was conducted by Jae Jo, Brookhaven National Laboratory (BNL), which evaluated the effectiveness of an RFID tag applied by the facility operator [2]. This paper presents a similar evaluation carried out in the framework of Jo's paper, but it is predicated on the assumption that the RFID tag is applied by the manufacturer at the birth of the cylinder, rather than by the operator. Relevant diversion scenarios are examined to determine if RFIDs increase the effectiveness and/ or efficiency of safeguards in these scenarios. Conclusions on the benefits offered to inspectors by using in-born RFID tagging are presented.

  10. NRC program of inspection and enforcement

    International Nuclear Information System (INIS)

    LeDoux, J.C.; Rehfuss, C.

    1978-01-01

    The Nuclear Regulatory Commission (NRC) regulates civilian uses of nuclear materials to ensure the protection of the public health and safety and the environment. The Office of Inspection and Enforcement (IE) develops and implements the inspection, investigation, and enforcement programs for the NRC. The IE conducts inspection programs for reactors under construction and in operation, nuclear industry vendors, fuel facilities and users of nuclear materials, and all aspects of the safeguarding of facilities and materials. Recently the IE began implementing a program that will place inspectors on site at nuclear power reactors and will provide for national appraisal of licensee performance and for an evaluation of the effectiveness of the inspection programs

  11. Recent developments in the implementation of Euratom safeguards

    International Nuclear Information System (INIS)

    Gmelin, W.; Bommelle, P.; Sharpe, B.W.; Love, B.

    1983-01-01

    The EURATOM safeguards system is based legally on the 1958 Treaty of Rome establishing the original Community of six (now 10) countries. Under this safeguards system, the Commission has, inter alia, ''to satisfy itself that any particular safeguarding obligations assumed by the Community under an agreement concluded with a third state or an international organisation are complied with'' (art. 77b). The practical implementation of safeguards within the Community is significantly influenced by the requirements of: (a) the three different agreements between the Community, its Member States and the IAEA, concerning the application of IAEA safeguards to some or all of the civil nuclear materials in the Community, and (b) the various agreements between the Community and certain third countries, concerning inter alia the application of safeguards within the Community to nuclear materials supplied, directly or indirectly, by these third countries. Within the past four years significant developments have occurred in both groups of agreements. The EURATOM safeguards organisation is the only multinational safeguards organisation in the world, and currently has a staff of some 120 inspectors, with appropriate administrative support, and can draw for research and development work on the resources of the Community's Joint Research Centre. The recent changes in inspection techniques, particularly in relation to non-destructive assay techniques, and the implementation of containment and surveillance measures, are discussed. A description is given of the experience gained in recent years in the operation of ''Joint Teams'' of EURATOM and IAEA inspectors in certain plants as well as the continuing experience gained under the normal regime, using the observation principle, as foreseen in the respective Agreement

  12. Advisory group meeting on safeguards related to final disposal of nuclear material in waste and spent fuel

    International Nuclear Information System (INIS)

    1988-07-01

    This paper is primarily concerned with Section 11 of INFCIRC/153 which provides for the possible termination of safeguards based on a determination that the nuclear material in question has been consumed, has been diluted, or has become practicably irrecoverable. Two distinctly different categories of nuclear material have been suggested for possible termination of safeguards based on a determination that the nuclear material has become practicably irrecoverable: One relates to a variety of low concentration waste materials, meaning thereby materials which the State or plant operator considers to be of questionable economic recoverability and the other relates to the spent fuel placed in facilities described as ''permanent repositories'' which are at least claimed to represent ''final disposal'' facilities and are candidates for a possible determination of practicably irrecoverable. 26 refs, tabs

  13. Safeguarding arms control

    International Nuclear Information System (INIS)

    Flanagan, S.J.

    1988-01-01

    This essay reviews the evolution of various safeguards concepts associated with U.S. Soviet arms control negotiations over the past twenty-five years. It explore in some detail the origins, nature, and effectiveness of the safeguards packages associated with six agreements: the Limited Test Ban Treaty (1963), the SALT I Interim Agreement (1972), the Anti-Ballistic Missile (ABM) Treaty (1972), the Threshold Test Ban Treaty (1974), the Peaceful Nuclear Explosions Treaty (1976) and the SALT II Treaty (1979). Finally, the implications of this historical record for developing future nuclear and conventional arms control accords and for shoring up existing pacts, such as the ABM Treaty, are assessed with a view towards practicable prescriptions for Western policymakers. The treaty eliminating intermediate-range nuclear forces (INF) incorporates several verification safeguards, and it is very likely that analogous measures would be attached to any accord constraining conventional forces in Europe

  14. The Back-End of the Nuclear Fuel Cycle in Sweden. Considerations for safeguards and data handling

    Energy Technology Data Exchange (ETDEWEB)

    Fritzell, Anni (ES-konsult, Solna (Sweden))

    2011-01-15

    All nuclear facilities and activities in Sweden are under safeguards - an international monitoring system for all nuclear material. When the planned facilities for encapsulation and final disposal of spent nuclear fuel are constructed, they will also be covered by the safeguards system. The Swedish plans for final disposal is to emplace all spent fuel in a geological repository. The new facility type, the geological repository, will mean that the safeguards system is faced with new challenges, mainly since the nuclear material will be inaccessible after encapsulation and emplacement. This implies that, unlike for existing facilities, it is not possible to verify that the nuclear material is where it is declared to be or that it has the declared characteristics. This report consists of three parts, where each part investigates one aspect of safeguards for encapsulation and final disposal of spent nuclear fuel. The first part, Paper 1, presents a plausible safeguards approach for the two new facilities. The paper starts with an introduction to international safeguards and to the facilities. The facility layouts and processes are comprehensively described. The main part of Paper 1 is spent describing a safeguards system that covers all diversion paths for fissile material. The diversion paths are identified in the diversion path analysis which is the basis for Paper 3. A strategy to detect diversion is presented for each diversion path. The safeguards system comprises three main measures: 1. Verification of Nuclear Material Accountancy using, for example, verifying measurements and comparisons between shipment documents and receipt documents for transports. 2. Containment and Surveillance which are methods used to maintain continuity of knowledge of the nuclear material during periods between inspections. 3. Design Information Verification which is methods to verify that nuclear facilities are designed and operated according to declarations. The second part of the

  15. The Back-End of the Nuclear Fuel Cycle in Sweden. Considerations for safeguards and data handling

    International Nuclear Information System (INIS)

    Fritzell, Anni

    2011-01-01

    All nuclear facilities and activities in Sweden are under safeguards - an international monitoring system for all nuclear material. When the planned facilities for encapsulation and final disposal of spent nuclear fuel are constructed, they will also be covered by the safeguards system. The Swedish plans for final disposal is to emplace all spent fuel in a geological repository. The new facility type, the geological repository, will mean that the safeguards system is faced with new challenges, mainly since the nuclear material will be inaccessible after encapsulation and emplacement. This implies that, unlike for existing facilities, it is not possible to verify that the nuclear material is where it is declared to be or that it has the declared characteristics. This report consists of three parts, where each part investigates one aspect of safeguards for encapsulation and final disposal of spent nuclear fuel. The first part, Paper 1, presents a plausible safeguards approach for the two new facilities. The paper starts with an introduction to international safeguards and to the facilities. The facility layouts and processes are comprehensively described. The main part of Paper 1 is spent describing a safeguards system that covers all diversion paths for fissile material. The diversion paths are identified in the diversion path analysis which is the basis for Paper 3. A strategy to detect diversion is presented for each diversion path. The safeguards system comprises three main measures: 1. Verification of Nuclear Material Accountancy using, for example, verifying measurements and comparisons between shipment documents and receipt documents for transports. 2. Containment and Surveillance which are methods used to maintain continuity of knowledge of the nuclear material during periods between inspections. 3. Design Information Verification which is methods to verify that nuclear facilities are designed and operated according to declarations. The second part of the

  16. International safeguards for a modern MOX [mixed-oxide] fuel fabrication facility

    International Nuclear Information System (INIS)

    Pillay, K.K.S.; Stirpe, D.; Picard, R.R.

    1987-03-01

    Bulk-handling facilities that process plutonium for commercial fuel cycles offer considerable challenges to nuclear materials safeguards. Modern fuel fabrication facilities that handle mixed oxides of plutonium and uranium (MOX) often have large inventories of special nuclear materials in their process lines and in storage areas for feed and product materials. In addition, the remote automated processing prevalent at new MOX facilities, which is necessary to minimize radiation exposures to personnel, tends to limit access for measurements and inspections. The facility design considered in this study incorporates all these features as well as state-of-the-art measurement technologies for materials accounting. Key elements of International Atomic Energy Agency (IAEA) safeguards for such a fuel-cycle facility have been identified in this report, and several issues of primary importance to materials accountancy and IAEA verifications have been examined. We have calculated detection sensitivities for abrupt and protracted diversions of plutonium assuming a single materials balance area for all processing areas. To help achieve optimal use of limited IAEA inspection resources, we have calculated sampling plans for attributes/variables verification. In addition, we have demonstrated the usefulness of calculating σ/sub (MUF-D)/ and detection probabilities corresponding to specified material-loss scenarios and resource allocations. The data developed and the analyses performed during this study can assist both the facility operator and the IAEA in formulating necessary safeguards approaches and verification procedures to implement international safeguards for special nuclear materials

  17. International safeguards for a modern MOX (mixed-oxide) fuel fabrication facility

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S.; Stirpe, D.; Picard, R.R.

    1987-03-01

    Bulk-handling facilities that process plutonium for commercial fuel cycles offer considerable challenges to nuclear materials safeguards. Modern fuel fabrication facilities that handle mixed oxides of plutonium and uranium (MOX) often have large inventories of special nuclear materials in their process lines and in storage areas for feed and product materials. In addition, the remote automated processing prevalent at new MOX facilities, which is necessary to minimize radiation exposures to personnel, tends to limit access for measurements and inspections. The facility design considered in this study incorporates all these features as well as state-of-the-art measurement technologies for materials accounting. Key elements of International Atomic Energy Agency (IAEA) safeguards for such a fuel-cycle facility have been identified in this report, and several issues of primary importance to materials accountancy and IAEA verifications have been examined. We have calculated detection sensitivities for abrupt and protracted diversions of plutonium assuming a single materials balance area for all processing areas. To help achieve optimal use of limited IAEA inspection resources, we have calculated sampling plans for attributes/variables verification. In addition, we have demonstrated the usefulness of calculating sigma/sub (MUF-D)/ and detection probabilities corresponding to specified material-loss scenarios and resource allocations. The data developed and the analyses performed during this study can assist both the facility operator and the IAEA in formulating necessary safeguards approaches and verification procedures to implement international safeguards for special nuclear materials.

  18. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Casey Durst

    2009-10-01

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a

  19. A study on improvements of inspection efficiency with remote transmission of inspection data

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro

    2010-01-01

    Current information networks technology brought secure and convenient condition of information transmission, so that inspectorates intend to apply such technology to optimize current inspection efforts. IAEA established the Remote Monitoring Project (RMP) in 1996 and started to draft safeguards concepts, and approaches to refer the implementation of remote monitoring technology and to compromise with relationship between current inspection activities and the remote monitoring technologies. Although communications costs and conditions of secured communication should be further investigated, the technologies would have a possibility to reduce current inspection efforts. We would face at the step to study on the several issues such as what measures could be candidate to use, how much cost we needs, what kind of technical risks would be concerned, further improvements could be achieved by comparison with current inspection costs and effectiveness. This paper reports on the expectation points and relevant technical attention points which are related to apply unattended inspection system with remote data transmission to the flows and inventory verification of item and bulk facility, respectively, in order to improve inspection efforts. (author)

  20. Safeguards can not operate alone

    International Nuclear Information System (INIS)

    Martikka, E.; Honkamaa, T.; Haemaelaeinen, M.; Okko, O.

    2013-01-01

    There are around 20 new states which are planning to use nuclear energy in the near future. Globally there are several nuclear power plants under construction and they will be bigger than ever. Also new type of nuclear facility, final disposal facility for spent nuclear fuel, will be constructed and in operation in Finland and Sweden in ca. 10 years time. It is evident that the nuclear world is changing much and quickly. After the Additional Protocol, safeguards are no longer only about accounting and control of nuclear materials, but also about verifying that there are no undeclared nuclear materials and activities in the state. It is not possible or effective anymore to implement safeguards without taking into account of the nuclear safety and security. The safeguards should not be isolated. The synergy between safeguards, security and safety exist, when implementing nationally that there are no undeclared nuclear materials or activities. In safeguards we could not do our duties effectively if we ignore some of those other S's. Safeguards by Design process does not work properly if only international safeguards and security requirements has been taken into account, it urges all 3S to be taken care at the same time. Safeguards should operate also with other synergetic regimes and organisations like CTBTO, Fissile Material Cut-off, disarmament, export control, border control,... The paper is followed by the slides of the presentation

  1. Calculation of parameters for inspection planning and evaluation: mixed-oxide fuel fabrication facilities

    International Nuclear Information System (INIS)

    Reardon, P.T.; Mullen, M.F.

    1982-08-01

    As part of Task C.35 (Calculation of Parameters for Inspection Planning and Evaluation) of the US Program of Technical Assistance to IAEA Safeguards, Pacific Northwest Laboratory has performed some quantitative analyses of IAEA inspection activities for mixed-oxide fuel fabrication facilities. There were four distinct efforts involved in this task. These were as follows: show the effect on a material balance verification of using two variables measurement methods in some strata; perform additional calculations for the reference facility described in STR-89; modify the INSPECT computer programs to be used as an after-inspection analysis tool, as well as a preinspection planning tool; provide written comments and explantations of text and graphs of the first draft of STR-89, Safeguards Considerations for Mixed-Oxide Fuel Element Fabrication Facilities, by W. Bahm, T. Shea, and D. Tolchenkov, System Studies Section, IAEA

  2. Institutionalizing Safeguards By Design for Nuclear Facilities

    International Nuclear Information System (INIS)

    Morgan, James B.; Kovacic, Donald N.; Whitaker, J. Michael

    2008-01-01

    Safeguards for nuclear facilities can be significantly improved by developing and implementing methodologies for integrating proliferation resistance into the design of new facilities. This paper proposes a method to systematically analyze a facility's processes, systems, equipment, structures and management controls to ensure that all relevant proliferation scenarios that could potentially result in unacceptable consequences have been identified, evaluated and mitigated. This approach could be institutionalized into a country's regulatory structure similar to the way facilities are licensed to operate safely and are monitored through inspections and incident reporting to ensure compliance with domestic and international safeguards. Furthermore, taking credit for existing systems and equipment that have been analyzed and approved to assure a facility's reliable and safe operations will reduce the overall cost of implementing intrinsic and extrinsic proliferation-resistant features. The ultimate goal is to integrate safety, reliability, security and safeguards operations into the design of new facilities to effectively and efficiently prevent diversion, theft and misuse of nuclear material and sensitive technologies at both the facility and state level. To facilitate this approach at the facility level, this paper discusses an integrated proliferation resistance analysis (IPRA) process. If effectively implemented, this integrated approach will also facilitate the application of International Atomic Energy Agency (IAEA) safeguards

  3. A retrospective review of how nonconformities are expressed and finalized in external inspections of health-care facilities.

    Science.gov (United States)

    Hovlid, Einar; Høifødt, Helge; Smedbråten, Bente; Braut, Geir Sverre

    2015-09-23

    External inspections are widely used in health care as a means of improving the quality of care. However, the way external inspections affect the involved organization is poorly understood. A better understanding of these processes is important to improve our understanding of the varying effects of external inspections in different organizations. In turn, this can contribute to the development of more effective ways of conducting inspections. The way the inspecting organization states their grounds for noncompliant behavior and subsequently follows up to enforce the necessary changes can have implications for the inspected organization's change process. We explore how inspecting organizations express and state their grounds for noncompliant behavior and how they follow up to enforce improvements. We conducted a retrospective review, in which we performed a content analysis of the documents from 36 external inspections in Norway. Our analysis was guided by Donabedian's structure, process, and outcome model. Deficiencies in the management system in combination with clinical work processes was considered as nonconformity by the inspecting organizations. Two characteristic patterns were identified in the way observations led to a statement of nonconformity: one in which it was clearly demonstrated how deficiencies in the management system could affect clinical processes, and one in which this connection was not demonstrated. Two characteristic patterns were also identified in the way the inspecting organization followed up and finalized their inspection: one in which the inspection was finalized solely based on the documented changes in structural deficiencies addressed in the nonconformity statement, and one based on the documented changes in structural and process deficiencies addressed in the nonconformity statement. External inspections are performed to improve the quality of care. To accomplish this aim, we suggest that nonconformities should be grounded by

  4. 32 CFR 2001.44 - Reciprocity of use and inspection of facilities.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Reciprocity of use and inspection of facilities. 2001.44 Section 2001.44 National Defense Other Regulations Relating to National Defense INFORMATION... INFORMATION Safeguarding § 2001.44 Reciprocity of use and inspection of facilities. (a) Once a facility is...

  5. A day in the life of a safeguards inspector

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2016-01-01

    Walking several miles through the winding, narrow corridors of a nuclear facility in protective gear while carrying heavy equipment, often escorted by facility operator personnel: welcome to the life of an IAEA safeguards inspector. Safeguards inspectors are an essential part of the global non-proliferation regime, carrying out verification activities, so the IAEA can provide assurances to States worldwide that other countries are not diverting nuclear material from peaceful to military purposes or misusing nuclear technology. One important activity is the inspection of declared stocks of nuclear material: the IAEA is the only organization in the world with the mandate to verify the use of nuclear material and technology globally.

  6. Safeguards at NRC licensed facilities: Are we doing enough

    International Nuclear Information System (INIS)

    Asselstine, J.K.

    1986-01-01

    The Nuclear Regulatory Commission is pursuing a number of initiatives in the safeguards area. The Commission is conducting a reassessment of its safeguards design basis threat statements to consider the possible implications of an explosive-laden vehicle for U.S. nuclear safeguards and to examine the comparability of safeguards features at NRC-licensed and DOE facilities. The Commission is also completing action on measures to protect against the sabotage threat from an insider at NRC-licensed facilities, and is examining the potential safety implications of safeguards measures. Finally, the NRC has developed measures to reduce the theft potential for high-enriched uranium

  7. Knowledge-based inspection:modelling complex processes with the integrated Safeguards Modelling Method (iSMM)

    International Nuclear Information System (INIS)

    Abazi, F.

    2011-01-01

    Increased level of complexity in almost every discipline and operation today raises the demand for knowledge in order to successfully run an organization whether to generate profit or to attain a non-profit mission. Traditional way of transferring knowledge to information systems rich in data structures and complex algorithms continue to hinder the ability to swiftly turnover concepts into operations. Diagrammatic modelling commonly applied in engineering in order to represent concepts or reality remains to be an excellent way of converging knowledge from domain experts. The nuclear verification domain represents ever more a matter which has great importance to the World safety and security. Demand for knowledge about nuclear processes and verification activities used to offset potential misuse of nuclear technology will intensify with the growth of the subject technology. This Doctoral thesis contributes with a model-based approach for representing complex process such as nuclear inspections. The work presented contributes to other domains characterized with knowledge intensive and complex processes. Based on characteristics of a complex process a conceptual framework was established as the theoretical basis for creating a number of modelling languages to represent the domain. The integrated Safeguards Modelling Method (iSMM) is formalized through an integrated meta-model. The diagrammatic modelling languages represent the verification domain and relevant nuclear verification aspects. Such a meta-model conceptualizes the relation between practices of process management, knowledge management and domain specific verification principles. This fusion is considered as necessary in order to create quality processes. The study also extends the formalization achieved through a meta-model by contributing with a formalization language based on Pattern Theory. Through the use of graphical and mathematical constructs of the theory, process structures are formalized enhancing

  8. EURATOM safeguards efforts in the development of spent fuel verification methods by non-destructive assay

    Energy Technology Data Exchange (ETDEWEB)

    Matloch, L.; Vaccaro, S.; Couland, M.; De Baere, P.; Schwalbach, P. [Euratom, Communaute europeenne de l' energie atomique - CEEA (European Commission (EC))

    2015-07-01

    The back end of the nuclear fuel cycle continues to develop. The European Commission, particularly the Nuclear Safeguards Directorate of the Directorate General for Energy, implements Euratom safeguards and needs to adapt to this situation. The verification methods for spent nuclear fuel, which EURATOM inspectors can use, require continuous improvement. Whereas the Euratom on-site laboratories provide accurate verification results for fuel undergoing reprocessing, the situation is different for spent fuel which is destined for final storage. In particular, new needs arise from the increasing number of cask loadings for interim dry storage and the advanced plans for the construction of encapsulation plants and geological repositories. Various scenarios present verification challenges. In this context, EURATOM Safeguards, often in cooperation with other stakeholders, is committed to further improvement of NDA methods for spent fuel verification. In this effort EURATOM plays various roles, ranging from definition of inspection needs to direct participation in development of measurement systems, including support of research in the framework of international agreements and via the EC Support Program to the IAEA. This paper presents recent progress in selected NDA methods. These methods have been conceived to satisfy different spent fuel verification needs, ranging from attribute testing to pin-level partial defect verification. (authors)

  9. Validating safeguards effectiveness given inherently limited test data

    International Nuclear Information System (INIS)

    Sicherman, A.

    1987-01-01

    A key issue in designing and evaluating nuclear safeguards systems is how to validate safeguards effectiveness against a spectrum of potential threats. Safeguards effectiveness is measured by a performance indicator such as the probability of defeating an adversary attempting a malevolent act. Effectiveness validation means a testing program that provides sufficient evidence that the performance indicator is at an acceptable level. Traditional statistical program when numerous independent system trials are possible. However, within the safeguards environment, many situations arise for which traditional statistical approaches may be neither feasible nor appropriate. Such situations can occur, for example, when there are obvious constraints on the number of possible tests due to operational impacts and testing costs. Furthermore, these tests are usually simulations (e.g., staged force-on-force exercises) rather than actual tests, and the system is often modified after each test. Under such circumstances, it is difficult to make and justify inferences about system performance by using traditional statistical techniques. In this paper, the authors discuss several alternative quantitative techniques for validating system effectiveness. The techniques include: (1) minimizing the number of required tests using sequential testing; (2) combining data from models inspections and exercises using Bayesian statistics to improve inferences about system performance; and (3) using reliability growth and scenario modeling to help specify which safeguards elements and scenarios to test

  10. Machine safety: proper safeguarding techniques.

    Science.gov (United States)

    Martin, K J

    1992-06-01

    1. OSHA mandates certain safeguarding of machinery to prevent accidents and protect machine operators. OSHA specifies moving parts that must be guarded and sets criteria for the guards. 2. A 1989 OSHA standard for lockout/tagout requires locking the energy source during maintenance, periodically inspecting for power transmission, and training maintenance workers. 3. In an amputation emergency, first aid for cardiopulmonary resuscitation, shock, and bleeding are the first considerations. The amputated part should be wrapped in moist gauze, placed in a sealed plastic bag, and placed in a container of 50% water and 50% ice for transport. 4. The role of the occupational health nurse in machine safety is to conduct worksite analyses to identify proper safeguarding and to communicate deficiencies to appropriate personnel; to train workers in safe work practices and observe compliance in the use of machine guards; to provide care to workers injured by machines; and to reinforce safe work practices among machine operators.

  11. Safeguards at NRC licensed facilities: Are we doing enough

    International Nuclear Information System (INIS)

    Asselstine, J.K.

    1986-01-01

    Safeguards at the Nuclear Regulatory Commission (NRC) facilities are discussed in this paper. The NRC is pursuing a number of initiatives in the safeguards area. The Commission is conducting a reassessment of its safeguards design basis threat statements to consider the possible implications of an explosive-laden vehicle for U.S. nuclear safeguards and to examine the comparability of safeguards features at NRC-licensed and DOE facilities. The Commission is also completing action on measures to protect against the sabotage threat from an insider at NRC-licensed facilities, and is examining the potential safety implications of safeguards measures. Finally, the NRC has developed measures to reduce the theft potential for high-enriched uranium

  12. Advanced digital video surveillance for safeguard and physical protection

    International Nuclear Information System (INIS)

    Kumar, R.

    2002-01-01

    Full text: Video surveillance is a very crucial component in safeguard and physical protection. Digital technology has revolutionized the surveillance scenario and brought in various new capabilities like better image quality, faster search and retrieval of video images, less storage space for recording, efficient transmission and storage of video, better protection of recorded video images, and easy remote accesses to live and recorded video etc. The basic safeguard requirement for verifiably uninterrupted surveillance has remained largely unchanged since its inception. However, changes to the inspection paradigm to admit automated review and remote monitoring have dramatically increased the demands on safeguard surveillance system. Today's safeguard systems can incorporate intelligent motion detection with very low rate of false alarm and less archiving volume, embedded image processing capability for object behavior and event based indexing, object recognition, efficient querying and report generation etc. It also demands cryptographically authenticating, encrypted, and highly compressed video data for efficient, secure, tamper indicating and transmission. In physical protection, intelligent on robust video motion detection, real time moving object detection and tracking from stationary and moving camera platform, multi-camera cooperative tracking, activity detection and recognition, human motion analysis etc. is going to play a key rote in perimeter security. Incorporation of front and video imagery exploitation tools like automatic number plate recognition, vehicle identification and classification, vehicle undercarriage inspection, face recognition, iris recognition and other biometric tools, gesture recognition etc. makes personnel and vehicle access control robust and foolproof. Innovative digital image enhancement techniques coupled with novel sensor design makes low cost, omni-directional vision capable, all weather, day night surveillance a reality

  13. Quality assurance for IAEA inspection planning

    International Nuclear Information System (INIS)

    Markin, J.T.

    1986-01-01

    Under the provisions of the Treaty on Nonproliferation of Nuclear Weapons and other agreements with states, the International Atomic Energy Agency (IAEA) conducts inspections at nuclear facilities to confirm that their operation is consistent with the peaceful use of nuclear material. The Department of Safeguards at the IAEA is considering a quality assurance program for activities related to the planning of these facility inspections. In this report, we summarize recent work in writing standards for planning inspections at the types of facilities inspected by the IAEA. The standards specify the sequence of steps in planning inspections, which are: (1) administrative functions, such as arrangements for visas and travel, and communications with the state to confirm facility operating schedules and the state's acceptance of the assigned inspectors; (2) technical functions including a specification of the required inspection activities, determination of personnel and equipment resources, and a schedule for implementing the inspection activities at the facility; and (3) management functions, such as pre- and post-inspection briefings, where the planned and implemented inspection activities are reviewed

  14. A collaborative environment for information driven safeguards

    International Nuclear Information System (INIS)

    Scott, Mark R.; Michel, Kelly D.

    2010-01-01

    For two decades, the IAEA has recognized the need for a comprehensive and strongly integrated Knowledge Management system to support its Information Driven Safeguards activities. In the past, plans for the development of such a system have progressed slowly due to concerns over costs and feasibility. In recent years, Los Alamos National Laboratory has developed a knowledge management system that could serve as the basis for an IAEA Collaborative Environment (ICE). The ICE derivative knowledge management system described in this paper addresses the challenge of living in an era of information overload coupled with certain knowledge shortfalls. The paper describes and defines a system that is flexible, yet ensures coordinated and focused collaboration, broad data evaluation capabilities, architected and organized work flows, and improved communications. The paper and demonstration of ICE will utilize a hypothetical scenario to highlight the functional features that facilitate collaboration amongst and between information analysts and inspectors. The scenario will place these two groups into a simulated planning exercise for a safeguards inspection drawing upon past data acquisitions, inspection reports, analyst conclusions, and a coordinated walk-through of a 3-D model of the facility. Subsequent to the conduct of the simulated facility inspection, the detection of an anomaly and pursuit of follow up activities will illustrate the event notification, information sharing, and collaborative capabilities of the system. The use of a collaborative environment such as ICE to fulfill the complicated knowledge management demands of the Agency and facilitate the completion of annual State Evaluation Reports will also be addressed.

  15. Leveraging physical protection technology for international safeguards applications

    International Nuclear Information System (INIS)

    Glidewell, Don

    2001-01-01

    Full text: In an effort to improve the effectiveness, efficiency, and reliability of equipment used for International Safeguards, the European Safeguards Research and Development Association (ESARDA) Reflection Group requested the ESARDA Containment and Surveillance Working Group to investigate the feasibility of employing physical protection technologies for international safeguards applications. The physical protection market has traditionally been much greater than the international safeguards market. Consequently, physical protection technology has been subjected to greater testing and evaluation, and has enjoyed much greater real world experience. The larger market yields economies of scale, and the greater testing and experience should arguably result in improved reliability. This paper will compare requirements for physical protection versus international safeguards equipment, and identify types of physical protection equipment, which have potential for safeguards applications. It will evaluate both Commercial Off-the-Shelf (COTS) and non-COTS equipment. Finally, for selected physical protection equipment, the paper will evaluate the degree of modification that would be needed to make it acceptable for safeguards applications. (author)

  16. Research and development of safeguards measures for the large scale reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Masahiro; Sato, Yuji; Yokota, Yasuhiro; Masuda, Shoichiro; Kobayashi, Isao; Uchikoshi, Seiji; Tsutaki, Yasuhiro; Nidaira, Kazuo [Nuclear Material Control Center, Tokyo (Japan)

    1994-12-31

    The Government of Japan agreed on the safeguards concepts of commercial size reprocessing plant under the bilateral agreement for cooperation between the Japan and the United States. In addition, the LASCAR, that is the forum of large scale reprocessing plant safeguards, could obtain the fruitful results in the spring of 1992. The research and development of safeguards measures for the Rokkasho Reprocessing Plant should be progressed with every regard to the concepts described in both documents. Basically, the material accountancy and monitoring system should be established, based on the NRTA and other measures in order to obtain the timeliness goal for plutonium, and the un-attended mode inspection approach based on the integrated containment/surveillance system coupled with radiation monitoring in order to reduce the inspection efforts. NMCC has been studying on the following measures for a large scale reprocessing plant safeguards (1) A radiation gate monitor and integrated surveillance system (2) A near real time Shipper and Receiver Difference monitoring (3) A near real time material accountancy system operated for the bulk handling area (4) A volume measurement technique in a large scale input accountancy vessel (5) An in-process inventory estimation technique applied to the process equipment such as the pulse column and evaporator (6) Solution transfer monitoring approach applied to buffer tanks in the chemical process (7) A timely analysis technique such as a hybrid K edge densitometer operated in the on-site laboratory (J.P.N.).

  17. An analytical laboratory to facilitate international safeguards

    International Nuclear Information System (INIS)

    Clark, B.E.; Muellner, P.; Deron, S.

    1976-01-01

    Member States which have concluded safeguards agreements accept safeguards on part or all of their nuclear facilities and nuclear materials. The Agreements enable the Agency to make inspections in order to verify the location, identity, quantity and composition of all safeguarded nuclear material. The independent analysis of samples of safeguards material is an essential part of the verification process. A new analytical laboratory has been made available to the Agency by the Austrian Government. This facility is staffed by the Agency with scientists and technicians from five Member States. Design criteria for the laboratory were defined by the Agency. Construction was carried out under the project management of the Oesterreichische Studiengesellschaft fuer Atomenergie Ges.m.b.H. Scientific equipment was procured by the Agency. Samples of feed and product material from the nuclear fuel cycle will constitute the main work load. Irradiated and unirradiated samples of uranium, plutonium and mixtures of both will be analysed for concentration and isotopic composition. Since highly diluted solutions of spent fuel will be the most active beta-gamma samples, shielded and remote manipulation facilities are not necessary. Ptentiometry, mass spectrometry and coulometry are the main techniques to be employed. Gravimetry, alpha and gamma spectrometry and emission spectroscopy will also be utilized as required. It is not intended that this laboratory, should carry the whole burden of the Agency's safeguards analytical work, but that it should function as a member of a network of international laboratories which has been set up by the Agency for this purpose. (author)

  18. Experience with short notice (SNRI) and unannounced (UI) inspections in Sweden

    International Nuclear Information System (INIS)

    Andre, E.; Dahlin, G.

    2013-01-01

    Integrated Safeguards (IS) has been implemented in Sweden since 15 January, 2009. This presentation will describe some of the preparations that were done to facilitate the change to new safeguards. For Sweden, the IAEA drew the necessary conclusions late 2008 to start IS-implementation. There is a mixture of short notice random inspections and unannounced inspections. During 2008 discussions with the IAEA, the Commission, the State authority and operators were performed to pave the road towards IS. The most difficult task was the LEU (Low Enrichment Uranium Fuel) fuel fabrication plant but also for the state authority to arrange so that its inspectors can, with very short notice, get to the facilities. This presentation will describe how we in Sweden have come to organise the implementation of IS on all levels including the communication ways with the IAEA and the European Commission. The experience gained from the SNRIs (Short Notice Reported Inspections) and UIs (Unannounced inspections) that have been conducted in Sweden will be presented. The paper is followed by the slides of the presentation. (authors)

  19. Basic visual observation skills training course: Appendix A. Final report

    International Nuclear Information System (INIS)

    Toquam, J.L.; Morris, F.A.; Griggs, J.R.

    1995-06-01

    The purpose of the basic visual observation skills course is to help safeguards inspectors evaluate and improve their skills in making observations during inspections and in evaluating and interpreting this information. The first 12 hours of the course provide training in five skill areas: perception and recognition; attention to detail; memory; mental imaging, mapping, and modeling skills; and judgment and decision making. Following this training is an integrating exercise involving a simulated safeguards inspection. This report contains the course manual and materials

  20. Basic visual observation skills training course: Appendix A. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Toquam, J.L.; Morris, F.A.; Griggs, J.R.

    1995-06-01

    The purpose of the basic visual observation skills course is to help safeguards inspectors evaluate and improve their skills in making observations during inspections and in evaluating and interpreting this information. The first 12 hours of the course provide training in five skill areas: perception and recognition; attention to detail; memory; mental imaging, mapping, and modeling skills; and judgment and decision making. Following this training is an integrating exercise involving a simulated safeguards inspection. This report contains the course manual and materials.

  1. EURATOM safeguards implementation in France and cooperation with the IAEA

    International Nuclear Information System (INIS)

    Oddou, J.

    2013-01-01

    International safeguards in France are applied both by: -) the European Commission (EC), through the Chapter 7 of the EURATOM Treaty; -) the International Atomic Energy Agency (IAEA) as France is a party to the NPT and has concluded a safeguards agreement with IAEA. With the exception of mining, France has a complete nuclear fuel cycle from ore concentrates to waste. Based on the legal framework of the EURATOM Treaty, all civil nuclear facilities and all civil nuclear materials are safeguarded by EURATOM wherever they are in France. Therefore the two conversion plants, the two enrichment plants, the three fuel fabrication plants, the 59 nuclear power plants including the EPR of Flamanville under construction, the 2 reprocessing plants in La Hague, the five facilities for waste treatment and numerous research centers and reactors of CEA are declared and controlled by the European Commission. The activities of the EURATOM inspectors are of various kind depending of the facility and the type of inspection. The most common checks are: identification and counting of the nuclear material, verification of accountancy declaration vs. physical follow-up of the nuclear material, non-destructive analysis and destructive analysis after sampling in large bulk handling facilities. There is a strong cooperation between IAEA and EC: the majority of IAEA inspections in France are joint team inspections with the EC. This pooling of equipment and teams can save money and human resources. Equipment for containment and surveillance are paid whether by the EC or by the IAEA and can be used by both bodies of inspectors. With the principle of 'One Job One Person', verification activities are done only once and it saves time for the inspectors and the operators. The paper is followed by the slides of the presentation. (A.C.)

  2. Safeguards on MOX assemblies at LWRs

    International Nuclear Information System (INIS)

    Arenas Carrasco, J.; Koulikov, I.; Heinonen, O.J.; Arlt, R.; Grigoleit, K.; Clarke, R.; Swinhoe, M.

    2000-01-01

    Operating within the framework of the New Partnership Approach (NPA) for unirradiated MOX fuel assemblies in LWRs, the IAEA and EURATOM have gained experience in safeguarding 13 LWRs licensed to operate with MOX assemblies. In order to fulfil SIR requirements, verification methods and techniques capable of measuring MOX assemblies under water have been and are still being developed. These encompass both qualitative tests for the detection of plutonium (gross attribute tests) and quantitative tests for the measurement of the amount of plutonium (partial defect tests) and are based on gamma and neutron detection techniques. There are nine PWR and two BWR where the reactor and the spent fuel pond can be covered by the same surveillance device. These are Type I reactors where the reactor and the pond are located in the same hall. In these types of facilities relying on surveillance during the MOX refuelling is especially difficult at the BWRs due to the depth of the core pond. There are two PWR type facilities where the reactor and the spent fuel pond are located in different halls and cannot be covered by the same surveillance device (Type II). An open core camera has not been installed during refuelling and therefore indirect surveillance is currently used to survey MOX loading. Improvements are therefore required and are under consideration. After receipt at the facility, there are a few facilities which must keep the received fresh MOX fuel in wet storage, not only for a short period prior to refuelling, but for more than a year, until the next refuelling campaign. In these cases timely inspections for direct use fresh nuclear material require considerable inspection effort. Additionally, where human surveillance of core loading and finally core closure are necessary there is also a large demand for manpower. Either an agreement should be reached with the operators to delay the MOX loading until the end of the fuelling campaign, or alternative approaches should be

  3. 78 FR 47716 - Final Guidance Regarding Voluntary Inspection of Vessels for Compliance With the Maritime Labour...

    Science.gov (United States)

    2013-08-06

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2012-1066] Final Guidance Regarding Voluntary Inspection of Vessels for Compliance With the Maritime Labour Convention, 2006 AGENCY: Coast Guard... procedures regarding the inspection of U.S. vessels for voluntary compliance with the Maritime Labour...

  4. Safeguards Culture

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2012-07-01

    The concepts of nuclear safety and security culture are well established; however, a common understanding of safeguards culture is not internationally recognized. Supported by the National Nuclear Security Administration, the authors prepared this report, an analysis of the concept of safeguards culture, and gauged its value to the safeguards community. The authors explored distinctions between safeguards culture, safeguards compliance, and safeguards performance, and evaluated synergies and differences between safeguards culture and safety/security culture. The report concludes with suggested next steps.

  5. Zone approaches to international safeguards of a nuclear fuel cycle

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Higinbotham, W.A.

    1986-01-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the results of safeguards verifications for the individual facilities within it. We have examined safeguards approaches for a state nuclear fuel cycle that take into account the existence of all of the nuclear facilities in the state. We have focussed on the fresh-fuel zone of an advanced nuclear fuel cycle, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. The intention is to develop an approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the zone approach and for some reasonable intermediate safeguards approaches. Technical effectiveness, in these cases, means an estimate of the assurance that all nuclear material has been accounted for

  6. To Russia with love: how the Australian Government's much vaunted safeguards policy has been watered down, step by step

    International Nuclear Information System (INIS)

    Milliken, R.

    1981-01-01

    Australia's uranium safeguards policy was announced in May 1977. The following conditions were included: no contracts could be signed until safeguards agreements had been concluded; uranium sold must remain Australian owned until it had been processed into a form attracting IAEA safeguards inspection; and prior Australian consent was required before a customer could reprocess Australian uranium, transfer it to a third country, or enrich it to a grade higher than that needed for normal power plants. Australia has signed 9 safeguards agreements and two more are due to be finalised soon. The author discusses changes in policy since the first agreement was signed. One problem has been conflict between commercial and safeguards issues

  7. Safeguards and security progress report, January-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.B. (comp.)

    1986-01-01

    From January to December 1984, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. Part 2 treats activities aimed at the security of information and computer systems. was Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in benefiting from field experiences in operating environments.

  8. Safeguards and security progress report, January-December 1984

    International Nuclear Information System (INIS)

    Smith, D.B.

    1986-01-01

    From January to December 1984, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. Part 2 treats activities aimed at the security of information and computer systems. was Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in benefiting from field experiences in operating environments

  9. Non-proliferation and international safeguards. [Booklet by IAEA

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This booklet consists of 13 separate, brief analyses related to the subject title, namely: The International Scope of IAEA Safeguards; Application of Safeguards Procedures; Computer-Based Safeguards Information and Accounting System; IAEA Training Activities Related to State Systems of Nuclear Materials Accountancy and Control; Surveillance and Containment Measures to Support IAEA Safeguards; International Plutonium Management; Safeguards for Reprocessing and Enrichment Plants; Non-Destructive Assay: Instruments and Techniques for Agency Safeguards; The Safeguards Analytical Laboratory: Its Functions and Analytical Facilities; Resolution of the UN General Assembly on the Treaty on the Non-Proliferation of Nuclear Weapons of 12 June 1968; The Treaty on the Non-Proliferation of Nuclear Weapons; Final Declaration of the Review Conference of the Parties to the Treaty on the Non-Proliferation of Nuclear Weapons, May 1975; Resolutions on the IAEA's Work in the Field of the Peaceful Uses of Atomic Energy, adopted by the UN General Assembly on 8 and 12 December, 1977; and a Map on the NPT situation in the world (with explanations).

  10. Safeguards and security research and development: Progress report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, D.R.; Henriksen, P.W. [comp.

    1997-03-01

    The primary goal of the Los Alamos Safeguards and Security Technology Development Program, International Safeguards, and other Safeguards and Security Programs is to continue to be the center of excellence in the field of Safeguards and Security. This annual report for 1995 describes those scientific and engineering projects that contribute to all of the aforementioned programs. The authors have presented the information in a different format from previous annual reports. Part I is devoted to Nuclear Material Measurement Systems. Part II contains projects that are specific to Integrated Safeguards Systems. Part III highlights Safeguards Systems Effectiveness Evaluations and Part IV is a compilation of highlights from Information Assurance projects. Finally Part V highlights work on the projects at Los Alamos for International Safeguards. The final part of this annual report lists titles and abstracts of Los Alamos Safeguards and Security Technology Development reports, technical journal articles, and conference papers that were presented and published in 1995. This is the last annual report in this format. The authors wish to thank all of the individuals who have contributed to this annual report and made it so successful over the years.

  11. Safeguards and security research and development: Progress report, October 1994--September 1995

    International Nuclear Information System (INIS)

    Rutherford, D.R.; Henriksen, P.W.

    1997-03-01

    The primary goal of the Los Alamos Safeguards and Security Technology Development Program, International Safeguards, and other Safeguards and Security Programs is to continue to be the center of excellence in the field of Safeguards and Security. This annual report for 1995 describes those scientific and engineering projects that contribute to all of the aforementioned programs. The authors have presented the information in a different format from previous annual reports. Part I is devoted to Nuclear Material Measurement Systems. Part II contains projects that are specific to Integrated Safeguards Systems. Part III highlights Safeguards Systems Effectiveness Evaluations and Part IV is a compilation of highlights from Information Assurance projects. Finally Part V highlights work on the projects at Los Alamos for International Safeguards. The final part of this annual report lists titles and abstracts of Los Alamos Safeguards and Security Technology Development reports, technical journal articles, and conference papers that were presented and published in 1995. This is the last annual report in this format. The authors wish to thank all of the individuals who have contributed to this annual report and made it so successful over the years

  12. A safeguards approach for a closed geological repository for spent fuel

    International Nuclear Information System (INIS)

    Meer, K. van der; Carchon, R.

    1999-01-01

    After closure of a geological repository a diversion of fissile material can only take place by excavating spent fuel containers and bringing them to the surface. Therefore mining activities are required, either by reopening the original shaft, by creating a new shaft or by approaching the containers underground via a neighbouring mine The recovery time of the stored spent fuel plays an important role in the determination of the timeliness criterion and, therefore, the inspection frequency of the site. Obviously, this frequency can create a financial constraint due to the infinite character of the spent fuel storage in a geological repository. Anomalies for detection of a possible diversion are undeclared mining activities. The safeguards approach has to assure Continuity Of Knowledge (COK) of the fissile material. By consequence, a safeguards approach that is developed for a closed repository, is influenced by the safeguards approach applied to an open. repository and a conditioning facility. A closed repository is verified by DIV. To perform the DIV satellite monitoring could be performed for surface verification and e.g. seismic techniques could be used for verification that no undeclared mining activities underground take place. Visual inspections of the site by inspectors have to reveal concealment methods used by a potential diverter. These measures should guarantee that the disposed spent fuel remains untouched. (author)

  13. A Priority-Based View of Future Challenges in International Nuclear Safeguards.

    Energy Technology Data Exchange (ETDEWEB)

    Matteucci, Kayla [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    The international nuclear safeguards community is faced with a host of challenges in the coming years, many of which have been outlined but have not been described in terms of their urgency. Literature regarding safeguards challenges is either broad and devoid of any reference to prioritization or tailored to a specific problem and removed from the overall goals of the safeguards community. For example, developing new methods of environmental sampling, improving containment and surveillance (C/S) technologies to increase efficiency and decrease inspection time, advancing nuclear material accountancy (NMA) techniques, and planning safeguards approaches for new types of nuclear facilities are all important. They have not, however, been distinctly prioritized at a high level within the safeguards community. Based on a review of existing literature and interviews with experts on these upcoming challenges, this paper offers a high-level summary of present and future priorities in safeguards, with attention both to what is feasible and to what is most imperative. In doing so, the paper addresses the potential repercussions for failing to prioritize, with a focus on the risk of diversion of nuclear material. Within the context of shifts in the American political landscape, and keeping in mind that nonproliferation issues may take a backseat to others in the near future, a prioritized view of safeguards objectives will be vital. In the interest of expanding upon this work, the paper offers several potential conceptual models for prioritization which can be explored in greater depth upon further research.

  14. Close-up on safeguards training

    International Nuclear Information System (INIS)

    Strelkov, D.; Kashirsky, A.

    1985-01-01

    Continuous training is provided to IAEA inspector personnel to assure their proficiency in carrying out the mission of the Agency in prohibiting the potential diversion of nuclear material. The number and complexity of nuclear facilities under safeguards have increased since the Agency's founding, resulting in an ever increasing number of inspectors and, concurrently, in the need for higher quality of technical training. Basic training for newly recruited inspectors and inspection assistants is provided by the Department of Safeguards and training is programmed throughout the working experience of an inspector. Over the years, it has been proven beneficial to utilize the capability and facilities of Member States to provide specialized training at operating nuclear facilities. The training exercise described here is one of those funded by the USSR and conducted at an operating nuclear facility in the USSR. These support training courses are an effective way of providing the specialized training needed to maintain the proficiency of the inspectorate staff and supplement the training that is offered by the Agency in Vienna

  15. Past, present and future of safeguards implementation for the on-load RMBK-1500 reactors in Ignalina

    International Nuclear Information System (INIS)

    Zendel, M.; Yim, S.; Monticone, C.; Kurselis, S.

    1999-01-01

    The on-load refueled RBMKs ('Reactor Bolshoy Moschnosti Kanalniy - Large Power Channel Type Reactor') are very different from all other power reactors which the Agency has been safeguarding over the past decades. Distinct differences in fuel properties and handling necessitated the formulation of separate, facility specific approaches. The spent fuel management at the RBMKs in Ignalina uses hot cells to cut each spent fuel assembly into two subassemblies. A large number of subassemblies are subsequently stored in large capacity, compact storage baskets at the spent fuel storage ponds adjacent to the reactor hall. The development of the safeguards approach is presented considering limitation in core access, technological feasibility, operation mode and financial as well as human resources of the Agency. The safeguards approach is based on a quarterly inspection scheme using Containment and Surveillance (C/S) measures, verification of fresh and spent fuel by Non Destructive Assay (NDA), establishing of flow balances to complement the material accountancy and the application of neutron/gamma monitors in a continuous, unattended mode. The implementation of these safeguards measures is discussed and actual inspection experience with an emphasis on the application of the neutron/gamma monitors is given. The neutron/gamma monitors serve multiple safeguards functions, such as monitoring shipments of waste from cutting operations for irradiated fuel in the hot cells, confirming the unloading history for the on-load reactors, complementing C/S by detecting movements of irradiated fuel materials in the reactor halls and verifying the operational status and the power output of the reactors. Actual measurement results are presented to demonstrate their effectiveness. Power Considerations are given for future safeguards implementation matters at Ignalina Nuclear plant (INPP) including measures for the Strengthened Safeguards System (SSS). (author)

  16. Safeguarding of large scale reprocessing and MOX plants

    International Nuclear Information System (INIS)

    Howsley, R.; Burrows, B.; Longevialle, H. de; Kuroi, H.; Izumi, A.

    1997-01-01

    In May 97, the IAEA Board of Governors approved the final measures of the ''93+2'' safeguards strengthening programme, thus improving the international non-proliferation regime by enhancing the effectiveness and efficiency of safeguards verification. These enhancements are not however, a revolution in current practices, but rather an important step in the continuous evolution of the safeguards system. The principles embodied in 93+2, for broader access to information and increased physical access already apply, in a pragmatic way, to large scale reprocessing and MOX fabrication plants. In these plants, qualitative measures and process monitoring play an important role in addition to accountancy and material balance evaluations in attaining the safeguard's goals. This paper will reflect on the safeguards approaches adopted for these large bulk handling facilities and draw analogies, conclusions and lessons for the forthcoming implementation of the 93+2 Programme. (author)

  17. The international safeguards and domestic safeguards and security interface

    International Nuclear Information System (INIS)

    Whitworth, A.

    1996-01-01

    The International Safeguards Division, in conjunction with the Office of Safeguards and Security, organized a workshop on the international safeguards/domestic safeguards and security interface that was held in March 1996. The purpose of the workshop was to identify and resolve domestic safeguards and security issues associated with the implementation of International Atomic Energy Agency (IAEA) safeguards in the Department of Energy (DOE) complex. The workshop drew heavily upon lessons learned in the application of IAEA safeguards at storage facilities in oak Ridge, Hanford, and Rocky Flats. It was anticipated that the workshop would facilitate a consistent DOE safeguards and security approach for the implementation of IAEA safeguards in the DOE complex. This paper discusses the issues and resolutions of several issues raised at the workshop that involve primarily the domestic material control and accountability program

  18. Enhanced cooperation between IAEA and Republic of Korea on safeguards implementation at light water reactors

    International Nuclear Information System (INIS)

    Park, Wan-Sou; Kim, Byung-Koo; Yim, Seuk-Soon

    2001-01-01

    Full text: In Korea, national inspection has been initiated from the second half of 1997. From 1999, national inspection has been carried out for all nuclear facilities in Korea. In 2000, national inspections were performed successfully in 32 nuclear facilities including 12 PWRs, 4 CANDU reactors, 10 research facilities, 4 fuel fabrication plants and others. As the national inspection system settled down, both the IAEA and Korea were looking for possible ways of cooperation for mutual benefit. It was expected that considerable saving on inspection resources as well as more effective safeguards implementation could be achieved, if more enhanced cooperation work was realized. In 1999, the IAEA and Korea agreed to establish a working group for the enhanced cooperation between both sides. A working group, composed of experts from the IAEA and ROK, reviewed several options for enhanced cooperation on LWRs in Korea and suggested a measure for implementing the current safeguards approach for LWRs with remote monitoring. The basic concepts of the Enhanced Cooperation Scheme are: 1. The SSAC shall carry out all scheduled inspections for each facility for each year, while the Agency shall carry out the annual PIV and post-PIV, and a random selection of the remaining inspections; 2, The remote monitoring (RM) data necessary for technical and safeguards review shall be shared between the Agency and SSAC; 3. The IAEA shall bear the costs of purchasing RM equipment and communication operating costs from the central hub station in Korea to Vienna; the ROK will bear the costs of installing all RM equipment and communication operating costs from each LWR to the central hub station in Korea. Typically, around 8-9 inspections are performed for one LWR per annum under current safeguards approach; 1 pre-PIV, 1 PIV, 1 post-PIV, 3-4 interim inspections, fresh fuel receipts and simultaneous inspection. RM design includes 2 digital cameras (equipment hatch and spent fuel pond), VACOSS

  19. Facility Safeguardability Analysis in Support of Safeguards by Design

    International Nuclear Information System (INIS)

    Wonder, E.F.

    2010-01-01

    The idea of 'Safeguards-by-Design' (SBD) means designing and incorporating safeguards features into new civil nuclear facilities at the earliest stages in the design process to ensure that the constructed facility is 'safeguardable,' i.e. will meet national and international nuclear safeguards requirements. Earlier consideration of safeguards features has the potential to reduce the need for costly retrofits of the facility and can result in a more efficient and effective safeguards design. A 'Facility Safeguardability Analysis' (FSA) would be a key step in Safeguards-by-Design that would link the safeguards requirements with the 'best practices', 'lessons learned', and design of the safeguards measures for implementing those requirements. The facility designer's nuclear safeguards experts would work closely with other elements of the project design team in performing FSA. The resultant analysis would support discussions and interactions with the national nuclear regulator (i.e. State System of Accounting for and Control of Nuclear Material - SSAC) and the IAEA for development and approval of the proposed safeguards system. FSA would also support the implementation of international safeguards by the IAEA, by providing them with a means to analyse and evaluate the safeguardability of facilities being designed and constructed - i.e. by independently reviewing and validating the FSA as performed by the design team. Development of an FSA methodology is part of a broader U.S. National Nuclear Security Administration program to develop international safeguards-by-design tools and guidance documents for use by facility designers. The NNSA NGSI -sponsored project team is looking, as one element of its work, at how elements of the methodology developed by the Generation IV International Forum's Working Group on Proliferation Resistance and Physical Protection can be adapted to supporting FSA. (author)

  20. Near Real-Time Nondestructive Active Inspection Technologies Utilizing Delayed γ-Rays and Neutrons for Advanced Safeguards

    International Nuclear Information System (INIS)

    Hunt, Alan; Tobin, S. J.

    2015-01-01

    In this two year project, the research team investigated how delayed γ-rays from short-lived fission fragments detected in the short interval between irradiating pulses can be exploited for advanced safeguards technologies. This program contained experimental and modeling efforts. The experimental effort measured the emitted spectra, time histories and correlations of the delayed γ-rays from aqueous solutions and solid targets containing fissionable isotopes. The modeling effort first developed and benchmarked a hybrid Monte Carlo simulation technique based on these experiments. The benchmarked simulations were then extended to other safeguards scenarios, allowing comparisons to other advanced safeguards technologies and to investigate combined techniques. Ultimately, the experiments demonstrated the possible utility of actively induced delayed γ-ray spectroscopy for fissionable material assay.

  1. Near Real-Time Nondestructive Active Inspection Technologies Utilizing Delayed γ-Rays and Neutrons for Advanced Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Alan [Idaho State Univ., Pocatello, ID (United States). Idaho Accelerator Center, Dept. of Physics; Reedy, E. T.E. [Idaho State Univ., Pocatello, ID (United States). Dept. of Phyics, Idaho Accelerator Center; Mozin, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tobin, S. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Nonproliferation

    2015-02-12

    In this two year project, the research team investigated how delayed γ-rays from short-lived fission fragments detected in the short interval between irradiating pulses can be exploited for advanced safeguards technologies. This program contained experimental and modeling efforts. The experimental effort measured the emitted spectra, time histories and correlations of the delayed γ-rays from aqueous solutions and solid targets containing fissionable isotopes. The modeling effort first developed and benchmarked a hybrid Monte Carlo simulation technique based on these experiments. The benchmarked simulations were then extended to other safeguards scenarios, allowing comparisons to other advanced safeguards technologies and to investigate combined techniques. Ultimately, the experiments demonstrated the possible utility of actively induced delayed γ-ray spectroscopy for fissionable material assay.

  2. Advanced-safeguards systems development for chemical-processing plants. Final report for FY 1980

    International Nuclear Information System (INIS)

    Cartan, F.O.

    1981-04-01

    The program is installing a computer system to test and evaluate process monitoring as a new Safeguards function to supplement the usual physical security and accountability functions. Safeguards development sensors and instruments installed in the Idaho Chemical Processing Plant (ICPP) provide information via a data acquisition system to a Safeguards analysis computer. The monitoring function can significantly enhance current material control (accountability) and containment surveillance capabilities for domestic and international Safeguards uses. Installation of sensors and instruments in the ICPP was more than 75% complete in FY-1980. Installation work was halted at the request of ICPP operations near the end of the year to eliminate possible conflict with instrument calibrations prior to plant startup. Some improvements to the computer hardware were made during FY-1980. Sensor and instrument development during FY-1980 emphasized device testing for ICPP monitoring applications. Pressure transducers, pressure switches, a bubble flowmeter, and load cells were tested; an ultrasonic liquid-in-line sensor was developed and tested. Work on the portable, isotope-ratio mass spectrometer led to the comparison of the HP quadrupole instrument with a small magnetic instrument and to the selection of the quadrupole

  3. Facility Safeguardability Analysis In Support of Safeguards-by-Design

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Roald Wigeland; Robert Bari; Trond Bjornard; John Hockert; Michael Zentner

    2010-07-01

    The following report proposes the use of Facility Safeguardability Analysis (FSA) to: i) compare and evaluate nuclear safeguards measures, ii) optimize the prospective facility safeguards approach, iii) objectively and analytically evaluate nuclear facility safeguardability, and iv) evaluate and optimize barriers within the facility and process design to minimize the risk of diversion and theft of nuclear material. As proposed by the authors, Facility Safeguardability Analysis would be used by the Facility Designer and/or Project Design Team during the design and construction of the nuclear facility to evaluate and optimize the facility safeguards approach and design of the safeguards system. Through a process of “Safeguards-by-Design” (SBD), this would be done at the earliest stages of project conceptual design and would involve domestic and international nuclear regulators and authorities, including the International Atomic Energy Agency (IAEA). The benefits of the Safeguards-by-Design approach is that it would clarify at a very early stage the international and domestic safeguards requirements for the Construction Project Team, and the best design and operating practices for meeting these requirements. It would also minimize the risk to the construction project, in terms of cost overruns or delays, which might otherwise occur if the nuclear safeguards measures are not incorporated into the facility design at an early stage. Incorporating nuclear safeguards measures is straight forward for nuclear facilities of existing design, but becomes more challenging with new designs and more complex nuclear facilities. For this reason, the facility designer and Project Design Team require an analytical tool for comparing safeguards measures, options, and approaches, and for evaluating the “safeguardability” of the facility. The report explains how preliminary diversion path analysis and the Proliferation Resistance and Physical Protection (PRPP) evaluation

  4. Considerations on safeguards approach for small centrifuge enrichment facilities

    International Nuclear Information System (INIS)

    Vicens, Hugo E.; Marzo, Marco A.; Nunes, Vitorio E.

    2004-01-01

    The safeguards' objectives for enrichment facilities encompass the detection of the diversion of declared nuclear material and of facility misuse. The safeguard's approach presently applied for commercial centrifuge enrichment facilities is based on the Hexa partite Project and seems not to be directly applicable to cases of small plants. Since ABACC started its operation one of the main problems faced was the application of safeguards to small centrifuge enrichment plants for testing centrifuges in cascade mode or for small LEU production. These plants consist of a few fully independent cascades, does not operate in a routine basis and panels prevent visual access to the centrifuges and their surroundings for preserving sensitive information. For such plants misuse scenarios seems to dominate, particularly those associated with feeding the plant with undeclared LEU. This paper presents a concise analysis of misuse strategies in small centrifuge facility and alternative safeguard's approach, describing the main control elements to be applied. The particularities arising from the existence of panels or boxes covering the centrifuges are specifically addressed. Two alternatives approaches based on the application of a transitory perimeter control to increase the effectiveness of unannounced inspection and on the application of permanent perimeter control are presented. (author)

  5. Evaluating National Nuclear Safeguards System Implementation in the Republic of Moldova

    International Nuclear Information System (INIS)

    Mursa, E.; Sidorencu, A.; Vasilieva, N.; Sirbu, I.

    2015-01-01

    Strengthening the multilateral system of Nuclear Safeguards by the International Atomic Energy Agency (IAEA), imposed by the increasing cross-border illicit trafficking of nuclear material and redirecting for military purposes has led Republic of Moldova to ratify on 1 June 2012 the Additional Protocol (INFCIRC/690) to the Agreement of Nuclear Safeguards in relation with the NPT. This was followed by the adoption in the Parliament on 8 June 2012, of the new Law no. 132 of 08.06.2012 on the safe conduct of nuclear and radiological activities, which extends the power of the National Agency for Regulation of Nuclear and Radiological Activities (NARNRA) and details the measures to strengthen the Nuclear Safeguards in the country. The NARNRA implements safeguards measures in relation to nuclear materials by: – normative acts development; – establishing a system for inspecting of nuclear material; – implementing inventory-taking and reporting procedures for quantities of nuclear material; – implementing authorisation and monitoring procedures for the movements of nuclear material; – implementing procedures for reporting quantities of nuclear material to the IAEA; – maintaining and updating the national register of nuclear materials. A very important role to achieve results is the cooperation with the IAEA. Thus, was developed and agreed the Joint Action Plan for implementing the provisions of the Additional Protocol to the Safeguards Agreement, which is an essential aid in fulfilling the country’s international obligations. In this respect have been obtained some good practices: – Routinely performed national inspections; – On-line information provision from the Customs check points; – Developed special form for nuclear material in the National Register; – Systematic interaction with Ministry of Foreign Affairs, Ministry of Internal Affairs and authorisation holders; – Annual and quarterly presentation to the IAEA of the reports on SQP and the

  6. IAEA safeguards and non-proliferation

    International Nuclear Information System (INIS)

    Harry, R.J.S.

    1995-02-01

    An overview is given of the efforts to contain the nuclear weapons proliferation during half a century of man-controlled nuclear fission. An initial policy of denial did not work, a following period of cooperation needed a gradual strengthening of international assurances on the exclusively peaceful character of the flourishing use of nuclear techniques for power generation and of other applications. The focus of the nuclear weapon proliferation concern changed from the highly developed states to developing states. The Non-Proliferation Treaty laid the basis for a unique system of voluntarily accepted international inspections to verify the peaceful use of nuclear energy. The IAEA got the task to implement this 'Full Scope Safeguards' on all nuclear material and all nuclear activities in the non-nuclear weapon states. Thanks to the structure of the IAEA, in which both proponent and states with a critical attitude take part in the decision making process on the IAEA execution of its tasks, a balanced, and widely acceptable system emerged. International developments necessitated additional improvements of the non-proliferation system. The increase of strength of sub-national groups triggered international cooperation on physical protection, about a quarter of a century ago. More recently, it appeared that NPT states with assumed nuclear weapon ambitions operated in the margins between the interpretation of IAEA safeguards and the spirit and purpose of NPT. Improvements of the IAEA safeguards and a stronger cooperation between states, including the constraints which exporting states have imposed on nuclear supplies, strengthen the safeguards system. The important reductions in the two largest nuclear weapon arsenals lead, together with the delay in the fast breeder implementation, to large stockpiles of nuclear weapon usable materials. Also in this areas new internationally credible assurances have to be obtained, that these materials will never return to nuclear

  7. IAEA safeguards and non-proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Harry, R J.S.

    1995-02-01

    An overview is given of efforts to contain the nuclear weapons proliferation during half a century of man-controlled nuclear fission. An initial policy of denial did not work, a following period of cooperation needed a gradual strengthening of international assurances on the peaceful character of the flourishing use of nuclear techniques for power generation and of other applications. The focus of the nuclear weapon proliferation concern changed from the highly developed states to developing states. The Non-Proliferation Treaty laid the basis for a unique system of voluntarily accepted international inspections to verify the peaceful use of nuclear energy. The IAEA got the task to implement this `Full Scope Safeguards` on all nuclear material and all nuclear activities in the non-nuclear weapon states. Thanks to the structure of the IAEA, in which both proponent and states with a critical attitude take part in the decision making process on the IAEA execution of its tasks, a balanced, and widely acceptable system emerged. International developments necessitated additional improvements of the non-proliferation system. The increase of strength of sub-national groups triggered international cooperation on physical protection, about a quarter of a century ago. More recently, it appeared that NPT states with assumed nuclear weapon ambitions operated in the margins between the interpretation of IAEA safeguards and the spirit and purpose of NPT. Improvements of the IAEA safeguards and a stronger cooperation between states, including the constraints which exporting states have imposed on nuclear supplies, strengthen the safeguards system. The important reductions in the two largest nuclear weapon arsenals lead, together with the delay in the fast breeder implementation, to large stockpiles of nuclear weapon usable materials. Also in this areas new internationally credible assurances have to be obtained, that these materials will never return to nuclear weapon applications.

  8. Safeguards effectiveness criteria and safeguards efficiency

    International Nuclear Information System (INIS)

    Stein, G.; Canty, M.J.; Knapp, U.; Munch, E.

    1983-01-01

    A critical examination of current tendencies in quantification, assessment and enhancement of the effectiveness of international safeguards is undertaken. It is suggested that the present narrow and overly technical interpretation of some elements of international safeguards is both impractical and detrimental. A pragmatic, case-bycase approach is called for to implement the provisions of safeguards agreements in a more balanced, efficient way

  9. INSTITUTIONALIZING SAFEGUARDS-BY-DESIGN: HIGH-LEVEL FRAMEWORK

    Energy Technology Data Exchange (ETDEWEB)

    Trond Bjornard PhD; Joseph Alexander; Robert Bean; Brian Castle; Scott DeMuth, Ph.D.; Phillip Durst; Michael Ehinger; Prof. Michael Golay, Ph.D.; Kevin Hase, Ph.D.; David J. Hebditch, DPhil; John Hockert, Ph.D.; Bruce Meppen; James Morgan; Jerry Phillips, Ph.D., PE

    2009-02-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities can reduce proliferation risks. A multi-laboratory team was sponsored in Fiscal Year (FY) 2008 to define a SBD process and determine how it could be incorporated into existing facility design and construction processes. The possibility to significantly influence major design features, such as process selection and plant layout, largely ends with the conceptual design step. Therefore SBD’s principal focus must be on the early inclusion of safeguards requirements and the early identification of beneficial design features. The result could help form the basis for a new international norm for integrating safeguards into facility design. This is an interim report describing progress and project status as of the end of FY08. In this effort, SBD is defined as a structured approach to ensure the timely, efficient, and cost-effective integration of international and national safeguards, physical security, and other nonproliferation objectives into the overall design process for a nuclear facility. A key objective is to ensure that security and nonproliferation issues are considered when weighing facility design alternatives. Central to the work completed in FY08 was a study in which a SBD process was developed in the context of the current DOE facility acquisition process. The DOE study enabled the development of a “SBD design loop” that is suitable for use in any facility design process. It is a graded, iterative process that incorporates safeguards concerns throughout the conceptual, preliminary and final design processes. Additionally, a set of proposed design principles for SBD was developed. A “Generic SBD Process” was then developed. Key features of the process include the initiation of safeguards design activities in the pre-conceptual planning phase, early incorporation of safeguards requirements into the project requirements, early appointment of an SBD team, and

  10. INSTITUTIONALIZING SAFEGUARDS-BY-DESIGN: HIGH-LEVEL FRAMEWORK

    International Nuclear Information System (INIS)

    Bjornard, Trond; Alexander, Joseph; Bean, Robert; Castle, Brian; DeMuth, Scott; Durst, Phillip; Ehinger, Michael; Golay, Michael; Hase, Kevin; Hebditch, David J.; Hockert, John; Meppen, Bruce; Morgan, James; Phillips, Jerry

    2009-01-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities can reduce proliferation risks. A multi-laboratory team was sponsored in Fiscal Year (FY) 2008 to define a SBD process and determine how it could be incorporated into existing facility design and construction processes. The possibility to significantly influence major design features, such as process selection and plant layout, largely ends with the conceptual design step. Therefore SBD's principal focus must be on the early inclusion of safeguards requirements and the early identification of beneficial design features. The result could help form the basis for a new international norm for integrating safeguards into facility design. This is an interim report describing progress and project status as of the end of FY08. In this effort, SBD is defined as a structured approach to ensure the timely, efficient, and cost-effective integration of international and national safeguards, physical security, and other nonproliferation objectives into the overall design process for a nuclear facility. A key objective is to ensure that security and nonproliferation issues are considered when weighing facility design alternatives. Central to the work completed in FY08 was a study in which a SBD process was developed in the context of the current DOE facility acquisition process. The DOE study enabled the development of a 'SBD design loop' that is suitable for use in any facility design process. It is a graded, iterative process that incorporates safeguards concerns throughout the conceptual, preliminary and final design processes. Additionally, a set of proposed design principles for SBD was developed. A 'Generic SBD Process' was then developed. Key features of the process include the initiation of safeguards design activities in the pre-conceptual planning phase, early incorporation of safeguards requirements into the project requirements, early appointment of an SBD team, and participation in

  11. Assessment of Process Monitoring Techniques for Pyro processing Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. E.; Kim, C. M.; Yim, M. S. [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    PM technologies can be used to inspect normal/off-normal operation with various data obtained from facility operations in real time to meet safeguards objectives. To support the use of PM technologies for the purpose of pyroprocessing safeguards, this study aims at identifying technologies that could be useful for PM purposes and evaluating their applicability to a pyroprocessing facility. This paper describes the development of the assessment criteria to evaluate the practicality of candidate technologies for PM based on a variety of requirements and considerations. By using the developed assessment criteria, application of technologies in the oxide reduction process was assessed as a test case example. Research is necessary to validate the criteria according to the needs of each unit process, perhaps based on expert elicitation and/or international collaboration with other expert organization(s). These advanced assessment criteria will serve a useful guideline for selecting appropriate candidate PM technologies for pyroprocessing safeguards. Based on the results of using these evaluation criteria, the optimum technologies can be successfully selected for use at a large scale pyroprocessing facility.

  12. Implementation of Safeguards and Non-Proliferation in Sierra Leone

    International Nuclear Information System (INIS)

    George, M.

    2015-01-01

    Sierra Leone under the Comprehensive Safeguards Agreements (CSAs) has enacted the Nuclear Safety and Radiation Protection (NSRP) Act 2012 and has given numerous powers to the Authority to implement the above mentioned act fully. The NSRP Act 2012 established the Nuclear Safety and Radiation Protection Authority which among other things to regulate, control and supervise the acquisition, importation, exportation, use, transportation and disposal of radioactive sources and devices emitting Ionizing Radiation. The Authority is bounded by law to cooperate with the International Atomic Energy Agency in the application of Safeguards Agreement and any protocol thereto between Sierra Leone and the International Atomic Energy Agency including conducting inspections and providing any assistance or information required by designated IAEA inspectors in the fulfillment of their responsibilities pursuant to Section 5, Subsection 2, Article xvi of the NSRP Act 2012. The Authority is also granted powers to adopt all necessary measures including a system of licensing to control the export, re-export, transit and transhipment of any nuclear material, equipment or technology in order to protect the safety and security of Sierra Leone. The Regulatory Authority has established departments for the control of nuclear materials: One of which is The Regulatory Control Department; responsible for Inspections, Authorization and Enforcement actions for all radiation sources and nuclear materials. The Authority has been conducting inspections regularly on various facilities ranging from medical radiation generating equipment to industrial radiography sources. The methodology to be used is the issuance of the standard IAEA checklist which is consistent with the Regulatory Authority’s documents for inspection of sources and is in line with the General Safety Requirements(GSR)Part III. The expected outcomes would be increasing training of regulatory authority’s staff, the procurement of

  13. Strengthening of Organizational Infrastructure for Meeting IAEA Nuclear Safeguards Obligations: Bangladesh Perspective

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2010-01-01

    Safeguards are arrangements to account for and control the use of nuclear materials. This verification is a key element in the international system which ensures that uranium in particular is used only for peaceful purposes. The only nuclear reactor in Bangladesh achieved critically on September 14, 1986. Reactor Operation and Maintenance Unit routinely carries out certain international obligations which need to undertake as signatory of different treaties, agreements and protocols in the international safeguards regime. Pursuant to the relevant articles of these agreements/protocols, the reactor and associated facilities of Bangladesh (Facility code: BDA- and BDZ-) are physically inspected by the designated IAEA safeguards inspectors. The Bangladesh Atomic Energy Commission (BAEC) has recently created a new division called 'Nuclear Safeguards and Security Division' for enhancing the safeguards activities as per international obligations. This division plays a leading role in the planning, implementation, and evaluation of the BAEC's nuclear safeguards and nuclear security activities. This division is actively working with USDOE, IAEA and EU to enhance the nuclear safeguards and security activities in the following areas: - Analysis of nuclear safeguards related reports of 3 MW TRIGA Mark-II research reactor; - Upgrading of physical protection system of 3 MW TRIGA Mark-II research reactor, gamma irradiation facilities, central radioactive storage and processing facility and different radiation oncology facilities of Bangladesh under GTRI programme; - Supervision for installation of radiation monitoring system of the Chittagong port under USDOE Megaports Initiative Programmes for detection of illicit trafficking of nuclear and radioactive materials; - Development of laboratory capabilities for analysis of nuclear safeguards related samples; - Planning for development of organizational infrastructure to carry out safeguards related activities under IAEA different

  14. Safeguards approach for conditioning facility for spent fuel

    International Nuclear Information System (INIS)

    Younkin, J.M.; Barham, M.; Moran, B.W.

    1999-01-01

    A safeguards approach has been developed for conditioning facilities associated with the final disposal of spent fuel in geologic repositories. The proposed approach is based on a generic conditioning facility incorporating common features of conditioning facility designs currently proposed. The generic facility includes a hot cell for consolidation of spent fuel pins and repackaging of spent fuel items such as assemblies and cans of pins. The consolidation process introduces safeguards concerns which have not previously been addressed in traditional safeguards approaches. In developing the safeguards approach, diversion of spent fuel was assessed in terms of potential target items, operational activities performed on the items, containment of the items, and concealment activities performed on the items. The combination of these factors defines the potential diversion pathways. Diversion pathways were identified for spent fuel pellets, pins, assemblies, canisters, and casks. Diversion activities provide for opportunities of detection along the diversion paths. Potential detection methods were identified at several levels of diversion activities. Detection methods can be implemented through safeguards measures. Safeguards measures were proposed for each of the primary safeguards techniques of design information verification (DIV), containment and surveillance (C/S), and material accountancy. Potential safeguards approaches were developed by selection of appropriate combinations of safeguards measures. For all candidate safeguards approaches, DIV is a fundamental component. Variations in the approaches are mainly in the degree of C/S measures and in the types and numbers of material accountancy verification measures. The candidate safeguards approaches were evaluated toward the goal of determining a model safeguards approach. This model approach is based on the integrated application of selected safeguards measures to use International Atomic Energy Agency resources

  15. Safeguarding on-power fuelled reactors - instrumentation and techniques

    International Nuclear Information System (INIS)

    Waligura, A.; Konnov, Y.; Smith, R.M.; Head, D.A.

    1977-05-01

    Instrumentation and techniques applicable to safeguarding reactors that are fuelled on-power, particularly the CANDU type, have been developed. A demonstration is being carried out at the Douglas Point Nuclear Generating Station in Canada. Irradiated nuclear materials in certain areas - the reactor and spent fuel storage bays - are monitored using photographic and television cameras, and seals. Item accounting is applied by counting spent-fuel bundles during transfer from the reactor to the storage bay and by placing these spent-fuel bundles in a sealed enclosure. Provision is made for inspection and verification of the bundles before sealing. The reactor's power history is recorded by a Track-Etch power monitor. Redundancy is provided so that the failure of any single piece of equipment does not invalidate the entire safeguards system. Several safeguards instruments and devices have been developed and evaluated. These include a super-8-mm surveillance camera system, a television surveillance system, a spent-fuel bundle counter, a device to detect dummy fuel bundles, a cover for enclosing a stack of spent-fuel bundles, and a seal suitable for underwater installation and ultrasonic interrogation. (author)

  16. Open source information acquisition, analysis and integration in the IAEA Department of Safeguards

    International Nuclear Information System (INIS)

    Barletta, M.; Zarimpas, N.; Zarucki, R.

    2010-10-01

    Acquisition and analysis of open source information plays an increasingly important role in the IAEA strengthened safeguards system. The Agency's focal point for open source information collection and analysis is the Division of Safeguards Information Management (SGIM) within the IAEA Department of Safeguards. In parallel with the approval of the Model Additional Protocol in 1997, a new centre of information acquisition and analysis expertise was created within SGIM. By acquiring software, developing databases, retraining existing staff and hiring new staff with diverse analytical skills, SGIM is pro actively contributing to the future implementation of information-driven safeguards in collaboration with other Divisions within the Department of Safeguards. Open source information support is now fully integrated with core safeguards processes and activities, and has become an effective tool in the work of the Department of Safeguards. This provides and overview of progress realized through the acquisition and use of open source information in several thematic areas: evaluation of additional protocol declarations; support to the State Evaluation process; in-depth investigation of safeguards issues, including assisting inspections and complementary access; research on illicit nuclear procurement networks and trafficking; and monitoring nuclear developments. Demands for open source information have steadily grown and are likely to continue to grow in the future. Coupled with the enormous growth and accessibility in the volume and sources of information, new challenges are presented, both technical and analytical. This paper discusses actions taken and future plans for multi-source and multi-disciplinary analytic integration to strengthen confidence in safeguards conclusions - especially regarding the absence of undeclared nuclear materials and activities. (Author)

  17. International Atomic Energy Agency's advisory group meeting on safeguards related to the final disposal of waste and spent fuel, Vienna, Austria, September 12-16, 1988: Foreign trip report

    International Nuclear Information System (INIS)

    Moran, B.W.

    1988-10-01

    B.W. Moran traveled to Vienna, Austria, during the period of September 12--16, 1988, to serve as the technical advisor to the US Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) representatives to the International Atomic Energy Agency's Advisory Group Meeting on ''Safeguards Related to the Final Disposal of Nuclear Material in Waste and Spent Fuel.'' The goal of the US representatives to this meeting was to ensure that the advisory group's recommendations established (1) an effective IAEA safeguards approach for all radioactive waste and spent fuel management facilities and (2) a safeguards approach that is appropriate for the US Federal Waste Management System. The principal concerns of the United States on entering the advisory group meeting were: criteria for the termination of safeguards on waste should not be established, but should be referred for further study, safeguards on spent fuel should not be terminated, and safeguards studies are required before IAEA safeguards approaches for spent fuel are established. The US representatives generally recommended that consultant meetings be convened to address the technical issues after the requisite safeguards related research and development tasks have been performed. These objectives of the US representatives were achieved, and the recommendations of the advisory group generally coincided with and extended the recommendations presented in the US position paper

  18. LESSONS LEARNED IN TESTING OF SAFEGUARDS EQUIPMENT

    International Nuclear Information System (INIS)

    Pepper, S.; Farnitano, M.; Carelli, J.; Hazeltine, J.; Bailey, D.

    2001-01-01

    The International Atomic Energy Agency's (IAEA) Department of Safeguards uses complex instrumentation for the application of safeguards at nuclear facilities around the world. Often, this equipment is developed through cooperation with member state support programs because the Agency's requirements are unique and are not met by commercially available equipment. Before approving an instrument or system for routine inspection use, the IAEA subjects it to a series of tests designed to evaluate its reliability. In 2000, the IAEA began to observe operational failures in digital surveillance systems. In response to the observed failures, the IAEA worked with the equipment designer and manufacturer to determine the cause of failure. An action plan was developed to correct the performance issues and further test the systems to make sure that additional operational issues would not surface later. This paper addresses the steps taken to address operation issues related to digital image surveillance systems and the lessons learned during this process

  19. Safeguards and security progress report, January-December 1985

    International Nuclear Information System (INIS)

    1987-03-01

    From January to December 1985, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Safeguards Operations, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers efforts of direct assistance to the Department of Energy and Nuclear Regulatory Commission licensee facilities. This assistance includes consultation on materials accounting problems, development and demonstration of specialized techniques and instruments, and comprehensive participation in the design and evaluation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this period was on continuing the activities of the Center for Computer Security, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards and international safeguards for reprocessing plants required a significant portion of our resources. All of these efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments

  20. Safeguards and security progress report, January-December 1985

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    From January to December 1985, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Safeguards Operations, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers efforts of direct assistance to the Department of Energy and Nuclear Regulatory Commission licensee facilities. This assistance includes consultation on materials accounting problems, development and demonstration of specialized techniques and instruments, and comprehensive participation in the design and evaluation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this period was on continuing the activities of the Center for Computer Security, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards and international safeguards for reprocessing plants required a significant portion of our resources. All of these efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments.

  1. Safeguards and Security progress report, January--December 1989

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.B.; Jaramillo, G.R. (comps.)

    1990-11-01

    From January to December 1989, the Los Alamos Safeguards and Security Research and Development (R D) program carried out the activities described in the first four parts of this report: Science and Technology Base Development, Basic Systems Design, Onsite Test and Evaluation and Facility Support, and International Safeguards. For the most part, these activities were sponsored by the Department of Energy's Office of Safeguards and Security. Part 1 covers development of the basic technology essential to continuing improvements in the practice of safeguards and security. It includes our computer security R D and the activities of the DOE Center for Computer Security, which provides the basis for encouraging and disseminating this important technology. Part 2 treats activities aimed at developing methods for designing and evaluating safeguards systems, with special emphasis on the integration of the several subsystems into a real safeguards system. Part 3 describes efforts of direct assistance to the DOE and its contractors and includes consultation on materials control and accounting problems, development and demonstration of specialized techniques and instruments, and comprehensive participation in the design and demonstration of advanced safeguards systems. Part 3 also reports a series of training courses in various aspects of safeguards that makes the technology more accessible to those who must apply it. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Part 5 reports several safeguards-related activities that have sponsors other than the DOE/OSS. 87 refs., 52 figs.

  2. Executive summary of safeguards systems concepts for nuclear material transportation. Final report

    International Nuclear Information System (INIS)

    Baldonado, O.C.; Kevany, M.; Rodney, D.; Pitts, D.; Mazur, M.

    1977-09-01

    The U.S. Nuclear Regulatory Commission contracted with System Development Corporation to develop integrated system concepts for the safeguard of special strategic nuclear materials (SSNM), which include plutonium, uranium 233 and uranium 235 of at least 20 percent enrichment, against malevolent action during interfacility transport. This executive summary outlines the conduct and findings of the project. The study was divided into three major subtasks: (1) The development of adversary action sequences; (2) The assessment of the vulnerability of the transport of nuclear materials to adversary action; (3) The development of conceptual safeguards system design requirements to reduce vulnerabilities

  3. Scoping Study of Machine Learning Techniques for Visualization and Analysis of Multi-source Data in Nuclear Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yonggang

    2018-05-07

    In implementation of nuclear safeguards, many different techniques are being used to monitor operation of nuclear facilities and safeguard nuclear materials, ranging from radiation detectors, flow monitors, video surveillance, satellite imagers, digital seals to open source search and reports of onsite inspections/verifications. Each technique measures one or more unique properties related to nuclear materials or operation processes. Because these data sets have no or loose correlations, it could be beneficial to analyze the data sets together to improve the effectiveness and efficiency of safeguards processes. Advanced visualization techniques and machine-learning based multi-modality analysis could be effective tools in such integrated analysis. In this project, we will conduct a survey of existing visualization and analysis techniques for multi-source data and assess their potential values in nuclear safeguards.

  4. Safeguards considerations related to the use of multi-purpose canisters in the Civilian Radioactive Waste Management system

    International Nuclear Information System (INIS)

    Floyd, W.C.

    1995-01-01

    The US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for disposing of the nation's high-level radioactive waste. Currently, DOE is considering the use of Multi-Purpose Canisters (MPCs) to containerize commercial spent nuclear fuel (SNF) to be handled by the system. To achieve its safeguards and security objectives, OCRWM plans to institute a US Regulatory Commission (NRC)-approved safeguards program. Since the Mined Geologic Disposal System (MGDS) facility and a possible Monitored Retrievable Storage (MRS) facility may be subject to selection for International Atomic Energy Agency (IAEA) inspections, the safeguards program for MPCs may not preclude compliance with the requirements of the IAEA's Annex D, Special Criteria for Difficult-to-Access Fuel Items. MPC safeguards are based on three principles: Verification, Material Control and Accounting, and Physical Protection

  5. Safeguards and security research and development progress report, October 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.B.; Jaramillo, G.R. [comp.

    1995-08-01

    This report describes the activities carried out by the Los Alamos Safeguards and Security Research and Development (R&D) program from October 1993 through September 1994. The activities presented in the first part of the report were directed primarily to domestic US safeguards applications and were, for the most part, sponsored by the Department of Energy`s Office of Safeguards and Security (DOE/OSS, NN-50). The activities described in Part 2, International Safeguards, were supported by the International Safeguards Division of the Office of Arms Control and Nonproliferation (DOE/OACN, NN-40). Part 3 describes several safeguards or safeguards-related activities that have other sponsors. The final part of the report lists titles and abstracts of Los Alamos safeguards R&D reports, technical journal articles, and conference papers that were published or presented in 1994.

  6. Safeguards and security research and development progress report, October 1993--September 1994

    International Nuclear Information System (INIS)

    Smith, D.B.; Jaramillo, G.R.

    1995-08-01

    This report describes the activities carried out by the Los Alamos Safeguards and Security Research and Development (R ampersand D) program from October 1993 through September 1994. The activities presented in the first part of the report were directed primarily to domestic US safeguards applications and were, for the most part, sponsored by the Department of Energy's Office of Safeguards and Security (DOE/OSS, NN-50). The activities described in Part 2, International Safeguards, were supported by the International Safeguards Division of the Office of Arms Control and Nonproliferation (DOE/OACN, NN-40). Part 3 describes several safeguards or safeguards-related activities that have other sponsors. The final part of the report lists titles and abstracts of Los Alamos safeguards R ampersand D reports, technical journal articles, and conference papers that were published or presented in 1994

  7. Implementation of integrated safeguards at Nuclear Fuel Plant Pitesti, Romania

    International Nuclear Information System (INIS)

    Olaru, Vasilica; Ivana, Tiberiu; Epure, Gheorghe

    2010-01-01

    The nuclear activity in ROMANIA was for many years under Traditional Safeguards (TS) and has developed in good conditions this type of nuclear safeguards. Now, the opportunity exists to improve the performance and quality of the safeguards activity and increase the accountancy and control of nuclear material by passing to Integrated Safeguards (IS). The legal framework is the Law 100/2000 for ratification of the Protocol between Romania and International Atomic Energy Agency (IAEA), additional to the Agreement between the Socialist Republic of Romania Government and IAEA related to safeguards as part of the Treaty on the non-proliferation of nuclear weapons published in the Official Gazette no. 3/31 January 1970, and the Additional Protocol content published in the Official Gazette no. 295/ 29.06.2000. The first discussion about Integrated Safeguards (IS) between Nuclear Fuel Plant (NFP) representatives and IAEA inspectors was in June 2005. In Feb. 2007 an IAEA mission visited NFP and established the main steps for implementing the IS. There were visited the storages, technological flow, and was reviewed the disposal times for different nuclear materials, the applied chemical analysis, measuring methods, weighting method and elaborating procedure of the documents and lists. At that time the IAEA and NFP representatives established the main points for starting the IS at NFP: performing the Short Notice Random Inspections (SNRI); communication of the days established for SNRI for each year; communication of the estimated deliveries and shipments for first quarter and then for the rest of the year: daily mail box declaration (DD) with respect to the deposit time for several nuclear materials i.e. advance notification (AN) for each nuclear material transfer (shipments and receipts), others. At 01 June 2007 Romania has passed officially to Integrated Safeguards and NFP (WRMD) has taken all measures to implement this objective. (authors)

  8. Strategic plan for the development of IAEA safeguards equipment

    International Nuclear Information System (INIS)

    Khlebnikov, N.

    2001-01-01

    Full text: The need for a top-down Safeguards Strategy to focus departmental objectives was recognized by the Programme Performance Appraisal System (PPAS) performed on the Equipment Development Project in 1999. The Department of Safeguards prepared at the end of 2000 a 5-year Strategic Plan to identify the changes and improvements expected to take place over the 2001-2005 period. Those Strategic Objectives were supposed to be used to properly plan IAEA Safeguards activities and define appropriate and coherent R and D programmes. The present paper describes the strategic directions that the IAEA will follow in the area of equipment development in order to meet the Safeguards Department long-term objectives for 2001-2005. The paper, which is derived from the IAEA Strategic Equipment Development Plan, prepared by the Division of Technical Support, includes two parts: general principles and policies applicable to all equipment development tasks; specific strategic guidance. The paper will not describe the detailed plans which are prepared based on the strategic plan on a biannual basis. Equipment development activities have been divided in five major projects (NDA, Seals, Surveillance, Unattended Monitoring and Remote Monitoring). Strategic directions for each of these projects will be described in the paper. Separate sections will deal with equipment development strategic guidance in the area of additional protocol inspections, JNFL projects, illicit trafficking and Trilateral Initiative. (author)

  9. Framework for fuel-cycle approaches to IAEA safeguards

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Higinbotham, W.

    1986-01-01

    A framework is presented for comparing various safeguards verification approaches which have been proposed for consideration. Each inventory change, inventory, and material balance for each nuclear facility, reported by a state, may be verified. Verification approaches are compared by listing which of these reports would be verified and to what degree for each approach as they might be applied to a state with a closed fuel cycle. The comparison indicates that the extended-material-balance-area (or zone), the information-correlation, and the randomization-over-facilities approaches make more efficient use of Agency resources than the facility-oriented approach for states with large nuclear power programs. In contrast, any advantages of randomizing inspections over inspection activities within facilities are, percentagewise, relatively independent of the size of a state's nuclear program

  10. Safeguards by design - The early consideration of safeguards concepts

    International Nuclear Information System (INIS)

    Killeen, T.; Moran, B.; Pujol, E.

    2009-01-01

    Full-text: The IAEA Department of Safeguards is in the process of formalizing its approach to long-range strategic planning. As a result of this activity new endeavours are being identified. One of these endeavours is to develop a concept known as Safeguards by Design. Safeguarding nuclear material and facilities can be made more effective and cost efficient by improving the safeguardability of the system. By taking into account design features that facilitate the implementation of international safeguards early in the design phase, a concept known as safeguards by design, the proliferation resistance of the system can be improved. This improvement process requires an understanding by designers and operators of safeguards and its underlying principles. To advance the safeguards by design approach, the IAEA determined that there is a need to develop written guidance. This guidance would help the major stakeholders - the designers, operators, owners, and regulatory bodies - to better understand how a facility could be designed, built and operated in such a way that effective safeguards could be implemented at reduced cost and with minimal burden to facility operations. By enlisting the cooperation of Member States through the support programme structure, the IAEA is working to first develop a document that describes the basic principles of safeguards, and the fundamental design features and measures that facilitate the implementation of international safeguards. Facility-specific guidance will then be developed utilizing the resources, expertise and experience of the IAEA and its Member States. This paper will review the foundation for the development of this task, describe the progress that has been made and outline the path forward. (author)

  11. Safeguards System for the Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    Kim, Ho-dong; Lee, T.H.; Yoon, J.S.; Park, S.W; Lee, S.Y.; Li, T.K.; Menlove, H.; Miller, M.C.; Tolba, A.; Zarucki, R.; Shawky, S.; Kamya, S.

    2007-01-01

    The advanced spent fuel conditioning process (ACP) which is a part of a pyro-processing has been under development at Korean Atomic Energy Research Institute (KAERI) since 1997 to tackle the problem of an accumulation of spent fuel. The concept is to convert spent oxide fuel into a metallic form in a high temperature molten salt in order to reduce the heat energy, volume, and radioactivity of a spent fuel. Since the inactive tests of the ACP have been successfully implemented to confirm the validity of the electrolytic reduction technology, a lab-scale hot test will be undertaken in a couple of years to validate the concept. For this purpose, the KAERI has built the ACP Facility (ACPF) at the basement of the Irradiated Material Examination Facility (IMEF) of KAERI, which already has a reserved hot-cell area. Through the bilateral arrangement between US Department of Energy (DOE) and Korean Ministry of Science and Technology (MOST) for safeguards R and D, the KAERI has developed elements of safeguards system for the ACPF in cooperation with the Los Alamos National Laboratory (LANL). The reference safeguards design conditions and equipment were established for the ACPF. The ACPF safeguards system has many unique design specifications because of the particular characteristics of the pyro-process materials and the restrictions during a facility operation. For the material accounting system, a set of remote operation and maintenance concepts has been introduced for a non-destructive assay (NDA) system. The IAEA has proposed a safeguards approach to the ACPF for the different operational phases. Safeguards measures at the ACPF will be implemented during all operational phases which include a 'Cold Test', a 'Hot Test' and at the end of a 'Hot test'. Optimization of the IAEA's inspection efforts was addressed by designing an effective safeguards approach that relies on, inter alia, remote monitoring using cameras, installed NDA instrumentation, gate monitors and seals

  12. Open source information acquisition, analysis and integration in the IAEA Department of Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, M.; Zarimpas, N.; Zarucki, R., E-mail: M.Barletta@iaea.or [IAEA, Wagramerstrasse 5, P.O. Box 100, 1400 Vienna (Austria)

    2010-10-15

    Acquisition and analysis of open source information plays an increasingly important role in the IAEA strengthened safeguards system. The Agency's focal point for open source information collection and analysis is the Division of Safeguards Information Management (SGIM) within the IAEA Department of Safeguards. In parallel with the approval of the Model Additional Protocol in 1997, a new centre of information acquisition and analysis expertise was created within SGIM. By acquiring software, developing databases, retraining existing staff and hiring new staff with diverse analytical skills, SGIM is pro actively contributing to the future implementation of information-driven safeguards in collaboration with other Divisions within the Department of Safeguards. Open source information support is now fully integrated with core safeguards processes and activities, and has become an effective tool in the work of the Department of Safeguards. This provides and overview of progress realized through the acquisition and use of open source information in several thematic areas: evaluation of additional protocol declarations; support to the State Evaluation process; in-depth investigation of safeguards issues, including assisting inspections and complementary access; research on illicit nuclear procurement networks and trafficking; and monitoring nuclear developments. Demands for open source information have steadily grown and are likely to continue to grow in the future. Coupled with the enormous growth and accessibility in the volume and sources of information, new challenges are presented, both technical and analytical. This paper discusses actions taken and future plans for multi-source and multi-disciplinary analytic integration to strengthen confidence in safeguards conclusions - especially regarding the absence of undeclared nuclear materials and activities. (Author)

  13. Advances in the Processing of VHR Optical Imagery in Support of Safeguards Verification

    International Nuclear Information System (INIS)

    Niemeyer, I.; Listner, C.; Canty, M.

    2015-01-01

    Under the Additional Protocol of the Non-Proliferation Treaty (NPT) complementing the safeguards agreements between States and the International Atomic Energy Agency, commercial satellite imagery, preferably acquired by very high-resolution (VHR) satellite sensors, is an important source of safeguards-relevant information. Satellite imagery can assist in the evaluation of site declarations, design information verification, the detection of undeclared nuclear facilities, and the preparation of inspections or other visits. With the IAEA's Geospatial Exploitation System (GES), satellite imagery and other geospatial information such as site plans of nuclear facilities are available for a broad range of inspectors, analysts and country officers. The demand for spatial information and new tools to analyze this data is growing, together with the rising number of nuclear facilities under safeguards worldwide. Automated computer-driven processing of satellite imagery could therefore add a big value in the safeguards verification process. These could be, for example, satellite imagery pre-processing algorithms specially developed for new sensors, tools for pixel or object-based image analysis, or geoprocessing tools that generate additional safeguards-relevant information. In the last decade procedures for automated (pre-) processing of satellite imagery have considerably evolved. This paper aims at testing some pixel-based and object-based procedures for automated change detection and classification in support of safeguards verification. Taking different nuclear sites as examples, these methods will be evaluated and compared with regard to their suitability to (semi-) automatically extract safeguards-relevant information. (author)

  14. Safeguards and security progress report, January-December 1983

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.B. (comp.)

    1984-09-01

    From January to December 1983, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. This assistance includes consultation on materials accounting problems, development of specialized techniques and instruments, and comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this peiod was on continuing the activities of the Computer Security Center, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments.

  15. Safeguards and security progress report, January-December 1983

    International Nuclear Information System (INIS)

    Smith, D.B.

    1984-09-01

    From January to December 1983, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. This assistance includes consultation on materials accounting problems, development of specialized techniques and instruments, and comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this peiod was on continuing the activities of the Computer Security Center, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments

  16. Contribution of the 'safeguarded' to the development of safeguards

    International Nuclear Information System (INIS)

    Anderson, A.R.

    1977-01-01

    The development of an efficient system of international safeguards requires close and detailed interaction between the safeguarding authority and those being safeguarded, i.e. the plant operator and the State System to which he belongs. Such interaction is found in other control systems but the degree of international collaboration involved in safeguards is perhaps unique and it is valuable to review and analyse the contributions which have arisen from prudent management considerations. The familiar ''Blue Book'' (INFCIRC 153) recognizes clearly the need for an effective State's System of accounting for and control of nuclear materials as a necessary pre-requisite for the development and implementation of an effective IAEA system of safeguards. It is therefore helpful to summarize the relevant contributions from the 'safeguarded' in terms of the components of the State's System specified in paragraph 32 of the Blue Book. This paper reviews the continuing contributions stemming from plant and national experience, with particular emphasis on the development of measurement systems and physical inventory procedures relevant to safeguards. Attention is also drawn to those areas where the specific objectives of IAEA Safeguards lead to requirements additional to those required for management purposes. (author)

  17. Meeting the safeguards challenges of a commercial reprocessing plant

    International Nuclear Information System (INIS)

    Johnson, S.J.; Chesnay, B.; Pearsall, C.; Takeda, S.; Tomikawa, H.; Fujimaki, K.; Iwamoto, T.

    2004-01-01

    Never before has the IAEA taken on such a large challenge as implementing a safeguards system at a commercial reprocessing plant. The challenges lay in a wide range of areas. This paper will present an overview of how specific challenges are being met in: Providing an initial and continuing design verification approach that maintains continuity of knowledge for the life-time of the plant; Providing a robust safeguards approach, including added assurance measures to confirm the operational conditions of the facility; Providing verification systems with the highest sensitivity and reliability, while also being cost efficient; Providing timely and accurate analytical laboratory results; Providing sufficient authentication to joint-use, unattended verification systems to assure that independent conclusions can be reached; Providing a comprehensive integrated software system that allows for remote inspector data handling and evaluation and thus reducing inspection effort. A primary prerequisite to developing and implementing a safeguards approach of this magnitude is the transparent and interactive cooperation of the State and the operator. The JNFL Project has been a model example of this cooperation. This cooperation has been in the areas of system security, operational modifications, schedule adjustments, technical development and financial support. (author)

  18. Safeguards in the European Union: The new partnership approach

    International Nuclear Information System (INIS)

    Thorstensen, S.; Chitumbo, K.

    1995-01-01

    This article highlights the circumstances surrounding the birth of the New Partnership Approach (NPA) and the status of its implementation. It particularly looks at elements of the NPA and practical arrangements that are being followed for specific types of nuclear and related facilities. Since elements of the NPA have been put into practice, significant savings have been realized in the allocation of safeguards inspection resources for Euratom countries, while ensuring effective verification. 1 graph, 1 tab

  19. Safeguards and Security Research and Development progress report, October 1990--September 1991

    International Nuclear Information System (INIS)

    Smith, D.B.; Jaramillo, G.R.

    1992-07-01

    This report describes the activities carried out by the Los Alamos Safeguards and Security Research And Development (R ampersand D) program from October 1990 through September 1991. The activities presented in the first three parts--Science and Technology Base Development, Basic Systems Design, and Onsite Test and Evaluation and Facility Support--were, for the most part, sponsored by the Department of Energy's Office of Safeguards and Security (DOE/OSS). The activities described in Part 4--International Safeguards--were supported by the International Safeguards Division of the Office of Arms Control and Nonproliferation (OACN/IS). Part 5 describes several safeguards or safeguards-related activities that have sponsors other than the DOE/OSS or OACN/IS. The final part of the report lists titles and abstracts of Los Alamos safeguards R ampersand D reports, technical journal articles, and conference papers that were published in 1991

  20. Third International Meeting on Next Generation Safeguards: Safeguards-by-Design at Enrichment Facilities

    International Nuclear Information System (INIS)

    Long, Jon D.; McGinnis, Brent R.; Morgan, James B.; Whitaker, Michael; Lockwood, Dunbar; Shipwash, Jacqueline L.

    2011-01-01

    The Third International Meeting on Next Generation Safeguards (NGS3) was hosted by the U.S. Department of Energy (DOE)/National Nuclear Security Administration's (NNSA) Office of Nonproliferation and International Security (NIS) in Washington, D.C. on 14-15 December 2010; this meeting focused on the Safeguards-by-Design (SBD) concept. There were approximately 100 participants from 13 countries, comprised of safeguards policy and technical experts from government and industry. Representatives also were present from the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), the European Atomic Energy Agency (Euratom), and the International Atomic Energy Agency (IAEA). The primary objective of this meeting was to exchange views and provide recommendations on implementation of the SBD concept for four specific nuclear fuel cycle facility types: gas centrifuge enrichment plants (GCEPs), GEN III and GEN IV reactors, aqueous reprocessing plants, and mixed oxide fuel fabrication facilities. The general and facility-specific SBD documents generated from the four working groups, which were circulated for comment among working group participants, are intended to provide a substantive contribution to the IAEA's efforts to publish SBD guidance for these specific types of nuclear facilities in the near future. The IAEA has described the SBD concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' As part of the Next Generation Safeguards Initiative (NGSI), the DOE is working to establish SBD as a global norm through DOE laboratory studies, international workshops, engagement with industry and the IAEA, and setting an example through its use in new nuclear facilities in the United States. This paper describes the discussion topics and final recommendations of the Enrichment Facilities Working

  1. Safeguardability of the vitrification option for disposal of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S. [Los Alamos National Lab., NM (United States)

    1996-05-01

    Safeguardability of the vitrification option for plutonium disposition is rather complex and there is no experience base in either domestic or international safeguards for this approach. In the present treaty regime between the US and the states of the former Soviet Union, bilaterial verifications are considered more likely with potential for a third-party verification of safeguards. There are serious technological limitations to applying conventional bulk handling facility safeguards techniques to achieve independent verification of plutonium in borosilicate glass. If vitrification is the final disposition option chosen, maintaining continuity of knowledge of plutonium in glass matrices, especially those containing boron and those spike with high-level wastes or {sup 137}Cs, is beyond the capability of present-day safeguards technologies and nondestructive assay techniques. The alternative to quantitative measurement of fissile content is to maintain continuity of knowledge through a combination of containment and surveillance, which is not the international norm for bulk handling facilities.

  2. International safeguards 1979

    International Nuclear Information System (INIS)

    Fischer, D.

    1979-01-01

    First, the nature of the nuclear proliferation problem is reviewed. Afterward, the extent to which the risk of further horizontal proliferation of nuclear weapons is being contained by international agreements and by the application of the IAEA's safeguards under these agreements is investigated. The geographical scope of such safeguards, the gaps in safeguards coverage, and the political and technical effectiveness of such safeguards are examined. In conclusion, it is pointed out that IAEA safeguards are the cutting edge of almost every nonproliferation measure that has so far been applied or put forward. Safeguards would also play a part in any international scheme for limiting vertical proliferation. If the cutting edge of safeguards is blunted or if, for one reason or another, safeguards cannot be or are not being applied, the nonproliferation regime will suffer commensurate damage

  3. Safety and safeguards aspects on retrievability: A German study

    International Nuclear Information System (INIS)

    Biurrun, E.; Engelmann, H.-J.; Brennecke, P.; Kranz, H.

    2000-01-01

    The article refers shortly to the definition of the term 'retrievability' and shows two different possibilities of retrieval scenarios, their advantages and detriments. The second part lists the Safeguards aspects of retrievability, gives a short outlook on the present German Safeguards Reference Concept in the post-closure phase of a repository in a salt dome and about the results of German studies concerning some proposed Safeguards methods. Furthermore, Planned investigations on Safeguards in the post-closure phase of a repository are mentioned. The third and main part finally describes the results of the German Retrievability Study, which was elaborated in the middle of the nineties by DBE on behalf of the German Federal Ministry of Education, Science, Research and Technology, BMBF, under an R and D contract. (author)

  4. International target values 2000 for measurement uncertainties in safeguarding nuclear materials

    International Nuclear Information System (INIS)

    Aigner, H.; Binner, R.; Kuhn, E.

    2001-01-01

    The IAEA has prepared a revised and updated version of International Target Values (ITVs) for uncertainty components in measurements of nuclear material. The ITVs represent uncertainties to be considered in judging the reliability of analytical techniques applied to industrial nuclear and fissile material subject to safeguards verification. The tabulated values represent estimates of the 'state of the practice' which ought to be achievable under routine conditions by adequately equipped, experienced laboratories. The ITVs 2000 are intended to be used by plant operators and safeguards organizations as a reference of the quality of measurements achievable in nuclear material accountancy, and for planning purposes. The IAEA prepared a draft of a technical report presenting the proposed ITVs 2000, and in April 2000 the chairmen or officers of the panels or organizations listed below were invited to co- author the report and to submit the draft to a discussion by their panels and organizations. Euratom Safeguards Inspectorate, ESAKDA Working Group on Destructive Analysis, ESARDA Working Group on Non Destructive Analysis, Institute of Nuclear Material Management, Japanese Expert Group on ITV-2000, ISO Working Group on Analyses in Spent Fuel Reprocessing, ISO Working Group on Analyses in Uranium Fuel Fabrication, ISO Working Group on Analyses in MOX Fuel Fabrication, Agencia Brasileno-Argentina de Contabilidad y Control de Materiales Nucleares (ABACC). Comments from the above groups were received and incorporated into the final version of the document, completed in April 2001. The ITVs 2000 represent target standard uncertainties, expressing the precision achievable under stipulated conditions. These conditions typically fall in one of the two following categories: 'repeatability conditions' normally encountered during the measurements done within one inspection period; or 'reproducibility conditions' involving additional sources of measurement variability such as

  5. Safeguardability of a commercial-scaled ACP facility

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Lee, S. Y.; Kim, H. D.; Ha, J. H.; Song, D. Y.; Lee, T. H

    2004-07-01

    The Advanced spent fuel Conditioning Process (ACP) is an electro-metallurgical treatment technique to convert oxide-type spent nuclear fuel into a metallic form. This report documents a preliminary study on the safeguardability of ACP. The sub-processes and material flow of the pilot scale ACP facility were designed for this study. Then, their Material Balance Areas (MBA) and Key Measurement Point (KMP) were defined based on diversion scenario analysis. Finally, the limit of error in the MUF value was estimated using international target values for the uncertainty of measurement methods. Based on the results of preliminary study, we concluded that the safeguards goals of International Atomic Energy Agency (IAEA) could be met if the assumptions regarding measurement instruments can be achieved in a safeguards system for the ACP facility.

  6. Safeguardability of a commercial-scaled ACP facility

    International Nuclear Information System (INIS)

    Ko, Won Il; Lee, S. Y.; Kim, H. D.; Ha, J. H.; Song, D. Y.; Lee, T. H.

    2004-07-01

    The Advanced spent fuel Conditioning Process (ACP) is an electro-metallurgical treatment technique to convert oxide-type spent nuclear fuel into a metallic form. This report documents a preliminary study on the safeguardability of ACP. The sub-processes and material flow of the pilot scale ACP facility were designed for this study. Then, their Material Balance Areas (MBA) and Key Measurement Point (KMP) were defined based on diversion scenario analysis. Finally, the limit of error in the MUF value was estimated using international target values for the uncertainty of measurement methods. Based on the results of preliminary study, we concluded that the safeguards goals of International Atomic Energy Agency (IAEA) could be met if the assumptions regarding measurement instruments can be achieved in a safeguards system for the ACP facility

  7. Generic data base for security equipment and its utility in the safeguards inspection process. Final report 8151-79-FR-16

    International Nuclear Information System (INIS)

    Scala, S.

    1979-01-01

    This report contains material presented at the Nuclear Regulatory Commission (NRC) conference of regional inspectors in Atlanta, Georgia, on January 17, 1979. It describes the contents of the generic data base for security equipment, which was developed by SRI for NRC under a Sandia Laboratories' subcontract, and examines its potential utility in the process of inspection of NRC-licensed facilities

  8. The Site Approach - Lessons Learned from the Integrated Safeguards Approach for JNC-1

    International Nuclear Information System (INIS)

    Kikuchi, M.; Iso, S.; Tomine, K.; Hirato, Y.; Namekawa, M.; Takasugi, N.; Watanabe, M.; Tsutaki, Y.; Asano, T.; Nagatani, T.; Ninagawa, J.; Fujiwara, S.; Takahashi, S.; Kimura, T.; Kodani, Y.; Fukuhara, J.; Miyaji, N.; Kawakami, Y.; Koizumi, A.; Yamazaki, Y.; Nishinosono, S.; Sasaki, K.

    2010-01-01

    Integrated safeguards approaches for specific sites are recognized important elements in the design of a State-level approach under the concept of grouping facilities. Japan and the IAEA agreed further improvement of integrated safeguards implementation in effective and efficient manner, particularly at large complex nuclear sites in Japan. Japan and the IAEA developed the integrated safeguards approach for specific sites defined at Article 18 of Additional Protocol. In 2008, the IAEA started the three-year test implementation of JNC-1 site approach for improving the effectiveness and efficiency of the safeguards implementation of UDU material handling facilities. Japan and IAEA agreed to adopt the sector concept in order to make clear of subjected nuclear material to be verified. The sector is defined as spatial assignment that treats the same material stratum beyond MBAs in the site. The arrangement of MBAs and related material balance calculations as well as statistical analysis is maintained as a fundamental safeguards measure. At the boundaries of each sector, appropriate unattended NDA system and/or C/S system are installed, and material flows across the boundaries are verified by the system or attendance of resident inspectors. For inventory verification of the nuclear material stayed in sectors, an appropriate numbers of randomly scheduled inspections will be implemented. IAEA can access to the randomly selected sectors within 2 hours after notification. NRTA based on frequent operator's declaration will be performed for achievement of timeliness detection goal. The JNC-1 site approach has been implemented under the enhanced co-operation between the IAEA and SSAC through joint use of equipment and arrangements for DA analysis. Especially, national inspectors are working with IAEA together for coordination with operators. Because NMCC lab analyses all DA samples taken from facilities and the analysis results will be shared by the IAEA, certain numbers of DA

  9. Remote monitoring in safeguards: Security of information and enhanced cooperation

    International Nuclear Information System (INIS)

    Galdoz, Erwin; Calzetta, Osvaldo; Fernández Moreno, Sonia; Llacer, Carlos; Díaz, Gustavo; Vigile, Sebastián; Brunhuber, Christoph

    2011-01-01

    Unattended systems with remote transmission capabilities (RM) have the potential to improve safeguards efficiency. Moreover, the evolution of technology and the steady growing of nuclear materials subject to control, lead modern safeguards increasingly utilizing unattended equipment with the capability to store relevant data for long periods of time coupled with the option of being remotely accessed and checked. Remote inspection is still a concept under development, but it may end to be a powerful more efficient verification modality in medium term future. An important part of drawing meaningful safeguards conclusions rests on authenticity and reliability of the information on nuclear material and facilities acquired through the various verification activities and measures applied by IAEA and regional safeguards organizations, like ABACC. The increasing utilization of such technology to further optimize safeguards responds to a multifaceted environment where security of information for all relevant parties is of utmost importance. From the point of view of the IAEA and ABACC, the use of any technology for safeguards application, and specially the use of RM, requires to ensure the security of data collected to guarantee the validity and veracity of such information throughout the whole process (e.g., from collecting to reviewing). This is also valid to the SSAC involved in the process. Information security is also relevant for States and Operators. Assurance should be given that the information could not be withdrawn by non-authorized entities and that facility data is also fully secured. Another important aspect related to RM that may also fall in the security aspect of safeguards relevant information that merits further consideration, is the sharing of information between organizations like ABACC and the IAEA as well as the possibility to make this data available for States authorities purposes. This paper discusses three main themes related to RM: (i) the extent

  10. Contribution of the ''safeguarded'' to the development of safeguards

    International Nuclear Information System (INIS)

    Anderson, A.R.

    1977-01-01

    The development of an efficient system of international safeguards requires close and detailed interaction between the safeguarding authority and those being safeguarded, i.e. the plant operator and the State System to which he belongs. Such interaction is found in other control systems but the degree of international collaboration involved in Safeguards is perhaps unique and it is valuable to review and analyse the contributions which have arisen from prudent management considerations. Management has many reasons to exercise stringent control of nuclear materials stemming from the value and hazardous nature of the materials being used, and the requirements of relevant national legislation. Because systems at a plant and within a State are generally designed to control quantities of nuclear materials within limits smaller than those specified in the I.A.E.A.'s Safeguards objectives, experience at the plant level has contributed significantly to the development of International Safeguards procedures. In making such contributions, plant management and the national authorities have a common objective with that of the I.A.E.A. in developing a Safeguards system which is both technically-effective and cost-effective. The pursuit of this objective requires that implementation of the Safeguards system can be modified in the light of relevant practical experience of plant operators and of the I.A.E.A. The familiar Blue Book (INFCIRC 153) recognises clearly the need for an effective State's System of accounting for and control of nuclear materials as a necessary pre-requisite for the development and implementation of an effective I.A.E.A. system of Safeguards. It is therefore helpful to review the relevant contributions from the 'Safeguarded' in terms of the components of the State's System specified in paragraph 32 of the Blue Book. This paper reviews the continuing contributions stemming from plant and national experience, with particular emphasis on the development of

  11. Containment and surveillance -- A principle IAEA safeguards measure

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1997-01-01

    In October 1954, the Statue of the IAEA (International Atomic Energy Agency) had been signed by 70 nations. The Agency was established in 1957, and at the end of its first year of operation 130 professionals were employed in all departments. By the end of 1990, the number of professionals in the Safeguards Department had increased to over 270, over 200 of whom are designated inspectors. One of the unique features of the IAEA which directly interfaces with Member States is that of on-site inspections by international officials of the IAEA. This growth cycle, spanning some 40 years, has produced a variety of interesting subjects (legal, technical, political, etc.) for recollection, discussion, and study. This paper addresses the specific subject of technical means to maintain continuity of knowledge between inspection intervals--classically referred to as Containment and Surveillance

  12. Reactor antineutrino monitoring with a plastic scintillator array as a new safeguards method

    OpenAIRE

    Oguri, S.; Kuroda, Y.; Kato, Y.; Nakata, R.; Inoue, Y.; Ito, C.; Minowa, M.

    2014-01-01

    We developed a segmented reactor-antineutrino detector made of plastic scintillators for application as a tool in nuclear safeguards inspection and performed mostly unmanned field operations at a commercial power plant reactor. At a position outside the reactor building, we measured the difference in reactor antineutrino flux above the ground when the reactor was active and inactive.

  13. Inspection Database

    Data.gov (United States)

    U.S. Department of Health & Human Services — FDA is disclosing the final inspection classification for inspections related to currently marketed FDA-regulated products. The disclosure of this information is not...

  14. New evolution of safeguards and non-proliferation

    International Nuclear Information System (INIS)

    Seyama, K.; Kurihara, H.

    1999-01-01

    Since the end of the Cold War, circumstances concerning international safeguards and nuclear non-proliferation have changed drastically. At this stage, early introduction of a strengthened and streamlined new safeguards system and broad implementation of the verification activities regarding nuclear material from dismantled nuclear weapons are expected, and in the near future, the international community is expected to establish a verification regime under the Cut Off Treaty. From now on, the roles of the IAEA will become more important in these new areas. At the same time the efficiency of the activities is essential from a financial and human resources aspect in order to introduce those measures smoothly. On the other hand, the Member States should cooperate with the IAEA to improve the transparency of its nuclear policy and activities. Taking account of such circumstances, first, the authors will explain the non-proliferation policy of Japan. Second, the authors will introduce the present status of Japan's safeguards system and activities. Finally, the authors will present several tasks which are important for the IAEA and Japanese safeguards for coming several years. (author)

  15. Improved verification methods for safeguards verifications at enrichment plants

    International Nuclear Information System (INIS)

    Lebrun, A.; Kane, S. C.; Bourva, L.; Poirier, S.; Loghin, N. E.; Langlands, D.

    2009-01-01

    The International Atomic Energy Agency (IAEA) has initiated a coordinated research and development programme to improve its verification methods and equipment applicable to enrichment plants. The programme entails several individual projects to meet the objectives of the IAEA Safeguards Model Approach for Gas Centrifuge Enrichment Plants updated in 2006. Upgrades of verification methods to confirm the absence of HEU (highly enriched uranium) production have been initiated and, in particular, the Cascade Header Enrichment Monitor (CHEM) has been redesigned to reduce its weight and incorporate an electrically cooled germanium detector. Such detectors are also introduced to improve the attended verification of UF 6 cylinders for the verification of the material balance. Data sharing of authenticated operator weighing systems such as accountancy scales and process load cells is also investigated as a cost efficient and an effective safeguards measure combined with unannounced inspections, surveillance and non-destructive assay (NDA) measurement. (authors)

  16. Improved verification methods for safeguards verifications at enrichment plants

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, A.; Kane, S. C.; Bourva, L.; Poirier, S.; Loghin, N. E.; Langlands, D. [Department of Safeguards, International Atomic Energy Agency, Wagramer Strasse 5, A1400 Vienna (Austria)

    2009-07-01

    The International Atomic Energy Agency (IAEA) has initiated a coordinated research and development programme to improve its verification methods and equipment applicable to enrichment plants. The programme entails several individual projects to meet the objectives of the IAEA Safeguards Model Approach for Gas Centrifuge Enrichment Plants updated in 2006. Upgrades of verification methods to confirm the absence of HEU (highly enriched uranium) production have been initiated and, in particular, the Cascade Header Enrichment Monitor (CHEM) has been redesigned to reduce its weight and incorporate an electrically cooled germanium detector. Such detectors are also introduced to improve the attended verification of UF{sub 6} cylinders for the verification of the material balance. Data sharing of authenticated operator weighing systems such as accountancy scales and process load cells is also investigated as a cost efficient and an effective safeguards measure combined with unannounced inspections, surveillance and non-destructive assay (NDA) measurement. (authors)

  17. Unattended safeguards instrumentation at centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Smith, L. Eric; Lebrun, Alain R.; Labella, Rocco

    2014-01-01

    As global uranium enrichment capacity under international safeguards expands, the International Atomic Energy Agency (IAEA) is challenged to develop effective safeguards approaches at gaseous centrifuge enrichment plants, particularly high‑capacity plants, while working within budgetary constraints. New safeguards approaches should meet the high‑level verification objectives for such facilities (i.e., timely detection of: diversion of declared material, excess production beyond declared amounts, and production of enrichment levels higher than declared), but should also strive for efficiency advantages in implementation, for both the IAEA and operators. Under the Agency’s State- level approach to safeguards implementation, the Agency needs a flexible toolbox of technologies, allowing tailoring of safeguards measures for each individual enrichment facility. In this paper, the potential roles and development status for three different types of unattended measurement instrumentation are discussed. On‑Line Enrichment Monitors (OLEM) could provide continuous enrichment measurement for 100% of the declared gas flowing through unit header pipes. Unattended Cylinder Verification Stations (UCVS) could provide unattended verification of the declared uranium mass and enrichment of 100% of the cylinders moving through the plant, but also apply and verify an ‘NDA Fingerprint’ to preserve verification knowledge on the contents of each cylinder throughout its life in the facility. Sharing of the operator’s load cell signals from feed and withdrawal stations could count all cylinders introduced to the process and provide periodic monitoring of the uranium mass balance for in‑process material. The integration of load cell, OLEM and UCVS data streams offers the possibility for 100% verification of declared cylinder flow, and enables the periodic verification of the declared 235 U mass balance in the plant. These new capabilities would enhance the IAEA

  18. Calculation of parameters for inspection planning and evaluation: low enriched uranium conversion and fuel fabrication facilities

    International Nuclear Information System (INIS)

    Reardon, P.T.; Mullen, M.F.; Harms, N.L.

    1981-02-01

    As part of Task C.35 (Calculation of Parameters for Inspection Planning and Evaluation) of the US Program of Technical Assistance to IAEA Safeguards, Pacific Northwest Laboratory has performed some quantitative analyses of IAEA inspection activities at low-enriched uranium (LEU) conversion and fuel fabrication facilities. This report presents the results and conclusions of those analyses. Implementation of IAEA safeguards at LEU conversion and fuel fabrication facilities must take into account a variety of practical problems and constraints. One of the key concerns is the problem of flow verification, especially product verification. The objective of this report is to help put the problem of flow verification in perspective by presenting the results of some specific calculations of inspection effort and probability of detection for various product measurement strategies. In order to provide quantitative information about the advantages and disadvantages of the various strategies, eight specific cases were examined

  19. Increased capability of Strassy: the decision making aid for the inspection of nuclear materials; Prolongement des capacites de Strassy: systeme d`aide a la decision pour le controle des matieres nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Werkoff, F [CEA Centre d` Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Preston, N [CEA Centre d` Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; [CRIL-Ingenierie, 92 -Puteaux (France); Le Manchec, K [CRIL-Ingenierie, 92 - Puteaux (France); Dumas, M [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Reacteurs Nucleaires

    1994-12-31

    The paper describes the latest developments in STRASSY (Strategy Assistance System), the strategy assistance system for the inspection of nuclear materials. The user can now select the fuel cycle he wishes to investigate from an initial range of 19 facilities. An inspection interface has been developed to enable the details and dates of inspections to be modified. One of the special features of the application of STRASSY in international safeguards is the taking into account of timeliness of detection; certain aspects of the time manager algorithms are presented and analysed, including the guaranteed existence of a solution. The results of a study of diversion paths in a simplified cycle consisting of our facilities are presented. Finally, the modifications necessary to enable STRASSY to be used for a posterior analysis of inspection results are discussed. (authors). 7 refs., 3 figs.

  20. The use of kragten spreadsheets for uncertainty evaluation of uranium potentiometric analysis by the Brazilian Safeguards Laboratory

    International Nuclear Information System (INIS)

    Silva, Jose Wanderley S. da; Barros, Pedro Dionisio de; Araujo, Radier Mario S. de

    2009-01-01

    In safeguards, independent analysis of uranium content and enrichment of nuclear materials to verify operator's declarations is an important tool to evaluate the accountability system applied by nuclear installations. This determination may be performed by nondestructive (NDA) methods, generally done in the field using portable radiation detection systems, or destructive (DA) methods by chemical analysis when more accurate and precise results are necessary. Samples for DA analysis are collected by inspectors during safeguards inspections and sent to Safeguards Laboratory (LASAL) of the Brazilian Nuclear Energy Commission - (CNEN), where the analysis take place. The method used by LASAL for determination of uranium in different physical and chemical forms is the Davies and Gray/NBL using an automatic potentiometric titrator, which performs the titration of uranium IV by a standard solution of K 2 Cr 2 O 7 . Uncertainty budgets have been determined based on the concepts of the ISO 'Guide to the Expression of Uncertainty in Measurement' (GUM). In order to simplify the calculation of the uncertainty, a computational tool named Kragten Spreadsheet was used. Such spreadsheet uses the concepts established by the GUM and provides results that numerically approximates to those obtained by propagation of uncertainty with analytically determined sensitivity coefficients. The main parameters (input quantities) interfering on the uncertainty were studied. In order to evaluate their contribution in the final uncertainty, the uncertainties of all steps of the analytical method were estimated and compiled. (author)

  1. Networking of safeguards systems

    International Nuclear Information System (INIS)

    Chare, P.; Dutrannois, A.; Kloeckner, W.; Swinhoe, M.

    1995-01-01

    This paper discusses the design of a safeguards system that can be incorporated into a plant during the final phase of its construction to permit the acquisition and transmission of data during plant operation in the absence of an inspector. The system is an example of a networked data system of weighing, identity, and NDA information. It collects all of its non-surveillance data produced by safeguards equipment in a fuel fabrication plant. The data collection and transfer tasks are carried out by two software packages: NEGUS, a redundant data acquisition system designed to record neutron coincidence data, high-resolution gamma spectra, and sensor data for the NDA information and associated barcode identity information, and BRANCH, which deals with weighing and associated identity information. These processes collect data from local electronics using an ethernet network and provide information to the main review program

  2. Fifty Years of Safeguards under the EURATOM Treaty. A Regulatory Review

    International Nuclear Information System (INIS)

    Patel, B.; Chare, P.

    2007-01-01

    March 2007 marked the 50th anniversary of the signing of one of the founding treaties of the European Community. The EURATOM Treaty has its origins at a time when the stability of energy supplies in Europe was a major concern. Recently, much debate has centred on the possible reform or repeal of some parts of the treaty, given that its original aim was to promote and oversee the development of nuclear energy in Europe. This debate has focused attention on the future contribution of nuclear power to increasing energy demands in an enlarged Europe. However, despite these issues there is near universal agreement that the EURATOM Treaty has played a vital role in the protection of European citizens through the controls required for nuclear materials. Chapter 7 of the treaty (Safeguards) confers wide regulatory powers to the European Commission to ensure that civil nuclear materials are not diverted from their intended use as declared by the operators. This paper describes the early period of operation of the safeguards inspectorate, and gives statistics on the numbers and types of inspections carried out by the EURATOM inspectors, and discusses from an operational point of view the value of inspection activities. Further, a critical appraisal of Articles 77-85 within Chapter 7 is made. The paper also considers those safeguards requirements that are important to strengthen, in order to maintain a strong regulatory system to oversee future challenges, particularly in the context of increasing decommissioning activities within Europe. It is noteworthy that fifty-years after the founding of the treaty, many of the concerns about security of energy supply have re-emerged. It is a measure of the vision and forward thinking of its founders that the treaty has successfully overseen the safe and secure development of nuclear power in Europe (which currently provides a third of its electricity needs) and despite the many changes and developments that have occurred, that the

  3. Safeguards

    International Nuclear Information System (INIS)

    Carchon, R.

    1998-01-01

    Safeguards activities at the Belgian Nuclear Research Centre SCK/CEN answer internal needs, support the Belgian authorities, and support the IAEA. The main objectives of activities concerning safeguards are: (1) to contribute to a prevention of the proliferation of nuclear materials by maintaining an up-to-date expertise in the field of safeguards and providing advice and guidance as well as scientific and technical support to the Belgian authorities and nuclear industry; (2) to improve the qualification and quantification of nuclear materials via nondestructive assay. The main achievements for 1997 are described

  4. A model to improve efficiency and effectiveness of safeguards measures

    International Nuclear Information System (INIS)

    D'Amato, Eduardo; Llacer, Carlos; Vicens, Hugo

    2001-01-01

    verification of nuclear material inventories complemented by containment and surveillance measures and by non- traditional safeguard it is understood the qualitative measures stated in the A.P. The implementation of this integrated system will impact directly in the inspection effort, which will be limited by budget constraints. Besides, considering that the implementation of the new qualitative measures merely added to the traditional ones will substantially increase inspection costs related, not necessarily improving efficiency; it seems reasonable to attempt finding new ways of maintaining an adequate level of detection and deterrence. As a conclusion, an optimization in the distribution of a nearly fix budget must be strongly considered. A nuclear fuel cycle model is proposed where the nuclear power plants are fed with only natural uranium fuels assemblies. The model stated describes some generic sequential stages to be covered. In addition, a generic acquisition path of nuclear material with their strategic value associated is assumed. Many factors had been considered in this analysis, such as the diversion at any stage of the nuclear fuel cycle, the strategic value of the nuclear material and the cost related to make this hypothesis true. In our approach the cost of the detection measure, considerably vary from one stage to another in the nuclear fuel cycle. In this exercise some general bounded conditions are assumed and they are combined with the factors already mentioned. To carry on this study the stages at which the lowest detection probability is got are identified. Once these points had been found, it is possible to define the stages at which the traditional safeguards measures had better been complemented to the non traditional ones without getting as a result any significant decrease of the confidence in the total detection probability, improving safeguard effectiveness and efficiency. (author)

  5. A Safeguardability Check-List for Safeguards by Design

    Energy Technology Data Exchange (ETDEWEB)

    Sevini, F. [European Commission - Joint Research Centre, Institute for Transuranium Elements, Nuclear Security Unit, Ispra (Italy); Renda, G. [European Commission, DG Energy, Directorate E ' Nuclear Safeguards' , Unit 4 ' Inspections: reactors, storages and others facilities, Luxembourg (Luxembourg); Sidlova, V. [European Commission - Joint Research Centre, Institute for Transuranium Elements, Nuclear Security Unit, Ispra (Italy)

    2011-12-15

    Safeguards by design is a complex step-by-step interactive decision process involving various stake-holders and design choices to be made over a certain period of time. The resulting plant design should be a compromise among economical, safety, security and safeguards implementation constraints. Access to technology and equipment, as well as to the nuclear fuel cycle, determines the basic choices that the designer has to make. Once the boundary conditions for a given facility have been fixed, the designer still faces the challenge of setting several design and operational parameters that will require various trade-offs . Concerning safeguards, these can be seen in three groups, i.e. those related to the general design and its intrinsic proliferation resistance; those related to the specific lay-out and planning; those related to the actual safeguards instrumentation, its effectiveness and efficiency. The paper aims at describing a model for a phased, or 'layered' approach to safeguards-by-design, focusing on the example of off-load reactors.

  6. Report on the US Program of Technical Assistance to Safeguards of the International Atomic Energy Agency (POTAS)

    International Nuclear Information System (INIS)

    1981-01-01

    This document summarizes the work done under the US Program of Technical Assistance to IAEA Safeguards (POTAS), providing the US Government, IAEA, and others with a short review of the progress made in the program since its inception. Becaue of the size and complexity of the program, only major accomplishments are presented. These are grouped under the following categories: (1) equipment and standard which cover assay of irradiated and unirradiated nuclear materials, automatic data processing, and physical standards; (2) experts who are involved in technology transfer, training, system design, and safeguard information processing and analysis; (3) system studies which cover diversion hazard analysis, safeguards approaches and application, and inspection effort planning and forecasting; (4) techniques, procedures, and equipment evaluation; (5) training of IAEA inspectors and safeguards specialists from member states. The major achievement has been the provisions of safeguards equipment designed to be reliable, and tamper resistant, some of which have already been in use in the field by inspector or by IAEA staff members in Vienna. These are listed in a table

  7. Safeguards agreement and additional protocol - IAEA instruments for control of nuclear materials distribution and their application in Tajikistan

    International Nuclear Information System (INIS)

    Nasrulloev, Kh.; Mirsaidov, U.

    2010-01-01

    Full text: It is known that IAEA plays an important role in facilitation of nuclear non-proliferation as international authority which carries out nuclear inspections. Republic of Tajikistan in 1997 signed nuclear weapon non-proliferation treaty. Then in 2004 Safeguards agreement, additional protocol and small quantity protocol were signed. During 5 years Republic of Tajikistan submits information on its nuclear activity as declarations, foreseen in article 2.3 of Additional protocol to Safeguards agreement. Currently 66 declarations are submitted. Information required in accordance with Safeguards agreement and Additional Protocol is figured on that IAEA could compile more detailed and exact conception about nuclear activity in Tajikistan and it has the following purpose: information will lead to more transparency, and make it possible to IAEA to ensure with high extent of confidence that in the framework of declared program, any unstated nuclear activity is concealed; the more exact and comprehensive information, the rare is questions and discrepancies are originating; required information is the basis for effective planning and IAEA activity realization, related not only with safeguards implementation in regard to declared nuclear material but also ensuring of confidence in absence of undeclared nuclear activity in Tajikistan. IAEA inspection mission consisting of Messrs. N.Lazarev and F. Coillou visited Dushanbe in 2008 for verification of republic’s declarations on account for and control of nuclear materials under Additional protocol and Small quantity protocol, as well as consultations were provided on correct declaration completing and providing information on all nuclear materials. Besides, in 2006, the training course was conducted in Chkalovsk with participation of Commonwealth of Independent States countries on Safeguards agreement and Additional protocol. These visits and events will facilitate to strengthening of weapons of mass destruction non

  8. Advanced safeguards systems development for chemical processing plants. Final report for Fiscal Year 1979

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1980-01-01

    A computer system is being installed by INEL to test and evaluate safeguards monitoring concepts in an operating nuclear fuel processing plant. Safeguards development sensors and instruments installed in the ICPP provide plant information to a computer data acquisition and analysis system. Objective of the system is to collect data from process and safeguards sensors and show how this data can be analyzed to detect diversion operations or improper plant operation, and to test the performance of the monitoring devices. Approximately one-third of the installation designs and one-eighth of the installations were completed in FY 1979. The ICPP processing schedule for FY 1980 permits installation of the remaining monitoring devices before process startup in the fourth quarter of FY 1980. All computer hardware was delivered and checked out in FY 1979. Computer software system designs were completed with the majority of the programming scheduled for FY 1980. Sensor and instrument development in FY 1979 emphasized device testing for ICPP monitoring applications

  9. Wireless Roadside Inspection Proof of Concept Test Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Capps, Gary J [ORNL; Franzese, Oscar [ORNL; Knee, Helmut E [ORNL; Plate, Randall S [ORNL; Lascurain, Mary Beth [ORNL

    2009-03-01

    The U.S. Department of Transportation (DOT) FMCSA commissioned the Wireless Roadside Inspection (WRI) Program to validate technologies and methodologies that can improve safety through inspections using wireless technologies that convey real-time identification of commercial vehicles, drivers, and carriers, as well as information about the condition of the vehicles and their drivers. It is hypothesized that these inspections will: -- Increase safety -- Decrease the number of unsafe commercial vehicles on the road; -- Increase efficiency -- Speed up the inspection process, enabling more inspections to occur, at least on par with the number of weight inspections; -- Improve effectiveness -- Reduce the probability of drivers bypassing CMV inspection stations and increase the likelihood that fleets will attempt to meet the safety regulations; and -- Benefit industry -- Reduce fleet costs, provide good return-on-investment, minimize wait times, and level the playing field. The WRI Program is defined in three phases which are: Phase 1: Proof of Concept Test (POC) Testing of commercially available off-the-shelf (COTS) or near-COTS technology to validate the wireless inspection concept. Phase 2: Pilot Test Safety technology maturation and back office system integration Phase 3: Field Operational Test Multi-vehicle testing over a multi-state instrumented corridor This report focuses on Phase 1 efforts that were initiated in March, 2006. Technical efforts dealt with the ability of a Universal Wireless Inspection System (UWIS) to collect driver, vehicle, and carrier information; format a Safety Data Message Set from this information; and wirelessly transmit a Safety Data Message Set to a roadside receiver unit or mobile enforcement vehicle.

  10. Quality assurance inspections in the transportation packaging supplier industry

    International Nuclear Information System (INIS)

    Jankovich, J.P.

    1991-01-01

    In this paper the quality assurance inspections of the transportation packaging supplier industry, conducted by the U.S. Nuclear Regulatory Commission (NRC) on a routine basis since 1989 are discussed. The term supplier is used to include designers, fabricators, and distributors that hold NRC approved Quality Assurance Programs and Certificates of Compliance for packagings to transport radioactive materials. The objective of the inspections is to provide assurance that transportation packagings are fabricated and procured in accordance with 10 CFR Parts 21 and 71 requirements. The inspections are conducted in a systematic and comprehensive manner, utilizing uniform inspection techniques in order to assure uniformity and comparability. During the April 1989 and May 1991 period approximately 21 inspections were conducted by the Transportation Branch, Office of Nuclear Material Safety and Safeguards of the NRC. The majority of the findings were identified in the areas of quality assurance procedures, control of special processes (e.g. welding, radiography), and maintenance of QA records

  11. Promoting Safeguards Best Practice through the Asia-Pacific Safeguards Network (APSN)

    International Nuclear Information System (INIS)

    Floyd, R.; Everton, C.; Lestari, S.

    2015-01-01

    There is a growing international focus on effective regulatory oversight of nuclear energy across the three pillars of nuclear safety, security and safeguards. Regarding nuclear safeguards, States in the Asia-Pacific region recognize the importance of cooperation and sharing of experiences to ensure that this is implemented to high international standards. For this reason the Asia-Pacific Safeguards Network (APSN) was formed in 2009 - an informal network of departments, agencies and regulatory authorities with safeguards responsibilities from some 15 countries across the Asia-Pacific region. The objective of APSN it to bring States in the region together to develop practical measures for enhancing effective safeguards implementation, through workshops, sharing experiences and other safeguards projects. APSN works closely with the IAEA to achieve these objectives. This paper will outline the role and objectives of APSN and provide examples of how APSN work together to enhance safeguards effectiveness and raise awareness. The paper will also explore how this model of a broad community of States working together on safeguards could enhance implementation and awareness in other regions of the world. (author)

  12. Human-Centred Computing for Assisting Nuclear Safeguards

    International Nuclear Information System (INIS)

    Szoke, I.

    2015-01-01

    With the rapid evolution of enabling hardware and software, technologies including 3D simulation, virtual reality (VR), augmented reality (AR), advanced user interfaces (UI), and geographical information systems (GIS) are increasingly employed in many aspects of modern life. In line with this, the nuclear industry is rapidly adopting emerging technologies to improve efficiency and safety by supporting planning and optimization of maintenance and decommissioning work, as well as for knowledge management, surveillance, training and briefing field operatives, education, etc. For many years, the authors have been involved in research and development (R&D) into the application of 3D simulation, VR, and AR, for mobile, desktop, and immersive 3D systems, to provide a greater sense of presence and situation awareness, for training, briefing, and in situ work by field operators. This work has resulted in a unique software base and experience (documented in numerous reports) from evaluating the effects of the design of training programmes and briefing sessions on human performance and training efficiency when applying various emerging technologies. In addition, the authors are involved in R&D into the use of 3D simulation, advanced UIs, mobile computing, and GIS systems to support realistic visualization of the combined radiological and geographical environment, as well as acquisition, analyzes, visualization and sharing of radiological and other data, within nuclear installations and their surroundings. The toolkit developed by the authors, and the associated knowledge base, has been successfully applied to various aspects of the nuclear industry, and has great potential within the safeguards domain. It can be used to train safeguards inspectors, brief inspectors before inspections, assist inspectors in situ (data registration, analyzes, and communication), support the design and verification of safeguards systems, conserve data and experience, educate future safeguards

  13. Ultrasonic inspection of heavy section steel components: the PISC II final report

    International Nuclear Information System (INIS)

    Nichols, R.W.; Crutzen, S.

    1988-01-01

    This Symposium represented the end of the PISC (Programme for Inspection of Steel Components), II Round Robin Test Project, and the book is the final report. The contents are divided into three parts: part 1 contains contributions from the PISC Management Group, part II contains individual contributions, part III contains views of Licensing Authorities. All the twenty three papers presented in the three parts are selected for INIS and indexed separately. (author)

  14. Development of safeguards approach for the Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Johnson, S.J.; Abedin-Zadeh, R.; Pearsall, C.; Chesnay, B.; Creusot, C.; Ehinger, M.; Kuhn, E.; Robson, N.; Higuchi, H.; Takeda, S.; Fujimaki, K.; Ai, H.; Uehara, S.; Amano, H.; Hoshi, K.

    2001-01-01

    Full text: The Rokkasho Reprocessing Plant (RRP), which is currently undergoing construction and commissioning by the Japan Nuclear Fuels Limited (JNFL), is scheduled to begin active operations in 2005. The planned operating capacity is 800 tonnes of spent fuel per year containing approximately 8 tonnes of plutonium. The International Atomic Energy Agency (IAEA) and the Japan safeguards authorities are working with JNFL to develop a Safeguards Approach that is both effective and efficient. In order to accomplish this goal, a number of advanced concepts are being introduced and many currently applied safeguards measures are being enhanced. These new and improved techniques and procedures will provide for more sensitive and reliable verification of nuclear material and facility operations while reducing the required inspection effort. The Safeguards Approach incorporates systematic Design Information Examination and Verification (DIE/DIV) during all phases of construction, commissioning and operation. It incorporates installed, unattended radiation and solution measurement and monitoring systems along with a number of inspector attended measurement systems. While many of the measurement systems will be independent-inspector controlled, others will require authentication of a split signal from operator controlled systems. The independent and/or authenticated data from these systems will be transmitted over a network to a central inspector center for evaluation. Near-Real-Time-Accountancy (NRTA) will be used for short period sequential analysis of the operator and inspector data which, when combined with Solution Monitoring data, will provide higher assurance in the verification of nuclear material for timeliness and of the operational status of the facility. Samples will be taken using a facility installed, but IAEA authenticated, automatic sampling system and will then be transferred to a jointly used IAEA-JSGO On-Site Laboratory (OSL). This paper provides an

  15. Safeguards activities in Japan

    International Nuclear Information System (INIS)

    Osabe, Takeshi

    1998-01-01

    Current Japanese State System for Accountancy and Control (SSAC) has been developing and fully satisfies requirements of both IAEA Safeguards and bilateral partners. However, the public attention on the national and international safeguards activities were increased and the safeguards authorities were required to promote the objective assessment of safeguards implementation to avoid mistrust in safeguards activities which directly influence the public acceptance of nuclear energy in itself. Additionally, since Japan has promoted to complete nuclear fuel cycle including spent fuel reprocessing, enrichment and mixed oxide fuel fabrication this would require further assurance of Japanese non-proliferation commitment. Japan supports the introduction of strengthened safeguards. In this context it is particularly important to strengthen the relationship between national and the IAEA safeguards to contribute actively to the IAEA safeguards in development and utilization of new technologies towards more effective and efficient IAEA safeguards

  16. A review of existing model of no-notice randomized inspection and their potential application to model Pu handling facilities

    International Nuclear Information System (INIS)

    Sanborn, J.; Lu, M.S.

    1997-01-01

    Literature regarding two alternative safeguards concepts--randomization and zones--is reviewed. The concepts were introduced in the early 1980's to address the need to make safeguards more efficient in the light of the increasing number of facilities under safeguards and a fixed IAEA inspection budget. The paper discusses literature broadly relating these approaches to IAEA needs and objectives, reports from IAEA consultants meetings, reports of field trials, and other technical papers. The review suggests that the approaches have been extensively considered on a theoretical and practical level, and that the safeguards community endorses them on a conceptual level as potentially valid ways of achieving safeguards objectives. Actual utilization of the ideas in safeguards practice has to proceed on a case-by-case basis, but progress is being made

  17. Safeguards Knowledge Management & Retention at U.S. National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Haddal, Risa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Rebecca [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bersell, Bridget [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Frazar, Sarah [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burbank, Roberta [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevens, Rebecca [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cain, Ron [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kirk, Bernadette [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morell, Sean [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    In 2017, four U.S. National Laboratories collaborated on behalf of DOE/NNSA to explore the safeguards knowledge retention problem, identify possible approaches, and develop a strategy to address it. The one-year effort consisted of four primary tasks. First, the project sought to identify critical safeguards information at risk of loss. Second, a survey and workshop were conducted to assess nine U.S. National Laboratories' efforts to determine current safeguards knowledge retention practices and challenges, and identify best practices. Third, specific tools were developed to identify and predict critical safeguards knowledge gaps and how best to recruit in order to fill those gaps. Finally, based on findings from the first three tasks and research on other organizational approaches to address similar issues, a strategy was developed on potential knowledge retention methods, customized HR policies, and best practices that could be implemented across the National Laboratory Complex.

  18. Integrated software package for nuclear material safeguards in a MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Schreiber, H.J.; Piana, M.; Moussalli, G.; Saukkonen, H.

    2000-01-01

    Since computerized data processing was introduced to Safeguards at large bulk handling facilities, a large number of individual software applications have been developed for nuclear material Safeguards implementation. Facility inventory and flow data are provided in computerized format for performing stratification, sample size calculation and selection of samples for destructive and non-destructive assay. Data is collected from nuclear measurement systems running in attended, unattended mode and more recently from remote monitoring systems controlled. Data sets from various sources have to be evaluated for Safeguards purposes, such as raw data, processed data and conclusions drawn from data evaluation results. They are reported in computerized format at the International Atomic Energy Agency headquarters and feedback from the Agency's mainframe computer system is used to prepare and support Safeguards inspection activities. The integration of all such data originating from various sources cannot be ensured without the existence of a common data format and a database system. This paper describes the fundamental relations between data streams, individual data processing tools, data evaluation results and requirements for an integrated software solution to facilitate nuclear material Safeguards at a bulk handling facility. The paper also explains the basis for designing a software package to manage data streams from various data sources and for incorporating diverse data processing tools that until now have been used independently from each other and under different computer operating systems. (author)

  19. Safeguards resource management

    International Nuclear Information System (INIS)

    Strait, R.S.

    1986-01-01

    Protecting nuclear materials is a challenging problem for facility managers. To counter the broad spectrum of potential threats, facility managers rely on diverse safeguards measures, including elements of physical protection, material control and accountability, and human reliability programs. Deciding how to upgrade safeguards systems involves difficult tradeoffs between increased protection and the costs and operational impact of protection measures. Effective allocation of safeguards and security resources requires a prioritization of system upgrades based on a relative measure of upgrade benefits to upgrade costs. Analytical tools are needed to help safeguards managers measure the relative benefits and costs and allocate their limited resources to achieve balanced, cost-effective protection against the full spectrum of threats. This paper presents a conceptual approach and quantitative model that have been developed by Lawrence Livermore National Laboratory to aid safeguards managers. The model is in the preliminary stages of implementation, and an effort is ongoing to make the approach and quantitative model available for general use. The model, which is designed to complement existing nuclear safeguards evaluation tools, incorporates a variety of factors and integrates information on the likelihood of potential threats, safeguards capabilities to defeat threats, and the relative consequences if safeguards fail. The model uses this information to provide an overall measure for comparing safeguards upgrade projects at a facility

  20. Analysis of the impact of safeguards criteria

    International Nuclear Information System (INIS)

    Mullen, M.F.; Reardon, P.T.

    1981-01-01

    As part of the US Program of Technical Assistance to IAEA Safeguards, the Pacific Northwest Laboratory (PNL) was asked to assist in developing and demonstrating a model for assessing the impact of setting criteria for the application of IAEA safeguards. This report presents the results of PNL's work on the task. The report is in three parts. The first explains the technical approach and methodology. The second contains an example application of the methodology. The third presents the conclusions of the study. PNL used the model and computer programs developed as part of Task C.5 (Estimation of Inspection Efforts) of the Program of Technical Assistance. The example application of the methodology involves low-enriched uranium conversion and fuel fabrication facilities. The effects of variations in seven parameters are considered: false alarm probability, goal probability of detection, detection goal quantity, the plant operator's measurement capability, the inspector's variables measurement capability, the inspector's attributes measurement capability, and annual plant throughput. Among the key results and conclusions of the analysis are the following: the variables with the greatest impact on the probability of detection are the inspector's measurement capability, the goal quantity, and the throughput; the variables with the greatest impact on inspection costs are the throughput, the goal quantity, and the goal probability of detection; there are important interactions between variables. That is, the effects of a given variable often depends on the level or value of some other variable. With the methodology used in this study, these interactions can be quantitatively analyzed; reasonably good approximate prediction equations can be developed using the methodology described here

  1. Safeguards and security. Progress report, August 1982-January 1983

    International Nuclear Information System (INIS)

    Smith, D.B.

    1983-11-01

    Activities are described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. This assistance includes consultation on materials accounting problems, development of specialized techniques and instruments, and comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats a relatively new set of Los Alamos activities aimed at the security of information and computer systems. Our focus this period was on continuing the activities of the Computer Security Center, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, in every case they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in benefiting from field experiences in operating environments

  2. Safeguards and security status report, August 1981-January 1982

    Energy Technology Data Exchange (ETDEWEB)

    Shipley, J.P. (comp.)

    1982-09-01

    From August 1981 through January 1982, the Los Alamos Safeguards and Security Program was involved in many activities that are described in the four parts of this report: Nuclear Facility Safeguards Support, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers those efforts of direct assistance to the Department of Energy and the Nuclear Regulatory Commission licensee facilities. This assistance varies from consultation on materials accounting problems, through development of specialized techniques and devices, to comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards helps make the technology more accessible to those who must apply it. Part 2 concerns a relatively new set of activities at Los Alamos aimed at the security of information and computer systems. The focus this period has been on furthering the development of the Computer Security Center, which provides the basis for encouraging and disseminating the emerging technology. Part 3 describes the development efforts that are essential to continued improvements in the practice of safeguards. Although these projects are properly classified as developmental, in every case they are directed ultimately at recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. In addition, enrichment plant safeguards, especially those concerning the Gaseous Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer.

  3. Safeguards and security status report, August 1981-January 1982

    International Nuclear Information System (INIS)

    Shipley, J.P.

    1982-09-01

    From August 1981 through January 1982, the Los Alamos Safeguards and Security Program was involved in many activities that are described in the four parts of this report: Nuclear Facility Safeguards Support, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers those efforts of direct assistance to the Department of Energy and the Nuclear Regulatory Commission licensee facilities. This assistance varies from consultation on materials accounting problems, through development of specialized techniques and devices, to comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards helps make the technology more accessible to those who must apply it. Part 2 concerns a relatively new set of activities at Los Alamos aimed at the security of information and computer systems. The focus this period has been on furthering the development of the Computer Security Center, which provides the basis for encouraging and disseminating the emerging technology. Part 3 describes the development efforts that are essential to continued improvements in the practice of safeguards. Although these projects are properly classified as developmental, in every case they are directed ultimately at recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. In addition, enrichment plant safeguards, especially those concerning the Gaseous Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer

  4. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pepper,S.; Rosenthal, M.; Fishbone, L.; Occhiogrosso, D.; Carroll, C.; Dreicer, M.; Wallace, R.; Rankhauser, J.

    2008-10-22

    In 2007, the National Nuclear Security Administration's Office of Nonproliferation and International Security (NA-24) completed a yearlong review of the challenges facing the international safeguards system today and over the next 25 years. The study found that without new investment in international safeguards, the U.S. safeguards technology base, and our ability to support International Atomic Energy Agency (IAEA) safeguards, will continue to erode and soon may be at risk. To reverse this trend, the then U.S. Secretary of Energy, Samuel Bodman, announced at the 2007 IAEA General Conference that the Department of Energy (DOE) would launch the Next Generation Safeguards Initiative (NGSI). He stated 'IAEA safeguards must be robust and capable of addressing proliferation threats. Full confidence in IAEA safeguards is essential for nuclear power to grow safely and securely. To this end, the U.S. Department of Energy will seek to ensure that modern technology, the best scientific expertise, and adequate resources are available to keep pace with expanding IAEA responsibilities.' To meet this goal, the NGSI objectives include the recruitment of international safeguards experts to work at the U.S. national laboratories and to serve at the IAEA's headquarters. Part of the latter effort will involve enhancing our existing efforts to place well-qualified Americans in a sufficient number of key safeguards positions within the IAEA's Department of Safeguards. Accordingly, the International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards (ERIS) on October 22 and 23, 2008. The ISPO used a workshop format developed earlier with Sonalysts, Inc., that was followed at the U.S. Support Program's (USSP's) technology road-mapping sessions. ISPO invited participants from the U.S. DOE, the IAEA, the U.S. national laboratories, private industry, academia, and

  5. Safeguards effectiveness evaluations in safeguards planning

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.

    1987-01-01

    This paper describes analytic tools we developed to quantify the effectiveness of safeguards against theft of special nuclear material by insiders. These tools help identify vulnerabilities in existing safeguards, suggest potential improvements, and help assess the benefits of these upgrades prior to implementation. Alone, these tools are not sufficient for safeguards planning, since the cost of implementing all suggested upgrades almost always exceeds the available resources. This paper describes another tool we developed to allow comparsion of benefits of various upgrades to identify those upgrade packages that achieve the greatest improvement in protection for a given cost and to provide a priority ranking among cost-effective packages, thereby helping decision-makers select the upgrades to implement and highlight the mount of residual risk. 5 refs., 3 figs

  6. Nuclear Safeguards Culture

    International Nuclear Information System (INIS)

    Findlay, T.

    2015-01-01

    The paper will consider safeguards culture both at the IAEA and among member states. It will do so through the lens of organizational culture theory and taking into account developments in safeguards since the Iraq case of the early 1990s. The study will seek to identify the current characteristics of safeguards culture and how it has evolved since the 93+2 programme was initiated, as well as considering the roles of the most important purveyors of such culture, including member states and their national safeguards authorities, the General Conference and Board of Governors, the Director General, the Secretariat as a whole, the Safeguards Department and the inspectorate. The question of what might be an optimal safeguards culture at the Agency and among member states will be investigated, along with the issue of how such a culture might be engendered or encouraged. (author)

  7. Challenges for Incorporation of additional safeguards requirements in a fuel fabrication facility in Japan

    International Nuclear Information System (INIS)

    Ishikawa, Tadatsugu; Suzuki, Katsuyuki

    2004-01-01

    Recent introduction of strengthened SG measure (i.e.: SNRI (Short Notice Random Inspection)) necessitated semi-real-time reporting including non-prescribed data in the FA for vital processes. These requirements have been bet by endeavors of both Inspectorates and operators. Using the integrated databases it will also be possible to produce most of reports required for safeguards purposes on a semi-real time basis, albeit with additional investment for softwares. However, in order to fully enjoy the advancements of information technology it is necessary to streamline the legal and procedural platform in addition to technical matters, in particular what are 'must' for safeguards and abolish if they are not really needed anymore. (author)

  8. Japan-IAEA Workshops on Advanced Safeguards for Future Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Hoffheins, B.; Hori, M.; Suzuki, M.; Kuno, Y.; Kimura, N.; Naito, K.; Hosoya, M.; Khlebnikov, N.; Whichello, J.; Zendel, M.

    2010-01-01

    Beginning in 2007, the Japan Atomic Energy Agency (JAEA) and the International Atomic Energy Agency (IAEA) Department of Safeguards initiated a workshop series focused on advanced safeguards technologies for the future nuclear fuel cycle (NFC). The goals for these workshops were to address safeguards challenges, to share implementation experiences, to discuss fuel cycle plans and promising research and development, and to address other issues associated with safeguarding new fuel cycle facilities. Concurrently, the workshops also served to promote dialog and problem solving, and to foster closer collaborations for facility design and planning. These workshops have sought participation from IAEA Member States' support programmes (MSSP), the nuclear industry, R and D organizations, state systems of accounting and control (SSAC), regulators and inspectorates to ensure that all possible stakeholder views can be shared in an open process. Workshop presentations have covered, inter alia, national fuel cycle programs and plans, research progress in proliferation resistance (PR) and safeguardability, approaches for nuclear measurement accountancy of large material throughputs and difficult to access material, new and novel radiation detectors with increased sensitivity and automation, and lessons learned from recent development and operation of safeguards systems for complex facilities and the experiences of integrated safeguards (IS) in Japan. Although the title of the workshops presumes an emphasis on technology, participants recognized that early planning and organization, coupled with close cooperation among stakeholders, that is, through the application of 'Safeguards by Design' (SBD) processes that include nuclear safety and security coordination, 'Remote Inspections' and 'Joint-Use of Equipment (JUE)' would be required to enable more successful implementations of safeguards at future NFC facilities. The needs to cultivate the future workforce, effectively preserve

  9. National Machine Guarding Program: Part 1. Machine safeguarding practices in small metal fabrication businesses.

    Science.gov (United States)

    Parker, David L; Yamin, Samuel C; Brosseau, Lisa M; Xi, Min; Gordon, Robert; Most, Ivan G; Stanley, Rodney

    2015-11-01

    Metal fabrication workers experience high rates of traumatic occupational injuries. Machine operators in particular face high risks, often stemming from the absence or improper use of machine safeguarding or the failure to implement lockout procedures. The National Machine Guarding Program (NMGP) was a translational research initiative implemented in conjunction with two workers' compensation insures. Insurance safety consultants trained in machine guarding used standardized checklists to conduct a baseline inspection of machine-related hazards in 221 business. Safeguards at the point of operation were missing or inadequate on 33% of machines. Safeguards for other mechanical hazards were missing on 28% of machines. Older machines were both widely used and less likely than newer machines to be properly guarded. Lockout/tagout procedures were posted at only 9% of machine workstations. The NMGP demonstrates a need for improvement in many aspects of machine safety and lockout in small metal fabrication businesses. © 2015 The Authors. American Journal of Industrial Medicine published by Wiley Periodicals, Inc.

  10. Study On Safeguard Measures for Implementing Overall Planning of Land Use

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Based on minutely analysing the main problems existing in safeguard measures for implementing a new round of overall planning of land use,this paper constructs implementation security system of overall planning of land use,and puts forward the principles and basis of formulating safeguard measures for implementing overall planning of land use.Finally,this paper establishes the content system of safeguard measures:effectively strengthen social supervision;strengthen administrative management of land use planning;strengthen economic management of land use planning;reinforce the legal status of planning;establish incentive and constraint mechanism for reinforcing implementation;improve support system of planning.

  11. Implementation of integrated safeguards in Nuclear Fuel Plant at Pitesti, Romania

    International Nuclear Information System (INIS)

    Olaru, V.; Ivana, T.; Epure, Gh.

    2009-01-01

    The nuclear activity was conducted for many years in Romania under Traditional Safeguards (TS) and has developed in good conditions the specific nuclear safeguards. Now there is a good opportunity to improve the performance and quality of the safeguards activity and at the same time to increase the accountancy and control of nuclear materials by passing to Integrated Safeguards (IS) implementation. The legal framework is the Law 100/2000 for ratification of the Protocol between Romania and International Atomic Energy Agency (IAEA), additional completion to the Agreement between the Socialist Republic of Romania Government and IAEA relating to safeguards. It is part of the Treaty on the non-proliferation of nuclear weapons published in the Official Gazette no. 3/31 January 1970, and the Additional Protocol published in the Official Gazette no. 295/ 29.06.2000. The first discussion about Integrated Safeguards (IS) between the Nuclear Fuel Plant (FCN) representatives and IAEA inspectors has taken place in June 2005. In Feb. 2007 an IAEA mission visited FCN and established the main steps for implementing the IS. There were visited the storage and the technological flow and it was reviewed the residence times for different nuclear materials, the applied chemical analysis, metrological methods, weighting method and procedures of elaborating the implied documents and lists. At the same time the IAEA and FCN representatives established the main points for implementing the IS at FCN i.e. performing the Short Notice Random Inspections (SNRI), communicating the eligible days for SNRI for each year, communicating the estimated deliveries and shipments for the first quarter and then for the rest of the year, mail box daily declaration (DD) with respect to the residence time for several nuclear materials, advance notification (AN) for each nuclear material transfer (shipments and receipts), etc. At 01 June 2007 Romania has passed officially to Integrated Safeguards and FCN (RO

  12. Report Of The Workshop On Nuclear Facility Design Information Examination And Verification For Safeguards

    International Nuclear Information System (INIS)

    Metcalf, Richard; Bean, Robert

    2009-01-01

    . Consequently, the NNSA Office of International Regimes and Agreements (NA-243) sponsored a team of U.S. Department of Energy National Laboratory nuclear safeguards experts and technologists to conduct a workshop on methods and technologies for improving this activity, under the ASA-100 Advanced Safeguards Approaches Project. The workshop focused on reviewing and discussing the fundamental safeguards needs, and presented technology and/or methods that could potentially address those needs more effectively and efficiently. Conclusions and Recommendations for technology to enhance the performance of DIV inspections are presented by the workshop team.

  13. Building safeguards infrastructure

    International Nuclear Information System (INIS)

    Stevens, Rebecca S.; McClelland-Kerr, John

    2009-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of these three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the growth of nuclear power, and the infrastructure that supports them should be strengthened. The focus of this paper will be on the role safeguards plays in the 3S concept and how to support the development of the infrastructure necessary to support safeguards. The objective of this paper has been to provide a working definition of safeguards infrastructure, and to discuss xamples of how building safeguards infrastructure is presented in several models. The guidelines outlined in the milestones document provide a clear path for establishing both the safeguards and the related infrastructures needed to support the development of nuclear power. The model employed by the INSEP program of engaging with partner states on safeguards-related topics that are of current interest to the level of nuclear development in that state provides another way of approaching the concept of building safeguards infrastructure. The Next Generation Safeguards Initiative is yet another approach that underscored five principal areas for growth, and the United States commitment to working with partners to promote this growth both at home and abroad.

  14. Safeguardability of advanced spent fuel conditioning process

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. K. (Tien K.); Lee, S. Y. (Sang Yoon); Burr, Tom; Russo, P. A. (Phyllis A.); Menlove, Howard O.; Kim, H. D.; Ko, W. I. (Won Il); Park, S. W.; Park, H. S.

    2004-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is an electro-metallurgical treatment technique to convert oxide-type spent nuclear fuel into a metallic form. The Korea Atomic Energy Research Institute (KAERI) has been developing this technology since 1977 for the purpose of spent fuel management and is planning to perform a lab-scale demonstration in 2006. By using of this technology, a significant reduction of the volume and heat load of spent fuel is expected, which would lighten the burden of final disposal in terms of disposal size, safety and economics. In the framework of collaboration agreement to develop the safeguards system for the ACP, a joint study on the safeguardability of the ACP technology has been performed by the Los Alamos National Laboratory (LANL) and the KAERI since 2002. In this study, the safeguardability of the ACP technology was examined for the pilot-scale facility. The process and material flows were conceptually designed, and the uncertainties in material accounting were estimated with international target values.

  15. IAEA safeguards

    International Nuclear Information System (INIS)

    1985-01-01

    IAEA safeguards are a system of technical measures within the framework of international non-proliferation policy entrusted to the IAEA in its Statute and by other treaties. About 98% of the world's nuclear installations outside the nuclear-weapon countries are now under safeguards. This paper gives a review of IAEA activities in this field: objectives, agreements, work and development of staff of the IAEA's Department of Safeguards, instruments and techniques for direct measurement and verification of nuclear material. (author)

  16. Safeguards Implementation Practices Guide on Establishing and Maintaining State Safeguards Infrastructure

    International Nuclear Information System (INIS)

    2015-01-01

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreements. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This

  17. Safeguards and an internationalized nuclear fuel cycle for East Asia

    International Nuclear Information System (INIS)

    Olsen, John

    2005-01-01

    Concerns about nuclear proliferation by means of illicit enrichment of uranium or reprocessing of plutonium suggest limiting those technologies to a few, large facilities. In turn, countries that renounce acquiring those capabilities would be guaranteed fuel cycle services. Interdependence might lead to an Internationalized Nuclear Fuel Cycle (IFC), which could be formalized in voluntary regional compacts to share management of certain facilities. An IFC could add managerial oversight to strengthen the nonproliferation culture in the region and offer cost and efficiency benefits to participating countries, as well. An East Asian IFC would present opportunities to enhance the efficiency and effectiveness of international safeguards by consolidating inspection requirements into relatively few facilities. This may be an opportune time to consider an IFC before the growing national industries each invest in separate facilities. An East Asian IFC regime could minimize international safeguards burdens, strengthen regional non-proliferation cooperation, and help manage future energy costs. (author)

  18. Inventory of safeguards software

    International Nuclear Information System (INIS)

    Suzuki, Mitsutoshi; Horino, Koichi

    2009-03-01

    The purpose of this survey activity will serve as a basis for determining what needs may exist in this arena for development of next-generation safeguards systems and approaches. 23 software tools are surveyed by JAEA and NMCC. Exchanging information regarding existing software tools for safeguards and discussing about a next R and D program of developing a general-purpose safeguards tool should be beneficial to a safeguards system design and indispensable to evaluate a safeguards system for future nuclear fuel facilities. (author)

  19. The safeguards options study

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D. [Los Alamos National Lab., NM (United States); Olsen, A.P.; Roche, C.T.; Rudolph, R.R. [Argonne National Lab., IL (United States); Bieber, A.M.; Lemley, J. [Brookhaven National Lab., Upton, NY (United States); Filby, E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq`s obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state.

  20. The safeguards options study

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D.; Olsen, A.P.; Roche, C.T.; Rudolph, R.R.; Bieber, A.M.; Lemley, J.; Filby, E.

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq's obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state

  1. Safeguards equipment of the future: Integrated monitoring systems and remote monitoring

    International Nuclear Information System (INIS)

    Sonnier, C.S.; Johnson, C.S.

    1994-01-01

    From the beginning, equipment to support IAEA Safeguards could be characterized as that which is used to measure nuclear material, Destructive Assay (DA) and Non Destructive Assay (NDA), and that which is used to provide continuity of knowledge between inspection intervals, Containment ampersand Surveillance (C/S). C/S equipment has often been thought of as Cameras and Seals, with a limited number of monitors being employed as they became available. In recent years, technology has advanced at an extremely rapid rate, and continues to do so. The traditional film cameras are being replaced by video equipment, and fiber optic and electronic seals have come into rather widespread use. Perhaps the most interesting aspect of this evolution, and that which indicates the wave of the future without much question, is the integration of video surveillance and electronic seals with a variety of monitors. This is demonstrated by safeguards systems which are installed in several nuclear facilities in France, Germany, Japan, the UK, the USA, and elsewhere. The terminology of Integrated Monitoring Systems (IMS) has emerged, with the employment of network technology capable of interconnecting all desired elements in a very flexible manner. Also, the technology for transmission of a wide variety of information to off-site locations, termed Remote Monitoring, is in widespread industrial use, requiring very little adaptation for safeguards use. This paper examines the future of the Integrated Monitoring Systems and Remote Monitoring in International Safeguards, including technical and other related factors

  2. Safeguards and nuclear forensics

    International Nuclear Information System (INIS)

    Gangotra, Suresh

    2016-01-01

    Nuclear Safeguards is the detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons, or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by early detection. Safeguards implementation involves nuclear material accounting and containment and surveillance measures. The safeguards are implemented in nuclear facilities by the states, or agencies and International Atomic Energy Agency (IAEA). The measures for the safeguards include nuclear material Accounting (NUMAC) and Containment and surveillance systems. In recent times, there have been advances in safeguards like Near Real Time Monitoring (NRTM), Dynamic Nuclear Material Accounting (DNMA), Safeguards-by-Design (SBD), satellite imagery, information from open sources, remote monitoring etc

  3. Evolution of safeguards systems design

    International Nuclear Information System (INIS)

    Shipley, J.P.; Christensen, E.L.; Dietz, R.J.

    1979-01-01

    Safeguards systems play a vital detection and deterrence role in current nonproliferation policy. These safeguards systems have developed over the past three decades through the evolution of three essential components: the safeguards/process interface, safeguards performance criteria, and the technology necessary to support effective safeguards. This paper discusses the background and history of this evolutionary process, its major developments and status, and the future direction of safeguards system design

  4. Measuring Safeguards Culture

    International Nuclear Information System (INIS)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-01-01

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  5. International safeguards

    International Nuclear Information System (INIS)

    Sanders, B.; Ha Vinh Phuong

    1976-01-01

    Since the start of the post-war era, international safeguards were considered essential to ensure that nuclear materials should not be diverted to unauthorised uses. In parallel, it was proposed to set up an international atomic energy agency within the United Nations through which international cooperation in nuclear matters would be channelled and controlled. Created in 1957, the IAEA was authorized to administer safeguards in connection with any assistance it provided as well as at the request of Member State and of any party to bilateral or multilateral arrangements in its ambit. Today, there are two international treaties requiring that its parties should accept Agency safeguards unilaterally, the Latin America Tlatelolco Treaty of 1967, and the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), operative since 1970, which requires in particular that non-nuclear weapon states should accept Agency safeguards on its peaceful nuclear activities. Thus while NPT covers peaceful nuclear activities indiscriminately in a country, the Agency's original safeguards system is applied according to specific agreements and to given facilities. A basic conflict has now emerged between commercial interests and the increasing wish that transfer of nuclear equipment and know-how should not result in proliferation of military nuclear capacity; however, serious efforts are currently in progress to ensure universal application of IAEA safeguards and to develop them in step with the uses of nuclear energy. (N.E.A.) [fr

  6. Safeguards resource management

    International Nuclear Information System (INIS)

    Strait, R.S.

    1986-01-01

    Protecting nuclear materials is a challenging problem for facility managers. To counter the broad spectrum of potential threats, facility managers rely on diverse safeguards measures, including elements of physical protection, material control and accountability, and human reliability programs. Deciding how to upgrade safeguards systems involves difficult tradeoffs between increased protection and the costs and operational impact of protection measures. Effective allocation of safeguards and security resources requires a prioritization of systems upgrades based on a relative measure of upgrade benefits to upgrade costs. Analytical tools are needed to help safeguards managers measure the relative benefits and cost and allocate their limited resources to achieve balanced, cost-effective protection against the full spectrum of threats. This paper presents a conceptual approach and quantitative model that have been developed by Lawrence Livermore National Laboratory to aid safeguards managers

  7. The evolution of IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make `quantum jump` into new phase characterized by the IAEA as the `Strengthened Safeguards System`. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  8. The evolution of IAEA safeguards

    International Nuclear Information System (INIS)

    1998-01-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make 'quantum jump' into new phase characterized by the IAEA as the 'Strengthened Safeguards System'. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  9. Equipment support for the implementation of safeguards

    International Nuclear Information System (INIS)

    Arlt, R.; Bosler, G.; Goldfarb, M.; Schanfein, M.; Whichello, J.

    2001-01-01

    Full text: The provision of effective, reliable, and user-friendly equipment needed for the implementation of safeguards is one of the main objectives of the Division of Technical Services (SOTS) in the Department of Safeguards. As an outcome of a review by an independent external consultant firm, the instrumentation sections of the SGTS were reorganized in January 2001 into two new sections, the Section for NDA Systems and Seals (TNS) and Section for Installed Systems (TIE). Each section has 'cradle-to-grave' responsibilities for development, implementation, maintenance, and decommissioning of safeguards instruments and measurement systems. Unattended assay, monitoring and surveillance instruments are the responsibility of TIE while attended nondestructive assay (NDA) instruments and seals are handled by TNS. The principal goals of both sections are to define equipment requirements based on Departmental needs, to coordinate Support Programme tasks concerning development and implementation activities, to provide system engineering of commercial components, manage laboratory and to do field testing and prove system suitability for defined safeguards applications. In addition both sections coordinate equipment and supply needs for the Department, including acquisition, preparation, servicing, installation, commissioning, troubleshooting, maintenance and repair, ensuring their availability when needed. As required, TIE and TNS provide specialized field support to the Operations Divisions. Each section is working to standardize equipment as much as possible and reduce the number of instruments performing the same function. This reduces both inspector and technician training, required parts inventories, and overall life-cycle costs. Development based on User Needs from the Operations Divisions follows a strict quality control program that includes a thorough qualification testing procedure with the last phase being field-testing under actual facility conditions. A

  10. Non cooperative games applied to nuclear safeguards; Jeux non-cooperatifs finis appliques a la securite nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Goutal, P

    1997-07-01

    This study presents the utilization of the non cooperative games in the nuclear safeguards. In order to dissuade from possible diversions of nuclear materials, an inspector has to realize a certain number of inspections in a nuclear installation. The inspector has to minimize the detection time of a diversion and the diverter has to maximize this time. A software, JADIS, is realized to obtain optimum inspection strategy for a great number of periods. Another game is studied: the infiltration game. An infiltration agent has to brake into the installation without being headed off. (A.L.B.)

  11. Redefining interrelationship between nuclear safety, nuclear security and safeguards

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2012-01-01

    Since the beginning of this century, the so-called 3Ss (Nuclear Safety, Nuclear Security and Safeguards) have become major regulatory areas for peaceful uses of nuclear energy. In order to rationalize the allocation of regulatory resources, interrelationship of the 3Ss should be investigated. From the viewpoint of the number of the parties concerned in regulation, nuclear security is peculiar with having “aggressors” as the third party. From the viewpoint of final goal of regulation, nuclear security in general and safeguards share the goal of preventing non-peaceful uses of nuclear energy, though the goal of anti-sabotage within nuclear security is rather similar to nuclear safety. As often recognized, safeguards are representative of various policy tools for nuclear non-proliferation. Strictly speaking, it is not safeguards as a policy tool but nuclear non-proliferation as a policy purpose that should be parallel to other policy purposes (nuclear safety and nuclear security). That suggests “SSN” which stands for Safety, Security and Non-proliferation is a better abbreviation rather than 3Ss. Safeguards as a policy tool should be enumerated along with nuclear safety regulation, nuclear security measures and trade controls on nuclear-related items. Trade controls have been playing an important role for nuclear non-proliferation. These policy tools can be called “SSST” in which Trade controls are also emphasized along with Safety regulation, Security measures and Safeguards. (author)

  12. USSP-IAEA WORKSHOP ON ADVANCED SENSORS FOR SAFEGUARDS

    International Nuclear Information System (INIS)

    PEPPER, S.; QUEIROLO, A.; ZENDEL, M.; WHICHELLO, J.; ANNESE, C.; GRIEBE, J.; GRIEBE, R.

    2007-01-01

    techniques and methods that could be used by the IAEA to strengthen safeguards. Creative thinking was encouraged during discussion of the proposals. On the final day of the workshop, the OAC facilitators summarized the participant's ideas in a combined briefing. This paper will report on the results of the April 2007 USSP-IAEA Workshop on Advanced Sensors for Safeguards and give an overview of the proposed technologies of greatest promise

  13. REPORT OF THE WORKSHOP ON NUCLEAR FACILITY DESIGN INFORMATION EXAMINATION AND VERIFICATION FOR SAFEGUARDS

    Energy Technology Data Exchange (ETDEWEB)

    Richard Metcalf; Robert Bean

    2009-10-01

    in the future. Consequently, the NNSA Office of International Regimes and Agreements (NA-243) sponsored a team of U.S. Department of Energy National Laboratory nuclear safeguards experts and technologists to conduct a workshop on methods and technologies for improving this activity, under the ASA-100 Advanced Safeguards Approaches Project. The workshop focused on reviewing and discussing the fundamental safeguards needs, and presented technology and/or methods that could potentially address those needs more effectively and efficiently. Conclusions and Recommendations for technology to enhance the performance of DIV inspections are presented by the workshop team.

  14. Measuring Safeguards Culture

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-07-19

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  15. Assessment of inspectability of LMFBR designs. Final report

    International Nuclear Information System (INIS)

    1981-09-01

    This two-volume report provides a comprehensive review of the inspectability of specific portions of loop- and pool-type LMFBR (1000-MWe) designs selected by EPRI. The designs were developed during the mid to late 1970s by three independent design teams (General Electric Co., Rockwell International, and Westinghouse) under the sponsorship of DOE (formerly ERDA) and EPRI. The requirements for normal, contingency, and post-repair inspections, addressed in this report, were established from Draft 12 of the ASME Boiler and Pressure Vessel Code, Section XI Division 3, issued in September 1979. These requirements, the intrinsic characteristics of the designs, the environmental (radiation, thermal, and atmospheric) aspects, and the available (present and near-term) inspection techniques, formed the basis for assessing the selected portions of the design or (1) accessibility, (2) feasibility, (3) practicality, and (4) costs to perform the above-specified inspections. Changes and additions fly ash has been as a concrete additive; however, extensive pilot scale development is underway to advance ash use in the TVA region in such areas as mineral and magnetite recovery, and mineral wool insulation. Recommended studies include: (1) the feasibility of converting existing wet fly d by the fuels include: residential (which includes residential and commercial), elthodology will be developed and verified in Phase II

  16. National machine guarding program: Part 1. Machine safeguarding practices in small metal fabrication businesses

    Science.gov (United States)

    Yamin, Samuel C.; Brosseau, Lisa M.; Xi, Min; Gordon, Robert; Most, Ivan G.; Stanley, Rodney

    2015-01-01

    Background Metal fabrication workers experience high rates of traumatic occupational injuries. Machine operators in particular face high risks, often stemming from the absence or improper use of machine safeguarding or the failure to implement lockout procedures. Methods The National Machine Guarding Program (NMGP) was a translational research initiative implemented in conjunction with two workers' compensation insures. Insurance safety consultants trained in machine guarding used standardized checklists to conduct a baseline inspection of machine‐related hazards in 221 business. Results Safeguards at the point of operation were missing or inadequate on 33% of machines. Safeguards for other mechanical hazards were missing on 28% of machines. Older machines were both widely used and less likely than newer machines to be properly guarded. Lockout/tagout procedures were posted at only 9% of machine workstations. Conclusions The NMGP demonstrates a need for improvement in many aspects of machine safety and lockout in small metal fabrication businesses. Am. J. Ind. Med. 58:1174–1183, 2015. © 2015 The Authors. American Journal of Industrial Medicine published by Wiley Periodicals, Inc. PMID:26332060

  17. Quality assurance measures applicable to IAEA anomaly and discrepancy resolution (ISPO Task D.52). Program for technical assistance to IAEA safeguards

    International Nuclear Information System (INIS)

    Harms, N.L.; Smith, B.W.

    1984-11-01

    The International Atomic Energy Agency (IAEA) safeguards program provides assurance to the international community that nations comply with their commitments for the peaceful use of nuclear energy. This assurance is based on the capabilities of the IAEA safeguards program to detect diversion of nuclear material. Anomalies and discrepancies, which occur in the event of a diversion or concealment, are detected as part of the IAEA safeguards program. Anomalies and discrepancies normally result from innocent causes and it is the purpose of the resolution process to determine the significance of them. The IAEA is instituting quality assurance measures for the IAEA inspection process. This paper reviews the anomaly and discrepancy resolution process and describes quality control measures which are the basis for quality assurance. 13 references, 6 tables

  18. The remote monitoring systems LOVER and RECOVER for international safeguards technical, economic and legal aspects

    International Nuclear Information System (INIS)

    Lauppe, W.D.; Stein, G.; Rezniczek, A.; Stienen, U.

    1983-12-01

    The electronic remote monitoring systems RECOVER and LOVER were developed to comply with the IAEA's tasks concerning international nuclear materials safeguards with the aim of reducing the inspection expenditure and enhancing control effectiveness. The present study on the technical, economic and legal aspects of an application of these systems is intended to show possible implications and provide argumentation aids for discussions on the application of these systems. RECOVER and LOVER offer the possibility of establishing a direct communication path between containment and surveillance system (c/s), instruments at the site of application and a central monitoring station. The demonstration versions of both systems have shown that remote interrogation of data under safeguards-specific boundary conditions (e.g. requirement of tamper safety) will be technically feasible. (orig./HP)

  19. Safeguards document (INFCIRC/153) and the new safeguards system

    International Nuclear Information System (INIS)

    Haginoya, Tohru

    1997-01-01

    INFCIRC/153. The NPT covers nuclear weapons and nuclear explosive devices but not other military uses of nuclear materials. The NPT safeguards applies all nuclear materials including undeclared nuclear materials. The protection of commercially sensitive information is important. The new safeguards system. The Model protocol amends INFCIRC/153 (the Protocol prevails). Apply nuclear fuel cycle related activities with no nuclear material. The environmental monitoring is an important measure, but non-weapon countries have no such technology. Impact and benefit from the new system. Simplification of the conventional safeguards. Could possibly define three categories of plutonium. (author)

  20. Los Alamos safeguards program overview and NDA in safeguards

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1988-01-01

    Over the years the Los Alamos safeguards program has developed, tested, and implemented a broad range of passive and active nondestructive analysis (NDA) instruments (based on gamma and x-ray detection and neutron counting) that are now widely employed in safeguarding nuclear materials of all forms. Here very briefly, the major categories of gamma ray and neutron based NDA techniques, give some representative examples of NDA instruments currently in use, and cite a few notable instances of state-of-the-art NDA technique development. Historical aspects and a broad overview of the safeguards program are also presented

  1. Nuclear safeguards policy

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Claims have been made that Australia's nuclear safeguards policy, announced in 1977, has changed. However, examination of the texts of nuclear safeguards agreements negotiated by Australia shows that the policy has been implemented and adhered to. The purpose of these agreements is to obtain assurance that uranium exported is used exclusively for peaceful purposes. The questions of reprocessing, transfer to third countries and the application of IAEA safeguards are discussed

  2. New safeguards system and JNC's activities in the new safeguards system

    International Nuclear Information System (INIS)

    Iwanaga, Masayuki

    2000-01-01

    The Japan Nuclear Fuel Cycle Development Institute (JNC) has been developing the various area of the technology in the nuclear fuel cycle more than 30 years, as the leading organization. Standing on the accumulated experiences through those activities, JNC will construct the new fuel cycle concept based on the principle for safety, environment, economy and nonproliferation. In this process, evaluation of the specific nonproliferation features with the nuclear material control methods taking in to account of the safegurdability might have one of the major importance. On the other hand, recently, in addition to the conventional safeguards (INFCIRC153), an additional protocol (INFCIRC540) which defines the activities that complement the integrity of a member country's declaration has come into effect in several countries, including Japan. IAEA and other international organizations are now discussing the safeguards concept, which integrates the conventional as well as new safeguards measures. In JNC's efforts to construct the new fuel cycle concept, it is necessary to give sufficient consideration to reflect the integrated safeguards concept. In the process of implementing the concept of the new integrated safeguards system, we presume that changes will have to be made in the traditional approach, which mainly deals with nuclear material. It will become necessary to develop a concrete method and approach in order to analyze and evaluate information, and work will have to be undertaken to optimize such a method based on its effects and efficiency. JNC will make contributions to international society by making the best use of its experience and technological infrastructure to reflect further safeguards development program in JNC so that the new IAEA safeguards can be firmly established. Related to this point of view, the following two subjects is to be introduced on the whole; 1. JNC's experiences and expertise of the development of safeguards technology with the fuel

  3. Nuclear safeguards in challenging times [Experts on nuclear safeguards and verification assess the global picture

    International Nuclear Information System (INIS)

    Park, W.S.; Hillerman, J.

    2007-01-01

    Meeting at the IAEA's International Safeguards Symposium in October 2006, more than 500 experts from 60-plus countries and organizations addressed current and future challenges related to safeguards concepts, approaches, technologies, and experience. Sessions addressed five main issues driving developments: Current challenges to the safeguards system; Further strengthening safeguards practices and approaches; Improving the collection and analysis of safeguards information; Advances in safeguards techniques and technology; and Future challenges. Every four to five years, the IAEA brings together safeguards experts from all over the world at international symposia. In October 2001, they met in the shadow of 9/11 and the symposium included a special session on the prevention of nuclear terrorism

  4. Surface Inspection Machine Infrared (SIMIR). Final CRADA report

    Energy Technology Data Exchange (ETDEWEB)

    Powell, G.L. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Neu, J.T.; Beecroft, M. [Surface Optics Corp., San Diego, CA (United States)

    1997-02-28

    This Cooperative Research and Development Agreement was a one year effort to make the surface inspection machine based on diffuse reflectance infrared spectroscopy (Surface Inspection Machine-Infrared, SIMIR), being developed by Surface Optics Corporation, perform to its highest potential as a practical, portable surface inspection machine. The design function of the SIMIR is to inspect metal surfaces for cleanliness (stains). The system is also capable of evaluating graphite-resin systems for cure and heat damage, and for measuring the effects of moisture exposure on lithium hydride, corrosion on uranium metal, and the constituents of and contamination on wood, paper, and fabrics. Over the period of the CRADA, extensive experience with the use of the SIMIR for surface cleanliness measurements have been achieved through collaborations with NASA and the Army. The SIMIR was made available to the AMTEX CRADA for Finish on Yarn where it made a very significant contribution. The SIMIR was the foundation of a Forest Products CRADA that was developed over the time interval of this CRADA. Surface Optics Corporation and the SIMIR have been introduced to the chemical spectroscopy on-line analysis market and have made staffing additions and arrangements for international marketing of the SIMIR as an on-line surface inspection device. LMES has been introduced to a wide range of aerospace applications, the research and fabrication skills of Surface Optics Corporation, has gained extensive experience in the areas of surface cleanliness from collaborations with NASA and the Army, and an extensive introduction to the textile and forest products industries. The SIMIR, marketed as the SOC-400, has filled an important new technology need in the DOE-DP Enhanced Surveillance Program with instruments delivered to or on order by LMES, LANL, LLNL, and Pantex, where extensive collaborations are underway to implement and improve this technology.

  5. Surface Inspection Machine Infrared (SIMIR). Final CRADA report

    International Nuclear Information System (INIS)

    Powell, G.L.; Neu, J.T.; Beecroft, M.

    1997-01-01

    This Cooperative Research and Development Agreement was a one year effort to make the surface inspection machine based on diffuse reflectance infrared spectroscopy (Surface Inspection Machine-Infrared, SIMIR), being developed by Surface Optics Corporation, perform to its highest potential as a practical, portable surface inspection machine. The design function of the SIMIR is to inspect metal surfaces for cleanliness (stains). The system is also capable of evaluating graphite-resin systems for cure and heat damage, and for measuring the effects of moisture exposure on lithium hydride, corrosion on uranium metal, and the constituents of and contamination on wood, paper, and fabrics. Over the period of the CRADA, extensive experience with the use of the SIMIR for surface cleanliness measurements have been achieved through collaborations with NASA and the Army. The SIMIR was made available to the AMTEX CRADA for Finish on Yarn where it made a very significant contribution. The SIMIR was the foundation of a Forest Products CRADA that was developed over the time interval of this CRADA. Surface Optics Corporation and the SIMIR have been introduced to the chemical spectroscopy on-line analysis market and have made staffing additions and arrangements for international marketing of the SIMIR as an on-line surface inspection device. LMES has been introduced to a wide range of aerospace applications, the research and fabrication skills of Surface Optics Corporation, has gained extensive experience in the areas of surface cleanliness from collaborations with NASA and the Army, and an extensive introduction to the textile and forest products industries. The SIMIR, marketed as the SOC-400, has filled an important new technology need in the DOE-DP Enhanced Surveillance Program with instruments delivered to or on order by LMES, LANL, LLNL, and Pantex, where extensive collaborations are underway to implement and improve this technology

  6. Safeguards systems analysis research and development and the practice of safeguards at DOE facilities

    International Nuclear Information System (INIS)

    Zack, N.R.; Thomas, K.E.; Markin, J.T.; Tape, J.W.

    1991-01-01

    Los Alamos Safeguards Systems Group personnel interact with Department of Energy (DOE) nuclear materials processing facilities in a number of ways. Among them are training courses, formal technical assistance such as developing information management or data analysis software, and informal ad hoc assistance especially in reviewing and commenting on existing facility safeguards technology and procedures. These activities are supported by the DOE Office of Safeguards and Security, DOE Operations Offices, and contractor organizations. Because of the relationships with the Operations Office and facility personnel, the Safeguards Systems Group research and development (R and D) staff have developed an understanding of the needs of the entire complex. Improved safeguards are needed in areas such as materials control activities, accountability procedures and techniques, systems analysis and evaluation methods, and material handling procedures. This paper surveys the generic needs for efficient and cost effective enhancements in safeguards technologies and procedures at DOE facilities, identifies areas where existing safeguards R and D products are being applied or could be applied, and sets a direction for future systems analysis R and D to address practical facility safeguards needs

  7. Estimated incremental costs for NRC licensees to implement the US/IAEA safeguards agreement

    International Nuclear Information System (INIS)

    Clark, R.G.; Brouns, R.J.; Chockie, A.D.; Davenport, L.C.; Merrill, J.A.

    1979-01-01

    A study was recently completed for the US Nuclear Regulatory Commision (NRC) by the Pacific Northwest Laboratory (PNL) to identify the incremental cost of implementing the US/IAEA safeguards treaty agreement to eligible NRC licensees. Sources for the study were cost estimates from several licensees who will be affected by the agreement and cost analyses by PNL staff. The initial cost to all eligible licensees to implement the agreement is estimated by PNL to range from $1.9 to $7.2 million. The annual cost to these same licensees for the required accounting and reporting activities is estimated at $0.5 to $1.5 million. Annual inspection costs to the industry for the limited IAEA inspection being assumed is estimated at $80,000 to $160,000

  8. IAEA safeguards assessments

    International Nuclear Information System (INIS)

    Gruemm, H.; Parisick, R.; Pushkarjov, V.; Shea, T.; Brach, E.

    1981-01-01

    This paper describes the safeguards program administered by the IAEA, which must provide assurance to the international community that agency safeguards have the capacity to deter diversion, if contemplated, to detect diversion, if undertaken, and to provide assurance that no diversions have occurred when none are detected. This assurance to the international community is based upon the capability of the Agency's safeguards program to detect diversion and its complementary effect of deterrance

  9. Safeguards for a nuclear weapon convention

    International Nuclear Information System (INIS)

    Fischer, D.

    1999-01-01

    An NDT presupposes a fundamental commitment by all parties to its final objective and hence requires a high and sustained level of confidence amongst all states concerned. The appropriate format for an Nuclear Disarmament Treaty (NDT) would probably be a multilateral treaty open to all states. The treaty must necessarily include the five nuclear weapon states and a procedure would have to be found for securing the ratification of the threshold states without conferring upon them the status of nuclear weapon states. While the IAEA may well be able to carry out the safeguards tasks required by an NDT it would probably be necessary to establish a new international organization to verify the elimination of all nuclear weapons. The experience of UNSCOM and the IAEA in Iraq, and of the IAEA in the DPRK, have shown how difficult the verification of international obligations is in the absence of a commitment to disarm, while the experience of the INF and START treaties, and of the IAEA in South Africa have shown how much simpler it is when the parties concerned are fully committed to the process. Verifying and safeguarding an NDT would be largely an extrapolation of activities already carried out by the nuclear weapon states under the INF and START treaties and by the IAEA in the routine application of safeguards as well as in its less routine work in Iraq, South Africa and the DPRK. Both the verification and safeguarding tasks would be made very much easier if it were possible to bring down to a few hundred the number of nuclear warheads remaining in the hands of any avowed nuclear weapon state, and to conclude a cutoff convention. Experience is needed to show whether the additional safeguards authority accorded to the IAEA by 'programme 93+2' will enable it to effectively safeguard the facilities that would be decommissioned as a result of an NDT and those that would remain in operation to satisfy civilian needs. Subject to this rider and on condition that the IAEA

  10. Safeguards as an evolutionary system

    International Nuclear Information System (INIS)

    Carlson, J.

    1998-01-01

    NPT safeguards pursuant to INFCIRC/153 retain a strong emphasis on materials accountancy, and are primarily concerned with verifying nuclear activities as declared by the State - the correctness of States' declarations. This decade, failure to adequately address the possibility of undeclared nuclear activities - the issue of the completeness of States' declarations - has been recognized as a major shortcoming in the safeguards system. Since the 'classical' safeguards system is unable to provide credible assurance of the absence of clandestine nuclear activities, substantial efforts are being made to strengthen the IAEA's capabilities in this regard. Agreement has been reached on a Model Protocol substantially extending the Agency's authority, and good progress has been made in developing the new approaches, technologies and techniques required to ensure this authority is used effectively. Increasingly, safeguards will involve more qualitative judgements. Transparency will be very important - without a clear understanding by Member States of how the Agency goes about its new tasks and reaches its conclusions about the absence of undeclared activities, the safeguards system will not fulfil its vital confidence-building role. A major theme in current safeguards thinking is integration, the rationalization of classical safeguards with the new safeguards strengthening measures. As part of the rationalization process, it is timely to re-assess traditional safeguards implementation practices. One of these is uniformity in the way safeguards activities are implemented in different States. Another is whether the traditional concept of safeguards confidentiality is consistent with the increasing importance of transparency. (author)

  11. The potential use of domestic safeguards interior monitors in International Safeguards

    International Nuclear Information System (INIS)

    Williams, J.D.; Dupree, S.A.; Sonnier, C.S.

    1998-01-01

    An important future element of International Safeguards instrumentation is expected to be the merging of containment/surveillance and nondestructive assay equipment with domestic physical protection equipment into integrated systems, coupled with remote monitoring. Instrumentation would include interior monitoring and assessment and entry/exit monitoring. Of particular importance is the application of interior monitors in spaces of declared inactivity; for example, in nuclear material storage locations that are entered infrequently. The use of modern interior monitors in International Safeguards offers potential for improving effectiveness and efficiency. Within the context of increased cooperation, one can readily envision increased interaction between International Safeguards and Domestic Safeguards, including increased joint use of State System of Accounting and Control data

  12. Outcome and Perspectives from the First IAEA International Technical Meeting on Statistical Methodologies for Safeguards

    International Nuclear Information System (INIS)

    Norman, C.; Binner, R.; Peter, N. J.; Wuester, J.; Zhao, K.; Krieger, T.; Walczak-Typke, A.C.; Richet, S.; Portaix, C.G.; Martin, K.; Bonner, E.R.

    2015-01-01

    Statistical and probabilistic methodologies have always played a fundamental role in the field of safeguards. In-field inspection approaches are based on sampling algorithms and random verification schemes designed to achieve a designed detection probability for defects of interest (e.g., missing material, indicators of tampering with containment and other equipment, changes of design). In addition, the evaluation of verification data with a view to drawing soundly based safeguards conclusions rests on the application of various advanced statistical methodologies. The considerable progress of information technology in the field of data processing and computational capabilities as well as the evolution of safeguards concepts and the steep increase in the volume of verification data in the last decades call for the review and modernization of safeguards statistical methodologies, not only to improve the efficiency of the analytical processes but also to address new statistical and probabilistic questions. Modern computer-intensive approaches are also needed to fully exploit the large body of verification data collected over the years in the increasing number and diversifying types of nuclear fuel cycle facilities in the world. The first biennial IAEA International Technical Meeting on Statistical Methodologies for Safeguards was held in Vienna from the 16 to 18 October 2013. Recommendations and a working plan were drafted which identify and chart necessary steps to review, harmonize, update and consolidate statistical methodologies for safeguards. Three major problem spaces were identified: Random Verification Schemes, Estimation of Uncertainties and Statistical Evaluation of Safeguards Verification Data for which a detailed list of objectives and actions to be taken were established. Since the meeting, considerable progress was made to meet these objectives. The actions undertaken and their outcome are presented in this paper. (author)

  13. Verifying compliance with nuclear non-proliferation undertakings: IAEA safeguards agreements and additional protocols

    International Nuclear Information System (INIS)

    2008-06-01

    commonly used, for instance, in shielding on radioactive sources used in hospitals. Other radioactive material, such as most radioactive sources and isotopes used in medicine, industry, agriculture, and water resource management, are not the subject of safeguards and need not be reported to the IAEA under safeguards agreements. Reporting depends on the level of nuclear activity in the country. Declarations pursuant to safeguards agreements and additional protocols for States that do not have nuclear facilities are expected to be short and simple. The IAEA has prepared a document, available upon request, which provides guidance on the reporting requirements for such States. More elaborate guidelines have been prepared for States that do have nuclear facilities subject to routine safeguards inspections. Through its activities in the field, the IAEA seeks to verify the correctness and completeness of States' reports and declarations regarding nuclear material. Each State with a comprehensive safeguards agreement is required to establish and maintain a State system of accounting for and control of nuclear material (SSAC), which is the national authority formally designated to keep track of nuclear material and activities in the country. For all States with safeguards agreements in force, the IAEA draws an annual conclusion on the non-diversion of nuclear material and other items placed under safeguard. The IAEA's focal point for the negotiation of safeguards agreements and additional protocols, and the amendment of SQPs, is the Office of External Relations and Policy Coordination. Once a State has decided to conclude such an agreement and/or protocol, or amend its SQP, the IAEA can help the country with the implementation of related legal and technical requirements. The appendix of this publication informs how to conclude a comprehensive Safeguards Agreement and/or an Additional Protocol and provides 3 model notification letters for (a) conclusion of a safeguards agreement, a

  14. Verifying compliance with nuclear non-proliferation undertakings: IAEA safeguards agreements and additional protocols

    International Nuclear Information System (INIS)

    2008-04-01

    commonly used, for instance, in shielding on radioactive sources used in hospitals. Other radioactive material, such as most radioactive sources and isotopes used in medicine, industry, agriculture, and water resource management, are not the subject of safeguards and need not be reported to the IAEA under safeguards agreements. Reporting depends on the level of nuclear activity in the country. Declarations pursuant to safeguards agreements and additional protocols for States that do not have nuclear facilities are expected to be short and simple. The IAEA has prepared a document, available upon request, which provides guidance on the reporting requirements for such States. More elaborate guidelines have been prepared for States that do have nuclear facilities subject to routine safeguards inspections. Through its activities in the field, the IAEA seeks to verify the correctness and completeness of States' reports and declarations regarding nuclear material. Each State with a comprehensive safeguards agreement is required to establish and maintain a State system of accounting for and control of nuclear material (SSAC), which is the national authority formally designated to keep track of nuclear material and activities in the country. For all States with safeguards agreements in force, the IAEA draws an annual conclusion on the non-diversion of nuclear material and other items placed under safeguard. The IAEA's focal point for the negotiation of safeguards agreements and additional protocols, and the amendment of SQPs, is the Office of External Relations and Policy Coordination. Once a State has decided to conclude such an agreement and/or protocol, or amend its SQP, the IAEA can help the country with the implementation of related legal and technical requirements. The appendix of this publication informs how to conclude a comprehensive Safeguards Agreement and/or an Additional Protocol and provides 3 model notification letters for (a) conclusion of a safeguards agreement, a

  15. Beyond Human Capital Development: Balanced Safeguards Workforce Metrics and the Next Generation Safeguards Workforce

    International Nuclear Information System (INIS)

    2014-01-01

    Since its establishment in 2008, the Next Generation Safeguards Initiative (NGSI) has achieved a number of objectives under its five pillars: concepts and approaches, policy development and outreach, international nuclear safeguards engagement, technology development, and human capital development (HCD). As a result of these efforts, safeguards has become much more visible as a critical U.S. national security interest across the U.S. Department of Energy (DOE) complex. However, limited budgets have since created challenges in a number of areas. Arguably, one of the more serious challenges involves NGSI's ability to integrate entry-level staff into safeguards projects. Laissez fair management of this issue across the complex can lead to wasteful project implementation and endanger NGSI's long-term sustainability. The authors provide a quantitative analysis of this problem, focusing on the demographics of the current safeguards workforce and compounding pressures to operate cost-effectively, transfer knowledge to the next generation of safeguards professionals, and sustain NGSI safeguards investments.

  16. FY16 Safeguards Technology Cart-Portable Mass Spectrometer Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Cyril V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitten, William B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    The Oak Ridge National Laboratory project for the Next Generation Safeguards Initiative Safeguards Technology Development Subprogram has been involved in the development of a cart portable mass spectrometer based on a Thermo ITQ ion trap mass spectrometer (referred to simply as the ITQ) for the field analysis of 235U/238U ratios in UF6. A recent discovery of the project was that combining CO2 with UF6 and introducing the mixture to the mass spectrometer (MS) appeared to increase the ionization efficiency and, thus, reduce the amount of UF6 needed for an analysis while also reducing the corrosive effects of the sample. However, initial experimentation indicated that mixing parameters should be closely controlled to ensure reproducible results. To this end, a sample manifold (SM) that would ensure the precise mixing of UF6 and CO2 was designed and constructed. A number of experiments were outlined and conducted to determine optimum MS and SM conditions which would provide the most stable isotope ratio analysis. The principal objective of the project was to provide a retrofit ITQ mass spectrometer operating with a SM capable of achieving a variation in precision of less than 1% over 1 hour of sampling. This goal was achieved by project end with a variation in precision of 0.5 to 0.8% over 1 hour of sampling.

  17. Safeguards for the atom

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    the Agency to set up a system of safeguards that would guarantee that no nuclear material at all could be diverted to unauthorized use. What the Agency intends is to apply its safeguards in such a manner as to achieve a high probability of detecting the diversion of even small quantities of materials, and when larger quantities are involved, to make detection almost certain. The need for safeguards would obviously arise in the case of fissile materials, because of their possible use in the production of weapons. The Agency safeguards may, therefore, be applied - depending on the quantity and other factors involved - to all types of these materials, namely natural uranium, thorium, enriched uranium, uranium 235, uranium 233 and plutonium. The greater the quantity of the actual fissile substances involved and the greater the possibility of diversion, the greater will be the need for safeguards. Details of the safeguards procedures are yet to be finally approved. Broadly speaking, they are expected to provide, inter alia, for the approval by the Agency of designs of facilities or installations in which materials subject to Agency safeguards are to be used, processed, recovered, produced or stored; the maintenance by the State concerned of records concerning accountability, inventory, operation and waste disposal; submission of periodic reports to the Agency; the deposit of excess fissile materials with the Agency; and visits by Agency representatives to the locations where the materials or facilities provided by the Agency are in use. Procedures for the application of health and safety measures will be set out in similar detail. The Agency has already provided for the application of Agency safeguards to the project under which Japan has bought from it three tons of natural uranium for use in a research reactor. A number of bilateral agreements also contain clauses referring to the possible application of Agency safeguards to projects to be carried out under the

  18. Safeguards for the atom

    International Nuclear Information System (INIS)

    1959-01-01

    the Agency to set up a system of safeguards that would guarantee that no nuclear material at all could be diverted to unauthorized use. What the Agency intends is to apply its safeguards in such a manner as to achieve a high probability of detecting the diversion of even small quantities of materials, and when larger quantities are involved, to make detection almost certain. The need for safeguards would obviously arise in the case of fissile materials, because of their possible use in the production of weapons. The Agency safeguards may, therefore, be applied - depending on the quantity and other factors involved - to all types of these materials, namely natural uranium, thorium, enriched uranium, uranium 235, uranium 233 and plutonium. The greater the quantity of the actual fissile substances involved and the greater the possibility of diversion, the greater will be the need for safeguards. Details of the safeguards procedures are yet to be finally approved. Broadly speaking, they are expected to provide, inter alia, for the approval by the Agency of designs of facilities or installations in which materials subject to Agency safeguards are to be used, processed, recovered, produced or stored; the maintenance by the State concerned of records concerning accountability, inventory, operation and waste disposal; submission of periodic reports to the Agency; the deposit of excess fissile materials with the Agency; and visits by Agency representatives to the locations where the materials or facilities provided by the Agency are in use. Procedures for the application of health and safety measures will be set out in similar detail. The Agency has already provided for the application of Agency safeguards to the project under which Japan has bought from it three tons of natural uranium for use in a research reactor. A number of bilateral agreements also contain clauses referring to the possible application of Agency safeguards to projects to be carried out under the

  19. U.S. safeguards history and the evolution of safeguards research and development

    International Nuclear Information System (INIS)

    Brenner, L.M.; McDowell, S.C.T.

    1989-01-01

    In discussing the U.S. safeguards history and the evolution of safeguards research and development, five significant eras are identified. The period ending January 1, 1947, may be called the first era. Safeguards as known today did not exist and the classic military approach of security protection applied. The second era covers the period from 1947 to 1954 (when the Atomic Energy Act was completely rewritten to accommodate the then foreseen Civil uses Program and international cooperation in peaceful uses of nuclear energy), and the first steps were taken by the Atomic Energy Commission to establish material accounting records for all source and fissionable materials on inventory. The third era covers the period 1954 through 1968, which focused on nuclear safeguards in its domestic activities and made major policy changes in its approach to material control and accountability. The fourth era, 1968 to 1972 saw a quantum jump in the recognition and need for a significant safeguards research and development program, answered by the formation of a safeguards technical support organization at Brookhaven National Laboratory and a safeguards Laboratory at Los Alamos Scientific Laboratory for the development and application of non-destructive assay technology. The fifth era had its beginning in 1972 with the burgeoning of international terrorism. The corresponding need for a strong physical protection research and development support program was responded to by the Sandia National Laboratory

  20. Tokai advanced safeguards technology exercise task T-F: study of selected capabilities needed to apply DYMAC principles to safeguarding the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Lowry, L.L.; Augustson, R.H.

    1979-10-01

    Selected technical capabilities needed to apply the DYMAC principles to safeguarding the Tokai reproprocessing plant are presented. The measurements needed to close the mass balance around the process line and the analysis methods for assessing the results were investigated. Process conditions at the Tokai plant were used when numerical values were needed to assist the analyis. A rationale is presented for the selection of instruments (x-ray fluorescence spectrometers, x-ray densitometers, and gamma-ray spectrometers) best suited to establishing plutonium concentrations and inventories in the feed tanks. The current state of the art in estimating inventory in contactors is reviewed and profitable directions for further work are recommended. A generalized performance surface has been developed that can measure the diversion sensitivity of the safeguard system when the instrument performance levels, the number of measurements made, and the false alarm probability are specified. An analysis of its application to the Tokai plant is given. Finally, a conceptual approach to the problem of IAEA safeguards verification is discussed. It appears possible that, in the process of verifying, the full power of the plant operator's safeguard system can be brought to the service of the IAEA

  1. Recent advances in safeguards operations

    International Nuclear Information System (INIS)

    Agu, B.; Iwamoto, H.

    1983-01-01

    The facilities and nuclear materials under IAEA safeguards have steadily increased in the past few years with consequent increases in the manpower and effort required for the implementation of effective international safeguards. To meet this challenge, various techniques and instruments have been developed with the assistance, support and cooperation of the Member States. Improved NDA equipment now permits accurate verification of plutonium and HEU bearing items; and optical and TV surveillance systems have improved remarkably. Experience in safeguarding nuclear facilities now includes fast-reactor fuel reprocessing and enrichment plants, even though the Hexapartite Safeguards Project is yet to define an agreed approach for safeguarding enrichment plants. The establishment of field offices now enables the IAEA to adequately implement safeguards at important facilities and also with more effective use of manpower. Closer cooperation with Member States via liaison or similar committees makes for effective safeguards implementation and the speedy solution of attendant problems. The technical support programmes from the Member States continue to provide the basis of the recent advances in safeguards techniques and instrumentation. (author)

  2. The Canadian safeguards program

    International Nuclear Information System (INIS)

    Zarecki, C.W.; Smith, R.M.

    1981-12-01

    In support of the Treaty on the Non-Proliferation of Nuclear Weapons Canada provides technical support to the International Atomic Energy Agency for the development of safeguards relevant to Canadian designed and built nuclear facilities. Some details of this program are discussed, including the philosophy and development of CANDU safeguards systems; the unique equipment developed for these systems; the provision of technical experts; training programs; liaison with other technical organizations; research and development; implementation of safeguards systems at various nuclear facilities; and the anticipated future direction of the safeguards program

  3. IAEA safeguards glossary

    International Nuclear Information System (INIS)

    1980-01-01

    An unambiguous definition and rationalization of many of the terms for the purpose of IAEA safeguards are given, with a view to improving the common understanding of such terms within the international community. The glossary focuses only on safeguards meanings in general, and IAEA meanings in particular, of the terms discussed. Terms belong to the following problems: nuclear and non-nuclear material, nuclear equipment, design of the safeguards approach, nuclear material accountancy, physical standards, sampling, measurements, statistical concepts and others

  4. Implementation of the CNEN's safeguards laboratory

    International Nuclear Information System (INIS)

    Almeida, S.G. de

    1986-01-01

    The International Safeguards Agreements between Brazil and others countries has been concluded with the participation of the International Atomic Energy Agency (AIEA), and involve the Physical Protection and Control of Nuclear Material activities, which set up the National Safeguards System. The Safeguards Laboratory was constructed to the implementation and maintenance of this National Safeguards System, under responsability of CNEN's Safeguards Division, in order to carry out measurements of nuclear materials under safeguards. Technical requirements applied to the construction, setting up and operation of the laboratory are showed. The first results refer to the implementation of safeguards methods and techniques, as well as its participation within international scientific and technical co-operation programs in the safeguards area, through of them we wait its credencement by the AIEA as Regional Safeguards Laboratory for every countries of the Latin America. (Author) [pt

  5. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  6. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  7. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  8. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  9. Nuclear safeguards technology handbook

    International Nuclear Information System (INIS)

    1977-12-01

    The purpose of this handbook is to present to United States industrial organizations the Department of Energy's (DOE) Safeguards Technology Program. The roles and missions for safeguards in the U.S. government and application of the DOE technology program to industry safeguards planning are discussed. A guide to sources and products is included

  10. Nuclear safeguards technology handbook

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    The purpose of this handbook is to present to United States industrial organizations the Department of Energy's (DOE) Safeguards Technology Program. The roles and missions for safeguards in the U.S. government and application of the DOE technology program to industry safeguards planning are discussed. A guide to sources and products is included. (LK)

  11. Safeguards Culture: lesson learned

    International Nuclear Information System (INIS)

    Frazar, S.; Mladineo, S.V.

    2010-01-01

    After the discovery of Iraq's clandestine nuclear program in 1991, the international community developed new tools for evaluating and demonstrating states' nuclear intentions. The International Atomic Energy Agency (IAEA) developed a more holistic approach toward international safeguards verification to garner more complete information about states' nuclear activities. This approach manifested itself in State Level Evaluations, using information from a variety of sources, including the implementation of integrated safeguards in Member States, to reach a broader conclusion. Those wishing to exhibit strong nonproliferation postures to a more critical international community took steps to demonstrate their nonproliferation 'bona fides'. As these Member States signed and brought into force the Additional Protocol, submitted United Nations Security Council Resolution 1540 reports and strengthened their export control laws, the international community began to consider the emergence of so-called safeguards cultures. Today, safeguards culture can be a useful tool for measuring nonproliferation postures, but so far its impact on the international safeguards regime has been under appreciated. There is no agreed upon definition for safeguards culture nor agreement on how it should be measured.

  12. Human performance in nondestructive inspections and functional tests: Final report

    International Nuclear Information System (INIS)

    Harris, D.H.

    1988-10-01

    Human performance plays a vital role in the inspections and tests conducted to assure the physical integrity of nuclear power plants. Even when technically-sophisticated equipment is employed, the outcome is highly dependent on human control actions, calibrations, observations, analyses, and interpretations. The principal consequences of inadequate performance are missed or falsely-reported defects. However, the cost-avoidance that stems from addressing potential risks promptly, and the increasing costs likely with aging plants, emphasize that timeliness and efficiency are important inspection-performance considerations also. Human performance issues were studied in a sample of inspections and tests regularly conducted in nuclear power plants. These tasks, selected by an industry advisory panel, were: eddy-current inspection of steam-generator tubes; ultrasonic inspection of pipe welds; inservice testing of pumps and valves; and functional testing of shock suppressors. Information was obtained for the study from industry and plant procedural documents; training materials; research reports and related documents; interviews with training specialists, inspectors, supervisory personnel, and equipment designers; and first-hand observations of task performance. Eleven recommendations are developed for improving human performance on nondestructive inspections and functional tests. Two recommendations were for the more-effective application of existing knowledge; nine recommendations were for research projects that should be undertaken to assure continuing improvements in human performance on these tasks. 25 refs., 9 figs., 1 tab

  13. Final Report Inspection of Aged/Degraded Containments Program.

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Ellingwood, B R [Georgia Institute of Technology; Oland, C Barry [ORNL

    2005-09-01

    The Inspection of Aged/Degraded Containments Program had primary objectives of (1) understanding the significant factors relating corrosion occurrence, efficacy of inspection, and structural capacity reduction of steel containments and liners of reinforced concrete containments; (2) providing the United States Nuclear Regulatory Commission (USNRC) reviewers a means of establishing current structural capacity margins or estimating future residual structural capacity margins for steel containments, and concrete containments as limited by liner integrity; (3) providing recommendations, as appropriate, on information to be requested of licensees for guidance that could be utilized by USNRC reviewers in assessing the seriousness of reported incidences of containment degradation; and (4) providing technical assistance to the USNRC (as requested) related to concrete technology. Primary program accomplishments have included development of a degradation assessment methodology; reviews of techniques and methods for inspection and repair of containment metallic pressure boundaries; evaluation of high-frequency acoustic imaging, magnetostrictive sensor, electromagnetic acoustic transducer, and multimode guided plate wave technologies for inspection of inaccessible regions of containment metallic pressure boundaries; development of a continuum damage mechanics-based approach for structural deterioration; establishment of a methodology for reliability-based condition assessments of steel containments and liners; and fragility assessments of steel containments with localized corrosion. In addition, data and information assembled under this program has been transferred to the technical community through review meetings and briefings, national and international conference participation, technical committee involvement, and publications of reports and journal articles. Appendix A provides a listing of program reports, papers, and publications; and Appendix B contains a listing of

  14. Implementation of Safeguards for Romania National LOFs

    International Nuclear Information System (INIS)

    Popovici, I.

    2015-01-01

    The safe deployment of nuclear activities in Romania is provided by Law no. 111/1996. The Law was republished based on the provisions of Article II of Law no. 63/2006 for the amendment and addition and was modified and completed by the Law no. 378/2013. The competent national authority in the nuclear field, which has responsibilities of regulation, authorization and control as stipulated in this Law, is the National Commission for Nuclear Activities Control (CNCAN). According to art. 2c), provisions of the Nuclear Law shall apply to production, sitting and construction, supply, leasing, transfer, handling, possession, processing, treatment, use, temporary storage or final disposal, transport, transit, import and export of radiological installations, nuclear and radioactive materials, including nuclear fuel, radioactive waste and ionizing radiation generating devices. With regards to the small holders of nuclear materials, the Romanian legislation takes into account the following safeguards objectives: · Establishing provisions governing the possession, use, transfer, import and export of nuclear materials; · Ensuring the implementation of the safeguards system for accountancy and control of nuclear materials: · Ensuring that all nuclear materials are reported under the provisions of the Safeguards Agreement; · Ensuring that all nuclear activities are declared under the provisions of the Additional Protocol; · Developing and implementing nuclear material accounting and control procedures at all small holders of nuclear materials; · Ensuring training for safeguards staff at all small holders. Based on the provision of Law no. 111/1996 CNCAN has issued a Guidelines for applying of the safeguards by the small holders of nuclear materials from Romania. The guidelines provide specific regulations regarding the movement of the nuclear materials, the accountancy and control of nuclear materials, the containment and surveillance systems for small holders of nuclear

  15. IAEA symposium on international safeguards

    International Nuclear Information System (INIS)

    1999-01-01

    The eighth IAEA Symposium on International Safeguards was organized by the IAEA in cooperation with the Institute of Nuclear Materials Management and the European Safeguards Research and Development Association. It was attended by over 350 specialists and policy makers in the field of nuclear safeguards and verification from more than 50 countries and organizations. The purpose of the Symposium was to foster a broad exchange of information on concepts and technologies related to important developments in the areas of international safeguards and security. For the first time in the history of the symposia, the IAEA is issuing proceedings free of charge to participants on CD-ROM. The twenty-two plenary, technical, and poster sessions featured topics related to technological and policy aspects from national, regional and global perspectives. The theme of the Symposium: Four Decades of Development - Safeguarding into the New Millennium set the stage for the commemoration of a number of significant events in the annals of safeguards. 1997 marked the Fortieth Anniversary of the IAEA, the Thirtieth Anniversary of the Tlatelolco Treaty, and the Twentieth Anniversary of the Department of Safeguards Member State Support Programmes. There were special events and noted presentations featuring these anniversaries and giving the participants an informative retrospective view of safeguards development over the past four decades. The proceedings of this symposium provide the international community with a comprehensive view of where nuclear safeguards and verification stood in 1997 in terms of the growing demands and expectations. The Symposium offered thoughtful perspectives on where safeguards are headed within the broader context of verification issues. As the world of international nuclear verification looks towards the next millennium, the implementation of the expanding and strengthened safeguards system presents formidable challenges

  16. Safeguards uses of confirmatory measurements

    International Nuclear Information System (INIS)

    Coulter, C.A.

    1985-01-01

    An analysis is made of the role of shipper and receiver measurements in safeguarding special nuclear materials (SNM) transferred from one facility to another, with emphasis on the case where the receiver requires an analytical accounting measurement of the transferred SNM and does not need the material for process purposes at the time of receipt. Seven possible diversion periods are considered, ranging from the interval between the shipper's final accounting measurement on the material and the time it is placed in the shipper's vault, through the actual transport of the material between facilities, to the time the material is removed from the receiver's vault and placed in the process. The detection power of various combinations of six possible shipper/receiver measurements for these diversion opportunities is then evaluated; the measurements considered include the shipper's and receiver's accounting measurements, the latter at two possible times, and various nondestructive assay (NDA) confirmatory measurements. It is concluded that all safeguards measurement objectives can be met by a combination of a shipper's accounting measurement at the time the material is removed from the process, an appropriate shipper's NDA confirmatory measurement either immediately after canning or immediately before shipping, an equivalent receiver's NDA confirmatory measurement immediately after the material is received, and a receiver's accounting measurement when the material is placed in the process. Furthermore, it is found that a receiver's analytical accounting measurement immediately after receipt when the material is not yet required for process has dubious safeguards value

  17. Safeguards as catastrophic risk management: insights and projections

    International Nuclear Information System (INIS)

    Leffer, T.N.

    2013-01-01

    The system of international agreements designed to prevent the use of nuclear weapons and to control the spread of nuclear weapons, materials and technologies (collectively referred to as the nuclear arms control and nonproliferation regimes) is posited as humanity.s first attempt to mitigate a man-made global catastrophic risk. By extrapolating general principles of government response to risk from the arms control and nonproliferation regimes, a model of international regime building for catastrophic risk mitigation is constructed. This model provides the context for an examination of the system of safeguards implemented by the International Atomic Energy Agency (IAEA), which serves as the nuclear nonproliferation regime.s verification and enforcement mechanism and thereby constitutes the regime's most completely developed discrete mechanism for risk mitigation (a 'system within a system'). An assessment of the history, evolution and effectiveness of the IAEA safeguards system in the context of the regimes-as-risk-mitigation model reveals some general principles for risk-mitigation regimes which are then applied to the safeguards system to identify ways in which it may be strengthened. Finally, the IAEA safeguards system is posited as the prototype verification/enforcement mechanism for future risk mitigation regimes that governments will be compelled to create in the face of new global catastrophic risks that technological advance will inevitably create. (author)

  18. Lean Construction Applications for Bridge Inspection

    Science.gov (United States)

    2017-10-01

    Lean philosophy was used to analyze the efficiency of bridge inspection. Emphasis was put on identifying activities that add value to the final output, an owner approved bridge inspection report. 26 bridge inspections were shadowed. Time spent on bri...

  19. Technology development for safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Kang, H. Y.; Song, D. Y. [and others

    2005-04-01

    The objective of this project are to establish the safeguards technology of the nuclear proliferation resistance to the facilities which handle with high radioactivity nuclear materials like the spent fuel, to provide the foundation of the technical independency for the establishment of the effective management of domestic spent fuels, and to construct the base of the early introduction of the key technology relating to the back-end nuclear fuel cycle through the development of the safeguards technology of the DFDF of the nuclear non-proliferation. The essential safeguards technologies of the facility such as the measurement and account of nuclear materials and the C/S technology were carried out in this stage (2002-2004). The principal results of this research are the development of error reduction technology of the NDA equipment and a new NDA system for the holdup measurement of process materials, the development of the intelligent surveillance system based on the COM, the evaluation of the safeguardability of the Pyroprocessing facility which is the core process of the nuclear fuel cycle, the derivation of the research and development items which are necessary to satisfy the safeguards criteria of IAEA, and the presentation of the direction of the technology development relating to the future safeguards of Korea. This project is the representative research project in the field of the Korea's safeguards. The safeguards technology and equipment developed while accomplishing this project can be applied to other nuclear fuel cycle facilities as well as DFDF and will be contributed to increase the international confidence in the development of the nuclear fuel cycle facility of Korea and its nuclear transparency.

  20. DOE/ABACC safeguards cooperation

    International Nuclear Information System (INIS)

    Whitaker, J.M.; Toth, P.; Rubio, J.

    1995-01-01

    In 1994, the US Department of Energy (DOE) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) signed a safeguards cooperation agreement. The agreement provides for cooperation in the areas of nuclear material control, accountancy, verification, and advanced containment and surveillance technologies for international safeguards applications. ABACC is an international safeguards organization responsible for verifying the commitments of a 1991 bilateral agreement between Argentina and Brazil in which both countries agreed to submit all nuclear material in all nuclear activities to a Common System of Accounting and Control of Nuclear Materials (SCCC). DOE provides critical assistance (including equipment and training) through the Office of Nonproliferation and National Security to countries and international organizations to enhance their capabilities to control and verify nuclear material inventories. Specific activities initiated under the safeguards agreement include: (1) active US participation in ABACC's safeguards training courses, (2) joint development of specialized measurement training workshops, (3) characterization of laboratory standards, and (4) development and application of an extensive analytical laboratory comparison program. The results realized from these initial activities have been mutually beneficial in regard to strengthening the application of international safeguards in Argentina and Brazil

  1. Investigation of novel spent fuel verification system for safeguard application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Radioactive waste, especially spent fuel, is generated from the operation of nuclear power plants. The final stage of radioactive waste management is disposal which isolates radioactive waste from the accessible environment and allows it to decay. The safety, security, and safeguard of a spent fuel repository have to be evaluated before its operation. Many researchers have evaluated the safety of a repository. These researchers calculated dose to public after the repository is closed depending on their scenario. Because most spent fuel repositories are non-retrievable, research on security or safeguards of spent fuel repositories have to be performed. Design based security or safeguard have to be developed for future repository designs. This study summarizes the requirements of future spent fuel repositories especially safeguards, and suggests a novel system which meets the safeguard requirements. Applying safeguards to a spent fuel repository is becoming increasingly important. The future requirements for a spent fuel repository are suggested by several expert groups, such as ASTOR in IAEA. The requirements emphasizes surveillance and verification. The surveillance and verification of spent fuel is currently accomplished by using the Cerenkov radiation detector while spent fuel is being stored in a fuel pool. This research investigated an advanced spent fuel verification system using a system which converts spent fuel radiation into electricity. The system generates electricity while it is conveyed from a transportation cask to a disposal cask. The electricity conversion system was verified in a lab scale experiment using an 8.51GBq Cs-137 gamma source.

  2. Investigation of novel spent fuel verification system for safeguard application

    International Nuclear Information System (INIS)

    Lee, Haneol; Yim, Man-Sung

    2016-01-01

    Radioactive waste, especially spent fuel, is generated from the operation of nuclear power plants. The final stage of radioactive waste management is disposal which isolates radioactive waste from the accessible environment and allows it to decay. The safety, security, and safeguard of a spent fuel repository have to be evaluated before its operation. Many researchers have evaluated the safety of a repository. These researchers calculated dose to public after the repository is closed depending on their scenario. Because most spent fuel repositories are non-retrievable, research on security or safeguards of spent fuel repositories have to be performed. Design based security or safeguard have to be developed for future repository designs. This study summarizes the requirements of future spent fuel repositories especially safeguards, and suggests a novel system which meets the safeguard requirements. Applying safeguards to a spent fuel repository is becoming increasingly important. The future requirements for a spent fuel repository are suggested by several expert groups, such as ASTOR in IAEA. The requirements emphasizes surveillance and verification. The surveillance and verification of spent fuel is currently accomplished by using the Cerenkov radiation detector while spent fuel is being stored in a fuel pool. This research investigated an advanced spent fuel verification system using a system which converts spent fuel radiation into electricity. The system generates electricity while it is conveyed from a transportation cask to a disposal cask. The electricity conversion system was verified in a lab scale experiment using an 8.51GBq Cs-137 gamma source

  3. Proliferation Resistance and Safeguards by Design: The Safeguardability Assessment Tool Provided by the INPRO Collaborative Project ''INPRO'' (Proliferation Resistance and Safeguardability Assessment)

    International Nuclear Information System (INIS)

    Haas, E.; Chang, H.-L.; Phillips, J.R.; Listner, C.

    2015-01-01

    Since the INPRO Collaborative Project on Proliferation Resistance and Safeguardability Assessment Tools (PROSA) was launched in 2011, Member State experts have worked with the INPRO Section and the IAEA Department of Safeguards to develop a revised methodology for self-assessment of sustainability in the area of proliferation resistance of a nuclear energy system (NES). With the common understanding that there is ''no proliferation resistance without safeguards'' the revised approach emphasizes the evaluation of a new 'User Requirement' for ''safeguardability'', that combines metrics of effective and efficient implementation of IAEA Safeguards including ''Safeguards-by-Design'' principles. The assessment with safeguardability as the key issue has been devised as a linear process evaluating the NES against a ''Basic Principle'' in the area of proliferation resistance, answering fundamental questions related to safeguards: 1) Do a State's legal commitments, policies and practices provide credible assurance of the exclusively peaceful use of the NES, including a legal basis for verification activities by the IAEA? 2) Does design and operation of the NES facilitate the effective and efficient implementation of IAEA safeguards? To answer those questions, a questionnaire approach has been developed that clearly identifies gaps and weaknesses. Gaps include prospects for improvements and needs for research and development. In this context, the PROSA approach assesses the safeguardability of a NES using a layered ''Evaluation Questionnaire'' that defines Evaluation Parameters (EP), EP-related questions, Illustrative Tests and Screening Questions to present and structure the evidence of findings. An integral part of the assessment process is Safeguards-by-Design, the identification of potential diversion, misuse and concealment strategies (coarse diversion path

  4. How safe are nuclear safeguards

    International Nuclear Information System (INIS)

    Sullivan, E.

    1979-01-01

    Reports of weaknesses in IAEA safeguards have alarmed the US and since September 1977, US officials have refused to certify that the IAEA can adequately safeguard nuclear material the US exports. For political reasons, the IAEA safeguards system cannot perform an actual policing role or physically protect strategic material. The IAEA can only send out inspectors to verify bookkeeping and install cameras to sound the alarm should a diversion occur. Based on these IAEA reports and on interviews with scientists and US officials, the following serious problems hampering the Agency's safeguards effort can be identified: no foolproof safeguards for commercial reprocessing plants, uranium enrichment facilities, or fast breeder reactors; equipment failure and unreliable instruments; faulty accounting methods; too few well-trained inspectors; restrictions on where inspectors can go; commercial conflicts. Programs by the US, Canada, West Germany, Japan, and developing nations devised to better safeguards are briefly discussed. Some experts question whether international safeguards can be improved quickly enough to successfully deter nuclear weapons proliferation, given the rapid spread of nuclear technology to the third world

  5. Some developments in safeguards techniques

    International Nuclear Information System (INIS)

    Beets, C.

    1977-01-01

    The fundamental principles of safeguards and the research and development of safeguards techniques are described. Safeguard accountancy based upon the partition of the fuel cycle into suitable material balance areas will be further improved. Implementation of international safeguards in the European fuel fabrication and reprocessing facilities is described. The effectiveness of a material accounting system depends on the quality of the quantitative data. The allocation of the tasks in the framework of an integrated safeguards is concerned with R and D work only and has no bearing on the allocation of the implementation costs. Bulk measurements, sampling and destructive or non-destructive analysis of samples are described for the determination of batch data. Testing of the safeguards techniques as a keystone in relation to plant instrumentation programmes are still being developed throughout the world. In addition to accountancy and control, it also includes an effective physical security program. The system of international safeguards that prevailed in the sixties has been re-modelled to comply with the new requirements of the Non-Proliferation Treaty and with the growth of nuclear energy

  6. Structure of safeguards systems

    International Nuclear Information System (INIS)

    Shipley, J.P.

    1978-06-01

    An effective safeguards system for domestic nuclear fuel cycle facilities consists of several important subsystems that must coordinate their functions with plant management and process control. The safeguards system must not unnecessarily disrupt plant operations, compromise safety requirements, or infringe on employee working conditions. This report describes concepts, which have been developed with the cooperation of the nuclear industry and the safeguards community, for achieving these objectives

  7. Novel technologies for safeguards

    International Nuclear Information System (INIS)

    Annese, C.; Monteith, A.; Whichello, J.

    2009-01-01

    Full-text: The International Atomic Energy Agency (IAEA) Novel Technologies Project is providing access to a wider range of methods and instruments, as well as establishing a systematic mechanism to analyse gaps in the inspectorate's technical support capabilities. The project also targets emerging and future inspectorate needs in the areas of verification and the detection of undeclared nuclear activities, materials, and facilities, providing an effective pathway to technologies in support of safeguards implementation. The identification of safeguards-useful nuclear fuel cycle (NFC) indicators and signatures (I and S) is a fundamental sub-task within the Project. It interfaces with other IAEA efforts currently underway to develop future safeguards approaches through undertaking an in-depth review of NFC processes. Primarily, the sub-task aims to identify unique and safeguards-useful 'indicators', which identify the presence of a particular process, and 'signatures', which emanate from that process when it is in operation. The matching of safeguards needs to detection tool capabilities facilitates the identification of gaps where no current method or instrument exists. The Project has already identified several promising technologies based on atmospheric gas sampling and analysis, laser spectrometry and optically stimulated luminescence. Instruments based on these technologies are presently being developed through support programme tasks with Member States. This paper discusses the IAEA's project, Novel Technologies for the Detection of Undeclared Nuclear Activities, Materials and Facilities and its goal to develop improved methods and instruments. The paper also describes the method that has been devised within the Project to identify safeguards-useful NFC I and S and to determine how the sub-task interfaces with other IAEA efforts to establish emerging safeguards approaches. As with all safeguards-targeted research and development (R and D), the IAEA depends

  8. The Agency's Safeguards System (1965)

    International Nuclear Information System (INIS)

    1965-01-01

    On 28 September 1965 the Board of Governors approved the Agency's revised safeguards system which is set forth in this document for the information of all Members. For ease of reference the revised system may be cited as 'The Agency's Safeguards System (1965)' to distinguish it from the original system - 'The Agency's Safeguards System (1961)'- and from the original system as extended to large reactor facilities - 'The Agency's Safeguards System (1961, as Extended in 1964)'

  9. Synergies across verification regimes: Nuclear safeguards and chemical weapons convention compliance

    International Nuclear Information System (INIS)

    Kadner, Steven P.; Turpen, Elizabeth

    2001-01-01

    In the implementation of all arms control agreements, accurate verification is essential. In setting a course for verifying compliance with a given treaty - whether the NPT or the CWC, one must make a technical comparison of existing information-gathering capabilities against the constraints in an agreement. Then it must be decided whether this level of verifiability is good enough. Generally, the policy standard of 'effective verification' includes the ability to detect significant violations, with high confidence, in sufficient time to respond effectively with policy adjustments or other responses, as needed. It is at this juncture where verification approaches have traditionally diverged. Nuclear safeguards requirements have taken one path while chemical verification methods have pursued another. However, recent technological advances have brought a number of changes affecting verification, and lately their pace has been accelerating. First, all verification regimes have more and better information as a result of new kinds of sensors, imagery, and other technologies. Second, the verification provisions in agreements have also advanced, to include on-site inspections, portal monitoring, data exchanges, and a variety of transparency, confidence-building, and other cooperative measures, Together these developments translate into a technological overlap of certain institutional verification measures such as the NPT's safeguards requirements and the IAEA and the CWC's verification visions and the OPCW. Hence, a priority of international treaty-implementing organizations is exploring the development of a synergistic and coordinated approach to WMD policy making that takes into account existing inter-linkages between nuclear, chemical, and biological weapons issues. Specific areas of coordination include harmonizing information systems and information exchanges and the shared application of scientific mechanisms, as well as collaboration on technological developments

  10. Reliability analysis of safety systems of nuclear power plant and utility experience with reliability safeguarding of systems during specified normal operation

    International Nuclear Information System (INIS)

    Balfanz, H.P.

    1989-01-01

    The paper gives an outline of the methods applied for reliability analysis of safety systems in nuclear power plant. The main tasks are to check the system design for detection of weak points, and to find possibilities of optimizing the strategies for inspection, inspection intervals, maintenance periods. Reliability safeguarding measures include the determination and verification of the broundary conditions of the analysis with regard to the reliability parameters and maintenance parameters used in the analysis, and the analysis of data feedback reflecting the plant response during operation. (orig.) [de

  11. Spent fuel verification options for final repository safeguards in Finland. A study on verification methods, their feasibility and safety aspects

    International Nuclear Information System (INIS)

    Hautamaeki, J.; Tiitta, A.

    2000-12-01

    The verification possibilities of the spent fuel assemblies from the Olkiluoto and Loviisa NPPs and the fuel rods from the research reactor of VTT are contemplated in this report. The spent fuel assemblies have to be verified at the partial defect level before the final disposal into the geologic repository. The rods from the research reactor may be verified at the gross defect level. Developing a measurement system for partial defect verification is a complicated and time-consuming task. The Passive High Energy Gamma Emission Tomography and the Fork Detector combined with Gamma Spectrometry are the most potential measurement principles to be developed for this purpose. The whole verification process has to be planned to be as slick as possible. An early start in the planning of the verification and developing the measurement devices is important in order to enable a smooth integration of the verification measurements into the conditioning and disposal process. The IAEA and Euratom have not yet concluded the safeguards criteria for the final disposal. E.g. criteria connected to the selection of the best place to perform the verification. Measurements have not yet been concluded. Options for the verification places have been considered in this report. One option for a verification measurement place is the intermediate storage. The other option is the encapsulation plant. Crucial viewpoints are such as which one offers the best practical possibilities to perform the measurements effectively and which would be the better place in the safeguards point of view. Verification measurements may be needed both in the intermediate storages and in the encapsulation plant. In this report also the integrity of the fuel assemblies after wet intermediate storage period is assessed, because the assemblies have to stand the handling operations of the verification measurements. (orig.)

  12. Redefining interrelationship between nuclear safety, nuclear security and safeguards

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2011-01-01

    Since the beginning of this century, the so-called 3Ss (Nuclear Safety, Nuclear Security and Safeguards) have become major regulatory areas for peaceful uses of nuclear energy. The importance of the 3Ss is now emphasized to countries which are newly introducing nuclear power generation. However, as role models for those newcomers, existing nuclear power countries are also required to strengthen their regulatory infrastructure for the 3Ss. In order to rationalize the allocation of regulatory resources, interrelationship of the 3Ss should be investigated. From the viewpoint of the number of the parties concerned in regulation, nuclear security is peculiar with having 'aggressors' as the third party. From the viewpoint of final goal of regulation, nuclear security in general and safeguards share the goal of preventing non-peaceful uses of nuclear energy, though the goal of anti-sabotage within nuclear security is rather similar to nuclear safety. As often recognized, safeguards are representative of various policy tools for nuclear non-proliferation. Strictly speaking, it is not safeguards as a policy tool but nuclear non-proliferation as a policy purpose that should be parallel to other policy purposes (nuclear safety and nuclear security). That suggests 'SSN' which stands for Safety, Security and Non-proliferation is a better abbreviation rather than 3Ss. Safeguards as a policy tool should be enumerated along with nuclear safety regulation, nuclear security measures and trade controls on nuclear-related items. Trade controls have been playing an important role for nuclear non-proliferation. These policy tools can be called 'SSST' in which Trade controls are also emphasized along with Safety regulation, Security measures and Safeguards. Recently, it becomes quite difficult to clearly demarcate these policy tools. As nuclear security concept is expanding, the denotation of nuclear security measures is also expanding. Nuclear security measures are more and more

  13. Maintaining continuity of knowledge on safeguards samples

    International Nuclear Information System (INIS)

    Franssen, F.; Islam, A.B.M.N.; Sonnier, C.; Schoeneman, J.L.; Baumann, M.

    1992-01-01

    The conclusions of the vulnerability test on VOPAN (verification of Operator's Analysis) as conducted at Safeguards Analytical Laboratory (ASA) at Seibersdorf, Austria in October 1990 and documented in STR-266, indicate that ''whenever samples are taken for safeguards purposes extreme care must be taken to ensure that they have not been interfered with during the sample taking, transportation, storage or sample preparation process.'' Indeed there exist a number of possibilities to alter the content of a safeguards sample vial from the moment of sampling up to the arrival of the treated (or untreated) sample at SAL. The time lapse between these two events can range from a few days up to months. The sample history over this period can be subdivided into three main sub-periods: (1) the period from when the sampling activities are commenced up to the treatment in the operator's laboratory, (2) during treatment of samples in the operator's laboratory, and finally, (3) the period between that treatment and the arrival of the sample at SAL. A combined effort between the Agency and the United States Support Program to the Agency (POTAS) has resulted in two active tasks and one proposed task to investigate improving the maintenance of continuity of knowledge on safeguards samples during the entire period of their existence. This paper describes the use of the Sample Vial Secure Container (SVSC), of the Authenticated Secure Container System (ASCS), and of the Secure Container for Storage and Transportation of samples (SCST) to guarantee that a representative portion of the solution sample will be received at SAL

  14. Strengthening regional safeguards

    International Nuclear Information System (INIS)

    Palhares, L.; Almeida, G.; Mafra, O.

    1996-01-01

    Nuclear cooperation between Argentina and Brazil has been growing since the early 1980's and as it grew, so did cooperation with the US Department of Energy (DOE). The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was formed in December 1991 to operate the Common System of Accounting and Control of Nuclear Materials (SCCC). In April 1994, ABACC and the DOE signed an Agreement of Cooperation in nuclear material safeguards. This cooperation has included training safeguards inspectors, exchanging nuclear material measurement and containment and surveillance technology, characterizing reference materials, and studying enrichment plant safeguards. The goal of the collaboration is to exchange technology, evaluate new technology in Latin American nuclear facilities, and strengthen regional safeguards. This paper describes the history of the cooperation, its recent activities, and future projects. The cooperation is strongly supported by all three governments: the Republics of Argentina and Brazil and the United States

  15. Concepts on integration of physical protection and material accounting functions in a safeguards system

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1981-01-01

    Concepts on integration of physical protection and material accounting systems to enhance overall safeguards capability are developed and presented. These concepts identify ways in which material accounting systems can be used to enable effective monitoring of authorized movement of nuclear material through physical protection boundaries. Concepts are also discussed for monitoring user access to nuclear material and for tagging user identification to material accounting transactions through physical protection functions. These result in benefits in detecting diversion and in positively tracing material movement. Finally, coordination of safeguards information from both subsystems in such an integrated system through a safeguards coordination center is addressed with emphasis on appropriate response in case of discrepancies

  16. Nuclear safeguards research and development

    Science.gov (United States)

    Henry, C. N.

    1981-11-01

    The status of a nuclear safeguard research and development program is presented. Topics include nondestructive assay technology development and applications, international safeguards, training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  17. Lietuvos Dujos. Inspection of pipeline - Phase 2. Final report. Cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Inspection of pipeline - phase 2 included the following activities: Task 1: On-site training with CP survey equipment combined with a check of CP installations on a pipeline section. Task 2: On-site training with CP survey equipment after remedial work has been done, based on the recommendations given in the task 1 report. Task 3. Assistance to Lietuvos Dujos preparation of a CP survey report. Guidance in how results can be evaluated and main findings reported will be given. Task 4: Assistance to Lietuvos Dujos for installation of two CP stations with anodebed. This final report presents the results of task 2, 3 and 4. Only the major results of task 1 are described, thus the results of task 1 is described in details in the Interim Report, September 1996. (au)

  18. Implementation of Safeguards in Thailand

    International Nuclear Information System (INIS)

    Rueanngoen, A.; Changkrueng, K.; Srijittawa, L.; Mungpayaban, H.; Wititteeranon, A.

    2015-01-01

    Thailand is a non-nuclear weapon state. The non-nuclear activities are mainly medical, agricultural, and industrial. Therefore, Thailand ratified the Nuclear Non-Proliferation Treaty (NPT) since 1972 and has been entry into force of the Comprehensive Safeguards Agreement (INFCIRC 241) since 1974. Based on the INFCIRC 153, Thailand established a system of accounting for and control of all nuclear material subject to safeguards under the Agreement. In order to ensure the peaceful use of nuclear in Thailand the Nuclear-Non- Proliferation Center of Office of Atoms for Peace (NPC, OAP) was established to act as State level Safeguards. NPC is responsible for keeping records and providing information under requirement of Comprehensive Safeguards Agreement. In addition, the strengthening of cooperation and good coordination between Thailand and IAEA are indeed important and necessary to implementation safeguards in country. Based on the report of IAEA safeguards statement, there is no indication of the diversion of nuclear materials or misuse of the facility or the items in Thailand. Up to present, nuclear activities in Thailand are peaceful without diversion of using. This paper reviews the current status of the implementation Safeguards in Thailand. (author)

  19. IAEA safeguard system

    International Nuclear Information System (INIS)

    Pontes, B.C.

    1987-01-01

    The intents of IAEA safeguards, analysing into the IAEA statutes, are presented. The different types of safeguard agreements; the measurements of accounting, containment and caution used by the operator and; the information to be provided and the verification to be developed by IAEA are described. (M.C.K.) [pt

  20. Safeguarding the Plutonium Fuel Cycle

    International Nuclear Information System (INIS)

    Johnson, S.J.; Lockwood, D.

    2013-01-01

    In developing a Safeguards Approach for a plutonium process facility, two general diversion and misuse scenarios must be addressed: 1) Unreported batches of undeclared nuclear material being processed through the plant and bypassing the accountancy measurement points, and 2) The operator removing plutonium at a rate that cannot be detected with confidence due to measurement uncertainties. This paper will look at the implementation of international safeguards at plutonium fuel cycle facilities in light of past lessons learned and current safeguards approaches. It will then discuss technical areas which are currently being addressed as future tools to improve on the efficiency of safeguards implementation, while maintaining its effectiveness. The discussion of new improvements will include: safeguards by design (SBD), process monitoring (PM), measurement and monitoring equipment, and data management. The paper is illustrated with the implementation of international safeguards at the Rokkasho Reprocessing Plant in Japan and its accountancy structure is detailed. The paper is followed by the slides of the presentation

  1. Safeguards agreements - Their legal and conceptual basis

    International Nuclear Information System (INIS)

    Sanders, B.; Rainer, R.H.

    1977-01-01

    The application of Agency safeguards requires treaty arrangements (Safeguards Agreements) between the State or States concerned and the Agency. The authority for the Agency to conclude such agreements and to implement them is provided for in the Agency's Statute. On the basis of the statutory provisions safeguards principles and procedures have been elaborated. These have been laid down in: The Agency's Safeguards System 1965, extended in 1966 and 1968; and the basis for negotiating safeguards agreements with NNWS pursuant to NPT. The verification of the undertaking by the State concerned not to use items subject to safeguards for purposes contrary to the terms of the agreement is ensured through the application of various safeguards measures. Containment and surveillance measures are expected to play an increasingly important role. One of the specific features of NPT Safeguards Agreements is the establishment of national systems of accounting and control of nuclear material. The majority of the agreements concluded under the non-NPT safeguards agreements implement obligations undertaken under co-operation agreements between States for peaceful uses of nuclear energy. These agreements naturally reflect approaches adopted by the parties, in particular regarding the circumstances under which safeguards should be applied. Thus, the concepts used in the non-NPT safeguards agreements and the Safeguards System document, which is incorporated in these agreements by reference, are in continuous evolution. The Agency's Safeguards System document (INFCIRC/66/Rev.2) continues to be supplemented in practical application and through explicit decision by the Board. The non-NPT safeguards agreements contain, besides technical safeguards provisions from this document, and further provision for notification, inventories and financial matters, legal and political provisions such as sanctions in the case of non-compliance, and privileges and immunities. The paper discusses the

  2. IAEA safeguards for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement ofregional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards.

  3. REVIEW OF THE NEGOTIATION OF THE MODEL PROTOCOL ADDITIONAL TO THE AGREEMENT(S) BETWEEN STATE(S) AND THE INTERNATIONAL ATOMIC ENERGY AGENCY FOR THE APPLICATION OF SAFEGUARDS,INFCIRC/540 (Corrected) VOLUME I/III SETTING THE STAGE: 1991-1996.

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.D.; Saum-Manning, L.; Houck, F.; Anzelon, G.

    2010-01-01

    Events in Iraq at the beginning of the 1990s demonstrated that the safeguards system of the International Atomic Energy Agency (IAEA) needed to be improved. It had failed, after all, to detect Iraq's clandestine nuclear weapon program even though some of Iraq's's activities had been pursued at inspected facilities in buildings adjacent to ones being inspected by the IAEA. Although there were aspects of the implementation of safeguards where the IAEA needed to improve, the primary limitations were considered to be part of the safeguards system itself. That system was based on the Nuclear Nonproliferation Treaty of 1970, to which Iraq was a party, and implemented on the basis of a model NPT safeguards agreement, published by the IAEA 1972 as INFCIRC/153 (corrected). The agreement calls for states to accept and for the IAEA to apply safeguards to all nuclear material in the state. Iraq was a party to such an agreement, but it violated the agreement by concealing nuclear material and other nuclear activities from the IAEA. Although the IAEA was inspecting in Iraq, it was hindered by aspects of the agreement that essentially limited its access to points in declared facilities and provided the IAEA with little information about nuclear activities anywhere else in Iraq. As a result, a major review of the NPT safeguards system was initiated by its Director General and Member States with the objective of finding the best means to enable the IAEA to detect both diversions from declared stocks and any undeclared nuclear material or activities in the state. Significant improvements that could be made within existing legal authority were taken quickly, most importantly a change in 1992 in how and when and what design information would be reported to the IAEA. During 1991-1996, the IAEA pursued intensive study, legal and technical analysis, and field trials and held numerous consultations with Member States. The Board of Governors discussed the issue of

  4. Licensee safeguards contingency plans

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The Nuclear Regulatory Commission is amending its regulations to require that licensees authorized to operate a nuclear reactor (other than certain research and test reactors), and those authorized to possess strategic quantities of plutonium, uranium-233, or uranium-235 develop and implement acceptable plans for responding to threats, thefts, and industrial sabotage of licensed nuclear materials and facilities. The plans will provide a structured, orderly, and timely response to safeguards contingencies and will be an important segment of NRC's contingency planning programs. Licensee safeguards contingency plans will result in organizing licensee's safeguards resources in such a way that, in the unlikely event of a safeguards contingency, the responding participants will be identified, their several responsibilities specified, and their responses coordinated

  5. Safeguards challenges of Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Ko, H. S.

    2010-01-01

    Although the safeguards system of Sodium Fast Reactor (SFR) seems similar to that of Light Water Reactor (LWR), it was raised safeguards challenges of SFR that resulted from the visual opacity of liquid sodium, chemical reactivity of sodium and other characteristics of fast reactor. As it is the basic concept stage of the safeguards of SFR in Korea, this study tried to analyze the latest similar study of safeguards issues of the Fast Breeder Reactor (FBR) at Joyo and Monju in Japan. For this reason, this study is to introduce some potential safeguards challenges of Fast Breeder Reactor. With this analysis, future study could be to address the safeguards challenges of SFR in Korea

  6. Improvement of Safeguards Practices in Armenia Through Implementation of Advanced Software

    International Nuclear Information System (INIS)

    Melkumyan, A.; Amirjanyan, A.

    2015-01-01

    The Agreement between the Republic Armenia (RA) and the International Atomic Energy Agency (IAEA) for the Application of Safeguards in connection with Treaty on the Non- Proliferation of Nuclear Weapons was signed on 23.09.1993 and the Protocol Additional to the Safeguards Agreement was ratified on 28.06.2004. In 2007 the RA invited the IAEA ISSAS mission that made recommendations the majority of which have been implemented. The Law of the RA on Safe Utilization of Atomic Energy for Peaceful Purposes establishes the provisions related to the safeguards implementation on state and facility levels, as well as provisions related to preparation and conduct of SG inspections at nuclear facilities and LOFs, preparation and submission of accounting reports and other. The Armenian Nuclear Regulatory Authority is responsible for the safeguards implementation on the state level. The ANRA also maintains the general ledger for LOFs, prepares the accounting reports and submits them to the IAEA. To improve the SG practices and provide with the efficient and continuous control over the nuclear materials, the Nuclear and Radiation Safety Center (ANRA’s TSO) developed an electronic database NUCMAT to maintain an accurate inventory, record all changes and provide recoverable history of all activities related to the nuclear materials present in the RA. The NUCMAT provides with automated access to the information on NM and is aimed to assist in efficient implementation of accounting and control of NM, storing data, generating the accounting reports in the format that meets the IAEA requirements, as well tables and maps and quick access to the data. At present the NUCMAT is in trial use by the ANRA specifically in relation to implementation of the accounting and control of nuclear materials in the LOFs. (author)

  7. The next generation safeguards initiative

    International Nuclear Information System (INIS)

    Tobey, William

    2008-01-01

    NGSI or the Next Generation Safeguards Initiative is designed to revitalize the U.S. safeguards technical base, as well as invest in human resources, and to mobilize our primary asset - the U.S. National Laboratories - as well as industry and academia to restore capabilities. While NGSI is a U.S. effort it is intended to serve as a catalyst for a much broader commitment to international safeguards in partnership with the IAEA and other countries. Initiatives over the last years include such as the Proliferation Security Initiative, UN Security Council Resolution 1540, the Global Initiative to Combat Nuclear Terrorism, and initiatives of the G-8 and NSG to discourage the spread of enrichment and reprocessing. NGSI augments this agenda by providing a means to strengthen the technical and political underpinnings of IAEA safeguards. Priorities and envisioned activities under NGSI are the following. (1) Cooperation with IAEA and others to promote universal adoption of safeguards agreements and the Additional Protocol including greater information sharing between member states and the IAEA, investigation of weaponization and procurement activities, and options to strengthen the state-level approach to safeguards. (2) NGSI anticipates the deployment of new types of reactors and fuel cycle facilities, as well as the need to use limited safeguards resources effectively and efficiently, especially in plants that pose the largest burden specifically complex, bulk-handling facilities. (3) NGSI will encourage a generational improvement in current safeguards technologies including improvement of precision and speed of nuclear measurements, performance of real-time process monitoring and surveillance in unattended mode, enabling in-field, pre-screening and analysis of nuclear and environmental samples, and collection, integration, analysis and archiving safeguards-relevant information from all available sources.(4) NGSI will address human capital management. Training and

  8. Development of Inspection Data Collection and Evaluation System (IDES) for J-MOX (1)

    International Nuclear Information System (INIS)

    Kumakura, Shinichi; Takizawa, Koji; Masuda, Shoichiro; Iso, Shoko; Kikuchi, Masahiro; Hisamatsu, Yoshinori; Kurobe, Hiroko; Kawasue, Akane

    2012-01-01

    'Inspection Data and Collection and Evaluation System' is the system to storage inspection data and operator declaration data collected from various measurement equipments, which are installed in fuel fabrication processes of the large-scale MOX fuel fabrication plant, and to make safeguards evaluation using these data. Nuclear Material Control Center is now developing this system under the project commissioned by JSGO. By last fiscal year, we developed the simulator to simulate fuel fabrication process and generate data simulating in-process material inventory/flow and these measurement data. In addition, we developed a verification evaluation system to calculate various statistics from the simulation data and conduct statistical tests such as NRTA in order to verify the adequacy of material accountancy for the fabrication process. We are currently investigating the adequacy of evaluation itself and effects for evaluation by changing various process factors including unmeasured inventories as well as the adequacy of current safeguards approach. In the presentation, we explain the developed system configuration, calculation method of the simulation etc. and demonstrate same examples of the simulated result on material flow in the fabrication process and a part of the analytical results. (author)

  9. IAEA safeguards for the 21st century

    International Nuclear Information System (INIS)

    1999-01-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement of regional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards

  10. IAEA safeguards approaches and goals

    International Nuclear Information System (INIS)

    Khlebnikov, Nikolai

    2001-01-01

    IAEA safeguards provide a technical means of verifying that political obligations undertaken by States party to international agreements relating to the peaceful uses of nuclear energy are being honored. The Agency assures the international community that States party to Safeguards Agreements are complying with their undertaking not to use facilities and divert nuclear materials from peaceful uses to the manufacture of nuclear explosive devices. The task of IAEA safeguards can be summed up as to detect diversion of nuclear materials committed to peaceful uses of nuclear energy, or the misuse of equipment or facilities subject to certain safeguards agreements, and to deter such diversion or misuse through the risk of early detection. This lecture concentrates on the factors the Agency takes into account in designing and implementing safeguards approaches at facilities. (author)

  11. Smart unattended systems for plutonium safeguards

    International Nuclear Information System (INIS)

    Menlove, H.O.; Abhold, M.; Eccleston, G.; Puckett, J.M.

    1996-01-01

    Large automated facilities for fabricating plutonium fuel present both difficulties and challenges for improved accounting of nuclear materials. The traditional methods of sample measurements, requiring the transfer of the sample from the production line to the assay measurement station, are not possible in automated facilities. The robotics used for automation require special containers for nuclear material that cannot be easily removed from the production line. Safety and radiation protection considerations also require that the assay instrumentation be installed in the fuel production lines because, in general, personnel cannot be in the fuel-handling area with nuclear material during operations. Such operational constraints are common in many of the modern facilities that have been designed for fabricating and processing plutonium fuel. A bilateral safeguards agreement between the US Department of Energy (DOE) and Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan was signed to develop and implement nondestructive assay (NDA) systems to provide continuous safeguards measurements for material accountancy in the robot-automated Plutonium Fuel Fabrication Facility (PFFF). The PFFF assay systems were required to operate in unattended mode with a size and fuel mass capability to match the robotics fuel manipulators. Unattended assay systems reduce the requirement for inspector's oversight of measurement operations, reduce the inspector's workload, and improve inspection efficiencies. In addition, unattended measurements become essential when facility constraints limit the access of inspectors to the operations area during material processing. Authentication techniques were incorporated into the NDA systems so that data obtained from unattended assays could be used by independent inspectors such as the IAEA

  12. Safeguards for nuclear material transparency monitoring

    International Nuclear Information System (INIS)

    MacArthur, D.A.; Wolford, J.K.

    1999-01-01

    The US and the Russian Federation are currently engaged in negotiating or implementing several nuclear arms and nuclear material control agreements. These involve placing nuclear material in specially designed containers within controlled facilities. Some of the agreements require the removal of nuclear components from stockpile weapons. These components are placed in steel containers that are then sealed and tagged. Current strategies for monitoring the agreements involve taking neutron and gamma radiation measurements of components in their containers to monitor the presence, mass, and composition of plutonium or highly enriched uranium, as well as other attributes that indicate the use of the material in a weapon. If accurate enough to be useful, these measurements will yield data containing information about the design of the weapon being monitored. In each case, the design data are considered sensitive by one or both parties to the agreement. To prevent the disclosure of this information in a bilateral or trilateral inspection scenario, so-called information barriers have evolved. These barriers combine hardware, software, and procedural safeguards to contain the sensitive data within a protected volume, presenting to the inspector only the processed results needed for verification. Interlocks and volatile memory guard against disclosure in case of failure. Implementing these safeguards requires innovation in radiation measurement instruments and data security. Demonstrating their reliability requires independent testing to uncover any flaws in design. This study discusses the general problem and gives a proposed solution for a high resolution gamma ray detection system. It uses historical examples to illustrate the evolution of other successful systems

  13. Concerns when designing a safeguards approach for the back-end of the Swedish nuclear fuel cycle

    International Nuclear Information System (INIS)

    Fritzell, Anni

    2006-03-01

    In Sweden, the construction of an encapsulation plant and a geological repository for the final disposal of spent nuclear fuel is planned to start within the next ten years. Due to Sweden's international agreements on non-proliferation, the Swedish safeguards regime must be extended to include these facilities. The geological repository has some unique features, which present the safeguards system with unprecedented challenges. These features include, inter alia, the long period of time that the facility will contain nuclear material and that the disposed nuclear material will be very difficult to access, implying that physical verification of its presence in the repository is not foreseen. This work presents the available techniques for creating a safeguards system for the backend of the Swedish nuclear fuel cycle. Important issues to consider in the planning and implementation of the safeguards system have been investigated, which in some cases has led to an identification of areas needing further research. The results include three proposed options for a safeguards approach, which have been evaluated on the basis of the safeguards authorities' requirements. Also, the evolution and present situation of the work carried out in connection to safeguards for geological repositories has been compiled

  14. Addressing Safeguards Challenges for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Majali, Raed; Yim, Man-Sung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    IAEA safeguard system is considered the corner stone of the international nuclear nonproliferation regime. Effective implementation of this legal instrument enables the IAEA to draw a conclusion with a high degree of confidence on the peaceful use of nuclear material and activities in the state. This paper aims to provide an opportunity to address various challenges encountered by IAEA. Strengthening safeguards system for verification is one of the most urgent challenges facing the IAEA. The IAEA should be able to provide credible assurance not only about declared use of nuclear material and facilities but also about the absence of undeclared material and activities. Implementation of IAEA safeguards continue to play a vital role within the nuclear non-proliferation regime. IAEA must move towards more enhanced safeguards system that is driven by the full use of all the safeguards available relevant information. Safeguards system must be responsive to evolving challenges and continue innovation through efficient implementations of more effective safeguards.

  15. Nuclear safeguards

    International Nuclear Information System (INIS)

    Estrampres, J.

    2010-01-01

    Close cooperation with the Ministry of Industry with representation from the UNESA Safeguards Group, has meant that, after almost two years of intense meetings and negotiations, Spain has a specific plant to plant agreement for the application of Safeguards under this new method. This is an agreement which aims to be a benchmark for all other EU countries, as the IAEA tends to apply a generic agreement that, in many cases, majority interferes in the nuclear power plants own processes. (Author).

  16. Implementing Safeguards-by-Design

    International Nuclear Information System (INIS)

    Bjornard, Trond; Bean, Robert; Durst, Phillip Casey; Hockert, John; Morgan, James

    2010-01-01

    Excerpt Safeguards-by-Design (SBD) is an approach to the design and construction of nuclear facilities whereby safeguards are designed-in from the very beginning. It is a systematic and structured approach for fully integrating international and national safeguards (MC and A), physical security, and other proliferation barriers into the design and construction process for nuclear facilities. SBD is primarily a project management or project coordination challenge, and this report focuses on that aspect of SBD. The present report continues the work begun in 2008 and focuses specifically on the design process, or project management and coordination - the planning, definition, organization, coordination, scheduling and interaction of activities of the safeguards experts and stakeholders as they participate in the design and construction of a nuclear facility. It delineates the steps in a nuclear facility design and construction project, in order to provide the project context within which the safeguards design activities take place, describes the involvement of safeguards experts in the design process, the nature of their analyses, interactions and decisions, as well as describing the documents created and how they are used. Designing and constructing a nuclear facility is an extremely complex undertaking. The stakeholders in an actual project are many - owner, operator, State regulators, nuclear facility primary contractor, subcontractors (e.g. instrument suppliers), architect engineers, project management team, safeguards, safety and security experts, in addition to the IAEA and its team. The purpose of the present report is to provide a common basis for discussions amongst stakeholders to collaboratively develop a SBD approach that will be both practically useful and mutually beneficial. The principal conclusions from the present study are: (1) In the short term, the successful implementation of SBD is principally a project management problem. (2) Life-cycle cost

  17. Implementing The Safeguards-By-Design Process

    International Nuclear Information System (INIS)

    Whitaker, J. Michael; McGinnis, Brent; Laughter, Mark D.; Morgan, Jim; Bjornard, Trond; Bean, Robert; Durst, Phillip; Hockert, John; DeMuth, Scott; Lockwood, Dunbar

    2010-01-01

    The Safeguards-by-Design (SBD) approach incorporates safeguards into the design and construction of nuclear facilities at the very beginning of the design process. It is a systematic and structured approach for fully integrating international and national safeguards for material control and accountability (MC and A), physical protection, and other proliferation barriers into the design and construction process for nuclear facilities. Implementing SBD is primarily a project management or project coordination challenge. This paper focuses specifically on the design process; the planning, definition, organization, coordination, scheduling and interaction of the safeguards experts and stakeholders as they participate in the design and construction of a nuclear facility. It delineates the steps in a nuclear facility design and construction project in order to provide the project context within which the safeguards design activities take place, describes the involvement of the safeguards experts in the design process, the nature of their analyses, interactions and decisions, and describes the documents created and how they are used. This report highlights the project context of safeguards activities, and identifies the safeguards community (nuclear facility operator, designer/builder, state regulator, SSAC and IAEA) must accomplish in order to implement SBD within the project.

  18. Optimizing IAEA Safeguards

    International Nuclear Information System (INIS)

    Varjoranta, Tero

    2016-01-01

    IAEA safeguards make a vital contribution to international security. Through safeguards, the IAEA deters the spread of nuclear weapons and provides credible assurance that States are honouring their international obligations to use nuclear material only for peaceful purposes. Its independent verification work allows the IAEA to facilitate building international confidence and strengthening collective security for all.

  19. IAEA safeguards in new nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Catton, A. [International Atomic Energy Agency, Vienna (Austria); Durbin, K. [United States Department of Energy, Washington, D.C. (United States); Hamilton, A. [International Atomic Energy Agency, Vienna (Austria); Martikka, E. [STUK, Helsinki (Finland); Poirier, S.; Sprinkle, J. K.; Stevens, R. [International Atomic Energy Agency, Vienna (Austria); Whitlock, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The inclusion of international safeguards early in the design of nuclear facilities offers an opportunity to reduce project risk. It also has the potential to minimize the impact of safeguards activities on facility operations. Safeguards by design (SBD) encourages stakeholders to become familiar with the requirements of their safeguards agreements and to decide when and how they will fulfil those requirements. As one example, modular reactors are at a design stage where SBD can have a useful impact. Modular reactors might be turnkey projects where the operator takes ownership after commissioning. This comes with a legal obligation to comply with International Atomic Energy Agency (IAEA) safeguards requirements. Some of the newcomer countries entering the reactor market have little experience with IAEA safeguards and the associated non-proliferation obligations. To reduce delays or cost increments, one can embed safeguards considerations in the bid and design phases of the project, along with the safety and security considerations. SBD does not introduce any new requirements - it is a process whereby facility designers facilitate the implementation of the existing safeguards requirements. In short, safeguards experts share their expertise with the designers and vice versa. Once all parties understand the fundamentals of all of the operational constraints, they are better able to decide how best to address them. This presentation will provide an overview of SBD activities. (author)

  20. Satellite imagery in safeguards: progress and prospects

    International Nuclear Information System (INIS)

    Niemeyer, I.; Listner, C.

    2013-01-01

    The use of satellite imagery has become very important for the verification of the safeguards implementation under the Nuclear Non-Proliferation Treaty (NPT). The main applications of satellite imagery are to verify the correctness and completeness of the member states' declarations, and to provide preparatory information for inspections, complimentary access and other technical visits. If the area of interest is not accessible, remote sensing sensors provide one of the few opportunities of gathering data for nuclear monitoring, as for example in Iraq between 1998 and 2002 or currently in North Korea. Satellite data of all available sensor types contains a considerable amount of safeguard-relevant information. Very high-resolution optical satellite imagery provides the most detailed spatial information on nuclear sites and activities up to 0.41 m resolution, together with up to 8 spectral bands from the visible light and near infrared. Thermal infrared (TIR) images can indicate the operational status of nuclear facilities and help to identify undeclared activities. Hyper-spectral imagery allows a quantitative estimation of geophysical, geochemical and biochemical characteristics of the earth's surface and is therefore useful for assessing, for example, surface cover changes due to drilling, mining and milling activities. Synthetic Aperture Radar (SAR) image data up to 1 m spatial resolution provides an all-weather, day and night monitoring capability. However, the absence (or existence) of nuclear activities can never be confirmed completely based on satellite imagery. (A.C.)

  1. Smart Infrared Inspection System Field Operational Test Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL

    2011-06-01

    The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles passing through the SIRIS system are in need of further inspection by measuring the thermal data from the wheel components. As a vehicle enters the system, infrared cameras on the road measure temperatures of the brakes, tires, and wheel bearings on both wheel ends of commercial motor vehicles (CMVs) in motion. This thermal data is then presented to enforcement personal inside of the inspection station on a user friendly interface. Vehicles that are suspected to have a violation are automatically alerted to the enforcement staff. The main goal of the SIRIS field operational test (FOT) was to collect data to evaluate the performance of the prototype system and determine the viability of such a system being used for commercial motor vehicle enforcement. From March 2010 to September 2010, ORNL facilitated the SIRIS FOT at the Greene County Inspection Station (IS) in Greeneville, Tennessee. During the course of the FOT, 413 CMVs were given a North American Standard (NAS) Level-1 inspection. Of those 413 CMVs, 384 were subjected to a SIRIS screening. A total of 36 (9.38%) of the vehicles were flagged by SIRIS as having one or more thermal issues; with brakes issues making up 33 (91.67%) of those. Of the 36 vehicles flagged as having thermal issues, 31 (86.11%) were found to have a violation and 30 (83.33%) of those vehicles were placed out-of-service (OOS). Overall the enforcement personnel who have used SIRIS for screening purposes have had positive feedback on the potential of SIRIS. With improvements in detection algorithms and stability, the system will be beneficial to the CMV enforcement community and increase overall trooper productivity by accurately identifying a higher percentage of CMVs to be placed OOS with minimal error. No future evaluation of SIRIS has been deemed necessary and specifications for a production system will soon be drafted.

  2. Safeguard Vulnerability Analysis Program (SVAP)

    International Nuclear Information System (INIS)

    Gilman, F.M.; Dittmore, M.H.; Orvis, W.J.; Wahler, P.S.

    1980-01-01

    This report gives an overview of the Safeguard Vulnerability Analysis Program (SVAP) developed at Lawrence Livermore National Laboratory. SVAP was designed as an automated method of analyzing the safeguard systems at nuclear facilities for vulnerabilities relating to the theft or diversion of nuclear materials. SVAP addresses one class of safeguard threat: theft or diversion of nuclear materials by nonviolent insiders, acting individually or in collusion. SVAP is a user-oriented tool which uses an interactive input medium for preprocessing the large amounts of safeguards data. Its output includes concise summary data as well as detailed vulnerability information

  3. Nuclear safeguards: a perspective

    International Nuclear Information System (INIS)

    Walske, C.

    1975-01-01

    Safeguards, both international and domestic, are discussed from the industrial viewpoint. Anti-criminal measures are considered in more detail. Areas of anti-criminal safeguards which need improvement are pointed out; they include communications, recovery force, and accounting

  4. The Safeguards Analytical Laboratory (SAL) in the Agency's safeguards measurement system activity in 1990

    International Nuclear Information System (INIS)

    Bagliano, G.; Cappis, J.; Deron, S.; Parus, J.L.

    1991-05-01

    The IAEA applies Safeguards at the request of a Member State to whole or part of its nuclear materials. The verification of nuclear material accountability still constitutes the fundamental method of control, although sealing and surveillance procedures play an important complementary and increasing role in Safeguards. A small fraction of samples must still be analyzed at independent analytical laboratories using conventional Destructive Analytical (DA) methods of highest accuracy in order to verify that small potential biases in the declarations of the State are not masking protracted diversions of significant quantities of fissile materials. The Safeguards Analytical Laboratory (SAL) is operated by the Agency's Laboratories at Seibersdorf to provide to the Department of Safeguards and its inspectors such off-site Analytical Services, in collaboration with the Network of Analytical Laboratories (NWAL) of the Agency. In the last years SAL and the Safeguards DA Services have become more directly involved in the qualification and utilization of on-site analytical instrumentation such as K-edge X-Ray absorptiometers and quadrupole mass spectrometers. The nature and the origin of the samples analyzed, the measurements usually requested by the IAEA inspectors, the methods and the analytical techniques available at SAL and at the Network of Analytical Laboratories (NWAL) with the performances achieved during the past years are described and discussed in several documents. This report gives an evaluation compared with 1989 of the volume and the quality of the analyses reported in 1990 by SAL and by the NWAL in reply to requests of IAEA Safeguards inspectors. The reports summarizes also on-site DA developments and support provided by SAL to the Division of Safeguards Operation and special training courses to the IAEA Safeguards inspectors. 55 refs, 7 figs, 15 tabs

  5. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  6. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    International Nuclear Information System (INIS)

    Andersson, Christer

    1999-03-01

    feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. It is also demonstrated in the study that more than 20% of the envisaged work tasks in all of the major Safeguards applications will achieve a better decision support from the use of commercial satellite imagery. At the same time the potential savings in costs is calculated to approximately USD 500,000 per year by reductions in on-site inspections and by more efficient planning and logistics. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in this study, is approximately USD 1,500,000 per year. This cost rises when utilising the full potential of high-resolution imagery in all five applications including monitoring and detection of undeclared facilities. The cost/benefit simulation is founded on an activity scenario with a staff of 4 experts working in an IAEA imagery unit with a workload of three dossiers or 'issues' per week. The imagery unit is built around an advanced workstation PC image processing system capable of handling several hundreds of pre-processed imagery per year

  7. Eesti Gaas. Inspection of Kohtal-Jaerve - Tallinn pipeline. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The project `Inspection of Pipelines in Estonia` was funded by Danish government and was carried out in collaboration between DONG, Balslev and FORCE. By agreement between Eesti Gaas and DONG, the pipeline system between Kohtla-Jaerve and Tallinn was selected for inspection. This pipeline system has a total length of 176.9 km. The objective of the project has been, based on detailed inspection of relative short lengths of pipe, to determine the integrity of the pipeline and to give advice concerning the continued use as a high pressure transmission pipeline. The objectives have been met as set out by the project Proposal with the investigation and this report as follows: Based on a document review together with the measurements and observations in the field and in the laboratory, the condition of approximately 5 km of the pipeline has been evaluated; Recommendations are given in this report with the aim of extending the life of the pipeline. A further objective has been to provide know-how transfer in order to permit Eesti Gaas to run similar inspections on other parts of their transmission system. (EG)

  8. Safeguards at Kozloduy NPP - Experience and expectations

    International Nuclear Information System (INIS)

    Elenkov, Todor

    2001-01-01

    Bulgaria is a party of Non Proliferation Treaty since 5 September 1969. The agreement between IAEA and Bulgaria - INFCIRC 178 - has been in force since 29 February 1972. At that time Bulgaria had one research reactor IRT-2000 in Sofia and two power reactors of WWER-440 type under construction. Now at Kozloduy NPP site there are 4 facilities, which consist of 4 WWER-440 and 2 WWER-1000 type power reactors, producing almost 50% of the electricity in Bulgaria and 1 wet away from reactor spent fuel storage. In 1991 under the green movements and social pressure, the research reactor in Sofia was closed and the construction of the second NPP in Belene with 2 WWER-1000 type reactors was halted. After the transfer in 1994 of the fresh fuel from the research reactor to Kozloduy due to security reasons practically NPP Kozloduy remains the only significant (from safeguards point of view) nuclear site in Bulgaria. In 1972 a 'Nuclear Fuel' group was formed at the Physicists Department in NPP Kozloduy with responsibilities to carry out for safeguards records and reports, fresh and spent fuel transport and control. In 1990 this group was transferred to the Safety Section and since 1992 it exists as 'Control and Accounting for of the Nuclear Materials' - a section in the Safety Department. Currently the section serves all four facilities in NPP Kozloduy and has four people: section head, chief inspector and two inspectors. The main activities of the section include: a) Control of the nuclear fuel location as well as meeting the storage and transport conditions regulations; b) Control of the conditions for normal operations of the installed IAEA surveillance systems; c) Preparation of documents for licensing of fresh and spent nuclear fuel transport; d) Preparation of the official information on nuclear materials location and quantity; e) Preparation of accounting records and the reports for IAEA (ICR, PIL, MBR); f) Co-ordination of the IAEA safeguards inspection activities at NPP

  9. Combined SAFE/SNAP approach to safeguards evaluation

    International Nuclear Information System (INIS)

    Engi, D.; Chapman, L.D.; Grant, F.H.; Polito, J.

    1980-01-01

    The scope of a safeguards evaluation model can efficiently address one of two issues: (1) global safeguards effectiveness or (2) vulnerability analysis for individual scenarios. The Safeguards Automated Facility Evaluation (SAFE) focuses on the first issue, while the Safeguards Network Analysis Procedure (SNAP) is directed towards the second. A combined SAFE/SNAP approach to the problem of safeguards evaluation is described and illustrated through an example. 4 refs

  10. Building safeguards infrastructure

    International Nuclear Information System (INIS)

    McClelland-Kerr, J.; Stevens, J.

    2010-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the clean and safe growth of nuclear power, and the infrastructure that supports these three areas should be robust. The focus of this paper will be on the development of the infrastructure necessary to support safeguards, and the integration of safeguards infrastructure with other elements critical to ensuring nuclear energy security

  11. Overview of the Facility Safeguardability Analysis (FSA) Process

    Energy Technology Data Exchange (ETDEWEB)

    Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Scott J.; Wigeland, Roald; Zentner, Michael D.

    2012-08-01

    Executive Summary The safeguards system of the International Atomic Energy Agency (IAEA) is intended to provide the international community with credible assurance that a State is fulfilling its safeguards obligations. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of IAEA safeguards as those safeguards evolve towards a “State-Level approach.” The Safeguards by Design (SBD) concept can facilitate the implementation of these effective and cost-efficient facility-level safeguards (Bjornard, et al. 2009a, 2009b; IAEA, 1998; Wonder & Hockert, 2011). This report, sponsored by the National Nuclear Security Administration’s Office of Nuclear Safeguards and Security, introduces a methodology intended to ensure that the diverse approaches to Safeguards by Design can be effectively integrated and consistently used to cost effectively enhance the application of international safeguards.

  12. Setting priorities for safeguards upgrades

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.; Judd, B.R.; Patenaude, C.J.; Sicherman, A.

    1987-01-01

    This paper describes an analytic approach and a computer program for setting priorities among safeguards upgrades. The approach provides safeguards decision makers with a systematic method for allocating their limited upgrade resources. The priorities are set based on the upgrades cost and their contribution to safeguards effectiveness. Safeguards effectiveness is measured by the probability of defeat for a spectrum of potential insider and outsider adversaries. The computer program, MI$ER, can be used alone or as a companion to ET and SAVI, programs designed to evaluate safeguards effectiveness against insider and outsider threats, respectively. Setting the priority required judgments about the relative importance (threat likelihoods and consequences) of insider and outsider threats. Although these judgments are inherently subjective, MI$ER can analyze the sensitivity of the upgrade priorities to these weights and determine whether or not they are critical to the priority ranking. MI$ER produces tabular and graphical results for comparing benefits and identifying the most cost-effective upgrades for a given expenditure. This framework provides decision makers with an explicit and consistent analysis to support their upgrades decisions and to allocate the safeguards resources in a cost-effective manner

  13. Performance monitoring of safeguards equipment

    International Nuclear Information System (INIS)

    Sirisena, K.; Peltoranta, M.; Goussarov, V.; Vodrazka, P.

    1999-01-01

    SGTCS is responsible for monitoring and reporting the performance of the SG equipment. Performance monitoring (PM) has been implemented in most important safeguards equipment operating unattended in nuclear facilities. Inspectors acquire equipment performance data in facilities. After inspection, the data package is submitted to SGTCS for processing and analysis. The performance data is used for identification of systems or components, which should be changed in the field and for identification of modules which, should be diagnosed at HQ in order to determine the cause of failure. Moreover, the performance data is used for preventive maintenance and spares distribution planning, and to provide statistics for official reports and management decision making. An important part of the performance monitoring is reporting. Equipment performance reports contain information about equipment inventory, utilization, failure types, failure distribution, and reliability. Trends in performance are given in graphical form in cases, where past data is available. Reliability estimates such as expected times between failures are provided. The automated reporting tools are obtainable through EMIS database application. (author)

  14. In-field inspection support software: A status report on the Common Inspection On-site Software Package (CIOSP) project

    International Nuclear Information System (INIS)

    Novatchev, Dimitre; Titov, Pavel; Siradjov, Bakhtiiar; Vlad, Ioan; Xiao Jing

    2001-01-01

    Full text: IAEA has invested much thought and effort into developing software that can assist inspectors during their inspection work. Experience with such applications has been steadily growing and IAEA has recently commissioned a next-generation software package. This kind of software accommodates inspection tasks that can vary substantially in function depending on the type of installation being inspected as well as ensures that the resulting software package has a wide range of usability and can preclude excessive development of plant-specific applications. The Common Inspection On-site Software Package is being developed in the Department of Safeguards to address the limitations of the existing software and to expand its coverage of the inspection process. CIOSP is 'common' in that it is aimed at providing support for as many facilities as possible with the minimum re-configuration. At the same time it has to cater to varying needs of individual facilities, different instrumentation and verification methods used. A component-based approach was taken to successfully tackle the challenges that the development of this software presented. CIOSP consists of the following major components: A framework into which individual plug-ins supporting various inspection activities can integrate at run-time; A central data store containing all facility configuration data and all data collected during inspections; A local data store, which resides on the inspector's computer, where the current inspection's data is stored; A set of services used by all plug-ins (i.e. data transformation, authentication, replication services etc.). This architecture allows for incremental development and extension of the software with plug-ins that support individual inspection activities. The core set of components along with the framework, the Inventory Verification, Book Examination and Records and Reports Comparison plug-ins have been developed. The development of the Short Notice Random

  15. Safeguards and Non-destructive Assay

    International Nuclear Information System (INIS)

    Carchon, R.; Bruggeman, M.

    2001-01-01

    SCK-CEN's programme on safeguards and non-destructive assay includes: (1) various activities to assure nuclear materials accountancy; (2) contributes to the implementation of Integrated Safeguards measures in Belgium and to assist the IAEA through the Belgian Support Programme; (3) renders services to internal and external customers in the field of safeguards; (4) improves passive neutron coincidence counting techniques for waste assay and safeguards verification measurements by R and D on correlation algorithms implemented via software or dedicated hardware; (5) improves gamma assay techniques for waste assay by implementing advanced scanning techniques and different correlation algorithms; and (6) develops numerical calibration techniques. Major achievements in these areas in 2000 are reported

  16. Safeguards Strategy in Physical Protection System for Nuclear Installation

    International Nuclear Information System (INIS)

    Ade lndra B; Kasturi; Tatang Eryadi

    2004-01-01

    Safeguards strategy is directed at efforts of eliminating theft of nuclear materials and sabotage of nuclear installation. For achieving the above objective, it is necessary to set up safeguards strategy in physical protection of nuclear materials and installation. The safeguards strategy starts from anticipated security condition, list of thefts, planning referred to as safeguards planning. Safeguards planning are implemented in safeguards implementation, followed up then by evaluation. Results of evaluation are equipped with results of safeguards survey already developed. Safeguards' planning is made from these results and serve as guidelines for next safeguards implementation and is repeated to form a safeguard cycle. One safeguard cycle is made on a periodical basis, at least annually. (author)

  17. Safeguards technology: present posture and future impact

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1976-01-01

    With widespread and growing concern over the issues of nuclear safeguards, international nuclear trade and nuclear weapons proliferation, the full development of the world's nuclear energy potential could well depend on how effectively the strategic nuclear materials that fuel nuclear power are controlled and safeguarded. The broad U.S. program in nuclear safeguards and security is directed toward a balanced safeguards system incorporating the two major components of physical security and materials control. The current posture of modern safeguards technology, its impact on plant operations, and the key role it must play in the implementation of stringent cost-effective safeguards systems in facilities throughout the nuclear fuel cycle are outlined

  18. A view to the new safeguards system

    International Nuclear Information System (INIS)

    Tsuboi, Hiroshi

    2000-01-01

    The Additional Protocol to the Safeguards Agreement between Japan and the IAEA entered into force on 16 December 1999. An initial declaration of the expanded information will be provided to the IAEA by next June in accordance with the Additional Protocol. In Japan the new integrated safeguards system, which strengthens the effectiveness and improves efficiency of IAEA Safeguards, is considered to be very important issue. The establishment of a permanent and universal safeguards system including application of safeguards in Nuclear Weapon States also is an important issue from the view-point of not only non-proliferation but also nuclear disarmament. Safeguards are expected to have an increasingly important role. (author)

  19. Concerns when designing a safeguards approach for the back-end of the Swedish nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fritzell, Anni (Uppsala Univ., Uppsala (Sweden))

    2008-03-15

    In Sweden, the construction of an encapsulation plant and a geological repository for the final disposal of spent nuclear fuel is planned to start within the next ten years. Due to Sweden's international agreements on non-proliferation, the Swedish safeguards regime must be extended to include these facilities. The geological repository has some unique features, which present the safeguards system with unprecedented challenges. These features include, inter alia, the long period of time that the facility will contain nuclear material and that the disposed nuclear material will be very difficult to access, implying that physical verification of its presence in the repository is not foreseen. This work presents the available techniques for creating a safeguards system for the backend of the Swedish nuclear fuel cycle. Important issues to consider in the planning and implementation of the safeguards system have been investigated, which in some cases has led to an identification of areas needing further research. The results include three proposed options for a safeguards approach, which have been evaluated on the basis of the safeguards authorities' requirements. Also, the evolution and present situation of the work carried out in connection to safeguards for geological repositories has been compiled

  20. Executive summary of the special safeguards study on material control and accounting systems. Final report

    International Nuclear Information System (INIS)

    1975-01-01

    This report assesses the feasibility of real-time systems applied to mixed-oxide fuel rod fabrication. Their interaction with other material control and accounting measures are considered. Economics, effectiveness, and acceptance factors are discussed. A cost-benefit evaluation is made and recommendations given for safeguards improvements

  1. Do school inspections improve primary school performance?

    OpenAIRE

    Dinand Webbink; Rob Luginbuhl; I. de Wolf

    2007-01-01

    Inspectors from the Dutch Inspectorate of Education inspect primary schools, write inspection reports on each inspected school, and make recommendations as to how each school can improve. We test whether these inspections result in better school performance. Using a fixed-effects model, we find evidence that school inspections do lead to measurably better school performance. Our assessment of school performance is based on the Cito test scores of pupils in their final year of primary school. ...

  2. Safeguards training at Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Dickman, D.A.

    1986-10-01

    Safeguarding our country's nuclear materials against theft or diversion is extremely important due to their significantly strategic value. In addition, nuclear materials also have an extremely high monetary value. The term ''safeguards'' is defined as an integrated system of physical protection, accountability, and material control measures designed to deter, prevent, detect, and respond to unauthorized possession and use of special nuclear materials. An aggressive Safeguards program, therefore, employs both good security measures and a strong material control and accountability system. For effective internal control of nuclear materials, having people qualified in the many aspects of safeguards and accountability is essential. At Pacific Northwest Laboratory (PNL), this goal is accomplished through a Laboratory-wide Safeguards Awareness Program. All PNL staff members receive a level of Safeguards training appropriate to their particular function within the Laboratory. This paper presents an overview of the unique training opportunities this topic provides and how the training goals are accomplished through the various training courses given to the staff members

  3. Safeguards on nuclear materials

    International Nuclear Information System (INIS)

    Cisar, V.; Keselica, M.; Bezak, S.

    2001-01-01

    The article describes the implementation of IAEA safeguards for nuclear materials in the Czech and Slovak Republics, the establishment and development of the State System of Accounting for and Control of Nuclear Material (SSAC) at the levels of the state regulatory body and of the operator, particularly at the Dukovany nuclear power plant. A brief overview of the historical development is given. Attention is concentrated on the basic concepts and legal regulation accepted by the Czech and Slovak Republics in accordance with the new approach to create a complete legislative package in the area of nuclear energy uses. The basic intention is to demonstrate the functions of the entire system, including safeguards information processing and technical support of the system. Perspectives of the Integrated Safeguards System are highlighted. The possible ways for approximation of the two national systems to the Safeguards System within the EU (EURATOM) are outlined, and the necessary regulatory and operators' roles in this process are described. (author)

  4. Defining and Measuring Safeguards Culture

    International Nuclear Information System (INIS)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2010-01-01

    In light of the shift toward State Level Evaluations and information driven safeguards, this paper offers a refined definition of safeguards culture and a set of metrics for measuring the extent to which a safeguards culture exists in a state. Where the IAEA is able to use the definition and metrics to come to a positive conclusion about the country, it may help reduce the burden on the Agency and the state.

  5. IAEA Safeguards Information System (ISIS)

    International Nuclear Information System (INIS)

    1984-10-01

    Publication of this technical document should serve for better understanding of the technical and functional features of the IAEA Safeguards Information System (ISIS) within the Agency, as well as in the National Systems of accounting for and control of nuclear material. It will also serve as a foundation for further development and improvement of the design and modifications of the Safeguards Information System and its services as a function of Safeguards implementation

  6. Smart unattended systems for plutonium safeguards

    International Nuclear Information System (INIS)

    Menlove, H.O.; Abhold, M.; Eccleston, G.; Puckett, J.M.

    1996-01-01

    During the past decade, IAEA inspectors, national inspectors, and facility operators have used neutron coincidence counters and gamma-ray isotopics measurements extensively to measure the plutonium content of various forms of nuclear materials in the fuel cycle. Large automated facilities for fabricating plutonium fuel present both difficulties and challenges for improved accounting of nuclear materials. The traditional methods of sample measurements, requiring the transfer of the sample from the production line to the assay measurement station, are not possible in automated facilities. A bilateral safeguards agreement between the US Department of Energy (DOE) and Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan was signed to develop and implement nondestructive assay (NDA) systems to provide continuous safeguards measurements for material accountancy in the robot-automated Plutonium Fuel Fabrication Facility (PFFF). The PFFF assay systems were required to operate in unattended mode with a size and fuel mass capability to match the robotics fuel manipulators. Unattended assay systems reduce the requirement for inspector''s oversight of measurement operations, reduce the inspector''s workload, and improve inspection efficiencies. In addition, unattended measurements become essential when facility constraints limit the access of inspectors to the operations area during material processing. Authentication techniques were incorporated into the NDA systems so that data obtained form unattended assays could be used by independent inspectors such as the IAEA. The standardized containers and robot-controlled fuel movements in automated facilities enable more accurate nondestructive assay (NDA) measurements than are possible in conventional nonautomated facilities. The NDA instrumentation can be custom designed and optimized for the particular measurement goal in the automated facility

  7. The basis for the strengthening of safeguards

    International Nuclear Information System (INIS)

    Goldschmidt, P.

    1999-01-01

    For the past 30 years, the International Atomic Energy Agency's safeguards system has contributed to the international non-proliferation regime, by providing, inter alia, assurances regarding the peaceful uses of declared nuclear material. However, the discovery of a clandestine nuclear weapons programme in Iraq in 1991 drew world-wide attention to the need to strengthen the system to address the absence of undeclared nuclear material and activities. Efforts to strengthen the IAEA's safeguards system began in 1991 and culminated in 1997 when the IAEA's Board of Governors approved a Model Protocol Additional to IAEA Safeguards Agreements which greatly expands the legal basis and scope of IAEA safeguards. Within this strengthened system it is expected that the IAEA be able to provide assurance not only of the absence of diversion of declared nuclear material but also on the absence of undeclared nuclear material and activities. This is to be done within a safeguards system that uses an optimal combination of all safeguards measures available, thereby achieving maximum effectiveness and efficiency within the available resources. This paper will summarize the evolution of the safeguards system, describe strengthened safeguards, report on the status of implementing the strengthening measures, and outline plans for integrating all available safeguards measures. (author)

  8. Alternatives to reach safeguards goals at Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Palacios, E.; Orpet, P.; Marzo, M.; Valentino, L.; Vicens, H.

    2001-01-01

    Full text: This paper describes the main features of Atucha I Nuclear Power Plant and the current safeguards' approach applied to this installation by the International Atomic Energy Agency (IAEA) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC). The reasons for not completely fulfilling the IAEA safeguards criteria with the current approach are also described and a conceptual proposal of an unattended system developed jointly by ABACC and the Nuclear Regulatory Authority of Argentina (ARN) is presented. Finally, the paper addresses an alternative proposal to the previous one aiming at fulfilling the above mentioned objectives. Atucha I Nuclear Power Plant (NPP) was built in the 70's and has been under operation since 1974, This is an On Load Reactor, moderated and refrigerated with heavy water (PHWR). From its starting up to about a year ago, this NPP operated with natural uranium fuel assemblies but presently the reactor core is fed with slightly enriched uranium fuel assemblies (0,85 %). This Plant generates up to 357 Mwe. An outstanding operating characteristic of this power reactor is that low burn-up fuels assemblies already discharged into the pond may be re-used when necessary upon neutron flux requirements (re-shuffling). This installation has a pond storage capacity of about 10,000 fuel assemblies. At the highest power rate, the reactor core must be fed with a frequency of about 0,72 fuel assemblies per day. Before the application of the Agency Safeguards Criteria (IAEA-SC) in (1991), Atucha l had always satisfied the IAEA safeguards goals. Since 1991 the IAEA-SC demanded for On Load Reactors the control of the flow of irradiated fuel assemblies that leave or enter into the core (re-shuffling). By that time, Atucha I had been working for about seventeen years and there was no possibilities to install specific safeguards equipment without making significant construction modifications on this installation. Under the

  9. Combined SAFE/SNAP approach to safeguards evaluation

    International Nuclear Information System (INIS)

    Engi, D.; Chapman, L.D.; Grant, F.H.; Polito, J.

    1980-01-01

    Generally, the scope of a safeguards evaluation model can efficiently address one of two issues, (1) global safeguards effectiveness, or (2) vulnerability analysis for individual scenarios. The Safeguards Automated Facility Evaluation (SAFE) focuses on (1) while the Safeguards Network Analysis Procedure (SNAP) is directed at (2). SAFE addresses (1) in that it considers the entire facility, i.e., the composite system of hardware and human components, in one global analysis. SNAP addresses (2) by providing a safeguards modeling symbology sufficiently flexible to represent quite complex scenarios from the standpoint of hardware interfaces while also accounting for a rich variety of human decision making. A combined SAFE/SNAP approach to the problem of safeguards evaluation is described and illustrated through an example

  10. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Kiruna (Sweden)

    1999-03-01

    feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. It is also demonstrated in the study that more than 20% of the envisaged work tasks in all of the major Safeguards applications will achieve a better decision support from the use of commercial satellite imagery. At the same time the potential savings in costs is calculated to approximately USD 500,000 per year by reductions in on-site inspections and by more efficient planning and logistics. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in this study, is approximately USD 1,500,000 per year. This cost rises when utilising the full potential of high-resolution imagery in all five applications including monitoring and detection of undeclared facilities. The cost/benefit simulation is founded on an activity scenario with a staff of 4 experts working in an IAEA imagery unit with a workload of three dossiers or `issues` per week. The imagery unit is built around an advanced workstation PC image processing system capable of handling several hundreds of pre-processed imagery per year 10 refs, 9 figs, 5 tabs

  11. State-wide performance criteria for international safeguards

    International Nuclear Information System (INIS)

    Budlong-Sylvester, K.W.; Pilat, Joseph F.; Stanbro, W.D.

    2001-01-01

    Traditionally, the International Atomic Energy Agency (IAEA) has relied upon prescriptive criteria to guide safeguards implementation. The prospect of replacing prescriptive safeguards criteria with more flexible performance criteria would constitute a structural change in safeguards and raises several important questions. Performance criteria imply that while safeguards goals will be fixed, the means of attaining those goals will not be explicitly prescribed. What would the performance objectives be under such a system? How would they be formulated? How would performance be linked to higher level safeguards objectives? How would safeguards performance be measured State-wide? The implementation of safeguards under performance criteria would also signal a dramatic change in the manner the Agency does business. A higher degree of flexibility could, in principle, produce greater effectiveness and efficiency, but would come with a need for increased Agency responsibility in practice. To the extent that reliance on prescriptive criteria decreases, the burden of justifying actions and ensuring their transparency will rise. Would there need to be limits to safeguards implementation? What would be the basis for setting such limits? This paper addresses these and other issues and questions relating to both the formulation and the implementation of performance-based criteria.

  12. A quadrupole mass spectrometer system for nuclear safeguards applications

    International Nuclear Information System (INIS)

    Evans, P.J.

    1987-12-01

    An on-line enrichment monitor for nuclear safeguards-related surveillance of a pilot-scale gas centrifuge plant is described. This monitor utilises a quadrupole mass spectrometer to measure the isotopic composition of UF 6 in the feed and product gas streams. Details of the design and construction are given, and several difficulties are identified and discussed. Finally, the performance of this system is illustrated with typical results

  13. Experience on implementation of the Integrated Safeguards approach for the MOX facility from the operator's point of view

    International Nuclear Information System (INIS)

    Nomi, Takayoshi; Nagatani, Taketeru; Ninagawa, Junichi; Nakajima, Shinji; Maruyama, Hajime; Asano, Takashi; Fujiwara, Shigeo

    2011-01-01

    The IS approach for the JNC-1 site was implemented in August 2008, and this was the first experience in the world. This IS approach aimed not only to improve efficiency and effectiveness of safeguards but also to reduce burden of the plant operation by improvement of efficiency of the inspection activity. It was planned to review effectiveness of this new approach after three years from implementation. And JAEA also evaluated effects by application of the IS approach for two MOX fuel facilities in the JNC-1 site based on the three years experiences from the operator's view point. As the result of evaluation, it was confirmed that there were some difference of benefits by application of the IS approach depending on features of the facility, automation level of equipment and advance level of safeguards systems. (author)

  14. Network adaptable information systems for safeguard applications

    International Nuclear Information System (INIS)

    Rodriguez, C.; Burczyk, L.; Chare, P.; Wagner, H.

    1996-01-01

    While containment and surveillance systems designed for nuclear safeguards have greatly improved through advances in computer, sensor, and microprocessor technologies, the authors recognize the need to continue the advancement of these systems to provide more standardized solutions for safeguards applications of the future. The benefits to be gained from the use of standardized technologies are becoming evident as safeguard activities are increasing world-wide while funding of these activities is becoming more limited. The EURATOM Safeguards Directorate and Los Alamos National Laboratory are developing and testing advanced monitoring technologies coupled with the most efficient solutions for the safeguards applications of the future

  15. IAEA safeguards - a 1988 perspective

    International Nuclear Information System (INIS)

    Jennekens, J.

    1988-01-01

    The problem of IAEA safeguards as regards its perspectives for 1988 is discussed. The necessity of balancing between safeguards measures required for the timely detection of nuclear material diversion to military purposes and measures to prove the absence of diversion is stated. Accurately working safeguards system aimed at the provision of nondiversion can include, as an accompanying component, any deterrence element required. Such a system will be more expensive than any other altrenatives but it will undoubtly be more suitable and accepatble

  16. Achieving the Benefits of Safeguards by Design

    International Nuclear Information System (INIS)

    Bjornard, Trond; Bean, Robert; Hebditch, David; Morgan, Jim; Meppen, Bruce; DeMuth, Scott; Ehinger, Michael; Hockert, John

    2008-01-01

    The overarching driver for developing a formalized process to achieve safeguards by design is to support the global growth of nuclear power while reducing 'nuclear security' risks. This paper discusses an institutional approach to the design process for a nuclear facility, for designing proliferation resistance, international safeguards and U.S. national safeguards and security into new nuclear facilities. In the United States, the need exists to develop a simple, concise, formalized, and integrated approach for incorporating international safeguards and other non-proliferation considerations into the facility design process. An effective and efficient design process is one which clearly defines the functional requirements at the beginning of the project and provides for the execution of the project to achieve a reasonable balance among competing objectives in a cost effective manner. Safeguards by Design is defined as 'the integration of international and national safeguards, physical security and non-proliferation features as full and equal partners in the design process of a nuclear energy system or facility,' with the objective to achieve facilities that are intrinsically more robust while being less expensive to safeguard and protect. This Safeguards by Design process has been developed such that it: (sm b ullet) Provides improved safeguards, security, and stronger proliferation barriers, while reducing the life cycle costs to the operator and regulatory agencies, (sm b ullet) Can be translated to any international context as a model for nuclear facility design, (sm b ullet) Fosters a culture change to ensure the treatment of 'nuclear security' considerations as 'full and equal' partners in the design process, (sm b ullet) Provides a useful tool for the project manager responsible for the design, construction, and start-up of nuclear facilities, and (sm b ullet) Addresses the key integration activities necessary to efficiently incorporate International Atomic

  17. Pickering safeguards: a preliminary analysis

    International Nuclear Information System (INIS)

    Todd, J.L.; Hodgkinson, J.G.

    1977-05-01

    A summary is presented of thoughts relative to a systems approach for implementing international safeguards. Included is a preliminary analysis of the Pickering Generating Station followed by a suggested safeguards system for the facility

  18. Overcoming Safeguards Challenges

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2011-01-01

    The focus of the 2010 IAEA International Safeguards Symposium was how best, from a technical perspective, to prepare for future verification challenges during this time of change. By bringing together the leading experts in the field from across the world, this symposium provided an opportunity for stakeholders to explore possible solutions in support of the IAEA's nuclear verification mission, and to identify areas where the different stakeholders in the safeguards business can help address these challenges

  19. Safeguards Export-Import Training: Adapting to Changes in the Department of Safeguards Over 6 Years of Experience

    International Nuclear Information System (INIS)

    Chatelus, R.; ); Crete, J.-M.; Schot, P.-M.; Hushbeck, E.C.; Heine, P.

    2015-01-01

    Safeguards relevant information encompasses information available to the Agency in exercising its rights and fulfiling its obligations under relevant safeguards agreement(s). It includes information relating to nuclear or nuclear related trade like international transfers of nuclear material, or export (or import upon request by the Agency) of specified equipment described in annex 2 of the Additional Protocol. It may also include information provided by States on a voluntary basis. In 2005, the General Conference (see GC(49)/RES/13) encouraged the provision of information on procurement enquiries, export denials and other nuclear related information. Objectively and independently assessing this information and combining it with other Safeguards data and knowledge requires relevant expertise and well defined processes. Since 2008, the bi-annual Export-Import (EXIM) Training Workshop, jointly run by the IAEA Department of Safeguards and the U.S. Department of Energy, enables SG staff to develop competencies required for collecting, processing and drawing objective conclusions in this area. Over the years, more than 150 SG staff have been exposed to technical information on relevant non-nuclear material and equipment, trade data from different origins, analytical processes, and exercises to use this knowledge in realistic safeguards work scenarios. The EXIM training has also been an opportunity to develop analytical best practices and explore how this analytical work finds it place in the verification process. The paper describes the background and purpose of the EXIM training, how it helps Safeguards to independently collect and analyze relevant trade information to fulfil its obligations. It also touches on the lessons learned from six years of training experience, observing how the Department of Safeguards develops and implements structured processes to collect, process and evaluate safeguards relevant trade information, in order to establish findings and draw

  20. Safeguards Network Analysis Procedure (SNAP): overview

    International Nuclear Information System (INIS)

    Chapman, L.D; Engi, D.

    1979-08-01

    Nuclear safeguards systems provide physical protection and control of nuclear materials. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of physical protection system effectiveness. This is achieved through a standard set of symbols which characterize the various elements of safeguards systems and an analysis program to execute simulation models built using the SNAP symbology. The outputs provided by the SNAP simulation program supplements the safeguards analyst's evaluative capabilities and supports the evaluation of existing sites as well as alternative design possibilities. This paper describes the SNAP modeling technique and provides an example illustrating its use

  1. Nuclear safeguards technology 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This publication presents the results of the sixth in a series of international symposia on nuclear material safeguards. Development efforts related to safeguards for reprocessing plants constituted over twenty per cent of the programme. Other papers present results of over four years of field testing of near real time material accountancy at a plant in Japan, and results for a lesser period of time at a plant in Scotland. Papers reporting work on destructive and non-destructive measurement procedures or equipment constituted another thirty per cent of the programme, more if measurements in reprocessing and poster presentations are included. In honour of the tenth anniversary of the founding of the Safeguards Analytical Laboratory, two sessions were devoted to a review of destructive analytical measurement procedures. Some subjects received only minor attention during the Symposium. The statistical theory of random sampling, safeguards for uranium enrichment plants, material accountancy systems and several other topics appear only incidentally in the programme, but primarily because there are few remaining problems, not because there is little remaining interest

  2. IAEA symposium on international safeguards. Extended synopses

    International Nuclear Information System (INIS)

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials

  3. Safeguards training at Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Dickman, D.A.

    1988-01-01

    In recent years considerable attention has been given to upgrading security education programs at facilities across the country. At Pacific Northwest Laboratory (PNL), a Laboratory-wide Safeguard Awareness Training Program has been established in order to raise the cognizance of the entire staff with regard to safeguards issues and concerns. This aggressive safeguards program involves a strong interface of physical security measure and material control and accountability systems. Within PNL, four distinct audiences were defined and a needs assessment analysis performed for each to determine specific training requirements. The target audiences identified were: material balance area (MBA) custodians, managers of material balance areas, material handlers, and new employees. Five safeguards training courses were created to meet the needs of those audiences. This paper discusses the development of the Safeguards Awareness Program at PNL and its benefits to the Laboratory

  4. NPT safeguards and the peaceful use of nuclear energy

    International Nuclear Information System (INIS)

    Kyd, D.R.

    1993-10-01

    Origin of safeguards system and of comprehensive safeguards agreements, assurance given by IAEA safeguards, penalties and sanctions in case of breach of a safeguards agreement, recent experiences with Iraq, South Africa and DPRK as well as limits of the safeguards system are described

  5. IAEA safeguards: Challenges and opportunities

    International Nuclear Information System (INIS)

    1993-01-01

    The history of the IAEA safeguards regime is described. New challenges and opportunities are discussed in connection with the discovery in Iraq of a clandestine nuclear weapons development programme, the difficulties experienced in the implementation of the safeguards agreement with the Democratic People's Republic of Korea, the conclusion of a comprehensive safeguards agreement with Argentina, Brazil and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, recent developments in South Africa, the emergence of newly independent States that made up the former USSR. 2 figs

  6. Preliminary assessment of safeguardability on the concepture design of advanced spent fuel conditioning process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yoon; Ha, Jang Ho; Ko, Won Il; Song, Dae Yong; Kim, Ho Dong

    2003-04-01

    In this report, a preliminary study on the safeguardability of ACP (Advanced spent fuel Conditioning Process) was conducted with Los Alamos National Laboratory. The proposed ACP concept is an electrometallurgical treatment technique to convert oxide-type spent nuclear fuels into metal forms, which can achieve significant reduction of the volume and heat load of spent fuel to be stored and disposed of. For the safeguardability analysis of the ACP facility, sub-processes and their KMPs (Key Measurement Points) were defined first, and then their material flows were analyzed. Finally, the standard deviation of the Inventory Difference (ID) value of the facility was estimated with assumption by assuming international target values for the uncertainty of measurement methods and their uncertainty. From the preliminary calculation, we concluded that if the assumptions regarding measurement instruments can be achieved in a safeguards system for the ACP facility, the safeguards goals of International Atomic Energy Agency (IAEA) could be met. In the second phase of this study, further study on sensitivity analyses considering various factors such as measurement errors, facility capacities, MBA periods etc. may be needed.

  7. Preliminary assessment of safeguardability on the concepture design of advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Lee, Sang Yoon; Ha, Jang Ho; Ko, Won Il; Song, Dae Yong; Kim, Ho Dong

    2003-04-01

    In this report, a preliminary study on the safeguardability of ACP (Advanced spent fuel Conditioning Process) was conducted with Los Alamos National Laboratory. The proposed ACP concept is an electrometallurgical treatment technique to convert oxide-type spent nuclear fuels into metal forms, which can achieve significant reduction of the volume and heat load of spent fuel to be stored and disposed of. For the safeguardability analysis of the ACP facility, sub-processes and their KMPs (Key Measurement Points) were defined first, and then their material flows were analyzed. Finally, the standard deviation of the Inventory Difference (ID) value of the facility was estimated with assumption by assuming international target values for the uncertainty of measurement methods and their uncertainty. From the preliminary calculation, we concluded that if the assumptions regarding measurement instruments can be achieved in a safeguards system for the ACP facility, the safeguards goals of International Atomic Energy Agency (IAEA) could be met. In the second phase of this study, further study on sensitivity analyses considering various factors such as measurement errors, facility capacities, MBA periods etc. may be needed

  8. Integrated safeguards and facility design and operations

    International Nuclear Information System (INIS)

    Tape, J.W.; Coulter, C.A.; Markin, J.T.; Thomas, K.E.

    1987-01-01

    The integration of safeguards functions to deter or detect unauthorized actions by an insider requires the careful communication and management of safeguards-relevant information on a timely basis. The traditional separation of safeguards functions into physical protection, materials control, and materials accounting often inhibits important information flows. Redefining the major safeguards functions as authorization, enforcement, and verification, and careful attention to management of information from acquisition to organization, to analysis, to decision making can result in effective safeguards integration. The careful inclusion of these ideas in facility designs and operations will lead to cost-effective safeguards systems. The safeguards authorization function defines, for example, personnel access requirements, processing activities, and materials movements/locations that are permitted to accomplish the mission of the facility. Minimizing the number of authorized personnel, limiting the processing flexibility, and maintaining up-to-date flow sheets will facilitate the detection of unauthorized activities. Enforcement of the authorized activities can be achieved in part through the use of barriers, access control systems, process sensors, and health and safety information. Consideration of safeguards requirements during facility design can improve the enforcement function. Verification includes the familiar materials accounting activities as well as auditing and testing of the other functions

  9. Improving the Transparency of IAEA Safeguards Reporting

    International Nuclear Information System (INIS)

    Toomey, Christopher; Hayman, Aaron M.; Wyse, Evan T.; Odlaug, Christopher S.

    2011-01-01

    In 2008, the Standing Advisory Group on Safeguards Implementation (SAGSI) indicated that the International Atomic Energy Agency's (IAEA) Safeguards Implementation Report (SIR) has not kept pace with the evolution of safeguards and provided the IAEA with a set of recommendations for improvement. The SIR is the primary mechanism for providing an overview of safeguards implementation in a given year and reporting on the annual safeguards findings and conclusions drawn by the Secretariat. As the IAEA transitions to State-level safeguards approaches, SIR reporting must adapt to reflect these evolutionary changes. This evolved report will better reflect the IAEA's transition to a more qualitative and information-driven approach, based upon State-as-a-whole considerations. This paper applies SAGSI's recommendations to the development of multiple models for an evolved SIR and finds that an SIR repurposed as a 'safeguards portal' could significantly enhance information delivery, clarity, and transparency. In addition, this paper finds that the 'portal concept' also appears to have value as a standardized information presentation and analysis platform for use by Country Officers, for continuity of knowledge purposes, and the IAEA Secretariat in the safeguards conclusion process. Accompanying this paper is a fully functional prototype of the 'portal' concept, built using commercial software and IAEA Annual Report data.

  10. Visualizing Safeguards: Software for Conceptualizing and Communicating Safeguards Data

    Energy Technology Data Exchange (ETDEWEB)

    Gallucci, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-12

    The nuclear programs of states are complex and varied, comprising a wide range of fuel cycles and facilities. Also varied are the types and terms of states’ safeguards agreements with the IAEA, each placing different limits on the inspectorate’s access to these facilities. Such nuances make it difficult to draw policy significance from the ground-level nuclear activities of states, or to attribute ground-level outcomes to the implementation of specific policies or initiatives. While acquiring a firm understanding of these relationships is critical to evaluating and formulating effective policy, doing so requires collecting and synthesizing large bodies of information. Maintaining a comprehensive working knowledge of the facilities comprising even a single state’s nuclear program poses a challenge, yet marrying this information with relevant safeguards and verification information is more challenging still. To facilitate this task, Brookhaven National Laboratory has developed a means of capturing the development, operation, and safeguards history of all the facilities comprising a state’s nuclear program in a single graphic. The resulting visualization offers a useful reference tool to policymakers and analysts alike, providing a chronology of states’ nuclear development and an easily digestible history of verification activities across their fuel cycles.

  11. The position of IAEA safeguards relative to nuclear material control accountancy by states

    International Nuclear Information System (INIS)

    Rometsch, R.; Hough, G.

    1977-01-01

    IAEA Safeguards are always implemented on the basis of agreements which are concluded between one or more Governments and the Agency. They lay down the rights and obligations of the parties; the more modern types of agreements, in particular those in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, do that in quite some details. Several articles, for instance, regulate the working relations between the States and the IAEA inspectorate. Those are based on two basic obligations: that of the State to establish and maintain a ''System of Accountancy for and Control of Nuclear Material'' and that of the Agency to ascertain the absence of diversion of nuclear material by verifying the findings of the States' system, inter alia through independent measurements and observations. Other articles dealing also with the working relations States - IAEA rule that the Agency should take due account of the technical effectiveness of the States' system and mention among the criteria for determining the inspection effort, the extent of functional dependence of the State's accountancy from that of the facility operator. However, quantitative relationships in that respect are left to be worked out in practice. With the help of consultants and expert advisory groups a rational has been developed and possible practical arrangements discussed with several States concerned. The rational for coordinating the work of the States' inspectorate with IAEA's inspectorate was to use a factor by which the significant quantity used for calculating verification sampling plans would be adjusted in order to reduce to a certain extent the Agency's independent verification work in case the States would do extensive verifications themselves in a manner transparent to IAEA. However, in practice it proved that there are quite a number of points in the fuel cycle where such adaptations would have little or no effect on the inspection effort necessary to achieve the safeguards objective

  12. The position of IAEA safeguards relative to nuclear material control accountancy by States

    International Nuclear Information System (INIS)

    Rometsch, R.; Hough, G.

    1977-01-01

    IAEA Safeguards, which are always implemented on the basis of agreements which are concluded between one or more Governments and the IAEA, lay down the rights and obligations of the parties; and the more modern types of agreement, in particular those in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, do this in quite some detail. Several articles, for instance, regulate the working relations between the States and the IAEA inspectorate. These are based on two basic obligations - that of the State to establish and maintain a ''System of Accountancy for and Control of Nuclear Material'' and that of the IAEA to ascertain the absence of diversion of nuclear material by verifying the findings of the States' systems, inter alia through independent measurements and observations. Other articles dealing also with the working relations between States and the IAEA rule that the IAEA should take due account of the technical effectiveness of the States' systems and mention among the criteria for determining the inspection effort, the extent of functional dependence of the State's accountancy on that of the facility operator. However, quantitative relationships in this respect are left to be worked out in practice. With the help of consultants and expert advisory groups a rationale has been developed and possible practical arrangements discussed with several States concerned. The rationale for co-ordinating the work of the States' inspectorate with that of the IAEA was to use a factor by which the significant quantity used for calculating verification sampling plans would be adjusted so as to reduce to a certain extent the IAEA's independent verification work in case the States would themselves do extensive verifications in a manner transparent to the IAEA. However, in practice it proved that there are a number of points in the fuel cycle where such adaptations would have little or no effect on the inspection effort necessary to achieve the safeguards

  13. IAEA symposium on international safeguards. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials Refs, figs, tabs

  14. Tokai Advanced Safeguards Technology Exercise (TASTEX). An experience in international co-operation on safeguards

    International Nuclear Information System (INIS)

    Fukuda, G.; Koizumi, T.; Higuchi, K.

    1983-01-01

    TASTEX stands for Tokai Advanced Safeguards Technology Exercise, and was the joint programme of Japan, the United States of America, France and the International Atomic Energy Agency for developing, testing and evaluating advanced safeguards technology to be used in reprocessing facilities. The TASTEX programme, which started early in 1978 and successfully ended in May 1981, consisted of thirteen safeguards-technology-related tasks, from Task A to M. They were classified into four groups from the viewpoints of their usefulness and effectiveness: (1) Tasks technically feasible for international safeguards application in the near future: Tasks E, G, H and part of Task A (underwater CCTV and monitoring cameras); (2) Tasks which can be used in the future if research and development are continued: Tasks F, I, J, C and the other part of Task A (exclusive of the themes shown in (1)); (3) Tasks which may be used in future at the Tokai Reprocessing Facility if research and development are continued: Tasks K and L; and (4) Tasks which are difficult to be used at the Tokai Reprocessing Facility: Tasks B, D and M. The tasks classified under Group (1) are being developed further as part of the JASPAS (Japan Support Programme for Agency's Safeguards) project. (author)

  15. Safeguards and Physics Measurements: Services

    International Nuclear Information System (INIS)

    Carchon, R.

    2000-01-01

    SCK-CEN's department of Safeguards and Physics Measurements provides a wide variety of internal and external services including dosimetry, calibration, instrumentation, whole body counting, safeguards and non-destructive analysis. Main developments in these areas in 1999 are described

  16. Safeguards Guidance for Designers of Commercial Nuclear Facilities – International Safeguards Requirements for Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

    2010-04-01

    For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

  17. Application of wireless LAN technology to remote monitoring for inspection equipment

    International Nuclear Information System (INIS)

    Ishiyama, Koichi; Kimura, Takashi; Miura, Yasushi; Yamaguchi, Katsuhiro; Kabuki, Toshihide

    2011-01-01

    To support inspections under an Integrated Safeguards regime into Tokai Reprocessing Plant (TRP), the IAEA suggested making use of Remote Monitoring (RM) capabilities to the inspection equipment (surveillance camera and NDA systems) installed in the spent fuel storage area at TRP. Since TRP had no pre-prepared cabling infrastructure for data transmission in the spent fuel storage area, the option of wireless LAN was chosen over the telephone line due to its lower installation costs. Feasibility studies and tests were performed by TRP on communication and particularly on long-term continuous communication using wireless LAN equipment composed of APs (AP: Access Point) and the external antennas for introducing wireless LAN technology to RM. As a result it was recognized that wireless LAN has enough ability to communicate for long periods of time and consequently the IAEA installed the AP and the external antenna to each inspection equipment and the wireless LAN technology was applied for RM. In this paper, the summary of each test and the results are reported. (author)

  18. Disposition scenarios and safeguardability of fissile materials under START Treaty

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1993-01-01

    Under the Strategic Arms Reduction Treaty (START-I) signed in 1991 and the Lisbon Protocol of 1992, a large inventory of fissile materials will be removed from the weapons fuel cycles of the United States and the Former Soviet Union (FSU). The Lisbon Protocol calls for Ukraine, Kazakstan, and Byelarus to become nonnuclear members of the treaty and for Russia to assume the responsibility of the treaty as a nuclear weapons state. In addition, the START-II Treaty, which was signed in 1993 by the United States and Russia, further reduces deployed nuclear warheads and adds to the inventory of excess special nuclear materials (SNM). Because storage of in-tact warheads has the potential for a open-quotes breakout,close quotes it would be desirable to dismantle the warheads and properly dispose of the SNMs under appropriate safeguards to prevent their reentry into the weapons fuel cycle. The SNM recovered from dismantled warheads can be disposed of in several ways, and the final choices may be up to the country having the title to the SNM. Current plans are to store them indefinitely, leaving serious safeguards concerns. Recognizing that the underlying objective of these treaties is to prevent the fissile materials from reentering the weapons fuel cycle, it is necessary to establish a verifiable disposal scheme that includes safeguards requirements. This paper identifies some realistic scenarios for the disposal of SNM from the weapons fuel cycle and examines the safeguardability of those scenarios

  19. Periodic and in-service inspection programs

    International Nuclear Information System (INIS)

    Dinu, M.

    2000-01-01

    Periodic and in-service inspection programs for Cernavoda NPP consists of periodic inspections of CANDU NPP components CSAN N-285.4 and CSAN N-285.4, in-service inspections and repair and modifications general inspection. Periodic inspection program document (PIPD) determines the systems and components subject to inspection, the category of the inspection, techniques, areas and other details.The current status of the inspection programs is presented, including containment , erosion/corrosion, pressure vessel support and snubbers, main steam lines inspection programs. Qualification program in Cernavoda NPP involves equipment qualification in the on-site laboratory, yearly certification, special equipment qualification in the National Institute of Metrology. All procedures are approved by the ISCIR (regulatory body for pressure vessel and lifting equipment) and CNCAN (National Commission on Nuclear Activities Control). Qualification of the personnel is performed according to the ISCIR Technical prescription CR 11/82 for up to 3 year period. Final qualification and licensing is performed by CNCAN

  20. Cleareye In-Ground and In-Concrete DIV Inspections: FY11 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Braatz, Brett G.; Tedeschi, Jonathan R.; Denslow, Kayte M.; Morra, Marino; Knopik, Clint D.; Severtsen, Ronald H.; Jones, Anthony M.; Lechelt, Wayne M.; McMakin, Douglas L.; Good, Morris S.; Sorensen, Jerry B.; Hall, Thomas E.

    2012-01-23

    This report summarizes the results of a series of feasibility testing studies for in-ground and in-concrete imaging/detection technologies including radar imaging and acoustic time-of flight method. The objectives of this project are: (1) Design Information Verification (DIV) Tools for In-Concrete Inspections - To determine the feasibility of using holographic radar imaging (HRI), radar imaging, and acoustic time-of-flight (TOF) non-destructive evaluation technologies to detect, locate and identify pipes and voids embedded in standard-density and high-density concrete walls that typify those the IAEA will need to verify during field inspections; (2) DIV Tools for In-Ground Inspections - To determine the feasibility of using HRI and radar imaging non-destructive evaluation technologies to detect, locate, and identify objects buried at various depths made of various materials (metal, plastic, wood, and concrete) and representing geometries that typify those the IAEA will need to verify during field inspections; and (3) Based on the results of the studies, recommend the next steps needed to realize fieldable tools for in-concrete and in-ground inspections (including detection of deeply buried polyvinyl chloride [PVC] pipes) that employ the technologies shown to be feasible.