WorldWideScience

Sample records for safe-crack viscoelastic analysis

  1. Seismic Analysis of a Viscoelastic Damping Isolator

    Directory of Open Access Journals (Sweden)

    Bo-Wun Huang

    2015-01-01

    Full Text Available Seismic prevention issues are discussed much more seriously around the world after Fukushima earthquake, Japan, April 2011, especially for those countries which are near the earthquake zone. Approximately 1.8×1012 kilograms of explosive energy will be released from a magnitude 9 earthquake. It destroys most of the unprotected infrastructure within several tens of miles in diameter from the epicenter. People can feel the earthquake even if living hundreds of miles away. This study is a seismic simulation analysis for an innovated and improved design of viscoelastic damping isolator, which can be more effectively applied to earthquake prevention and damage reduction of high-rise buildings, roads, bridges, power generation facilities, and so forth, from earthquake disaster. Solidworks graphic software is used to draw the 3D geometric model of the viscoelastic isolator. The dynamic behavior of the viscoelastic isolator through shock impact of specific earthquake loading, recorded by a seismometer, is obtained via ANSYS finite element package. The amplitude of the isolator is quickly reduced by the viscoelastic material in the device and is shown in a time response diagram. The result of this analysis can be a crucial reference when improving the design of a seismic isolator.

  2. Viscoelastic finite-element analysis of human skull - dura mater ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... 1981). MATERIALS AND METHODS. In order to determine the influence of the viscoelastic nature of the human skull and dura mater on their deformation, we made the finite-element analysis of cranial cavity with the ICP scope from 1.5 to 5 kPa respectively. By ignoring the viscoelasticity of human skull.

  3. Viscoelasticity of Axisymmetric Composite Structures: Analysis and Experimental Validation

    Science.gov (United States)

    2013-02-01

    analysis can be applied to composite pressure vessels, gun barrels, and flywheels . 15. SUBJECT TERMS viscoelasticity, creep, composite, gun barrel... flywheel 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 28 19a. NAME OF RESPONSIBLE PERSON Jerome T...method to study the viscoelastic behavior of thick-walled composite cylinders. The analysis can be applied to the design of flywheel machinery and

  4. Viscoelastic finite-element analysis of human skull - dura mater ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... Key words: Viscoelasticity, finite-element analysis (FEA), strain, human skull, dura mater, intracranial pressure. INTRODUCTION. Intracranial pressure (ICP) is the ... We presented the development and validation of a 3D finite-element model intended to better understand the deformation mechanisms of ...

  5. Vibration analysis of viscoelastic single-walled carbon nanotubes resting on a viscoelastic foundation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Da Peng; Lei, Yong Jun; Shen, Zhi Bin [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha (China); Wang, Cheng Yuan [Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea Wales (United Kingdom)

    2017-01-15

    Vibration responses were investigated for a viscoelastic Single-walled carbon nanotube (visco-SWCNT) resting on a viscoelastic foundation. Based on the nonlocal Euler-Bernoulli beam model, velocity-dependent external damping and Kelvin viscoelastic foundation model, the governing equations were derived. The Transfer function method (TFM) was then used to compute the natural frequencies for general boundary conditions and foundations. In particular, the exact analytical expressions of both complex natural frequencies and critical viscoelastic parameters were obtained for the Kelvin-Voigt visco-SWCNTs with full foundations and certain boundary conditions, and several physically intuitive special cases were discussed. Substantial nonlocal effects, the influence of geometric and physical parameters of the SWCNT and the viscoelastic foundation were observed for the natural frequencies of the supported SWCNTs. The study demonstrates the efficiency and robustness of the developed model for the vibration of the visco-SWCNT-viscoelastic foundation coupling system.

  6. Floquet stability analysis of viscoelastic flow over a cylinder

    KAUST Repository

    Richter, David

    2011-06-01

    A Floquet linear stability analysis has been performed on a viscoelastic cylinder wake. The FENE-P model is used to represent the non-Newtonian fluid, and the analysis is done using a modified version of an existing nonlinear code to compute the linearized initial value problem governing the growth of small perturbations in the wake. By measuring instability growth rates over a wide range of disturbance spanwise wavenumbers α, the effects of viscoelasticity were identified and compared directly to Newtonian results.At a Reynolds number of 300, two unstable bands exist over the range 0. ≤ α≤ 10 for Newtonian flow. For the low α band, associated with the "mode A" wake instability, a monotonic reduction in growth rates is found for increasing polymer extensibility L. For the high α band, associated with the "mode B" instability, first a rise, then a significant decrease to a stable state is found for the instability growth rates as L is increased from L= 10 to L= 30. The mechanism behind this stabilization of both mode A and mode B instabilities is due to the change of the base flow, rather than a direct effect of viscoelasticity on the perturbation. © 2011 Elsevier B.V.

  7. Non-Linear Finite Element Analysis of Viscoelastic Materials

    National Research Council Canada - National Science Library

    Negaard, Gordon

    1998-01-01

    .... It would be useful if viscoelastic materials could be used to damp the vibration of such structures, however the behavior of a viscoelastic material in an extremely high g-loading is not well understood...

  8. Chaotic convective behavior and stability analysis of a fractional viscoelastic fluids model in porous media

    KAUST Repository

    N'Doye, Ibrahima

    2015-05-25

    In this paper, a dynamical fractional viscoelastic fluids convection model in porous media is proposed and its chaotic behavior is studied. A preformed equilibrium points analysis indicates the conditions where chaotic dynamics can be observed, and show the existence of chaos. The behavior and stability analysis of the integer-order and the fractional commensurate and non-commensurate orders of a fractional viscoelastic fluids system, which exhibits chaos, are presented as well.

  9. Stability analysis on a set of calcium-regulated viscoelastic equations

    Science.gov (United States)

    Trainor, L. E. H.; Goodwin, B. C.

    1986-08-01

    In recent years some progress has been made in modelling pattern formation and morphogenesis in biological systems in terms of calcium ion regulation of the viscoelastic properties of the cellular cortex. In this paper, linear stability analysis is used on a set of calcium-regulated viscoelastic equations derived by Goodwin and Trainor [5] for the 3-dimensional medium appropriate to regeneration phenomena in the single celled alga Acetabularia mediterranea. The nature of the instabilities is discussed and it is shown how complex patterns arise naturally from the cross-terms linking viscoelastic strain to calcium concentration and concentration gradients.

  10. Indentation analysis of active viscoelastic microplasmodia of P. polycephalum

    Science.gov (United States)

    Fessel, Adrian; Oettmeier, Christina; Wechsler, Klaus; Döbereiner, Hans-Günther

    2018-01-01

    Simple organisms like Physarum polycephalum realize complex behavior, such as shortest path optimization or habituation, via mechanochemical processes rather than by a network of neurons. A full understanding of these phenomena requires detailed investigation of the underlying mechanical properties. To date, micromechanical measurements on P. polycephalum are sparse and lack reproducibility. This prompts study of microplasmodia, a reproducible and homogeneous form of P. polycephalum that resembles the plasmodial ectoplasm responsible for mechanical stability and generation of forces. We combine investigation of ultra-structure and dimension of P. polycephalum with the analysis of data obtained by indentation of microplasmodia, employing a novel nonlinear viscoelastic scaling model that accounts for finite dimension of the sample. We identify the multi-modal distribution of parameters such as Young’s moduls, Poisson’s ratio, and relaxation times associated with viscous processes that cover five orders of magnitude. Results suggest a characterization of microplasmodia as porous, compressible structures that act like elastic solids with high Young’s modulus on short time scales, whereas on long time-scales and upon repeated indentation viscous behavior dominates and the effective modulus is significantly decreased. Furthermore, Young’s modulus is found to oscillate in phase with shape of microplasmodia, emphasizing that modeling P. polycephalum oscillations as a driven oscillator with constant moduli is not practicable.

  11. Analysis of viscoelastic behavior of a filled elastomer under action of different loads

    Directory of Open Access Journals (Sweden)

    Gligorijević Nikola I.

    2017-01-01

    Full Text Available Mechanical properties of viscoelastic filled polymers strongly depend on temperature and strain rate and vary for several orders of magnitude. During service life, a viscoelastic body, especially carboxy-terminated polybutadiene (CTPB composite solid rocket propellant grain, is subjected to many stress-inducing loads. Its structural integrity analysis (hereafter: “structural analysis”, unlike elastic bodies, is quite complex and sometimes impossible under the action of just a single load. An even greater problem occurs when multiple different types of loads act simultaneously. This study is based on a complete uniaxial mechanical characterization of a viscoelastic CTPB composite rocket propellant, made in MTI- -Belgrade, whose results were used for the analysis of the propellant grain reliability. Through an example, this paper shows a behavior of the viscoelastic propellant grain when it is subjected to extremely different environmental loads at the same time. Similar explicit examples are difficult to found in the literature, except in the form of recommended principles for analysis. It is shown that the tensile strength under the action of fast load due to the pressure may be almost 20 times greater than the tensile strength under the slow temperature load. A probabilistic approach is presented in evaluation the reliability and service life. An example is shown for a rocket propellant grain as a viscoelastic body. The presented principles of the analysis can be applied to any arbitrary viscoelastic body in other areas.

  12. Strain rate viscoelastic analysis of soft and highly hydrated biomaterials.

    Science.gov (United States)

    Tirella, A; Mattei, G; Ahluwalia, A

    2014-10-01

    Measuring the viscoelastic behavior of highly hydrated biological materials is challenging because of their intrinsic softness and labile nature. In these materials, it is difficult to avoid prestress and therefore to establish precise initial stress and strain conditions for lumped parameter estimation using creep or stress-relaxation (SR) tests. We describe a method ( ɛ˙M or epsilon dot method) for deriving the viscoelastic parameters of soft hydrated biomaterials which avoids prestress and can be used to rapidly test degradable samples. Standard mechanical tests are first performed compressing samples using different strain rates. The dataset obtained is then analyzed to mathematically derive the material's viscoelastic parameters. In this work a stable elastomer, polydimethylsiloxane, and a labile hydrogel, gelatin, were first tested using the ɛ˙M, in parallel SR was used to compare lumped parameter estimation. After demonstrating that the elastic parameters are equivalent and that the estimation of short-time constants is more precise using the proposed method, the viscoelastic behavior of porcine liver was investigated using this approach. The results show that the constitutive parameters of hepatic tissue can be quickly quantified without the application of any prestress and before the onset of time-dependent degradation phenomena. © 2013 Wiley Periodicals, Inc.

  13. Viscoelastic analysis of a dental metal-ceramic system

    Science.gov (United States)

    Özüpek, Şebnem; Ünlü, Utku Cemal

    2012-11-01

    Porcelain-fused-to-metal (PFM) restorations used in prosthetic dentistry contain thermal stresses which develop during the cooling phase after firing. These thermal stresses coupled with the stresses produced by mechanical loads may be the dominant reasons for failures in clinical situations. For an accurate calculation of these stresses, viscoelastic behavior of ceramics at high temperatures should not be ignored. In this study, the finite element technique is used to evaluate the effect of viscoelasticity on stress distributions of a three-point flexure test specimen, which is the current international standard, ISO 9693, to characterize the interfacial bond strength of metal-ceramic restorative systems. Results indicate that the probability of interfacial debonding due to normal tensile stress is higher than that due to shear stress. This conclusion suggests modification of ISO 9693 bond strength definition from one in terms of the shear stress only to that accounting for both normal and shear stresses.

  14. Nonlinear electroelastic vibration analysis of NEMS consisting of double-viscoelastic nanoplates

    Science.gov (United States)

    Ebrahimy, Farzad; Hosseini, S. Hamed S.

    2016-10-01

    The nonlinear electroelastic vibration behavior of viscoelastic nanoplates is investigated based on nonlocal elasticity theory. Employing nonlinear strain-displacement relations, the geometrical nonlinearity is modeled while governing equations are derived through Hamilton's principle and they are solved applying semi-analytical generalized differential quadrature (GDQ) method. Eringen's nonlocal elasticity theory takes into account the effect of small size, which enables the present model to become effective in the analysis and design of nanosensors and nanoactuators. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. It is demonstrated that the GDQ method has high precision and computational efficiency in the vibration analysis of viscoelastic nanoplates. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as electric voltage, small-scale effects, van der Waals interaction, Winkler and Pasternak elastic coefficients, the viscidity and aspect ratio of the nanoplate on its nonlinear vibrational characteristics. It is explicitly shown that the electroelastic vibration behavior of viscoelastic nanoplates is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of viscoelastic nanoplates which are fundamental elements in nanoelectromechanical systems.

  15. Asymptotic Analysis of a Viscoelastic Flexural Shell Model

    OpenAIRE

    Castiñeira, Gonzalo; Rodríguez-Arós, Ángel

    2017-01-01

    We consider a family of linearly viscoelastic shells with thickness $2\\varepsilon$, clamped along a portion of their lateral face, all having the same middle surface $S=\\mathbf{\\theta}(\\bar{\\omega})\\subset\\mathbb{R}^3$, where $\\omega\\subset\\mathbb{R}^2$ is a bounded and connected open set with a Lipschitz-continuous boundary $\\gamma$. We show that, if the applied body force density is $O(\\varepsilon^2)$ with respect to $\\varepsilon$ and surface tractions density is $O(\\varepsilon^3)$, the sol...

  16. Nonlinearly viscoelastic analysis of asphalt mixes subjected to shear loading

    Science.gov (United States)

    Huang, Chien-Wei; Masad, Eyad; Muliana, Anastasia H.; Bahia, Hussain

    2007-06-01

    This study presents the characterization of the nonlinearly viscoelastic behavior of hot mix asphalt (HMA) at different temperatures and strain levels using Schapery’s model. A recursive-iterative numerical algorithm is generated for the nonlinearly viscoelastic response and implemented in a displacement-based finite element (FE) code. Then, this model is employed to describe experimental frequency sweep measurements of two asphalt mixes with fine and coarse gradations under several combined temperatures and shear strain levels. The frequency sweep measurements are converted to creep responses in the time domain using a phenomenological model (Prony series). The master curve is created for each strain level using the time temperature superposition principle (TTSP) with a reference temperature of 40°C. The linear time-dependent parameters of the Prony series are first determined by fitting a master curve created at the lowest strain level, which in this case is 0.01%. The measurements at strain levels higher than 0.01% are analyzed and used to determine the nonlinear parameters. These parameters are shown to increase with increasing strain levels, while the time temperature shift function is found to be independent of strain levels. The FE model with the calibrated time-dependent and nonlinear material parameters is used to simulate the creep experimental tests, and reasonable predictions are shown.

  17. Numerical simulations of magnetic resonance elastography using finite element analysis with a linear heterogeneous viscoelastic model.

    Science.gov (United States)

    Tomita, Sunao; Suzuki, Hayato; Kajiwara, Itsuro; Nakamura, Gen; Jiang, Yu; Suga, Mikio; Obata, Takayuki; Tadano, Shigeru

    2018-01-01

    Magnetic resonance elastography (MRE) is a technique to identify the viscoelastic moduli of biological tissues by solving the inverse problem from the displacement field of viscoelastic wave propagation in a tissue measured by MRI. Because finite element analysis (FEA) of MRE evaluates not only the viscoelastic model for a tissue but also the efficiency of the inversion algorithm, we developed FEA for MRE using commercial software called ANSYS, the Zener model for displacement field of a wave inside tissue, and an inversion algorithm called the modified integral method. The profile of the simulated displacement field by FEA agrees well with the experimental data measured by MRE for gel phantoms. Similarly, the value of storage modulus (i.e., stiffness) recovered using the modified integral method with the simulation data is consistent with the value given in FEA. Furthermore, applying the suggested FEA to a human liver demonstrates the effectiveness of the present simulation scheme.

  18. Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media

    Science.gov (United States)

    Zhang, K.; Luo, Y.; Xia, J.; Chen, C.

    2011-01-01

    Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P

  19. Efficient frequency response analysis of structures with viscoelastic materials

    Science.gov (United States)

    Swenson, Eric Dexter

    Noise and vibration levels in structures like automobiles and aircraft have been reduced through the application of viscoelastic materials (VEMs) as damping treatments for many years [18, 34, 37]. Adding a VEM to a structure makes accurate prediction of a structure's response to harmonic excitations challenging. This is because the VEM's properties, including the Young's modulus, damping coefficient, and shear modulus, vary significantly as functions of both frequency of excitation and temperature [34]. The solution algorithm presented in this research takes advantage of the fact that the VEM properties typically vary smoothly with frequency by interpolating VEM property variations between known values at perhaps a half dozen frequencies. The typical finite element (FE) discretization targeted by this work has millions of FE degrees of freedom in order to obtain acceptable accuracy over the frequency range of interest and is typically solved at hundreds of frequencies for tens to hundreds of load cases. Accurate approximate solutions to this large frequency response problem (FRP) can be computed efficiently on an approximating subspace. To decrease the cost of factoring the resulting reduced FRP at every frequency, the dimension of the approximating subspace is minimized by replacing hundreds to thousands of eigenvectors with a significantly smaller number of enrichment vectors called residual flexibility vectors (RFVs), damping deformation vectors (DDVs), and dynamic response vectors (DRVs). The RFVs and DDVs represent quasistatic response to loads and to dashpot forces, respectively, and including RFVs and DDVs in the approximating subspace is a common industrial practice. The use of DRVs, which are corrections to approximate solutions of the FRP at select frequencies, is new. Because computing DRVs is very expensive on the FE subspace, we accurately approximate DRVs in a reduced subspace associated with the automated multilevel substructuring (AMLS) method. Also

  20. Error analysis of the finite element and finite volume methods for some viscoelastic fluids

    Czech Academy of Sciences Publication Activity Database

    Lukáčová-Medviďová, M.; Mizerová, H.; She, B.; Stebel, Jan

    2016-01-01

    Roč. 24, č. 2 (2016), s. 105-123 ISSN 1570-2820 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : error analysis * Oldroyd-B type models * viscoelastic fluids Subject RIV: BA - General Mathematics Impact factor: 0.405, year: 2016 http://www.degruyter.com/view/j/jnma.2016.24.issue-2/jnma-2014-0057/jnma-2014-0057. xml

  1. Instability analysis of cosmic viscoelastic gyro-gravitating clouds in the presence of dark matter

    Science.gov (United States)

    Karmakar, Pralay Kumar; Das, Papari

    2017-08-01

    A classical formalism for the weakly nonlinear instability analysis of a gravitating rotating viscoelastic gaseous cloud in the presence of gyratory dark matter is presented on the cosmic Jeans flat scales of space and time. The constituent neutral gaseous fluid (NGF) and dark matter fluid (DMF) are inter-coupled frictionally via mutual gravity alone. Application of standard nonlinear perturbation techniques over the complex gyro-gravitating clouds results in a unique conjugated pair of viscoelastic forced Burgers (VFB) equations. The VFB pair is conjointly twinned by correlational viscoelastic effects. There is no regular damping term here, unlike, in the conventional Burgers equation for the luminous (bright) matter solely. Instead, an interesting linear self-consistent derivative force-term naturalistically appears. A numerical illustrative platform is provided to reveal the micro-physical insights behind the weakly non-linear natural diffusive eigen-modes. It is fantastically seen that the perturbed NGF evolves as extended compressive solitons and compressive shock-like structures. In contrast, the perturbed DMF grows as rarefactive extended solitons and hybrid shocks. The latter is micro-physically composed of rarefactive solitons and compressive shocks. The consistency and reliability of the results are validated in the panoptic light of the existing reports based on the preeminent nonlinear advection-diffusion-based Burgers fabric. At the last, we highlight the main implications and non-trivial futuristic applications of the explored findings.

  2. Vibration and Damping Analysis of Composite Fiber Reinforced Wind Blade with Viscoelastic Damping Control

    Directory of Open Access Journals (Sweden)

    Tai-Hong Cheng

    2015-01-01

    Full Text Available Composite materials are increasingly used in wind blade because of their superior mechanical properties such as high strength-to-weight and stiffness-to-weight ratio. This paper presents vibration and damping analysis of fiberreinforced composite wind turbine blade with viscoelastic damping treatment. The finite element method based on full layerwise displacement theory was employed to analyze the damping, natural frequency, and modal loss factor of composite shell structure. The lamination angle was considered in mathematical modeling. The curved geometry, transverse shear, and normal strains were exactly considered in present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The frequency response functions of curved composite shell structure and wind blade were calculated. The results show that the damping ratio of viscoelastic layer is found to be very sensitive to determination of magnitude of composite structures. The frequency response functions with variety of thickness of damping layer were investigated. Moreover, the natural frequency, modal loss factor, and mode shapes of composite fiber reinforced wind blade with viscoelastic damping control were calculated.

  3. Viscoelastic finite-element analysis of human skull - dura mater ...

    African Journals Online (AJOL)

    In the work, the dynamic characteristics of the human skull-dura mater system were studied. For the purpose of our analysis, we adopted a model consisted of a hollow sphere. By using the 'Patran and. Ansys' finite element processor, a simplified three-dimensional finite element model (FEM) of a human skull was ...

  4. Viscoelastic analysis of seals for extended service life

    Science.gov (United States)

    Bower, Mark V.

    1993-01-01

    The space station is being developed for a service life of up to thirty years. As a consequence, the design requirements for the seals to be used are unprecedented. Full scale testing to assure the selected seals can satisfy the design requirements are not feasible. As an alternative, a sub-scale test program (2) has been developed by MSFC to calibrate the analysis tools to be used to certify the proposed design. This research has been conducted in support of the MSFC Integrated Seal Test Program. The ultimate objective of this research is to correlate analysis and test results to qualify the analytical tools which in turn, are to be used to qualify the flight hardware. Seals are simple devices, in wide spread use. The most common type of seal is the O-ring. O-ring seals are typically rings of rubber with a circular cross section. The rings are placed between the surfaces to be sealed, usually in a groove of some design. The particular design may differ based on a number of different factors. This research is focused on O-rings that are staticly compressed by perpendicular clamping forces, commonly referred to as face seals. In this type of seal the O-ring is clamped between the sealing surfaces by loads perpendicular to the circular cross section.

  5. Viscoelastic analysis of seals for extended service life

    Science.gov (United States)

    Bower, Mark V.

    1993-11-01

    The space station is being developed for a service life of up to thirty years. As a consequence, the design requirements for the seals to be used are unprecedented. Full scale testing to assure the selected seals can satisfy the design requirements are not feasible. As an alternative, a sub-scale test program (2) has been developed by MSFC to calibrate the analysis tools to be used to certify the proposed design. This research has been conducted in support of the MSFC Integrated Seal Test Program. The ultimate objective of this research is to correlate analysis and test results to qualify the analytical tools which in turn, are to be used to qualify the flight hardware. Seals are simple devices, in wide spread use. The most common type of seal is the O-ring. O-ring seals are typically rings of rubber with a circular cross section. The rings are placed between the surfaces to be sealed, usually in a groove of some design. The particular design may differ based on a number of different factors. This research is focused on O-rings that are staticly compressed by perpendicular clamping forces, commonly referred to as face seals. In this type of seal the O-ring is clamped between the sealing surfaces by loads perpendicular to the circular cross section.

  6. Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity

    Science.gov (United States)

    Rand, J. L.; Wakefield, D. S.

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may

  7. Elastic Deformation Analysis on MHD Viscous Dissipative Flow of Viscoelastic Fluid: An Exact Approach

    Science.gov (United States)

    Iqbal, Z.; Mehmood, Zaffar

    2017-05-01

    This communication is devoted to analyze elastic deformation on electrically conducted viscoelastic fluid in the presence of viscous dissipation effects. Non-linear analysis is computed through exact solutions for velocity, temperature and concentration profiles. Special emphasis is provided for elastic deformation in the presence of magnetohydrodynamics effects. Concentration profile is discussed significantly in the presence constructive and destructive chemical reaction. Results are displayed through graphs and discussed for physical parameters that are used in present analysis. Notable findings include that temperature and thermal boundary layer thickness is an increasing function of Prandtl number and a decreasing function of elastic deformation. In addition, heat transfer rate is enhanced by increasing the conjugate parameter (γ) which measures the strength of surface heating.

  8. Corneal Viscoelastic Properties from Finite-Element Analysis of In Vivo Air-Puff Deformation

    Science.gov (United States)

    Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos; Pascual, Daniel; Marcos, Susana

    2014-01-01

    Biomechanical properties are an excellent health marker of biological tissues, however they are challenging to be measured in-vivo. Non-invasive approaches to assess tissue biomechanics have been suggested, but there is a clear need for more accurate techniques for diagnosis, surgical guidance and treatment evaluation. Recently air-puff systems have been developed to study the dynamic tissue response, nevertheless the experimental geometrical observations lack from an analysis that addresses specifically the inherent dynamic properties. In this study a viscoelastic finite element model was built that predicts the experimental corneal deformation response to an air-puff for different conditions. A sensitivity analysis reveals significant contributions to corneal deformation of intraocular pressure and corneal thickness, besides corneal biomechanical properties. The results show the capability of dynamic imaging to reveal inherent biomechanical properties in vivo. Estimates of corneal biomechanical parameters will contribute to the basic understanding of corneal structure, shape and integrity and increase the predictability of corneal surgery. PMID:25121496

  9. Analysis of Magneto-hydrodynamics Flow and Heat Transfer of a Viscoelastic Fluid through Porous Medium in Wire Coating Analysis

    Directory of Open Access Journals (Sweden)

    Zeeshan Khan

    2017-05-01

    Full Text Available Wire coating process is a continuous extrusion process for primary insulation of conducting wires with molten polymers for mechanical strength and protection in aggressive environments. Nylon, polysulfide, low/high density polyethylene (LDPE/HDPE and plastic polyvinyl chloride (PVC are the common and important plastic resin used for wire coating. In the current study, wire coating is performed using viscoelastic third grade fluid in the presence of applied magnetic field and porous medium. The governing equations are first modeled and then solved analytically by utilizing the homotopy analysis method (HAM. The convergence of the series solution is established. A numerical technique called ND-solve method is used for comparison and found good agreement. The effect of pertinent parameters on the velocity field and temperature profile is shown with the help of graphs. It is observed that the velocity profiles increase as the value of viscoelastic third grade parameter β increase and decrease as the magnetic parameter M and permeability parameter K increase. It is also observed that the temperature profiles increases as the Brinkman number B r , permeability parameter K , magnetic parameter M and viscoelastic third grade parameter (non-Newtonian parameter β increase.

  10. Engineering viscoelasticity

    CERN Document Server

    Gutierrez-Lemini, Danton

    2014-01-01

    Engineering Viscoelasticity covers all aspects of the thermo- mechanical response of viscoelastic substances that a practitioner in the field of viscoelasticity would need to design experiments, interpret test data, develop stress-strain models, perform stress analyses, design structural components, and carry out research work. The material in each chapter is developed from the elementary to the advanced, providing the background in mathematics and mechanics that are central to understanding the subject matter being presented. The book examines how viscoelastic materials respond to the application of loads, and provides practical guidelines to use them in the design of commercial, military and industrial applications. This book also: ·         Facilitates conceptual understanding by progressing in each chapter from elementary to challenging material ·         Examines in detail both differential and integral constitutive equations, devoting full chapters to each type and using both forms in ...

  11. Vibration Analysis of Cylindrical Sandwich Aluminum Shell with Viscoelastic Damping Treatment

    Directory of Open Access Journals (Sweden)

    Tai-Hong Cheng

    2013-01-01

    Full Text Available This paper has applied the constrained viscoelastic layer damping treatments to a cylindrical aluminum shell using layerwise displacement theory. The transverse shear, the normal strains, and the curved geometry are exactly taken into account in the present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The damped natural frequencies, modal loss factors, and frequency response functions of cylindrical viscoelastic aluminum shells are compared with those of the base thick aluminum panel without a viscoelastic layer. The thickness and damping ratio of the viscoelastic damping layer, the curvature of proposed cylindrical aluminum structure, and placement of damping layer of the aluminum panel were investigated using frequency response function. The presented results show that the sandwiched viscoelastic damping layer can effectively suppress vibration of cylindrical aluminum structure.

  12. Rotordynamic analysis using the Complex Transfer Matrix: An application to elastomer supports using the viscoelastic correspondence principle

    Science.gov (United States)

    Varney, Philip; Green, Itzhak

    2014-11-01

    Numerous methods are available to calculate rotordynamic whirl frequencies, including analytic methods, finite element analysis, and the transfer matrix method. The typical real-valued transfer matrix (RTM) suffers from several deficiencies, including lengthy computation times and the inability to distinguish forward and backward whirl. Though application of complex coordinates in rotordynamic analysis is not novel per se, specific advantages gained from using such coordinates in a transfer matrix analysis have yet to be elucidated. The present work employs a complex coordinate redefinition of the transfer matrix to obtain reduced forms of the elemental transfer matrices in inertial and rotating reference frames, including external stiffness and damping. Application of the complex-valued state variable redefinition results in a reduction of the 8×8 RTM to the 4×4 Complex Transfer Matrix (CTM). The CTM is advantageous in that it intrinsically separates forward and backward whirl, eases symbolic manipulation by halving the transfer matrices’ dimension, and provides significant improvement in computation time. A symbolic analysis is performed on a simple overhung rotor to demonstrate the mathematical motivation for whirl frequency separation. The CTM's utility is further shown by analyzing a rotordynamic system supported by viscoelastic elastomer rings. Viscoelastic elastomer ring supports can provide significant damping while reducing the cost and complexity associated with conventional components such as squeeze film dampers. The stiffness and damping of a viscoelastic damper ring are determined herein as a function of whirl frequency using the viscoelastic correspondence principle and a constitutive fractional calculus viscoelasticity model. The CTM is then employed to obtain the characteristic equation, where the whirl frequency dependent stiffness and damping of the elastomer supports are included. The Campbell diagram is shown, demonstrating the CTM

  13. Development of Viscoelastic Multi-Body Simulation and Impact Response Analysis of a Ballasted Railway Track under Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Daisuke Nishiura

    2017-06-01

    Full Text Available Simulation of a large number of deformable bodies is often difficult because complex high-level modeling is required to address both multi-body contact and viscoelastic deformation. This necessitates the combined use of a discrete element method (DEM and a finite element method (FEM. In this study, a quadruple discrete element method (QDEM was developed for dynamic analysis of viscoelastic materials using a simpler algorithm compared to the standard FEM. QDEM easily incorporates the contact algorithm used in DEM. As the first step toward multi-body simulation, the fundamental performance of QDEM was investigated for viscoelastic analysis. The amplitude and frequency of cantilever elastic vibration were nearly equal to those obtained by the standard FEM. A comparison of creep recovery tests with an analytical solution showed good agreement between them. In addition, good correlation between the attenuation degree and the real physical viscosity was confirmed for viscoelastic vibration analysis. Therefore, the high accuracy of QDEM in the fundamental analysis of infinitesimal viscoelastic deformations was verified. Finally, the impact response of a ballast and sleeper under cyclic loading on a railway track was analyzed using QDEM as an application of deformable multi-body dynamics. The results showed that the vibration of the ballasted track was qualitatively in good agreement with the actual measurements. Moreover, the ballast layer with high friction reduced the ballasted track deterioration. This study suggests that QDEM, as an alternative to DEM and FEM, can provide deeper insights into the contact dynamics of a large number of deformable bodies.

  14. Stability analysis of arbitrarily shaped moderately thick viscoelastic plates using Laplace-Carson transformation and a simple hp cloud method

    Science.gov (United States)

    Jafari, Nasrin; Azhari, Mojtaba

    2017-08-01

    In this paper, the stability analysis of moderately thick time-dependent viscoelastic plates with various shapes is studied using the Laplace-Carson transformation and simple hp cloud meshless method. The shear effect of the plate is described by the first order shear deformation theory. The mechanical properties of the materials are supposed to be linear viscoelastic based on the constant bulk modulus. The displacement field is assumed to be the product of two functions, one being a function of geometrical parameters and the other a known exponential function of time. The simple hp cloud method is used for discretization which is based on Kronecker-delta properties. Thus, the essential boundary conditions can be imposed directly. A numerical investigation is made by employing the inverse of Laplace-Carson transformation. The time history of buckling coefficients of viscoelastic plates of various shapes with different boundary conditions is considered. Moreover, a number of numerical results are presented to study the effect of thickness, aspect ratio, different boundary conditions, and various shapes on the time history of buckling coefficients of the viscoelastic plate.

  15. Computational Viscoelasticity

    CERN Document Server

    Marques, Severino P C

    2012-01-01

    This text is a guide how to solve problems in which viscoelasticity is present using existing commercial computational codes. The book gives information on codes’ structure and use, data preparation  and output interpretation and verification. The first part of the book introduces the reader to the subject, and to provide the models, equations and notation to be used in the computational applications. The second part shows the most important Computational techniques: Finite elements formulation, Boundary elements formulation, and presents the solutions of Viscoelastic problems with Abaqus.

  16. Analytical solution for static and dynamic analysis of magnetically affected viscoelastic orthotropic double-layered graphene sheets resting on viscoelastic foundation

    Science.gov (United States)

    Jalaei, M. H.; Arani, A. Ghorbanpour

    2018-02-01

    By considering the small scale effect based on the nonlocal Eringen's theory, the static and dynamic analysis of viscoelastic orthotropic double-layered graphene sheets subjected to longitudinal magnetic field and mechanical load is investigated analytically. For this objective, first order shear deformation theory (FSDT) is proposed. The surrounding medium is simulated by visco-Pasternak foundation model in which damping, normal and transverse shear loads are taken into account. The governing equations of motion are obtained via energy method and Hamilton's principle which are then solved analytically by means of Navier's approach and Laplace inversion technique in the space and time domains, respectively. Through various parametric studies, the influences of the nonlocal parameter, structural damping, van der Waals (vdW) interaction, stiffness and damping coefficient of the foundation, magnetic parameter, aspect ratio and length to thickness ratio on the static and dynamic response of the nanoplates are examined. The results depict that when the vdW interaction is considered to be zero, the upper layer deflection reaches a maximum point whereas the lower layer deflection becomes zero. In addition, it is observed that with growing the vdW interaction, the effect of magnetic field on the deflection of the lower layer increases while this effect reduces for the upper layer deflection.

  17. Analysis of attenuation and dispersion of Rayleigh waves in viscoelastic media by finite-difference modeling

    Science.gov (United States)

    Yuan, Shichuan; Song, Xianhai; Cai, Wei; Hu, Ying

    2018-01-01

    Viscoelasticity of Earth media has an important influence on Rayleigh-wave propagation. Therefore, it is necessary to study the attenuation and dispersion of Rayleigh-wave by numerical modeling to better understand Rayleigh-wave behaviors in Earth media. Modeling adopts a staggered finite-difference (FD) scheme, which calculates the spatial derivatives by a 12th-order operator and the time derivatives by the fourth-order Runge-Kutta method. In time-space domain, the accuracy of FD method is demonstrated through comparing the modeling results with the analytical solution in an elastic half-space. In frequency-velocity domain, the correctness of modeling results is verified via comparing the dispersive images with the theoretical dispersion curves of Rayleigh-wave. The attenuation and dispersion of Rayleigh-wave are analyzed by comparisons between elastic and viscoelastic modeling results in the homogeneous half-space models in terms of the wave field snapshots, the synthetic seismograms, and the dispersive images, respectively. The two-layer models are also simulated to further investigate the attenuation and dispersion of Rayleigh-wave in viscoelastic layered media. Results show that the viscoelastic Rayleigh-wave presents substantial differences in amplitude and phase velocity compared with the elastic case. Viscoelasticity of media arouses amplitude attenuation of Rayleigh-wave. The high-frequency waves are attenuated more severely than the lower-frequency waves, and the attenuation degree is severe increasingly with offset increasing. Viscoelasticity of media also causes the phase velocity dispersion of Rayleigh-wave. The phase velocity ratio of viscoelastic Rayleigh-wave respecting to the corresponding elastic one increases with frequency, and the resolution of dispersion energy is lower than the elastic one. The attenuation and dispersion of Rayleigh-wave are prominent increasingly with Q decreasing.

  18. Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis

    Directory of Open Access Journals (Sweden)

    Sara Mattana

    2017-11-01

    Full Text Available Amyloidopathy is one of the most prominent hallmarks of Alzheimer’s disease (AD, the leading cause of dementia worldwide, and is characterized by the accumulation of amyloid plaques in the brain parenchyma. The plaques consist of abnormal deposits mainly composed of an aggregation-prone protein fragment, β-amyloid 1-40/1-42, into the extracellular matrix. Brillouin microspectroscopy is an all-optical contactless technique that is based on the interaction between visible light and longitudinal acoustic waves or phonons, giving access to the viscoelasticity of a sample on a subcellular scale. Here, we describe the first application of micromechanical mapping based on Brillouin scattering spectroscopy to probe the stiffness of individual amyloid plaques in the hippocampal part of the brain of a β-amyloid overexpressing transgenic mouse. Correlative analysis based on Brillouin and Raman microspectroscopy showed that amyloid plaques have a complex structure with a rigid core of β-pleated sheet conformation (β-amyloid protein surrounded by a softer ring-shaped region richer in lipids and other protein conformations. These preliminary results give a new insight into the plaque biophysics and biomechanics, and a valuable contrast mechanism for the study and diagnosis of amyloidopathy.

  19. Quasi-static analysis of multilayered domains with viscoelastic layer using incremental-layerwise finite element method

    Science.gov (United States)

    Ameri, M.; Malakouti, M.; Malekzadeh, P.

    2014-02-01

    This paper presents a layerwise finite element formulation for quasi-static analysis of laminated structures with embedded viscoelastic material whose constitutive behavior is represented by the Prony series. To account the time dependence of the constitutive relations of linear viscoelastic materials, the incremental formulation in the temporal domain is used. This approach avoids the use of relaxation functions and mathematical transformations. A computer code based on the presented formulation has been developed to provide the numerical results. The high accuracy of the method is exhibited by comparing the results with existing solutions in the literature and also with those obtained using the ABAQUS software. Finally, and as an application of the presented formulation, the effects of time and load rate on the quasi-static structural response of asphalt concrete (AC) pavements are studied.

  20. Dynamic analysis of a tunable viscoelastic dielectric elastomer oscillator under external excitation

    Science.gov (United States)

    Zhou, Jianyou; Jiang, Liying; Khayat, Roger E.

    2016-02-01

    As a category of soft electroactive materials, dielectric elastomers (DEs) show great potential for the development of tunable oscillators and resonators for actuating and sensing purposes. However, the dynamic performance of these DE-based vibration devices could be very susceptible to external environment (external loads and excitations) and material viscoelasticity of the DEs. Based on the finite-deformation viscoelasticity theory, this work first investigates the frequency tuning process of a viscoelastic DE membrane oscillator. A comparison of the frequency tuning process and the tunable frequency range between a viscoelastic and a purely elastic DE oscillator is presented. Moreover, particular considerations have been given to the nonlinear response of the oscillator to external harmonic excitation. It is found that the displacement transmissibility of the oscillator can also be actively tuned by changing the static voltage applied to the DE membrane. Under harmonic excitation, various vibration patterns of the oscillator could be actively achieved with the application of both static and alternating electric voltage. Simulation results in this work demonstrate that the material viscoelasticity has a significant effect on the electromechanical coupling and the dynamic performance of the DE-based vibration devices.

  1. Viscoelastic computational modeling of the human head-neck system: Eigenfrequencies and time-dependent analysis.

    Science.gov (United States)

    Boccia, E; Gizzi, A; Cherubini, C; Nestola, M G C; Filippi, S

    2018-01-01

    A subject-specific 3-dimensional viscoelastic finite element model of the human head-neck system is presented and investigated based on computed tomography and magnetic resonance biomedical images. Ad hoc imaging processing tools are developed for the reconstruction of the simulation domain geometry and the internal distribution of bone and soft tissues. Material viscoelastic properties are characterized point-wise through an image-based interpolating function used then for assigning the constitutive prescriptions of a heterogenous viscoelastic continuum model. The numerical study is conducted both for modal and time-dependent analyses, compared with similar studies and validated against experimental evidences. Spatiotemporal analyses are performed upon different exponential swept-sine wave-localized stimulations. The modeling approach proposes a generalized, patient-specific investigation of sound wave transmission and attenuation within the human head-neck system comprising skull and brain tissues. Model extensions and applications are finally discussed. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Nonlinear dynamic analysis and state space representation of a manipulator under viscoelastic material conditions

    Directory of Open Access Journals (Sweden)

    Esfandiar, H.

    2013-05-01

    Full Text Available In this paper, based on the VoigtKelvin constitutive model, nonlinear dynamic modelling and state space representation of a viscoelastic beam acting as a flexible robotic manipulator is investigated. Complete nonlinear dynamic modelling of a viscoelastic beam without premature linearisation of dynamic equations is developed. The adopted method is capable of reproducing nonlinear dynamic effects, such as beam stiffening due to centrifugal and Coriolis forces induced by rotation of the joints. Structural damping effects on the models dynamic behaviour are also shown. A reliable model for a viscoelastic beam is subsequently presented. The governing equations of motion are derived using Hamiltons principle, and using the finite difference method, nonlinear partial differential equations are reduced to ordinary differential equations. For the purpose of flexible manipulator control, the standard form of state space equations for the viscoelastic link and the actuator is obtained. Simulation results indicate substantial improvements in dynamic behaviour, and a parameter sensitivity study is carried out to investigate the effect of structural damping on the vibration amplitude.

  3. Two Dimensional Viscoelastic Stress Analysis of a Prototypical JIMO Turbine Wheel

    Science.gov (United States)

    Gayda, John; Gabb, Timothy

    2005-01-01

    The designers of the Jupiter Icy Moons Orbiter (JIMO) are investigating the potential of nuclear powered-electric propulsion technology to provide deep space propulsion. In one design scenario a closed-Brayton-cycle power converter is used to convert thermal energy from a nuclear reactor to electrical power for the spacecraft utilizing an inert gas as the working fluid to run a turboalternator as described in L.S. Mason, "A Power Conversion for the Jupiter Icy Moons Orbiter," Journal of Propulsion and Power, vol. 20, no. 5, pp. 902-910. A key component in the turboalternator is the radial flow turbine wheel which may be fabricated from a cast superalloy. This turbine wheel is envisioned to run continuously over the life of the mission, which is anticipated to be about ten years. This scenario places unusual material requirements on the turbine wheel. Unlike the case of terrestrial turbine engines, fatigue, associated with start-up and shut-down of the engine, foreign-object damage, and corrosion issues are insignificant and thus creep issues become dominate. The purpose of this paper is to present estimates for creep growth of a prototypical JIMO turbine wheel over a ten year life. Since an actual design and bill of materials does not exist, the results presented in this paper are based on preliminary concepts which are likely to evolve over time. For this reason, as well as computational efficiency, a simplified 2-D, in lieu of a 3-D, viscoelastic, finite element model of a prototypical turbine wheel will be utilized employing material properties for the cast superalloy MAR-M247. The creep data employed in this analysis are based on preliminary data being generated at NASA Glenn Research Center.

  4. A viscoelastic analysis of the P56 mouse brain under large-deformation dynamic indentation.

    Science.gov (United States)

    MacManus, David B; Pierrat, Baptiste; Murphy, Jeremiah G; Gilchrist, Michael D

    2017-01-15

    The brain is a complex organ made up of many different functional and structural regions consisting of different types of cells such as neurons and glia, as well as complex anatomical geometries. It is hypothesized that the different regions of the brain exhibit significantly different mechanical properties which may be attributed to the diversity of cells within individual brain regions. The regional viscoelastic properties of P56 mouse brain tissue, up to 70μm displacement, are presented and discussed in the context of traumatic brain injury, particularly how the different regions of the brain respond to mechanical loads. Force-relaxation data obtained from micro-indentation measurements were fit to both linear and quasi-linear viscoelastic models to determine the time and frequency domain viscoelastic response of the pons, cortex, medulla oblongata, cerebellum, and thalamus. The damping ratio of each region was also determined. Each region was found to have a unique mechanical response to the applied displacement, with the pons and thalamus exhibiting the largest and smallest force-response, respectively. All brain regions appear to have an optimal frequency for the dissipation of energies which lies between 1 and 10Hz. We present the first mechanical characterization of the viscoelastic response for different regions of mouse brain. Force-relaxation tests are performed under large strain dynamic micro-indentation, and viscoelastic models are used subsequently, providing time-dependent mechanical properties of brain tissue under loading conditions comparable to what is experienced in TBI. The unique mechanical properties of different brain regions are highlighted, with substantial variations in the viscoelastic properties and damping ratio of each region. Cortex and pons were the stiffest regions, while the thalamus and medulla were most compliant. The cerebellum and thalamus had highest damping ratio values and those of the medulla were lowest. The reported

  5. Theory of viscoelasticity an introduction

    CERN Document Server

    Christensen, R

    1982-01-01

    Theory of Viscoelasticity: An Introduction, Second Edition discusses the integral form of stress strain constitutive relations. The book presents the formulation of the boundary value problem and demonstrates the separation of variables condition.The text describes the mathematical framework to predict material behavior. It discusses the problems to which integral transform methods do not apply. Another topic of interest is the thermoviscoelastic stress analysis. The section that follows describes the heat conduction, glass transition criterion, viscoelastic Rayleigh waves, optimal str

  6. Viscoelastic Characterization of Long-Eared Owl Flight Feather Shaft and the Damping Ability Analysis

    Directory of Open Access Journals (Sweden)

    Jia-li Gao

    2014-01-01

    Full Text Available Flight feather shaft of long-eared owl is characterized by a three-parameter model for linear viscoelastic solids to reveal its damping ability. Uniaxial tensile tests of the long-eared owl, pigeon, and golden eagle flight feather shaft specimens were carried out based on Instron 3345 single column material testing system, respectively, and viscoelastic response of their stress and strain was described by the standard linear solid model. Parameter fitting result obtained from the tensile tests shows that there is no significant difference in instantaneous elastic modulus for the three birds’ feather shafts, but the owl shaft has the highest viscosity, implying more obvious viscoelastic performance. Dynamic mechanical property was characterized based on the tensile testing results. Loss factor (tanδ of the owl flight feather shaft was calculated to be 1.609 ± 0.238, far greater than those of the pigeon (0.896 ± 0.082 and golden eagle (1.087 ± 0.074. It is concluded that the long-eared owl flight feather has more outstanding damping ability compared to the pigeon and golden eagle flight feather shaft. Consequently, the long-eared owl flight feathers can dissipate the vibration energy more effectively during the flying process based on the principle of damping mechanism, for the purpose of vibration attenuation and structure radiated noise reduction.

  7. Analysis of tristable energy harvesting system having fractional order viscoelastic material

    Energy Technology Data Exchange (ETDEWEB)

    Oumbé Tékam, G. T.; Woafo, P. [Laboratory of Modelling and Simulation in Engineering, Biomimetics and Prototypes, Department of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé (Cameroon); Kitio Kwuimy, C. A. [Center for Nonlinear Dynamics and Control, Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085 (United States)

    2015-01-15

    A particular attention is devoted to analyze the dynamics of a strongly nonlinear energy harvester having fractional order viscoelastic flexible material. The strong nonlinearity is obtained from the magnetic interaction between the end free of the flexible material and three equally spaced magnets. Periodic responses are computed using the KrylovBogoliubov averaging method, and the effects of fractional order damping on the output electric energy are analyzed. It is obtained that the harvested energy is enhanced for small order of the fractional derivative. Considering the order and strength of the fractional viscoelastic property as control parameter, the complexity of the system response is investigated through the Melnikov criteria for horseshoes chaos, which allows us to derive the mathematical expression of the boundary between intra-well motion and bifurcations appearance domain. We observe that the order and strength of the fractional viscoelastic property can be effectively used to control chaos in the system. The results are confirmed by the smooth and fractal shape of the basin of attraction as the order of derivative decreases. The bifurcation diagrams and the corresponding Lyapunov exponents are plotted to get insight into the nonlinear response of the system.

  8. Analysis of viscoelastic properties of wrist joint for quantification of parkinsonian rigidity.

    Science.gov (United States)

    Park, Byung Kyu; Kwon, Yuri; Kim, Ji-Won; Lee, Jae-Ho; Eom, Gwang-Moon; Koh, Seong-Beom; Jun, Jae-Hoon; Hong, Junghwa

    2011-04-01

    This study aims to analyze viscoelastic properties of the wrist in patients with Parkinson's disease (PD) in comparison with the clinical score of severity. Forty-five patients with PD and 12 healthy volunteers participated in this study. Severity of rigidity at the wrist was rated by a neurologist just before the experiment. Wrist joint torque resistive to the imposed movement was measured. Three different models, (identical in structure, only different in the number of parameters for extension and flexion phases) were used in identification of viscoelastic properties: 1) one damping constant and one spring constant throughout all phases, 2) two damping constants for each phase and one spring constant throughout all phases, and 3) two damping constants and two spring constants for each phase. Normalized work and impulse suggested in the literature were also calculated. Spring constants of different models and phases showed comparable correlation with rigidity score ( r=0.68-0.73). In terms of the correlation of damping constant with clinical rigidity score, model 1 ( r = 0.90) was better than models 2 and 3 ( r=0.59 - 0.71). These results suggest that the clinical rigidity score is better represented by the mean viscosity during both flexion and extension. In models with two dampers (model 2 and 3), the damping constant was greater during extension than flexion in patients , in contrast that there was no phase difference in normal subjects. This suggests that in contrast with normal subjects, phase-dependent viscosity may be an inherent feature of PD. Although work and impulse were correlated with clinical rigidity score ( r = 0.11 - 0.84), they could not represent the phase-dependent rigidity inherent in PD. In conclusion, the viscosity of model 1 would be appropriate for quantification of clinical ratings of rigidity and that of model 2 for distinction of PD and also for investigation of phase-dependent characteristics in parkinsonian rigidity.

  9. Analysis of heat and mass transfer with MHD and chemical reaction effects on viscoelastic fluid over a stretching sheet

    Science.gov (United States)

    Mishra, S. R.; Pattnaik, P. K.; Bhatti, M. M.; Abbas, T.

    2017-10-01

    This article addresses the mass and heat transfer analysis over an electrically conducting viscoelastic (Walters B') fluid over a stretching surface in presence of transverse magnetic field. The impact of chemical reaction, as well as non-uniform heat source, are also taken into account. Similarity transformations are employed to model the equations. The governing equations comprises of momentum, energy, and concentration which are modified to a set of non-linear differential equations and then solved by applying confluent hypergeometric function known as " Kummer's function". The exact solution for heat equation is obtained for two cases i.e. (1) Prescribed surface temperature, (2) Prescribed wall heat flux. Physical behavior of all the sundry parameters are against concentration, temperature, and velocity profile are presented through graphs. The inclusion of magnetic field is counterproductive in diminishing the velocity distribution whereas reverse effect is encountered for concentration and temperature profiles.

  10. Viscoelastic fracture of biological composites

    Science.gov (United States)

    Bouchbinder, Eran; Brener, Efim A.

    2011-11-01

    Soft constituent materials endow biological composites, such as bone, dentin and nacre, with viscoelastic properties that may play an important role in their remarkable fracture resistance. In this paper we calculate the scaling properties of the quasi-static energy release rate and the viscoelastic contribution to the fracture energy of various biological composites, using both perturbative and non-perturbative approaches. We consider coarse-grained descriptions of three types of anisotropic structures: (i) liquid-crystal-like composites, (ii) stratified composites, (iii) staggered composites, for different crack orientations. In addition, we briefly discuss the implications of anisotropy for fracture criteria. Our analysis highlights the dominant lengthscales and scaling properties of viscoelastic fracture of biological composites. It may be useful for evaluating crack velocity toughening effects and structure-dissipation relations in these materials.

  11. Viscoelastic pulsational mode

    Science.gov (United States)

    Dutta, Pranamika; Karmakar, Pralay Kumar

    2017-08-01

    We present a theoretical model analysis to study the linear pulsational mode dynamics in viscoelastic complex self-gravitating infinitely extended clouds in the presence of active frictional coupling and dust-charge fluctuations. The complex cloud consists of uniformly distributed lighter hot mutually thermalized electrons and ions, and heavier cold dust grains amid partial ionization in a homogeneous, quasi-neutral, hydrostatic equilibrium configuration. A normal mode analysis over the closed set of slightly perturbed cloud governing equations is employed to obtain a generalized dispersion relation (septic) of unique analytic construct on the plasma parameters. Two extreme cases of physical interest depending on the perturbation scaling, hydrodynamic limits and kinetic limits are considered. It is shown that the grain mass and viscoelastic relaxation time associated with the charged dust fluid play stabilizing roles to the fluctuations in the hydrodynamic regime. In contrast, however in the kinetic regime, the stabilizing effects are introduced by the dust mass, dust equilibrium density and equilibrium ionic population distribution. Besides, the oscillatory and propagatory features are illustrated numerically and interpreted in detail. The results are in good agreement with the previously reported findings as special corollaries in like situations. Finally, a focalized indication to new implications and applications of the outcomes in the astronomical context is foregrounded.

  12. Non-linear visco-elastic analysis and the design of super-pressure balloons : stress, strain and stability

    Science.gov (United States)

    Wakefield, David

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures. Founded upon their inTENS finite element analysis suite, these activities have broadened to encompass ‘lighter than air' structures such as aerostats, hybrid air-vehicles and stratospheric balloons. Since 2004 Tensys have acted as consultants to the NASA Ultra Long Duration Balloon (ULDB) Program. Early implementations of the super-pressure balloon design chosen for ULDB have shown problems of geometric instability, characterised by improper deployment and the potential for overall geometric instability once deployed. The latter has been reproduced numerically using inTENS, and the former are better understood following a series of large-scale hangar tests simulating launch and ascent. In both cases the solution lies in minimising the film lobing between the tendons. These tendons, which span between base and apex end fittings, cause the characteristic pumpkin shape of the balloons and also provide valuable constraint against excessive film deformation. There is also the requirement to generate a biaxial stress field in order to mobilise in-plane shear stiffness. A consequence of reduced lobing between tendons is the development of higher stresses in the balloon film under pressure. The different thermal characteristics between tendons and film lead to further significant meridional stress under low temperature flight conditions. The non-linear viscoelastic response of the envelope film acts positively to help dissipate excessive stress and local concentrations. However, creep over time may produce lobe geometry variations sufficient to compromise the geometric stability of the balloon. The design of a balloon requires an analysis approach that addresses the questions of stress and stability over the duration of a flight by time stepping analyses using an appropriate material model. This paper summarises the Dynamic Relaxation

  13. Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells.

    Science.gov (United States)

    Nguyen, Nhung; Shao, Yue; Wineman, Alan; Fu, Jianping; Waas, Anthony

    2016-07-01

    Breast cancer cells (MCF-7 and MCF-10A) are studied through indentation with spherical borosilicate glass particles in atomic force microscopy (AFM) contact mode in fluid. Their mechanical properties are obtained by analyzing the recorded reaction force-time response. The analysis is based on comparing experimental data with predictions from finite element (FE) simulation. Here, FE modeling is employed to simulate the AFM indentation experiment which is neither a displacement nor a force controlled test. This approach is expected to overcome many underlying problems of the widely used models such as Hertz contact model due to its capability to capture the contact behaviors between the spherical indentor and the cell, account for cell geometry, and incorporate with large strain theory. In this work, a non-linear viscoelastic (NLV) model in which the viscoelastic part is described by Prony series terms is used for the constitutive model of the cells. The time-dependent material parameters are extracted through an inverse analysis with the use of a surrogate model based on a Kriging estimator. The purpose is to automatically extract the NLV properties of the cells with a more efficient process compared to the iterative inverse technique that has been mostly applied in the literature. The method also allows the use of FE modeling in the analysis of a large amount of experimental data. The NLV parameters are compared between MCF-7 and MCF-10A and MCF-10A treated and untreated with the drug Cytochalasin D to examine the possibility of using relaxation properties as biomarkers for distinguishing these types of breast cancer cells. The comparisons indicate that malignant cells (MCF-7) are softer and exhibit more relaxation than benign cells (MCF-10A). Disrupting the cytoskeleton using the drug Cytochalasin D also results in a larger amount of relaxation in the cell's response. In addition, relaxation properties indicate larger differences as compared to the elastic moduli

  14. Experimental analysis of the mechanical behavior of the viscoelastic porcine pancreas and preliminary case study on the human pancreas.

    Science.gov (United States)

    Wex, C; Fröhlich, M; Brandstädter, K; Bruns, C; Stoll, A

    2015-01-01

    The aim of this article is to study the mechanical properties of the pancreas. Up to now, the mechanical properties of the pancreas are not sufficiently characterized. The possibility of intraoperative mechanical testing of pathological pancreata will allow the classification of pancreatic diseases in the future. The application of mechanical parameters instead of the intraoperative frozen section analysis shortens waiting times in the operating room. This study proves the general applicability of shear rheology for the determination of the mechanical properties of pancreas and the assessment of graft quality for transplantation. Porcine and human pancreas samples were examined ex vivo and a nonlinear viscoelastic behavior was observed. Pancreas was found to be more viscous than liver but both abdominal organs showed a similar flow behavior. The shear deformation dependence of healthy human pancreas was similar to porcine pancreas. An increase in the post-mortem time led to an increase in the complex modulus for a post-mortem time up to 8.5 days. Histological investigations showed that an increased amount of collagen coincides with the stiffening of the pancreatic tissue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Asymptotic Behavior of a Viscoelastic Fluid in a Closed Loop Thermosyphon: Physical Derivation, Asymptotic Analysis, and Numerical Experiments

    Directory of Open Access Journals (Sweden)

    Justine Yasappan

    2013-01-01

    Full Text Available Fluids subject to thermal gradients produce complex behaviors that arise from the competition with gravitational effects. Although such sort of systems have been widely studied in the literature for simple (Newtonian fluids, the behavior of viscoelastic fluids has not been explored thus far. We present a theoretical study of the dynamics of a Maxwell viscoelastic fluid in a closed-loop thermosyphon. This sort of fluid presents elastic-like behavior and memory effects. We study the asymptotic properties of the fluid inside the thermosyphon and the exact equations of motion in the inertial manifold that characterizes the asymptotic behavior. We derive, for the first time, the mathematical derivations of the motion of a viscoelastic fluid in the interior of a closed-loop thermosyphon under the effects of natural convection and a given external temperature gradient.

  16. Mathematical analysis of a viscoelastic-gravitational layered earth model for magmatic intrusion in the dynamic case

    Directory of Open Access Journals (Sweden)

    Alicia Arjona

    2015-11-01

    Full Text Available Volcanic areas present a lower effective viscosity than usually in the Earth's crust. It makes necessary to consider inelastic properties in deformation modelling. As a continuation of work done previously by some of the authors, this work is concerned with the proof that the perturbed equations representing the viscoelastic-gravitational displacements resulting from body forces embedded in a layered Earth model leads to a well-posed problem even for any kind of domains, with the natural boundary and transmission conditions. A homogeneous or stratified viscoelastic half-space has often been used as a simple earth model to calculate the displacements and gravity changes. Here we give a constructive proof of the existence of weak solutions and we show the uniqueness and the continuous dependence with respect to the initial data of weak solutions of the dynamic coupled viscoelastic-gravitational field equations.

  17. Dynamic mechanical analysis to assess viscoelasticity of liver tissue in a rat model of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Zhang, Xinyu; Gao, Xuehua; Zhang, Pengpeng; Guo, Yanrong; Lin, Haoming; Diao, Xianfen; Liu, Yingxia; Dong, Changfeng; Hu, Yaxin; Chen, Siping; Chen, Xin

    2017-06-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common liver disorder in both developed and developing countries. A noninvasive method of detecting early stage NAFLD and distinguishing non-alcoholic steatohepatitis (NASH) from simple steatosis (SS) would be useful. The over-accumulation of fat in hepatocytes alters the physical microstructure and chemical contents of the liver tissue. This study included dynamic mechanical analysis (DMA) testing on liver samples from a rat model of NAFLD to determine whether the tissue shows any significant changes in viscoelasticity due to the histological changes. Liver steatosis was induced in 57 rats by gavage feeding of a high fat emulsion; 12 rats received a standard diet only and served as controls. Each rat provided 2 or 3 samples for DMA tests. The shear modulus and loss modulus were measured at 9 frequency points evenly-spaced in the range from 1Hz to 41Hz. The phase velocity of shear wave was calculated from the measured modulus. Multivariate T2 test was used to assess the significance of intra-group difference. The results showed significant changes (p livers with moderate to severe (S2 to S4) steatosis in comparison with livers without steatosis (S0), while the loss modulus demonstrated significant changes earlier in stage S1, indicating that fat accumulation affects the mechanical properties of liver, particularly viscosity. However, no significant differences were observed between the steatosis grades. These results also suggest that mild inflammation may affect the mechanical properties, which requires further verification. These findings provide new information about the mechanical properties of livers with NAFLD in low frequency range and suggest that it is possible to distinguish normal livers from livers with NAFLD. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. Viscoelastic behavior of erythrocyte membrane.

    Science.gov (United States)

    Tözeren, A; Skalak, R; Sung, K L; Chien, S

    1982-07-01

    A nonlinear viscoelastic relation is developed to describe the viscoelastic properties of erythrocyte membrane. This constitutive equation is used in the analysis of the time-dependent aspiration of an erythrocyte membrane into a micropipette. Equations governing this motion are reduced to a nonlinear integral equation of the Volterra type. A numerical procedure based on a finite difference scheme is used to solve the integral equation and to match the experimental data. The data, aspiration length vs. time, is used to determine the relaxation function at each time step. The inverse problem of obtaining the time dependence of the aspiration length from a given relaxation function is also solved. Analytical results obtained are applied to the experimental data of Chien et al. 1978. Biophys. J. 24:463-487. A relaxation function similar to that of a four-parameter solid with a shear-thinning viscous term is proposed.

  19. Portable polarimetric fiber stress sensor system for visco-elastic and biomimetic material analysis

    Science.gov (United States)

    Harrison, Mark C.; Armani, Andrea M.

    2015-05-01

    Non-destructive materials characterization methods have significantly changed our fundamental understanding of material behavior and have enabled predictive models to be developed. However, the majority of these efforts have focused on crystalline and metallic materials, and transitioning to biomaterials, such as tissue samples, is non-trivial, as there are strict sample handling requirements and environmental controls which prevent the use of conventional equipment. Additionally, the samples are smaller and more complex in composition. Therefore, more advanced sample analysis methods capable of operating in these environments are needed. In the present work, we demonstrate an all-fiber-based material analysis system based on optical polarimetry. Unlike previous polarimetric systems which relied on free-space components, our method combines an in-line polarizer, polarization-maintaining fiber, and a polarimeter to measure the arbitrary polarization state of the output, eliminating all free-space elements. Additionally, we develop a more generalized theoretical analysis which allows more information about the polarization state to be obtained via the polarimeter. We experimentally verify our system using a series of elastomer samples made from polydimethylsiloxane (PDMS), a commonly used biomimetic material. By adjusting the base:curing agent ratio of the PDMS, we controllably tune the Young's modulus of the samples to span over an order of magnitude. The measured results are in good agreement with those obtained using a conventional load-frame system. Our fiber-based polarimetric stress sensor shows promise for use as a simple research tool that is portable and suitable for a wide variety of applications.

  20. Investigation into viscoelastic properties of free-standing DPPC lipid bilayer via molecular dynamics and inverse finite element analysis

    Science.gov (United States)

    Momeni Bashusqeh, Saeed; Rastgoo, Abbas

    2017-10-01

    In the current study, the viscoelastic properties of the free-standing DPPC lipid bilayer are investigated using coarse-grained molecular dynamics (CG-MD) and inverse finite element (FE) methods. As the first step, the CG-MD method is employed to simulate the loading/relaxation of a free-standing DPPC lipid bilayer in an indentation experiment. Then the experiment is simulated using the FE method, in which viscoelastic properties of the bilayer are chosen by a genetic algorithm. At each optimization step, the force-time curve is extracted and evaluated with respect to the curve obtained from the CG-MD simulation. The optimization process is continued until a sufficiently good accordance is acquired between the force-time curves obtained from the FE and CG-MD simulations. The material’s behavior in the FE simulation is represented by a two-term Prony model which comprises three unknown constants; the instantaneous Young’s modulus, the steady-state Young’s modulus and the relaxation time constant, which are obtained through optimization. The effects of various simulation parameters, such as indentation speed, the shape of the indenter, the size of the bilayer and temperature, on the viscoelastic properties of the bilayer are also studied and discussed.

  1. Implementation of viscoelastic Hopkinson bars

    Directory of Open Access Journals (Sweden)

    Govender R.

    2012-08-01

    Full Text Available Knowledge of the properties of soft, viscoelastic materials at high strain rates are important in furthering our understanding of their role during blast or impact events. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. Implementing polymeric Hopkinson bars requires characterization of the viscoelastic properties of the material used. In this paper, 30 mm diameter Polymethyl Methacrylate bars are used as Hopkinson pressure bars. This testing technique is applied to polymeric foam called Divinycell H80 and H200. Although there is a large body of of literature containing compressive data, this rarely deals with strain rates above 250s−1 which becomes increasingly important when looking at the design of composite structures where energy absorption during impact events is high on the list of priorities. Testing of polymeric foams at high strain rates allows for the development of better constitutive models.

  2. Implementation of viscoelastic Hopkinson bars

    Science.gov (United States)

    Curry, R.; Cloete, T.; Govender, R.

    2012-08-01

    Knowledge of the properties of soft, viscoelastic materials at high strain rates are important in furthering our understanding of their role during blast or impact events. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. Implementing polymeric Hopkinson bars requires characterization of the viscoelastic properties of the material used. In this paper, 30 mm diameter Polymethyl Methacrylate bars are used as Hopkinson pressure bars. This testing technique is applied to polymeric foam called Divinycell H80 and H200. Although there is a large body of of literature containing compressive data, this rarely deals with strain rates above 250s-1 which becomes increasingly important when looking at the design of composite structures where energy absorption during impact events is high on the list of priorities. Testing of polymeric foams at high strain rates allows for the development of better constitutive models.

  3. The use of a constant load to generate equivalent viscoelastic strain in finite element analysis of cemented prosthetic joints subjected to cyclic loading.

    Science.gov (United States)

    Lu, Z; McKellop, H A

    2011-08-01

    Polymers such as polymethyl-methacrylate (PMMA) surgical cement undergo elastic and viscoelastic deformation (creep) in response to physiological cyclic loading. Theoretically, the effect of gradual creep deformation on the stresses, strains, and displacements of a prosthetic joint can be evaluated by running a finite element analysis (FEA) model through a large number of loading cycles. However, with complex (i.e. realistic) models, this approach may require extensive computational time, and may accumulate unacceptably large numerical errors over the many iterations of the model. The present study utilized a Fourier series to represent a periodic stress and incorporated it in the linear viscoelastic constitutive equation. It was demonstrated that, for a linear viscoelastic material, the time average (i.e. the constant in the Fourier series) of the cyclic stress determined the accumulated creep strain and the sinusoidal components of the stress produced the periodic creep strain with a zero average and negligible amplitude. For a geometrically linear FEA model, the solution based on a cyclic stress can be readily applied to an external cyclic load, that is, the creep strain is determined by the time average of the cyclic load. While femoral component models were considered as geometrically non-linear, an FEA model of a femur implanted with an Exeter hip prosthesis showed that there was only a minor difference between the profile of the applied sinusoidal load and that of the resulting displacement. In such cases, applying the time average of a cyclic load to calculate the resulting creep strain with a given duration of loading should expect to provide acceptable accuracy, with a marked reduction in the computational time.

  4. Temperature-dependent vibration analysis of a FG viscoelastic cylindrical microshell under various thermal distribution via modified length scale parameter: a numerical solution

    Science.gov (United States)

    Safarpour, Hamed; Mohammadi, Kianoosh; Ghadiri, Majid

    2017-04-01

    In this article, the vibrational analysis of temperature-dependent cylindrical functionally graded (FG) microshells surrounded by viscoelastic a foundation is investigated by means of the modified couple stress theory (MCST). MCST is applied to this model to be productive in design and analysis of micro actuators and micro sensors. The modeled cylindrical FG microshell, its equations of motion and boundary conditions are derived by Hamilton's principle and the first-order shear deformation theory (FSDT). For the first time, in the present study, functionally graded length scale parameter which changes along the thickness has been considered in the temperature-dependent cylindrical FG microshell. The accuracy of the present model is verified with previous studies and also with those obtained by analytical Navier method. The novelty of the current study is consideration of viscoelastic foundation, various thermal loadings and size effect as well as satisfying various boundary conditions implemented on the temperature-dependent cylindrical FG microshell using MCST. Generalized differential quadrature method (GDQM) is applied to discretize the equations of motion. Then, some factors are investigated such as the influence of length to radius ratio, damping, Winkler and Pasternak foundations, different temperature changes, circumferential wave numbers, and boundary conditions on natural frequency of the cylindrical FG microshell. The results have many applications such as modeling of microrobots and biomedical microsystems.

  5. Topology optimization of viscoelastic rectifiers

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Szabo, Peter; Okkels, Fridolin

    2012-01-01

    An approach for the design of microfluidic viscoelastic rectifiers is presented based on a combination of a viscoelastic model and the method of topology optimization. This presumption free approach yields a material layout topologically different from experimentally realized rectifiers...

  6. Viscoelastic guidance of resuscitation

    DEFF Research Database (Denmark)

    Stensballe, Jakob; Ostrowski, Sisse R; Johansson, Pär I

    2014-01-01

    PURPOSE OF REVIEW: Bleeding in trauma carries a high mortality and is increased in case of coagulopathy. Our understanding of hemostasis and coagulopathy has improved, leading to a change in the protocols for hemostatic monitoring. This review describes the current state of evidence supporting...... populations. In trauma care, viscoelastic hemostatic assays allows for rapid and timely identification of coagulopathy and individualized, goal-directed transfusion therapy. As part of the resuscitation concept, viscoelastic hemostatic assays seem to improve outcome also in trauma; however, there is a need...

  7. Analysis of Blood Flow Through a Viscoelastic Artery using the Cosserat Continuum with the Large-Amplitude Oscillatory Shear Deformation Model

    DEFF Research Database (Denmark)

    Sedaghatizadeh, N.; Atefi, G.; Fardad, A. A.

    2011-01-01

    In this investigation, semiempirical and numerical studies of blood flow in a viscoelastic artery were performed using the Cosserat continuum model. The large-amplitude oscillatory shear deformation model was used to quantify the nonlinear viscoelastic response of blood flow. The finite difference...

  8. Non linear viscoelastic models

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2011-01-01

    Viscoelastic eects are often present in loudspeaker suspensions, this can be seen in the displacement transfer function which often shows a frequency dependent value below the resonance frequency. In this paper nonlinear versions of the standard linear solid model (SLS) are investigated....... The simulations show that the nonlinear version of the Maxwell SLS model can result in a time dependent small signal stiness while the Kelvin Voight version does not....

  9. Q-compensated reverse time migration in viscoelastic media

    Science.gov (United States)

    Cai, Z.; Gu, H.

    2016-12-01

    Seismic wave propagation exhibits anelastic properties in subsurface media, especially high-attenuation areas such as the structure within and below gas-filled reservoirs, it causes strong amplitude loss and phase distortion of the waves and always degrades the resolution of the migration images. We evaluated a compensating method for attenuation effects in viscoelastic reverse time migration(Q-RTM) to improve image resolution. The viscoelastic Q-RTM is based on the decoupled attenuation property of the viscoelastic wave equation, through mitigating the amplitude attenuation and phase dispersion effects when source and receiver wavefields were extrapolated, the attenuation effects are compensated. During the migration, the decoupled attenuation wave equation offer separated amplitude attenuation and phase dispersion operators. In our viscoelastic Q-RTM, the receiver wavefield is reconstructed by reversing the signs of both P- and S-wave loss operators in viscoelastic equation, the source wacefield use viscoelastic forward modeling, thus attenuation effects are compensated during imaging. With the analysis of separated operators in backward viscoelastic wave equation, we further illustrate the decoupled P- and S-wave attenuation property and corresponding amplitude loss and phase dispersion. Based on decoupled P- and S-wave equation, we get separated viscoelastic P- and S-wavefields to obtain the scalar images. Finally, we tested the viscoelastic Q-RTM on several numerical examples to demonstrate the advantages of the method to compensate attenuation effect during migration, and we applied this method to realistic model, numerical results illustrated that the viscoelastic Q-RTM produced higher resolution images compared with noncompensated RTM method, particularly in the strong attenuation zones.

  10. Analysis of a Dynamic Viscoelastic Contact Problem with Normal Compliance, Normal Damped Response, and Nonmonotone Slip Rate Dependent Friction

    Directory of Open Access Journals (Sweden)

    Mikaël Barboteu

    2016-01-01

    Full Text Available We consider a mathematical model which describes the dynamic evolution of a viscoelastic body in frictional contact with an obstacle. The contact is modelled with a combination of a normal compliance and a normal damped response law associated with a slip rate-dependent version of Coulomb’s law of dry friction. We derive a variational formulation and an existence and uniqueness result of the weak solution of the problem is presented. Next, we introduce a fully discrete approximation of the variational problem based on a finite element method and on an implicit time integration scheme. We study this fully discrete approximation schemes and bound the errors of the approximate solutions. Under regularity assumptions imposed on the exact solution, optimal order error estimates are derived for the fully discrete solution. Finally, after recalling the solution of the frictional contact problem, some numerical simulations are provided in order to illustrate both the behavior of the solution related to the frictional contact conditions and the theoretical error estimate result.

  11. Viscoelasticity promotes collective swimming of sperm

    Science.gov (United States)

    Tung, Chih-Kuan; Harvey, Benedict B.; Fiore, Alyssa G.; Ardon, Florencia; Suarez, Susan S.; Wu, Mingming

    From flocking birds to swarming insects, interactions of organisms large and small lead to the emergence of collective dynamics. Here, we report striking collective swimming of bovine sperm, with sperm orienting in the same direction within each cluster, enabled by the viscoelasticity of the fluid. A long-chain polyacrylamide solution was used as a model viscoelastic fluid such that its rheology can be fine-tuned to mimic that of bovine cervical mucus. In viscoelastic fluid, sperm formed dynamic clusters, and the cluster size increased with elasticity of the polyacrylamide solution. In contrast, sperm swam randomly and individually in Newtonian fluids of similar viscosity. Analysis of the fluid motion surrounding individual swimming sperm indicated that sperm-fluid interaction is facilitated by the elastic component of the fluid. We note that almost all biological fluids (e.g. mucus and blood) are viscoelastic in nature, this finding highlights the importance of fluid elasticity in biological function. We will discuss what the orientation fluctuation within a cluster reveals about the interaction strength. Supported by NIH Grant 1R01HD070038.

  12. Fluid viscoelasticity promotes collective swimming of sperm.

    Science.gov (United States)

    Tung, Chih-Kuan; Lin, Chungwei; Harvey, Benedict; Fiore, Alyssa G; Ardon, Florencia; Wu, Mingming; Suarez, Susan S

    2017-06-09

    From flocking birds to swarming insects, interactions of organisms large and small lead to the emergence of collective dynamics. Here, we report striking collective swimming of bovine sperm in dynamic clusters, enabled by the viscoelasticity of the fluid. Sperm oriented in the same direction within each cluster, and cluster size and cell-cell alignment strength increased with viscoelasticity of the fluid. In contrast, sperm swam randomly and individually in Newtonian (nonelastic) fluids of low and high viscosity. Analysis of the fluid motion surrounding individual swimming sperm indicated that sperm-fluid interaction was facilitated by the elastic component of the fluid. In humans, as well as cattle, sperm are naturally deposited at the entrance to the cervix and must swim through viscoelastic cervical mucus and other mucoid secretions to reach the site of fertilization. Collective swimming induced by elasticity may thus facilitate sperm migration and contribute to successful fertilization. We note that almost all biological fluids (e.g. mucus and blood) are viscoelastic in nature, and this finding highlights the importance of fluid elasticity in biological function.

  13. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  14. The use of viscoelastic haemostatic assays in goal-directing treatment with allogeneic blood products - A systematic review and meta-analysis.

    Science.gov (United States)

    Fahrendorff, Mathilde; Oliveri, Roberto S; Johansson, Pär I

    2017-04-13

    Management of the critically bleeding patient can be encountered in many medical and surgical settings. Common for these patients is a high risk of dying from exsanguination secondary to developing coagulopathy. The purpose of this meta-analysis was to systematically review and assess randomised controlled trials (RCTs) performed on patients in acute need for blood transfusions due to bleeding to evaluate the effect of viscoelastic haemostatic assay (VHA) guidance on bleeding, transfusion requirements and mortality. PubMed and EMBASE were searched for RCTs that 1) randomised patients into receiving transfusions based on either a VHA-guided (thromboelastography [TEG] or rotational thromboelastometry [ROTEM]) algorithm (intervention group) or at the clinician's discretion and/or based on conventional coagulation tests (control group) and 2) adequately reported on the outcomes bleeding and/or transfusions and/or mortality. Data on bleeding, transfusions and mortality were extracted from each trial and included in a meta-analysis. Fifteen RCTs (n = 1238 patients) were included. Nine trials referred to cardiothoracic patients, one to liver transplantation, one to surgical excision of burn wounds and one to trauma. One trial was conducted with cirrhotic patients, one with patients undergoing scoliosis surgery while one trial randomised treatment in post-partum females presenting with bleeding. The amount of transfused red blood cells (RBCs), fresh frozen plasma (FFP) and bleeding volume was found to be significantly reduced in the VHA-guided groups, whereas no significant difference was found for platelet transfusion requirements or mortality.

  15. Mathematical justification of a viscoelastic elliptic membrane problem

    Science.gov (United States)

    Castiñeira, Gonzalo; Rodríguez-Arós, Ángel

    2017-12-01

    We consider a family of linearly viscoelastic elliptic shells, and we use asymptotic analysis to justify that what we have identified as the two-dimensional viscoelastic elliptic membrane problem is an accurate approximation when the thickness of the shell tends to zero. Most noticeable is that the limit problem includes a long-term memory that takes into account the previous history of deformations. We provide convergence results which justify our asymptotic approach.

  16. The effect of viscoelasticity and tabletting speed on consolidation and relaxation of a viscoelastic material

    NARCIS (Netherlands)

    Maarschalk, KV; Vromans, H; Bolhuis, GK; Lerk, CF

    This paper evalutes the applicability of Dynamic Mechanical Analysis (DMA) as a tool to explain consolidation and relaxation behaviour of a viscoelastic powder compressed at different speeds. From the DMA-data it is concluded that the material becomes more rigid and more elastic with increasing

  17. The viscoelastic properties of the cervical mucus plug

    DEFF Research Database (Denmark)

    Kjær Bastholm, Sara; Becher, Naja; Stubbe, Peter Reimer

    2013-01-01

    The objective of this study was to characterize the viscoelastic properties of cervical mucus plugs (CMPs) shed during labor at term. Spontaneously shed cervical mucus plugs from healthy women in active labor, were tested. The viscoelastic properties of cervical mucus plugs were investigated...... with using frequency and stress sweep experiments within the linear viscoelastic region. Random-effects regression was used for statistical analysis. The CMPs are solid-like viscoelastic structures and the elastic modulus dominated the viscous modulus at all frequencies. These rheological characteristics...... are probably essential for the CMP’s ability to form and sustain a plug in the cervical canal during pregnancy, thereby reducing the risk of ascending infections....

  18. A nonlinear and fractional derivative viscoelastic model for rail pads in the dynamic analysis of coupled vehicle-slab track systems

    Science.gov (United States)

    Zhu, Shengyang; Cai, Chengbiao; Spanos, Pol D.

    2015-01-01

    A nonlinear and fractional derivative viscoelastic (FDV) model is used to capture the complex behavior of rail pads. It is implemented into the dynamic analysis of coupled vehicle-slab track (CVST) systems. The vehicle is treated as a multi-body system with 10 degrees of freedom, and the slab track is represented by a three layer Bernoulli-Euler beam model. The model for the rail pads is one dimensional, and the force-displacement relation is based on a superposition of elastic, friction, and FDV forces. This model takes into account the influences of the excitation frequency and of the displacement amplitude through a fractional derivative element, and a nonlinear friction element, respectively. The Grünwald representation of the fractional derivatives is employed to numerically solve the fractional and nonlinear equations of motion of the CVST system by means of an explicit integration algorithm. A dynamic analysis of the CVST system exposed to excitations of rail harmonic irregularities is carried out, pointing out the stiffness and damping dependence on the excitation frequency and the displacement amplitude. The analysis indicates that the dynamic stiffness and damping of the rail pads increase with the excitation frequency while they decrease with the displacement amplitude. Furthermore, comparisons between the proposed model and ordinary Kelvin model adopted for the CVST system, under excitations of welded rail joint irregularities and of random track irregularities, are conducted in the time domain as well as in the frequency domain. The proposed model is shown to possess several modeling advantages over the ordinary Kelvin element which overestimates both the stiffness and damping features at high frequencies.

  19. Theory of heterogeneous viscoelasticity

    Science.gov (United States)

    Schirmacher, Walter; Ruocco, Giancarlo; Mazzone, Valerio

    2016-03-01

    We review a new theory of viscoelasticity of a glass-forming viscous liquid near and below the glass transition. In our model, we assume that each point in the material has a specific viscosity, which varies randomly in space according to a fluctuating activation free energy. We include a Maxwellian elastic term, and assume that the corresponding shear modulus fluctuates as well with the same distribution as that of the activation barriers. The model is solved in coherent potential approximation, for which a derivation is given. The theory predicts an Arrhenius-type temperature dependence of the viscosity in the vanishing frequency limit, independent of the distribution of the activation barriers. The theory implies that this activation energy is generally different from that of a diffusing particle with the same barrier height distribution. If the distribution of activation barriers is assumed to have the Gaussian form, the finite-frequency version of the theory describes well the typical low-temperature alpha relaxation peak of glasses. Beta relaxation can be included by adding another Gaussian with centre at much lower energies than that is responsible for the alpha relaxation. At high frequencies, our theory reduces to the description of an elastic medium with spatially fluctuating elastic moduli (heterogeneous elasticity theory), which explains the occurrence of the boson peak-related vibrational anomalies of glasses.

  20. Automated palpation for breast tissue discrimination based on viscoelastic biomechanical properties.

    Science.gov (United States)

    Tsukune, Mariko; Kobayashi, Yo; Miyashita, Tomoyuki; Fujie, G Masakatsu

    2015-05-01

    Accurate, noninvasive methods are sought for breast tumor detection and diagnosis. In particular, a need for noninvasive techniques that measure both the nonlinear elastic and viscoelastic properties of breast tissue has been identified. For diagnostic purposes, it is important to select a nonlinear viscoelastic model with a small number of parameters that highly correlate with histological structure. However, the combination of conventional viscoelastic models with nonlinear elastic models requires a large number of parameters. A nonlinear viscoelastic model of breast tissue based on a simple equation with few parameters was developed and tested. The nonlinear viscoelastic properties of soft tissues in porcine breast were measured experimentally using fresh ex vivo samples. Robotic palpation was used for measurements employed in a finite element model. These measurements were used to calculate nonlinear viscoelastic parameters for fat, fibroglandular breast parenchyma and muscle. The ability of these parameters to distinguish the tissue types was evaluated in a two-step statistical analysis that included Holm's pairwise [Formula: see text] test. The discrimination error rate of a set of parameters was evaluated by the Mahalanobis distance. Ex vivo testing in porcine breast revealed significant differences in the nonlinear viscoelastic parameters among combinations of three tissue types. The discrimination error rate was low among all tested combinations of three tissue types. Although tissue discrimination was not achieved using only a single nonlinear viscoelastic parameter, a set of four nonlinear viscoelastic parameters were able to reliably and accurately discriminate fat, breast fibroglandular tissue and muscle.

  1. experimental viscoelastic characterization of corn cob composites ...

    African Journals Online (AJOL)

    Dr Obe

    EXPERIMENTAL VISCOELASTIC CHARACTERIZATION OF CORN COB. COMPOSITES UNDER RADIAL COMPRESSION. BY. U.G.N. ANAZODO. DEPARTMENT OF AGRICULTURAL ENGINEERING. UNIVERSITY OF NIGERIA, NSUKKA. ABSTRACT. The nature of viscoelasticity in biomateria1s and the techniques for ...

  2. Extensional rheometer based on viscoelastic catastrophes outline

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a method and a device for determining viscoelastic properties of a fluid. The invention resides inter alia in the generation of viscoelastic catastrophes in confined systems for use in the context of extensional rheology. The viscoelastic catastrophe is according...... to the invention generated in a bistable fluid system, and the flow conditions for which the catastrophe occurs can be used as a fingerprint of the fluid's viscoelastic properties in extensional flow....

  3. Characterizing gelatin hydrogel viscoelasticity with diffusing colloidal probe microscopy.

    Science.gov (United States)

    Shabaniverki, Soheila; Juárez, Jaime J

    2017-07-01

    In this study, we investigate viscoelasticity in gelatin hydrogels using diffusing colloidal probe microscopy (DCPM) to directly measure the elastic potential energy interaction between colloidal probes and the underlying viscoelastic media. Gelatin samples are prepared in four different concentrations between 0.3wt% and 0.6wt% to examine changes in viscoelasticity with concentration. A force balance describing the interaction between the colloidal probes and the hydrogel as a spring-damper system lead to a simple model for mean square displacement. A histogram of locations sampled by the colloidal probes is directly related to the elastic potential energy and the effective spring constant of the gelatin hydrogels. The effective spring constant is a fixed parameter used in the mean square displacement model to find effective viscosity. These parameters are comparable to viscoelastic parameters obtain by a microrheology analysis of two-dimensional mean square displacements. These results can serve as a guide for assessing hydrogel systems where viscoelastic properties are an important factor in biomaterial design. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Seismic Behavior of Posttensioned Concrete Bridge Piers with External Viscoelastic Dampers

    Directory of Open Access Journals (Sweden)

    Anxin Guo

    2016-01-01

    Full Text Available This paper investigates the seismic performance of posttensioned concrete piers with external viscoelastic dampers to improve the energy dissipation capacity of this type of structure. An installation scheme for viscoelastic dampers on bridge piers is proposed, and the mechanical models of the damper are analyzed according to the installation scheme. By attaching the viscoelastic dampers to the posttensioned bridge piers, the analytical model of the hybrid system is established using the OpenSees finite element analysis package. Cyclic behavior and time history analyses are conducted on a posttensioned bridge with and without viscoelastic dampers using the established finite element model. The analysis results indicate that the viscoelastic dampers can effectively improve the seismic performance of the bridge structures with posttensioned piers.

  5. Optimization of Bistable Viscoelastic Systems

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Szabo, Peter; Okkels, Fridolin

    2014-01-01

    the critical pressure gives rise to increased hydraulic resistance. We have combined a state-of-the-art implementation for viscoelastic flow modeling with topology optimization in a high level finite element package (COMSOL). We use this framework on the cross geometry with the aim to reduce the critical...

  6. Dynamical problem of micropolar viscoelasticity

    Indian Academy of Sciences (India)

    The dynamic problem in micropolar viscoelastic medium has been investigated by employing eigen value approach after applying Laplace and Fourier transformations. An example of infinite space with concentrated force at the origin has been presented to illustrate the application of the approach. The integral transforms ...

  7. Modeling viscoelastic flow in a multiflux static mixer

    Science.gov (United States)

    Köpplmayr, T.; Miethlinger, J.

    2014-05-01

    We present a numerical and experimental study of the polymer flow in a multiflux static mixer. Various geometrical configurations are compared in terms of layer homogeneity. To evaluate the layer-forming process in different geometries, we applied a general and precise approach based on trajectory calculations for a large set of material points, followed by a statistical analysis. A simulation of viscous flow using the Carreau-Yasuda constitutive equation produced results which deviated from our experimental findings. Therefore, we used the Giesekus constitutive equation, taking into account viscoelastic effects, such as extrudate swell and secondary motions inside the mixer. Parallel plate rheometry was employed to collect dynamic mechanical data in the linear viscoelastic flow regime. Weissenberg numbers were calculated, and the maximum relaxation time in the obtained spectrum was limited to avoid divergence issues. The results of our study provide deeper insights into the layerforming process of viscoelastic melts in a multiflux static mixer.

  8. Application Of Prony's Method To Data On Viscoelasticity

    Science.gov (United States)

    Rodriguez, Pedro I.

    1988-01-01

    Prony coefficients found by computer program, without trial and error. Computational method and computer program developed to exploit full potential of Prony's interpolation method in analysis of experimental data on relaxation modules of viscoelastic material. Prony interpolation curve chosen to give least-squares best fit to "B-spline" interpolation of experimental data.

  9. Viscoelasticity of Edam cheese during its ripening

    Directory of Open Access Journals (Sweden)

    Šárka Nedomová

    2010-01-01

    Full Text Available Series of the indentation of the ball (10 mm in diameter by the constant speed into blocks of Edam cheese has been conducted. The indentation tests were performed at different speeds (1, 5, 10, 20 and 100 mm/min, and the corresponding force–displacement responses were fitted with an analytical solution to obtain the time-dependent constants and the instantaneous force–displacement response. The measurement has been performed for the cheeses of different stages of their maturity. The dependence of the indentation force on the penetration depth has been evaluated. This dependence can be fitted by a polynom. The indentation force decreases with cheese fat content. It increases with the loading rate. Its value also decreases with the time of the cheese ripening. The recently proposed method for the indenation of the ball into viscoelastic solids has been used for our data analysis. This procedure, which needs the use of the numeric methods, enables to obtain stress relaxation moduli, which describe the viscoelasticity of the tested materials. The obtained moduli describe the stage of the cheese maturity.

  10. Polymer engineering science and viscoelasticity an introduction

    CERN Document Server

    Brinson, Hal F

    2015-01-01

    This book provides a unified mechanics and materials perspective on polymers: both the mathematics of viscoelasticity theory as well as the physical mechanisms behind polymer deformation processes. Introductory material on fundamental mechanics is included to provide a continuous baseline for readers from all disciplines. Introductory material on the chemical and molecular basis of polymers is also included, which is essential to the understanding of the thermomechanical response. This self-contained text covers the viscoelastic characterization of polymers including constitutive modeling, experimental methods, thermal response, and stress and failure analysis. Example problems are provided within the text as well as at the end of each chapter.   New to this edition:   ·         One new chapter on the use of nano-material inclusions for structural polymer applications and applications such as fiber-reinforced polymers and adhesively bonded structures ·         Brings up-to-date polymer pro...

  11. Simulation of Transient Viscoelastic Flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1993-01-01

    The Lagrangian kinematic description is used to develop a numerical method for simulation of time-dependent flow of viscoelastic fluids described by integral models. The method is shown to converge to first order in the time step and at least second order in the spatial discretization. The method...... is tested on the established sphere in a cylinder benchmark problem, and an extension of the problem to transient flow is proposed....

  12. A micromechanical finite element model for linear and damage-coupled viscoelastic behaviour of asphalt mixture

    Science.gov (United States)

    Dai, Qingli; Sadd, Martin H.; You, Zhanping

    2006-09-01

    This study presents a finite element (FE) micromechanical modelling approach for the simulation of linear and damage-coupled viscoelastic behaviour of asphalt mixture. Asphalt mixture is a composite material of graded aggregates bound with mastic (asphalt and fine aggregates). The microstructural model of asphalt mixture incorporates an equivalent lattice network structure whereby intergranular load transfer is simulated through an effective asphalt mastic zone. The finite element model integrates the ABAQUS user material subroutine with continuum elements for the effective asphalt mastic and rigid body elements for each aggregate. A unified approach is proposed using Schapery non-linear viscoelastic model for the rate-independent and rate-dependent damage behaviour. A finite element incremental algorithm with a recursive relationship for three-dimensional (3D) linear and damage-coupled viscoelastic behaviour is developed. This algorithm is used in a 3D user-defined material model for the asphalt mastic to predict global linear and damage-coupled viscoelastic behaviour of asphalt mixture.For linear viscoelastic study, the creep stiffnesses of mastic and asphalt mixture at different temperatures are measured in laboratory. A regression-fitting method is employed to calibrate generalized Maxwell models with Prony series and generate master stiffness curves for mastic and asphalt mixture. A computational model is developed with image analysis of sectioned surface of a test specimen. The viscoelastic prediction of mixture creep stiffness with the calibrated mastic material parameters is compared with mixture master stiffness curve over a reduced time period.In regard to damage-coupled viscoelastic behaviour, cyclic loading responses of linear and rate-independent damage-coupled viscoelastic materials are compared. Effects of particular microstructure parameters on the rate-independent damage-coupled viscoelastic behaviour are also investigated with finite element

  13. Similarity Analysis for Effects of Variable Diffusivity and Heat Generation/Absorption on Heat and Mass Transfer for a MHD Stagnation-Point Flow of a Convective Viscoelastic Fluid over a Stretching Sheet with a Slip Velocity

    Directory of Open Access Journals (Sweden)

    H. M. El-Hawary

    2013-01-01

    Full Text Available A mathematical analysis has been carried out for stagnation-point heat and mass transfer of a viscoelastic fluid over a stretching sheet with surface slip velocity, concentration dependent diffusivity, thermal convective boundary conditions, and heat source/sink. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using Lie group analysis. Numerical solutions of the resulting ordinary differential equations are obtained using shooting method. The influences of various parameters on velocity, temperature, and mass profiles have been studied. Also, the effects of various parameters on the local skin-friction coefficient, the local Nusselt number, and the local Sherwood number are given in graphics form and discussed.

  14. Fatigue and residual strength of concrete and other aging viscoelastic materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1996-01-01

    The DVM-theory (Damaged Viscoelastic Material) previously developed by the author to predict lifetime of non-aging viscoelastic materials (like wood) is generalized in this paper such that aging viscoelastic materials such as concrete subjected to variable load can also be considered. Lifetime...... (real time or number of cycles) is predicted as a function of load amplitude, load average, fractional time under maximum load, and load frequency. The analysis includes prediction of residual strength during the process of load cycling. It is concluded that number of cycles to failure is a poor design...

  15. Simulating Nonlinear Oscillations of Viscoelastically Damped Mechanical Systems

    National Research Council Canada - National Science Library

    M. D. Monsia; Y. J. F. Kpomahou

    2014-01-01

    ... viscoelastic system experiencing large deformations response. The model is represented with the use of a mechanical oscillator consisting of an inertial body attached to a nonlinear viscoelastic spring...

  16. Viscoelastic point-of-care testing to assist with the diagnosis, management and monitoring of haemostasis: a systematic review and cost-effectiveness analysis.

    Science.gov (United States)

    Whiting, Penny; Al, Maiwenn; Westwood, Marie; Ramos, Isaac Corro; Ryder, Steve; Armstrong, Nigel; Misso, Kate; Ross, Janine; Severens, Johan; Kleijnen, Jos

    2015-07-01

    Patients with substantive bleeding usually require transfusion and/or (re-)operation. Red blood cell (RBC) transfusion is independently associated with a greater risk of infection, morbidity, increased hospital stay and mortality. ROTEM (ROTEM® Delta, TEM International GmbH, Munich, Germany; www.rotem.de), TEG (TEG® 5000 analyser, Haemonetics Corporation, Niles, IL, USA; www.haemonetics.com) and Sonoclot (Sonoclot® coagulation and platelet function analyser, Sienco Inc., Arvada, CO) are point-of-care viscoelastic (VE) devices that use thromboelastometry to test for haemostasis in whole blood. They have a number of proposed advantages over standard laboratory tests (SLTs): they provide a result much quicker, are able to identify what part of the clotting process is disrupted, and provide information on clot formation over time and fibrinolysis. This assessment aimed to assess the clinical effectiveness and cost-effectiveness of VE devices to assist with the diagnosis, management and monitoring of haemostasis disorders during and after cardiac surgery, trauma-induced coagulopathy and post-partum haemorrhage (PPH). Sixteen databases were searched to December 2013: MEDLINE (OvidSP), MEDLINE In-Process and Other Non-Indexed Citations and Daily Update (OvidSP), EMBASE (OvidSP), BIOSIS Previews (Web of Knowledge), Science Citation Index (SCI) (Web of Science), Conference Proceedings Citation Index (CPCI-S) (Web of Science), Cochrane Database of Systematic Reviews (CDSR), Cochrane Central Register of Controlled Trials (CENTRAL), Database of Abstracts of Reviews of Effects (DARE), Health Technology Assessment (HTA) database, Latin American and Caribbean Health Sciences Literature (LILACS), International Network of Agencies for Health Technology Assessment (INAHTA), National Institute for Health Research (NIHR) HTA programme, Aggressive Research Intelligence Facility (ARIF), Medion, and the International Prospective Register of Systematic Reviews (PROSPERO). Randomised

  17. Undulatory swimming in viscoelastic fluids

    CERN Document Server

    Shen, Xiaoning

    2011-01-01

    The effects of fluid elasticity on the swimming behavior of the nematode \\emph{Caenorhabditis elegans} are experimentally investigated by tracking the nematode's motion and measuring the corresponding velocity fields. We find that fluid elasticity hinders self-propulsion. Compared to Newtonian solutions, fluid elasticity leads to 35% slower propulsion speed. Furthermore, self-propulsion decreases as elastic stresses grow in magnitude in the fluid. This decrease in self-propulsion in viscoelastic fluids is related to the stretching of flexible molecules near hyperbolic points in the flow.

  18. Spatially modulated thermal convection of viscoelastic fluids.

    Science.gov (United States)

    Kayodé, Séliatou; Khayat, Roger E

    2004-06-01

    The thermal convection of modulated viscoelastic flow is examined in this study. The modulation is assumed to be weak enough for a regular perturbation solution to be implemented. In addition to being more accurate, the second-order perturbation results reveal new physical phenomena that could not be predicted by the first-order analysis. Inertia was found to enhance globally the discrepancies between the first- and the second-order perturbation solution. A comparison between the Newtonian and the non-Newtonian solution is carried out and the influences of inertia, modulation amplitude, and wave number are emphasized. The present results show that elasticity has a marked effect on fluid patterns, especially regarding the roll structure and symmetry. The influence of elasticity is greater for larger Rayleigh number and aspect ratio.

  19. Linear viscoelastic characterization from filament stretching rheometry

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    viscoelasticity well into the nonlinear regime. Therefore at present, complete rheological characterization of a material requires two apparatuses: a shear and an extensional rheometer. This work is focused on developing a linear viscoelastic protocol for the filament stretching rheometer (FSR) in order...

  20. Shape recovery of viscoelastic beams after stowage

    DEFF Research Database (Denmark)

    Kwok, Kawai

    2015-01-01

    for the load relaxation and shape recovery of a linear viscoelastic beam subject to such time-varying constraints. It is shown that a viscoelastic beam recovers to its original shape asymptotically over time. The analytical solutions are employed to investigate the effect of temperature and stowage time...

  1. Single Integral Constitutive Equations for Viscoelastic Fluids.

    Science.gov (United States)

    1984-09-01

    Danmarks Tekniske H~jskole, DV2,00 Lyngby, Denmark Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and 1 the Danish Council for...viscoelasticity related to the linear viscoelastic relaxation modulus G as follows G(t) = f M(s)ds (1.4) * t "Instituttet for Kemiteknik, Danmarks Tekniske

  2. Viscoelastic modes in chiral liquid crystals

    Indian Academy of Sciences (India)

    amit@fs.rri.local.net (Amit Kumar Agarwal)

    our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic modes corresponding to the C director fluctuations in the chiral smectic C phase and the behaviour of the Goldstone-mode near the chiral smectic C–smectic A phase transition. In cholesteric liquid ...

  3. Viscoelastic modeling of filled, crosslinked rubbers

    Science.gov (United States)

    Joshi, Prashant G.

    1999-10-01

    Filled polymer systems have been a subject of interest for rheologists since the past many decades. Their applications range from paints and pigments to high performance composite materials. Tires come under a special class of applications wherein the type of filler used, its reinforcing abilities, traction improvement capabilities and cost effectiveness enormously control the final end use. Presently, there is lack of a complete understanding of the behavior of these materials under different load conditions. Moreover there is a lack of a comprehensive theory which can describe the rheology of filled rubbers, their chemorheology, and their behavior in the final fully cured state simultaneously. The present work is aimed at capturing a wide range of rheological/viscoelastic properties of filled rubbers with one set of constitutive/kinetic equations and a flexible relaxation spectrum. Various mechanical properties of filled, crosslinked rubbers were investigated in order to understand their analogy in the melt state. For this purpose, quasi-static hysteresis and step-strain relaxation experiments were carried out. Dynamic mechanical properties were understood in great details by using Fourier harmonic analysis to understand the time and strain non-linearities in the material. The time non-linearities arise due to thixotropic and non-isothermal effects, while the waveform distortions (strain related) occur due to non-linear viscoelastic effects. It is also very important to ensure no interference from any extraneous noise in the system during a dynamic test. Using the experimental evidences in melt rheology (creeping flow, shear start-up, and relaxation), and the kinetic mechanisms that affect chemorheology [152], an appropriate thixotropic-viscoelastic spectrum was chosen in order to describe experiments in all states of SBR rubber satisfactorily. This approach convinces that various manifestations of the filler in the melt state are preserved during crosslinking

  4. Transverse Vibration of Tapered Single-Walled Carbon Nanotubes Embedded in Viscoelastic Medium

    Science.gov (United States)

    Lei, Y. J.; Zhang, D. P.; Shen, Z. B.

    2017-10-01

    Based on the nonlocal theory, Euler-Bernoulli beam theory and Kelvin viscoelastic foundation model, free transverse vibration is studied for a tapered viscoelastic single-walled carbon nanotube (visco-SWCNT) embedded in a viscoelastic medium. Firstly, the governing equations for vibration analysis are established. And then, we derive the natural frequencies in closed form for SWCNTs with arbitrary boundary conditions by applying transfer function method and perturbation method. Numerical results are also presented to discuss the effects of nonlocal parameter, relaxation time and taper parameter of SWCNTs, and material property parameters of the medium. This study demonstrates that the proposed model is available for vibration analysis of the tapered SWCNTs-viscoelastic medium coupling system.

  5. Transverse Vibration of Tapered Single-Walled Carbon Nanotubes Embedded in Viscoelastic Medium

    Science.gov (United States)

    Lei, Y. J.; Zhang, D. P.; Shen, Z. B.

    2017-12-01

    Based on the nonlocal theory, Euler-Bernoulli beam theory and Kelvin viscoelastic foundation model, free transverse vibration is studied for a tapered viscoelastic single-walled carbon nanotube (visco-SWCNT) embedded in a viscoelastic medium. Firstly, the governing equations for vibration analysis are established. And then, we derive the natural frequencies in closed form for SWCNTs with arbitrary boundary conditions by applying transfer function method and perturbation method. Numerical results are also presented to discuss the effects of nonlocal parameter, relaxation time and taper parameter of SWCNTs, and material property parameters of the medium. This study demonstrates that the proposed model is available for vibration analysis of the tapered SWCNTs-viscoelastic medium coupling system.

  6. Finite Element Modeling of Viscoelastic Behavior and Interface Damage in Adhesively Bonded Joints

    Science.gov (United States)

    2012-01-01

    the unit tensor. For linear viscoelastic model, Prony series expansion of the dimensionless relaxation modulus ( )Rg t can be expressed as follows...D(t) to relaxation modulus E(t) and obtain the corresponding Prony series expression. From the linear theory of viscoelasticity, the relation...the Prony series parameters ig and  i can be defined directly from each term in equation (5). 2.2. Numerical example The model joint analysis

  7. Instability of two rotating viscoelastic (Walters B' superposed fluids with suspended particles in porous medium

    Directory of Open Access Journals (Sweden)

    Kumar Pardeep

    2007-01-01

    Full Text Available The instability of the plane interface between two Walters B' viscoelastic superposed fluids permeated with suspended particles and uniform rotation in porous medium is considered following the linearized perturbation theory and normal mode analysis. For the stable configuration the system is found to be stable or unstable if ν' k1/Є, depending on kinematic viscoelasticity, permeability of the medium and porosity of the medium. However, the system is found to be unstable for the potentially unstable configuration. .

  8. Numerical Analysis of Flow and Heat Transfer of a Viscoelastic Fluid Over A Stretching Sheet by Using the Homotopy Analysis Method

    DEFF Research Database (Denmark)

    Momeni, M.; Jamshidi, N.; Barari, Amin

    2011-01-01

    equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the Homotopy Analysis Method in comparison with the numerical method in solving this problems. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. A clear...... conclusion can be drawn from the numerical method results that the HAM provides highly accurate solutions for nonlinear differential equations. Design/methodology/approach - In this paper a study of the flow and heat transfer of an incompressible homogeneous second grade fluid past a stretching sheet channel...... is presented and the Homotopy Analysis Method (HAM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the Homotopy Analysis Method in comparison...

  9. Viscoelastic Relaxation Modulus Characterization Using Prony Series

    Directory of Open Access Journals (Sweden)

    Juliana E. Lopes Pacheco

    Full Text Available AbstractThe mechanical behavior of viscoelastic materials is influenced, among other factors, by parameters like time and temperature. The present paper proposes a methodology for a thermorheologically and piezorheologically simple characterization of viscoelastic materials in the time domain based on experimental data using Prony Series and a mixed optimization technique based on Genetic Algorithms and Nonlinear Programming. The text discusses the influence of pressure and temperature on the mechanical behavior of those materials. The results are compared to experimental data in order to validate the methodology. The final results are very promising and the methodology proves to be effective in the identification of viscoelastic materials.

  10. Rotating convection in a viscoelastic magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, L.M. [Departamento de Fíisica y Matemática Aplicada, Universidad de Navarra, 31080 Pamplona (Spain); Laroze, D., E-mail: dlarozen@uta.cl [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile); Díaz, P. [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54 D, Temuco (Chile); Martinez-Mardones, J. [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Mancini, H.L. [Departamento de Fíisica y Matemática Aplicada, Universidad de Navarra, 31080 Pamplona (Spain)

    2014-09-01

    We report theoretical and numerical results on convection for a magnetic fluid in a viscoelastic carrier liquid under rotation. The viscoelastic properties are given by the Oldroyd model. We obtain explicit expressions for the convective thresholds in terms of the parameters of the system in the case of idealized boundary conditions. We also calculate numerically the convective thresholds for the case of realistic boundary conditions. The effects of the rheology and of the rotation rate on the instability thresholds for a diluted magnetic suspension are emphasized. - Highlights: • Ferrofluids. • Thermal convection. • Viscoelastic model. • Realistic boundary conditions.

  11. Transient waves in visco-elastic media

    CERN Document Server

    Ricker, Norman

    1977-01-01

    Developments in Solid Earth Geophysics 10: Transient Waves in Visco-Elastic Media deals with the propagation of transient elastic disturbances in visco-elastic media. More specifically, it explores the visco-elastic behavior of a medium, whether gaseous, liquid, or solid, for very-small-amplitude disturbances. This volume provides a historical overview of the theory of the propagation of elastic waves in solid bodies, along with seismic prospecting and the nature of seismograms. It also discusses the seismic experiments, the behavior of waves propagated in accordance with the Stokes wave

  12. Nonlinear wave breaking in self-gravitating viscoelastic quantum fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Aniruddha, E-mail: anibabun@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Roychoudhury, Rajkumar, E-mail: rajdaju@rediffmail.com [Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700075 (India); Department of Mathematics, Bethune College, Kolkata 700006 (India); Bhar, Radhaballav [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Khan, Manoranjan, E-mail: mkhan.ju@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India)

    2017-02-12

    The stability of a viscoelastic self-gravitating quantum fluid has been studied. Symmetry breaking instability of solitary wave has been observed through ‘viscosity modified Ostrovsky equation’ in weak gravity limit. In presence of strong gravitational field, the solitary wave breaks into shock waves. Response to a Gaussian perturbation, the system produces quasi-periodic short waves, which in terns predicts the existence of gravito-acoustic quasi-periodic short waves in lower solar corona region. Stability analysis of this dynamical system predicts gravity has the most prominent effect on the phase portraits, therefore, on the stability of the system. The non-existence of chaotic solution has also been observed at long wavelength perturbation through index value theorem. - Highlights: • In weak gravitational field, viscoelastic quantum fluid exhibits symmetry breaking instability. • Gaussian perturbation produces quasi-periodic gravito-acoustic waves into the system. • There exists no chaotic state of the system against long wavelength perturbations.

  13. Understanding Viscoelasticity An Introduction to Rheology

    CERN Document Server

    Phan-Thien, Nhan

    2013-01-01

    This book presents an introduction to viscoelasticity; in particular, to the theories of dilute polymer solutions and dilute suspensions of rigid particles in viscous and incompressible fluids. These theories are important, not just because they apply to practical problems of industrial interest, but because they form a solid theoretical base upon which mathematical techniques can be built, from which more complex theories can be constructed, to better mimic material behaviour. The emphasis is not on the voluminous current topical research, but on the necessary tools to understand viscoelasticity at a first year graduate level. The main aim is to provide a still compact book, sufficient at the level of first year graduate course for those who wish to understand viscoelasticity and to embark in modeling of viscoelastic multiphase fluids. To this end, a new chapter on Dissipative Particle Dynamics (DPD) was introduced which is relevant to model complex-structured fluids. All the basic ideas in DPD are reviewed,...

  14. Understanding viscoelasticity an introduction to rheology

    CERN Document Server

    Phan-Thien, Nhan

    2017-01-01

    This book presents an introduction to viscoelasticity, in particular, to the theories of dilute polymer solutions and dilute suspensions of rigid particles in viscous and incompressible fluids. These theories are important, not just because they apply to practical problems of industrial interest, but because they form a solid theoretical base upon which mathematical techniques can be built, from which more complex theories can be constructed, to better mimic material behaviour. The emphasis of this book is not on the voluminous current topical research, but on the necessary tools to understand viscoelasticity. This is a compact book for a first year graduate course in viscoelasticity and modelling of viscoelastic multiphase fluids. The Dissipative Particle Dynamics (DPD) is introduced as a particle-based method, relevant in modelling of complex-structured fluids. All the basic ideas in DPD are reviewed. The third edition has been updated and expanded with new results in the meso-scale modelling, links between...

  15. Theory of swimming filaments in viscoelastic media

    Science.gov (United States)

    Fu, Henry

    2008-03-01

    Microorganisms often encounter and must move through complex media. What aspects of propulsion are altered when swimming in viscoelastic gels and fluids? Motivated by the swimming of sperm through the mucus of the female mammalian reproductive tract, we examine the swimming of filaments in nonlinearly viscoelastic fluids. We obtain the swimming velocity and hydrodynamic force exerted on an infinitely long cylinder with prescribed beating pattern. We apply these results to study the swimming of a simplified sliding-filament model for a sperm flagellum. Viscoelasticity tends to decrease swimming speed. The viscoelastic response of the fluid can change the shapes of beating patterns, and changes in the beating patterns can even lead to reversal of the swimming direction.

  16. Dynamics and Stability of Rolling Viscoelastic Tires

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Trevor [Univ. of California, Berkeley, CA (United States)

    2013-04-30

    Current steady state rolling tire calculations often do not include treads because treads destroy the rotational symmetry of the tire. We describe two methodologies to compute time periodic solutions of a two-dimensional viscoelastic tire with treads: solving a minimization problem and solving a system of equations. We also expand on work by Oden and Lin on free spinning rolling elastic tires in which they disovered a hierachy of N-peak steady state standing wave solutions. In addition to discovering a two-dimensional hierarchy of standing wave solutions that includes their N-peak hiearchy, we consider the eects of viscoelasticity on the standing wave solutions. Finally, a commonplace model of viscoelasticity used in our numerical experiments led to non-physical elastic energy growth for large tire speeds. We show that a viscoelastic model of Govindjee and Reese remedies the problem.

  17. Recent advances in elasticity, viscoelasticity and inelasticity

    CERN Document Server

    Rajagopal, KR

    1995-01-01

    This is a collection of papers dedicated to Prof T C Woo to mark his 70th birthday. The papers focus on recent advances in elasticity, viscoelasticity and inelasticity, which are related to Prof Woo's work. Prof Woo's recent work concentrates on the viscoelastic and viscoplastic response of metals and plastics when thermal effects are significant, and the papers here address open questions in these and related areas.

  18. Viscoelastic Properties of Human Tracheal Tissues.

    Science.gov (United States)

    Safshekan, Farzaneh; Tafazzoli-Shadpour, Mohammad; Abdouss, Majid; Shadmehr, Mohammad B

    2017-01-01

    The physiological performance of trachea is highly dependent on its mechanical behavior, and therefore, the mechanical properties of its components. Mechanical characterization of trachea is key to succeed in new treatments such as tissue engineering, which requires the utilization of scaffolds which are mechanically compatible with the native human trachea. In this study, after isolating human trachea samples from brain-dead cases and proper storage, we assessed the viscoelastic properties of tracheal cartilage, smooth muscle, and connective tissue based on stress relaxation tests (at 5% and 10% strains for cartilage and 20%, 30%, and 40% for smooth muscle and connective tissue). After investigation of viscoelastic linearity, constitutive models including Prony series for linear viscoelasticity and quasi-linear viscoelastic, modified superposition, and Schapery models for nonlinear viscoelasticity were fitted to the experimental data to find the best model for each tissue. We also investigated the effect of age on the viscoelastic behavior of tracheal tissues. Based on the results, all three tissues exhibited a (nonsignificant) decrease in relaxation rate with increasing the strain, indicating viscoelastic nonlinearity which was most evident for cartilage and with the least effect for connective tissue. The three-term Prony model was selected for describing the linear viscoelasticity. Among different models, the modified superposition model was best able to capture the relaxation behavior of the three tracheal components. We observed a general (but not significant) stiffening of tracheal cartilage and connective tissue with aging. No change in the stress relaxation percentage with aging was observed. The results of this study may be useful in the design and fabrication of tracheal tissue engineering scaffolds.

  19. Viscoelastic flow simulations in model porous media

    Science.gov (United States)

    De, S.; Kuipers, J. A. M.; Peters, E. A. J. F.; Padding, J. T.

    2017-05-01

    We investigate the flow of unsteadfy three-dimensional viscoelastic fluid through an array of symmetric and asymmetric sets of cylinders constituting a model porous medium. The simulations are performed using a finite-volume methodology with a staggered grid. The solid-fluid interfaces of the porous structure are modeled using a second-order immersed boundary method [S. De et al., J. Non-Newtonian Fluid Mech. 232, 67 (2016), 10.1016/j.jnnfm.2016.04.002]. A finitely extensible nonlinear elastic constitutive model with Peterlin closure is used to model the viscoelastic part. By means of periodic boundary conditions, we model the flow behavior for a Newtonian as well as a viscoelastic fluid through successive contractions and expansions. We observe the presence of counterrotating vortices in the dead ends of our geometry. The simulations provide detailed insight into how flow structure, viscoelastic stresses, and viscoelastic work change with increasing Deborah number De. We observe completely different flow structures and different distributions of the viscoelastic work at high De in the symmetric and asymmetric configurations, even though they have the exact same porosity. Moreover, we find that even for the symmetric contraction-expansion flow, most energy dissipation is occurring in shear-dominated regions of the flow domain, not in extensional-flow-dominated regions.

  20. Ligament Mediated Fragmentation of Viscoelastic Liquids

    Science.gov (United States)

    Keshavarz, Bavand; Houze, Eric C.; Moore, John R.; Koerner, Michael R.; McKinley, Gareth H.

    2016-10-01

    The breakup and atomization of complex fluids can be markedly different than the analogous processes in a simple Newtonian fluid. Atomization of paint, combustion of fuels containing antimisting agents, as well as physiological processes such as sneezing are common examples in which the atomized liquid contains synthetic or biological macromolecules that result in viscoelastic fluid characteristics. Here, we investigate the ligament-mediated fragmentation dynamics of viscoelastic fluids in three different canonical flows. The size distributions measured in each viscoelastic fragmentation process show a systematic broadening from the Newtonian solvent. In each case, the droplet sizes are well described by Gamma distributions which correspond to a fragmentation-coalescence scenario. We use a prototypical axial step strain experiment together with high-speed video imaging to show that this broadening results from the pronounced change in the corrugated shape of viscoelastic ligaments as they separate from the liquid core. These corrugations saturate in amplitude and the measured distributions for viscoelastic liquids in each process are given by a universal probability density function, corresponding to a Gamma distribution with nmin=4 . The breadth of this size distribution for viscoelastic filaments is shown to be constrained by a geometrical limit which can not be exceeded in ligament-mediated fragmentation phenomena.

  1. pH-induced contrast in viscoelasticity imaging of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Yapp, R D; Insana, M F [Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL 61801 (United States)], E-mail: ryapp2@illinois.edu

    2009-03-07

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.

  2. pH-induced contrast in viscoelasticity imaging of biopolymers

    Science.gov (United States)

    Yapp, R. D.; Insana, M. F.

    2009-03-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.

  3. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    Science.gov (United States)

    Warnez, M. T.; Johnsen, E.

    2015-01-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller–Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin–Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time. PMID:26130967

  4. Near critical swirling flow of a viscoelastic fluid

    Science.gov (United States)

    Ly, Nguyen; Rusak, Zvi; Tichy, John; Wang, Shixiao

    2016-11-01

    The interaction between flow inertia and elasticity in high Re, axisymmetric, and near-critical swirling flows of a viscoelastic fluid in a finite-length straight circular pipe is studied. The viscous stresses are described by the Giesekus constitutive model. The application of this model to columnar streamwise vortices is first investigated. Then, a nonlinear small-disturbance analysis is developed from the governing equations of motion. It explores the complicated interactions between flow inertia, swirl, and fluid viscosity and elasticity. An effective Re that links between steady states of swirling flows of a viscoelastic fluid and those of a Newtonian fluid is revealed. The effects of the fluid viscosity, relaxation time, retardation time and mobility parameter on the flow development and on the critical swirl for the appearance of vortex breakdown are explored. Decreasing the ratio of the viscoelastic characteristic times from one increases the critical swirl for breakdown. Increasing the Weissenberg number from zero or increasing the fluid mobility parameter from zero cause a similar effect. Results may explain changes in the appearance of breakdown zones as a function of swirl level that were observed in Stokes et al. (2001) experiments, where Boger fluids were used.

  5. A non-linear viscoelastic model for the tympanic membrane.

    Science.gov (United States)

    Motallebzadeh, Hamid; Charlebois, Mathieu; Funnell, W Robert J

    2013-12-01

    The mechanical behavior of the tympanic membrane displays both non-linearity and viscoelasticity. Previous finite-element models of the tympanic membrane, however, have been either non-linear or viscoelastic but not both. In this study, these two features are combined in a non-linear viscoelastic model. The constitutive equation of this model is a convolution integral composed of a non-linear elastic part, represented by an Ogden hyperelastic model, and an exponential time-dependent part, represented by a Prony series. The model output is compared with the relaxation curves and hysteresis loops observed in previous measurements performed on strips of tympanic membrane. In addition, a frequency-domain analysis is performed based on the obtained material parameters, and the effect of strain rate is explored. The model presented here is suitable for modeling large deformations of the tympanic membrane for frequencies less than approximately 3 rad/s or about 0.6 Hz. These conditions correspond to the pressurization involved in tympanometry.

  6. Effects of Surface Viscoelasticity on Cellular Responses of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Motahare-Sadat Hosseini

    2014-10-01

    Full Text Available Background: One area of nanoscience deals with nanoscopic interactions between nanostructured materials and biological systems. To elucidate the effects of the substrate surface morphology and viscoelasticity on cell proliferation, fractal analysis was performed on endothelial cells cultured on nanocomposite samples based on silicone rubber (SR and various concentrations of organomodified nanoclay (OC. Methods: The nanoclay/SR ratio was tailored to enhance cell behavior via changes in sample substrate surface roughness and viscoelasticity. Results: Surface roughness of the cured SR filled with negatively-charged nanosilicate layers had a greater effect than elasticity on cell growth. The surface roughness of SR nanocomposite samples increased with increasing the OC content, leading to enhanced cell growth and extracellular matrix (ECM remodeling. This was consistent with the decrease in SR segmental motions and damping factor as the primary viscoelastic parameters by the nanosilicate layers with increasing clay concentrations. Conclusions: The inclusion of clay nanolayers affected the growth and behavior of endothelial cells on microtextured SR.

  7. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    Science.gov (United States)

    Warnez, M. T.; Johnsen, E.

    2015-06-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.

  8. Viscoelastic methods of blood clotting assessment – a multidisciplinary review

    Directory of Open Access Journals (Sweden)

    Jan eBenes

    2015-09-01

    Full Text Available Viscoelastic methods made available the bed-side assessment of blood clotting. Unlike standard laboratory tests, the results are based on the whole blood coagulation, are available in real time and in much faster turnaround time. In combination with our new knowledge about pathophysiology of the trauma induced coagulopathy the goal oriented treatment protocols have been recently proposed for the initial management of bleeding in trauma victims. Besides, the utility of viscoelastic monitoring devices has been proved even outside this setting in cardiosurgical patients or those undergoing liver transplantation. Many other situations were described in literature showing potential use of bed-side analysis of coagulation for the management of bleeding or critically ill patients. In the near future, we may expect further improvement of current bed-side diagnostic tools enabling not only the assessment of secondary hemostasis but also platelet aggregation. More sensitive assays for new anticoagulants are underway. Aim of this review is to offer the reader a multidisciplinary overview on the topic of viscoelastic methods and their potential use in anesthesiology and critical care.

  9. Viscoelasticity of Concentrated Proteoglycan Solutions

    Science.gov (United States)

    Meechai, Nispa; Jamieson, Alex; Blackwell, John; Carrino, David

    2001-03-01

    Proteoglycan Aggregate (PGA) is the principal macromolecular component of the energy-absorbing matrix of cartilage and tendon. Its brush-like supramolecular structure consists of highly-ionic subunits, non-covalently bound to a hyaluronate chain. We report viscoelastic behavior of concentrated solutions of PGA, purified by column fractionation to remove free subunits. At physiological ionic strength, these preparations exhibit a sol-to-gel transition when the concentration is increased above molecular overlap. The strain dependence of concentrated solutions shows a pronounced non-linearity above a critical strain, at which the storage modulus decreases suddenly, and the loss modulus exhibits a maximum. This response is similar to that observed for close-packed dispersions of soft spheres, when the applied strain is sufficient to move a sphere past its neighbors. At low and high ionic strength, the elasticity of solutions near the overlap concentration decreases. The former is interpreted as due to a decrease in intramolecular and intermolecular electrostatic repulsions, because of strong trapping of counterions within the PGA brush, the latter to salt-induced brush collapse.

  10. Rheological modeling of viscoelastic passive dampers

    Science.gov (United States)

    Park, Sunwoo

    2001-07-01

    An efficient method of modeling the rheological behavior of viscoelastic dampers is discussed and illustrated. The method uses the standard mechanical model composed of linear springs and dashpots, which leads to a Prony series representation of the corresponding material function in the time domain. The computational procedure used is simple and straightforward and allows the linear viscoelastic material functions to be readily determined from experimental data in the time or frequency domain. Some existing models including the fractional derivative model and modified power-law are reviewed and compared with the standard mechanical model. It is found the generalized Maxwell and generalized Voigt model accurately describe the broadband rheological behavior of viscoelastic dampers commonly used in structural and vibration control. While a cumbersome nonlinear fitting technique is required for other models, a simple collocation or least-squares method can be used to fit the standard mechanical model to experimental data. The remarkable computational efficiency associated with the exponential basis functions of the Prony series greatly facilitates fitting of the model and interconversion between linear viscoelastic material functions. A numerical example on a viscoelastic fluid damper demonstrates the advantages of the use of the standard mechanical model over other existing models. Details of the computational procedures for fitting and inter-conversion are discussed and illustrated.

  11. Revisiting viscoelastic effects on interseismic deformation and locking degree: A case study of the Peru-North Chile subduction zone

    Science.gov (United States)

    Li, Shaoyang; Moreno, Marcos; Bedford, Jonathan; Rosenau, Matthias; Oncken, Onno

    2015-06-01

    Viscoelastic effects potentially play an important role during all phases of the earthquake cycle in subduction zones. However, most current models neglect such effects in the interseismic deformation pattern. Here we use finite element method (FEM) models to investigate the control of viscoelasticity on interseismic deformation and to highlight the pitfalls of interpreting the data with purely elastic models for both the forward and inverse problems. Our results confirm that elastic models are prone to overestimating the interseismic locking depth, a crucial parameter for estimating the maximum possible earthquake magnitude. The application of the viscoelastic model improves the fit to the interseismic deformation, especially in the inland area. Additionally, we construct 3-D FEM models constrained by geophysical and GPS data and apply our methodology to the Peru-North Chile subduction zone. Our results indicate that viscoelastic effects contribute significantly to the observed GPS data. The signals interpreted as back-arc shortening in the elastic model can be alternatively explained by viscoelastic deformation, which, in turn, dramatically refines the interseismic locking pattern in both dip and strike directions. Our viscoelastic locking map exhibits excellent correlation with the slip distributions of previous earthquakes, especially the recent 2014 Mw 8.1 Iquique earthquake. The incorrect elastic assumptions affect the analysis of interseismic deformation with respect to slip deficit calculations. Our results thus suggest that it is necessary to thoroughly reevaluate existing locking models that are based on purely elastic models, some of which attribute viscoelastic deformation to different sources such as microplate sliver motions.

  12. Continuous relaxation and retardation spectrum method for viscoelastic characterization of asphalt concrete

    Science.gov (United States)

    Bhattacharjee, Sudip; Swamy, Aravind Krishna; Daniel, Jo S.

    2012-08-01

    This paper presents a simple and practical approach to obtain the continuous relaxation and retardation spectra of asphalt concrete directly from the complex (dynamic) modulus test data. The spectra thus obtained are continuous functions of relaxation and retardation time. The major advantage of this method is that the continuous form is directly obtained from the master curves which are readily available from the standard characterization tests of linearly viscoelastic behavior of asphalt concrete. The continuous spectrum method offers efficient alternative to the numerical computation of discrete spectra and can be easily used for modeling viscoelastic behavior. In this research, asphalt concrete specimens have been tested for linearly viscoelastic characterization. The linearly viscoelastic test data have been used to develop storage modulus and storage compliance master curves. The continuous spectra are obtained from the fitted sigmoid function of the master curves via the inverse integral transform. The continuous spectra are shown to be the limiting case of the discrete distributions. The continuous spectra and the time-domain viscoelastic functions (relaxation modulus and creep compliance) computed from the spectra matched very well with the approximate solutions. It is observed that the shape of the spectra is dependent on the master curve parameters. The continuous spectra thus obtained can easily be implemented in material mix design process. Prony-series coefficients can be easily obtained from the continuous spectra and used in numerical analysis such as finite element analysis.

  13. Viscoelastic love-type surface waves

    Science.gov (United States)

    Borcherdt, Roger D.

    2008-01-01

    The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.

  14. Viscoelastic-augmented trabeculectomy: A newer concept

    Directory of Open Access Journals (Sweden)

    Meghna Solanki

    2017-01-01

    Full Text Available Purpose: Comparison of conventional trabeculectomy (CT and viscoelastic-augmented trabeculectomy (VAT in primary open-angle glaucoma. Methods: A total of 65 primary open-angle glaucoma cases were taken for each of the two groups, i.e., CT and VAT. Viscoelastic-augmented trabeculectomy constituted lamellar scleral flap, deep scleral flap, penetrating trabeculectomy, peripheral iridectomy, filling of the anterior chamber with viscoelastic (sodium hyaluronate and balanced salt solution, movement of visco in bleb, and tight flap closure. Success criteria included intraocular pressure (IOP <14 mmHg with no devastating complications. P < 0.05 was considered statistically significant. Results: Mean IOP was significantly lower after VAT compared to CT at 6 weeks, 12 weeks, and 6 months postoperatively. Target IOP was achieved in 60% cases in VAT group compared to 36.92% in CT group. Conclusion: VAT is effective in reducing IOP to the target level for advanced glaucoma with lower postoperative complications.

  15. Broadband nanoindentation of glassy polymers: Part I Viscoelasticity

    Science.gov (United States)

    Joesph E. Jakes; Rod S. Lakes; Don S. Stone

    2012-01-01

    Protocols are developed to assess viscoelastic moduli from unloading slopes in Berkovich nanoindentation across four orders of magnitude in time scale (0.01-100 s unloading time). Measured viscoelastic moduli of glassy polymers poly(methyl methacrylate), polystyrene, and polycarbonate follow the same trends with frequency (1/unloading time) as viscoelastic moduli...

  16. Asymptotic estimates of viscoelastic Green's functions near the wavefront

    OpenAIRE

    Hanyga, Andrzej

    2014-01-01

    Asymptotic behavior of viscoelastic Green's functions near the wavefront is expressed in terms of a causal function $g(t)$ defined in \\cite{SerHanJMP} in connection with the Kramers-Kronig dispersion relations. Viscoelastic Green's functions exhibit a discontinuity at the wavefront if $g(0) < \\infty$. Estimates of continuous and discontinuous viscoelastic Green's functions near the wavefront are obtained.

  17. Wind turbine blade with viscoelastic damping

    Science.gov (United States)

    Sievers, Ryan A.; Mullings, Justin L.

    2017-01-10

    A wind turbine blade (60) damped by viscoelastic material (54, 54A-F) sandwiched between stiffer load-bearing sublayers (52A, 52B, 56A, 56B) in portions of the blade effective to damp oscillations (38) of the blade. The viscoelastic material may be located in one or more of: a forward portion (54A) of the shell, an aft portion (54D) of the shell, pressure and suction side end caps (54B) of an internal spar, internal webbing walls (54C, 54E), and a trailing edge core (54F).

  18. Viscoelastic behavior of discrete human collagen fibrils

    DEFF Research Database (Denmark)

    2010-01-01

    Whole tendon and fibril bundles display viscoelastic behavior, but to the best of our knowledge this property has not been directly measured in single human tendon fibrils. In the present work an atomic force microscopy (AFM) approach was used for tensile testing of two human patellar tendon...... on the strain. The slope of the viscous response showed a strain rate dependence corresponding to a power function of powers 0.242 and 0.168 for the two patellar tendon fibrils, respectively. In conclusion, the present work provides direct evidence of viscoelastic behavior at the single fibril level, which has...

  19. An Image-Based Finite Element Approach for Simulating Viscoelastic Response of Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Wenke Huang

    2016-01-01

    Full Text Available This paper presents an image-based micromechanical modeling approach to predict the viscoelastic behavior of asphalt mixture. An improved image analysis technique based on the OTSU thresholding operation was employed to reduce the beam hardening effect in X-ray CT images. We developed a voxel-based 3D digital reconstruction model of asphalt mixture with the CT images after being processed. In this 3D model, the aggregate phase and air void were considered as elastic materials while the asphalt mastic phase was considered as linear viscoelastic material. The viscoelastic constitutive model of asphalt mastic was implemented in a finite element code using the ABAQUS user material subroutine (UMAT. An experimental procedure for determining the parameters of the viscoelastic constitutive model at a given temperature was proposed. To examine the capability of the model and the accuracy of the parameter, comparisons between the numerical predictions and the observed laboratory results of bending and compression tests were conducted. Finally, the verified digital sample of asphalt mixture was used to predict the asphalt mixture viscoelastic behavior under dynamic loading and creep-recovery loading. Simulation results showed that the presented image-based digital sample may be appropriate for predicting the mechanical behavior of asphalt mixture when all the mechanical properties for different phases became available.

  20. Numerical solution of an elastic and viscoelastic gravitational models by the finite element method

    Science.gov (United States)

    Arjona Almodóvar, A.; Chacón Rebollo, T.; Gómez Marmol, M.

    2014-12-01

    Volcanic areas present a lower effective viscosity than usually in the Earth's crust. Both the elastic-gravitational and the viscoelastic-gravitational models allow the computation of gravity, deformation, and gravitational potential changes in order to investigate crustal deformations of Earth (see for instance Battaglia & Segall, 2004; Fernández et al. 1999, 2001; Rundle 1980 and 1983). These models can be represented by a coupled system of linear parabolic (for the elastic deformations), hyperbolic (for the viscoelastic deformations) and elliptic partial differential equations (for gravitational potential changes) (see for instance Arjona et al. 2008 and 2010). The existence and uniqueness of weak solutions for both the elastic-gravitational and viscoelastic-gravitational problem was demonstrated in Arjona et al. (2008 and 2014). The stabilization to solutions of the associated stationary system was proved in Arjona and Díaz (2007). Here we consider the internal source as response to the effect of a pressurized magma reservoir into a multilayered, elastic-gravitational and viscoelastic-gravitational earth model. We introduce the numerical analysis of a simplified steady elastic-gravitational model, solved by means of the finite element method. We also present some numerical tests in realistic situations that confirm the predictions of theoretical order of convergence. Finally, we describe the methodology for both the elastic-gravitational and the viscoelastic-gravitational models using 2D and 3D test examples performed with FreeFEM++.

  1. Viscoelastic machine elements elastomers and lubricants in machine systems

    CERN Document Server

    MOORE, D F

    2015-01-01

    Viscoelastic Machine Elements, which encompass elastomeric elements (rubber-like components), fluidic elements (lubricating squeeze films) and their combinations, are used for absorbing vibration, reducing friction and improving energy use. Examplesinclude pneumatic tyres, oil and lip seals, compliant bearings and races, and thin films. This book sets out to show that these elements can be incorporated in machine analysis, just as in the case of conventional elements (e.g. gears, cogs, chaindrives, bearings). This is achieved by introducing elementary theory and models, by describing new an

  2. Solid particle erosion and viscoelastic properties of thermoplastic polyurethanes

    Directory of Open Access Journals (Sweden)

    G. Arena

    2015-03-01

    Full Text Available The wear resistance of several thermoplastic polyurethanes (TPUs having different chemical nature and micronscale arrangement of the hard and soft segments has been investigated by means of erosion and abrasion tests. The goal was correlating the erosion performances of the materials to their macroscopic mechanical properties. Unlike conventional tests, such as hardness and tensile measurements, viscoelastic analysis proved to be a valuable tool to study the erosion resistance of TPUs. In particular, a strict correlation was found between the erosion rate and the high-frequency (~107 Hz loss modulus. The latter reflects the actual ability of TPU to dissipate the impact energy of the erodent particles.

  3. Viscoelastic properties of elastomeric materials for O-ring applications

    Science.gov (United States)

    Bower, Mark V.

    1989-01-01

    Redesign of the Space Shuttle Solid Rocket Booster necessitated re-evaluation of the material used in the field joint O-ring seals. This research project was established to determine the viscoelastic characteristics of five candidate materials. The five materials are: two fluorocarbon compounds, two nitrile compounds, and a silicon compound. The materials were tested in a uniaxial compression test to determine the characteristic relaxation functions. These tests were performed at five different temperatures. A master material curve was developed for each material from the experimental data. The results of this study are compared to tensile relaxation tests. Application of these results to the design analysis is discussed in detail.

  4. Non Linear Viscoelastic Constitutive Relation of Elastomers for Hysteresis Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Sairom; Kim, Dooman [Korea Aerospace Univ., Goyang (Korea, Republic of); Ju, Jaehyung [Univ. of North Texas, Houston (United States); Choi, Seok-Ju [R and Center, Hnakook Tire Co. Ltd., Daejeon (Korea, Republic of)

    2016-04-15

    An accurate hysteresis model of an elastomer is important for quantifying viscoelastic energy loss. We suggest a highly nonlinear hyper-viscoelastic constitutive model of elastomers. The model captures a nonlinear viscoelastic characteristic by combining Yeoh's hyperelastic model and Hoofatt's hysteresis model used Neo-Hookean hyperelastic model. Analytical and numerical models were generated from uniaxial cyclic tests of an elastomer under a sinusoidal load with a mean strain of 150%, amplitudes of 20-80%, and frequencies of 0.02-0.2Hz. The viscoelastic model can highly capture the viscoelastic energy loss up to a strain of 230%.

  5. Viscoelastic behavior of discrete human collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, René; Hassenkam, Tue; Hansen, Philip

    2010-01-01

    Whole tendon and fibril bundles display viscoelastic behavior, but to the best of our knowledge this property has not been directly measured in single human tendon fibrils. In the present work an atomic force microscopy (AFM) approach was used for tensile testing of two human patellar tendon fibr...

  6. DYNAMIC DEFORMATION THE VISCOELASTIC TWOCOMPONENT MEDIUM

    Directory of Open Access Journals (Sweden)

    V. S. Polenov

    2015-01-01

    Full Text Available Summary. In the article are scope harmonious warping of the two-component medium, one component which are represent viscoelastic medium, hereditary properties which are described by the kernel aftereffect Abel integral-differential ratio BoltzmannVolterr, while second – compressible liquid. Do a study one-dimensional case. Use motion equation of two-component medium at movement. Look determination system these equalization in the form of damped wave. Introduce dimensionless coefficient. Combined equations happen to homogeneous system with complex factor relatively waves amplitude in viscoelastic component and in fluid. As a result opening system determinant receive biquadratic equation. Elastic operator express through kernel aftereffect Abel for space Fourier. With the help transformation and symbol series biquadratic equation reduce to quadratic equation. Come to the conclusion that in two-component viscoelastic medium exist two mode sonic waves. As a result solution of quadratic equation be found description advance of waves sonic in viscoelastic two-component medium, which physical-mechanical properties represent complex parameter. Velocity determination advance of sonic waves, attenuation coefficient, mechanical loss tangent, depending on characteristic porous medium and circular frequency formulas receive. Graph dependences of description advance of waves sonic from the temperature logarithm and with the fractional parameter γ are constructed.

  7. Experimental Viscoelastic Characterization of Corn Cob Composited ...

    African Journals Online (AJOL)

    The nature of viscoelasticity in biomateria1s and the techniques for characterizing their rheological properties were reviewed. Relaxation tests were performed with cylindrical samples of corn cob composites which were initially subjected to radial compression. It was found that a Maxwell model composed of two simple ...

  8. Particle sedimentation in a sheared viscoelastic fluid

    Science.gov (United States)

    Murch, William L.; Krishnan, Sreenath; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2017-11-01

    Particle suspensions are ubiquitous in engineered processes, biological systems, and natural settings. For an engineering application - whether the intent is to suspend and transport particles (e.g., in hydraulic fracturing fluids) or allow particles to sediment (e.g., in industrial separations processes) - understanding and prediction of the particle mobility is critical. This task is often made challenging by the complex nature of the fluid phase, for example, due to fluid viscoelasticity. In this talk, we focus on a fully 3D flow problem in a viscoelastic fluid: a settling particle with a shear flow applied in the plane perpendicular to gravity (referred to as orthogonal shear). Previously, it has been shown that an orthogonal shear flow can reduce the settling rate of particles in viscoelastic fluids. Using experiments and numerical simulations across a wide range of sedimentation and shear Weissenberg number, this talk will address the underlying physical mechanism responsible for the additional drag experienced by a rigid sphere settling in a confined viscoelastic fluid with orthogonal shear. We will then explore multiple particle effects, and discuss the implications and extensions of this work for particle suspensions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-114747 (WLM).

  9. Numerical solution methods for viscoelastic orthotropic materials

    Science.gov (United States)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1988-01-01

    Numerical solution methods for viscoelastic orthotropic materials, specifically fiber reinforced composite materials, are examined. The methods include classical lamination theory using time increments, direction solution of the Volterra Integral, Zienkiewicz's linear Prony series method, and a new method called Nonlinear Differential Equation Method (NDEM) which uses a nonlinear Prony series. The criteria used for comparison of the various methods include the stability of the solution technique, time step size stability, computer solution time length, and computer memory storage. The Volterra Integral allowed the implementation of higher order solution techniques but had difficulties solving singular and weakly singular compliance function. The Zienkiewicz solution technique, which requires the viscoelastic response to be modeled by a Prony series, works well for linear viscoelastic isotropic materials and small time steps. The new method, NDEM, uses a modified Prony series which allows nonlinear stress effects to be included and can be used with orthotropic nonlinear viscoelastic materials. The NDEM technique is shown to be accurate and stable for both linear and nonlinear conditions with minimal computer time.

  10. Viscoelastic Models for Nearly Incompressible Materials

    Science.gov (United States)

    2009-09-01

    outlined first, then the Prony series approximation to the stress relaxation function is introduced, and this in turn is used to derive various...These solutions are useful for verifying the model implementation. nonlinear, viscoelastic, rate-dependence, nearly incompressible, Prony series...12 3.4 Prony Series Approximation and Incremental Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4.1

  11. experimental viscoelastic characterization of corn cob composites ...

    African Journals Online (AJOL)

    Dr Obe

    Transactions of the ASME,. Journal of Applied Mechanics, 27(9):. 438-444. 19. Yang, W.H. 1966. The contact problem for viscoelastic bodies. Transactions of the ASME, Journal of. Applied Mechanics, 33(4): 395-401. 20. Meyer, K.H. 1950. Natural and. Synthetic High polymers. Interscience. Publishers Inc.N.Y.USA. 21.

  12. Viscoelastic Pavement Modeling with a Spreadsheet

    DEFF Research Database (Denmark)

    Levenberg, Eyal

    2016-01-01

    The aim herein was to equip civil engineers and students with an advanced pavement modeling tool that is both easy to use and highly adaptive. To achieve this, a mathematical solution for a layered viscoelastic half-space subjected to a moving load was developed and subsequently implemented...

  13. Changes in protein solubility, fermentative capacity, viscoelasticity ...

    African Journals Online (AJOL)

    The use of frozen dough remedied availability of fresh bread. However, bread elaborated from frozen dough has less volume and texture is firmer. This study evaluates how storage affects the protein solubility, fermentative capacity and viscoelasticity of frozen dough. In addition to examining the effects of storage on the ...

  14. A Brief Review of Elasticity and Viscoelasticity

    Science.gov (United States)

    2010-05-27

    behavior of solid-like foods, Journal of Food Engineering , 78 (2007), 978–983. [18] M. Doi and M. Edwards, The Theory of Polymer Dynamics, Oxford...lipids, Journal of Food Engineering , 33 (1997), 305–320. [52] J. Smart and J.G. Williams, A comparison of single integral non-linear viscoelasticity

  15. Isolation of nanoscale exosomes using viscoelastic effect

    Science.gov (United States)

    Hu, Guoqing; Liu, Chao

    2017-11-01

    Exosomes, molecular cargos secreted by almost all mammalian cells, are considered as promising biomarkers to identify many diseases including cancers. However, the small size of exosomes (30-200 nm) poses serious challenges on their isolation from the complex media containing a variety of extracellular vesicles (EVs) of different sizes, especially in small sample volumes. Here we develop a viscoelasticity-based microfluidic system to directly separate exosomes from cell culture media or serum in a continuous, size-dependent, and label-free manner. Using a small amount of biocompatible polymer as the additive into the media to control the viscoelastic forces exerted on EVs, we are able to achieve a high separation purity (>90%) and recovery (>80%) of exosomes. The size cutoff in viscoelasticity-based microfluidics can be easily controlled using different PEO concentrations. Based on this size-dependent viscoelastic separation strategy, we envision the handling of diverse nanoscale objects, such as gold nanoparticles, DNA origami structures, and quantum dots. This work was supported financially by National Natural Science Foundation of China (11572334, 91543125).

  16. Gravitational Instability of Cylindrical Viscoelastic Medium ...

    Indian Academy of Sciences (India)

    field on the gravitational instability of strongly coupled plasma and observed that instability criterion gets modified due to the presence of non uniform magnetic field in transverse mode of wave propagation under both the kinetic and hydrodynamic limits, when the viscoelastic medium is infinitely electrically conducting.

  17. Numerical Models for Viscoelastic Liquid Atomization Spray

    Directory of Open Access Journals (Sweden)

    Lijuan Qian

    2016-12-01

    Full Text Available Atomization spray of non-Newtonian liquid plays a pivotal role in various engineering applications, especially for the energy utilization. To operate spray systems efficiently and well understand the effects of liquid rheological properties on the whole spray process, a comprehensive model using Euler-Lagrangian approaches was established to simulate the evolution of the atomization spray for viscoelastic liquid. Based on the Oldroyd model, the viscoelastic linear dispersion relation was introduced into the primary atomization; an extended viscoelastic version of Taylor analogy breakup (TAB model was proposed; and the coalescence criteria was modified by rheological parameters, such as the relaxation time, the retardation time and the zero shear viscosity. The predicted results are validated with experimental data varying air-liquid mass flow ratio (ALR. Then, numerical calculations are conducted to investigate the characteristics of viscoelastic liquid atomization process. Results showed that the evolutionary trend of droplet mean diameter, Weber number and Ohnesorge number of viscoelastic liquids along with axial direction were qualitatively similar to that of Newtonian liquid. However, the mean size of polymer solution increased more gently than that of water at the downstream of the spray, which was beneficial to stable control of the desirable size in the applications. As concerned the effects of liquid physical properties, the surface tension played an important role in the primary atomization, which indicated the benefit of selecting the solvents with lower surface tension for finer atomization effects, while, for the evolution of atomization spray, larger relaxation time and zero shear viscosity increased droplet Sauter mean diameter (SMD significantly. The zero shear viscosity was effective throughout the jet region, while the effect of relaxation time became weaken at the downstream of the spray field.

  18. Simulation of Rubber Friction Using Viscoelastic Behavior of Rubber and Roughness Parameters of Surfaces

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Arab Bafrani

    2013-06-01

    Full Text Available One of the most important factors that affect tire friction is surface roughness, which determines the size of the real contact area, real pressure distribution on the contact interface, and scales of mechanical engagement between viscoelastic rubber and a rough substrate. The need to predict coefficient of friction (COF for rubber on rough surfaces for applications such as traction of tires on the road surfaces led to some physical models such as Heinrich-Kluppel’s model. The current study examines the applicability of the Heinrich-Kluppel model, using different viscoelastic representations, in numerical simulations of COF for rubber, and its agreement with the experimental results. For this purpose, roughness characteristics of the surfaces and viscoelastic properties of rubber were measured by fractal analysis and dynamic-mechanical-thermal analysis (DMTA, respectively. These data were employed in the numerical code to simulate COF for a rubber sample. The model was also modified by replacing the Zener viscoelastic representation in the original model with the generalized Maxwell viscoelastic representation. On the other hand, COF for rubber was measured on the same rough surface (different sand-papers by an in-house friction tester, and results were compared with the numerical results. It was shown that computer simulation could predict the load and speed dependence of rubber friction very well. The application of the generalized Maxwell model improved agreement between the numerical and experimental results for high sliding speeds where the Zener viscoelastic model failed to predict the right trend in variation of COF with speed. This speed range was matched with the sliding velocities in the footprint of tire under rolling conditions.

  19. Inverse identification of the frequency-dependent mechanical parameters of viscoelastic materials based on the measured FRFs

    Science.gov (United States)

    Sun, Wei; Wang, Zhuo; Yan, Xianfei; Zhu, Mingwei

    2018-01-01

    The mechanical parameters of viscoelastic materials, such as storage modulus and loss factor, have frequency-dependent characteristic and the combination of different polymers usually exhibits various mechanical characteristics, which make the identification of the mechanical parameters of viscoelastic materials become a routine and challenging task. In this study, based on the measured resonance frequencies and frequency response functions (FRFs) of a viscoelastic damping plate, an inverse approach was developed to identify the aforementioned parameters with frequency-dependent characteristic. An analysis model was established with both the viscoelastic material damping and the remaining equivalent viscous damping considered. A response surface method was provided to achieve the matching calculation, which can identify the storage modulus and loss factor simultaneously. A cantilever plate attached with ZN_1 viscoelastic material was chosen to demonstrate the proposed method and the measured and the predicted FRFs were compared with the purpose of assessing the rationality of identification results. The results show that the loss factor of viscoelastic materials would be overestimated if only the material damping was included in the analysis model.

  20. Asphalt Pavement Aging and Temperature Dependent Properties Using Functionally Graded Viscoelastic Model

    Science.gov (United States)

    Dave, Eshan V.

    2009-01-01

    Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative aging of asphalt binder and temperature cycling due to climatic conditions being the major cause of non-homogeneity. Current pavement analysis and simulation procedures dwell on the use of layered approach to account for these non-homogeneities. The conventional…

  1. A cellular tensegrity model to analyse the structural viscoelasticity of the cytoskeleton.

    Science.gov (United States)

    Cañadas, Patrick; Laurent, Valerie M; Oddou, Christian; Isabey, Daniel; Wendling, Sylvie

    2002-09-21

    This study describes the viscoelastic properties of a refined cellular-tensegrity model composed of six rigid bars connected to a continuous network of 24 viscoelastic pre-stretched cables (Voigt bodies) in order to analyse the role of the cytoskeleton spatial rearrangement on the viscoelastic response of living adherent cells. This structural contribution was determined from the relationships between the global viscoelastic properties of the tensegrity model, i.e., normalized viscosity modulus (eta(*)), normalized elasticity modulus (E(*)), and the physical properties of the constitutive elements, i.e., their normalized length (L(*)) and normalized initial internal tension (T(*)). We used a numerical method to simulate the deformation of the structure in response to different types of loading, while varying by several orders of magnitude L(*) and T(*). The numerical results obtained reveal that eta(*) remains almost independent of changes in T(*) (eta(*) proportional, variant T(*+0.1)), whereas E(*) increases with approximately the square root of the internal tension T(*) (from E(*) proportional, variant T(*+0.3) to E(*) proportional, variant T(*+0.7)). Moreover, structural viscosity eta(*) and elasticity E(*) are both inversely proportional to the square of the size of the structure (eta(*) proportional, variant L(*-2) and E(*) proportional, variant L(*-2)). These structural properties appear consistent with cytoskeleton (CSK) mechanical properties measured experimentally by various methods which are specific to the CSK micromanipulation in living adherent cells. Present results suggest, for the first time, that the effect of structural rearrangement of CSK elements on global CSK behavior is characterized by a faster cellular mechanical response relatively to the CSK element response, which thus contributes to the solidification process observed in adherent cells. In extending to the viscoelastic properties the analysis of the mechanical response of the cellular

  2. Asymptotic ray theory of linear viscoelastic media

    Science.gov (United States)

    Nechtschein, Stephane

    The Asymptotic Ray Theory (ART) has become a frequently used technique for the numerical modeling of seismic wave propagation in complex geological models. This theory was originally developed for elastic structures with the ray amplitude computation performed in the time domain. ART is now extended to linear viscoelastic media, the linear theory of viscoelasticity being used to simulate the dispersive properties peculiar to anelastic materials. This extension of ART is based on the introduction of a frequency dependent amplitude term having the same properties as in the elastic case and on a frequency dependent complex phase function. Consequently the ray amplitude computation is now performed in the frequency domain, the final solution being obtained by carrying out an Inverse Fourier Transform. Since ART is used, the boundary conditions for the kinematic and dynamic properties of the waves only have to be satisfied locally. This results in a much simpler Snell's Law for linear viscoelastic media, which in fact turns out to be of the same form as for the elastic case. No complex angle is involved. Furthermore the rays, the ray parameters, the geometrical spreading are all real values implying that the direction of the attenuation vector is always along the ray. The reflection and transmission coefficients were therefore rederived. These viscoelastic ART coefficients behave differently from those obtained with the Plane Wave method. Their amplitude and phase curves are always close to those computed for perfectly elastic media and they smoothly approach the elastic reflection/transmission coefficients when the quality factors increase to infinity. These same ART coefficients also display some non-physical results depending on the choice of the quality factors. This last feature might be useful to determine whether or not the two media making up the interface can be regarded as linear viscoelastic. Finally the results obtained from synthetic seismogram computations

  3. A Viscoelastic Constitutive Law For FRP Materials

    Science.gov (United States)

    Ascione, Luigi; Berardi, Valentino Paolo; D'Aponte, Anna

    2011-09-01

    The present study deals with the long-term behavior of fiber-reinforced polymer (FRP) materials in civil engineering. More specifically, the authors propose a mechanical model capable of predicting the viscoelastic behavior of FRP laminates in the field of linear viscoelasticity, starting from that of the matrix material and fiber. The model is closely connected with the low FRP stress levels in civil engineering applications. The model is based on a micromechanical approach which assumes that there is a perfect adhesion between the matrix and fiber. The long-term behavior of the phases is described through a four-parameter rheological law. A validation of the model has also been developed by matching the predicted behavior with an experimental one available in the literature.

  4. Viscoelastic effects on electrokinetic particle focusing in a constricted microchannel

    Science.gov (United States)

    Lu, Xinyu; DuBose, John; Joo, Sang Woo; Qian, Shizhi

    2015-01-01

    Focusing suspended particles in a fluid into a single file is often necessary prior to continuous-flow detection, analysis, and separation. Electrokinetic particle focusing has been demonstrated in constricted microchannels by the use of the constriction-induced dielectrophoresis. However, previous studies on this subject have been limited to Newtonian fluids only. We report in this paper an experimental investigation of the viscoelastic effects on electrokinetic particle focusing in non-Newtonian polyethylene oxide solutions through a constricted microchannel. The width of the focused particle stream is found NOT to decrease with the increase in DC electric field, which is different from that in Newtonian fluids. Moreover, particle aggregations are observed at relatively high electric fields to first form inside the constriction. They can then either move forward and exit the constriction in an explosive mode or roll back to the constriction entrance for further accumulations. These unexpected phenomena are distinct from the findings in our earlier paper [Lu et al., Biomicrofluidics 8, 021802 (2014)], where particles are observed to oscillate inside the constriction and not to pass through until a chain of sufficient length is formed. They are speculated to be a consequence of the fluid viscoelasticity effects. PMID:25713690

  5. Thermo-Mechanical Compatibility of Viscoelastic Mortars for Stone Repair

    Directory of Open Access Journals (Sweden)

    Thibault Demoulin

    2016-01-01

    Full Text Available The magnitude of the thermal stresses that originate in an acrylic-based repair material used for the reprofiling of natural sandstone is analyzed. This kind of artificial stone was developed in the late 1970s for its peculiar property of reversibility in an organic solvent. However, it displays a high thermal expansion coefficient, which can be a matter of concern for the durability either of the repair or of the underlying original stone. To evaluate this risk we propose an analytical solution that considers the viscoelasticity of the repair layer. The temperature profile used in the numerical evaluation has been measured in a church where artificial stone has been used in a recent restoration campaign. The viscoelasticity of the artificial stone has been characterized by stress relaxation experiments. The numerical analysis shows that the relaxation time of the repair mortar, originating from a low T g , allows relief of most of the thermal stresses. It explains the good durability of this particular repair material, as observed by the practitioners, and provides a solid scientific basis for considering that the problem of thermal expansion mismatch is not an issue for this type of stone under any possible conditions of natural exposure.

  6. On viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1999-01-01

    The 3D Lagrangian Integral Method is used to simulate the effects of surface tension on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates. It is shovn that the surface tension delays the onset of the instability. Furthermore...... it is demonstrated that surface tension plays a key role in the selection of the most unstable mode...

  7. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, Vera [Konkoly Thege Miklos Astronomical Institute, Research Centre of Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Konkoly Thege Miklós út 15-17, Budapest (Hungary); Turner, Edwin L., E-mail: dobos@konkoly.hu [Department of Astrophysical Sciences, Princeton University, 08544, 4 Ivy Lane, Peyton Hall, Princeton, NJ (United States)

    2015-05-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.

  8. Viscoelastic behaviour of cold recycled asphalt mixes

    Science.gov (United States)

    Cizkova, Zuzana; Suda, Jan

    2017-09-01

    Behaviour of cold recycled mixes depends strongly on both the bituminous binder content (bituminous emulsion or foamed bitumen) and the hydraulic binder content (usually cement). In the case of cold recycled mixes rich in bitumen and with low hydraulic binder content, behaviour is close to the viscoelastic behaviour of traditional hot mix asphalt. With decreasing bituminous binder content together with increasing hydraulic binder content, mixes are characteristic with brittle behaviour, typical for concrete pavements or hydraulically bound layers. The behaviour of cold recycled mixes with low content of both types of binders is similar to behaviour of unbound materials. This paper is dedicated to analysing of the viscoelastic behaviour of the cold recycled mixes. Therefore, the tested mixes contained higher amount of the bituminous binder (both foamed bitumen and bituminous emulsion). The best way to characterize any viscoelastic material in a wide range of temperatures and frequencies is through the master curves. This paper includes interesting findings concerning the dependency of both parts of the complex modulus (elastic and viscous) on the testing frequency (which simulates the speed of heavy traffic passing) and on the testing temperature (which simulates the changing climate conditions a real pavement is subjected to).

  9. Static viscoelasticity of biomass polyethylene composites

    Directory of Open Access Journals (Sweden)

    Keyan Yang

    Full Text Available The biomass polyethylene composites filled with poplar wood flour, rice husk, cotton stalk or corn stalk were prepared by extrusion molding. The static viscoelasticity of composites was investigated by the dynamic thermal mechanical analyzer (DMA. Through the stress-strain scanning, it is found that the linear viscoelasticity interval of composites gradually decreases as the temperature rises, and the critical stress and strain values are 0.8 MPa and 0.03% respectively. The experiment shows that as the temperature rises, the creep compliance of biomass polyethylene composites is increased; under the constant temperature, the creep compliance decreases with the increase of content of biomass and calcium carbonate. The biomass and calcium carbonate used to prepare composites as filler can improve damping vibration attenuation and reduce stress deformation of composites. The stress relaxation modulus of composites is reduced and the relaxation rate increases at the higher temperature. The biomass and calcium carbonate used to prepare composites as filler not only can reduce costs, but also can increase stress relaxation modulus and improve the size thermostability of composites. The corn stalk is a good kind of biomass raw material for composites since it can improve the creep resistance property and the stress relaxation resistance property of composites more effectively than other three kinds of biomass (poplar wood flour, rice husk and cotton stalk. Keywords: Biomass, Composites, Calcium carbonate, Static viscoelasticity, Creep, Stress relaxation

  10. Temperature compensation in viscoelastic damper using magnetorheological effect

    Science.gov (United States)

    Zhong, Yi; Tu, Jianwei; Yu, Yang; Xu, Jiayun; Tan, Dongmei

    2017-06-01

    The viscoelastic damper is an effective passive vibration control device, however, its viscoelastic material experiences considerable thermal softening when subjected to higher temperatures, limiting its development and application. In an effort to cope this problem, this paper proposes the development of a new-type viscoelastic damper using the magnetorheological (MR) effect to compensate for the thermal softening effect of viscoelastic material. The new damper is manufactured and the performance is tested, verifying that its MR effect can effectively make up for the performance deficiency of traditional viscoelastic dampers in high temperature. The mechanical model of the new damper is devised and its parameters are identified through the performance test data. The compensation strategy is presented and the thermal compensation controller based on pulse width modulation technology is developed. The compensation experimental results show that this new-type viscoelastic damper will not be influenced by environmental temperature, it can maintain the optimal energy dissipation performance in various temperature conditions.

  11. Three-dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions.

    Science.gov (United States)

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter.

  12. Viscoelastic damped response of cross-ply laminated shallow spherical shells subjected to various impulsive loads

    Science.gov (United States)

    Şahan, Mehmet Fatih

    2017-11-01

    In this paper, the viscoelastic damped response of cross-ply laminated shallow spherical shells is investigated numerically in a transformed Laplace space. In the proposed approach, the governing differential equations of cross-ply laminated shallow spherical shell are derived using the dynamic version of the principle of virtual displacements. Following this, the Laplace transform is employed in the transient analysis of viscoelastic laminated shell problem. Also, damping can be incorporated with ease in the transformed domain. The transformed time-independent equations in spatial coordinate are solved numerically by Gauss elimination. Numerical inverse transformation of the results into the real domain are operated by the modified Durbin transform method. Verification of the presented method is carried out by comparing the results with those obtained by the Newmark method and ANSYS finite element software. Furthermore, the developed solution approach is applied to problems with several impulsive loads. The novelty of the present study lies in the fact that a combination of the Navier method and Laplace transform is employed in the analysis of cross-ply laminated shallow spherical viscoelastic shells. The numerical sample results have proved that the presented method constitutes a highly accurate and efficient solution, which can be easily applied to the laminated viscoelastic shell problems.

  13. Viscoelastic material inversion using Sierra-SD and ROL

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aquino, Wilkins [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ridzal, Denis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kouri, Drew Philip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Urbina, Angel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.

  14. Human cervical spine ligaments exhibit fully nonlinear viscoelastic behavior.

    Science.gov (United States)

    Troyer, Kevin L; Puttlitz, Christian M

    2011-02-01

    Spinal ligaments provide stability and contribute to spinal motion patterns. These hydrated tissues exhibit time-dependent behavior during both static and dynamic loading regimes. Therefore, accurate viscoelastic characterization of these ligaments is requisite for development of computational analogues that model and predict time-dependent spine behavior. The development of accurate viscoelastic models must be preceded by rigorous, empirical evidence of linear viscoelastic, quasi-linear viscoelastic (QLV) or fully nonlinear viscoelastic behavior. This study utilized multiple physiological loading rates (frequencies) and strain amplitudes via cyclic loading and stress relaxation experiments in order to determine the viscoelastic behavior of the human lower cervical spine anterior longitudinal ligament, the posterior longitudinal ligament and the ligamentum flavum. The results indicated that the cyclic material properties of these ligaments were dependent on both strain amplitude and frequency. This strain amplitude-dependent behavior cannot be described using a linear viscoelastic formulation. Stress relaxation experiments at multiple strain magnitudes indicated that the shape of the relaxation curve was strongly dependent on strain magnitude, suggesting that a QLV formulation cannot adequately describe the comprehensive viscoelastic response of these ligaments. Therefore, a fully nonlinear viscoelastic formulation is requisite to model these lower cervical spine ligaments during activities of daily living. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Atomistic Mechanisms for Viscoelastic Damping in Inorganic Solids

    Science.gov (United States)

    Ranganathan, Raghavan

    the microstructural length-scale of the composite. The second class of materials consist of structurally heterogeneous binary alloys that are either ordered, random or glassy. Vastly different mechanisms for viscoelastic damping arise for the three structures - random alloy and glass are observed to exhibit significant damping owing to large anharmonicity in the coupling between vibrational modes, which is a direct consequence of the chemical heterogeneity. Additionally, at low shear frequencies, glass exhibits significant long-time scale structural relaxation that results in persistent damping over a large range of frequencies. Finally, a critical analysis of various factors that affect damping in inorganic glasses is made. We show that damping in glasses exhibits a striking commonality - at high frequencies, vibrational anharmonicity leads to a peak in damping for all glasses commensurate with the range of vibrational frequencies of the glass; at intermediate and low frequencies, structural relaxation leads to persistent, nearly-constant damping. The frequency-dependent damping mechanisms and structure-property relations observed with respect to damping are expected to enable the design of novel structures with favorable damping characteristics.

  16. Parameter Estimation of Viscoelastic Materials: A Test Case with Different Optimization Strategies

    Science.gov (United States)

    Fernanda, M.; Costa, P.; Ribeiro, C.

    2011-09-01

    In this work, and based on numerical optimization techniques, constitutive parameters for viscoelastic materials are determined using a inverse problem formulation. The optimization methodology is based on experimental results obtained in the frequency domain, for a CFRP-Carbon Fibre Reinforced Polymer, through DMA-Dynamic Mechanical Analysis. The relaxation modulus of viscoelastic materials is given by a summation of decaying exponentiating functions, known as Prony series. Prony series, in time domain, are normally used to determine constitutive parameters for viscoelastic materials. In this paper, using the Fourier transform of the time domain Prony series, a nonlinear constrained least square problem based on Prony series representations of storage and loss modulus, for the considered material, is analyzed. A case study considering the estimation of 2N viscoelastic parameters, N = 1,2,⋯11, is taken as a benchmark. The nonlinear constrained least square problems are solved using global and local optimization solvers. The computational results as well as the main conclusion are shown.

  17. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

    KAUST Repository

    Khan, Kamran

    2012-11-09

    We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.

  18. Constitution-specific features of perspiration and skin visco-elasticity in SCM.

    Science.gov (United States)

    Kim, Young-Min; Ku, Boncho; Jung, Chang Jin; Kim, Jaeuk U; Jeon, Young Ju; Kim, Keun Ho; Kim, Jong Yeol

    2014-01-15

    Human skin properties have been used as an important diagnostic component in traditional medicine as they change with health conditions. Sasang constitutional medicine (SCM) puts emphasis on the recognition of the constitution-specific skin features prior to the diagnostic decision of health. In this work, in search of skin-characteristics effectively reflecting SCM features, we compared several skin properties such as perspiration, visco-elasticity, elasticity, and elasticity hysteresis, in several candidate body parts. We conducted a clinical study in which a total of 111 healthy females aged 50 - 70 years participated with their Sasang constitution (SC) types determined objectively by the Sasang constitutional analytic tool. Perspiration on the skin surface was estimated by using a capacitance sensor to measure the amount of moisture on the palm, forehead, and philtrum before and after a heating stimulus. We acquired the visco-elasticity, elasticity, and elasticity hysteresis at the forearm by Dermalab's elasticity sensing device. An analysis of covariance (ANCOVA) was conducted to evaluate the effect of SC on the nine skin features acquired. The visco-elasticity of the forearm of the Soeum-in (SE) group was significantly lower than that of the Taeeum-in (TE) group (F = 68.867, p SCM literature; the visco-elasticity, elasticity hysteresis, perspiration on the forehead and philtrum. Our findings are based on a novel interpretation of the SCM literature and will contribute to developing the constitutional health status evaluation system in SCM.

  19. Time-dependent deformation of a nonlinear viscoelastic rubber-toughened fiber composite with growing damage

    Science.gov (United States)

    Bocchieri, Robert Thomas

    One important factor in the durability of polymeric composites is their loss in stiffness over time due to many softening mechanisms, including nonlinear viscoelasticity, viscoplasticity and damage. Damage here refers to all ply-level microstructural changes such as matrix cracking, fiber-matrix debonding and shear yielding. This dissertation uses the theory previously established by Schapery (1999) to develop experimental and data analysis methods for isolating these softening effects. Schapery's constitutive theory is first tailored for a continuous fiber composite and evaluated for creep/recovery loading where nonlinear viscoelasticity, viscoplasticity and damage growth have a significant effect on strain. Numerical methods, implementing a Genetic Algorithm, are developed to fit material parameters in the recovery equations. This method successfully fits simulated recovery data with hereditary damage effects, but was not implemented on real data due to the unusually complex recovery behavior of the material studied. A method of Acoustic emission monitoring and waveform analysis is developed as a means for tracking two of the primary damage mechanisms in these materials, matrix-cracking and fiber/matrix debond. With direct monitoring, the extent of damage in the material does not need to be inferred from its effect on the stress-strain response. Unidirectional 30°, 45° and 90° coupons of a rubber-toughened carbon/epoxy are monitored in this way for various loading histories. A method of comparing waveforms from different samples is also suggested. An interpretation of the AE data is pro posed based on an initial population of existing flaws. Then a cumulative distribution function (CDF) of microcracking is defined and used to study effects of stress history. After developing an idealized model of the material consisting of two viscoelastic phases, a single loading parameter, which is theoretically independent of loading history and derived from viscoelastic

  20. Modelling of Asphalt Concrete Stiffness in the Linear Viscoelastic Region

    Science.gov (United States)

    Mazurek, Grzegorz; Iwański, Marek

    2017-10-01

    Stiffness modulus is a fundamental parameter used in the modelling of the viscoelastic behaviour of bituminous mixtures. On the basis of the master curve in the linear viscoelasticity range, the mechanical properties of asphalt concrete at different loading times and temperatures can be predicted. This paper discusses the construction of master curves under rheological mathematical models i.e. the sigmoidal function model (MEPDG), the fractional model, and Bahia and co-workers’ model in comparison to the results from mechanistic rheological models i.e. the generalized Huet-Sayegh model, the generalized Maxwell model and the Burgers model. For the purposes of this analysis, the reference asphalt concrete mix (denoted as AC16W) intended for the binder coarse layer and for traffic category KR3 (5×105 viscoelasticity range. The master curve was formed using the time-temperature superposition principle (TTSP). The stiffness modulus of asphalt concrete was determined at temperatures 10°C, 20°C and 40°C and at loading times (frequency) of 0.1, 0.3, 1, 3, 10, 20 Hz. The model parameters were fitted to the rheological models using the original programs based on the nonlinear least squares sum method. All the rheological models under analysis were found to be capable of predicting changes in the stiffness modulus of the reference asphalt concrete to satisfactory accuracy. In the cases of the fractional model and the generalized Maxwell model, their accuracy depends on a number of elements in series. The best fit was registered for Bahia and co-workers model, generalized Maxwell model and fractional model. As for predicting the

  1. Development of a stress-mode sensitive viscoelastic constitutive relationship for asphalt concrete: experimental and numerical modeling

    Science.gov (United States)

    Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam

    2017-08-01

    Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.

  2. The viscoelastic properties of the cervical mucus plug

    DEFF Research Database (Denmark)

    Bastholm, Sara K.; Becher, Naja; Stubbe, Peter Reimer

    2014-01-01

    labor. MethodsViscoelastic properties of CMPs were investigated with a dynamic oscillatory rheometer using frequency and stress sweep experiments within the linear viscoelastic region. Main outcome measuresThe rheological variables obtained were as follows: elastic modulus (G), viscous modulus (G...

  3. Effect of Viscoelasticity on Adhesion of Bioinspired Micropatterned Epoxy Surfaces

    NARCIS (Netherlands)

    Castellanos, G.; Arzt, E.; Kamperman, M.M.G.

    2011-01-01

    The effect of viscoelasticity on adhesion was investigated for micropatterned epoxy surfaces and compared to nonpatterned surfaces. A two-component epoxy system was used to produce epoxy compositions with different viscoelastic properties. Pillar arrays with flat punch tip geometries were fabricated

  4. On the Abaqus FEA model of finite viscoelasticity

    OpenAIRE

    Ciambella, Jacopo; Destrade, Michel; Ogden, Ray W.

    2013-01-01

    Predictions of the QLV (Quasi-Linear Viscoelastic) constitutive law are compared with those of the ABAQUS viscoelastic model for two simple motions in order to highlight, in particular, their very different dissipation rates and certain shortcomings of the ABAQUS model.

  5. Noise reduction of rotating machinery by viscoelastic bearing supports.

    NARCIS (Netherlands)

    Tillema, H.G.

    2003-01-01

    The demand for silent rolling bearing applications, such as electric motors and gearboxes, has resulted in an investigation of viscoelastic bearing supports. By placing a thin viscoelastic layer between the bearing outer ring and the surrounding structure, vibrations of the shaft-bearing arrangement

  6. Reflection of plane micropolar viscoelastic waves at a loosely ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. A solution of the field equations governing small motions of a micropolar viscoelastic solid half-space is employed to study the reflection and transmission of plane waves at a loosely bonded interface between two dissimilar micropolar viscoelastic solid half-spaces. The amplitude ratios for various reflected.

  7. Continuum mechanics elasticity, plasticity, viscoelasticity

    CERN Document Server

    Dill, Ellis H

    2006-01-01

    FUNDAMENTALS OF CONTINUUM MECHANICSMaterial ModelsClassical Space-TimeMaterial BodiesStrainRate of StrainCurvilinear Coordinate SystemsConservation of MassBalance of MomentumBalance of EnergyConstitutive EquationsThermodynamic DissipationObjectivity: Invariance for Rigid MotionsColeman-Mizel ModelFluid MechanicsProblems for Chapter 1BibliographyNONLINEAR ELASTICITYThermoelasticityMaterial SymmetriesIsotropic MaterialsIncompressible MaterialsConjugate Measures of Stress and StrainSome Symmetry GroupsRate Formulations for Elastic MaterialsEnergy PrinciplesGeometry of Small DeformationsLinear ElasticitySpecial Constitutive Models for Isotropic MaterialsMechanical Restrictions on the Constitutive RelationsProblems for Chapter 2BibliographyLINEAR ELASTICITYBasic EquationsPlane StrainPlane StressProperties of SolutionsPotential EnergySpecial Matrix NotationThe Finite Element Method of SolutionGeneral Equations for an Assembly of ElementsFinite Element Analysis for Large DeformationsProblems for Chapter 3Bibliograph...

  8. Interfacial Dynamics of Thin Viscoelastic Films and Drops

    CERN Document Server

    Barra, Valeria; Kondic, Lou

    2016-01-01

    We present a computational investigation of thin viscoelastic films and drops on a solid substrate subject to the van der Waals interaction force. The governing equations are obtained within a long-wave approximation of the Navier-Stokes equations with Jeffreys model for viscoelastic stresses. We investigate the effects of viscoelasticity, Newtonian viscosity, and the substrate slippage on the dynamics of thin viscoelastic films. We also study the effects of viscoelasticity on drops that spread or recede on a prewetted substrate. For dewetting films, the numerical results show the presence of multiple secondary droplets for higher values of elasticity, consistently with experimental findings. For drops, we find that elastic effects lead to deviations from the Cox-Voinov law for partially wetting fluids. In general, elastic effects enhance spreading, and suppress retraction, compared to Newtonian ones.

  9. Effects of viscoelasticity in the high Reynolds number cylinder wake

    KAUST Repository

    Richter, David

    2012-01-16

    At Re = 3900, Newtonian flow past a circular cylinder exhibits a wake and detached shear layers which have transitioned to turbulence. It is the goal of the present study to investigate the effects which viscoelasticity has on this state and to identify the mechanisms responsible for wake stabilization. It is found through numerical simulations (employing the FENE-P rheological model) that viscoelasticity greatly reduces the amount of turbulence in the wake, reverting it back to a state which qualitatively appears similar to the Newtonian mode B instability which occurs at lower Re. By focusing on the separated shear layers, it is found that viscoelasticity suppresses the formation of the Kelvin-Helmholtz instability which dominates for Newtonian flows, consistent with previous studies of viscoelastic free shear layers. Through this shear layer stabilization, the viscoelastic far wake is then subject to the same instability mechanisms which dominate for Newtonian flows, but at far lower Reynolds numbers. © Copyright Cambridge University Press 2012.

  10. Effect of Longitudinal Magnetic Field on Vibration Characteristics of Single-Walled Carbon Nanotubes in a Viscoelastic Medium

    Science.gov (United States)

    Zhang, D. P.; Lei, Y.; Shen, Z. B.

    2017-09-01

    The effect of longitudinal magnetic field on vibration response of a sing-walled carbon nanotube (SWCNT) embedded in viscoelastic medium is investigated. Based on nonlocal Euler-Bernoulli beam theory, Maxwell's relations, and Kelvin viscoelastic foundation model, the governing equations of motion for vibration analysis are established. The complex natural frequencies and corresponding mode shapes in closed form for the embedded SWCNT with arbitrary boundary conditions are obtained using transfer function method (TFM). The new analytical expressions for the complex natural frequencies are also derived for certain typical boundary conditions and Kelvin-Voigt model. Numerical results from the model are presented to show the effects of nonlocal parameter, viscoelastic parameter, boundary conditions, aspect ratio, and strength of the magnetic field on vibration characteristics for the embedded SWCNT in longitudinal magnetic field. The results demonstrate the efficiency of the proposed methods for vibration analysis of embedded SWCNTs under magnetic field.

  11. Effect of Longitudinal Magnetic Field on Vibration Characteristics of Single-Walled Carbon Nanotubes in a Viscoelastic Medium

    Science.gov (United States)

    Zhang, D. P.; Lei, Y.; Shen, Z. B.

    2017-12-01

    The effect of longitudinal magnetic field on vibration response of a sing-walled carbon nanotube (SWCNT) embedded in viscoelastic medium is investigated. Based on nonlocal Euler-Bernoulli beam theory, Maxwell's relations, and Kelvin viscoelastic foundation model, the governing equations of motion for vibration analysis are established. The complex natural frequencies and corresponding mode shapes in closed form for the embedded SWCNT with arbitrary boundary conditions are obtained using transfer function method (TFM). The new analytical expressions for the complex natural frequencies are also derived for certain typical boundary conditions and Kelvin-Voigt model. Numerical results from the model are presented to show the effects of nonlocal parameter, viscoelastic parameter, boundary conditions, aspect ratio, and strength of the magnetic field on vibration characteristics for the embedded SWCNT in longitudinal magnetic field. The results demonstrate the efficiency of the proposed methods for vibration analysis of embedded SWCNTs under magnetic field.

  12. Measurement of tissue viscoelasticity with ultrasound

    Science.gov (United States)

    Greenleaf, J. F.; Alizad, A.

    2017-02-01

    Tissue properties such as elasticity and viscosity have been shown to be related to such tissue conditions as contraction, edema, fibrosis, and fat content among others. Magnetic Resonance Elastography has shown outstanding ability to measure the elasticity and in some cases the viscosity of tissues, especially in the liver, providing the ability to stage fibrotic liver disease similarly to biopsy. We discuss ultrasound methods of measuring elasticity and viscosity in tissues. Many of these methods are becoming widely available in the extant ultrasound machines distributed throughout the world. Some of the methods to be discussed are in the developmental stage. The advantages of the ultrasound methods are that the imaging instruments are widely available and that many of the viscoelastic measurements can be made during a short addition to the normal ultrasound examination time. In addition, the measurements can be made by ultrasound repetitively and quickly allowing evaluation of dynamic physiologic function in circumstances such as muscle contraction or artery relaxation. Measurement of viscoelastic tissue mechanical properties will become a consistent part of clinical ultrasound examinations in our opinion.

  13. Creep and Viscoelastic Behaviour of Human Dentin

    Directory of Open Access Journals (Sweden)

    T.Jafarzadeh

    2004-03-01

    Full Text Available Statement of Problem: Biomechanics of the human dentition is inherently complex.Purpose: The aim of this study is to investigate, in vitro, the creep and the recovery of dentin under static uniaxial compressive stress conditions.Materials and Methods: Specimens of cylindrical morphology were prepared from recently extracted non-carious lower molar teeth, such that the average tubule orientation was axial. Slides of mid- coronal dentin (parallel surfaces, height 1.8 mm were sectionedwith a slow speed diamond saw and then cut into cylindrical discs. Specimens were stored at 4ºC for 24h to restabilize water content. Creep data were then measured by LVDT axially in water for periods of 2h load + 2h recovery on 4 separate groups (n=6: at two stresses (10 & 18 MPa and at two temperatures: 37 & 60ºC. Maximum creep strain, permanent set,strain recovery and initial compressive modulus were reported.Results: Compliance values were also calculated and slight non-linearity found at 60ºC.Two-way ANOVA was performed on results. Dentin exhibited a linear viscoelastic response under 'clinical' compressive stress levels , with a maximum strain ~ 1% and highrecoverability: permanent set<0.3%.Conclusion: This established a performance standard for viscoelastic stability of restorative biomaterials, replacing human dentin.

  14. Acoustic precursor wave propagation in viscoelastic media.

    Science.gov (United States)

    Zhu, Guangran Kevin; Mojahedi, Mohammad; Sarris, Costas D

    2014-03-01

    Precursor field theory has been developed to describe the dynamics of electromagnetic field evolution in causally attenuative and dispersive media. In Debye dielectrics, the so-called Brillouin precursor exhibits an algebraic attenuation rate that makes it an ideal pulse waveform for communication, sensing, and imaging applications. Inspired by these studies in the electromagnetic domain, the present paper explores the propagation of acoustic precursors in dispersive media, with emphasis on biological media. To this end, a recently proposed causal dispersive model is employed, based on its interpretation as the acoustic counterpart of the Cole¿Cole model for dielectrics. The model stems from the fractional stress¿strain relation, which is consistent with the empirically known frequency power-law attenuation in viscoelastic media. It is shown that viscoelastic media described by this model, including human blood, support the formation and propagation of Brillouin precursors. The amplitude of these precursors exhibits a sub-exponential attenuation rate as a function of distance, actually being proportional to z(-p), where z is the distance traveled within the medium and 0.5

  15. Coiling and Folding of Viscoelastic Jets

    Science.gov (United States)

    Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth

    2007-11-01

    The study of fluid jets impacting on a flat surface has industrial applications in many areas, including processing of foods and consumer goods, bottle filling, and polymer melt processing. Previous studies have focused primarily on purely viscous, Newtonian fluids, which exhibit a number of different dynamical regimes including dripping, steady jetting, folding, and steady coiling. Here we add another dimension to the problem by focusing on mobile (low viscosity) viscoelastic fluids, with the study of two wormlike-micellar fluids, a cetylpyridinum-salicylic acid salt (CPyCl/NaSal) solution, and an industrially relevant shampoo base. We investigate the effects of viscosity and elasticity on the dynamics of axi-symmetric jets. The viscoelasticity of the fluids is systematically controlled by varying the concentration of salt counterions. Experimental methods include shear and extensional rheology measurements to characterize the fluids, and high-speed digital video imaging. In addition to the regimes observed in purely viscous systems, we also find a novel regime in which the elastic jet buckles and folds on itself, and alternates between coiling and folding behavior. We suggest phase diagrams and scaling laws for the coiling and folding frequencies through a systematic exploration of the experimental parameter space (height of fall, imposed flow rate, elasticity of the solution).

  16. Numerical and experimental investigation of leaks in viscoelastic pressurized pipe flow

    Directory of Open Access Journals (Sweden)

    S. Meniconi

    2013-02-01

    Full Text Available This paper extends the analysis concerning the importance in numerical models of unsteady friction and viscoelasticity to transients in plastic pipes with an external flow due to a leak. In fact recently such a benchmarking analysis has been executed for the cases of a constant diameter pipe (Duan et al., 2010, a pipe with a partially closed in-line valve (Meniconi et al., 2012a, and a pipe with cross-section changes in series (Meniconi et al., 2012b. Tests are based on laboratory experiments carried out at the Water Engineering Laboratory (WEL of the University of Perugia, Italy, and the use of different numerical models. The results show that it is crucial to take into account the viscoelasticity to simulate the main characteristics of the examined transients.

  17. On nonlinear viscoelastic deformations: a reappraisal of Fung's quasi-linear viscoelastic model.

    Science.gov (United States)

    De Pascalis, Riccardo; Abrahams, I David; Parnell, William J

    2014-06-08

    This paper offers a reappraisal of Fung's model for quasi-linear viscoelasticity. It is shown that a number of negative features exhibited in other works, commonly attributed to the Fung approach, are merely a consequence of the way it has been applied. The approach outlined herein is shown to yield improved behaviour and offers a straightforward scheme for solving a wide range of models. Results from the new model are contrasted with those in the literature for the case of uniaxial elongation of a bar: for an imposed stretch of an incompressible bar and for an imposed load. In the latter case, a numerical solution to a Volterra integral equation is required to obtain the results. This is achieved by a high-order discretization scheme. Finally, the stretch of a compressible viscoelastic bar is determined for two distinct materials: Horgan-Murphy and Gent.

  18. Dispersion curves for a viscoelastic Timoshenko beam with fractional derivatives

    Science.gov (United States)

    Usuki, Tsuneo; Suzuki, Takahiro

    2012-01-01

    The Kramers-Kronig dispersion relation, often used as a viscoelastic constitutive law for polymeric materials, is based on purely mathematical properties of linearity, convergence of improper integrals, and causality; thus, it may also be valid as a viscoelastic constitutive law for general structural materials. Accordingly, the motion equation of a Timoshenko beam composed of conventional elastic structural materials is extended to one composed of viscoelastic materials. From the derived governing equation, a dispersive equation is derived for a viscoelastic Timoshenko beam. By plotting phase velocity curves and group velocity curves for a beam of solid circular cross-section composed of a viscoelastic material (polyvinyl chloride foam), the influence of the fractional order of viscoelasticity is examined. As a result, it is found that, in the high frequency range, only the first mode of a Timoshenko beam converged to the propagation velocity of the Rayleigh wave, which takes account of the fractional order of viscoelasticity. In addition, the phase velocity and the group velocity were found to increase as the fractional order approaches 0, and to decrease as the fractional order approaches 1. Furthermore, the rate of velocity change becomes greater as the fractional order approaches 0, and becomes smaller as the fractional order approaches 1.

  19. Linear and nonlinear viscoelastic arterial wall models: application on animals

    CERN Document Server

    Ghigo, Arthur; Armentano, Ricardo; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2016-01-01

    This work deals with the viscoelasticity of the arterial wall and its influence on the pulse waves. We describe the viscoelasticity by a non-linear Kelvin-Voigt model in which the coefficients are fitted using experimental time series of pressure and radius measured on a sheep's arterial network. We obtained a good agreement between the results of the nonlinear Kelvin-Voigt model and the experimental measurements. We found that the viscoelastic relaxation time-defined by the ratio between the viscoelastic coefficient and the Young's modulus-is nearly constant throughout the network. Therefore, as it is well known that smaller arteries are stiffer, the viscoelastic coefficient rises when approaching the peripheral sites to compensate the rise of the Young's modulus, resulting in a higher damping effect. We incorporated the fitted viscoelastic coefficients in a nonlinear 1D fluid model to compute the pulse waves in the network. The damping effect of viscoelasticity on the high frequency waves is clear especiall...

  20. Evolution of the Motion of a Viscoelastic Sphere in a Central Newtonian Field

    Science.gov (United States)

    Shatina, A. V.

    2001-05-01

    The evolution of translational-rotational motion of a viscoelastic sphere in a central Newtonian field is studied. By the method of separating motions and averaging in the generalized Andoyer-Delaunay variables, equations are derived that describe the evolution of motion. The analysis of the approximate equations obtained is performed. The condition of existence of a steady-state motion is found, and its stability is investigated using the equations in variations.

  1. Interrogating the viscoelastic properties of tissue using viscoelastic response (VISR) ultrasound

    Science.gov (United States)

    Selzo, Mallory Renee

    Affecting approximately 1 in 3,500 newborn males, Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic disorders in humans. Boys with DMD suffer progressive loss of muscle strength and function, leading to wheelchair dependence, cardiac and respiratory compromise, and death during young adulthood. There are currently no treatments that can halt or reverse the disease progression, and translating prospective treatments into clinical trials has been delayed by inadequate outcome measures. Current outcome measures, such as functional and muscle strength assessments, lack sensitivity to individual muscles, require subjective effort of the child, and are impacted by normal childhood growth and development. The goal of this research is to develop Viscoelastic Response (VisR) ultrasound which can be used to delineate compositional changes in muscle associated with DMD. In VisR, acoustic radiation force (ARF) is used to produce small, localized displacements within the muscle. Using conventional ultrasound to track the motion, the displacement response of the tissue can be evaluated against a mechanical model. In order to develop signal processing techniques and assess mechanical models, finite element method simulations are used to model the response of a viscoelastic material to ARF excitations. Results are then presented demonstrating VisR differentiation of viscoelastic changes with progressive dystrophic degeneration in a dog model of DMD. Finally, clinical feasibility of VisR imaging is demonstrated in two boys with DMD.

  2. Model for bubble pulsation in liquid between parallel viscoelastic layers

    Science.gov (United States)

    Hay, Todd A.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2012-01-01

    A model is presented for a pulsating spherical bubble positioned at a fixed location in a viscous, compressible liquid between parallel viscoelastic layers of finite thickness. The Green’s function for particle displacement is found and utilized to derive an expression for the radiation load imposed on the bubble by the layers. Although the radiation load is derived for linear harmonic motion it may be incorporated into an equation for the nonlinear radial dynamics of the bubble. This expression is valid if the strain magnitudes in the viscoelastic layer remain small. Dependence of bubble pulsation on the viscoelastic and geometric parameters of the layers is demonstrated through numerical simulations. PMID:22779461

  3. Numerical simulations of viscoelastic flows with free surfaces

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    We present a new methodology to simulate viscoelastic flows with free-surfaces. These simulations are motivated by the modelling of polymers manufacturing techniques, such as extrusion and injection moulding. One of the consequences of viscoelasticity is that polymeric materials have a “memory......” of their past deformations. This generates some numerical difficulties which are addressed with the log-conformation transformation. The main novelty of this work lies on the use of the volume-of-fluid method to track the free surfaces of the viscoelastic flows. We present some preliminary results of test case...... simulations where the different features of the model are tested independently....

  4. Active-passive calibration of optical tweezers in viscoelastic media

    DEFF Research Database (Denmark)

    Fischer, Mario; Richardson, Andrew C; S Reihani, S Nader

    2010-01-01

    In order to use optical tweezers as a force measuring tool inside a viscoelastic medium such as the cytoplasm of a living cell, it is crucial to perform an exact force calibration within the complex medium. This is a nontrivial task, as many of the physical characteristics of the medium and probe......, e.g., viscosity, elasticity, shape, and density, are often unknown. Here, we suggest how to calibrate single beam optical tweezers in a complex viscoelastic environment. At the same time, we determine viscoelastic characteristics such as friction retardation spectrum and elastic moduli of the medium...

  5. Viscoelastic creep elimination in dielectric elastomer actuation by preprogrammed voltage

    Science.gov (United States)

    Zhang, Junshi; Wang, Yanjie; McCoul, David; Pei, Qibing; Chen, Hualing

    2014-11-01

    Viscoelasticity causes a time-dependent deformation and lowers the response speed and energy conversion efficiency of VHB-based dielectric elastomers (DEs), thus seriously restricting a wide range of applications of this otherwise versatile soft smart material. The viscoelastic deformation of a prestretched VHB film in a circular actuator configuration is studied both theoretically and experimentally. By adjusting the applied voltage, viscoelastic creep can be dispelled and an invariable strain is obtained by simulation. Subsequently, an experiment was designed to validate the simulation and the results indicate that a constant strain can be achieved by preprogramming the applied actuation voltage.

  6. Thermal convection of viscoelastic shear-thinning fluids

    Science.gov (United States)

    Albaalbaki, Bashar; Khayat, Roger E.; Ahmed, Zahir U.

    2016-12-01

    The Rayleigh-Bénard convection for non-Newtonian fluids possessing both viscoelastic and shear-thinning behaviours is examined. The Phan-Thien-Tanner (PTT) constitutive equation is implemented to model the non-Newtonian character of the fluid. It is found that while the shear-thinning and viscoelastic effects could annihilate one another for the steady roll flow, presence of both behaviours restricts the roll stability limit significantly compared to the cases when the fluid is either inelastic shear-thinning or purely viscoelastic with constant viscosity.

  7. Viscoelastic response near the jamming transition

    Science.gov (United States)

    Tighe, Brian

    2011-03-01

    We use numerical and theoretical methods to investigate oscillatory rheology in soft sphere packings, which serve as a minimal model for foams, emulsions, and other complex fluids that undergo a jamming transition. Although the zero frequency (elastic) properties of jammed media are well documented, far less is known about their viscoelastic response. We demonstrate that the frequency-dependent storage and loss moduli display critical scaling with distance to the jamming point. This behavior is governed by a diverging time scale that separates quasistatic response from a critical regime in which viscous and elastic forces contribute equally to the stress. We provide scaling arguments for all of the relevant critical exponents. Supported by the Dutch Organization for Scientific Research.

  8. Generalized Fractional Derivative Anisotropic Viscoelastic Characterization

    Directory of Open Access Journals (Sweden)

    Harry H. Hilton

    2012-01-01

    Full Text Available Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.

  9. Viscoelastic frictionless contact problems with adhesion

    Directory of Open Access Journals (Sweden)

    Sofonea Mircea

    2006-01-01

    Full Text Available We consider two quasistatic frictionless contact problems for viscoelastic bodies with long memory. In the first problem the contact is modelled with Signorini's conditions and in the second one is modelled with normal compliance. In both problems the adhesion of the contact surfaces is taken into account and is modelled with a surface variable, the bonding field. We provide variational formulations for the mechanical problems and prove the existence of a unique weak solution to each model. The proofs are based on arguments of time-dependent variational inequalities, differential equations, and a fixed point theorem. Moreover, we prove that the solution of the Signorini contact problem can be obtained as the limit of the solutions of the contact problem with normal compliance as the stiffness coefficient of the foundation converges to infinity.

  10. Ratcheting in a nonlinear viscoelastic adhesive

    Science.gov (United States)

    Lemme, David; Smith, Lloyd

    2017-11-01

    Uniaxial time-dependent creep and cycled stress behavior of a standard and toughened film adhesive were studied experimentally. Both adhesives exhibited progressive accumulation of strain from an applied cycled stress. Creep tests were fit to a viscoelastic power law model at three different applied stresses which showed nonlinear response in both adhesives. A third order nonlinear power law model with a permanent strain component was used to describe the creep behavior of both adhesives and to predict creep recovery and the accumulation of strain due to cycled stress. Permanent strain was observed at high stress but only up to 3% of the maximum strain. Creep recovery was under predicted by the nonlinear model, while cycled stress showed less than 3% difference for the first cycle but then over predicted the response above 1000 cycles by 4-14% at high stress. The results demonstrate the complex response observed with structural adhesives, and the need for further analytical advancements to describe their behavior.

  11. Heart valve viscoelastic properties - a pilot study

    Directory of Open Access Journals (Sweden)

    Kochová P.

    2007-10-01

    Full Text Available The effects of cryopreservation on the biological tissue mechanics are still largely unknown. Generalized Maxwell model was applied to characterize quantitatively the viscoelastic behavior of sheep mitral heart valve tissue. Three different groups of specimens are supposed to be tested: fresh tissue specimens (control group, cryopreserved allografts from tissue bank and allografts already used as tissue replacements taken from the animals approximately one year after the surgery. Specific aim of this study is to determine whether or not the treatment used for storage in tissue bank influences significantly the mechanical properties and behavior of the tissue. At the moment, only the first group of specimens was examined. The methodology presented in this paper proved suitable to complete the study.

  12. Viscoelastic parameter identification of human brain tissue.

    Science.gov (United States)

    Budday, S; Sommer, G; Holzapfel, G A; Steinmann, P; Kuhl, E

    2017-10-01

    Understanding the constitutive behavior of the human brain is critical to interpret the physical environment during neurodevelopment, neurosurgery, and neurodegeneration. A wide variety of constitutive models has been proposed to characterize the brain at different temporal and spatial scales. Yet, their model parameters are typically calibrated with a single loading mode and fail to predict the behavior under arbitrary loading conditions. Here we used a finite viscoelastic Ogden model with six material parameters-an elastic stiffness, two viscoelastic stiffnesses, a nonlinearity parameter, and two viscous time constants-to model the characteristic nonlinearity, conditioning, hysteresis and tension-compression asymmetry of the human brain. We calibrated the model under shear, shear relaxation, compression, compression relaxation, and tension for four different regions of the human brain, the cortex, basal ganglia, corona radiata, and corpus callosum. Strikingly, unconditioned gray matter with 0.36kPa and white matter with 0.35kPa were equally stiff, whereas conditioned gray matter with 0.52kPa was three times stiffer than white matter with 0.18kPa. While both unconditioned viscous time constants were larger in gray than in white matter, both conditioned constants were smaller. These rheological differences suggest a different porosity between both tissues and explain-at least in part-the ongoing controversy between reported stiffness differences in gray and white matter. Our unconditioned and conditioned parameter sets are readily available for finite element simulations with commercial software packages that feature Ogden type models at finite deformations. As such, our results have direct implications on improving the accuracy of human brain simulations in health and disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Analytical, numerical, and experimental studies of viscoelastic effects on the performance of soft piezoelectric nanocomposites.

    Science.gov (United States)

    Li, Jing; Zhu, Zhiren; Fang, Lichen; Guo, Shu; Erturun, Ugur; Zhu, Zeyu; West, James E; Ghosh, Somnath; Kang, Sung Hoon

    2017-09-28

    Piezoelectric composite (p-NC) made of a polymeric matrix and piezoelectric nanoparticles with conductive additives is an attractive material for many applications. As the matrix of p-NC is made of viscoelastic materials, both elastic and viscous characteristics of the matrix are expected to contribute to the piezoelectric response of p-NC. However, there is limited understanding of how viscoelasticity influences the piezoelectric performance of p-NC. Here we combined analytical and numerical analyses with experimental studies to investigate effects of viscoelasticity on piezoelectric performance of p-NC. The viscoelastic properties of synthesized p-NCs were controlled by changing the ratio between monomer and cross-linker of the polymer matrix. We found good agreement between our analytical models and experimental results for both quasi-static and dynamic loadings. It is found that, under quasi-static loading conditions, the piezoelectric coefficients (d 33 ) of the specimen with the lowest Young's modulus (∼0.45 MPa at 5% strain) were ∼120 pC N -1 , while the one with the highest Young's modulus (∼1.3 MPa at 5% strain) were ∼62 pC N -1 . The results suggest that softer matrices enhance the energy harvesting performance because they can result in larger deformation for a given load. Moreover, from our theoretical analysis and experiments under dynamic loading conditions, we found the viscous modulus of a matrix is also important for piezoelectric performance. For instance, at 40 Hz and 50 Hz the storage moduli of the softest specimen were ∼0.625 MPa and ∼0.485 MPa, while the loss moduli were ∼0.108 MPa and ∼0.151 MPa, respectively. As piezocomposites with less viscous loss can transfer mechanical energy to piezoelectric particles more efficiently, the dynamic piezoelectric coefficient (d' 33 ) measured at 40 Hz (∼53 pC N -1 ) was larger than that at 50 Hz (∼47 pC N -1 ) though it has a larger storage modulus. As an application of our findings

  14. A New Method to Simulate Free Surface Flows for Viscoelastic Fluid

    Directory of Open Access Journals (Sweden)

    Yu Cao

    2015-01-01

    Full Text Available Free surface flows arise in a variety of engineering applications. To predict the dynamic characteristics of such problems, specific numerical methods are required to accurately capture the shape of free surface. This paper proposed a new method which combined the Arbitrary Lagrangian-Eulerian (ALE technique with the Finite Volume Method (FVM to simulate the time-dependent viscoelastic free surface flows. Based on an open source CFD toolbox called OpenFOAM, we designed an ALE-FVM free surface simulation platform. In the meantime, the die-swell flow had been investigated with our proposed platform to make a further analysis of free surface phenomenon. The results validated the correctness and effectiveness of the proposed method for free surface simulation in both Newtonian fluid and viscoelastic fluid.

  15. Viscoelastic characterization of an EPDM rubber and finite element simulation of its dry rolling friction

    Directory of Open Access Journals (Sweden)

    2008-03-01

    Full Text Available The viscoelastic properties of an ethylene/propylene/diene rubber (EPDM containing 30 parts per hundred parts rubber [phr] carbon black (CB were determined by dynamic mechanical thermal analysis (DMTA measurements. A 15-term Maxwell-model was created to describe the time-dependent material behavior of this rubber. The frictional behavior under dry rolling conditions was studied on a home-built rolling ball (steel-on-plate (rubber (RBOP test rig. Both normal and tangential forces were detected during the measurements. The rolling test was simulated with the MSC.Marc finite element (FE software using the evaluated viscoelastic material properties. Results of the experimental tests and of the simulation were compared and a good agreement was found between them.

  16. Elastic and viscoelastic properties of porcine subdermal fat using MRI and inverse FEA.

    Science.gov (United States)

    Sims, A M; Stait-Gardner, T; Fong, L; Morley, J W; Price, W S; Hoffman, M; Simmons, A; Schindhelm, K

    2010-12-01

    There is a scarcity of investigation into the mechanical properties of subdermal fat. Recently, progress has been made in the determination of subdermal stress and strain distributions. This requires accurate constitutive modelling and consideration of the subdermal tissues. This paper reports the results of a study to estimate non-linear elastic and viscoelastic properties of porcine subdermal fat using a simple constitutive model. High-resolution magnetic resonance imaging (MRI) was used to acquire a time series of coincident images during a confined indentation experiment. Inverse finite element analysis was used to estimate the material parameters. The Neo Hookean model was used to represent the elastic behaviour (μ = 0.53 ± 0.31 kPa), while a single-element Prony series was used to model the viscoelastic response (α = 0.39 ± 0.03, τ = 700 ± 255 s).

  17. Fluid-particle dynamics for passive tracers advected by a thermally fluctuating viscoelastic medium

    Science.gov (United States)

    Hohenegger, Christel; McKinley, Scott A.

    2017-07-01

    Many biological fluids, like mucus and cytoplasm, have prominent viscoelastic properties. As a consequence, immersed particles exhibit subdiffusive behavior, which is to say, the variance of the particle displacement grows sublinearly with time. In this work, we propose a viscoelastic generalization of the Landau-Lifschitz Navier-Stokes fluid model and investigate the properties of particles that are passively advected by such a medium. We exploit certain exact formulations that arise from the Gaussian nature of the fluid model and introduce analysis of memory in the fluid statistics, marking an important step toward capturing fluctuating hydrodynamics among subdiffusive particles. The proposed method is spectral, meshless and is based on the numerical evaluation of the covariance matrix associated with individual fluid modes. With this method, we probe a central hypothesis of passive microrheology, a field premised on the idea that the statistics of particle trajectories can reveal fundamental information about their surrounding fluid environment.

  18. Enabling large-scale viscoelastic calculations via neural network acceleration

    Science.gov (United States)

    DeVries, Phoebe M. R.; Thompson, T. Ben; Meade, Brendan J.

    2017-03-01

    One of the most significant challenges involved in efforts to understand the effects of repeated earthquake cycle activity is the computational costs of large-scale viscoelastic earthquake cycle models. Computationally intensive viscoelastic codes must be evaluated at thousands of times and locations, and as a result, studies tend to adopt a few fixed rheological structures and model geometries and examine the predicted time-dependent deformation over short (learn a computationally efficient representation of viscoelastic solutions, at any time, location, and for a large range of rheological structures, allows these calculations to be done quickly and reliably, with high spatial and temporal resolutions. We demonstrate that this machine learning approach accelerates viscoelastic calculations by more than 50,000%. This magnitude of acceleration will enable the modeling of geometrically complex faults over thousands of earthquake cycles across wider ranges of model parameters and at larger spatial and temporal scales than have been previously possible.

  19. Cyclic viscoelasticity and viscoplasticity of polypropylene/clay nanocomposites

    DEFF Research Database (Denmark)

    Drozdov, Aleksey; Christiansen, Jesper de Claville; Hog Lejre, Anne-Lise

    2012-01-01

    Observations are reported in tensile relaxation tests under stretching and retraction on poly-propylene/clay nanocomposites with various contents of filler. A two-phase constitutive model is developed in cyclic viscoelasticity and viscoplasticity of hybrid nanocomposites. Adjustable parameters...

  20. Experimental characterisation of a novel viscoelastic rectifier design

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Okkels, Fridolin; Szabo, Peter

    2012-01-01

    A planar microfluidic system with contractions and obstacles is characterized in terms of anisotropic flow resistance due to viscoelastic effects. The working mechanism is illustrated using streak photography, while the diodicity performance is quantified by pressure drop measurements. The point ...

  1. Influence of steady shear flow on dynamic viscoelastic properties of ...

    Indian Academy of Sciences (India)

    Unknown

    superposed flow condition on viscoelastic properties of LLDPE, Kevlar fibre reinforced LLDPE and hybrid of short glass fibre and Kev- lar fibre reinforced LLDPE. Parallel-plate rheometer was employed for these tests. Rheological parameters.

  2. Viscoelastic assessment of anal canal function using acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J

    2012-01-01

    Anal acoustic reflectometry is a new reproducible technique that allows a viscoelastic assessment of anal canal function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new reproducible technique that allows a viscoelastic assessment of anal canal function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, opening and closing elastance, and hysteresis....

  3. Quasi-Static Viscoelasticity Loading Measurements of an Aircraft Tire

    Science.gov (United States)

    Mason, Angela J.; Tanner, John A.; Johnson, Arthur R.

    1997-01-01

    Stair-step loading, cyclic loading, and long-term relaxation tests were performed on an aircraft tire to observe the quasi-static viscoelastic response of the tire. The data indicate that the tire continues to respond viscoelastically even after it has been softened by deformation. Load relaxation data from the stair-step test at the 15,000-lb loading was fit to a monotonically decreasing Prony series.

  4. Gelatin methacrylate-alginate hydrogel with tunable viscoelastic properties

    OpenAIRE

    Yong X. Chen; Brian Cain; Pranav Soman

    2017-01-01

    Although native extracellular matrix (ECM) is viscoelastic, synthetic biomaterials used in biomedical engineering to mimic ECM typically exhibit a purely elastic response when an external strain is applied. In an effort to truly understand how living cells interact with surrounding ECM matrix, new biomaterials with tunable viscoelastic properties continue to be developed. Here we report the synthesis and mechanical characterization of a gelatin methacrylate-alginate (Gel-Alg) composite hydrog...

  5. Simulation of transient viscoelastic flow with second order time integration

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1995-01-01

    The Lagrangian Integral Method (LIM) for the simulation of time-dependent flow of viscoelastic fluids is extended to second order accuracy in the time integration. The method is tested on the established sphere in a cylinder benchmark problem.......The Lagrangian Integral Method (LIM) for the simulation of time-dependent flow of viscoelastic fluids is extended to second order accuracy in the time integration. The method is tested on the established sphere in a cylinder benchmark problem....

  6. Elasto-inertial particle focusing under the viscoelastic flow of DNA solution in a square channel.

    Science.gov (United States)

    Kim, Bookun; Kim, Ju Min

    2016-03-01

    Particle focusing is an essential step in a wide range of applications such as cell counting and sorting. Recently, viscoelastic particle focusing, which exploits the spatially non-uniform viscoelastic properties of a polymer solution under Poiseuille flow, has attracted much attention because the particles are focused along the channel centerline without any external force. Lateral particle migration in polymer solutions in square channels has been studied due to its practical importance in lab-on-a-chip applications. However, there are still many questions about how the rheological properties of the medium alter the equilibrium particle positions and about the flow rate ranges for particle focusing. In this study, we investigated lateral particle migration in a viscoelastic flow of DNA solution in a square microchannel. The elastic property is relevant due to the long relaxation time of a DNA molecule, even when the DNA concentration is extremely low. Further, the shear viscosity of the solution is essentially constant irrespective of shear rate. Our current results demonstrate that the particles migrate toward the channel centerline and the four corners of a square channel in the dilute DNA solution when the inertia is negligible (elasticity-dominant flow). As the flow rate increases, the multiple equilibrium particle positions are reduced to a single file along the channel centerline, due to the elasto-inertial particle focusing mechanism. The current results support that elasto-inertial particle focusing mechanism is a universal phenomenon in a viscoelastic fluid with constant shear viscosity (Boger fluid). Also, the effective flow rate ranges for three-dimensional particle focusing in the DNA solution were significantly higher and wider than those for the previous synthetic polymer solution case, which facilitates high throughput analysis of particulate systems. In addition, we demonstrated that the DNA solution can be applied to focus a wide range of

  7. Resolving the viscoelasticity and anisotropy dependence of the mechanical properties of skin from a porcine model.

    Science.gov (United States)

    Wong, W L E; Joyce, T J; Goh, K L

    2016-04-01

    The mechanical response of skin to external loads is influenced by anisotropy and viscoelasticity of the tissue, but the underlying mechanisms remain unclear. Here, we report a study of the main effects of tissue orientation (TO, which is linked to anisotropy) and strain rate (SR, a measure of viscoelasticity), as well as the interaction effects between the two factors, on the tensile properties of skin from a porcine model. Tensile testing to rupture of porcine skin tissue was conducted to evaluate the sensitivity of the tissue modulus of elasticity (E) and fracture-related properties, namely maximum stress (σU) and strain (εU) at σU, to varying SR and TO. Specimens were excised from the abdominal skin in two orientations, namely parallel (P) and right angle (R) to the torso midline. Each TO was investigated at three SR levels, namely 0.007-0.015 s(-1) (low), 0.040 s(-1) (mid) and 0.065 s(-1) (high). Two-factor analysis of variance revealed that the respective parameters responded differently to varying SR and TO. Significant changes in the σU were observed with different TOs but not with SR. The εU decreased significantly with increasing SR, but no significant variation was observed for different TOs. Significant changes in E were observed with different TOs; E increased significantly with increasing SR. More importantly, the respective mechanical parameters were not significantly influenced by interactions between SR and TO. These findings suggest that the trends associated with the changes in the skin mechanical properties may be attributed partly to differences in the anisotropy and viscoelasticity but not through any interaction between viscoelasticity and anisotropy.

  8. Stability of thin emulsion film between two oil phases with a viscoelastic liquid-liquid interface.

    Science.gov (United States)

    Narsimhan, Ganesan

    2009-02-15

    The viscoelastic properties of adsorbed protein layer in food emulsions and foams are important in providing stability to such systems. Linear stability analysis for a protein stabilized aqueous film sandwiched between two semi-infinite oil phases with a viscoelastic liquid-liquid interface is presented. The interfacial dilatational and shear viscoelastic properties are described by Maxwell models. The aqueous film is found to be more stable for smaller values of dilatational (shear) relaxation times and larger values of interfacial dilatational (shear) viscosities. The asymptotic values of maximum growth coefficient for very large and very small values of interfacial dilatational (shear) viscosities were found to be independent of relaxation times and correspond to those for immobile and fully mobile liquid-liquid interfaces respectively. The aqueous film is shown to be more stable for larger viscosities of the oil phase with the maximum growth coefficient approaching zero as the ratio of viscosities of oil and aqueous phases approach very large values and an asymptotic value corresponding to that for a foam film for very small viscosity ratios.

  9. Influence Study of the Viscoelastic Fluids Features in Drag Reduction in Laminar Regime Flow in Pipeline

    Directory of Open Access Journals (Sweden)

    Vilalta Guillermo

    2016-01-01

    Full Text Available The drag reduction by polymer addition is wide interest in several areas. It has been shown that the polymer addition cushions the dissipative effects in turbulent flows. The main objective of this work is to establish a methodology for the numerical simulation of viscoelastic fluid through internal subroutines implemented in the Fluent code, via UDF. The validation of this methodology is made for the laminar flow regime case in pipeline. To describe the viscoelastic effect, it was used the Finitely Extensible Nonlinear Elastic model closing with Peterlin model. To taking in account the viscous effects 50≤Re≤2000 values were used. In addition, for the polymer concentration analysis it was used values which depend on the polymers molecular weight and the solution concentration that ranged from 0≤Cw≤20. The molecular elasticity and extensibility were maintained at constant values. The results showed that the addition of polymers regardless of their molecular weight in laminar flow regime causes no change in power dissipation. This result, which is consistent with the literature, is a significant advance in defining a credible and appropriate methodology to viscoelastic fluid flow study by UDF implementation of constituent models that characterize these fluids.

  10. Correlating Viscoelasticity with Metabolism in Single Cells using Atomic Force Microscopy

    Science.gov (United States)

    Caporizzo, Matthew; Roco, Charles; Coll-Ferrer, Carme; Eckmann, David; Composto, Russell

    2015-03-01

    Variable indentation-rate rheometric analysis by Laplace transform (VIRRAL), is developed to evaluate Dex-Gel drug carriers as biocompatible delivery agents. VIRRAL provides a general platform for the rapid characterization of the health of single cells by viscoelasticity to promote the self-consistent comparison between cells paramount to the development of early diagnosis and treatment of disease. By modelling the frequency dependence of elastic modulus, VIRRAL provides three metrics of cytoplasmic viscoelasticity: low frequency stiffness, high frequency stiffness, and a relaxation time. THP-1 cells are found to exhibit a frequency dependent elastic modulus consistent with the standard linear solid model of viscoelasticity. VIRRAL indicates that dextran-lysozyme drug carriers are biocompatible and deliver concentrated toxic material (rhodamine or silver nanoparticles) to the cytoplasm of THP-1 cells. The signature of cytotoxicity by rhodamine or silver exposure is a frequency independent 2-fold increase in elastic modulus and cytoplasmic viscosity while the cytoskeletal relaxation time remains unchanged independent of cytoplasmic stiffness. This is consistent with the known toxic mechanism of silver nanoparticles, where mitochondrial injury leads to ATP depletion and metabolic stress causes a decrease of mobility within cytoplasm. NSF DMR08-32802, NIH T32-HL007954, and ONR N000141410538.

  11. Viscoelastic properties of tablets from Osborne fractions, pentosans, flour and bread evaluated by creep tests

    Science.gov (United States)

    Escalante-Aburto, Anayansi; de Dios Figueroa-Cárdenas, Juan; Véles-Medina, José Juan; Ponce-García, Néstor; Hernández-Estrada, Zorba Josué; Rayas-Duarte, Patricia; Simsek, Senay

    2017-07-01

    Little attention has been given to the influence of non-gluten components on the viscoelastic properties of wheat flour dough, bread making process and their products. The aim of this study was to evaluate by creep tests the viscoelastic properties of tablets manufactured from Osborne solubility fractions (globulins, gliadins, glutenins, albumins and residue), pentosans, flour and bread. Hard and soft wheat cultivars were used to prepare the reconstituted tablets. Sintered tablets (except flour and bread) showed similar values to those obtained from the sum of the regression coefficients of the fractions. Gliadins and albumins accounted for about 54% of the total elasticity. Gliadins contributed with almost half of the total viscosity (45.7%), and showed the highest value for the viscosity coefficient of the viscous element. When the effect of dilution was evaluated, the residue showed the highest instantaneous elastic modulus (788.2 MPa). Retardation times of the first element (λ1 3.5 s) were about 10 times lower than the second element (λ2 39.3 s). The analysis of compliance of data corrected by protein content in flour showed that the residue fraction presented the highest values. An important contribution of non-gluten components (starch, albumins and globulins) on the viscoelastic performance of sintered tablets from Osborne fractions, flour and bread was found.

  12. CRITICAL VELOCITY OF CONTROLLABILITY OF SLIDING FRICTION BY NORMAL OSCILLATIONS IN VISCOELASTIC CONTACTS

    Directory of Open Access Journals (Sweden)

    Mikhail Popov

    2016-12-01

    Full Text Available Sliding friction can be reduced substantially by applying ultrasonic vibration in the sliding plane or in the normal direction. This effect is well known and used in many applications ranging from press forming to ultrasonic actuators. One of the characteristics of the phenomenon is that, at a given frequency and amplitude of oscillation, the observed friction reduction diminishes with increasing sliding velocity. Beyond a certain critical sliding velocity, there is no longer any difference between the coefficients of friction with or without vibration. This critical velocity depends on material and kinematic parameters and is a key characteristic that must be accounted for by any theory of influence of vibration on friction. Recently, the critical sliding velocity has been interpreted as the transition point from periodic stick-slip to pure sliding and was calculated for purely elastic contacts under uniform sliding with periodic normal loading. Here we perform a similar analysis of the critical velocity in viscoelastic contacts using a Kelvin material to describe viscoelasticity. A closed-form solution is presented, which contains previously reported results as special cases. This paves the way for more detailed studies of active control of friction in viscoelastic systems, a previously neglected topic with possible applications in elastomer technology and in medicine.

  13. Electrokinetic energy conversion efficiency of viscoelastic fluids in a polyelectrolyte-grafted nanochannel.

    Science.gov (United States)

    Jian, Yongjun; Li, Fengqin; Liu, Yongbo; Chang, Long; Liu, Quansheng; Yang, Liangui

    2017-08-01

    In order to conduct extensive investigation of energy harvesting capabilities of nanofluidic devices, we provide analytical solutions for streaming potential and electrokinetic energy conversion (EKEC) efficiency through taking the combined consequences of soft nanochannel, a rigid nanochannel whose surface is covered by charged polyelectrolyte layer, and viscoelastic rheology into account. The viscoelasticity of the fluid is considered by employing the Maxwell constitutive model when the forcing frequency of an oscillatory driving pressure flow matches with the inverse of the relaxation time scale of a typical viscoelastic fluid. We compare the streaming potential and EKEC efficiency with those of a rigid nanochannel, having zeta potential equal to the electrostatic potential at the solid-polyelectrolyte interface of the soft nanochannels. Within the present selected parameter ranges, it is shown that the different peaks of maximal streaming potential and EKEC efficiency for the rigid nanochannel are larger than those for the soft nanochannel when forcing frequencies of the driving pressure gradient are close to resonating frequencies. However, more enhanced streaming potential and EKEC efficiency for a soft nanochannel can be found in most of the regions away from these resonant frequencies. Moreover, the influence of several dimensionless parameters on EKEC efficiency is discussed in detail. Finally, within the given parametric regions, the maximum efficiency at some resonant frequency obtained in present analysis is about 25%. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Viscoelasticity and structure of polystyrene/fumed silica nanocomposites: filler network and hydrodynamic contributions.

    Science.gov (United States)

    Filippone, Giovanni; Romeo, Giovanni; Acierno, Domenico

    2010-02-16

    We investigate the relationships between structure and linear viscoelasticity of a model polymer nanocomposite system based on a mixture of fumed silica nanoparticles and polystyrene. Alterations in the viscoelastic behavior are attributed to the structuring of primary silica aggregates. Above a critical filler volume fraction, a space-filling network builds up as the result of cluster aggregation, and the complex frequency-dependence of the moduli is simplified by splitting the viscoelasticity of the composites into the independent responses of the suspending polymer melt and the filler network. Specifically, we present a refinement of a two-component model recently proposed for attractive colloidal suspensions, in which hydrodynamic effects related to the presence of the filler are properly taken into account using the concept of shear stress equivalent deformation. Our approach, validated through the building of a master curve of the elastic modulus for samples of different composition, allows the estimation of the elasticity of samples in which the filler network is too tenuous to be appreciated through a simple frequency scan. In addition, the structure of the filler network is studied using both the percolation and fractal approaches, and the reliability of the critical parameters is discussed. We expect that our analysis may be useful for understanding the behavior of a wide variety of complex fluids where the elasticity of the components may be superimposed.

  15. Growth of viscoelastic wings and the reduction of particle mobility in a viscoelastic shear flow

    Science.gov (United States)

    Murch, William L.; Krishnan, Sreenath; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2017-10-01

    The motion of a rigid spherical particle in a sheared polymeric fluid is studied via experiments and numerical simulations. We study particle mobility in highly elastic fluids, where the deformation due to the sphere's movement and the shear flow both result in significant stretching of the polymer. The shear flow is imposed in a plane perpendicular to the sphere's movement, resulting in regions of high polymer tension in the wake of the sphere that can extend well into the shear flow and gradient directions. We observe that these viscoelastic wake structures, resembling wings, are linked to an increase in the form drag, providing a mechanism for a dramatic decrease in the particle mobility.

  16. Radially Symmetric Motions of Nonlinearly Viscoelastic Bodies Under Live Loads

    Science.gov (United States)

    Stepanov, Alexey B.; Antman, Stuart S.

    2017-12-01

    This paper treats radially symmetric motions of nonlinearly viscoelastic circular-cylindrical and spherical shells subjected to the live loads of centrifugal force and (time-dependent) hydrostatic pressures. The governing equations are exact versions of those for 3-dimensional continuum mechanics (so shell does not connote an approximate via some shell theory). These motions are governed by quasilinear third-order parabolic-hyperbolic equations having but one independent spatial variable. The principal part of such a partial differential equation is determined by a general family of nonlinear constitutive equations. The presence of strains in two orthogonal directions requires a careful treatment of constitutive restrictions that are physically natural and support the analysis. The interaction of geometrically exact formulations, the compatible use of general constitutive equations for material response, and the presence of live loads show how these factors play crucial roles in the behavior of solutions. In particular, for different kinds of live loads there are thresholds separating materials that produce qualitatively different dynamical behavior. The analysis (using classical methods) covers infinite-time blowup for cylindrical shells subject to centrifugal forces, infinite-time blowup for cylindrical shells subject to steady and time-dependent hydrostatic pressures, finite-time blowup for spherical shells subject to steady and time-dependent hydrostatic pressures, and the preclusion of total compression. This paper concludes with a sketch (using some modern methods) of the existence of regular solutions until the time of blowup.

  17. Numerical study of viscoelastic polymer flow in simplified pore structures using stabilised finite element model

    Energy Technology Data Exchange (ETDEWEB)

    Qi, M.; Wegner, J.; Ganzer, L. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Polymer flooding, as an EOR method, has become one of the most important driving forces after water flooding. The conventional believe is that polymer flooding can only improve sweep efficiency, but it has no contribution to residual oil saturation reduction. However, experimental studies indicated that polymer solution can also improve displacement efficiency and decrease residual oil saturation. To get a better understanding of the mechanism to increase the microscopic sweep efficiency and the displacement efficiency, theoretical studies are required. In this paper, we studied the viscoelasticity effect of polymer by using a numerical simulator, which is based on Finite Element Analysis. Since it is showed experimentally that the first normal stress difference of viscoelastic polymer solution is higher than the second stress difference, the Oldroyd-B model was selected as the constitutive equation in the simulation. Numerical modelling of Oldroyd-B viscoelastic fluids is notoriously difficult. Standard Galerkin finite element methods are prone to numerical oscillations, and there is no convergence as the elasticity of fluid increases. Therefore, we use a stabilised finite element model. In order to verify our model, we first built up a model with the same geometry and fluid properties as presented in literature and compared the results. Then, with the tested model we simulated the effect of viscoelastic polymer fluid on dead pores in three simplified pore structures, which are contraction structure, expansion structure and expansion-contraction structure. Correspondingly, the streamlines and velocity contours of polymer solution, with different Reynolds numbers (Re) and Weissenberg numbers (We), flowing in these three structures are showed. The simulation results indicate that the viscoelasticity of polymer solution is the main contribution to increase the micro-scale sweep efficiency. With higher elasticity, the velocity of polymer solution is getting bigger at

  18. Nonlinear viscoelastic properties of tissue assessed by ultrasound.

    Science.gov (United States)

    Sinkus, Ralph; Bercoff, Jeremy; Tanter, Mickaël; Gennisson, Jean-Luc; El-Khoury, Carl; Servois, Vincent; Tardivon, Anne; Fink, Mathias

    2006-11-01

    A technique to assess qualitatively the presence of higher-order viscoelastic parameters is presented. Low-frequency, monochromatic elastic waves are emitted into the material via an external vibrator. The resulting steady-state motion is detected in real time via an ultra fast ultrasound system using classical, one-dimensional (1-D) ultrasound speckle correlation for motion estimation. Total data acquisition lasts only for about 250 ms. The spectrum of the temporal displacement data at each image point is used for analysis. The presence of nonlinear effects is detected by inspection of the ratio of the second harmonics amplitude with respect to the total amplitude summed up to the second harmonic. Results from a polyacrylamide-based phantom indicate a linear response (i.e., the absence of higher harmonics) for this type of material at 65 Hz mechanical vibration frequency and about 100 microm amplitude. A lesion, artificially created by injection of glutaraldehyde into a beef specimen, shows the development of higher harmonics at the location of injection as a function of time. The presence of upper harmonics is clearly evident at the location of a malignant lesion within a mastectomy.

  19. Photomechanically coupled viscoelasticity of azobenzene polyimide polymer networks

    Science.gov (United States)

    Roberts, Dennice; Worden, Matt; Chowdhury, Sadiyah; Oates, William S.

    2017-07-01

    Polyimide-based azobenzene polymer networks have demonstrated superior photomechanical performance over more conventional azobenzene-doped pendent and cross-linked polyacrylate networks. These materials exhibit larger yield stress and glass transition temperatures and thus provide robustness for active control of adaptive structures directly with polarized, visible light. Whereas photochemical reactions clearly lead to deformation, as indicated by a rotation of a linear polarized light source, temperature and viscoelasticity can also influence deformation and complicate interpretation of the photostrictive and shape memory constitutive behavior. To better understand this behavior we develop a rate-dependent constitutive model and experimentally quantify the material behavior in these materials. The rate dependent deformation induced in these materials is quantified experimentally through photomechanical stress measurements and infrared camera measurements. Bayesian uncertainty analysis is used to assess the role of internal polymer network evolution and azobenzene excitation on both thermomechanical and photomechanical deformation in the presence polarized light of different orientations. A modified Arrhenius relation is proposed and validated using Bayesian statistics which provide connections between free volume, shape memory, and polarized light.

  20. Jeans Instability of the Self-Gravitating Viscoelastic Ferromagnetic Cylinder with Axial Nonuniform Rotation and Magnetic Field

    Science.gov (United States)

    Dhiman, Joginder Singh; Sharma, Rajni

    2017-12-01

    The effects of nonuniform rotation and magnetic field on the instability of a self gravitating infinitely extending axisymmetric cylinder of viscoelastic ferromagnetic medium have been studied using the Generalised Hydrodynamic (GH) model. The non-uniform magnetic field and rotation are acting along the axial direction of the cylinder and the propagation of the wave is considered along the radial direction, while the ferrofluid magnetization is taken collinear with the magnetic field. A general dispersion relation representing magnetization, magnetic permeability and viscoelastic relaxation time parameters is obtained using the normal mode analysis method in the linearized perturbation equation system. Jeans criteria which represent the onset of instability of self gravitating medium are obtained under the limits; when the medium behaves like a viscous liquid (strongly coupled limit) and a Newtonian liquid (weakly coupled limit). The effects of various parameters on the Jeans instability criteria and on the growth rate of self gravitating viscoelastic ferromagnetic medium have been discussed. It is found that the magnetic polarizability due to ferromagnetization of medium marginalizes the effect of non-uniform magnetic field on the Jeans instability, whereas the viscoelasticity of the medium has the usual stabilizing effect on the instability of the system. Further, it is found that the cylindrical geometry is more stable than the Cartesian one. The variation of growth rate against the wave number and radial distance has been depicted graphically.

  1. Nonlocal vibration and biaxial buckling of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.C. [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Zhang, Y.Q., E-mail: cyqzhang@zju.edu.cn [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Mechanical Structural Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Fan, L.F. [College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100084 (China)

    2017-04-11

    The general equation for transverse vibration of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between and each nanoplate subjected to in-plane edge loads is formulated on the basis of the Eringen's nonlocal elastic theory and the Kelvin model. The factors of the structural damping, medium damping, small size effect, loading ratio, and Winkler modulus and shear modulus of the medium are incorporated in the formulation. Based on the Navier's method, the analytical solutions for vibrational frequency and buckling load of the system with simply supported boundary conditions are obtained. The influences of these factors on vibrational frequency and buckling load of the system are discussed. It is demonstrated that the vibrational frequency of the system for the out-of-phase vibration is dependent upon the structural damping, small size effect and viscoelastic Pasternak medium, whereas the vibrational frequency for the in-phase vibration is independent of the viscoelastic Pasternak medium. While the buckling load of the system for the in-phase buckling case has nothing to do with the viscoelastic Pasternak medium, the buckling load for the out-of-phase case is related to the small size effect, loading ratio and Pasternak medium. - Highlights: • Vibration of double-viscoelastic-FGM-nanoplate system under in-plane edge loads is investigated. • Biaxial buckling of the system with simply supported boundary conditions is analyzed. • Explicit expression for the vibrational frequency and buckling load is obtained. • Impacts of viscoelastic Pasternak medium on vibrational frequency and buckling load are discussed. • Influences of structural damping, small size effect and loading ratio are also considered.

  2. Dynamics of a microorganism in a sheared viscoelastic liquid.

    Science.gov (United States)

    De Corato, Marco; D'Avino, Gaetano

    2016-12-21

    In this paper, we investigate the dynamics of a model spherical microorganism, called squirmer, suspended in a viscoelastic fluid undergoing unconfined shear flow. The effect of the interplay of shear flow, fluid viscoelasticity, and self-propulsion on the orientational dynamics is addressed. In the limit of weak viscoelasticity, quantified by the Deborah number, an analytical expression for the squirmer angular velocity is derived by means of the generalized reciprocity theorem. Direct finite element simulations are carried out to study the squirmer dynamics at larger Deborah numbers. Our results show that the orientational dynamics of active microorganisms in a sheared viscoelastic fluid greatly differs from that observed in Newtonian suspensions. Fluid viscoelasticity leads to a drift of the particle orientation vector towards the vorticity axis or the flow-gradient plane depending on the Deborah number, the relative weight between the self-propulsion velocity and the flow characteristic velocity, and the type of swimming. Generally, pullers and pushers show an opposite equilibrium orientation. The results reported in the present paper could be helpful in designing devices where separation of microorganisms, based on their self-propulsion mechanism, is obtained.

  3. Simulating Nonlinear Oscillations of Viscoelastically Damped Mechanical Systems

    Directory of Open Access Journals (Sweden)

    M. D. Monsia

    2014-12-01

    Full Text Available The aim of this work is to propose a mathematical model in terms of an exact analytical solution that may be used in numerical simulation and prediction of oscillatory dynamics of a one-dimensional viscoelastic system experiencing large deformations response. The model is represented with the use of a mechanical oscillator consisting of an inertial body attached to a nonlinear viscoelastic spring. As a result, a second-order first-degree Painlevé equation has been obtained as a law, governing the nonlinear oscillatory dynamics of the viscoelastic system. Analytical resolution of the evolution equation predicts the existence of three solutions and hence three damping modes of free vibration well known in dynamics of viscoelastically damped oscillating systems. Following the specific values of damping strength, over-damped, critically-damped and under-damped solutions have been obtained. It is observed that the rate of decay is not only governed by the damping degree but, also by the magnitude of the stiffness nonlinearity controlling parameter. Computational simulations demonstrated that numerical solutions match analytical results very well. It is found that the developed mathematical model includes a nonlinear extension of the classical damped linear harmonic oscillator and incorporates the Lambert nonlinear oscillatory equation with well-known solutions as special case. Finally, the three damped responses of the current mathematical model devoted for representing mechanical systems undergoing large deformations and viscoelastic behavior are found to be asymptotically stable.

  4. Modeling the viscoelastic function of asphalt concrete using a spectrum method

    Science.gov (United States)

    Mun, Sungho; Zi, Goangseup

    2010-05-01

    A continuous spectrum method is proposed and applied for modeling the time-domain viscoelastic function of asphalt concrete materials. This technique, employing a Wiechert model for the relaxation function and a Kelvin model for the compliance function, is found to substantially enhance accuracy and consistency compared to existing methods. Furthermore, this paper shows how to determine a time-domain Prony series representation, which can be used efficiently for numerical analysis, such as finite element analysis, from the complex modulus in the frequency domain, based on the continuous spectrum method.

  5. Viscoelasticity of Epoxy nano-composites

    Science.gov (United States)

    Ahuja, Suresh

    2013-03-01

    Nanocomposites have been modeled in a multiscale covering from molecular scale (e.g., molecular dynamics, Monte Carlo), microscale (e.g., Brownian dynamics, dissipative particle dynamics, lattice Boltzmann, time-dependent Ginzburg-Landau method, dynamic density functional theory method) to mesoscale and macroscale (e.g., micromechanics, equivalent-continuum and self-similar approaches, finite element method) The presence of layered silicates in nonaqueous polymers changes the viscoelastic behavior of the unfilled matrix from liquid-like to solid-like because of the formation of a three-dimensional percolating network of exfoliated or intercalated stacks. This gel-like behavior is a direct consequence of the highly anisotropic nature of the nanoclays which prevents their free rotation and the dissipation of stress. Particle to particle interactions is the dominant mechanism in fumed silica nanocomposites whereas particle to polymer interaction is the dominant one in colloidal silica nanocomposites at identical filler concentrations. These interactions are balanced in each nanocomposite systems by the silica surface treatments (chain grafting, silane modification) and the molecular weight of the matrix. Two different types of nanocomposite structures exist namely, intercalated nanocomposites where the polymer chains are sandwiched between silicate layers and exfoliated nanocomposites where the layers can be considered individually but remain more or less dispersed in the polymer matrix. Yield stress from Carreau-Yasuda model has been correlated to exfoliation. Also, equilibrium modulus and zero shear rate viscosity has been used to analyze percolation threshold and sol-gel transition. Nano clays organically functionalized were mixed with Epoxy in a high shear mixer.

  6. Microfluidic high viability neural cell separation using viscoelastically tuned hydrodynamic spreading

    DEFF Research Database (Denmark)

    Wu, Zhigang; Hjort, Klas; Wicher, Grzegorz

    2008-01-01

    A high viability microfluidic cell separation technique of high throughput was demonstrated based on size difference continuous mode hydrodynamic spreading with viscoelastic tuning. Using water with fluorescent dye as sample fluid and in parallel introducing as elution a viscoelastic biocompatible...

  7. Linear Viscoelastic Property Measurement and Its Significance for Some Nonlinear Viscoelasticity Models

    Science.gov (United States)

    Arzoumanidis, G. A.; Liechti, K. M.

    Three linear viscoelastic properties of an Ashland neat urethane adhesive were measured. Dynamic tensile compliance was found using a novel extensometer. The results were considerably more accurate and precise than standard DMTA testing. Dynamic shear compliance was determined using an Arcan specimen. Dynamic Poisson's ratio was extracted from strain gage data that was corrected to include gage reinforcement effects. Experiments spanned three frequency decades and isothermal data was shifted by time-temperature superposition to create master curves spanning thirty decades. Master curves were fit to Prony series that originated in the time domain. Dynamic shear compliance inferred from dynamic tensile compliance and dynamic Poisson's ratio compared well with measured values. This established the validity of the time temperature shifting and interconversion procedures that were developed for this isotropic material in its linear range. Dynamic tensile compliance and dynamic Poisson's ratio were then used to obtain the dynamic bulk compliance, which was in turn converted to the time domain along with the dynamic shear compliance. The shear and dynamic creep compliance functions thus obtained formed the basis of the nonlinear viscoelastic models. Two nonlinear viscoelastic models based on free volume considerations (modified to include distortional effects) were considered as constitutive models. One was based on the effect of the state of strain on the free volume through the Doolittle equation, while the other incorporated the effect of state of stress via the Tait equation. Ramp loading experiments conducted in tension and shear at strain rates spanning three decades were reasonably well predicted. Contrary to expectations based on previous work with less precise small strain data, the strain-based model proved to be more applicable than the stress-based one. This means that the shear modified free volume model of Popelar and Liechti (2003) has now been shown to be

  8. Uniform Decay for Solutions of an Axially Moving Viscoelastic Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kelleche, Abdelkarim, E-mail: kellecheabdelkarim@gmail.com [Université des Sciences et de la Technologie Houari Boumediene, Faculté des Mathématiques (Algeria); Tatar, Nasser-eddine, E-mail: tatarn@Kfupm.edu.sa [King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics (Saudi Arabia)

    2017-06-15

    The paper deals with an axially moving viscoelastic structure modeled as an Euler–Bernoulli beam. The aim is to suppress the transversal displacement (transversal vibrations) that occur during the axial motion of the beam. It is assumed that the beam is moving with a constant axial speed and it is subject to a nonlinear force at the right boundary. We prove that when the axial speed of the beam is smaller than a critical value, the dissipation produced by the viscoelastic material is sufficient to suppress the transversal vibrations. It is shown that the rate of decay of the energy depends on the kernel which arise in the viscoelastic term. We consider a general kernel and notice that solutions cannot decay faster than the kernel.

  9. Atomic force microscopy studies on cellular elastic and viscoelastic properties.

    Science.gov (United States)

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2017-06-29

    In this work, a method based on atomic force microscopy (AFM) approach-reside-retract experiments was established to simultaneously quantify the elastic and viscoelastic properties of single cells. First, the elastic and viscoelastic properties of normal breast cells and cancerous breast cells were measured, showing significant differences in Young's modulus and relaxation times between normal and cancerous breast cells. Remarkable differences in cellular topography between normal and cancerous breast cells were also revealed by AFM imaging. Next, the elastic and viscoelasitc properties of three other types of cell lines and primary normal B lymphocytes were measured; results demonstrated the potential of cellular viscoelastic properties in complementing cellular Young's modulus for discerning different states of cells. This research provides a novel way to quantify the mechanical properties of cells by AFM, which allows investigation of the biomechanical behaviors of single cells from multiple aspects.

  10. Gelatin methacrylate-alginate hydrogel with tunable viscoelastic properties

    Directory of Open Access Journals (Sweden)

    Yong X. Chen

    2017-02-01

    Full Text Available Although native extracellular matrix (ECM is viscoelastic, synthetic biomaterials used in biomedical engineering to mimic ECM typically exhibit a purely elastic response when an external strain is applied. In an effort to truly understand how living cells interact with surrounding ECM matrix, new biomaterials with tunable viscoelastic properties continue to be developed. Here we report the synthesis and mechanical characterization of a gelatin methacrylate-alginate (Gel-Alg composite hydrogel. Results obtained from creep and compressive tests reveal that the alginate component of Gel-Alg composite, can be effectively crosslinked, un-crosslinked and re-crosslinked by adding or chelating Ca2+ ions. This work demonstrates that Gel-Alg is capable of tuning its viscoelastic strain and elastic recovery properties, and can be potentially used to design ECM-mimicking hydrogels.

  11. Viscoelastic suppression of gravity-driven counterflow instability.

    Science.gov (United States)

    Beiersdorfer, P; Layne, D; Magee, E W; Katz, J I

    2011-02-04

    Attempts to achieve "top kill" of flowing oil wells by pumping dense drilling "muds," i.e., slurries of dense minerals, from above will fail if the Kelvin-Helmholtz instability in the gravity-driven counterflow produces turbulence that breaks up the denser fluid into small droplets. Here we estimate the droplet size to be submillimeter for fast flows and suggest the addition of a shear-thickening or viscoelastic polymer to suppress turbulence. We find in laboratory experiments a variety of new physical effects for a viscoelastic shear-thickening liquid in a gravity-driven counterstreaming flow. There is a progression from droplet formation to complete turbulence suppression at the relevant high velocities. Thick descending columns show a viscoelastic analogue of the viscous buckling instability. Thinner streams form structures resembling globules on a looping filament.

  12. On the modal diagonalization of viscoelastic mechanical systems

    Science.gov (United States)

    Mastroddi, F.; Eugeni, M.; Erba, F.

    2017-11-01

    In this paper the modal coupling of linear viscoelastic oscillators is discussed. In particular, it is demonstrated that in presence of space-homogeneous ideal hysteretic damping, namely, viscoelastic materials with loss factor constant as function of frequency, a set of coupled linear oscillators can be always decoupled by a real coordinate transformation. This result can be extended to the case of a not space-homogeneous ideal hysteretic damping if the modes of vibration of the system keep practically real. The proposed approach is applied to a linear Multi-Degree of Freedom system representing the Finite Element Model of an aeronautical structure.

  13. Relationship Between Structure and Viscoelastic Properties of Geosynthetics

    Directory of Open Access Journals (Sweden)

    Loginova Irina

    2016-01-01

    Full Text Available In this work, a study on viscoelastic properties of geosynthetic materials used in civil engineering is presented. Six samples of geofabrics and geogrids with different structures including woven geotextile fabric, nonwoven geotextile fabrics, warp-knitted geogrids and extruded geogrid were investigated. The tensile properties of geosynthetics including tensile strength, strain at maximum load and tensile load at specified strain have been determined. The creep and relaxation tests were carried out. The structure type was found to significantly affect the viscoelastic properties of the geosynthetics materials. In the article some results of numerous conducted tests are presented, analyzed and may be used to preselection of geosynthetics materials.

  14. Axial Dynamic Stiffness of Tubular Piles in Viscoelastic Soil

    DEFF Research Database (Denmark)

    Bayat, Mehdi; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2016-01-01

    Large offshore wind turbines are f0W1ded on jacket structures. In this study, an elastic full-space jacket structure foundation in an elastic and viscoelastic medium is investigated by using boundary integral equations. The jacket structure foundation is modeled as a hollow, long circular cylinde...

  15. Stagnation point flow and heat transfer for a viscoelastic fluid ...

    Indian Academy of Sciences (India)

    M REZA

    2017-11-09

    Nov 9, 2017 ... increasing lateral interface velocity. It is observed that lateral interface velocity increases with increasing viscoelastic parameter for fixed values of density and viscosity ratio of the two fluids. The convective heat transfer is investigated base on the similarity solutions for the temperature distribution of the two ...

  16. Jeans Instability of the Self-Gravitating Viscoelastic Ferromagnetic ...

    Indian Academy of Sciences (India)

    Joginder Singh Dhiman

    2017-11-27

    Nov 27, 2017 ... usual Jeans instability, they also observed that the sound waves suffer a new type of instability, which is due to the combined effects of the baryonic gas dynamics and self-gravitational field in both weakly and highly colli- sional regimes. Odenbach (2003) studied the magnetoviscous and viscoelastic effects ...

  17. Nonrigid Registration of Monomodal MRI Using Linear Viscoelastic Model

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2014-01-01

    Full Text Available This paper describes a method for nonrigid registration of monomodal MRI based on physical laws. The proposed method assumes that the properties of image deformations are like those of viscoelastic matter, which exhibits the properties of both an elastic solid and a viscous fluid. Therefore, the deformation fields of the deformed image are constrained by both sets of properties. After global registration, the local shape variations are assumed to have the properties of the Maxwell model of linear viscoelasticity, and the deformation fields are constrained by the corresponding partial differential equations. To speed up the registration, an adaptive force is introduced according to the maximum displacement of each iteration. Both synthetic datasets and real datasets are used to evaluate the proposed method. We compare the results of the linear viscoelastic model with those of the fluid model on the basis of both the standard and adaptive forces. The results demonstrate that the adaptive force increases in both models and that the linear viscoelastic model improves the registration accuracy.

  18. Folding, stowage, and deployment of viscoelastic tape springs

    DEFF Research Database (Denmark)

    Kwok, Kawai; Pellegrino, Sergio

    2013-01-01

    This paper presents an experimental and numerical study of the folding, stowage, and deployment behavior of viscoelastic tape springs. Experiments show that during folding the relationship between load and displacement is nonlinear and varies with rate and temperature. In particular, the limit an...

  19. Stagnation point flow and heat transfer for a viscoelastic fluid ...

    Indian Academy of Sciences (India)

    A theoretical study is made in the region near the stagnation point when a lighter incompressible viscoelastic fluids impinges orthogonally on the surface of another quiescent heavier incompressible viscous fluid. Similarity solutions of the momentum balance equations for both fluids are equalized at the interface. It isnoted ...

  20. Simulations of flow induced ordering in viscoelastic fluids

    NARCIS (Netherlands)

    Santos de Oliveira, I.S.

    2012-01-01

    In this thesis we report on simulations of colloidal ordering phenomena in shearthinning viscoelastic fluids under shear flow. Depending on the characteristics of the fluid, the colloids are observed to align in the direction of the flow. These string-like structures remain stable as long as the

  1. Viscoelastic performance of dielectric elastomer subject to different voltage stimulation

    Science.gov (United States)

    Sheng, Junjie; Zhang, Yuqing; Liu, Lei; Li, Bo; Chen, Hualing

    2017-04-01

    Dielectric elastomer (DE) is capable of giant deformation subject to an electric field, and demonstrates significant advantages in the potentially application of soft machines with muscle-like characteristics. Due to an inherent property of all macromolecular materials, DE exhibits strong viscoelastic properties. Viscoelasticity could cause a time-dependent deformation and lower the response speed and energy conversion efficiency of DE based actuators, thus strongly affect its electromechanical performance and applications. Combining with the rheological model of viscoelastic relaxation, the viscoelastic performance of a VHB membrane in a circular actuator configuration undergoing separately constant, ramp and sinusoidal voltages are analyzed both theoretically and experimentally. The theoretical results indicated that DE could attain a big deformation under a small constant voltage with a longer time or under a big voltage with a shorter time. The model also showed that a higher critical stretch could be achieved by applying ramping voltage with a lower rate and the stretch magnitude under sinusoidal voltage is much larger at a relatively low frequency. Finally, experiments were designed to validate the simulation and show well consistent with the simulation results.

  2. Quasi-static and dynamic response of viscoelastic helical rods

    Science.gov (United States)

    Temel, Beytullah; Fırat Çalim, Faruk; Tütüncü, Naki

    2004-04-01

    In this study, the dynamic behaviour of cylindrical helical rods made of linear viscoelastic materials are investigated in the Laplace domain. The governing equations for naturally twisted and curved spatial rods obtained using the Timoshenko beam theory are rewritten for cylindrical helical rods. The curvature of the rod axis, effect of rotary inertia, and shear and axial deformations are considered in the formulation. The material of the rod is assumed to be homogeneous, isotropic and linear viscoelastic. In the viscoelastic material case, according to the correspondence principle, the material constants are replaced with their complex counterparts in the Laplace domain. Ordinary differential equations in scalar form obtained in the Laplace domain are solved numerically using the complementary functions method to calculate the dynamic stiffness matrix of the problem. In the solutions, the Kelvin model is employed. The solutions obtained are transformed to the real space using the Durbin's numerical inverse Laplace transform method. Numerical results for quasi-static and dynamic response of viscoelastic models are presented in the form of graphics.

  3. Jeans Instability of the Self-Gravitating Viscoelastic Ferromagnetic ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 38; Issue 4. Jeans Instability of the Self-Gravitating Viscoelastic Ferromagnetic Cylinder with Axial Nonuniform Rotation and Magnetic Field. Joginder Singh Dhiman Rajni Sharma. Research Article Volume 38 Issue 4 December 2017 Article ID 64 ...

  4. Mechanistic Constitutive Models for Rubber Elasticity and Viscoelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Puso, M

    2003-01-21

    Physically based models which describe the finite strain behavior of vulcanized rubber are developed. Constitutive laws for elasticity and viscoelasticity are derived by integrating over orientation space the forces due to each individual polymer chain. A novel scheme is presented which effectively approximates these integrals in terms of strain and strain invariants. In addition, the details involving the implementation of such models into a quasi-static large strain finite element formulation are provided. In order to account for the finite extensibility of a molecular chain, Langevin statistics is used to model the chain response. The classical statistical model of rubber assumes that polymer chains interact only at the chemical crosslinks. It is shown that such model when fitted for uniaxial tension data cannot fit compression or equibiaxial data. A model which incorporates the entanglement interactions of surrounding chains, in addition to the finite extensibility of the chains, is shown to give better predictions than the classical model. The technique used for approximating the orientation space integral was applied to both the classical and entanglement models. A viscoelasticity model based on the force equilibration process as described by Doi and Edwards is developed. An assumed form for the transient force in the chain is postulated. The resulting stress tensor is composed of an elastic and a viscoelastic portion with the elastic stress given by the proposed entanglement model. In order to improve the simulation of experimental data, it was found necessary to include the effect of unattached or dangling polymer chains in the viscoelasticity model. The viscoelastic effect of such chains is the manifestation of a disengagement process. This disengagement model for unattached polymer chains motivated an empirical model which was very successful in simulating the experimental results considered.

  5. Linear viscoelasticity of emulsions : II. Measurements of the linear viscoelastic behavior of emulsions in the kilohertz range

    NARCIS (Netherlands)

    Oosterbroek, M.; Mellema, J.; Lopulissa, J.S.

    1981-01-01

    Linear viscoelasticity of emulsions in shear deformation in the kilohertz range is demonstrated experimentally. In order to avoid complications due to inertia effects, emulsions with small droplet sizes are studied. The preliminary measurements are interpreted as being the result of droplet

  6. Small strain vibration of a continuous, linearized viscoelastic rod of expanded polymer cushion material

    Science.gov (United States)

    Batt, Gregory S.; Gibert, James M.; Daqaq, Mohammed

    2015-08-01

    In this paper, the free and forced vibration response of a linearized, distributed-parameter model of a viscoelastic rod with an applied tip-mass is investigated. A nonlinear model is developed from constitutive relations and is linearized about a static equilibrium position for analysis. A classical Maxwell-Weichert model, represented via a Prony series, is used to model the viscoelastic system. The exact solution to both the free and forced vibration problem is derived and used to study the behavior of an idealized packaging system containing Nova Chemicals' Arcel® foam. It is observed that, although three Prony series terms are deemed sufficient to fit the static test data, convergence of the dynamic response and study of the storage and loss modulii necessitate the use of additional Prony series terms. It is also shown that the model is able to predict the modal frequencies and the primary resonance response at low acceleration excitation, both with reasonable accuracy given the non-homogeneity and density variation observed in the specimens. Higher acceleration inputs result in softening nonlinear responses highlighting the need for a nonlinear elastic model that extends beyond the scope of this work. Solution analysis and experimental data indicate little material vibration energy dissipation close to the first modal frequency of the mass/rod system.

  7. Wave propagation and induced steady streaming in viscous fluid contained in a prestressed viscoelastic tube

    Science.gov (United States)

    Ma, Ye; Ng, Chiu-On

    2009-05-01

    The oscillatory and time-mean motions induced by a propagating wave of small amplitude through a viscous incompressible fluid contained in a prestressed and viscoelastic (modeled as a Voigt material) tube are studied by a perturbation analysis based on equations of motion in the Lagrangian system. The classical problem of oscillatory viscous flow in a flexible tube is re-examined in the contexts of blood flow in arteries or pulmonary gas flow in airways. The wave kinematics and dynamics, including wavenumber, wave attenuation, velocity, and stress fields, are found as analytical functions of the wall and fluid properties, prestress, and the Womersley number for the cases of a free or tethered tube. On extending the analysis to the second order in terms of the small wave steepness, it is shown that the time-mean motion of the viscoelastic tube with sufficient strength is short lived and dies out quickly as a limit of finite deformation is approached. Once the tube has attained its steady deformation, the steady streaming in the fluid can be solved analytically. Results are generated to illustrate the combined effects on the first-order oscillatory flow and the second-order steady streaming due to elasticity, viscosity, and initial stresses of the wall. The present model as applied to blood flow in arteries and gas flow in pulmonary airways during high-frequency ventilation is examined in detail through comparison with models in the literature.

  8. Viscoelastic properties of bronchial mucus after respiratory physiotherapy in subjects with bronchiectasis.

    Science.gov (United States)

    Ramos, Ercy M C; Ramos, Dionei; Moreira, Graciane L; Macchione, Mariangela; Guimarães, Eliane T; Rodrigues, Fernanda Maria M; de Souza, Altay Alves Lino; Saldiva, Paulo H N; Jardim, José R

    2015-05-01

    Previous studies have evaluated the effectiveness of postural drainage (PD), percussion (PERC), the coughing technique (CT), and other types of coughing in subjects with bronchiectasis. However, the application times of these techniques and the quality of the expectorated mucus require further study. The aim of our study was to evaluate the effectiveness of PD, percussion, CT, and huffing in subjects with bronchiectasis and assess the quantity and quality of bronchial mucus produced (measurement of wet and dry weight and determination of viscoelastic properties). Twenty-two subjects with stable bronchiectasis (6 men; mean age: 51.5 y) underwent 4 d of experimental study (CT, PD+CT, PD+PERC+CT, and PD+huffing). The techniques were performed in 3 20-min periods separated by 10 min of rest. Before performing any technique (baseline) and after each period (30, 60, and 90 min), expectorated mucus was collected for analysis of viscoelasticity. A significant increase in the dry weight/wet weight ratio was found after 60 min of PD+PERC+CT (P = .01) and 90 min of PD+huffing (P = .03) and PD+PERC+CT (P = .007) in comparison with CT. PD+PERC+CT and PD+huffing led to the greatest removal of viscoelastic mucus at 60 min (P = .02 and P = .002, respectively) and continued to do so at 90 min (P = .02 and P = .01, respectively) in comparison with CT. An interaction effect was found, as all techniques led to a greater removal of elastic mucus in comparison with CT at 60 min (PD+CT, P = .001; PD+PERC+CT, P < .001; PD+huffing, P < .001), but only PD+PERC+CT and PD+huffing led to a greater removal of elastic mucus than CT at 90 min (P < .001 and P = .005, respectively). PD+PERC+CT and PD+huffing performed similarly regarding the removal of viscoelastic mucus in 2 and 3 20-min periods separated by 10 min of rest. PD+PERC+CT led to the greatest removal of mucus in the shortest period (2 20-min periods separated by 10 min of rest). Copyright © 2015 by Daedalus Enterprises.

  9. Evaluation of a Viscoelastic Ankle-Foot Prosthesis at Slow and Normal Walking Speeds on an Able-Bodied Subject

    Directory of Open Access Journals (Sweden)

    Zahra Safaeepour

    2015-12-01

    Full Text Available Objectives: This paper describes further improvement and preliminarily evaluation of a novel viscoelastic ankle-foot prosthesis prototype. The objective was to control the ankle hysteresis at slow and normal walking speeds. Methods: Inspired by the ankle biomechanics, in which the hysteresis differs based on the gait speeds, a manually damping control mechanism imbedded in the prosthesis for adjusting the ankle damping at slow and normal walking speeds. The prototype was then preliminarily tested on an able-bodied subject wearing an adaptor which simulates the amputee walking. The ankle joint kinetics and kinematics were measured in a gait analysis lab at different walking speeds. Results: The results suggest that the viscoelastic ankle foot prosthesis prototype could provide a smooth normal-like walking for most of the measured gait characteristics in slow and normal speeds. Discussion: Therefore, it is suggested to apply a controllable damping mechanism based on the gait speeds in the design of new prosthetic feet.

  10. Bacterial Chromosomal Loci Move Subdiffusively through a Viscoelastic Cytoplasm

    Science.gov (United States)

    Weber, Stephanie C.; Spakowitz, Andrew J.; Theriot, Julie A.

    2016-01-01

    Tracking of fluorescently labeled chromosomal loci in live bacterial cells reveals a robust scaling of the mean square displacement (MSD) as τ0.39. Brownian dynamics simulations show that this anomalous behavior cannot be fully accounted for by the classic Rouse or reptation models for polymer dynamics. Instead, the observed motion arises from the characteristic relaxation of the Rouse modes of the DNA polymer within the viscoelastic environment of the cytoplasm. To demonstrate these physical effects, we exploit our general analytical solution of the subdiffusive scaling for a monomer in a polymer embedded in a viscoelastic medium. The time-averaged and ensemble-averaged MSD of chromosomal loci exhibit ergodicity, and the velocity autocorrelation function is negative at short time lags. These observations are most consistent with fractional Brownian motion and rule out a continuous time random walk model as an explanation for anomalous motion in vivo. PMID:20867274

  11. A Galerkin least squares approach to viscoelastic flow.

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schunk, Peter Randall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    A Galerkin/least-squares stabilization technique is applied to a discrete Elastic Viscous Stress Splitting formulation of for viscoelastic flow. From this, a possible viscoelastic stabilization method is proposed. This method is tested with the flow of an Oldroyd-B fluid past a rigid cylinder, where it is found to produce inaccurate drag coefficients. Furthermore, it fails for relatively low Weissenberg number indicating it is not suited for use as a general algorithm. In addition, a decoupled approach is used as a way separating the constitutive equation from the rest of the system. A Pressure Poisson equation is used when the velocity and pressure are sought to be decoupled, but this fails to produce a solution when inflow/outflow boundaries are considered. However, a coupled pressure-velocity equation with a decoupled constitutive equation is successful for the flow past a rigid cylinder and seems to be suitable as a general-use algorithm.

  12. Shear measurements of viscoelastic damping materials embedded in composite plates

    Science.gov (United States)

    Biggerstaff, Janet M.; Kosmatka, John B.

    1999-06-01

    Embedding viscoelastic damping materials into graphite/epoxy composites can greatly increase the damping of composite structures. Cocuring the damping material with the composite, however, has been shown to increase the modulus and lower the damping in many viscoelastic materials because epoxy penetrates many damping materials (especially acrylics). In this paper, the changes in shear modulus were measured using double lap shear tests. Also presented are shear moduli comparisons of samples cured with three different barrier film layers, KaptonR, TedlarR,and polyester, which are used to prevent the epoxy penetration. Lastly, samples with an embedded loosely woven scrim cloth placed between two damping material layers are tested to measure how the scrim affects the shear modulus.

  13. Thin viscoelastic disc subjected to radial non-stationary loading

    Directory of Open Access Journals (Sweden)

    Adámek V.

    2010-07-01

    Full Text Available The investigation of non-stationary wave phenomena in isotropic viscoelastic solids using analytical approaches is the aim of this paper. Concretely, the problem of a thin homogeneous disc subjected to radial pressure load nonzero on the part of its rim is solved. The external excitation is described by the Heaviside function in time, so the nonstationary state of stress is induced in the disc. Dissipative material behaviour of solid studied is represented by the discrete material model of standard linear viscoelastic solid in the Zener configuration. After the derivation of motion equations final form, the method of integral transforms in combination with the Fourier method is used for finding the problem solution. The solving process results in the derivation of integral transforms of radial and circumferential displacement components. Finally, the type of derived functions singularities and possible methods for their inverse Laplace transform are mentioned.

  14. Deformation and buckling of microcapsules in a viscoelastic matrix

    Science.gov (United States)

    Raffiee, Amir Hossein; Dabiri, Sadegh; Ardekani, Arezoo M.

    2017-09-01

    In this paper, we numerically study the dynamics of (1) a Newtonian liquid-filled capsule in a viscoelastic matrix and that of (2) a viscoelastic capsule in a Newtonian matrix in a linear shear flow using a front-tracking method. The numerical results for case (1) indicate that the polymeric fluid reduces the capsule deformation and aligns the deformed capsule with the flow direction. It also narrows the range of tension experienced by the deformed capsule for case (1), while the tank-treading period significantly increases. Interestingly, the polymeric fluid has an opposite effect on the tank-treading period and the orientation angle of case (2), but its effect on the deformation is similar to case (1).

  15. A Numerical Model of Viscoelastic Flow in Microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Trebotich, D; Colella, P; Miller, G; Liepmann, D

    2002-11-14

    The authors present a numerical method to model non-Newtonian, viscoelastic flow at the microscale. The equations of motion are the incompressible Navier-Stokes equations coupled with the Oldroyd-B constitutive equation. This constitutive equation is chosen to model a Boger fluid which is representative of complex biological solutions exhibiting elastic behavior due to macromolecules in the solution (e.g., DNA solution). The numerical approach is a projection method to impose the incompressibility constraint and a Lax-Wendroff method to predict velocities and stresses while recovering both viscous and elastic limits. The method is second-order accurate in space and time, free-stream preserving, has a time step constraint determined by the advective CFL condition, and requires the solution of only well-behaved linear systems amenable to the use of fast iterative methods. They demonstrate the method for viscoelastic incompressible flow in simple microchannels (2D) and microducts (3D).

  16. Heterogeneous Viscoelasticity: A Combined Theory of Dynamic and Elastic Heterogeneity.

    Science.gov (United States)

    Schirmacher, Walter; Ruocco, Giancarlo; Mazzone, Valerio

    2015-07-03

    We present a heterogeneous version of Maxwell's theory of viscoelasticity based on the assumption of spatially fluctuating local viscoelastic coefficients. The model is solved in coherent-potential approximation. The theory predicts an Arrhenius-type temperature dependence of the viscosity in the vanishing-frequency limit, independent of the distribution of the activation energies. It is shown that this activation energy is generally different from that of a diffusing particle with the same barrier-height distribution, which explains the violation of the Stokes-Einstein relation observed frequently in glasses. At finite but low frequencies, the theory describes low-temperature asymmetric alpha relaxation. As examples, we report the good agreement obtained for selected inorganic, metallic, and organic glasses. At high frequencies, the theory reduces to heterogeneous elasticity theory, which explains the occurrence of the boson peak and related vibrational anomalies.

  17. Spatio-temporal dynamics of an active, polar, viscoelastic ring.

    Science.gov (United States)

    Marcq, Philippe

    2014-04-01

    Constitutive equations for a one-dimensional, active, polar, viscoelastic liquid are derived by treating the strain field as a slow hydrodynamic variable. Taking into account the couplings between strain and polarity allowed by symmetry, the hydrodynamics of an active, polar, viscoelastic body include an evolution equation for the polarity field that generalizes the damped Kuramoto-Sivashinsky equation. Beyond thresholds of the active coupling coefficients between the polarity and the stress or the strain rate, bifurcations of the homogeneous state lead first to stationary waves, then to propagating waves of the strain, stress and polarity fields. I argue that these results are relevant to living matter, and may explain rotating actomyosin rings in cells and mechanical waves in epithelial cell monolayers.

  18. Fractional order viscoelasticity in characterization for atrial tissue

    Science.gov (United States)

    Shen, Jing Jin; Li, Cheng Gang; Wu, Hong Tao; Kalantari, Masoud

    2013-05-01

    Atrial tissue due to its solid-like and fluid-like constituents shows highly viscoelastic properties. Up to now, the distribution pattern of muscle fiber in heart is not well established, and it is hard to establish the constitutive model for atrial tissue completely based on the microstructure level. Consider the equivalence between the fractional viscoelasticity and the fractal spring-dashpot model, a generalized fractional order Maxwell model is proposed to model the porcine atrial tissue in the phenomenological sense. This model has a simple expression and intuitively physical meanings. The constitutive parameters in the model are estimated in the complex domain by a genetic algorithm. Final results illustrate the proposed model gets a well agreement with the experimental data.

  19. Viscoelastic behavior of multiwalled carbon nanotubes into phenolic resin

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Edson Cocchieri; Costa, Michelle Leali; Braga, Carlos Isidoro, E-mail: ebotelho@feg.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil). Dept. de Materiais e Tecnologia; Burkhart, Thomas [Institut fuer Verbundwerkstoffe GmbH, Kaiserslautern, (Germany); Lauke, Bernd [Leibniz-Institut fuer Polymerforschung, Dresden (Germany)

    2013-11-01

    Nanostructured polymer composites have opened up new perspectives for multi-functional materials. In particular, carbon nanotubes (CNTs) have the potential applications in order to improve mechanical and electrical performance in composites with aerospace application. This study focuses on the viscoelastic evaluation of phenolic resin reinforced carbon nanotubes, processed by using two techniques: aqueous-surfactant solution and three roll calender (TRC) process. According to our results a relative small amount of CNTs in a phenolic resin matrix is capable of enhancing the viscoelastic properties significantly and to modify the thermal stability. Also has been observed that when is used TRC process, the incorporation and distribution of CNT into phenolic resin is more effective when compared with aqueous solution dispersion process. (author)

  20. Viscoelasticity and diffusional properties of colloidal model dispersions

    CERN Document Server

    Naegele, G

    2003-01-01

    We examine linear viscoelastic, and translational and rotational diffusion properties of colloidal model dispersions. Theoretical results are discussed, in comparison with experiments, for monodisperse suspensions of charged and neutral colloidal spheres, and for binary dispersions of differently sized tracer and host particles. The theoretical methods employed comprise a mode-coupling scheme for Brownian particles, and a rooted cluster expansion scheme of tracer diffusion with two- and three-body hydrodynamic interactions included. We analyse in particular the validity of various empirical generalized Stokes-Einstein-Debye (SED) relations between the (dynamic) shear viscosity and translational/rotational diffusion coefficients. Some of these generalized SED relations are basic to microrheological measurements aimed at characterizing the viscoelasticity of complex fluids on the basis of the diffusional properties of immersed tracer particles.

  1. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load.

    Science.gov (United States)

    Kocen, Rok; Gasik, Michael; Gantar, Ana; Novak, Saša

    2017-03-06

    Along with biocompatibility, bioinductivity and appropriate biodegradation, mechanical properties are also of crucial importance for tissue engineering scaffolds. Hydrogels, such as gellan gum (GG), are usually soft materials, which may benefit from the incorporation of inorganic particles, e.g. bioactive glass, not only due to the acquired bioactivity, but also due to improved mechanical properties. They exhibit complex viscoelastic properties, which can be evaluated in various ways. In this work, to reliably evaluate the effect of the bioactive glass (BAG) addition on viscoelastic properties of the composite hydrogel, we employed and compared the three most commonly used techniques, analyzing their advantages and limitations: monotonic uniaxial unconfined compression, small amplitude oscillatory shear (SAOS) rheology and dynamic mechanical analysis (DMA). Creep and small amplitude dynamic strain-controlled tests in DMA are suggested as the best ways for the characterization of mechanical properties of hydrogel composites, whereas the SAOS rheology is more useful for studying the hydrogel's processing kinetics, as it does not induce volumetric changes even at very high strains. Overall, the results confirmed a beneficial effect of BAG (nano)particles on the elastic modulus of the GG-BAG composite hydrogel. The Young's modulus of 6.6 ± 0.8 kPa for the GG hydrogel increased by two orders of magnitude after the addition of 2 wt.% BAG particles (500-800 kPa).

  2. Three-dimensional elasticity solution of layered plates with viscoelastic interlayers

    Science.gov (United States)

    Wu, Peng; Zhou, Ding; Liu, Weiqing; Lu, Weidong; Wan, Li

    2017-08-01

    An analytical solution for simply supported layered plates with viscoelastic interlayers under a transverse load is proposed. The deformation of each plate layer is described by the exact three-dimensional elasticity equations. The viscoelastic property of interlayer is simulated by the generalized Maxwell model. The constitutive relation of the interlayer is simplified by the quasi-elastic approximation, which significantly simplifies the analytical process. The solution of stress and displacement fields with undetermined coefficients is derived by solving a group of ordinary differential equations. The undetermined coefficients can be efficiently deduced by using the recursive matrix technique for the plate with any number of layers. The practical convergence is observed during numerical tests. The comparison analysis indicates that the present solution has a close agreement with the finite element solution. However, the solution based on the Mindlin-Reissner hypothesis is significantly different from the present solution for thick plates. Finally, the effect of interlayer thickness on stress and displacement distributions of a five-layer plate is discussed in detail.

  3. Finite element modeling of hyper-viscoelasticity of peripheral nerve ultrastructures.

    Science.gov (United States)

    Chang, Cheng-Tao; Chen, Yu-Hsing; Lin, Chou-Ching K; Ju, Ming-Shaung

    2015-07-16

    The mechanical characteristics of ultrastructures of rat sciatic nerves were investigated through animal experiments and finite element analyses. A custom-designed dynamic testing apparatus was used to conduct in vitro transverse compression experiments on the nerves. The optical coherence tomography (OCT) was utilized to record the cross-sectional images of nerve during the dynamic testing. Two-dimensional finite element models of the nerves were built based on their OCT images. A hyper-viscoelastic model was employed to describe the elastic and stress relaxation response of each ultrastructure of the nerve, namely the endoneurium, the perineurium and the epineurium. The first-order Ogden model was employed to describe the elasticity of each ultrastructure and a generalized Maxwell model for the relaxation. The inverse finite element analysis was used to estimate the material parameters of the ultrastructures. The results show the instantaneous shear modulus of the ultrastructures in decreasing order is perineurium, endoneurium, and epineurium. The FE model combined with the first-order Ogden model and the second-order Prony series is good enough for describing the compress-and-hold response of the nerve ultrastructures. The integration of OCT and the nonlinear finite element modeling may be applicable to study the viscoelasticity of peripheral nerve down to the ultrastructural level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Numerical tackling for viscoelastic fluid flow in rotating frame considering homogeneous-heterogeneous reactions

    Directory of Open Access Journals (Sweden)

    Najwa Maqsood

    Full Text Available This study provides a numerical treatment for rotating flow of viscoelastic (Maxwell fluid bounded by a linearly deforming elastic surface. Mass transfer analysis is carried out in the existence of homogeneous-heterogeneous reactions. By means of usual transformation, the governing equations are changed into global similarity equations which have been tackled by an expedient shooting approach. A contemporary numerical routine bvp4c of software MATLAB is also opted to develop numerical approximations. Both methods of solution are found in complete agreement in all the cases. Velocity and concentration profiles are computed and elucidated for certain range of viscoelastic fluid parameter. The solutions contain a rotation-strength parameter λ that has a considerable impact on the flow fields. For sufficiently large value of λ, the velocity fields are oscillatory decaying function of the non-dimensional vertical distance. Concentration distribution at the surface is found to decrease upon increasing the strengths of chemical reactions. A comparison of present computations is made with those of already published ones and such comparison appears convincing. Keywords: Maxwell fluid, Similarity solution, Numerical method, Chemical reaction, Stretching sheet

  5. Ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip

    Science.gov (United States)

    Mukherjee, Siddhartha; Goswami, Prakash; Dhar, Jayabrata; Dasgupta, Sunando; Chakraborty, Suman

    2017-07-01

    We report a study on the ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip. Here, we derive an analytical solution for the potential distribution in a parallel plate microchannel, where the effects of finite sized ionic species are taken into account by invoking the free energy formalism. Following this, a purely electroosmotic flow of a simplified Phan-Thien-Tanner (sPTT) fluid is considered. For the sPTT model, linear, quadratic, and exponential kernels are chosen for the stress coefficient function describing its viscoelastic nature across various ranges of Deborah number. The theoretical framework presented in our analysis has been successfully compared with experimental results available in the literature. We believe that the implications of the considered effects on the net volumetric throughput will not only provide a deeper theoretical insight to interpret the electrokinetic data in the presence of ionic species but also serve as a fundamental design tool for novel electrokinetically driven lab-on-a-chip biofluidic devices.

  6. Scaling of energy amplification in the weak and strong elastic limits of viscoelastic shear flows

    Science.gov (United States)

    Hameduddin, Ismail; Zaki, Tamer; Gayme, Dennice

    2015-11-01

    We investigate energy amplification in viscoelastic parallel shear flows in terms of the steady-state variance maintained in the velocity and polymer stresses when either quantity is excited with white noise. We derive analytical expressions that show how this amplification scales with both Reynolds (Re) and Weissenberg (Wi) numbers. The analysis focuses on the streamwise-constant fields in the limits of high and low elasticity. By introducing stochastic forcing in both the velocity and the polymer stress dynamics, we show that at low elasticity the scaling retains a form similar to the well-known O(Re3) relationship but with an added elastic correction. At high elasticity, however, the scaling is O(Wi3) with a viscous correction. Our results demonstrate that energy amplification in a viscoelastic flow can be considerable even at low Re, correlating well with recent observations of elastic turbulence in creeping flows. We also note that forcing in the polymer stress dynamics can contribute significantly to the energy amplification.

  7. Stability of plane Poiseuille flow of viscoelastic fluids in the presence of a transverse magnetic field

    Directory of Open Access Journals (Sweden)

    Hifdi Ahmed

    2012-07-01

    Full Text Available The linear stability of plan Poiseuille flow of an electrically conducting viscoelastic fluid in the presence of a transverse magnetic field is investigated numerically. The fourth-order Sommerfeld equation governing the stability analysis is solved by spectral method with expansions in lagrange’s polynomials, based on collocation points of Gauss-Lobatto. The critical values of Reynolds number, wave number and wave speed are computed. The results are shown through the neutral curve. The main purpose of this work is to check the combined effect of magnetic field and fluid’s elasticity on the stability of the plane Poiseuille flow. Based on the results obtained in this work, the magnetic field is predicted to have a stabilizing effect on the Poiseuille flow of viscoelastic fluids. Hence, it will be shown that for second-order fluids (K 0 is that the critical Reynolds numbers Rec increase when the Hartman number M increases for certain value of elasticity number K and decrease for others. The latter result is in contrast to previous studies.

  8. Application of viscoelastic continuum damage approach to predict fatigue performance of Binzhou perpetual pavements

    Directory of Open Access Journals (Sweden)

    Wei Cao

    2016-04-01

    Full Text Available For this study, the Binzhou perpetual pavement test sections constructed in Shandong Province, China, were simulated for long-term fatigue performance using the layered viscoelastic pavement analysis for critical distresses (LVECD finite element software package. In this framework, asphalt concrete was treated in the context of linear viscoelastic continuum damage theory. A recently developed unified fatigue failure criterion that defined the boundaries of the applicable region of the theory was also incorporated. The mechanistic modeling of the fatigue mechanisms was able to accommodate the complex temperature variations and loading conditions of the field pavements in a rigorous manner. All of the material models were conveniently characterized by dynamic modulus tests and direct tension cyclic fatigue tests in the laboratory using cylindrical specimens. By comparing the obtained damage characteristic curves and failure criteria, it is found that mixtures with small aggregate particle sizes, a dense gradation, and modified asphalt binder tended to exhibit the best fatigue resistance at the material level. The 15-year finite element structural simulation results for all the test sections indicate that fatigue performance has a strong dependence on the thickness of the asphalt pavements. Based on the predicted location and severity of the fatigue damage, it is recommended that Sections 1 and 3 of the Binzhou test sections be employed for perpetual pavement design.

  9. Nonlinear viscoelastic characterization of polymer materials using a dynamic-mechanical methodology

    Science.gov (United States)

    Strganac, Thomas W.; Payne, Debbie Flowers; Biskup, Bruce A.; Letton, Alan

    1995-01-01

    Polymer materials retrieved from LDEF exhibit nonlinear constitutive behavior; thus the authors present a method to characterize nonlinear viscoelastic behavior using measurements from dynamic (oscillatory) mechanical tests. Frequency-derived measurements are transformed into time-domain properties providing the capability to predict long term material performance without a lengthy experimentation program. Results are presented for thin-film high-performance polymer materials used in the fabrication of high-altitude scientific balloons. Predictions based upon a linear test and analysis approach are shown to deteriorate for moderate to high stress levels expected for extended applications. Tests verify that nonlinear viscoelastic response is induced by large stresses. Hence, an approach is developed in which the stress-dependent behavior is examined in a manner analogous to modeling temperature-dependent behavior with time-temperature correspondence and superposition principles. The development leads to time-stress correspondence and superposition of measurements obtained through dynamic mechanical tests. Predictions of material behavior using measurements based upon linear and nonlinear approaches are compared with experimental results obtained from traditional creep tests. Excellent agreement is shown for the nonlinear model.

  10. Modeling 3D viscoelastic secondary flows in extrusion

    Science.gov (United States)

    Holmes, Lori T.

    Two numerical techniques were successfully applied to capture viscoelastic flows and were used to model flows during extrusion. The Radial Functions Method (RFM) was implemented to simulate flow patterns in two dimensions (2D) and three dimensions (3D), and correctly predicts secondary flows in fully developed non-circular ducts [34]. Validation was completed to implement a newly developed viscoelastic solver supplied by Favero et al. [42]. Numerical simulations of 2D viscoelastic entry flows were performed using a Finite Volume Method (FVM) with a stress-splitting technique. A planar abrupt contraction was chosen as the test geometry and numerical results were compared with past experimental and other numerical simulation results using a Giesekus model. Limits of stability were inspected where Weissenberg numbers on the order of 240 were successfully simulated. The single and multi-mode Phan-Thien Tanner (PTT) shear-thinning models were then implemented to reproduce full 3D flows through a planar abrupt contraction. Results obtained within this work show excellent qualitative agreement with experimental observations made by Quinzani et al. [85] and simulation results of Azaiez et al. [6]. Comparison studies with work by other researchers, for both a 2D and 3D geometry with aspect ratios up to 10, were also found to be in agreement. As part of this work, viscoelastic secondary flows in a 3D non-circular duct were simulated using a FVM approach. Single and multi-mode Giesekus and linear-PTT models were implemented. Results are in agreement with experiments [38] as well as numerical results using RFM and FEM [112]. This is an important step toward modeling and simulating flow in an extruder channel. Exploratory FVM simulations were carried out beginning from an unwrapped screw channel to a full 3D single screw under isothermal conditions. The shear thinning characteristics of the Giesekus model were able to capture the polymer's relaxation time under high Weissenberg

  11. Rotational magnetic endosome microrheology: Viscoelastic architecture inside living cells

    Science.gov (United States)

    Wilhelm, C.; Gazeau, F.; Bacri, J.-C.

    2003-06-01

    The previously developed technique of magnetic rotational microrheology [Phys. Rev. E 67, 011504 (2003)] is proposed to investigate the rheological properties of the cell interior. An endogeneous magnetic probe is obtained inside living cells by labeling intracellular compartments with magnetic nanoparticles, following the endocytosis mechanism, the most general pathway used by eucaryotic cells to internalize substances from an extracellular medium. Primarily adsorbed on the plasma membrane, the magnetic nanoparticles are first internalized within submicronic membrane vesicles (100 nm diameter) to finally concentrate inside endocytotic intracellular compartments (0.6 μm diameter). These magnetic endosomes attract each other and form chains within the living cell when submitted to an external magnetic field. Here we demonstrate that these chains of magnetic endosomes are valuable tools to probe the intracellular dynamics at very local scales. The viscoelasticity of the chain microenvironment is quantified in terms of a viscosity η and a relaxation time τ by analyzing the rotational dynamics of each tested chain in response to a rotation of the external magnetic field. The viscosity η governs the long time flow of the medium surrounding the chains and the relaxation time τ reflects the proportion of solidlike versus liquidlike behavior (τ=η/G, where G is the high-frequency shear modulus). Measurements in HeLa cells show that the cell interior is a highly heterogeneous structure, with regions where chains are embedded inside a dense viscoelastic matrix and other domains where chains are surrounded by a less rigid viscoelastic material. When one compound of the cell cytoskeleton is disrupted (microfilaments or microtubules), the intracellular viscoelasticity becomes less heterogeneous and more fluidlike, in the sense of both a lower viscosity and a lower relaxation time.

  12. On the use of fractional derivatives for modeling nonlinear viscoelasticity

    OpenAIRE

    Haveroth, Thais Clara da Costa

    2015-01-01

    Among the wide range of structural polymers currently available in the market, this work is concerned particularly with high density polyethylene. The typical nonlinear viscoelastic behavior presented by this material is not trivial to model, and has already been investigated by many authors in the past. Aiming at a further contribution, this work proposes modeling this material behavior using an approach based on fractional derivatives. This formulation produces fractional constitutive eq...

  13. On a nonlinear viscoelastic model of Hunt-Crossley impact

    Science.gov (United States)

    Dyagel, R. V.; Lapshin, V. V.

    2011-10-01

    We consider a nonlinear viscoelastic model of the impact of a body on a stationary Hunt-Crossley obstacle. We obtain the first integral of the equation of motion and determine the coefficient of restitution, the kinetic energy lost at the impact, and their dependence on the impact velocity. We find the solution of the equation of motion of the body in terms of integrals by using the Lambert W-function and present the results of mathematical modeling.

  14. On Lamb and Rayleigh wave convergence in viscoelastic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Nenadic, Ivan Z; Urban, Matthew W; Aristizabal, Sara; Mitchell, Scott A; Humphrey, Tye C; Greenleaf, James F, E-mail: Nenadic.Ivan@mayo.edu [Department of Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905 (United States)

    2011-10-21

    Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40-500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.

  15. On Lamb and Rayleigh wave convergence in viscoelastic tissues

    Science.gov (United States)

    Nenadic, Ivan Z.; Urban, Matthew W.; Aristizabal, Sara; Mitchell, Scott A.; Humphrey, Tye C.; Greenleaf, James F.

    2011-10-01

    Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40-500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.

  16. A Comparison of Viscoelastic Properties of Three Root Canal Sealers

    Directory of Open Access Journals (Sweden)

    Malihe Pishvaei

    2013-01-01

    Full Text Available Objective: Handling of endodontic sealers is greatly dependent on their elasticity and flow ability. We compared the viscoelastic properties of three root canal sealers.Materials and Methods: AH Plus (Dentsply, De Trey, Konstanz, Germany, Endofill (Dentsply Hero, Petrópolis, Rio de Janeiro, Brazil and AH26 (Dentsply, De Trey, Konstanz, Germany were mixed according to the manufacturers' instructions. The resulted pastes were placed on the plate of a rheometer (MCR 300, Anton-Paar, Graz, Austria. The experiments were performed at 25˚C and 37˚C. Viscoelastic properties of the sealers including loss modulus (G", storage modulus (G´ and complex viscosity (η* were studied using dynamic oscillatory shear tests. The shear module versus frequency (from 0.01 to 100 S-1 curves were gained using frequency deformation sweep test. Three samples of each material were examined at each temperature. The mean of these three measurements were recorded.Results: The storage modulus of AH plus was higher than its loss modulus at two temperatures. Endofill exhibited a crossover region in which the storage modulus crosses the loss modulus in both temperatures. At 25ºC the loss modulus of AH26 was higher than the storage modulus (G">G¢. In contrast, at 37ºC G¢was greater than G² (G¢>G². Both shear modules of AH Plus and Endofill decreased as the temperature raised from 25ºC to 37ºC. On the contrary, the loss modulus and storage modulus of AH26 increased at 37ºC.Conclusion: In both test temperatures, AH Plus behaved like viscoelastic solids and Endofill exhibited a gel-like viscoelastic behavior. AH26 at 25ºC behaved like liquids, while at 37ºC it was an elastic solid-like material

  17. Chaotic gas bubble oscillations in a viscoelastic fluid

    Science.gov (United States)

    Jiménez-Fernández, Javier

    2008-05-01

    Regular and chaotic radial oscillations of an acoustically driven gas bubble in a viscoelastic fluid have been theoretically analyzed. For parameter values usually found in diagnostic ultrasound period-doubling routes to chaos have been identified. Thresholds values of the external pressure amplitude for a first bifurcation in terms of the elasticity and the shear viscosity of the host fluid have also been evaluated. To cite this article: J. Jiménez-Fernández, C. R. Mecanique 336 (2008).

  18. Global existence result for the generalized Peterlin viscoelastic model

    Czech Academy of Sciences Publication Activity Database

    Lukáčová-Medviďová, M.; Mizerová, H.; Nečasová, Šárka; Renardy, M.

    2017-01-01

    Roč. 49, č. 4 (2017), s. 2950-2964 ISSN 0036-1410 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Peterlin viscoelastic equations * global existence * weak solutions Subject RIV: BA - General Mathematics Impact factor: 1.648, year: 2016 http://epubs.siam.org/doi/abs/10.1137/16M1068505

  19. Damping performance of cocured composite laminates with embedded viscoelastic layers

    Science.gov (United States)

    Biggerstaff, Janet M.; Kosmatka, John B.

    1998-06-01

    Cocuring viscoelastic damping materials in composites has been shown to be successful in greatly increasing the damping of composite structures. The damping performance, however, is often not as high in cocured composites as in secondarily bonded composites, where the damping material does not undergo the cure process. The reason for the discrepancy in damping between the cocured and secondarily bonded samples was found to be resin penetration into the damping material. Samples with a barrier layer between the damping material and the epoxy resin had a 15.7% to 92.3% higher loss factor (depending on the frequency) than cocured FasTapeTM 1125 samples without the barrier and at least 168% higher loss factor than cocured ISD 112 samples without the barrier. These higher damping values are very close to the values achieved by secondarily bonding. Viscoelastic damping materials typically have maximum recommended temperatures below that of the composite cure cycles. The effect of cure temperature on viscoelastic damping materials was also studied and it was determined that most damping materials are marginally affected by cure cycle temperature.

  20. Effects of viscoelastic ophthalmic solutions on cell cultures

    Directory of Open Access Journals (Sweden)

    Madhavan Hajib

    1998-01-01

    Full Text Available The development of mild but significant inflammation probably attributable to viscoelastic ophthalmic solutions in cataract surgery was recently brought to the notice of the authors, and hence a study of the effects of these solutions available in India, on cell cultures was undertaken. We studied the effects of 6 viscoelastic ophthalmic solutions (2 sodium hyaluronate designated as A and B, and 4 hydroxypropylmethylcellulose designated as C, D, E and F on HeLa, Vero and BHK-21 cell lines in tissue culture microtitre plates using undiluted, 1:10 and 1:100 dilutions of the solutions, and in cover slip cultures using undiluted solutions. Phase contrast microscopic examination of the solutions was also done to determine the presence of floating particles. The products D and F produced cytotoxic changes in HeLa cell line and these products also showed the presence of floating particles under phase contrast microscopy. Other products did not have any adverse effects on the cell lines nor did they show floating particles. The viscoelastic ophthalmic pharmaceutical products designated D and F have cytotoxic effects on HeLa cell line which appears to be a useful cell line for testing these products for their toxicity. The presence of particulate materials in products D and F indicates that the methods used for purification of the solution are not effective.

  1. Nonlinear viscoelasticity and generalized failure criterion for biopolymer gels

    Science.gov (United States)

    Divoux, Thibaut; Keshavarz, Bavand; Manneville, Sébastien; McKinley, Gareth

    2016-11-01

    Biopolymer gels display a multiscale microstructure that is responsible for their solid-like properties. Upon external deformation, these soft viscoelastic solids exhibit a generic nonlinear mechanical response characterized by pronounced stress- or strain-stiffening prior to irreversible damage and failure, most often through macroscopic fractures. Here we show on a model acid-induced protein gel that the nonlinear viscoelastic properties of the gel can be described in terms of a 'damping function' which predicts the gel mechanical response quantitatively up to the onset of macroscopic failure. Using a nonlinear integral constitutive equation built upon the experimentally-measured damping function in conjunction with power-law linear viscoelastic response, we derive the form of the stress growth in the gel following the start up of steady shear. We also couple the shear stress response with Bailey's durability criteria for brittle solids in order to predict the critical values of the stress σc and strain γc for failure of the gel, and how they scale with the applied shear rate. This provides a generalized failure criterion for biopolymer gels in a range of different deformation histories. This work was funded by the MIT-France seed fund and by the CNRS PICS-USA scheme (#36939). BK acknowledges financial support from Axalta Coating Systems.

  2. Three-sphere swimmer in a nonlinear viscoelastic medium

    KAUST Repository

    Curtis, Mark P.

    2013-04-10

    A simple model for a swimmer consisting of three colinearly linked spheres attached by rods and oscillating out of phase to break reciprocal motion is analyzed. With a prescribed forcing of the rods acting on the three spheres, the swimming dynamics are determined analytically in both a Newtonian Stokes fluid and a zero Reynolds number, nonlinear, Oldroyd-B viscoelastic fluid with Deborah numbers of order one (or less), highlighting the effects of viscoelasticity on the net displacement of swimmer. For instance, the model predicts that the three-sphere swimmer with a sinusoidal, but nonreciprocal, forcing cycle within an Oldroyd-B representation of a polymeric Boger fluid moves a greater distance with enhanced efficiency in comparison with its motility in a Newtonian fluid of the same viscosity. Furthermore, the nonlinear contributions to the viscoelastic constitutive relation, while dynamically nontrivial, are predicted a posteriori to have no effect on swimmer motility at leading order, given a prescribed forcing between spheres. © 2013 American Physical Society.

  3. Earthquake response of adjacent structures with viscoelastic and friction dampers

    Directory of Open Access Journals (Sweden)

    Žigić Miodrag

    2015-01-01

    Full Text Available We study the seismic response of two adjacent structures connected with a dry friction damper. Each of them consists of a viscoelastic rod and a rigid block, which can slide without friction along the moving base. A simplified earthquake model is used for modeling the horizontal ground motion. Energy dissipation is taken by the presence of the friction damper, which is modeled by the set-valued Coulomb friction law. Deformation of viscoelastic rods during the relative motion of the blocks represents another way of energy dissipation. The constitutive equation of a viscoelastic body is described by the fractional Zener model, which includes fractional derivatives of stress and strain. The problem merges fractional derivatives as non-local operators and theory of set-valued functions as the non-smooth ones. Dynamical behaviour of the problem is governed by a pair of coupled multi-valued differential equations. The posed Cauchy problem is solved by use of the Grünwald-Letnikov numerical scheme. The behaviour of the system is analyzed for different values of system parameters.

  4. Nonlinear viscoelasticity and shear localization at complex fluid interfaces.

    Science.gov (United States)

    Erni, Philipp; Parker, Alan

    2012-05-22

    Foams and emulsions are often exposed to strong external fields, resulting in large interface deformations far beyond the linear viscoelastic regime. Here, we investigate the nonlinear and transient interfacial rheology of adsorption layers in large-amplitude oscillatory shear flow. As a prototypical material forming soft-solid-type interfacial adsorption layers, we use Acacia gum (i.e., gum arabic), a protein/polysaccharide hybrid. We quantify its nonlinear flow properties at the oil/water interface using a biconical disk interfacial rheometer and analyze the nonlinear stress response under forced strain oscillations. From the resulting Lissajous curves, we access quantitative measures recently introduced for nonlinear viscoelasticity, including the intracycle moduli for both the maximum and zero strains and the degree of plastic energy dissipation upon interfacial yielding. We demonstrate using in situ flow visualization that the onset of nonlinear viscoelasticity coincides with shear localization at the interface. Finally, we address the nonperiodic character of this flow transition using an experimental procedure based on opposing stress pulses, allowing us to extract additional interfacial properties such as the critical interfacial stress upon yielding and the permanent deformation.

  5. The effect of relaxation on cavitation dynamics in viscoelastic media

    Science.gov (United States)

    Mancia, Lauren; Warnez, Matthew; Johnsen, Eric

    2014-11-01

    Cavitation plays an important role in diagnostic and therapeutic ultrasound. In certain applications, cavitation bubbles are produced directly in soft tissue, a viscoelastic medium. Although bubble dynamics research in water has received significant attention, the behavior of bubbles in tissue-like media is much less well understood, as the dynamics are strongly affected by the viscoelastic properties of the surroundings, including viscosity, elasticity and relaxation. In the present work, we numerically investigate the role of stress relaxation on spherical bubble dynamics. We simulate bubble dynamics in viscoelastic media with linear and nonlinear relaxation under different types of forcing. Results indicate that the presence of relaxation causes faster growth rates and permits bubble rebound driven purely by residual stresses in the surroundings, a phenomenon not observed in Newtonian media. Differences between nonlinear models become important only following a strong collapse (in which high stresses are generated), thus requiring a robust numerical approach. This work was supported by NSF Grant Number CBET 1253157 and NIH Grant Number 1R01HL110990-01A1.

  6. Modelling of Rough Contact between Linear Viscoelastic Materials

    Directory of Open Access Journals (Sweden)

    Sergiu Spinu

    2017-01-01

    Full Text Available The important gradients of stress arising in rough mechanical contacts due to interaction at the asperity level are responsible for damage mechanisms like rolling contact fatigue, wear, or crack propagation. The deterministic approach to this process requires computationally effective numerical solutions, capable of handling very fine meshes that capture the particular features of the investigated contacting surface. The spatial discretization needs to be supported by temporal sampling of the simulation window when time-dependent viscoelastic constitutive laws are considered in the description of the material response. Moreover, when real surface microtopography is considered, steep slopes inevitably lead to localized plastic deformation at the tip of the asperities that are first brought into contact. A computer model for the rough contact of linear viscoelastic materials, capable of handling deterministic contact geometry, complex viscoelastic models, and arbitrary loading histories, is advanced in this paper. Plasticity is considered in a simplified manner that preserves the information regarding the contact area and the pressure distribution without computing the residual strains and stresses. The model is expected to predict the contact behavior of deterministic rough surfaces as resulting from practical engineering applications, thus assisting the design of durable machine elements using elastomers or rubbers.

  7. Focusing and alignment of erythrocytes in a viscoelastic medium

    Science.gov (United States)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2017-01-01

    Viscoelastic fluid flow-induced cross-streamline migration has recently received considerable attention because this process provides simple focusing and alignment over a wide range of flow rates. The lateral migration of particles depends on the channel geometry and physicochemical properties of particles. In this study, digital in-line holographic microscopy (DIHM) is employed to investigate the lateral migration of human erythrocytes induced by viscoelastic fluid flow in a rectangular microchannel. DIHM provides 3D spatial distributions of particles and information on particle orientation in the microchannel. The elastic forces generated in the pressure-driven flows of a viscoelastic fluid push suspended particles away from the walls and enforce erythrocytes to have a fixed orientation. Blood cell deformability influences the lateral focusing and fixed orientation in the microchannel. Different from rigid spheres and hardened erythrocytes, deformable normal erythrocytes disperse from the channel center plane, as the flow rate increases. Furthermore, normal erythrocytes have a higher angle of inclination than hardened erythrocytes in the region near the side-walls of the channel. These results may guide the label-free diagnosis of hematological diseases caused by abnormal erythrocyte deformability.

  8. Exact asymptotic relations for the effective response of linear viscoelastic heterogeneous media

    Science.gov (United States)

    Gallican, Valentin; Brenner, Renald; Suquet, Pierre

    2017-11-01

    This article addresses the asymptotic response of viscoelastic heterogeneous media in the frequency domain, at high and low frequencies, for different types of elementary linear viscoelastic constituents. By resorting to stationary principles for complex viscoelasticity and adopting a classification of the viscoelastic behaviours based on the nature of their asymptotic regimes, either elastic or viscous, four exact relations are obtained on the overall viscoelastic complex moduli in each case. Two relations are related to the asymptotic uncoupled heterogeneous problems, while the two remaining ones result from the viscoelastic coupling that manifests itself in the transient regime. These results also provide exact conditions on certain integrals in time of the effective relaxation spectrum. This general setting encompasses the results obtained in preceding studies on mixtures of Maxwell constituents [1,2]. xml:lang="fr"

  9. A 4-cm thermoactive viscoelastic foam pad on the operating room table to prevent pressure ulcer during cardiac surgery.

    Science.gov (United States)

    Feuchtinger, Johanna; de Bie, Rob; Dassen, Theo; Halfens, Ruud

    2006-02-01

    In this experimental study, a 4-cm thermoactive viscoelastic foam overlay and a heating source on the operating room table was compared with the standard operating room table with a heating source for the effect on the postoperative pressure ulcer incidence in cardiac surgery patients. Pressure ulcer incidence in the cardiac surgery population is reported to be up to 29.5%. The prolonged compressive forces from lying on the operating room table are one source of pressure ulcer development in this population. Pressure-reducing devices on the operating room (OR)-table should reduce the patients' interface pressure and thus the hazard of skin breakdown. A randomized controlled trial was performed to test the effect of a 4-cm thermoactive viscoelastic foam overlay with a water-filled warming mattress on the OR-table (test OR-table) compared with the standard OR-table (a water-filled warming mattress, no pressure-reducing device) on the postoperative pressure ulcer incidence in cardiac surgery patients. The pressure ulcer classification system of the European Pressure Ulcer Advisory Panel (EPUAP) was used for pressure ulcer grading. The results show that patients lying on the 4-cm thermoactive viscoelastic foam overlay suffer slightly more pressure ulcer (17.6%) than patients on the standard OR-table without the foam overlay (11.1%). Because of the clinical relevance of the results, the randomized controlled trial was terminated after 175 patients at the interim analysis although the power calculation stated 350 patients. The combination of a 4-cm viscoelastic foam overlay and a warming source cannot be recommended for pressure ulcer prevention on the operating room table. Foam overlays are used to prevent pressure ulcers in patients. It is necessary to use such devices according to patient safety and use of resources.

  10. Towards the minimization of thermodynamic irreversibility in an electrically actuated microflow of a viscoelastic fluid under electrical double layer phenomenon

    Science.gov (United States)

    Sarma, Rajkumar; Jain, Manish; Mondal, Pranab Kumar

    2017-10-01

    We discuss the entropy generation minimization for electro-osmotic flow of a viscoelastic fluid through a parallel plate microchannel under the combined influences of interfacial slip and conjugate transport of heat. We use in this study the simplified Phan-Thien-Tanner model to describe the rheological behavior of the viscoelastic fluid. Using Navier's slip law and thermal boundary conditions of the third kind, we solve the transport equations analytically and evaluate the global entropy generation rate of the system. We examine the influential role of the following parameters on the entropy generation rate of the system, viz., the viscoelastic parameter (ɛDe2), Debye-Hückel parameter ( κ ¯ ) , channel wall thickness (δ), thermal conductivity of the wall (γ), Biot number (Bi), Peclet number (Pe), and axial temperature gradient (B). This investigation finally establishes the optimum values of the abovementioned parameters, leading to the minimum entropy generation of the system. We believe that results of this analysis could be helpful in optimizing the second-law performance of microscale thermal management devices, including the micro-heat exchangers, micro-reactors, and micro-heat pipes.

  11. Effects of Immediate vs. Delayed Massage-like Loading on Skeletal Muscle Viscoelastic Properties Following Eccentric Exercise

    Science.gov (United States)

    Crawford, Scott K.; Haas, Caroline; Wang, Qian; Zhang, Xiaoli; Zhao, Yi; Best, Thomas M.

    2014-01-01

    Background This study compared immediate versus delayed massage-like compressive loading on skeletal muscle viscoelastic properties following eccentric exercise. Methods Eighteen rabbits were surgically instrumented with peroneal nerve cuffs for stimulation of the tibialis anterior muscle. Rabbits were randomly assigned to a massage loading protocol applied immediately post exercise (n=6), commencing 48 hours post exercise (n=6), or exercised no-massage control (n=6). Viscoelastic properties were evaluated in vivo by performing a stress-relaxation test pre- and post-exercise and daily pre- and post-massage for four consecutive days of massage loading. A quasi-linear viscoelastic approach modeled the instantaneous elastic response (AG0), fast ( g1p) and slow ( g2p) relaxation coefficients, and the corresponding relaxation time constants τ1 and τ2. Findings Exercise increased AG0 in all groups (Pmassage. However, within-day (pre- to post-massage) analysis revealed a decrease in AG0 in both massage groups. Following exercise, g1p increased and g2p and τ1 decreased for all groups (P0.05). After four days of massage, there was no significant recovery of the relaxation parameters for either massage loading group compared to the control group. Interpretation Our findings suggest that massage loading following eccentric exercise has a greater effect on reducing muscle stiffness, estimated by AG0, within-day rather than affecting recovery over multiple days. Massage loading also has little effect on the relaxation response. PMID:24861827

  12. Mechanisms governing the visco-elastic responses of living cells assessed by foam and tensegrity models

    OpenAIRE

    Canadas, Patrick; Laurent, Valérie; Chabrand, Patrick; Isabey, Daniel; Wendling-Mansuy, Sylvie

    2003-01-01

    The visco-elastic properties of living cells, measured to date by various authors, vary considerably, depending on the experimental methods and/or on the theoretical models used. In the present study, two mechanisms thought to be involved in cellular visco-elastic responses were analysed, based on the idea that the cytoskeleton plays a fundamental role in cellular mechanical responses. For this purpose, the predictions of an open unit-cell model and a 30-element visco-elastic tensegrity model...

  13. On the Viscoelastic Parameters of Gussasphalt Mixture Based on Modified Burgers Model: Deviation and Experimental Verification

    OpenAIRE

    Faxiang Xie; Dengjing Zhang; Ao Zhou; Bohai Ji; Lin Chen

    2017-01-01

    Viscoelasticity is an important characteristic of gussasphalt mixtures. The aim of this study is to find the correct viscoelastic material parameters of the novel gussasphalt applied in the 4th Yangtze River Bridge based on the modified Burgers model. This study firstly derives the explicit Prony series form of the shear relaxation modulus of viscoelastic material from Laplace transformation, to fulfill the parameter inputting requirements of commonly used finite element software suites. Seco...

  14. Thermal instability of Walters B' viscoelastic fluid permeated with suspended particles in hydromagnetics in porous medium

    Directory of Open Access Journals (Sweden)

    Kumar Pardeep

    2004-01-01

    Full Text Available The effect of suspended particles on the thermal instability of Walters B' viscoelastic fluid in hydromantic in porous medium is considered. For stationary convection, Walters B' viscoelastic fluid behaves like a Newtonian fluid. The medium permeability and suspended particles has ten the onset of convection whereas the magnetic field postpones the onset of convection, for the case of stationary convection. The magnetic field and viscoelasticity intro duce oscillatory modes in the system which was non-existent in their absence.

  15. Viscoelastic properties of polymer based layered-silicate nanocomposites

    Science.gov (United States)

    Ren, Jiaxiang

    Polymer based layered-silicate nanocomposites offer the potential for dramatically improved mechanical, thermal, and barrier properties while keeping the material density low. Understanding the linear and non-linear viscoelastic response for such materials is crucial because of the ability of such measurements to elucidate the mesoscale dispersion of layered-silicates and changes in such dispersion to applied flows as would be encountered in processing of these materials. A series of intercalated polystyrene (and derivatives of polystyrene) layered-silicate nanocomposites are studied to demonstrate the influence of mesoscale dispersion and organic---inorganic interactions on the linear and non-linear viscoelastic properties. A layered-silicate network structure is exhibited for the nanocomposites with strong polymer-silicate interaction such as montmorillonite (2C18M) and fluorohectorite (C18F) and the percolation threshold is ˜ 6 wt % for the 2C18M based hybrids. However, the nanocomposites based on hectorite (2C18H) with weak polymer-silicate interaction exhibit liquid-like terminal zone behavior. Furthermore, the enhanced terminal zone elastic modulus and viscosity of high brominated polystyrene and high molecular weight polystyrene based 2C18M nanocomposites suggest an improved delamination and dispersion of layered-silicates in the polymer matrix. The non-linear viscoelastic properties, specifically, the non-linear stress relaxation behavior and the applicability of time---strain separability, the effect of increasing strain amplitude on the oscillatory shear flow properties, and the shear rate dependence of the steady shear flow properties are examined. The silicate sheets (or collections of sheets) exhibit the ability to be oriented by the applied flow. Experimentally, the empirical Cox - Merz rule is demonstrated to be inapplicable for the hybrids. Furthermore, the K-BKZ constitutive model is used to model the steady shear properties. While being able to

  16. Elastodynamic Analysis

    DEFF Research Database (Denmark)

    Andersen, Lars

    This book contains the lecture notes for the 9th semester course on elastodynamics. The first chapter gives an overview of the basic theory of stress waves propagating in viscoelastic media. In particular, the effect of surfaces and interfaces in a viscoelastic material is studied, and different ....... Thus, in Chapter 3, an alternative semi-analytic method is derived, which may be applied for the analysis of layered half-spaces subject to moving or stationary loads....

  17. Effect of film thickness and viscoelasticity on separability of vapour classes by wavelet and principal component analyses of polymer-coated surface acoustic wave sensor transients

    Science.gov (United States)

    Singh, Prashant; Yadava, R. D. S.

    2011-02-01

    The transient response of a polymer-coated surface acoustic wave (SAW) vapour sensor depends on partitioning and diffusion of vapour species into the polymer in conjunction with its thickness and viscoelastic properties. The shapes of transient signals carry information about vapour identities due to specificity of the partition coefficient and the diffusion coefficient. The analysis of transient signals therefore offers a simpler approach for vapour identification in comparison to conventional electronic nose systems that employ a broadly selective sensor array. The transient response-based methods are however not developed to a similar level of maturity as their sensor array counterparts. The main reason for this is associated with complex signal generation kinetics and polymer viscoelasticity. The latter is independent of vapour identities (assuming low concentrations) but influences sensor response through nonlinear dependences on polymer thickness and viscoelastic coefficients. In this paper, we endeavour to find out whether viscoelasticity and its manifestation through thickness dependences could be turned into an advantage for transient-based vapour identification. Using an established SAW sensor model with additive noise we analyse sensor transients by wavelet decomposition and principal component analysis (PCA) for various combinations of polymer thickness, viscoelastic storage and loss moduli and noise level. We calculate vapour class separability measures defined on the basis of scatter matrices of principal components of wavelet coefficients to determine the discrimination ability of sensor transients for various combinations of film thickness and viscoelastic parameters. The simulation experiments are performed by considering a polyisobutylene-coated SAW oscillator sensor under exposure to seven volatile organic compounds (chloroform, chlorobenzene, o-dichlorobenzene, n-heptane, toluene, n-hexane and n-octane). The film thicknesses are varied from thin

  18. Modulating state transition and mechanical properties of viscoelastic resins from maize zein through interactions with plasticizers and co-proteins

    NARCIS (Netherlands)

    Erickson, D.P.; Renzetti, S.; Jurgens, A.; Campanella, O.H.; Hamaker, B.R.

    2014-01-01

    Viscoelastic properties have been observed in maize zein above its glass transition temperature; however, current understanding of how these viscoelastic polymers can be further manipulated for optimal performance is limited. Using resins formed via precipitation from aqueous ethanolic environments,

  19. Changes in large pulmonary arterial viscoelasticity in chronic pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Zhijie Wang

    Full Text Available Conduit pulmonary artery (PA stiffening is characteristic of pulmonary arterial hypertension (PAH and is an excellent predictor of mortality due to right ventricular (RV overload. To better understand the impact of conduit PA stiffening on RV afterload, it is critical to examine the arterial viscoelastic properties, which require measurements of elasticity (energy storage behavior and viscosity (energy dissipation behavior. Here we hypothesize that PAH leads to frequency-dependent changes in arterial stiffness (related to elasticity and damping ratio (related to viscosity in large PAs. To test our hypothesis, PAH was induced by the combination of chronic hypoxia and an antiangiogenic compound (SU5416 treatment in mice. Static and sinusoidal pressure-inflation tests were performed on isolated conduit PAs at various frequencies (0.01-20 Hz to obtain the mechanical properties in the absence of smooth muscle contraction. Static mechanical tests showed significant stiffening of large PAs with PAH, as expected. In dynamic mechanical tests, structural stiffness (κ increased and damping ratio (D decreased at a physiologically relevant frequency (10 Hz in hypertensive PAs. The dynamic elastic modulus (E, a material stiffness, did not increase significantly with PAH. All dynamic mechanical properties were strong functions of frequency. In particular, κ, E and D increased with increasing frequency in control PAs. While this behavior remained for D in hypertensive PAs, it reversed for κ and E. Since these novel dynamic mechanical property changes were found in the absence of changes in smooth muscle cell content or contraction, changes in collagen and proteoglycans and their interactions are likely critical to arterial viscoelasticity in a way that has not been previously described. The impact of these changes in PA viscoelasticity on RV afterload in PAH awaits further investigation.

  20. Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites

    Science.gov (United States)

    Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.

    2017-02-01

    Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material

  1. A viscoelastic deadly fluid in carnivorous pitcher plants.

    Directory of Open Access Journals (Sweden)

    Laurence Gaume

    Full Text Available BACKGROUND: The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. CONCLUSIONS/SIGNIFICANCE: This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control.

  2. Nonlinear Viscoelastic Mechanism for Aftershock Triggering and Decay

    Science.gov (United States)

    Shcherbakov, R.; Zhang, X.

    2016-12-01

    Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. They also occur in other natural or experimental systems, for example, in solar flares, in fracture experiments on porous materials and acoustic emissions, after stock market crashes, in the volatility of stock prices returns, in internet traffic variability and e-mail spamming, to mention a few. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle control the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and

  3. Viscoelastic fluids: A new challenge in heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hartnett, J.P. (Univ. of Illinois, Chicago (United States))

    1992-05-01

    A review of the current knowledge on the fluid mechanics and heat transfer behavior of viscoelastic aqueous polymer solutions in channel flow is presented. Both turbulent and laminar flow conditions are considered. For fully established turbulent channel flow, it was found that the friction factor, f, and the dimensionless heat transfer factor, j{sub H}, were functions of the Reynolds number and a dimensionless elasticity value, the Weissenberg number. For Weissenberg values greater than approximately 10 (the critical value) the friction factor was found to be a function only of the Reynolds number; for values less than 10 the friction factor was a function of both Re and Ws. For the dimensionless heat transfer coefficient j{sub H} the corresponding critical Weissenberg value was found to be about 100. The heat transfer reduction is always greater than the friction factor reduction; consequently, the heat transfer per unit pumping power decreases with increasing elasticity. For fully established laminar pipe flow of aqueous polymer solutions, the measured values of the friction factor and dimensionless heat transfer coefficient were in excellent agreement with the values predicted for a power law fluid. For laminar flow in a 2:1 rectangular channel the fully developed friction factor measurements were in agreement with the power law prediction. In contrast, the measured local heat transfer coefficients for aqueous polymer solutions in laminar flow through the 2:1 rectangular duct were two or three times the values predicted for a purely viscous power law fluid. It is hypothesized that these high heat transfer coefficients are due to secondary motions, which come about as a results of the unequal normal stresses occurring in viscoelastic fluids. The anomalous behavior of one particular aqueous polymer solution-namely, polyacrylic acid (Carbopol)-is described in some detail, raising some interesting questions as to how viscoelastic fluids should be classified.

  4. A Viscoelastic Deadly Fluid in Carnivorous Pitcher Plants

    Science.gov (United States)

    Gaume, Laurence; Forterre, Yoel

    2007-01-01

    Background The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. Methodology/Principal Findings Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. Conclusions/Significance This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera) flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control. PMID:18030325

  5. Linear Viscoelasticity, Reptation, Chain Stretching and Constraint Release

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Schieber, Jay D.; Venerus, David C.

    2000-01-01

    A recently proposed self-consistent reptation model - alreadysuccessful at describing highly nonlinear shearing flows of manytypes using no adjustable parameters - is used here to interpretthe linear viscoelasticity of the same entangled polystyrenesolution. Using standard techniques, a relaxation....... The classical reptation picture,however, exhibits the opposite trend. Using the newly proposedmodel, we can switch on (or off) dynamics not included in theclassical Doi-Edwards model: chain-length fluctuations andconstraint release. We find that chain-length fluctuations areimportant to describe the plateau...

  6. Slow viscoelastic relaxation and aging in aqueous foam

    Science.gov (United States)

    Vincent-Bonnieu, S.; Höhler, R.; Cohen-Addad, S.

    2006-05-01

    Like emulsions, pastes and many other forms of soft condensed matter, aqueous foams present slow mechanical relaxations when subjected to a stress too small to induce any plastic flow. To identify the physical origin of this viscoelastic behaviour, we have simulated how dry disordered coarsening 2D foams respond to a small applied stress. We show that the mechanism of long time relaxation is driven by coarsening-induced rearrangements of small bubble clusters. These findings are in full agreement with a scaling law previously derived from experimental creep data for 3D foams. Moreover, we find that the temporal statistics of coarsening-induced bubble rearrangements are described by a Poisson process.

  7. Calculation of dynamic stresses in viscoelastic sandwich beams using oma

    DEFF Research Database (Denmark)

    Pelayo, F.; Aenlle, M. L.; Ismael, G.

    2017-01-01

    The mechanical response of sandwich elements with viscoelastic core is time and temperature dependent. Laminated glass is a sandwich element where the mechanical behavior of the glass layers is usually considered linear-elastic material whereas the core is made of an amorphous thermoplastic which...... data. In simple structures, analytical mode shapes can be used alternatively to the numerical ones. In this paper, the dynamic stresses on the glass layers of a laminated glass beam have estimated using the experimental acceleration responses measured at 7 points of the beam, and the experimental mode...

  8. Viscoelastic and dynamic properties of embryonic stem cells

    DEFF Research Database (Denmark)

    Ritter, Christine

    ofthe cells themselves. In this thesis, the viscoelastic properties of mouse embryonic stem cells primedeither toward the epiblast (Epi) or the primitive endoderm (PrE) lineage were investigated.Optical tweezers were used to measure the fluctuations of endogenous lipid granules and therebydraw...... diffusive process was determined to becontinuous time random walk (CTRW).Upon exciting pluripotency, changes occur in the nucleus of stem cells. Chromatin remodeling,the recruitment of lamin A to the nucleoskeleton and stiffening of the cells were reported changescaused by differentiation...

  9. Viscoelastic properties of α-keratin fibers in hair.

    Science.gov (United States)

    Yu, Yang; Yang, Wen; André Meyers, Marc

    2017-12-01

    Considerable viscoelasticity and strain-rate sensitivity are a characteristic of α-keratin fibers, which can be considered a biopolymer. The understanding of viscoelasticity is an important part of the knowledge of the overall mechanical properties of these biological materials. Here, horse and human hairs are examined to analyze the sources of this response. The dynamic mechanical response of α-keratin fibers over a range of frequencies and temperatures is analyzed using a dynamic mechanical analyzer. The α-keratin fibers behave more elastically at higher frequencies while they become more viscous at higher temperatures. A glass transition temperature of ∼55°C is identified. The stress relaxation behavior of α-keratin fibers at two strains, 0.02 and 0.25, is established and fit to a constitutive equation based on the Maxwell-Wiechert model. The constitutive equation is further compared to the experimental results within the elastic region and a good agreement is obtained. The two relaxation constants, 14s and 359s for horse hair and 11s and 207s for human hair, are related to two hierarchical levels of relaxation: the amorphous matrix-intermediate filament interfaces, for the short term, and the cellular components for the long term. Results of the creep test also provide important knowledge on the uncoiling and phase transformation of the α-helical structure as hair is uniaxially stretched. SEM results show that horse hair has a rougher surface morphology and damaged cuticles. It also exhibits a lower strain-rate sensitivity of 0.05 compared to that of 0.11 for human hair. After the horse and human hairs are chemically treated and the disulfide bonds are cleaved, they exhibit a similar strain-rate sensitivity of ∼0.05. FTIR results confirms that the human hair is more sensitive to the -S-S- cleavage, resulting in an increase of cysteic acid content. Therefore, the disulfide bonds in the matrix are experimentally identified as one source of the strain

  10. THERMO-VISCOELASTIC CHARACTERIZATION OF POLYMER LAMINATE FILMS

    Directory of Open Access Journals (Sweden)

    Eliza Truszkiewicz

    2016-02-01

    Full Text Available The investigated material - laminate is intended as a substrate for small electronic components, electrodes and printed circuits, which are processed onto the laminate prior to thermoforming. The placement of the electronic components and the connecting circuits must be carefully designed to prevent damage during the thermoforming. The thermo-viscoelastic behavior of a polymer laminate film was characterized by mechanical measurements to obtain data for material modeling. The strain was measured using digital image correlation. The film is anisotropic and is able to deform to strains up to 60%.

  11. Phased-Array Focusing Potential in Pipe with Viscoelastic Coating

    Science.gov (United States)

    Van Velsor, J. K.; Zhang, L.; Breon, L. J.; Rose, J. L.

    2007-03-01

    This work investigates the effectiveness of traditional guided-wave focusing techniques in piping with viscoelastic coating. Focusing results for an uncoated pipe are compared to that of pipe with a fusion-bonded epoxy coating, a coal-tar mastic coating, a coal-tar epoxy coating, a coal-tar tape coating, a wax coating, and an enamel coating. Experimental results are compared to computationally derived models. Results show that, for most coating types, focusing can be achieved without special consideration of the coating. This is significant in that it demonstrates the immediate applicability of traditional focusing techniques to coated pipeline.

  12. Fitting Prony Series To Data On Viscoelastic Materials

    Science.gov (United States)

    Hill, S. A.

    1995-01-01

    Improved method of fitting Prony series to data on viscoelastic materials involves use of least-squares optimization techniques. Based on optimization techniques yields closer correlation with data than traditional method. Involves no assumptions regarding the gamma'(sub i)s and higher-order terms, and provides for as many Prony terms as needed to represent higher-order subtleties in data. Curve-fitting problem treated as design-optimization problem and solved by use of partially-constrained-optimization techniques.

  13. Cure-dependent Viscoelastic Poisson’s Ratio of Epoxy

    Science.gov (United States)

    2007-01-26

    Poisson’s ratio in creep and stress relaxation of EPON 828 epoxy cured with tri- ethylenetriamine using geometric moiré with gratings of 20 lines per...cure kinetics [23] and cure-dependent viscoelastic properties [24] of this material. A second system was also investigated, EPON 828 /3274, a bisphenol...Table 1. The EPON 828 /3274 specimens were cured for 48 h at room temperature followed by 10 h at 75◦C to ensure the material was fully reacted. After

  14. The role of viscoelasticity and stress gradients on the outcome of conductive keratoplasty.

    Science.gov (United States)

    Fraldi, M; Cutolo, A; Esposito, L; Guarracino, F

    2011-06-01

    A mechanical analysis of the conductive keratoplasty on hyperopic eyes has been carried out, and the attention has been focused on incorporating the actual viscoelastic properties of the human corneal tissue and on the stress gradients induced by the intervention. By avoiding unnecessary complications which may obscure the essential behaviour of the model, the results are in very good agreement with the clinical and experimental findings and suggest that the major role in the commonly observed decrease of the initial degree of the refractive correction might be played by the stress gradients at the intervention spots, which are likely to influence the wound-healing. The study aims to contribute some firm mechanical roots to the predictability of the outcome of an increasingly popular technique that, notwithstanding several advantages with respect to ablative interventions, at present cannot be considered completely satisfactory.

  15. Hall Effect on Thermal Instability of Viscoelastic Dusty Fluid in Porous Medium

    Science.gov (United States)

    Singh, M.; Gupta, R. K.

    2013-08-01

    The effect of Hall currents and suspended dusty particles on the hydromagnetic stability of a compressible, electrically conducting Rivlin-Ericksen elastico viscous fluid in a porous medium is considered. Following the linearized stability theory and normal mode analysis the dispersion relation is obtained. For the case of stationary convection, Hall currents and suspended particles are found to have destabilizing effects whereas compressibility and magnetic field have stabilizing effects on the system. The medium permeability, however, has stabilizing and destabilizing effects on thermal instability in contrast to its destabilizing effect in the absence of the magnetic field. The critical Rayleigh numbers and the wave numbers of the associated disturbances for the onset of instability as stationary convection are obtained and the behavior of various parameters on critical thermal Rayleigh numbers are depicted graphically. The magnetic field, Hall currents and viscoelasticity parameter are found to introduce oscillatory modes in the systems, which did not exist in the absence of these parameters

  16. Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation

    Science.gov (United States)

    Han, Zhaolong; Aglyamov, Salavat R.; Li, Jiasong; Singh, Manmohan; Wang, Shang; Vantipalli, Srilatha; Wu, Chen; Liu, Chih-hao; Twa, Michael D.; Larin, Kirill V.

    2015-02-01

    We demonstrate the use of a modified Rayleigh-Lamb frequency equation in conjunction with noncontact optical coherence elastography to quantify the viscoelastic properties of the cornea. Phase velocities of air-pulse-induced elastic waves were extracted by spectral analysis and used for calculating the Young's moduli of the samples using the Rayleigh-Lamb frequency equation (RLFE). Validation experiments were performed on 2% agar phantoms (n=3) and then applied to porcine corneas (n=3) in situ. The Young's moduli of the porcine corneas were estimated to be ˜60 kPa with a shear viscosity ˜0.33 Pa.s. The results demonstrate that the RLFE is a promising method for noninvasive quantification of the corneal biomechanical properties and may potentially be useful for clinical ophthalmological applications.

  17. Local viscoelastic response of direct and indirect dental restorative composites measured by AFM.

    Science.gov (United States)

    Grattarola, Laura; Derchi, Giacomo; Diaspro, Alberto; Gambaro, Carla; Salerno, Marco

    2017-12-31

    We investigated the viscoelastic response of direct and indirect dental restorative composites by the novel technique of AM-FM atomic force microscopy. We selected four composites for direct restorations (Adonis, Optifil, EPH, CME) and three composites for indirect restorations (Gradia, Estenia, Signum). Scanning electron microscopy with micro-analysis was also used to support the results. The mean storage modulus of all composites was in the range of 10.2-15.2 GPa. EPH was the stiffest (pcomposites but Adonis and Estenia), while no significant difference was observed between direct and indirect group (p≥0.05). For the loss tangent, Gradia had the highest value (~0.3), different (pcomposites showed higher loss tangent (pcomposites. All composites exhibited minor contrast at the edge of fillers, showing that these are pre-polymerized, as confirmed by EDS.

  18. Viscoelastic relaxations of high alcohols and alkanes: Effects of heterogeneous structure and translation-orientation coupling

    Science.gov (United States)

    Yamaguchi, Tsuyoshi

    2017-03-01

    The frequency-dependent shear viscosity of high alcohols and linear alkanes, including 1-butanol, 1-octanol, 1-dodecanol, n-hexane, n-decane, and n-tetradecane, was calculated using molecular dynamics simulation. The relaxation of all the liquids was bimodal. The correlation functions of the collective orientation were also evaluated. The analysis of these functions showed that the slower relaxation mode of alkanes is assigned to the translation-orientation coupling, while that of high alcohols is not. The X-ray structure factors of all the alcohols showed prepeaks, as have been reported in the literature, and the intermediate scattering functions were calculated at the prepeak. Comparing the intermediate scattering function with the frequency-dependent shear viscosity based on the mode-coupling theory, it was demonstrated that the slower viscoelastic relaxation of the alcohols is assigned to the relaxation of the heterogeneous structure described by the prepeak.

  19. Strain-Level Dependent Nonequilibrium Anisotropic Viscoelasticity: Application to the Abdominal Muscle.

    Science.gov (United States)

    Latorre, Marcos; Montáns, Francisco J

    2017-10-01

    Soft connective tissues sustain large strains of viscoelastic nature. The rate-independent component is frequently modeled by means of anisotropic hyperelastic models. The rate-dependent component is usually modeled through linear rheological models or quasi-linear viscoelastic (QLV) models. These viscoelastic models are unable, in general, to capture the strain-level dependency of the viscoelastic properties present in many viscoelastic tissues. In linear viscoelastic models, strain-level dependency is frequently accounted for by including the dependence of multipliers of Prony series on strains through additional evolution laws, but the determination of the material parameters is a difficult task and the obtained accuracy is usually not sufficient. In this work, we introduce a model for fully nonlinear viscoelasticity in which the instantaneous and quasi-static behaviors are exactly captured and the relaxation curves are predicted to a high accuracy. The model is based on a fully nonlinear standard rheological model and does not necessitate optimization algorithms to obtain material parameters. Furthermore, in contrast to most models used in modeling the viscoelastic behavior of soft tissues, it is valid for the large deviations from thermodynamic equilibrium typically observed in soft tissues.

  20. Noise Reduction Evaluation of Multi-Layered Viscoelastic Infinite Cylinder under Acoustical Wave Excitation

    Directory of Open Access Journals (Sweden)

    M.R. Mofakhami

    2008-01-01

    Full Text Available In this paper sound transmission through the multilayered viscoelastic air filled cylinders subjected to the incident acoustic wave is studied using the technique of separation of variables on the basis of linear three dimensional theory of elasticity. The effect of interior acoustic medium on the mode maps (frequency vs geometry and noise reduction is investigated. The effects of internal absorption and external moving medium on noise reduction are also evaluated. The dynamic viscoelastic properties of the structure are rigorously taken into account with a power law technique that models the viscoelastic damping of the cylinder. A parametric study is also performed for the two layered infinite cylinders to obtain the effect of viscoelastic layer characteristics such as thickness, material type and frequency dependency of viscoelastic properties on the noise reduction. It is shown that using constant and frequency dependent viscoelastic material with high loss factor leads to the uniform noise reduction in the frequency domain. It is also shown that the noise reduction obtained for constant viscoelastic material property is subjected to some errors in the low frequency range with respect to those obtained for the frequency dependent viscoelastic material.

  1. Heat transfer in MHD flow of dusty viscoelastic (Walters' liquid model ...

    Indian Academy of Sciences (India)

    Keywords. Walter's liquid model-B; stratified fluid; porous medium; variable viscosity. PACS Nos 47; 47.10.A−; 47.10.ad; 47.10.−g. 1. Introduction. There are many viscoelastic fluids that cannot be characterized by Maxwell's or Oldroyd's constitutive relations. One such fluid is Walters' (model B) viscoelastic fluid which is ...

  2. Measurement of Dynamic Viscoelasticity of Full-Size Wood Composite Panels Using a Vibration Testing Method

    Science.gov (United States)

    Cheng Guan; Houjiang Zhang; John F. Hunt; Lujing Zhou; Dan Feng

    2016-01-01

    The dynamic viscoelasticity of full-size wood composite panels (WCPs) under the free-free vibrational state were determined by a vibration testing method. Vibration detection tests were performed on 194 pieces of three types of full-size WCPs (particleboard, medium density fiberboard, and plywood (PW)). The dynamic viscoelasticity from smaller specimens cut from the...

  3. Role of non-covalent interactions in the production of visco-elastic material from zein.

    Science.gov (United States)

    Smith, Brennan M; Bean, Scott R; Selling, Gordon; Sessa, David; Aramouni, Fadi M

    2014-03-15

    The role of non-covalent interactions in the formation of visco-elastic material from zein was investigated. Hydrophobic interactions were evaluated through the addition of various salts from the Hofmeister series. Urea, ethanol, and beta mercaptoethanol (β-ME) were used to evaluate the effects of protein denaturation and disulfide bonds on zein's ability to form a visco-elastic material. The addition of NaI and NaSCN altered the properties of visco-elastic materials made from zein, making them softer and more extensible, as did urea and ethanol. The addition of NaCl and Na2SO4 negatively impacted the ability of zein to from a visco-elastic material and at higher concentrations completely disrupted the formation of visco-elastic material. These results indicate that manipulating non-covalent interactions in zein can alter and in some cases, completely disrupt the formation of a visco-elastic material. Specifically this may be due to disruption of hydrophobic interactions within individual zein proteins or interactions between proteins. The reducing agent β-ME had little effect on zein's ability to form a visco-elastic material. Therefore, the visco-elastic properties of zein arise as a result of non-covalent interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Uncertainty quantification and stochastic-based viscoelastic modeling of finite deformation elastomers

    Science.gov (United States)

    Oates, William S.; Hays, Michael; Miles, Paul; Smith, Ralph

    2013-04-01

    Material parameter uncertainty is a key aspect of model development. Here we quantify parameter uncertainty of a viscoelastic model through validation on rate dependent deformation of a dielectric elastomer that undergoes finite deformation. These materials are known for there large field induced deformation and applications in smart structures, although the rate dependent viscoelastic effects are not well understood. To address this issue, we first quantify hyperelastic and viscoelastic model uncertainty using Bayesian statistics by comparing a linear viscoelastic model to uniaxial rate dependent experiments. The probability densities, obtained from the Bayesian statistics, are then used to formulate a refined model that incorporates the probability densities directly within the model using homogenization methods. We focus on the uncertainty of the viscoelastic aspect of the model to show under what regimes does the stochastic homogenization framework provides improvements in predicting viscoelastic constitutive behavior. It is show that VHB has a relatively narrow probability distribution on the viscoelastic time constants. This supports use of a discrete viscoelastic model over the homogenized model.

  5. A micromechanical procedure for viscoelastic characterization of the axons and ECM of the brainstem.

    Science.gov (United States)

    Javid, Samad; Rezaei, Asghar; Karami, Ghodrat

    2014-02-01

    In this study, the optimal viscoelastic material parameters of axon and extracellular matrix (ECM) in porcine brain white matter were identified using a genetic algorithm (GA) optimization procedure. The procedure was combined with micromechanical finite element analysis (FEA) of brain tissue and experimental stress relaxation tests on brainstem specimens to find the optimal material coefficients of axon and ECM. The stress relaxation tests were performed in tension on 10 brainstem specimens at 3% strain level. The axonal volume fraction in brainstem was measured from the Scanning Electron Microscopy images of the brain tissue. A square periodic volume element was selected to represent the microscale homogenized brainstem tissue. Periodic boundary conditions were applied on the square volume element to mimics the repetitive nature of the volume element. Linear viscoelastic material properties were assumed for the brain tissue constituents under small deformation. The constitutive behavior was expressed in terms of Prony series. The GA procedure searched for the optimal material parameters by fitting the time-dependent tissue stresses of brain tissue FEA to the stresses of relaxation tests under the same loading conditions. The optimization procedure converged after 60 iterations. The initial elastic modulus of axon was found to be 12.86kPa, three times larger than that of ECM. The long-term elastic modulus of axon was 3.7kPa, while for ECM this value was 1.03kPa. The concordance correlation coefficient between FEA estimated elastic modulus of brainstem tissue using the optimal material properties and the experimental elastic modulus of brainstem specimens was 0.952, showing a strong agreement. The optimal material properties of brain tissue constituents can find applications in micromechanical analysis of brain tissue to gain insight into diffuse axonal injures (DAIs). © 2013 Published by Elsevier Ltd.

  6. The Effect of Evolving Damage on the Finite Strain Response of Inelastic and Viscoelastic Composites

    Directory of Open Access Journals (Sweden)

    Jacob Aboudi

    2009-11-01

    Full Text Available A finite strain micromechanical model is generalized in order to incorporate the effect of evolving damage in the metallic and polymeric phases of unidirectional compostes. As a result, it is possible to predict the response of composites with ductile and brittle phases undergoing large coupled inelastic-damage and viscoelastic-damage deformations, respectively. For inelastic composites, both finite strain elastoplastic (time-independent and viscoplastic (time-dependent behaviors are considered. The ductile phase exhibits initially a hyperelastic behavior which is followed by an inelastic one, and its analysis is based on the multiplicative split of its deformation gradient into elastic and inelastic parts. The embedded damage mechanisms and their evolutions are based on Gurson’s (which is suitable for the modeling of porous materials and Lemaitre’s finite strain models. Similarly, the polymeric phase exhibits large viscoelastic deformations in which the damage evolves according to a suitable evolution law that depends on the amount of accumulated deformation. Evolving damage in hyperelastic materials can be analyzed as a special case by neglecting the viscous effects. The micromechanical analysis is based on the homogenization technique for periodic multiphase materials, which establishes the strong form of the Lagrangian equilibrium equations. These equations are implemented together with the interfacial and periodic boundary conditions, in conjunction with the current tangent tensor of the phase. As a result, the instantaneous strain concentration tensor that relates the local deformation gradient of the phase to the externally applied deformation gradient is established. This provides also the instantaneous effective stiffness tangent tensor of the composite as well as its current response. Results are given that exhibit the effect of damage on the initial yield surfaces, response and possible failure of the composite.

  7. PHOTOACOUSTIC VISCOELASTICITY IMAGING OF BIOLOGICAL TISSUES WITH INTENSITY-MODULATED CONTINUOUS-WAVE LASER

    Directory of Open Access Journals (Sweden)

    YUE ZHAO

    2013-10-01

    Full Text Available In this paper, a novel photoacoustic viscoelasticity imaging (PAVEI technique that provides viscoelastic information of biological tissues is presented. We deduced the process of photoacoustic (PA effect on the basis of thermal viscoelasticity theory and established the relationship between the PA phase delay and the viscoelasticity for soft solids. By detecting the phase delay of PA signal, the viscoelasticity distribution of absorbers can be mapped. Gelatin phantoms with different densities and different absorption coefficients were used to verify the dependence of PAVEI measurements. Moreover, tissue mimicking phantoms mixed with fat and collagen at different concentrations were used to testify the feasibility of this technique with reliable contrast. Finally, the PAVEI was successfully applied to discrimination between biological tissue constituents. Our experimental results demonstrate that this novel technique has the potential for visualizing the anatomical and biomechanical properties of biological tissues.

  8. Generalization of the ordinary state-based peridynamic model for isotropic linear viscoelasticity

    Science.gov (United States)

    Delorme, Rolland; Tabiai, Ilyass; Laberge Lebel, Louis; Lévesque, Martin

    2017-02-01

    This paper presents a generalization of the original ordinary state-based peridynamic model for isotropic linear viscoelasticity. The viscoelastic material response is represented using the thermodynamically acceptable Prony series approach. It can feature as many Prony terms as required and accounts for viscoelastic spherical and deviatoric components. The model was derived from an equivalence between peridynamic viscoelastic parameters and those appearing in classical continuum mechanics, by equating the free energy densities expressed in both frameworks. The model was simplified to a uni-dimensional expression and implemented to simulate a creep-recovery test. This implementation was finally validated by comparing peridynamic predictions to those predicted from classical continuum mechanics. An exact correspondence between peridynamics and the classical continuum approach was shown when the peridynamic horizon becomes small, meaning peridynamics tends toward classical continuum mechanics. This work provides a clear and direct means to researchers dealing with viscoelastic phenomena to tackle their problem within the peridynamic framework.

  9. Interconversion of linearly viscoelastic material functions expressed as Prony series: a closure

    Science.gov (United States)

    Luk-Cyr, Jacques; Crochon, Thibaut; Li, Chun; Lévesque, Martin

    2013-02-01

    Interconversion of viscoelastic material functions is a longstanding problem that has received attention since the 1950s. There is currently no accepted methodology for interconverting viscoelastic material functions due to the lack of stability and accuracy of the existing methods. This paper presents a new exact, analytical interconversion method for linearly viscoelastic material functions expressed as Prony series. The new algorithm relies on the equations of the thermodynamics of irreversible processes used for defining linearly viscoelastic constitutive theories. As a result, interconversion is made possible for unidimensional and tridimensional materials for arbitrary material symmetry. The algorithm has been tested over a broad range of cases and was found to deliver accurate interconversion in all cases. Based on its accuracy and stability, the authors believe that their algorithm provides a closure to the interconversion of linearly viscoelastic constitutive theories expressed with Prony series.

  10. Mapping Viscoelastic and Plastic Properties of Polymers and Polymer-Nanotube Composites using Instrumented Indentation.

    Science.gov (United States)

    Gayle, Andrew J; Cook, Robert F

    An instrumented indentation method is developed for generating maps of time-dependent viscoelastic and time-independent plastic properties of polymeric materials. The method is based on a pyramidal indentation model consisting of two quadratic viscoelastic Kelvin-like elements and a quadratic plastic element in series. Closed-form solutions for indentation displacement under constant load and constant loading-rate are developed and used to determine and validate material properties. Model parameters are determined by point measurements on common monolithic polymers. Mapping is demonstrated on an epoxy-ceramic interface and on two composite materials consisting of epoxy matrices containing multi-wall carbon nanotubes. A fast viscoelastic deformation process in the epoxy was unaffected by the inclusion of the nanotubes, whereas a slow viscoelastic process was significantly impeded, as was the plastic deformation. Mapping revealed considerable spatial heterogeneity in the slow viscoelastic and plastic responses in the composites, particularly in the material with a greater fraction of nanotubes.

  11. Numerical simulations of rough contacts between viscoelastic materials

    Science.gov (United States)

    Spinu, S.; Cerlinca, D.

    2017-08-01

    The durability of the mechanical contact is often plagued by surface-related phenomena like rolling contact fatigue, wear or crack propagation, which are linked to the important gradients of stress arising in the contacting bodies due to interaction at the asperity level. The semi-analytical computational approach adopted in this paper is based on a previously reported algorithm capable of simulating the contact between bodies with arbitrary limiting surfaces and viscoelastic behaviour, which is enhanced and adapted for the contact of real surfaces with microtopography. As steep slopes at the asperity level inevitably lead to localized plastic deformation at the tip of the asperities that are first brought into contact, the viscoelastic behaviour is amended by limiting the maximum value of the pressure on the contact area to that of the material hardness, according to the Tabor equation. In this manner, plasticity is considered in a simplified manner that assures the knowledge of the contact area and of the pressure distribution without estimation of the residual state. The main advantage of this approach is the preservation of the algorithmic complexity, allowing the simulation of very fine meshes capable of capturing particular features of the investigated contacting surface. The newly advanced model is expected to predict the contact specifics of rough surfaces as resulting from various manufacturing processes, thus assisting the design of durable machine elements using elastomers or rubbers.

  12. Nonlinear waves in a fluid-filled thin viscoelastic tube

    Science.gov (United States)

    Zhang, Shan-Yuan; Zhang, Tao

    2010-11-01

    In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incompressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin—Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the propagation of nonlinear pressure wave in the solid—liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the exponent α of the perturbation parameter in Gardner—Morikawa transformation according to the order of viscous coefficient η, three kinds of evolution equations with soliton solution, i.e. Korteweg—de Vries (KdV)—Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed.

  13. Age-dependence of intracranial viscoelastic properties in living rats.

    Science.gov (United States)

    Shulyakov, Alexander V; Cenkowski, Stefan S; Buist, Richard J; Del Bigio, Marc R

    2011-04-01

    To explore the effect of maturation on intracranial mechanical properties, viscoelastic parameters were determined in 44 live rats at ages 1-2, 10-12, 21, 56-70, and 180 days using instrumented indentation. With the dura mater intact, the apparent modulus of elasticity, the indentation modulus, and viscous behavior were measured in vivo, as well as 1 h after death. In a separate group of 25 rats, brain water, and protein content were determined. A significant increase of the elastic and indentation moduli beginning at 10-12 days after birth and continuing to 180 days was observed. The creep behavior decreased in the postnatal period and stabilized at 21 days. Changes in intracranial biomechanical properties corresponded to a gradual decrease of brain water, and an increase in total protein content, including glial fibrillary acidic protein, myelin basic protein, and neurofilament light chain. Elastic properties were not significantly different comparing the live and dead states. However, there were significant postmortem changes in viscous behavior. Viscoelastic properties of living rat intracranial contents are shown to be age dependent, reflecting the physical and biochemical changes during postnatal development. This may be important for understanding why young and mature brains respond differently in situations of brain trauma and hydrocephalus. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Effect of viscoelasticity and RBC migration phenomena in stenotic microvessels

    Science.gov (United States)

    Dimakopoulos, Yiannis; Syrakos, Alexandros; Georgiou, Georgios; Tsamopoulos, John

    2014-11-01

    This study deals with the numerical simulation of the hemodynamics in stenotic microvessels. The blood flow in microvessels differs significantly from that in large arteries and veins, because the Red Blood Cells (RBCs) are comparable in size with the radius of the microvessels and, consequently, local effects such as cell interaction and migration are more pronounced. In terms of complexity of the flow, viscoelasticity along with stress-gradient induced migration effects have a more dominant role, which exceeds the viscous, inertial and transient effects. Recently, a non-homogeneous viscoelastic model has been proposed by Moyers-Gonzalez et al. (2008), which can accurately predict the Fahraeus effects. We developed a numerical algorithm for the time-integration of the set of differential equations that arise from the coupling of momentum, mass, and population balances for RBCs and aggregates with the constitutive laws for both species. The simulations show that a cell-depleted layer develops along the vessel wall with an almost constant thickness. Along this layer, the shear stresses are almost Newtonian because of the plasma, but the normal stresses that are exerted on the wall are high due to the contribution of the individual RBCs and rouleaux.

  15. Impact of gas injection on the apparent viscosity and viscoelastic property of waste activated sewage sludge.

    Science.gov (United States)

    Bobade, Veena; Baudez, Jean Christophe; Evans, Geoffery; Eshtiaghi, Nicky

    2017-05-01

    Gas injection is known to play a major role on the particle size of the sludge, the oxygen transfer rate, as well as the mixing efficiency of membrane bioreactors and aeration basins in the waste water treatment plants. The rheological characteristics of sludge are closely related to the particle size of the sludge floc. However, particle size of sludge floc depends partly on the shear induced in the sludge and partly on physico-chemical nature of the sludge. The objective of this work is to determine the impact of gas injection on both the apparent viscosity and viscoelastic property of sludge. The apparent viscosity of sludge was investigated by two methods: in-situ and after sparging. Viscosity curves obtained by in-situ measurement showed that the apparent viscosity decreases significantly from 4000 Pa s to 10 Pa s at low shear rate range (below 10 s-1) with an increase in gas flow rate (0.5LPM to 3LPM); however the after sparging flow curve analysis showed that the reduction in apparent viscosity throughout the shear rate range is negligible to be displayed. Torque and displacement data at low shear rate range revealed that the obtained lower apparent viscosity in the in-situ method is not the material characteristics, but the slippage effect due to a preferred location of the bubbles close to the bob, causing an inconsistent decrease of torque and increase of displacement at low shear rate range. In linear viscoelastic regime, the elastic and viscous modulus of sludge was reduced by 33% & 25%, respectively, due to gas injection because of induced shear. The amount of induced shear measured through two different tests (creep and time sweep) were the same. The impact of this induced shear on sludge structure was also verified by microscopic images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges

    Science.gov (United States)

    Peterson, Brandon W.; He, Yan; Ren, Yijin; Zerdoum, Aidan; Libera, Matthew R.; Sharma, Prashant K.; van Winkelhoff, Arie-Jan; Neut, Danielle; Stoodley, Paul; van der Mei, Henny C.; Busscher, Henk J.

    2015-01-01

    We summarize different studies describing mechanisms through which bacteria in a biofilm mode of growth resist mechanical and chemical challenges. Acknowledging previous microscopic work describing voids and channels in biofilms that govern a biofilms response to such challenges, we advocate a more quantitative approach that builds on the relation between structure and composition of materials with their viscoelastic properties. Biofilms possess features of both viscoelastic solids and liquids, like skin or blood, and stress relaxation of biofilms has been found to be a corollary of their structure and composition, including the EPS matrix and bacterial interactions. Review of the literature on viscoelastic properties of biofilms in ancient and modern environments as well as of infectious biofilms reveals that the viscoelastic properties of a biofilm relate with antimicrobial penetration in a biofilm. In addition, also the removal of biofilm from surfaces appears governed by the viscoelasticity of a biofilm. Herewith, it is established that the viscoelasticity of biofilms, as a corollary of structure and composition, performs a role in their protection against mechanical and chemical challenges. Pathways are discussed to make biofilms more susceptible to antimicrobials by intervening with their viscoelasticity, as a quantifiable expression of their structure and composition. PMID:25725015

  17. Viscoelastic-gravitational deformation by a rectangular thrust fault in a layered Earth

    Science.gov (United States)

    Rundle, John B.

    1982-09-01

    Previous papers in this series have been concerned with developing the numerical techniques required for the evaluation of vertical displacements which are the result of thrust faulting in a layered, elastic-gravitational earth model. This paper extends these methods to the calculation of fully time-dependent vertical surface deformation from a rectangular, dipping thrust fault in an elastic-gravitational layer over a viscoelastic-gravitational half space. The elastic-gravitational solutions are used together with the correspondence principle of linear viscoelasticity to give the solution in the Laplace transform domain. The technique used here to invert the displacements into the time domain is the Prony series technique, wherein the transformed solution is fit to the transformed representation of a truncated series of decaying exponentials. Purely viscoelastic results obtained are checked against results found previously using a different inverse transform method, and agreement is excellent. The major advantage in using the Prony series technique is that deformations can be computed for arbitrary time intervals. A series of results are obtained for a rectangular, 30° dipping thrust fault in an elastic-gravitational layer over viscoelastic-gravitational half space. Time-dependent displacements are calculated out to 50 half space relaxation times τa, or 100 Maxwell times 2τm = τa. Significant effects due to gravity are shown to exist in the solutions as early as several τa. The difference between the purely viscoelastic solution and the viscoelastic-gravitational solutions grows as time progresses. Typically, the solutions with gravity reach an equilibrium value after 10-20 relaxation times, when the purely viscoelastic solutions are still changing significantly. Additionally, the length scaling which was apparent in the purely viscoelastic problem breaks down in the viscoelastic-gravitational problem. Two independent length scales, one of which changes with

  18. A preliminary investigation of the dynamic viscoelastic relaxation of bovine cortical bone

    Directory of Open Access Journals (Sweden)

    Loete T.J.C.

    2015-01-01

    Full Text Available A new experimental approach is proposed to characterize the dynamic viscoelastic relaxation behaviour of cortical bone. Theoretical models are presented to show that a linear viscoelastic material, when allowed to relax between two long elastic bars, will produce stress, strain and strain rate histories that contain characteristic features. Furthermore, typical experimental results are presented to show that these characteristic features are observed during split Hopkinson bar tests on bovine cortical bone using a Cone-in-Tube striker. The interpretation of this behaviour in the context of a standard linear viscoelastic model is discussed.

  19. Explicit solution for the natural frequency of structures with partial viscoelastic treatment

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker

    2016-01-01

    The free vibration characteristics of structures with viscoelastic treatment are represented by the complex-valued natural frequencies. The assumed single mode representation associated with the low-frequency stiffness of the viscoelastic treatment is modified by a correction term representing...... the influence from residual vibration modes. The correction term is eliminated in terms of the corresponding natural frequency associated with the high-frequency stiffness of the viscoelastic treatment, whereby an expression is obtained for the complex-valued natural frequency, which only requires the solution...

  20. Linear Viscoelasticity of Ionic Polymers: Ionomers and Polyelectrolytes

    Science.gov (United States)

    Colby, Ralph

    Polymers with covalently bonded ionic groups exhibit interesting viscoelasticity. In polar media, significant fractions of the unattached counterions dissociate, leaving the polyelectrolyte chain with a net charge that has both conformation and dynamics dominated by charge repulsion. In less polar surroundings, the same polymer is termed an ionomer, with nearly all ions paired and the neutral pairs attract each other and associate to create temporary crosslinks. Solutions of flexible polyelectrolytes with no added salt have a wide range of concentration that is semidilute but not entangled, with dynamics described by the Rouse model. In contrast, ionomers have strong dipolar attractions between neighboring chains and are instead described by either sticky-Rouse or sticky-reptation models.

  1. A frictional contact problem for an electro-viscoelastic body

    Directory of Open Access Journals (Sweden)

    Mircea Sofonea

    2007-12-01

    Full Text Available A mathematical model which describes the quasistatic frictional contact between a piezoelectric body and a deformable conductive foundation is studied. A nonlinear electro-viscoelastic constitutive law is used to model the piezoelectric material. Contact is described with the normal compliance condition, a version of Coulomb's law of dry friction, and a regularized electrical conductivity condition. A variational formulation of the model, in the form of a coupled system for the displacements and the electric potential, is derived. The existence of a unique weak solution of the model is established under a smallness assumption on the surface conductance. The proof is based on arguments of evolutionary variational inequalities and fixed points of operators.

  2. Determination of the Creep Parameters of Linear Viscoelastic Materials

    Directory of Open Access Journals (Sweden)

    Alibay Iskakbayev

    2016-01-01

    Full Text Available Creep process of linear viscoelastic materials is described by the integral equation of Boltzmann-Volterra in which creep kernel is approximated by Rabotnov’s fractional exponential function. The creep equation contains four unknown parameters: α, singularity parameter; β, fading parameter; λ, rheological parameter; and ε0, conditionally instantaneous strain. Two-stage determination method of creep parameters is offered. At the first stage, taking into account weak singularity properties of Abel’s function at the initial moment of loading, parameters ε0 and α are determined. At the second stage, using already known parameters ε0 and α, parameters β and λ are determined. Analytical expressions for calculating these parameters are obtained. An accuracy evaluation of the offered method with using experimentally determined creep strains of material Nylon 6 and asphalt concrete showed its high accuracy.

  3. Viscosity bound violation in holographic solids and the viscoelastic response

    Energy Technology Data Exchange (ETDEWEB)

    Alberte, Lasma [Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, 34151, Trieste (Italy); Baggioli, Matteo [Institut de Física d’Altes Energies (IFAE),The Barcelona Institute of Science and Technology (BIST),Campus UAB, 08193 Bellaterra, Barcelona (Spain); Department of Physics, Institute for Condensed Matter Theory, University of Illinois,1110 W. Green Street, Urbana, IL 61801 (United States); Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE),The Barcelona Institute of Science and Technology (BIST),Campus UAB, 08193 Bellaterra, Barcelona (Spain)

    2016-07-14

    We argue that the Kovtun-Son-Starinets (KSS) lower bound on the viscosity to entropy density ratio holds in fluid systems but is violated in solid materials with a non-zero shear elastic modulus. We construct explicit examples of this by applying the standard gauge/gravity duality methods to massive gravity and show that the KSS bound is clearly violated in black brane solutions whenever the massive gravity theories are of solid type. We argue that the physical reason for the bound violation relies on the viscoelastic nature of the mechanical response in these materials. We speculate on whether any real-world materials can violate the bound and discuss a possible generalization of the bound that involves the ratio of the shear elastic modulus to the pressure.

  4. Anisotropic viscoelastic models in large deformation for architectured membranes

    Science.gov (United States)

    Rebouah, Marie; Chagnon, Gregory; Heuillet, Patrick

    2017-05-01

    Due to the industrial elaboration process, membranes can have an in-plane anisotropic mechanical behaviour. In this paper, anisotropic membranes elaborated with two different materials were developed either by calendering or by inducing a force in one direction during the process. Experimental tests are developed to measure the differences of mechanical behaviour for both materials in different in-plane properties: stiffness, viscoelasticity and stress-softening. A uniaxial formulation is developed, and a homogenisation by means of a sphere unit approach is used to propose a three-dimensional formulation to represent the materials behaviour. An evolution of the mechanical parameters, depending on the direction, is imposed to reproduce the anisotropic behaviour of the materials. Comparison with experimental data highlights very promising results.

  5. Resonance of Brownian vortices in viscoelastic shear flows

    Science.gov (United States)

    Laas, K.; Mankin, R.

    2015-10-01

    The dynamics of a Brownian particle in an oscillatory viscoelastic shear flow is considered using the generalized Langevin equation. The interaction with fluctuations of environmental parameters is modeled by an additive external white noise and by an internal Mittag-Leffer noise with a finite memory time. Focusing on the mean angular momentum of particles it is shown that the presence of memory has a profound effect on the behavior of the Brownian vortices. Particularly, if an external noise dominates over the internal noise, a resonance-like dependence of the mean angular momentum of "free" particles, trapped due to the cage effect, on the characteristic memory time is observed. Moreover, it is established that memory effects can induce two kinds of resonance peaks: one resonance peak is related to the presence of external noise and the other is related to the initial positional distribution of particles. The bona fide resonance versus the shear frequency is also discussed.

  6. Creep test observation of viscoelastic failure of edible fats

    Science.gov (United States)

    Vithanage, C. R.; Grimson, M. J.; Smith, B. G.; Wills, P. R.

    2011-03-01

    A rheological creep test was used to investigate the viscoelastic failure of five edible fats. Butter, spreadable blend and spread were selected as edible fats because they belong to three different groups according to the Codex Alimentarius. Creep curves were analysed according to the Burger model. Results were fitted to a Weibull distribution representing the strain-dependent lifetime of putative fibres in the material. The Weibull shape and scale (lifetime) parameters were estimated for each substance. A comparison of the rheometric measurements of edible fats demonstrated a clear difference between the three different groups. Taken together the results indicate that butter has a lower threshold for mechanical failure than spreadable blend and spread. The observed behaviour of edible fats can be interpreted using a model in which there are two types of bonds between fat crystals; primary bonds that are strong and break irreversibly, and secondary bonds, which are weaker but break and reform reversibly.

  7. Inertial and viscoelastic forces on rigid colloids in microfluidic channels.

    Science.gov (United States)

    Howard, Michael P; Panagiotopoulos, Athanassios Z; Nikoubashman, Arash

    2015-06-14

    We perform hybrid molecular dynamics simulations to study the flow behavior of rigid colloids dispersed in a dilute polymer solution. The underlying Newtonian solvent and the ensuing hydrodynamic interactions are incorporated through multiparticle collision dynamics, while the constituent polymers are modeled as bead-spring chains, maintaining a description consistent with the colloidal nature of our system. We study the cross-stream migration of the solute particles in slit-like channels for various polymer lengths and colloid sizes and find a distinct focusing onto the channel center under specific solvent and flow conditions. To better understand this phenomenon, we systematically measure the effective forces exerted on the colloids. We find that the migration originates from a competition between viscoelastic forces from the polymer solution and hydrodynamically induced inertial forces. Our simulations reveal a significantly stronger fluctuation of the lateral colloid position than expected from thermal motion alone, which originates from the complex interplay between the colloid and polymer chains.

  8. Enhancing the Damping Properties of Viscoelastic Composites by Topology Optimization

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Andreassen, Erik; Sigmund, Ole

    in engineering structures. Thus, materials or composites with high stiffness and high damping are of great interest to the industry. The inherent compromise between high stiffness and high damping in viscoelastic materials has been treated theoretically [2, 3] and experimentally [1]. It has been shown that high...... stiffness and high damping can be realized by Hashin-type composites or Rank-N laminates. However, in order to manufacture such composites it is favorable to obtain single length scale microstructures, i.e. without multiscale structures such that the materials can be manufactured by modern manufacturing...... techniques. As an example, by the use of e.g. SLM/SLS - Selective Laser Melting/Sintering, an open metallic microstructure can be printed and in a subsequent process the porespace can be filled with a high loss compliant material. Yi and co-workers [6] applied topology optimization to design the 2D...

  9. Collision of viscoelastic bodies: Rigorous derivation of dissipative force.

    Science.gov (United States)

    Goldobin, Denis S; Susloparov, Eugeniy A; Pimenova, Anastasiya V; Brilliantov, Nikolai V

    2015-06-01

    We report a new theory of dissipative forces acting between colliding viscoelastic bodies. The impact velocity is assumed not to be large to neglect plastic deformations in the material and propagation of sound waves. We consider the general case of bodies of an arbitrary convex shape and of different materials. We develop a mathematically rigorous perturbation scheme to solve the continuum mechanics equations that deal with both displacement and displacement rate fields and accounts for the dissipation in the bulk of the material. The perturbative solution of these equations allows to go beyond the previously used quasi-static approximation and obtain the dissipative force. The derived force does not suffer from the inconsistencies of the quasi-static approximation, like the violation of the third Newton's law for the case of different materials, and depends on particle deformation and deformation rate.

  10. Pmma fiber viscoelasticity in extremely low frequency regime

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Nielsen, Kristian; Bang, Ole

    2015-01-01

    We are reporting on the viscoelasticity of PMMA based Fiber Bragg Grating (FBG) strain sensors when exposed to repeated sequences of long term strain and relaxation with various duty-cycles and frequencies much smaller than 1 Hz. Monitoring the FBG wavelength and how it follows the applied strain......, we have shown that after being strained up to 1%, the fiber will rapidly contract elastically to a certain amount after which a viscous-dominated relaxation takes place. The amount of elastic versus viscous relaxation depends both on the level of applied strain and on the duration of the strain......%), which could, in certain applications, influence the sensitivity range of sensors based on plastic fibers....

  11. Viscosity bound violation in holographic solids and the viscoelastic response

    Science.gov (United States)

    Alberte, Lasma; Baggioli, Matteo; Pujolàs, Oriol

    2016-07-01

    We argue that the Kovtun-Son-Starinets (KSS) lower bound on the viscosity to entropy density ratio holds in fluid systems but is violated in solid materials with a nonzero shear elastic modulus. We construct explicit examples of this by applying the standard gauge/gravity duality methods to massive gravity and show that the KSS bound is clearly violated in black brane solutions whenever the massive gravity theories are of solid type. We argue that the physical reason for the bound violation relies on the viscoelastic nature of the mechanical response in these materials. We speculate on whether any real-world materials can violate the bound and discuss a possible generalization of the bound that involves the ratio of the shear elastic modulus to the pressure.

  12. A note on adding viscoelasticity to earthquake simulators

    Science.gov (United States)

    Pollitz, Fred

    2017-01-01

    Here, I describe how time‐dependent quasi‐static stress transfer can be implemented in an earthquake simulator code that is used to generate long synthetic seismicity catalogs. Most existing seismicity simulators use precomputed static stress interaction coefficients to rapidly implement static stress transfer in fault networks with typically tens of thousands of fault patches. The extension to quasi‐static deformation, which accounts for viscoelasticity of Earth’s ductile lower crust and mantle, involves the precomputation of additional interaction coefficients that represent time‐dependent stress transfer among the model fault patches, combined with defining and evolving additional state variables that track this stress transfer. The new approach is illustrated with application to a California‐wide synthetic fault network.

  13. Nonlinear Dynamical Model of a Soft Viscoelastic Dielectric Elastomer

    Science.gov (United States)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2017-12-01

    Actuated by alternating stimulation, dielectric elastomers (DEs) show a behavior of complicated nonlinear vibration, implying a potential application as dynamic electromechanical actuators. As is well known, for a vibrational system, including the DE system, the dynamic properties are significantly affected by the geometrical sizes. In this article, a nonlinear dynamical model is deduced to investigate the geometrical effects on dynamic properties of viscoelastic DEs. The DEs with square and arbitrary rectangular geometries are considered, respectively. Besides, the effects of tensile forces on dynamic performances of rectangular DEs with comparably small and large geometrical sizes are explored. Phase paths and Poincaré maps are utilized to detect the periodicity of the nonlinear vibrations of DEs. The resonance characteristics of DEs incorporating geometrical effects are also investigated. The results indicate that the dynamic properties of DEs, including deformation response, vibrational periodicity, and resonance, are tuned when the geometrical sizes vary.

  14. Modeling of the viscoelastic behavior of a polyimide matrix at elevated temperature

    Science.gov (United States)

    Crochon, Thibaut

    Use of Polymer Matrix Composite Materials (PMCMs) in aircraft engines requires materials able to withstand extreme service conditions, such as elevated temperatures, high mechanical loadings and an oxidative environment. In such an environment, the polymer matrix is likely to exhibit a viscoelastic behavior dependent on the mechanical loading and temperature. In addition, the combined effects of elevated temperature and the environment near the engines are likely to increase physical as well as chemical aging. These various parameters need to be taken into consideration for the designer to be able to predict the material behavior over the service life of the components. The main objective of this thesis was to study the viscoelastic behavior of a high temperature polyimide matrix and develop a constitutive theory able to predict the material behavior for every of service condition. Then, the model had to have to be implemented into commercially available finite-element software such as ABAQUS or ANSYS. Firstly, chemical aging of the material at service temperature was studied. To that end, a thermogravimetric analysis of the matrix was conducted on powder samples in air atmosphere. Two kinds of tests were performed: i) kinetic tests in which powder samples were heated at a constant rate until complete sublimation; ii) isothermal tests in which the samples were maintained at a constant temperature for 24 hours. The first tests were used to develop a degradation model, leading to an excellent fit of the experimental data. Then, the model was used to predict the isothermal data but which much less success, particularly for the lowest temperatures. At those temperatures, the chemical degradation was preceded by an oxidation phase which the model was not designed to predict. Other isothermal degradation tests were also performed on tensile tests samples instead of powders. Those tests were conducted at service temperature for a much longer period of time. The samples

  15. Validation of viscoelastic coagulation tests during cardiopulmonary bypass.

    Science.gov (United States)

    Ortmann, E; Rubino, A; Altemimi, B; Collier, T; Besser, M W; Klein, A A

    2015-07-01

    Viscoelastic point-of-care tests such as thromboelastography (TEG) and rotational thromboelastometry (ROTEM) are increasingly used to guide hemostatic therapy after cardiac surgery. The aim of this study was to assess their clinical utility during cardiopulmonary bypass to predict postbypass coagulation status and to guide therapy. In this prospective study, TEG and ROTEM tests were performed in 52 adult patients undergoing elective cardiac surgery at two time points: near the end of cardiopulmonary bypass and after heparin reversal with protamine. The 95% confidence intervals of the mean difference were compared with a prespecified clinically relevant limit of ± 20% of the value after protamine. Both viscoelastic fibrinogen assays were well within the prespecified clinically relevant limit (≥ 79% of patients). The laboratory Clauss fibrinogen was much lower during cardiopulmonary bypass than after protamine (mean difference 1.2 g L(-1) , 95% CI 1.03-1.4, which was outside a clinically acceptable difference. For intrinsically activated tests, clotting times (CT) were different and outside the prespecified limit on TEG (mean difference -1.2 min, 95% CI -1.8 to -0.6) but not on ROTEM (mean difference 2.3 sec, 95% CI -8.6 to 13.2), while clot strength was well within the clinical limit on both devices (≥ 94% of patients). For extrinsically activated tests, clot strength on both TEG and ROTEM was within the pre-specified limit in 98% of patients. Results from TEG and ROTEM tests performed toward the end of cardiopulmonary bypass are similar to results after reversal of heparin. Amplitudes indicating clot strength were the most stable parameters across all tests, whereas CT showed more variability. In contrast, laboratory testing of fibrinogen using the Clauss assay was essentially invalid during cardiopulmonary bypass. © 2015 International Society on Thrombosis and Haemostasis.

  16. A sub-cellular viscoelastic model for cell population mechanics.

    Directory of Open Access Journals (Sweden)

    Yousef Jamali

    Full Text Available Understanding the biomechanical properties and the effect of biomechanical force on epithelial cells is key to understanding how epithelial cells form uniquely shaped structures in two or three-dimensional space. Nevertheless, with the limitations and challenges posed by biological experiments at this scale, it becomes advantageous to use mathematical and 'in silico' (computational models as an alternate solution. This paper introduces a single-cell-based model representing the cross section of a typical tissue. Each cell in this model is an individual unit containing several sub-cellular elements, such as the elastic plasma membrane, enclosed viscoelastic elements that play the role of cytoskeleton, and the viscoelastic elements of the cell nucleus. The cell membrane is divided into segments where each segment (or point incorporates the cell's interaction and communication with other cells and its environment. The model is capable of simulating how cells cooperate and contribute to the overall structure and function of a particular tissue; it mimics many aspects of cellular behavior such as cell growth, division, apoptosis and polarization. The model allows for investigation of the biomechanical properties of cells, cell-cell interactions, effect of environment on cellular clusters, and how individual cells work together and contribute to the structure and function of a particular tissue. To evaluate the current approach in modeling different topologies of growing tissues in distinct biochemical conditions of the surrounding media, we model several key cellular phenomena, namely monolayer cell culture, effects of adhesion intensity, growth of epithelial cell through interaction with extra-cellular matrix (ECM, effects of a gap in the ECM, tensegrity and tissue morphogenesis and formation of hollow epithelial acini. The proposed computational model enables one to isolate the effects of biomechanical properties of individual cells and the

  17. Onset of Primary and Secondary Instabilities of Viscoelastic Fluids Saturating a Porous Layer Heated from below by a Constant Flux

    Directory of Open Access Journals (Sweden)

    Abdoulaye Gueye

    2017-07-01

    Full Text Available We analyze the thermal convection thresholds and linear characteristics of the primary and secondary instabilities for viscoelastic fluids saturating a porous horizontal layer heated from below by a constant flux. The Galerkin method is used to solve the eigenvalue problem by taking into account the elasticity of the fluid, the ratio between the viscosity of the solvent and the total viscosity of the fluid and the lateral confinement of the medium. For the primary instability, we found out that depending on the rheological parameters, two types of convective structures may appear when the basic conductive solution loses its stability: stationary long wavelength instability as for Newtonian fluids and oscillatory convection. The effect of the lateral confinement of the porous medium by adiabatic walls is to stabilize the oblique and longitudinal rolls and therefore selects transverse rolls at the onset of convection. In the range of the rheological parameters where stationary long wave instability develops first, we use a parallel flow approximation to determine analytically the velocity and temperature fields associated with the monocellular convective flow. The linear stability analysis of the monocellular flow is performed, and the critical conditions above which the flow becomes unstable are determined. The combined influence of the viscoelastic parameters and the lateral confinement on the characteristics of the secondary instability is quantified. The major new findings concerning the secondary instabilities may be summarized as follows: (i For concentrated viscoelastic fluids, computations showed that the most amplified mode of convection corresponds to oscillatory transverse rolls, which appears via a Hopf bifurcation. This pattern selection is independent of both the fluid elasticity and the lateral confinement of the porous medium. (ii For diluted viscoelastic fluids, the preferred mode of convection is found to be oscillatory

  18. Viscoelastic Characterization of Peripapillary Sclera: Material Properties by Quadrant in Rabbit and Monkey Eyes

    Science.gov (United States)

    Downs, J. Crawford; Suh, J-K. Francis; Thomas, Kevin A.; Bellezza, Anthony J.; Burgoyne, Claude F.; Hart, Richard T.

    2009-01-01

    In this report we characterize the viscoelastic material properties of peripapillary sclera from the four quadrants surrounding the optic nerve head in both rabbit and monkey eyes. Scleral tensile specimens harvested from each quadrant were subjected to uniaxial stress relaxation and tensile ramp to failure tests. Linear viscoelastic theory, coupled with a spectral reduced relaxation function, was employed to characterize the viscoelastic properties of the tissues. We detected no differences in the stress-strain curves of specimens from the four quadrants surrounding the optic nerve head (ONH) below a strain of 4 percent in either the rabbit or monkey. While the peripapillary sclera from monkey eyes is significantly stiffer (both instantaneously and in equilibrium) and relaxes more slowly than that from rabbits, we detected no differences in the viscoelastic material properties (tested at strains of 0–1 percent) of sclera from the four quadrants surrounding the ONH within either species group. PMID:12661206

  19. Micromechanics of transformation fields in ageing linear viscoelastic composites: effects of phase dissolution or precipitation

    Science.gov (United States)

    Honorio, Tulio

    2017-11-01

    Transformation fields, in an affine formulation characterizing mechanical behavior, describe a variety of physical phenomena regardless their origin. Different composites, notably geomaterials, present a viscoelastic behavior, which is, in some cases of industrial interest, ageing, i.e. it evolves independently with respect to time and loading time. Here, a general formulation of the micromechanics of prestressed or prestrained composites in Ageing Linear Viscoelasticity (ALV) is presented. Emphasis is put on the estimation of effective transformation fields in ALV. The result generalizes Ageing Linear Thermo- and Poro-Viscoelasticity and it can be used in approaches coping with a phase transformation. Additionally, the results are extended to the case of locally transforming materials due to non-coupled dissolution and/or precipitation of a given (elastic or viscoelastic) phase. The estimations of locally transforming composites can be made with respect to different morphologies. As an application, estimations of the coefficient of thermal expansion of a hydrating alite paste are presented.

  20. A Phenomenological Thermal-Mechanical Viscoelastic Constitutive Modeling for Polypropylene Wood Composites

    Directory of Open Access Journals (Sweden)

    Xiongqi Peng

    2012-01-01

    Full Text Available This paper presents a phenomenological thermal-mechanical viscoelastic constitutive modeling for polypropylene wood composites. Polypropylene (PP wood composite specimens are compressed at strain rates from 10−4 to 10−2 s−1 and at temperature of , , and , respectively. The mechanical responses are shown to be sensitive both to strain rate and to temperature. Based on the Maxwell viscoelastic model, a nonlinear thermal-mechanical viscoelastic constitutive model is developed for the PP wood composite by decoupling the effect of temperature with that of the strain rate. Corresponding viscoelastic parameters are obtained through curve fitting with experimental data. Then the model is used to simulate thermal compression of the PP wood composite. The predicted theoretical results coincide quite well with experimental data. The proposed constitutive model is then applied to the thermoforming simulation of an automobile interior part with the PP wood composites.

  1. Characterization of the Viscoelasticity of Molding Compounds in the Time Domain

    Science.gov (United States)

    Chae, Seung-Hyun; Zhao, Jie-Hua; Edwards, Darvin R.; Ho, Paul S.

    2010-04-01

    Although polymer-based materials are widely used in microelectronics packaging and viscoelasticity is an intrinsic characteristic of polymers, viscoelastic properties of polymeric materials are often ignored in package stress analyses due to the difficulty in measuring these properties. However, it is necessary to consider the viscoelastic behavior when an accurate stress model is required. Viscoelastic properties of materials can be characterized in either the time or the frequency domain. In this study, stress relaxation experiments were performed on a molding compound in the time domain. A thermorheologically simple model was assumed to deduce the master curve of relaxation modulus using the time-temperature equivalence assumption. A Prony series expansion was used to express the material’s relaxation behavior. Two methods to determine the Prony pairs and shift factors were compared. After they were determined, the master curve at a reference temperature was shifted to every measured temperature for comparison with experimental data.

  2. A viscoelastic fluid-structure interaction model for carotid arteries under pulsatile flow.

    Science.gov (United States)

    Wang, Zhongjie; Wood, Nigel B; Xu, Xiao Yun

    2015-05-01

    In this study, a fluid-structure interaction model (FSI) incorporating viscoelastic wall behaviour is developed and applied to an idealized model of the carotid artery under pulsatile flow. The shear and bulk moduli of the arterial wall are described by Prony series, where the parameters can be derived from in vivo measurements. The aim is to develop a fully coupled FSI model that can be applied to realistic arterial geometries with normal or pathological viscoelastic wall behaviour. Comparisons between the numerical and analytical solutions for wall displacements demonstrate that the coupled model is capable of predicting the viscoelastic behaviour of carotid arteries. Comparisons are also made between the solid only and FSI viscoelastic models, and the results suggest that the difference in radial displacement between the two models is negligible. Copyright © 2015 John Wiley & Sons, Ltd.

  3. On the influence of microscopic architecture elements to the global viscoelastic properties of soft biological tissue

    Science.gov (United States)

    Posnansky, Oleg P.

    2014-12-01

    In this work we introduce a 2D minimal model of random scale-invariant network structures embedded in a matrix to study the influence of microscopic architecture elements on the viscoelastic behavior of soft biological tissue. Viscoelastic properties at a microscale are modeled by a cohort of basic elements with varying complexity integrated into multi-hierarchic lattice obeying self-similar geometry. It is found that this hierarchy of structure elements yields a global nonlinear frequency dependent complex-valued shear modulus. In the dynamic range of external frequency load, the modeled shear modulus proved sensitive to the network concentration and viscoelastic characteristics of basic elements. The proposed model provides a theoretical framework for the interpretation of dynamic viscoelastic parameters in the context of microstructural variations under different conditions.

  4. Use of viscoelastic substance in ophthalmic surgery – focus on sodium hyaluronate

    Science.gov (United States)

    Higashide, Tomomi; Sugiyama, Kazuhisa

    2008-01-01

    Among viscoelastic substances, sodium hyaluronate has become the most popular for intraocular surgeries since the introduction of Healon® (sodium hyaluronate 1%, 4 × 106 daltons) in 1979. This review focuses on the recent development of a new generation of sodium hyaluronate agents with new rheologic properties and the relevant new techniques used in cataract, glaucoma, corneal, and vitreoretinal surgeries. The introduction of sodium hyaluronate agents with different rheologic properties has improved the safety and reliability of intraocular surgeries. Although there have been numerous studies reporting the effectiveness of viscoelastic substances in intraocular surgeries, rigorous validation by multi-center randomized control trials is lacking in many cases. At present, no single viscoelastic agent is most suitable to all of the various intraocular surgical techniques. Therefore, ophthalmologic surgeons should keep up with recent developments of viscoelastic agents and relevant surgical techniques for better patient care. PMID:19668386

  5. On the realization of the bulk modulus bounds for two-phase viscoelastic composites

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Andreassen, Erik; Jensen, Jakob Søndergaard

    2014-01-01

    Materials with good vibration damping properties and high stiffness are of great industrial interest. In this paper the bounds for viscoelastic composites are investigated and material microstructures that realize the upper bound are obtained by topology optimization. These viscoelastic composites...... can be realized by additive manufacturing technologies followed by an infiltration process. Viscoelastic composites consisting of a relatively stiff elastic phase, e.g. steel, and a relatively lossy viscoelastic phase, e.g. silicone rubber, have non-connected stiff regions when optimized for maximum...... damping. In order to ensure manufacturability of such composites the connectivity of the matrix is ensured by imposing a conductivity constraint and the influence on the bounds is discussed. © 2013 Elsevier Ltd. All rights reserved....

  6. A blow-up result for a viscoelastic system in $R^n

    Directory of Open Access Journals (Sweden)

    Salim A. Messaoudi

    2007-08-01

    Full Text Available In this paper we consider a coupled system of nonlinear viscoelastic equations. Under suitable conditions on the initial data and the relaxation functions, we prove a finite-time blow-up result.

  7. Experimental study on two oscillating grid turbulence with viscoelastic fluids based on PIV

    National Research Council Canada - National Science Library

    Wang, Yue; Zheng, Xin; Cai, Wei-Hua; Zhang, Hong-Na; Li, Feng-Chen

    2017-01-01

    In this paper, to study the viscoelastic effect on isotropic turbulence without wall effects, a two oscillating grid turbulence is built to investigate this phenomenon using particle image velocimetry...

  8. Experimental investigation of temperature effect on yield of a pool of oil possessing viscoelastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Ametov, I.M.; Baidikov, Yu.N.; Berezhnoi, N.I.; Bereryuk, I.M.; Ruzin, L.M.

    1982-02-01

    The effect of temperature on petroleum yield of a pool of viscoelastic oil when displaced by water from a viable porous medium model is considered. Based on experiments, a nonmonotonous character of the dependence of the oil yield on temperature is established. A decrease of oil yield following a rise in temperature is noted. This is explained by an anomaly of viscoelastic properties within that temperature interval.

  9. Unsteady Boundary-Layer Flow over Jerked Plate Moving in a Free Stream of Viscoelastic Fluid

    Directory of Open Access Journals (Sweden)

    Sufian Munawar

    2014-01-01

    Full Text Available This study aims to investigate the unsteady boundary-layer flow of a viscoelastic non-Newtonian fluid over a flat surface. The plate is suddenly jerked to move with uniform velocity in a uniform stream of non-Newtonian fluid. Purely analytic solution to governing nonlinear equation is obtained. The solution is highly accurate and valid for all values of the dimensionless time 0≤τ<∞. Flow properties of the viscoelastic fluid are discussed through graphs.

  10. Influence Study of the Viscoelastic Fluids Features in Drag Reduction in Laminar Regime Flow in Pipeline

    OpenAIRE

    Vilalta Guillermo; Silva Mário; Blanco Alejandro

    2016-01-01

    The drag reduction by polymer addition is wide interest in several areas. It has been shown that the polymer addition cushions the dissipative effects in turbulent flows. The main objective of this work is to establish a methodology for the numerical simulation of viscoelastic fluid through internal subroutines implemented in the Fluent code, via UDF. The validation of this methodology is made for the laminar flow regime case in pipeline. To describe the viscoelastic effect, it was used the F...

  11. A mathematical and Physical Model Improves Accuracy in Simulating Solid Material Relaxation Modulus and Viscoelastic Responses

    OpenAIRE

    Xu, Qinwu; Engquist, Bjorn

    2014-01-01

    We propose a new material viscoelastic model and mathematical solution to simulate relaxation modulus and viscoelastic response. The model formula of relaxation modulus is extended from sigmoidal function considering nonlinear strain hardening and softening. Its physical mechanism can be interpreted by a spring network viscous medium model with only five parameters in a simpler format than the molecular-chain based polymer models to represent general materials. We also developed a three-dimen...

  12. Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids

    Energy Technology Data Exchange (ETDEWEB)

    Nenadic, Ivan Z; Urban, Matthew W; Mitchell, Scott A; Greenleaf, James F [Basic Ultrasound Research Laboratory, Department of Physiology and Biophysics, Mayo Clinic, Rochester, MN 55905 (United States)

    2011-04-07

    Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of shear wave dispersion ultrasound vibrometry (SDUV), a noninvasive ultrasound-based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave dispersion ultrasound vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify the mechanical properties of soft tissues with a plate-like geometry.

  13. A distinguishable role of eDNA in the viscoelastic relaxation of biofilms.

    Science.gov (United States)

    Peterson, Brandon W; van der Mei, Henny C; Sjollema, Jelmer; Busscher, Henk J; Sharma, Prashant K

    2013-10-15

    Bacteria in the biofilm mode of growth are protected against chemical and mechanical stresses. Biofilms are composed, for the most part, of extracellular polymeric substances (EPSs). The extracellular matrix is composed of different chemical constituents, such as proteins, polysaccharides, and extracellular DNA (eDNA). Here we aimed to identify the roles of different matrix constituents in the viscoelastic response of biofilms. Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, and Pseudomonas aeruginosa biofilms were grown under different conditions yielding distinct matrix chemistries. Next, biofilms were subjected to mechanical deformation and stress relaxation was monitored over time. A Maxwell model possessing an average of four elements for an individual biofilm was used to fit the data. Maxwell elements were defined by a relaxation time constant and their relative importance. Relaxation time constants varied widely over the 104 biofilms included and were divided into seven ranges (500 s). Principal-component analysis was carried out to eliminate related time constant ranges, yielding three principal components that could be related to the known matrix chemistries. The fastest relaxation component (component (3 to 70 s) was related to other EPSs, while a distinguishable role was assigned to intact eDNA, which possesses a unique principal component with a time constant range (10 to 25 s) between those of EPS constituents. This implies that eDNA modulates its interaction with other matrix constituents to control its contribution to viscoelastic relaxation under mechanical stress. The protection offered by biofilms to organisms that inhabit it against chemical and mechanical stresses is due in part to its matrix of extracellular polymeric substances (EPSs) in which biofilm organisms embed themselves. Mechanical stresses lead to deformation and possible detachment of biofilm organisms, and hence, rearrangement processes occur in a biofilm to

  14. Effect of Fluid Viscoelasticity on Turbulence and Large-Scale Vortices behind Wall-Mounted Plates

    Directory of Open Access Journals (Sweden)

    Takahiro Tsukahara

    2014-03-01

    Full Text Available Direct numerical simulations of turbulent viscoelastic fluid flows in a channel with wall-mounted plates were performed to investigate the influence of viscoelasticity on turbulent structures and the mean flow around the plate. The constitutive equation follows the Giesekus model, valid for polymer or surfactant solutions, which are generally capable of reducing the turbulent frictional drag in a smooth channel. We found that turbulent eddies just behind the plates in viscoelastic fluid decreased in number and in magnitude, but their size increased. Three pairs of organized longitudinal vortices were observed downstream of the plates in both Newtonian and viscoelastic fluids: two vortex pairs were behind the plates and the other one with the longest length was in a plate-free area. In the viscoelastic fluid, the latter vortex pair in the plate-free area was maintained and reached the downstream rib, but its swirling strength was weakened and the local skin-friction drag near the vortex was much weaker than those in the Newtonian flow. The mean flow and small spanwise eddies were influenced by the additional fluid force due to the viscoelasticity and, moreover, the spanwise component of the fluid elastic force may also play a role in the suppression of fluid vortical motions behind the plates.

  15. Structure-induced nonlinear viscoelasticity of non-woven fibrous matrices.

    Science.gov (United States)

    Rizvi, Mohd Suhail; Pal, Anupam; Das, Sovan Lal

    2016-12-01

    Fibrous materials are widely utilized as tissue engineering scaffolds for tissue regeneration and other bioengineering applications. The structural as well as mechanical characteristics of the fibrous matrices under static and dynamic mechanical loading conditions influence the response of the cells. In this paper, we study the mechanical response of the non-woven fibrous matrices under oscillatory loading conditions and its dependence on the structural properties of fibrous matrix. We demonstrate that under oscillatory shear and elongation, the fibrous matrices demonstrate nonlinear viscoelasticity at all strain amplitudes. This is contrary to the behavior of other soft polymeric materials for which nonlinearity in the viscoelastic response vanishes for small strains. These observations suggest that despite their prevalence, the measures of linear viscoelasticity (e.g., storage and loss moduli) are inadequate for the general description of the viscoelastic nature of the fibrous materials. It was, however, found that linear viscoelastic nature of fibrous matrices for small amplitudes is restored when a pre-stretch is applied to the fibrous matrix along with oscillatory strains. Further, we also explored the influence of the structural properties of the fibrous matrices (fiber orientation, alignment and curvature) on their viscoelastic nature.

  16. Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.

    Science.gov (United States)

    Demirci, Nagehan; Tönük, Ergin

    2014-01-01

    During the last decades, derivatives and integrals of non-integer orders are being more commonly used for the description of constitutive behavior of various viscoelastic materials including soft biological tissues. Compared to integer order constitutive relations, non-integer order viscoelastic material models of soft biological tissues are capable of capturing a wider range of viscoelastic behavior obtained from experiments. Although integer order models may yield comparably accurate results, non-integer order material models have less number of parameters to be identified in addition to description of an intermediate material that can monotonically and continuously be adjusted in between an ideal elastic solid and an ideal viscous fluid. In this work, starting with some preliminaries on non-integer (fractional) calculus, the "spring-pot", (intermediate mechanical element between a solid and a fluid), non-integer order three element (Zener) solid model, finally a user-defined large strain non-integer order viscoelastic constitutive model was constructed to be used in finite element simulations. Using the constitutive equation developed, by utilizing inverse finite element method and in vivo indentation experiments, soft tissue material identification was performed. The results indicate that material coefficients obtained from relaxation experiments, when optimized with creep experimental data could simulate relaxation, creep and cyclic loading and unloading experiments accurately. Non-integer calculus viscoelastic constitutive models, having physical interpretation and modeling experimental data accurately is a good alternative to classical phenomenological viscoelastic constitutive equations.

  17. Time-dependent ultrasound echo changes occur in tendon during viscoelastic testing.

    Science.gov (United States)

    Duenwald-Kuehl, Sarah; Kobayashi, Hirohito; Lakes, Roderic; Vanderby, Ray

    2012-11-01

    The viscoelastic behavior of tendons has been extensively studied in vitro. A noninvasive method by which to acquire mechanical data would be highly beneficial, as it could lead to the collection of viscoelastic data in vivo. Our lab has previously presented acoustoelasticity as an alternative ultrasound-based method of measuring tendon stress and strain by reporting a relationship between ultrasonic echo intensity (B mode ultrasound image brightness) and mechanical behavior of tendon under pseudoelastic in vitro conditions [Duenwald, S., Kobayashi, H., Frisch, K., Lakes, R., and Vanderby Jr, R., 2011, "Ultrasound Echo is Related to Stress and Strain in Tendon," J. Biomech., 44(3), pp. 424-429]. Viscoelastic properties of the tendons were not examined in that study, so the presence of time-dependent echo intensity changes has not been verified. In this study, porcine flexor tendons were subjected to relaxation and cyclic testing while ultrasonic echo response was recorded. We report that time- and strain history-dependent mechanical properties during viscoelastic testing are manifested in ultrasonic echo intensity changes. We also report that the patterns of the echo intensity changes do not directly mimic the patterns of viscoelastic load changes, but the intensity changed in a repeatable (and therefore predictable) fashion. Although mechanisms need further elucidation, viscoelastic behavior can be anticipated from echo intensity changes. This phenomenon could potentially lead to a more extensive characterization of in vivo tissue behavior.

  18. Mathematica numerical simulation of peristaltic biophysical transport of a fractional viscoelastic fluid through an inclined cylindrical tube.

    Science.gov (United States)

    Tripathi, D; Anwar Bég, O

    2015-01-01

    This paper studies the peristaltic transport of a viscoelastic fluid (with the fractional second-grade model) through an inclined cylindrical tube. The wall of the tube is modelled as a sinusoidal wave. The flow analysis is presented under the assumptions of long wave length and low Reynolds number. Caputo's definition of fractional derivative is used to formulate the fractional differentiation. Analytical solutions are developed for the normalized momentum equations. Expressions are also derived for the pressure, frictional force, and the relationship between the flow rate and pressure gradient. Mathematica numerical computations are then performed. The results are plotted and analysed for different values of fractional parameter, material constant, inclination angle, Reynolds number, Froude number and peristaltic wave amplitude. It is found that fractional parameter and Froude number resist the flow pattern while material constant, Reynolds number, inclination of angle and amplitude aid the peristaltic flow. Furthermore, frictional force and pressure demonstrate the opposite behaviour under the influence of the relevant parameters emerging in the equations of motion. The study has applications in uretral biophysics, and also potential use in peristaltic pumping of petroleum viscoelastic bio-surfactants in chemical engineering and astronautical applications involving conveyance of non-Newtonian fluids (e.g. lubricants) against gravity and in conduits with deformable walls.

  19. Multi-Material 3-D Viscoelastic Model of a Transtibial Residuum from In-vivo Indentation and MRI Data

    CERN Document Server

    Sengeh, David Moinina; Petron, Arthur; Herr, Hugh

    2016-01-01

    Although the socket is critical in a prosthetic system for a person with limb amputation, the methods of its design are largely artisanal. A roadblock for a repeatable and quantitative socket design process is the lack of predictive and patient specific biomechanical models of the residuum. This study presents the evaluation of such a model using a combined experimental-numerical approach. The model geometry and tissue boundaries are derived from MRI. The soft tissue non-linear elastic and viscoelastic mechanical behavior was evaluated using inverse finite element analysis (FEA) of in-vivo indentation experiments. A custom designed robotic in-vivo indentation system was used to provide a rich experimental data set of force versus time at 18 sites across a limb. During FEA, the tissues were represented by two layers, namely the skin-adipose layer and an underlying muscle-soft tissue complex. The non-linear elastic behavior was modeled using 2nd order Ogden hyperelastic formulations, and viscoelasticity was mod...

  20. Concerning the Effect of a Viscoelastic Foundation on the Dynamic Stability of a Pipeline System Conveying an Incompressible Fluid

    Directory of Open Access Journals (Sweden)

    Vincent Olunloyo

    2016-12-01

    Full Text Available In this paper, we present an analytical method for solving a well-posed boundary value problem of mathematical physics governing the vibration characteristics of an internal flow propelled fluid-structure interaction where the pipeline segment is idealized as an elastic hollow beam conveying an incompressible fluid on a viscoelastic foundation. The effect of Coriolis and damping forces on the overall dynamic response of the system is investigated. In actuality, for a pipe segment supported at both ends and subject to a free motion, these two forces generate conjugate complex frequencies for all flow velocities. On employing integral transforms and complex variable functions, a closed form analytical expression is derived for the overall dynamic response. It is demonstrated that a concise mathematical expression for the natural frequency associated with any mode of vibration can be deduced from the algebraic product of the complex frequency pairs. By a way of comparative analysis for damping decrement physics reminiscent with laminated structures, mathematical expressions are derived to illustrate viscoelastic damping effects on dynamic stability for any flow velocity. The integrity of the analytical solution is verified and validated by confirming theresults in literature in appropriate asymptotic limits.

  1. Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium.

    Science.gov (United States)

    Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer

    2015-01-01

    An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number.

  2. The role of body flexibility in stroke enhancements for finite-length undulatory swimmers in viscoelastic fluids

    CERN Document Server

    Thomases, Becca

    2016-01-01

    The role of passive body dynamics on the kinematics of swimming micro-organisms in complex fluids is investigated. Asymptotic analysis of small amplitude motions of a finite-length undulatory swimmer in a Stokes-Oldroyd-B fluid is used to predict shape changes that result as body elasticity and fluid elasticity are varied. Results from the analysis are compared with numerical simulations, and the small amplitude analysis of shape changes is quantitatively accurate at both small and large amplitudes, even for strongly elastic flows. We compute a stroke-induced swimming speed that accounts for the shape changes, but not additional effects of fluid elasticity. Elastic induced shape changes lead to larger amplitude strokes for sufficiently soft swimmers in a viscoelastic fluid, and these stroke boosts can lead to swimming speed-ups, but we find that additional effects of fluid elasticity generically slow down swimmers. High amplitude strokes in strongly elastic flows lead to a qualitatively different regime in wh...

  3. Viscoelasticity and pattern formations in stock market indices

    Science.gov (United States)

    Gündüz, Güngör; Gündüz, Aydın

    2017-06-01

    The viscoelastic and thermodynamic properties of four stock indices, namely, DJI, Nasdaq-100, Nasdaq-Composite, and S&P were analyzed for a period of 30 years from 1986 to 2015. The asset values (or index) can be placed into Aristotelian `potentiality-actuality' framework by using scattering diagram. Thus, the index values can be transformed into vectorial forms in a scattering diagram, and each vector can be split into its horizontal and vertical components. According to viscoelastic theory, the horizontal component represents the conservative, and the vertical component represents the dissipative behavior. The related storage and the loss modulus of these components are determined and then work-like and heat-like terms are calculated. It is found that the change of storage and loss modulus with Wiener noise (W) exhibit interesting patterns. The loss modulus shows a featherlike pattern, whereas the storage modulus shows figurative man-like pattern. These patterns are formed due to branchings in the system and imply that stock indices do have a kind of `fine-order' which can be detected when the change of modulus values are plotted with respect to Wiener noise. In theoretical calculations it is shown that the tips of the featherlike patterns stay at negative W values, but get closer to W = 0 as the drift in the system increases. The shift of the tip point from W = 0 indicates that the price change involves higher number of positive Wiener number corrections than the negative Wiener. The work-like and heat-like terms also exhibit patterns but with different appearance than modulus patterns. The decisional changes of people are reflected as the arrows in the scattering diagram and the propagation path of these vectors resemble the path of crack propagation. The distribution of the angle between two subsequent vectors shows a peak at 90°, indicating that the path mostly obeys the crack path occurring in hard objects. Entropy mimics the Wiener noise in the evolution

  4. Thermal, creep-recovery and viscoelastic behavior of high density polyethylene/hydroxyapatite nano particles for bone substitutes: effects of gamma radiation.

    Science.gov (United States)

    Alothman, Othman Y; Fouad, H; Al-Zahrani, S M; Eshra, Ayman; Al Rez, Mohammed Fayez; Ansari, S G

    2014-08-28

    High Density Polyethylene (HDPE) is one of the most often used polymers in biomedical applications. The limitations of HDPE are its visco-elastic behavior, low modulus and poor bioactivity. To improve HDPE properties, HA nanoparticles can be added to form polymer composite that can be used as alternatives to metals for bone substitutes and orthopaedic implant applications. In our previous work (BioMedical Engineering OnLine 2013), different ratios of HDPE/HA nanocomposites were prepared using melt blending in a co-rotating intermeshing twin screw extruder. The accelerated aging effects on the tensile properties and torsional viscoelastic behavior (storage modulus (G') and Loss modulus (G")) at 80°C of irradiated and non-irradiated HDPE/HA was investigated. Also the thermal behavior of HDPE/HA were studied. In this study, the effects of gamma irradiation on the tensile viscoelastic behavior (storage modulus (E') and Loss modulus (E")) at 25°C examined for HDPE/HA nanocomposites at different frequencies using Dynamic Mechanical Analysis (DMA). The DMA was also used to analyze creep-recovery and relaxation properties of the nanocomposites. To analyze the thermal behavior of the HDPE/HA nanocomposite, Differential Scanning Calorimetry (DSC) was used. The microscopic examination of the cryogenically fractured surface revealed a reasonable distribution of HA nanoparticles in the HDPE matrix. The DMA showed that the tensile storage and loss modulus increases with increasing the HA nanoparticles ratio and the test frequency. The creep-recovery behavior improves with increasing the HA nanoparticle content. Finally, the results indicated that the crystallinity, viscoelastic, creep recovery and relaxation behavior of HDPE nanocomposite improved due to gamma irradiation. Based on the experimental results, it is found that prepared HDPE nanocomposite properties improved due to the addition of HA nanoparticles and irradiation. So, the prepared HDPE/HA nanocomposite appears to

  5. Rolling contact of a rigid sphere/sliding of a spherical indenter upon a viscoelastic half-space containing an ellipsoidal inhomogeneity

    Science.gov (United States)

    Koumi, Koffi Espoir; Chaise, Thibaut; Nelias, Daniel

    2015-07-01

    In this paper, the frictionless rolling contact problem between a rigid sphere and a viscoelastic half-space containing one elastic inhomogeneity is solved. The problem is equivalent to the frictionless sliding of a spherical tip over a viscoelastic body. The inhomogeneity may be of spherical or ellipsoidal shape, the later being of any orientation relatively to the contact surface. The model presented here is three dimensional and based on semi-analytical methods. In order to take into account the viscoelastic aspect of the problem, contact equations are discretized in the spatial and temporal dimensions. The frictionless rolling of the sphere, assumed rigid here for the sake of simplicity, is taken into account by translating the subsurface viscoelastic fields related to the contact problem. Eshelby's formalism is applied at each step of the temporal discretization to account for the effect of the inhomogeneity on the contact pressure distribution, subsurface stresses, rolling friction and the resulting torque. A Conjugate Gradient Method and the Fast Fourier Transforms are used to reduce the computation cost. The model is validated by a finite element model of a rigid sphere rolling upon a homogeneous vciscoelastic half-space, as well as through comparison with reference solutions from the literature. A parametric analysis of the effect of elastic properties and geometrical features of the inhomogeneity is performed. Transient and steady-state solutions are obtained. Numerical results about the contact pressure distribution, the deformed surface geometry, the apparent friction coefficient as well as subsurface stresses are presented, with or without heterogeneous inclusion.

  6. Performance-based placement of manufactured viscoelastic dampers for design response spectrum

    Directory of Open Access Journals (Sweden)

    Yutaka eNakamura

    2016-05-01

    Full Text Available In this study, a viscoelastic damper (VED is developed by using a VE material with low temperature dependence, and a performance-based placement-design procedure of VEDs is developed for finding the storywise distribution of VEDs in a building such that each peak interstory drift coincides with the prescribed value. The mechanical properties of the employed VED’s dependence on amplitude and frequency of the excitation as well as material temperature are taken into account and a mechanical nonlinear four-element model that comprises two dashpot elements and two spring elements is proposed for the VED. The developed performance-based design procedure utilizes equivalent linearization of the VED and the expanded complete quadratic combination (CQC method, which involves modal analysis with complex eigenvalue analysis. An equivalent linear Voigt model of the VED is determined by the prescribed peak interstory drift and the fundamental natural period of the structure for which the VEDs are installed. Seismic response analyses are carried out for high-rise building models installed with the necessary number of wall-type VEDs, with the results demonstrating the effectiveness and validity of the proposed performance-based placement-design procedure.

  7. Curing Behavior and Viscoelasticity of Dual-Curable Adhesives Based on High-Reactivity Azo Initiator

    Science.gov (United States)

    Lee, Jong-Gyu; Shim, Gyu-Seong; Park, Ji-Won; Kim, Hyun-Joong; Moon, Sang-Eun; Kim, Young-Kwan; No, Dong-Hun; Kim, Jong-Hwan; Han, Kwan-Young

    2016-07-01

    We have investigated the curing behavior of dual-curable acrylic resin to solve problems associated with curing of adhesives in shaded areas during display manufacture. A low-temperature curing-type thermal initiator, 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), with a 30°C half-life decomposition temperature was used in the investigation. Dual-curable adhesives were prepared according to the thermal initiator content and ultraviolet (UV) radiation dose. The effects of thermal initiator and UV irradiation on the curing behavior and viscoelasticity were investigated. Using Fourier-transform infrared spectroscopy and gel-fraction analysis, an evaluation was carried out to determine the degree of curing after dual UV/thermal curing. In addition, the real-time curing behavior was evaluated using thermogravimetric analysis, differential scanning calorimetry, and a UV/advanced rheometric expansion system. A lift-off test was carried out to verify the effects of dual curing on adhesion performance. Application of UV irradiation before thermal curing suppressed the thermal curing efficiency. Also, the network structure formed after dual curing with low UV dose showed higher crosslinking density. Therefore, the thermal initiator radical effectively influenced uncured areas with low curing temperature and initiator content without causing problems in UV-curable zones.

  8. Immersed boundary methods for particles in viscoelastic drilling muds

    Science.gov (United States)

    Krishnan, Sreenath; Shaqfeh, Eric; Iaccarino, Gianluca

    2014-11-01

    In fracture stimulation of oil and gas wells, polymeric solution with suspended solids (proppants) are pumped to prop open the fracture. The primary aim of our work is to understand the dynamics of such proppants under various flow conditions through numerical computations. The study is concerned with fully resolved simulations, wherein all scales associated with the particle motion and the flow are resolved. The present effort is based on the algorithm proposed by Patankar (CTR Annual Research Briefs 2001:185), i.e. the Immersed Boundary (IB) methods, in which the domain grids do not conform to particle geometry and for simplicity are chosen to be Cartesian. Since Cartesian grids cannot efficiently represent a fracture geometry, our focus is on the development of an IB method for viscoelastic flows in unstructured domain grids. This method is implemented in a massively parallel, unstructured finite-volume-based fluid solver developed at Stanford University. The main theme of the presentation will be the description of the algorithm, measures taken to enable efficient parallelization and transfer of information between the underlying fluid grid and the particle mesh. A number of flow simulations will be presented, which validates the accuracy and correctness of the algorithm.

  9. A viscoelastic model to simulate soft tissue materials

    Science.gov (United States)

    Espinoza Ortiz, J. S.; Lagos, R. E.

    2015-09-01

    Continuum mechanic theories are frequently used to simulate the mechanical behavior of elastic and viscous materials, specifically soft tissues typically showing incompressibility, nonlinear deformation under stress, fading memory and insensitivity to the strain-rate. The time dependence of a viscoelastic material could be better understood by considering it as composed by an elastic solid and a viscous fluid. Different types of mechanical devices can be constructed provided a particular configuration of elastic springs and dashpots. In this work our aim is to probe many of the soft tissue mechanical behavior, by considering a Kelvin's device coupled to a set of in parallel Maxwell's devices. Then, the resulting model composed of a long series of modified Kelvin bodies must span a broad range of characteristic times resulting in a suitable model for soft tissue simulation. Under driving static and dynamic stress applied to a 2-Dim system, its time dependence strain response is computed. We obtain a set of coupled Volterra integral equations solved via the extended trapezoidal rule scheme, and the Newton-Raphson method to solve nonlinear coupled equations.

  10. Propagation of Nonlinear Surface Waves over Viscoelastic Mud

    Science.gov (United States)

    Sharifi-Neyestani, E.; Tahvildari, N.

    2016-12-01

    Mud is ubiquitous in coastal waters, and it is well known that surface waves dissipate strongly over a muddy seabed. An accurate model for wave evolution requires an accurate characterization of mud rheology. There has been several assumptions for mud rheology. In this study, we incorporate a mud-induced damping mechanism in a frequency-domain phase-resolving nonlinear wave model. The mud layer is assumed to be thin and behave as a viscoelastic medium. First, model results for monochromatic surface waves are compared with laboratory experiments and a good comparison is obtained. It is shown that increasing the mud elasticity results in a decrease in damping and an increase in phase-shift from the case with a purely viscous mud. The validated model is then employed to examine the combined effect of mud viscosity and elasticity on evolution of surface wave spectrum. Two-dimensional simulations demonstrate strong wave dissipation over a mud patch resulting in a significant diffraction in the lee side.

  11. Complex modulus estimation respecting causality: Application to viscoelastic bars

    Science.gov (United States)

    Collet, P.; Gary, G.; Lundberg, B.; Mohr, D.

    2012-08-01

    The identification of linear visco-elasticity models mostly focuses on the real and imaginary parts of the Young's modulus. Many methods have been proposed in the past to identify these material model parameters from experiments. However, when these parameters are determined independently, they are likely to violate the principle of causality. The present work presents a method that accounts for the constraints of causality and positivity of dissipation rate. The proposed method is based on a finite set of n measured angular frequencies and complex moduli. It includes a noise reduction procedure and provides a rheological 2p + 1)-parameter model with p modulus on the positive imaginary frequency axis are determined by p parameters which are obtained as the common positive zeros of a special class of rational functions, while the remaining parameters are obtained from a least squares fit. The level of refinement of the rheological model, expressed by p, is not an assumed value but a result of the method. The method is applied to an impact test with a Nylon bar specimen. In this case, data at the n = 29 lowest resonance frequencies resulted in a rheological model with 14 parameters (p = 6). The validity of the method is checked through supplementary experimental results at low frequencies.

  12. The analytical representation of viscoelastic material properties using optimization techniques

    Science.gov (United States)

    Hill, S. A.

    1993-02-01

    This report presents a technique to model viscoelastic material properties with a function of the form of the Prony series. Generally, the method employed to determine the function constants requires assuming values for the exponential constants of the function and then resolving the remaining constants through linear least-squares techniques. The technique presented here allows all the constants to be analytically determined through optimization techniques. This technique is employed in a computer program named PRONY and makes use of commercially available optimization tool developed by VMA Engineering, Inc. The PRONY program was utilized to compare the technique against previously determined models for solid rocket motor TP-H1148 propellant and V747-75 Viton fluoroelastomer. In both cases, the optimization technique generated functions that modeled the test data with at least an order of magnitude better correlation. This technique has demonstrated the capability to use small or large data sets and to use data sets that have uniformly or nonuniformly spaced data pairs. The reduction of experimental data to accurate mathematical models is a vital part of most scientific and engineering research. This technique of regression through optimization can be applied to other mathematical models that are difficult to fit to experimental data through traditional regression techniques.

  13. Current-induced viscoelastic topological unwinding of metastable skyrmion strings.

    Science.gov (United States)

    Kagawa, Fumitaka; Oike, Hiroshi; Koshibae, Wataru; Kikkawa, Akiko; Okamura, Yoshihiro; Taguchi, Yasujiro; Nagaosa, Naoto; Tokura, Yoshinori

    2017-11-06

    In the MnSi bulk chiral magnet, magnetic skyrmion strings of 17 nm in diameter appear in the form of a lattice, penetrating the sample thickness, 10-1000 μm. Although such a bundle of skyrmion strings may exhibit complex soft-matter-like dynamics when starting to move under the influence of a random pinning potential, the details remain highly elusive. Here, we show that a metastable skyrmion-string lattice is subject to topological unwinding under the application of pulsed currents of 3-5 × 10 6  A m -2 rather than being transported, as evidenced by measurements of the topological Hall effect. The critical current density above which the topological unwinding occurs is larger for a shorter pulse width, reminiscent of the viscoelastic characteristics accompanying the pinning-creep transition observed in domain-wall motion. Numerical simulations reveal that current-induced depinning of already segmented skyrmion strings initiates the topological unwinding. Thus, the skyrmion-string length is an element to consider when studying current-induced motion.

  14. A Linear Viscoelastic Model Calibration of Sylgard 184.

    Energy Technology Data Exchange (ETDEWEB)

    Long, Kevin Nicholas; Brown, Judith Alice

    2017-04-01

    We calibrate a linear thermoviscoelastic model for solid Sylgard 184 (90-10 formulation), a lightly cross-linked, highly flexible isotropic elastomer for use both in Sierra / Solid Mechanics via the Universal Polymer Model as well as in Sierra / Structural Dynamics (Salinas) for use as an isotropic viscoelastic material. Material inputs for the calibration in both codes are provided. The frequency domain master curve of oscillatory shear was obtained from a report from Los Alamos National Laboratory (LANL). However, because the form of that data is different from the constitutive models in Sierra, we also present the mapping of the LANL data onto Sandia’s constitutive models. Finally, blind predictions of cyclic tension and compression out to moderate strains of 40 and 20% respectively are compared with Sandia’s legacy cure schedule material. Although the strain rate of the data is unknown, the linear thermoviscoelastic model accurately predicts the experiments out to moderate strains for the slower strain rates, which is consistent with the expectation that quasistatic test procedures were likely followed. This good agreement comes despite the different cure schedules between the Sandia and LANL data.

  15. Viscoelastic capillary flow: the case of whole blood

    Directory of Open Access Journals (Sweden)

    David Rabaud

    2016-07-01

    Full Text Available The dynamics of spontaneous capillary flow of Newtonian fluids is well-known and can be predicted by the Lucas-Washburn-Rideal (LWR law. However a wide variety of viscoelastic fluids such as alginate, xanthan and blood, does not exhibit the same Newtonian behavior.In this work we consider the Herschel-Bulkley (HB rheological model and Navier-Stokes equation to derive a generic expression that predicts the capillary flow of non-Newtonian fluids. The Herschel-Bulkley rheological model encompasses a wide variety of fluids, including the Power-law fluids (also called Ostwald fluids, the Bingham fluids and the Newtonian fluids. It will be shown that the proposed equation reduces to the Lucas-Washburn-Rideal law for Newtonian fluids and to the Weissenberg-Rabinowitsch-Mooney (WRM law for power-law fluids. Although HB model cannot reduce to Casson’s law, which is often used to model whole blood rheology, HB model can fit the whole blood rheology with the same accuracy.Our generalized expression for the capillary flow of non-Newtonian fluid was used to accurately fit capillary flow of whole blood. The capillary filling of a cylindrical microchannel by whole blood was monitored. The blood first exhibited a Newtonian behavior, then after 7 cm low shear stress and rouleaux formation made LWR fails to fit the data: the blood could not be considered as Newtonian anymore. This non-Newtonian behavior was successfully fit by the proposed equation.

  16. Arrested coalescence of viscoelastic droplets: triplet shape and restructuring

    Science.gov (United States)

    Dahiya, Prerna; DeBenedictis, Andrew; Atherton, Timothy J.; Caggioni, Marco; Prescott, Stuart W.; Hartel, Richard W.; Spicer, Patrick T.

    The stability of shapes formed by three viscoelastic droplets during their arrested coalescence has been investigated using micromanipulation experiments. Addition of a third droplet to arrested droplet doublets is shown to be controlled by the balance between interfacial pressures driving coalescence and internal elasticity that resists total consolidation. The free fluid available within the droplets controls the transmission of stress during droplet combination and allows connections to occur via formation of a neck between the droplets. The anisotropy of three-droplet systems adds complexity to the symmetric case of two-droplet aggregates because of the multiplicity of orientations possible for the third droplet. When elasticity dominates, the initial orientation of the third droplet is preserved in the triplet's final shape. When elasticity is dominated by the interfacial driving force, the final shape can deviate strongly from the initial positioning of droplets. Movement of the third droplet to a more compact packing occurs, driven by liquid meniscus expansion that minimizes the surface energy of the triplet. A range of compositions and orientations are examined and the resulting domains of restructuring and stability are mapped based on the final triplet structure. A geometric and a physical model are used to explain the mechanism driving meniscus-induced restructuring and are related to the impact of these phenomena on multiple droplet emulsions.

  17. Arrested coalescence of viscoelastic droplets with internal microstructure.

    Science.gov (United States)

    Pawar, Amar B; Caggioni, Marco; Hartel, Richard W; Spicer, Patrick T

    2012-01-01

    There are many new approaches to designing complex anisotropic colloids, often using droplets as templates. However, droplets themselves can be designed to form anisotropic shapes without any external templates. One approach is to arrest binary droplet coalescence at an intermediate stage before a spherical shape is formed. Further shape relaxation of such anisotropic, arrested structures is retarded by droplet elasticity, either interfacial or internal. In this article we study coalescence of structured droplets, containing a network of anisotropic colloids, whose internal elasticity provides a resistance to full shape relaxation and interfacial energy minimization during coalescence. Precise tuning of droplet elasticity arrests coalescence at different stages and leads to various anisotropic shapes, ranging from doublets to ellipsoids. A simple model balancing interfacial and elastic energy is used to explain experimentally observed coalescence arrest in viscoelastic droplets. During coalescence of structured droplets the interfacial energy is continuously reduced while the elastic energy is increased by compression of the internal structure and, when the two processes balance one another, coalescence is arrested. Experimentally we observe that if either interfacial energy or elasticity dominates, total coalescence or total stability of droplets results. The stabilization mechanism is directly analogous to that in a Pickering emulsion, though here the resistance to coalescence is provided via an internal volume-based, rather than surface, structure. This study provides guidelines for designing anisotropic droplets by arrested coalescence but also explains some observations of "partial" coalescence observed in commercial foods like ice cream and whipped cream.

  18. Visco-Elastic Properties of Sodium Hyaluronate Solutions

    Science.gov (United States)

    Kulicke, Werner-Michael; Meyer, Fabian; Bingöl, Ali Ö.; Lohmann, Derek

    2008-07-01

    Sodium Hyaluronate (NaHA) is a member of the glycosaminoglycans and is present in the human organism as part of the synovial fluid and the vitreous body. HA is mainly commercialized as sodium or potassium salt. It can be extracted from cockscombs or can be produced by bacterial fermentation ensuring a low protein content. Because of its natural origin and toxicological harmlessness, NaHA is used to a great extent for pharmaceutical and cosmetic products. In medical applications, NaHA is already being used as a component of flushing and stabilizing fluids in the treatment of eye cataract and as a surrogate for natural synovial fluid. Another growing domain in the commercial utilization of NaHA is the field of skin care products like dermal fillers or moisturizers. In this spectrum, NaHA is used in dilute over semidilute up to concentrated (0viscoelastic behavior. We therefore present in this contribution the results of a comprehensive investigation of the viscous and elastic material functions of different NaHA samples. This includes, besides shear flow and oscillatory experiments, the performance of rheo-optical measurements in order to determine the elastic component in the range of low shear rates and low concentrations.

  19. Spherical particle sedimenting in weakly viscoelastic shear flow

    Science.gov (United States)

    Einarsson, Jonas; Mehlig, Bernhard

    2017-06-01

    We consider the dynamics of a small spherical particle driven through an unbounded viscoelastic shear flow by an external force. We give analytical solutions to both the mobility problem (the velocity of a forced particle) and the resistance problem (the force on a fixed particle), valid to second order in the dimensionless Deborah and Weissenberg numbers, which represent the elastic relaxation time of the fluid relative to the rate of translation and the imposed shear rate. We find a shear-induced lift at O (Wi ) , a modified drag at O (De2) and O (Wi2) , and a second lift that is orthogonal to the first, at O (Wi2) . The relative importance of these effects depends strongly on the orientation of the forcing relative to the shear. We discuss how these forces affect the terminal settling velocity in an inclined shear flow. We also describe a basis set of symmetric Cartesian tensors and demonstrate how they enable general tensorial perturbation calculations such as the present theory. In particular, this scheme allows us to write down a solution to the inhomogeneous Stokes equations, required by the perturbation expansion, by a sequence of algebraic manipulations well suited to computer implementation.

  20. A micromechanical viscoelastic model for soft biological tissue

    Science.gov (United States)

    Coudrillier, Baptiste; Nguyen, Thao; Nguyen lab Team, Prof.

    2013-03-01

    Understanding the viscoelastic behavior of soft collageneous tissue from micromechanical considerations is critical to the characterization of their physiological and pathological response. In this study, we propose to model biological tissue as an aggregate of unit cells (UC). Each UC represents two wavy parallel collagen fibrils cross-linked by intrafibrillar bridges. A fibril consists of two linear springs deforming axially, and interconnected by a linear torsional spring modeling the fibril bending rigidity. When an axial displacement is applied to the unit cell, the uncrimping and stretching of the fibrils cause the ground substance to shear and the intrafibrillar bridges to rotate. This model assumes that the time-dependent behavior of the UC is due to the viscous rotation of the bridges, which are modeled as Maxwell solids. The constitutive equation of the tissue is calculated from the orientation average of the constitutive equation of the unit cell weighted by the probability density function for unit cell distribution. The performance of the model to predict the creep response will be illustrated using the results of an inflation test performed on the human sclera.

  1. Oil drainage in model porous media by viscoelastic fluids

    Science.gov (United States)

    Beaumont, Julien; Bodiguel, Hugues; Colin, Annie

    2012-11-01

    Crude oil recovery efficiency has been shown to depend directly on the capillary number (Ca). If the capillary phenomenon is well described for Newtonian fluids, the consequences of non linear rheology and viscoelasticity require more experimental work at the pore scale. In this work we take advantage of microfluidic to revisit this field. We carried out oil drainage experiments through a micromodel made up with photoresist resin. The wetting phase trapped is a model oil. The invading phases used are aqueous solutions of high molecular weight hydrolyzed polyacrylamide (HPAM) and surfactant. Qualitatively, we observed a transition between a capillary fingering at low flow rates and a stable front at high flow rates for the drainage experiments with HPAM and surfactant solutions as it happened for drainage with Newtonian fluids. From movies of the filling of the device, we determine the local velocity of all menisci in the porous media. Thus, we quantify the capillary fingering. Surprisingly, local velocities are not significantly different from those measured using water, whereas the HPAM solutions are much more viscous. With betaine solutions, we observed an emulsification of the oil clusters trapped during the invasion leading to a very high oil recovery after percolation.

  2. Characteristics of Viscoelastic Crustal Deformation Following a Megathrust Earthquake: Discrepancy Between the Apparent and Intrinsic Relaxation Time Constants

    Science.gov (United States)

    Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro

    2017-12-01

    The viscoelastic deformation of an elastic-viscoelastic composite system is significantly different from that of a simple viscoelastic medium. Here, we show that complicated transient deformation due to viscoelastic stress relaxation after a megathrust earthquake can occur even in a very simple situation, in which an elastic surface layer (lithosphere) is underlain by a viscoelastic substratum (asthenosphere) under gravity. Although the overall decay rate of the system is controlled by the intrinsic relaxation time constant of the asthenosphere, the apparent decay time constant at each observation point is significantly different from place to place and generally much longer than the intrinsic relaxation time constant of the asthenosphere. It is also not rare that the sense of displacement rate is reversed during the viscoelastic relaxation. If we do not bear these points in mind, we may draw false conclusions from observed deformation data. Such complicated transient behavior can be explained mathematically from the characteristics of viscoelastic solution: for an elastic-viscoelastic layered half-space, the viscoelastic solution is expressed as superposition of three decaying components with different relaxation time constants that depend on wavelength.

  3. Effect of Ratio of Visco-Elastic Material Viscosity to Fluid Viscosity on Stability of Flexible Pipe Flow

    Science.gov (United States)

    ANBUKUMAR, S.; KUMAR, MUNENDRA

    2017-08-01

    In the present study, a flexible pipe has been considered to study the effect of ratio of visco-elastic material viscosity to fluid viscosity on the stability of flexible laminar pipe flow with axi-symmetric disturbances. The effect of thickness of visco-elastic material on the stability of flexible pipe flow with outer rigid shroud has also been studied. The stability curves are drawn for various values of the ratio of visco-elastic material viscosity to fluid viscosity. It is observed that stability of flow is increasing by decreasing the ratio of visco-elastic material viscosity to fluid viscosity.

  4. Partnership on Rotational ViscoElastic Test Standardization (PROVETS): evidence-based guidelines on rotational viscoelastic assays in veterinary medicine.

    Science.gov (United States)

    Goggs, Robert; Brainard, Benjamin; de Laforcade, Armelle M; Flatland, Bente; Hanel, Rita; McMichael, Maureen; Wiinberg, Bo

    2014-01-01

    To systematically examine the evidence relating to the performance of rotational viscoelastic testing in companion animals, to develop assay guidelines, and to identify knowledge gaps. Multiple questions were considered within 5 parent domains, specifically system comparability, sample handling, assay activation and test protocol, definitions and data reporting, and nonstandard assays. Standardized, systematic evaluation of the literature was performed. Relevant articles were categorized according to level of evidence and assessed for quality. Consensus was developed regarding conclusions for application of concepts to clinical practice. Academic and referral veterinary medical centers. Databases searched included Medline, Commonwealth Agricultural Bureaux abstracts, and Google Scholar. Worksheets were prepared evaluating 28 questions across the 5 domains and generating 84 assay guidelines. Evidence-based guidelines for the performance of thromboelastography in companion animals were generated through this process. Some of these guidelines are well supported while others will benefit from additional evidence. Many knowledge gaps were identified and future work should be directed to address these gaps and to objectively evaluate the impact of these guidelines on assay comparability within and between centers. © Veterinary Emergency and Critical Care Society 2014.

  5. Conjugate Heat Transfer of Mixed Convection for Viscoelastic Fluid Past a Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Kai-Long Hsiao

    2007-01-01

    Full Text Available A conjugate heat transfer problem of a second-grade viscoelastic fluid past a stretching sheet has been studied. Governing equations include heat conduction equation of a stretching sheet, continuity equation, momentum equation, and energy equation of a second-grade fluid, analyzed by a combination of a series expansion method, the similarity transformation, and a second-order accurate finite-difference method. These solutions are used to iterate with the heat conduction equation of the stretching sheet to obtain distributions of the local convective heat transfer coefficient and the stretching sheet temperature. Ranges of dimensionless parameters, the Prandtl number Pr, the elastic number E and the conduction-convection coefficient Ncc are from 0.001 to 10, 0.0001 to 0.01, and 0.5 to 2.0, respectively. A parameter G, which is used to represent the dominance of the buoyant effect, is present in governing equations. Results indicated that elastic effect in the flow could increase the local heat transfer coefficient and enhance the heat transfer of a stretching sheet. In addition, same as the results from Newtonian fluid flow and conduction analysis of a stretching sheet, a better heat transfer is obtained with a larger Ncc, G, and E.

  6. Finite strain formulation of viscoelastic damage model for simulation of fabric reinforced polymers under dynamic loading

    Directory of Open Access Journals (Sweden)

    Treutenaere S.

    2015-01-01

    Full Text Available The use of fabric reinforced polymers in the automotive industry is growing significantly. The high specific stiffness and strength, the ease of shaping as well as the great impact performance of these materials widely encourage their diffusion. The present model increases the predictability of explicit finite element analysis and push the boundaries of the ongoing phenomenological model. Carbon fibre composites made up various preforms were tested by applying different mechanical load up to dynamic loading. This experimental campaign highlighted the physical mechanisms affecting the initial mechanical properties, namely intra- and interlaminar matrix damage, viscoelasticty and fibre failure. The intralaminar behaviour model is based on the explicit formulation of the matrix damage model developed by the ONERA as the given damage formulation correlates with the experimental observation. Coupling with a Maxwell-Wiechert model, the viscoelasticity is included without losing the direct explicit formulation. Additionally, the model is formulated under a total Lagrangian scheme in order to maintain consistency for finite strain. Thus, the material frame-indifference as well as anisotropy are ensured. This allows reorientation of fibres to be taken into account particularly for in-plane shear loading. Moreover, fall within the framework of the total Lagrangian scheme greatly makes the parameter identification easier, as based on the initial configuration. This intralaminar model thus relies upon a physical description of the behaviour of fabric composites and the numerical simulations show a good correlation with the experimental results.

  7. Extreme Wetting-Resistant Multiscale Nano-/Microstructured Surfaces for Viscoelastic Liquid Repellence

    Directory of Open Access Journals (Sweden)

    Aoythip Chunglok

    2016-01-01

    Full Text Available We demonstrate exceptional wetting-resistant surfaces capable of repelling low surface tension, non-Newtonian, and highly viscoelastic liquids. Theoretical analysis and experimental result confirm that a higher level of multiscale roughness topography composed of at least three structural length scales, ranging from nanometer to supermicron sizes, is crucial for the reduction of liquid-solid adhesion hysteresis. With Cassie-Baxter nonwetting state satisfied at all roughness length scales, the surface has been proven to effectively repel even highly adhesive liquid. Practically, this high-level hierarchical structure can be achieved through fractal-like structures of silica aggregates induced by siloxane oligomer interparticle bridges. The induced aggregation and surface functionalization of the silica particles can be performed simultaneously within a single reaction step, by utilizing trifunctional fluoroalkylsilane precursors that largely form a disordered fluoroalkylsiloxane grafting layer under the presence of sufficient native moisture preadsorbed at the silica surface. Spray-coating deposition of a particle surface layer on a precoated primer layer ensures facile processability and scalability of the fabrication method. The resulting low-surface-energy multiscale roughness exhibits outstanding liquid repellent properties, generating equivalent lotus effect for highly viscous and adhesive natural latex concentrate, with apparent contact angles greater than 160°, and very small roll-off angles of less than 3°.

  8. Ionically cross-linked hyaluronic acid: wetting, lubrication, and viscoelasticity of a modified adhesion barrier gel

    Directory of Open Access Journals (Sweden)

    Katherine Vorvolakos

    2010-12-01

    Full Text Available Katherine Vorvolakos1, Irada S Isayeva1, Hoan-My Do Luu1, Dinesh V Patwardhan1, Steven K Pollack21Division of Chemistry and Material Science, 2Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USAAbstract: Hyaluronic acid (HA, in linear or cross-linked form, is a common component of cosmetics, personal care products, combination medical products, and medical devices. In all cases, the ability of the HA solution or gel to wet surfaces and/or disrupt and lubricate interfaces is a limiting feature of its mechanism of action. We synthesized ferric ion–cross-linked networks of HA based on an adhesion barrier, varied the degree of cross-linking, and performed wetting goniometry, viscometry, and dynamic mechanical analysis. As cross-linking increases, so do contact angle, viscosity, storage modulus, and loss modulus; thus, wetting and lubrication are compromised. These findings have implications in medical device materials, such as adhesion barriers and mucosal drug delivery vehicles.Keywords: hyaluron, adhesion barrier, wetting, contact angle, viscosity, lubrication, elasticity, viscoelastic, hydrogel, ferric

  9. Finite-Strain Fractional-Order Viscoelastic (FOV) Material Models and Numerical Methods for Solving Them

    Science.gov (United States)

    Freed, Alan D.; Diethelm, Kai; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Fraction-order viscoelastic (FOV) material models have been proposed and studied in 1D since the 1930's, and were extended into three dimensions in the 1970's under the assumption of infinitesimal straining. It was not until 1997 that Drozdov introduced the first finite-strain FOV constitutive equations. In our presentation, we shall continue in this tradition by extending the standard, FOV, fluid and solid, material models introduced in 1971 by Caputo and Mainardi into 3D constitutive formula applicable for finite-strain analyses. To achieve this, we generalize both the convected and co-rotational derivatives of tensor fields to fractional order. This is accomplished by defining them first as body tensor fields and then mapping them into space as objective Cartesian tensor fields. Constitutive equations are constructed using both variants for fractional rate, and their responses are contrasted in simple shear. After five years of research and development, we now possess a basic suite of numerical tools necessary to study finite-strain FOV constitutive equations and their iterative refinement into a mature collection of material models. Numerical methods still need to be developed for efficiently solving fraction al-order integrals, derivatives, and differential equations in a finite element setting where such constitutive formulae would need to be solved at each Gauss point in each element of a finite model, which can number into the millions in today's analysis.

  10. Viscoelasticity of Oxidised Starch and Low Methoxy Pectin in the Presence of Glucose Syrup

    Directory of Open Access Journals (Sweden)

    S. Kasapis

    1999-01-01

    Full Text Available The structural properties of mixtures with pectin, oxidised starch and glucose syrup were investigated using small deformation dynamic oscillation. The composition of the mixture, pH and temperature course of analysis were designed to imitate the development of confectionery products. In the absence of added calcium, preparations of low methoxy pectin with glucose syrup form viscous solutions, which remain crystal-free at subzero temperatures. Samples of oxidised starch and glucose syrup. on the other hand, exhibit solid-like behavior due to the crystalline nature of the amylose-like helices. Mixtures of the two polyssacharides with the co-solute show clearly the phase inversion from liquid to solid-like behavior with increasing amounts of starch in the formulation. The transformation is reflected in the textural properties of samples which vary from thick solutions to firm gels. The viscoelasticity of the system can be modified further by the introduction of high methoxy pectin. 1hus preparations of high methoxy pectin and glucose syrup form rubbery gels whose amorphous nature undergoes a glass transition during cooling. The energetic requirement for the formation of the biological rubber was in good agreement with corresponding data in the literature.

  11. Finite element reduction strategy for composite sandwich plates with viscoelastic layers

    Directory of Open Access Journals (Sweden)

    Adriana Amaro Diacenco

    2013-04-01

    Full Text Available Composite materials have been regarded as a convenient strategy in various types of engineering systems such as aeronautical and space structures, as well as architecture and light industry products due to their advantages over the traditional engineering materials, such as their high strength/stiffness relation characteristics and their anti-corrosion properties. This paper is devoted to the finite element modeling of composite laminated structures incorporating viscoelastic materials to the problem of vibration attenuation. However, the typically high dimension of large finite element models of composite structures incorporating viscoelastic materials makes the numerical processes sometimes unfeasible. Within this context, emphasis is placed on a general condensation strategy specially adapted for the case of viscoelastically damped structures, in which a constant (frequency- and temperature-independent reduction basis to be enriched by static residues associated to the applied loads and the viscoelastic forces is used. After presenting the theoretical foundations, the numerical applications of composite plates treated by viscoelastic materials are addressed, and the main features of the methodology are discussed.

  12. Correlation between apparent diffusion coefficient and viscoelasticity of articular cartilage in a porcine model.

    Science.gov (United States)

    Aoki, T; Watanabe, A; Nitta, N; Numano, T; Fukushi, M; Niitsu, M

    2012-09-01

    Quantitative MR imaging techniques of degenerative cartilage have been reported as useful indicators of degenerative changes in cartilage extracellular matrix, which consists of proteoglycans, collagen, non-collagenous proteins, and water. Apparent diffusion coefficient (ADC) mapping of cartilage has been shown to correlate mainly with the water content of the cartilage. As the water content of the cartilage in turn correlates with its viscoelasticity, which directly affects the mechanical strength of articular cartilage, ADC can serve as a potentially useful indicator of the mechanical strength of cartilage. The aim of this study was to investigate the correlation between ADC and viscoelasticity as measured by indentation testing. Fresh porcine knee joints (n = 20, age 6 months) were obtained from a local abattoir. ADC of porcine knee cartilage was measured using a 3-Tesla MRI. Indentation testing was performed on an electromechanical precision-controlled system, and viscosity coefficient and relaxation time were measured as additional indicators of the viscoelasticity of cartilage. The relationship between ADC and viscosity coefficient as well as that between ADC and relaxation time were assessed. ADC was correlated with relaxation time and viscosity coefficient (R(2) = 0.75 and 0.69, respectively, p correlation between ADC and viscoelasticity in the superficial articular cartilage. Both molecular diffusion and viscoelasticity were higher in weight bearing than non-weight-bearing articular cartilage areas.

  13. Finite element reduction strategy for composite sandwich plates with viscoelastic layers

    Directory of Open Access Journals (Sweden)

    Adriana Amaro Diacenco

    2012-01-01

    Full Text Available Composite materials have been regarded as a convenient strategy in various types of engineering systems such as aeronautical and space structures, as well as architecture and light industry products due to their advantages over the traditional engineering materials, such as their high strength/stiffness relation characteristics and their anti-corrosion properties. This paper is devoted to the finite element modeling of composite laminated structures incorporating viscoelastic materials to the problem of vibration attenuation. However, the typically high dimension of large finite element models of composite structures incorporating viscoelastic materials makes the numerical processes sometimes unfeasible. Within this context, emphasis is placed on a general condensation strategy specially adapted for the case of viscoelastically damped structures, in which a constant (frequency- and temperature-independent reduction basis to be enriched by static residues associated to the applied loads and the viscoelastic forces is used. After presenting the theoretical foundations, the numerical applications of composite plates treated by viscoelastic materials are addressed, and the main features of the methodology are discussed.

  14. On the Viscoelastic Parameters of Gussasphalt Mixture Based on Modified Burgers Model: Deviation and Experimental Verification

    Directory of Open Access Journals (Sweden)

    Faxiang Xie

    2017-01-01

    Full Text Available Viscoelasticity is an important characteristic of gussasphalt mixtures. The aim of this study is to find the correct viscoelastic material parameters of the novel gussasphalt applied in the 4th Yangtze River Bridge based on the modified Burgers model. This study firstly derives the explicit Prony series form of the shear relaxation modulus of viscoelastic material from Laplace transformation, to fulfill the parameter inputting requirements of commonly used finite element software suites. Secondly, a kind of uniaxial penetration creep experiment on the gussasphalt mixtures is conducted. By fitting the creep compliance, the viscoelastic parameters characterized by the modified Burgers model are obtained. And thirdly, based on the viscoelastic test data of asphalt mixtures, the Prony series formula derived in this study is verified through the finite element simulation. The comparison results of the relative errors between the finite element simulation and the theoretical calculation confirm the reliability of the Prony series formulas deduced in this research. And finally, a stress-correcting method is proposed, which can significantly improve the accuracy of model parameters identification and reduce the relative error between the finite element simulation and the experimental data.

  15. Intraluminal mapping of tissue viscoelastic properties using laser speckle rheology catheter (Conference Presentation)

    Science.gov (United States)

    Wang, Jing; Hosoda, Masaki; Tshikudi, Diane M.; Nadkarni, Seemantini K.

    2016-03-01

    A number of disease conditions including coronary atherosclerosis, peripheral artery disease and gastro-intestinal malignancies are associated with alterations in tissue mechanical properties. Laser speckle rheology (LSR) has been demonstrated to provide important information on tissue mechanical properties by analyzing the time scale of temporal speckle intensity fluctuations, which serves as an index of tissue viscoelasticity. In order to measure the mechanical properties of luminal organs in vivo, LSR must be conducted via a miniature endoscope or catheter. Here we demonstrate the capability of an omni-directional LSR catheter to quantify tissue mechanical properties over the entire luminal circumference without the need for rotational motion. Retracting the catheter using a motor-drive assembly enables the reconstruction of cylindrical maps of tissue mechanical properties. The performance of the LSR catheter is tested using a luminal phantom with mechanical moduli that vary in both circumferential and longitudinal directions. 2D cylindrical maps of phantom viscoelastic properties are reconstructed over four quadrants of the coronary circumference simultaneously during catheter pullback. The reconstructed cylindrical maps of the decorrelation time constants easily distinguish the different gel components of the phantom with different viscoelastic moduli. The average values of decorrelation times calculated for each gel component of the phantom show a strong correspondence with the viscoelastic moduli measured via standard mechanical rheometry. These results highlight the capability for cylindrical mapping of tissue viscoelastic properties using LSR in luminal organs using a miniature catheter, thus opening the opportunity for improved diagnosis of several disease conditions.

  16. A finite deformation viscoelastic-viscoplastic constitutive model for self-healing materials

    Science.gov (United States)

    Shahsavari, H.; Naghdabadi, R.; Baghani, M.; Sohrabpour, S.

    2016-12-01

    In this paper, employing the Hencky strain, viscoelastic-viscoplastic response of self-healing materials is investigated. Considering the irreversible thermodynamics and using the effective configuration in the Continuum Damage-Healing Mechanics (CDHM), a phenomenological finite strain viscoelastic-viscoplastic constitutive model is presented. Considering finite viscoelastic and viscoplastic deformations, total deformation gradient is multiplicatively decomposed into viscoelastic and viscoplastic parts. Due to mathematical advantages and physical meaning of Hencky strain, this measure of strain is employed in the constitutive model development. In this regard, defining the damage and healing variables and employing the strain equivalence hypothesis, the strain tensor is determined in the effective configuration. Satisfying the Clausius-Duhem inequality, the evolution equations are introduced for the viscoelastic and viscoplastic strains. The damage and healing variables also evolve according to two different prescribed functions. To employ the proposed model in different loading conditions, the model is discretized in the semi-implicit form. Material parameters of the model are identified employing experimental tests on asphalt mixes available in the literature. Finally, capability of the model is demonstrated comparing the model predictions in the creep-recovery and repeated creep-recovery with the experimental results available in the literature and a good agreement between predicted and test results is revealed.

  17. Viscoelastic properties of the ovine posterior spinal ligaments are strain dependent.

    Science.gov (United States)

    Ambrosetti-Giudici, Sveva; Gédet, Philippe; Ferguson, Stephen J; Chegini, Salman; Burger, Juergen

    2010-02-01

    The biomechanical role of the posterior spinal ligaments for spinal stability has been stated in previous studies. The investigation of the viscoelastic properties of human lumbar spinal ligaments is essential for the understanding of physiological differences between healthy and degenerated tissues. The stress-relaxation behavior of biological tissues is commonly described with the quasi-linear viscoelastic model of Fung, which assumes that the stress-relaxation response is independent of the applied strain. The goal of this study was to investigate the stress-relaxation response of ovine posterior spinal ligaments at different elongations to verify the above-mentioned hypothesis. Twenty-four ovine lumbar spinal segments, consisting of only the supraspinous and interspinous ligaments and adjoining spinous processes, were elongated uniaxially to different strain levels within the physiological elastic region (5-20%). The experimental data were described with a non-linear viscoelastic model: the modified superposition method of Findley. A linear dependency of the relaxation rate to the applied strains was observed on intact segments, when both ligaments were considered, as well as on each individual ligament. This result can be applied to the human spinal ligaments, due to similarities observed between the sheep and human spinal segment under physiological loading. The non-linear viscoelastic modified superposition method of Findley is an appropriate model for describing the viscoelastic properties of lumbar spinal ligaments in vitro due to its ability to address variation in applied strain during the force relaxation measurements. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  18. Viscoelastic effects on frequency tuning of a dielectric elastomer membrane resonator

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianyou; Jiang, Liying, E-mail: lyjiang@eng.uwo.ca; Khayat, Roger E. [Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2014-03-28

    As a recent application of dielectric elastomers (DEs), DE resonators have become an alternative to conventional silicon-based resonators used in MEMS and have attracted much interest from the research community. However, most existing modeling works for the DE resonators ignore the intrinsic viscoelastic effect of the material that may strongly influence their dynamic performance. Based on the finite-deformation viscoelasticity theory for dielectrics, this paper theoretically examines the in-plane oscillation of a DE membrane resonator to demonstrate how the material viscoelasticity affects the actuation and frequency tuning processes of the resonator. From the simulation results, it is concluded that not only the applied voltage can change the natural frequency of the resonator, but also the inelastic deformation contributes to frequency tuning. Due to the viscoelasticity of the material, the electrical loading rate influences the actuation process of the DE resonator, while it has little effect on the final steady frequency tuned by the prescribed voltage within the safety range. With the consideration of the typical failure modes of the resonator and the evolution process of the material, the tunable frequency range and the safe range of the applied voltage of the DE membrane resonator with different dimension parameters are determined in this work, which are found to be dependent on the electrical loading rate. This work is expected to provide a better understanding on the frequency tuning of viscoelastic DE membrane resonators and a guideline for the design of DE devices.

  19. SPH modeling and simulation of spherical particles interacting in a viscoelastic matrix

    Science.gov (United States)

    Vázquez-Quesada, A.; Ellero, M.

    2017-12-01

    In this work, we extend the three-dimensional Smoothed Particle Hydrodynamics (SPH) non-colloidal particulate model previously developed for Newtonian suspending media in Vázquez-Quesada and Ellero ["Rheology and microstructure of non-colloidal suspensions under shear studied with smoothed particle hydrodynamics," J. Non-Newtonian Fluid Mech. 233, 37-47 (2016)] to viscoelastic matrices. For the solvent medium, the coarse-grained SPH viscoelastic formulation proposed in Vázquez-Quesada, Ellero, and Español ["Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations," Phys. Rev. E 79, 056707 (2009)] is adopted. The property of this particular set of equations is that they are entirely derived within the general equation for non-equilibrium reversible-irreversible coupling formalism and therefore enjoy automatically thermodynamic consistency. The viscoelastic model is derived through a physical specification of a conformation-tensor-dependent entropy function for the fluid particles. In the simple case of suspended Hookean dumbbells, this delivers a specific SPH discretization of the Oldroyd-B constitutive equation. We validate the suspended particle model by studying the dynamics of single and mutually interacting "noncolloidal" rigid spheres under shear flow and in the presence of confinement. Numerical results agree well with available numerical and experimental data. It is straightforward to extend the particulate model to Brownian conditions and to more complex viscoelastic solvents.

  20. Viscoelastic properties of graphene-based epoxy resins

    Science.gov (United States)

    Nobile, Maria Rossella; Fierro, Annalisa; Rosolia, Salvatore; Raimondo, Marialuigia; Lafdi, Khalid; Guadagno, Liberata

    2015-12-01

    In this paper the viscoelastic properties of an epoxy resin filled with graphene-based nanoparticles have been investigated in the liquid state, before curing, by means of a rotational rheometer equipped with a parallel plate geometry. Exfoliated graphite was prepared using traditional acid intercalation followed by a sudden treatment at high temperature (900°C). The percentage of exfoliated graphite was found to be 56%. The epoxy matrix was prepared by mixing a tetrafunctional precursor with a reactive diluent which produces a significant decrease in the viscosity of the epoxy precursor so that the dispersion step of nanofillers in the matrix can easily occur. The hardener agent, the 4,4-diaminodiphenyl sulfone (DDS), was added at a stoichiometric concentration with respect to all the epoxy rings. The inclusion of the partially exfoliated graphite (pEG) in the formulated epoxy mixture significantly modifies the rheological behaviour of the mixture itself. The epoxy mixture, indeed, shows a Newtonian behaviour while, at 3 wt % pEG content, the complex viscosity of the nanocomposite clearly shows a shear thinning behaviour with η* values much higher at the lower frequencies. The increase in complex viscosity with the increasing of the partially exfoliated graphite content was mostly caused by a dramatic increase in the storage modulus. All the graphene-based epoxy mixtures were cured by a two-stage curing cycles: a first isothermal stage was carried out at the lower temperature of 125°C for 1 hour while the second isothermal stage was performed at the higher temperature of 200°C for 3 hours. The mechanical properties of the cured nanocomposites show high values in the storage modulus and glass transition temperature.

  1. Rutting Prediction in Asphalt Pavement Based on Viscoelastic Theory

    Directory of Open Access Journals (Sweden)

    Nahi Mohammed Hadi

    2016-01-01

    Full Text Available Rutting is one of the most disturbing failures on the asphalt roads due to the interrupting it is caused to the drivers. Predicting of asphalt pavement rutting is essential tool leads to better asphalt mixture design. This work describes a method of predicting the behaviour of various asphalt pavement mixes and linking these to an accelerated performance testing. The objective of this study is to develop a finite element model based on viscoplastic theory for simulating the laboratory testing of asphalt mixes in Hamburg Wheel Rut Tester (HWRT for rutting. The creep parameters C1, C2 and C3 are developed from the triaxial repeated load creep test at 50°C and at a frequency of 1 Hz and the modulus of elasticity and Poisson’ s ratio determined at the same temperature. Viscoelastic model (creep model is adopted using a FE simulator (ANSYS in order to calculate the rutting for various mixes under a uniform loading pressure of 500 kPa. An eight-node with a three Degrees of Freedom (UX, UY, and UZ Element is used for the simulation. The creep model developed for HWRT tester was verified by comparing the predicted rut depths with the measured one and by comparing the rut depth with ABAQUS result from literature. Reasonable agreement can be obtained between the predicted rut depths and the measured one. Moreover, it is found that creep model parameter C1 and C3 have a strong relationship with rutting. It was clear that the parameter C1 strongly influences rutting than the parameter C3. Finally, it can be concluded that creep model based on finite element method can be used as an effective tool to analyse rutting of asphalt pavements.

  2. Stability and viscoelasticity of magneto-Pickering foams.

    Science.gov (United States)

    Blanco, Elena; Lam, Stephanie; Smoukov, Stoyan K; Velikov, Krassimir P; Khan, Saad A; Velev, Orlin D

    2013-08-13

    We have developed a new class of bistable Pickering foams, which can remain intact for weeks at room temperature but can be destroyed rapidly and on-demand with the use of a magnetic field. Such responsive foam systems can find application in various industrial and environmental processes that require controlled defoaming. These foams are stabilized by particles of hypromellose phthalate (HP-55) and contain oleic acid-coated carbonyl iron particles embedded in the HP-55 matrix. The complex behavior of these foams arises from several factors: a robust anisotropic particle matrix, the capacity to retain a high amount of water, as well as an age-dependent response to an external field. We report how the structure and viscoelastic properties of the foams change with time and affect their collapse characteristics. The evolution of foam properties is quantified by measuring the rate of liquid drainage from the foam as well as the rate of bubble growth in the foam with respect to time elapsed (in the absence of a magnetic field). We also evaluate the time necessary for foam collapse in magnetic fields as a function of magnetic particle content. A decreasing liquid volume fraction in the foam during aging leads to an increase in the elasticity and rigidity of the foam structure. These data allow us to identify a transition time separating two distinct stages of foam development in the absence of field. We propose different mechanisms which control foam collapse for each stage in a magnetic field. The stiffening of foam films between air bubbles with age plays a key role in distinguishing between the two destabilization regimes.

  3. On the two-potential constitutive modeling of rubber viscoelastic materials

    Science.gov (United States)

    Kumar, Aditya; Lopez-Pamies, Oscar

    2016-02-01

    This Note lays out the specialization of the two-potential constitutive framework - also known as the "generalized standard materials" framework - to rubber viscoelasticity. Inter alia, it is shown that a number of popular rubber viscoelasticity formulations, introduced over the years following different approaches, are special cases of this framework. As a first application of practical relevance, the framework is utilized to put forth a new objective and thermodynamically consistent rubber viscoelastic model for incompressible isotropic elastomers. The model accounts for the non-Gaussian elasticity of elastomers, as well as for the deformation-enhanced shear thinning of their viscous dissipation governed by reptation dynamics. The descriptive and predictive capabilities of the model are illustrated via comparisons with experimental data available from the literature for two commercially significant elastomers.

  4. A structurally based viscoelastic model for passive myocardium in finite deformation

    Science.gov (United States)

    Shen, Jing Jin

    2016-09-01

    This paper discusses the finite-deformation viscoelastic modeling for passive myocardium tissue. The formulations established can also be applied to model other fiber-reinforced soft tissue. Based on the morphological structure of the myocardium, a specific free-energy function is constructed to reflect its orthotropicity. After deriving the stress-strain relationships in the simple shear deformation, a genetic algorithm is used to optimally estimate the material parameters of the myocardial constitutive equation. The results show that the proposed myocardial model can well fit the shear experimental data. To validate the viscoelastic model, it is used to predict the creep and the dynamic responses of a cylindrical model of the left ventricle. Upon comparing the results calculated by the proven myocardial elastic model with those by the viscoelastic model, the merits of the latter are discussed.

  5. Identifying Mechanical Properties of Viscoelastic Materials in Time Domain Using the Fractional Zener Model

    Directory of Open Access Journals (Sweden)

    Ana Paula Delowski Ciniello

    Full Text Available Abstract The present paper aims at presenting a methodology for characterizing viscoelastic materials in time domain, taking into account the fractional Zener constitutive model and the influence of temperature through Williams, Landel, and Ferry’s model. To that effect, a set of points obtained experimentally through uniaxial tensile tests with different constant strain rates is considered. The approach is based on the minimization of the quadratic relative distance between the experimental stress-strain curves and the corresponding ones given by the theoretical model. In order to avoid the local minima in the process of optimization, a hybrid technique based on genetic algorithms and non-linear programming techniques is used. The methodology is applied in the characterization of two different commercial viscoelastic materials. The results indicate that the proposed methodology is effective in identifying thermorheologically simple viscoelastic materials.

  6. Effect of strain on viscoelastic behavior of fresh, swelled and mineralized PVP-CMC hydrogel

    Science.gov (United States)

    Saha, Nabanita; Vyroubal, Radek; Shah, Rushita; Kitano, Takeshi; Saha, Petr

    2013-04-01

    Mineralization of calcium carbonate (CaCO3) in hydrogel matrix is one of the most interesting topics of research by material scientists for the development of bio-inspired polymeric biomaterial for biomedical applications especially for bone tissue regeneration. As per our knowledge there was no work reported about rheological properties of CaCO3 mineralized hydrogel though some works have done on mineralization of CaCO3 in various gel membranes, and also it was reported about the viscoelastic properties of Agarose, Cellulose, PVA and PVPCMC hydrogels. This paper mainly focuses about the effect of strain on viscoelastic properties of fresh, swelled and mineralized (CaCO3) PVP-CMC hydrogel. All these three types of hydrogel sustain (or keep) strictly the elastic properties when low strain (1%) is applied, but at higher strain (10%) the viscoelastic moduli (G' and G") show significant change, and the nature of these materials turned from elastic to viscous.

  7. Mechanical properties of multifunctional structure with viscoelastic components based on FVE model

    Science.gov (United States)

    Hao, Dong; Zhang, Lin; Yu, Jing; Mao, Daiyong

    2018-02-01

    Based on the models of Lion and Kardelky (2004) and Hofer and Lion (2009), a finite viscoelastic (FVE) constitutive model, considering the predeformation-, frequency- and amplitude-dependent properties, has been proposed in our earlier paper [1]. FVE model is applied to investigating the dynamic characteristics of the multifunctional structure with the viscoelastic components. Combing FVE model with the finite element theory, the dynamic model of the multifunctional structure could be obtained. Additionally, the parametric identification and the experimental verification are also given via the frequency-sweep tests. The results show that the computational data agree well with the experimental data. FVE model has made a success of expressing the dynamic characteristics of the viscoelastic materials utilized in the multifunctional structure. The multifunctional structure technology has been verified by in-orbit experiments.

  8. Haptic feedback control in medical robots through fractional viscoelastic tissue model.

    Science.gov (United States)

    Kobayashi, Yo; Moreira, Pedro; Liu, Chao; Poignet, Philippe; Zemiti, Nabil; Fujie, Masakatsu G

    2011-01-01

    In this paper, we discuss the design of an adaptive control system for robot-assisted surgery with haptic feedback. Through a haptic device, the surgeon teleoperates the medical instrument in free space, fixed on a remote robot or in contact. In free space, the surgeon feels the motion of the robot. In the present paper, we evaluated the performance of the controller on viscoelastic tissue, modeled by a fractional derivative equation. In addition, we propose a novel controller using an integer formalization process that is suitable for these tissue properties. The simulation results suggested that performance, in terms of force control and telepresence, became poorer when the conventional controller, which was designed for elastic target object, was applied to the viscoelastic tissues. In contrast, the results suggested that our proposed controller maintained its performance on the viscoelastic tissues.

  9. Effect of viscoelastic and dielectric relaxing matrix on ferroelastic behaviour of 1-3 piezocomposites

    Directory of Open Access Journals (Sweden)

    R. Jayendiran

    2015-02-01

    Full Text Available This work focuses on evaluating the time-dependent non-linear ferroelastic behaviour of 1-3 piezocomposites under pure uni-axial compressive stress loading condition. An experimental setup is developed to study the influence of high-stress levels on the stress-strain and stress-polarization behaviour of 1-3 piezocomposites. The electro-elastic effective properties of 1-3 piezocomposites are measured experimentally based on IEEE standard and compared with the proposed numerical model using finite-element software ABAQUS. The time-dependent effective properties are evaluated using viscoelastic model and it is incorporated into a 3D micromechanical model to predict the viscoelastic behaviour of 1-3 piezocomposites under mechanical loading. The simulated results are compared with the viscoelastic behaviour of 1-3 piezocomposites obtained from experiments.

  10. Viscoelastic material properties of the myocardium and cardiac jelly in the looping chick heart.

    Science.gov (United States)

    Yao, Jiang; Varner, Victor D; Brilli, Lauren L; Young, Jonathan M; Taber, Larry A; Perucchio, Renato

    2012-02-01

    Accurate material properties of developing embryonic tissues are a crucial factor in studies of the mechanics of morphogenesis. In the present work, we characterize the viscoelastic material properties of the looping heart tube in the chick embryo through nonlinear finite element modeling and microindentation experiments. Both hysteresis and ramp-hold experiments were performed on the intact heart and isolated cardiac jelly (extracellular matrix). An inverse computational method was used to determine the constitutive relations for the myocardium and cardiac jelly. With both layers assumed to be quasilinear viscoelastic, material coefficients for an Ogden type strain-energy density function combined with Prony series of two terms or less were determined by fitting numerical results from a simplified model of a heart segment to experimental data. The experimental and modeling techniques can be applied generally for determining viscoelastic material properties of embryonic tissues.

  11. TECHNICAL NOTE: Observations on the use of a viscoelastic joint to provide noise reduced sonar domes

    Science.gov (United States)

    House, J. R.

    1997-10-01

    This paper concerns the noise and vibration advantages of an energy absorbing composite joint and its relevance to noise reduced glass reinforced polyester (GRP) sonar domes. Once installed on an operational boat, hydrodynamic flow and supporting structural induced vibrations cause the dome to vibrate, thus radiating noise and interfering with sonar sensor response. The results of a vibration transmissibility study on a GRP - steel interface are discussed as the first step in designing a composite viscoelastic joint that can act as a vibration sink to absorb flow generated and structure borne noise within GRP sonar domes. Preliminary investigations concerning the absorption of compressional waves by use of a tapered viscoelastic interlayer are discussed. It is shown that a tapered viscoelastic interlayer placed between a GRP beam and steel supporting substrate can produce a significant absorption of vibrational energy, reducing water borne radiated noise and providing a significantly quieter noise platform than conventional sonar jointing technology.

  12. Measurement of elastic modulus and evaluation of viscoelasticity of foundry green sand

    Directory of Open Access Journals (Sweden)

    Qingchun XIANG

    2004-08-01

    Full Text Available Elastic modulus is an important physical parameter of molding sand; it is closely connected with molding sand's properties. Based on theories of rheology and molding sand microdeformation, elastic modulus of molding sand was measured and investigated using the intelligent molding sand multi-property tester developed by ourselves. The measuring principle was introduced. Effects of bentonite percentage and compactibility of the molding sand were experimentally studied. Furthermore, the essential viscoelastic nature of green sand was analyzed. It is considered that viscoelastic deformation of molding sand consists mainly of that of Kelvin Body of clay membrane, and elastic modulus of molding sand depends mainly on that of Kelvin Body which is the elastic component of clay membrane between sands. Elastic modulus can be adopted as one of the property parameters, and can be employed to evaluate viscoelastic properties of molding sand.

  13. Viscoelastic property tuning for reducing noise radiated by switched-reluctance machines

    Science.gov (United States)

    Millithaler, Pierre; Dupont, Jean-Baptiste; Ouisse, Morvan; Sadoulet-Reboul, Émeline; Bouhaddi, Noureddine

    2017-10-01

    Switched-reluctance motors (SRM) present major acoustic drawbacks that hinder their use for electric vehicles in spite of widely-acknowledged robustness and low manufacturing costs. Unlike other types of electric machines, a SRM stator is completely encapsulated/potted with a viscoelastic resin. By taking advantage of the high damping capacity that a viscoelastic material has in certain temperature and frequency ranges, this article proposes a tuning methodology for reducing the noise emitted by a SRM in operation. After introducing the aspects the tuning process will focus on, the article details a concrete application consisting in computing representative electromagnetic excitations and then the structural response of the stator including equivalent radiated power levels. An optimised viscoelastic material is determined, with which the peak radiated levels are reduced up to 10 dB in comparison to the initial state. This methodology is implementable for concrete industrial applications as it only relies on common commercial finite-element solvers.

  14. Boundary layer flow of three-dimensional viscoelastic nanofluid past a bi-directional stretching sheet with Newtonian heating

    Directory of Open Access Journals (Sweden)

    M. Ramzan

    2015-05-01

    Full Text Available This paper deals with steady three dimensional boundary layer flow of an incompressible viscoelastic nanofluid flow in the presence of Newtonian heating. An appropriate transformation is employed to convert the highly non linear partial differential equations into ordinary differential equations. Homotopy Analysis method (HAM is used to find series solution of the obtained coupled highly non linear differential equations. The convergence of HAM solutions is discussed via h-curves. Graphical illustrations displaying the influence of emerging parameters on velocity, temperature and concentration profiles are given. It is observed that γ the conjugate parameter for Newtonian heating show increasing behavior on both temperature and concentration profiles. However, the temperature and concentration profiles are increasing and decreasing functions of Brownian motion parameter Nb respectively.

  15. Three-dimensional absolute and convective instabilities in mixed convection of a viscoelastic fluid through a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Silvia C. [Laboratoire de Mecanique de Lille, UMR CNRS 8107 - Universite Lille I, Bld. Paul Langevin, 59655 Villeneuve d' Ascq cedex (France); Ouarzazi, Mohamed Najib, E-mail: najib.ouarzazi@univ-lille1.f [Laboratoire de Mecanique de Lille, UMR CNRS 8107 - Universite Lille I, Bld. Paul Langevin, 59655 Villeneuve d' Ascq cedex (France)

    2010-06-07

    By using the mathematical formalism of absolute and convective instabilities we study the nature of unstable three-dimensional disturbances of viscoelastic flow convection in a porous medium with horizontal through-flow and vertical temperature gradient. Temporal stability analysis reveals that among three-dimensional (3D) modes the pure down-stream transverse rolls are favored for the onset of convection. In addition, by considering a spatiotemporal stability approach we found that all unstable 3D modes are convectively unstable except the transverse rolls which may experience a transition to absolute instability. The combined influence of through-flow and elastic parameters on the absolute instability threshold, wave number and frequency is then determined, and results are compared to those of a Newtonian fluid.

  16. Surface hydrodynamics of viscoelastic fluids and soft solids: Surfing bulk rheology on capillary and Rayleigh waves.

    Science.gov (United States)

    Monroy, Francisco

    2017-09-01

    From the recent advent of the new soft-micro technologies, the hydrodynamic theory of surface modes propagating on viscoelastic bodies has reinvigorated this field of technology with interesting predictions and new possible applications, so recovering its scientific interest very limited at birth to the academic scope. Today, a myriad of soft small objects, deformable meso- and micro-structures, and macroscopically viscoelastic bodies fabricated from colloids and polymers are already available in the materials catalogue. Thus, one can envisage a constellation of new soft objects fabricated by-design with a functional dynamics based on the mechanical interplay of the viscoelastic material with the medium through their interfaces. In this review, we recapitulate the field from its birth and theoretical foundation in the latest 1980s up today, through its flourishing in the 90s from the prediction of extraordinary Rayleigh modes in coexistence with ordinary capillary waves on the surface of viscoelastic fluids, a fact first confirmed in experiments by Dominique Langevin and me with soft gels [Monroy and Langevin, Phys. Rev. Lett. 81, 3167 (1998)]. With this observational discovery at sight, we not only settled the theory previously formulated a few years before, but mainly opened a new field of applications with soft materials where the mechanical interplay between surface and bulk motions matters. Also, new unpublished results from surface wave experiments performed with soft colloids are reported in this contribution, in which the analytic methods of wave surfing synthetized together with the concept of coexisting capillary-shear modes are claimed as an integrated tool to insightfully scrutinize the bulk rheology of soft solids and viscoelastic fluids. This dedicatory to the figure of Dominique Langevin includes an appraisal of the relevant theoretical aspects of the surface hydrodynamics of viscoelastic fluids, and the coverage of the most important experimental

  17. TECHNIQUE AND DEVICE FOR THE EXPERIMENTAL ESTIMATION OF THE ACOUSTIC IMPEDANCE OF VISCOELASTIC MEDIUM

    Directory of Open Access Journals (Sweden)

    O. V. Murav’eva

    2017-01-01

    Full Text Available Measuring the characteristics of process fluids allows us to evaluate their quality, biological tissues – to differentiate healthy tissues and tissues with pathologies. Measuring the characteristics of process fluids allows us to evaluate their quality, biological tissues – to differentiate healthy tissues and tissues with pathologies. One of the complex acoustic parameters is the impedance, which allows one to fully evaluate the characteristics of viscoelastic media. Most of impedance methods of measurements require using two or more reference media and the availability of calibrated acoustic transducers. The aim of this work ware introduced a methods and construction for the experimental evaluation of the longitudinal and shear impedance of viscoelastic media based on measuring the parameters of the amplitude-frequency characteristics and calculating the elements of the electric circuit for replacing the piezoelectric element which vibrating in the test medium.The paper introduces a methods and construction of the experimental evaluation of the impedances of viscoelastic media. The suggested methods is allowed measuring longitudinal and shear impedances and determining velocities of longitudinal and transverse ultrasonic waves and the values of the elastic moduli of viscoelastic media, including in various aggregate states. The technique is fairly simple to implement and can be reproduced using simple laboratory equipment.The obtained values of the acoustic impedances of the investigated media are in satisfactory agreement with their reference data. In contrast to the known methods for determining the acoustic impedance, the developed technique allows us to estimate with sufficient accuracy the parameter of the shear impedance of viscoelastic media that is difficult to measure at the frequencies of the megahertz range, which determines the shear modulus of the material and characterizes its resistance to shear deformations. The results of

  18. Fully coupled heat conduction and deformation analyses of visco-elastic solids

    KAUST Repository

    Khan, Kamran

    2012-04-21

    Visco-elastic materials are known for their capability of dissipating energy. This energy is converted into heat and thus changes the temperature of the materials. In addition to the dissipation effect, an external thermal stimulus can also alter the temperature in a viscoelastic body. The rate of stress relaxation (or the rate of creep) and the mechanical and physical properties of visco-elastic materials, such as polymers, vary with temperature. This study aims at understanding the effect of coupling between the thermal and mechanical response that is attributed to the dissipation of energy, heat conduction, and temperature-dependent material parameters on the overall response of visco-elastic solids. The non-linearly viscoelastic constitutive model proposed by Schapery (Further development of a thermodynamic constitutive theory: stress formulation, 1969,Mech. Time-Depend. Mater. 1:209-240, 1997) is used and modified to incorporate temperature- and stress-dependent material properties. This study also formulates a non-linear energy equation along with a dissipation function based on the Gibbs potential of Schapery (Mech. Time-Depend. Mater. 1:209-240, 1997). A numerical algorithm is formulated for analyzing a fully coupled thermo-visco-elastic response and implemented it in a general finite-element (FE) code. The non-linear stress- and temperature-dependent material parameters are found to have significant effects on the coupled thermo-visco-elastic response of polymers considered in this study. In order to obtain a realistic temperature field within the polymer visco-elastic bodies undergoing a non-uniform heat generation, the role of heat conduction cannot be ignored. © Springer Science+Business Media, B. V. 2012.

  19. Impact of leg lengthening on viscoelastic properties of the deep fascia

    Science.gov (United States)

    Wang, Hai-Qiang; Wei, Yi-Yong; Wu, Zi-Xiang; Luo, Zhuo-Jing

    2009-01-01

    Background Despite the morphological alterations of the deep fascia subjected to leg lengthening have been investigated in cellular and extracellular aspects, the impact of leg lengthening on viscoelastic properties of the deep fascia remains largely unknown. This study aimed to address the changes of viscoelastic properties of the deep fascia during leg lengthening using uniaxial tensile test. Methods Animal model of leg lengthening was established in New Zealand white rabbits. Distraction was initiated at a rate of 1 mm/day and 2 mm/day in two steps, and preceded until increases of 10% and 20% in the initial length of tibia had been achieved. The deep fascia specimens of 30 mm × 10 mm were clamped with the Instron 1122 tensile tester at room temperature with a constant tensile rate of 5 mm/min. After 5 load-download tensile tests had been performed, the specimens were elongated until rupture. The load-displacement curves were automatically generated. Results The normal deep fascia showed typical viscoelastic rule of collagenous tissues. Each experimental group of the deep fascia after leg lengthening kept the properties. The curves of the deep fascia at a rate of 1 mm/day with 20% increase in tibia length were the closest to those of normal deep fascia. The ultimate tension strength and the strain at rupture on average of normal deep fascia were 2.69 N (8.97 mN/mm2) and 14.11%, respectively. The increases in ultimate tension strength and strain at rupture of the deep fascia after leg lengthening were statistically significant. Conclusion The deep fascia subjected to leg lengthening exhibits viscoelastic properties as collagenous tissues without lengthening other than increased strain and strength. Notwithstanding different lengthening schemes result in varied viscoelastic properties changes, the most comparable viscoelastic properties to be demonstrated are under the scheme of a distraction rate of 1 mm/day and 20% increase in tibia length. PMID:19698092

  20. Three Different Ways of Calibrating Burger's Contact Model for Viscoelastic Model of Asphalt Mixtures by Discrete Element Method

    DEFF Research Database (Denmark)

    Feng, Huan; Pettinari, Matteo; Stang, Henrik

    2016-01-01

    In this paper the viscoelastic behavior of asphalt mixture was investigated by employing a three-dimensional discrete element method. Combined with Burger's model, three contact models were used for the construction of constitutive asphalt mixture model with viscoelastic properties in the commerc...... and the laboratory test values for the complex modulus shows that DEM can be used to reliably predict the viscoelastic properties of asphalt mixtures.......In this paper the viscoelastic behavior of asphalt mixture was investigated by employing a three-dimensional discrete element method. Combined with Burger's model, three contact models were used for the construction of constitutive asphalt mixture model with viscoelastic properties...... modulus. Three different approaches have been used and compared for calibrating the Burger's contact model. Values of the dynamic modulus and phase angle of asphalt mixtures were predicted by conducting DE simulation under dynamic strain control loading. The excellent agreement between the predicted...

  1. Heat Transfer to MHD Oscillatory Viscoelastic Flow in a Channel Filled with Porous Medium

    Directory of Open Access Journals (Sweden)

    Rita Choudhury

    2012-01-01

    Full Text Available The combined effect of a transverse magnetic field and radiative heat transfer on unsteady flow of a conducting optically thin viscoelastic fluid through a channel filled with saturated porous medium and nonuniform walls temperature has been discussed. It is assumed that the fluid has small electrical conductivity and the electromagnetic force produced is very small. Closed-form analytical solutions are constructed for the problem. The effects of the radiation and the magnetic field parameters on velocity profile and shear stress for different values of the viscoelastic parameter with the combination of the other flow parameters are illustrated graphically, and physical aspects of the problem are discussed.

  2. On the use of a loudspeaker for measuring the viscoelastic properties of sound absorbing materials.

    Science.gov (United States)

    Doutres, Olivier; Dauchez, Nicolas; Génevaux, Jean-Michel; Lemarquand, Guy

    2008-12-01

    This paper investigates the feasibility to use an electrodynamic loudspeaker to determine viscoelastic properties of sound-absorbing materials in the audible frequency range. The loudspeaker compresses the porous sample in a cavity, and a measurement of its electrical impedance allows one to determine the mechanical impedance of the sample: no additional sensors are required. Viscoelastic properties of the material are then estimated by inverting a 1D Biot model. The method is applied to two sound-absorbing materials (glass wool and polymer foam). Results are in good agreement with the classical compression quasistatic method.

  3. Emergence of a limit cycle for swimming microorganisms in a vortical flow of a viscoelastic fluid

    Science.gov (United States)

    Ardekani, A. M.; Gore, E.

    2012-05-01

    We propose that the rheological properties of background fluid play an important role in the interaction of microorganisms with the flow field. The viscoelastic-induced migration of microorganisms in a vortical flow leads to the emergence of a limit cycle. The shape and formation rate of patterns depend on motility, vorticity strength, and rheological properties of the background fluid. Given the inherent viscoelasticity of exopolysaccharides secreted by microorganisms, our results can suggest new mechanisms leading to the vital behavior of microorganisms such as bacterial aggregation and biofilm formation.

  4. The mechanics-modulated tunneling spectrum and low-pass effect of viscoelastic molecular monolayer

    Science.gov (United States)

    Chen, Yun; Zhang, Xiaoyue; Shao, Jian; Yu, Jing; Wang, Biao; Zheng, Yue

    2017-10-01

    Understanding the force-induced conductance fluctuation in molecules is essential for building molecular devices with high stability. While stiffness of molecule is usually considered to be desirable for stable conductance, we demonstrate mechanical dragging in viscoelastic molecules integrates both noise resistance and mechanical controllability to molecular conductance. Via conductive atomic force microscope measurement and theoretical modeling, it's found that viscoelastic Azurin monolayer has spectrum-like pattern of conductance corresponding to the duration and strength of applied mechanical pulse under low-frequency excitation. Conductance fluctuation is prevented under high-frequency excitation by dragging dissipation, which qualifies molecular junction with electric robustness against mechanical noise.

  5. Determining Parameters of Fractional-Exponential Heredity Kernels of Nonlinear Viscoelastic Materials

    Science.gov (United States)

    Golub, V. P.; Pavlyuk, Ya. V.; Fernati, P. V.

    2017-07-01

    The problem of determining the parameters of fractional-exponential heredity kernels of nonlinear viscoelastic materials is solved. The methods for determining the parameters that are used in the cubic theory of viscoelasticity and the nonlinear theories based on the conditions of similarity of primary creep curves and isochronous creep diagrams are analyzed. The parameters of fractional-exponential heredity kernels are determined and experimentally validated for the oriented polypropylene, FM3001 and FM10001 nylon fibers, microplastics, TC 8/3-250 glass-reinforced plastic, SWAM glass-reinforced plastic, and contact molding glass-reinforced plastic.

  6. Dynamic viscoelasticity measurement under alternative torque using electromagnetically spinning method with quadruple electromagnets.

    Science.gov (United States)

    Matsuura, Yusuke; Hirano, Taichi; Sakai, Keiji

    2017-07-01

    In this study, we developed a novel type of rheological measurement system. Here, a spherical probe is driven to rotate periodically by applying torques using quadruple electromagnets in a noncontact manner. Moreover, this system is an enhancement of our electromagnetically spinning (EMS) viscometer, which is widely used for measuring rheological flow curves in various industrial fields. The quadruple EMS method provides the frequency spectrum of viscoelasticity, in addition to shear viscosity, in a steady flow by switching the operation modes of the driving torque. We show the results obtained for Newtonian fluids and viscoelastic materials and demonstrate the validity of the system.

  7. Estimation of viscoelastic parameters in Prony series from shear wave propagation

    Science.gov (United States)

    Jung, Jae-Wook; Hong, Jung-Wuk; Lee, Hyoung-Ki; Choi, Kiwan

    2016-06-01

    When acquiring accurate ultrasonic images, we must precisely estimate the mechanical properties of the soft tissue. This study investigates and estimates the viscoelastic properties of the tissue by analyzing shear waves generated through an acoustic radiation force. The shear waves are sourced from a localized pushing force acting for a certain duration, and the generated waves travel horizontally. The wave velocities depend on the mechanical properties of the tissue such as the shear modulus and viscoelastic properties; therefore, we can inversely calculate the properties of the tissue through parametric studies.

  8. Estimation of viscoelastic parameters in Prony series from shear wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae-Wook; Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr, E-mail: jwhong@alum.mit.edu [Department of Civil and Environmental Engineering, KAIST, 291 Deahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Hyoung-Ki; Choi, Kiwan [Health and Medical Equipment, Samsung Electronics, 1003 Daechi-dong, Gangnam-gu, Seoul 135-280 (Korea, Republic of)

    2016-06-21

    When acquiring accurate ultrasonic images, we must precisely estimate the mechanical properties of the soft tissue. This study investigates and estimates the viscoelastic properties of the tissue by analyzing shear waves generated through an acoustic radiation force. The shear waves are sourced from a localized pushing force acting for a certain duration, and the generated waves travel horizontally. The wave velocities depend on the mechanical properties of the tissue such as the shear modulus and viscoelastic properties; therefore, we can inversely calculate the properties of the tissue through parametric studies.

  9. Formulation and solutions of fractional continuously variable order mass–spring–damper systems controlled by viscoelastic and viscous–viscoelastic dampers

    Directory of Open Access Journals (Sweden)

    S Saha Ray

    2016-05-01

    Full Text Available This article presents the formulation and a new approach to find analytic solutions for fractional continuously variable order dynamic models, namely, fractional continuously variable order mass–spring–damper systems. Here, we use the viscoelastic and viscous–viscoelastic dampers for describing the damping nature of the oscillating systems, where the order of fractional derivative varies continuously. Here, we handle the continuous changing nature of fractional order derivative for dynamic systems, which has not been studied yet. By successive recursive method, here we find the solution of fractional continuously variable order mass–spring–damper systems and then obtain closed-form solutions. We then present and discuss the solutions obtained in the cases with continuously variable order of damping for oscillator through graphical plots.

  10. Viscoelasticity of thin biomolecular films: a case study on nucleoporin phenylalanine-glycine repeats grafted to a histidine-tag capturing QCM-D sensor.

    Science.gov (United States)

    Eisele, Nico B; Andersson, Fredrik I; Frey, Steffen; Richter, Ralf P

    2012-08-13

    Immobilization of proteins onto surfaces is useful for the controlled generation of biomolecular assemblies that can be readily characterized with in situ label-free surface-sensitive techniques. Here we analyze the performance of a quartz crystal microbalance with dissipation monitoring (QCM-D) sensor surface that enables the selective and oriented immobilization of histidine-tagged molecules for morphological and interaction studies. More specifically, we characterize monolayers of natively unfolded nucleoporin domains that are rich in phenylalanine-glycine repeats (FGRDs). An FGRD meshwork is thought to be responsible for the selectivity of macromolecular transport across the nuclear pore complex between the cytosol and the nucleus of living cells. We demonstrate that nucleoporin FGRD films can be formed on His-tag Capturing Sensors with properties comparable to a previously reported immobilization platform based on supported lipid bilayers (SLB). Approaches to extract the film thickness and viscoelastic properties in a time-resolved manner from the QCM-D response are described, with particular emphasis on the practical implementation of viscoelastic modeling and a detailed analysis of the quality and reliability of the fit. By comparing the results with theoretical predictions for the viscoelastic properties of polymer solutions and gels, and experimental data from an atomic force microscopy indentation assay, we demonstrate that detailed analysis can provide novel insight into the morphology and dynamics of FG repeat domain films. The immobilization approach is simple and versatile, and can be easily extended to other His-tagged biomolecules. The data analysis procedure should be useful for the characterization of other ultrathin biomolecular and polymer films.

  11. Viscoelastic Finite Difference Modeling Using Graphics Processing Units

    Science.gov (United States)

    Fabien-Ouellet, G.; Gloaguen, E.; Giroux, B.

    2014-12-01

    Full waveform seismic modeling requires a huge amount of computing power that still challenges today's technology. This limits the applicability of powerful processing approaches in seismic exploration like full-waveform inversion. This paper explores the use of Graphics Processing Units (GPU) to compute a time based finite-difference solution to the viscoelastic wave equation. The aim is to investigate whether the adoption of the GPU technology is susceptible to reduce significantly the computing time of simulations. The code presented herein is based on the freely accessible software of Bohlen (2002) in 2D provided under a General Public License (GNU) licence. This implementation is based on a second order centred differences scheme to approximate time differences and staggered grid schemes with centred difference of order 2, 4, 6, 8, and 12 for spatial derivatives. The code is fully parallel and is written using the Message Passing Interface (MPI), and it thus supports simulations of vast seismic models on a cluster of CPUs. To port the code from Bohlen (2002) on GPUs, the OpenCl framework was chosen for its ability to work on both CPUs and GPUs and its adoption by most of GPU manufacturers. In our implementation, OpenCL works in conjunction with MPI, which allows computations on a cluster of GPU for large-scale model simulations. We tested our code for model sizes between 1002 and 60002 elements. Comparison shows a decrease in computation time of more than two orders of magnitude between the GPU implementation run on a AMD Radeon HD 7950 and the CPU implementation run on a 2.26 GHz Intel Xeon Quad-Core. The speed-up varies depending on the order of the finite difference approximation and generally increases for higher orders. Increasing speed-ups are also obtained for increasing model size, which can be explained by kernel overheads and delays introduced by memory transfers to and from the GPU through the PCI-E bus. Those tests indicate that the GPU memory size

  12. On the Onset of Thermal Convection in a Layer of Oldroydian Visco-Elastic Fluid Saturated by Brinkman–Darcy Porous Medium

    Directory of Open Access Journals (Sweden)

    Chand Ramesh

    2015-12-01

    Full Text Available Thermal instability in a horizontal layer of Oldroydian visco-elastic fluid in a porous medium is investigated. For porous medium the Brinkman–Darcy model is considered. A linear stability analysis based upon perturbation method and normal mode technique is used to find solution of the fluid layer confined between two free-free boundaries. The onset criterion for stationary and oscillatory convection is derived analytically. The influence of the Brinkman–Darcy, Prandtl–Darcy number, stress relaxation parameter on the stationary and oscillatory convection is studied both analytically and graphically. The sufficient condition for the validity of PES has also been derived.

  13. Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    Science.gov (United States)

    Reshadi, Milad; Saidi, Mohammad Hassan; Ebrahimi, Abbas

    2017-04-01

    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien-Tanner (PTT) model with the Gordon-Schowalter convected derivative which covers the upper convected Maxwell, Johnson-Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson-Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid system and is verified against 1D analytical solution of the velocity profile with less than 0.06% relative error. Also, a parametric study is carried out to investigate the effect of channel aspect ratio (width to height), wall zeta potential and the Debye-Hückel parameter on 2D velocity profile, volumetric flow rate and the Poiseuille number in the mixed EO/PD flows of viscoelastic fluids with different Weissenberg numbers. Our results show that, for low channel aspect ratios, the previous 1D analytical models underestimate the velocity profile at the channel half-width centerline in the case of favorable pressure gradients and overestimate it in the case of adverse pressure gradients. The results reveal that the inapplicability of the Debye-Hückel approximation at high zeta potentials is more significant for higher Weissenberg number fluids. Also, it is found that, under the specified values of electrokinetic parameters, there is a threshold for velocity scale ratio in which the Poiseuille number is approximately independent of channel aspect ratio.

  14. Effect of microwave irradiation and water storage on the viscoelastic properties of denture base and reline acrylic resins.

    Science.gov (United States)

    Lombardo, Carlos Eduardo Leão; Canevarolo, Sebastião Vicente; Reis, José Maurício dos Santos Nunes; Machado, Ana Lucia; Pavarina, Ana Claudia; Giampaolo, Eunice Teresinha; Vergani, Carlos Eduardo

    2012-01-01

    This study evaluated the effect of microwave irradiation and water storage on the viscoelastic properties of two denture base resins (Lucitone 550-L and Vipi Wave-VW) and two reline resins (Kooliner-K and Tokuyama Rebase Fast II-TR II). Eight specimens (40×10×3.3 mm) of each material were evaluated by dynamic mechanical thermal analysis (DMTA) after processing, water storage for 7 days (WS), one (MW1) and 7 cycles of microwave irradiation (MW7). For each specimen, DMTA runs were carried out within different temperature intervals. Values of storage modulus (E(')) and loss tangent (tan δ) at 37 °C were obtained from the first and last runs. From the last run, values of E(') at the glass transition temperature (Tg) and maximum tan δ were also recorded. Data were analyzed by a 2-way ANOVA followed by Student-Newman-Keuls test (α=0.05). Measurements of the inside temperature of each specimen during microwave irradiation (650 W/3 min) were conducted using a fiber optic temperature sensor. Six specimens of each material were evaluated. During microwave irradiation, all specimens reached the boiling temperature of water at approximately 130 s. From the first DMTA run, MW1 and WS significantly increased the E(') and decreased the tan δ of K at 37 °C (Prun, the tan δ of K and TR II was significantly decreased after MW 1 (Pmaximum tan δ was increased after MW1 (PV W>TR II>K (P<0.05). Microwave irradiation and WS did not detrimentally affect the viscoelastic properties of the denture base and reline resins evaluated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Simulations of three-dimensional viscoelastic flows past a circular cylinder at moderate Reynolds numbers

    KAUST Repository

    RICHTER, DAVID

    2010-03-29

    The results from a numerical investigation of inertial viscoelastic flow past a circular cylinder are presented which illustrate the significant effect that dilute concentrations of polymer additives have on complex flows. In particular, effects of polymer extensibility are studied as well as the role of viscoelasticity during three-dimensional cylinder wake transition. Simulations at two distinct Reynolds numbers (Re = 100 and Re = 300) revealed dramatic differences based on the choice of the polymer extensibility (L2 in the FENE-P model), as well as a stabilizing tendency of viscoelasticity. For the Re = 100 case, attention was focused on the effects of increasing polymer extensibility, which included a lengthening of the recirculation region immediately behind the cylinder and a sharp increase in average drag when compared to both the low extensibility and Newtonian cases. For Re = 300, a suppression of the three-dimensional Newtonian mode B instability was observed. This effect is more pronounced for higher polymer extensibilities where all three-dimensional structure is eliminated, and mechanisms for this stabilization are described in the context of roll-up instability inhibition in a viscoelastic shear layer. © 2010 Cambridge University Press.

  16. Experimental validation of viscous and viscoelastic simulations of micro injection molding process

    DEFF Research Database (Denmark)

    Gava, Alberto; Tosello, Guido; Lucchetta, Giovanni

    2009-01-01

    The effects of two different rheological models used in the simulation of the micro injection molding (µIM) process are investigated. The Cross-WLF viscous model and the Giesekus viscoelastic model are selected and their performance evaluated using 3D models implemented on two different...

  17. Research and Application of Visco-Elastic Memory Foam, in the Field of Footwear Manufacturing

    OpenAIRE

    Teodor Socaciu; Mihai Simon; Liviu Dorin Pop; Manuel de Freitas

    2010-01-01

    The paper study and tests the use of Visco-Elastic Memory Foam in ergonomic shoe insoles application. To maximize comfort needs, Memory Foam responds to the unique curves and pressures points of the person’s soles. This application is not necessarily meant for people with disabilities, but for normal everyday use of a high comfort shoe.

  18. Research and Application of Visco-Elastic Memory Foam, in the Field of Footwear Manufacturing

    Directory of Open Access Journals (Sweden)

    Teodor Socaciu

    2010-12-01

    Full Text Available The paper study and tests the use of Visco-Elastic Memory Foam in ergonomic shoe insoles application. To maximize comfort needs, Memory Foam responds to the unique curves and pressures points of the person’s soles. This application is not necessarily meant for people with disabilities, but for normal everyday use of a high comfort shoe.

  19. Transient flows of Newtonian viscous fluids in a tube extended by a viscoelastic vessel

    Energy Technology Data Exchange (ETDEWEB)

    Bennis, S.; Ly, D.; Bellet, D. (C.N.R.S., 31 - Toulouse (France))

    1982-09-20

    A resolution method based on symbolical calculation is finalized and applied to the determination of fields of velocity and power load, in Newtonian transient flows in a rigid tube one end of which is extended by a viscoelastic vessel and the other subjected to variable pressures.

  20. Trefoil factor peptide 3 is positively correlated with the viscoelastic properties of the cervical mucus plug

    DEFF Research Database (Denmark)

    Bastholm, Sara Kjær; Samson, Mie Hesselund; Becher, Naja

    2017-01-01

    The viscoelastic properties of the cervical mucus plug are considered essential for the occlusion of the cervical canal and thereby for protection against ascending infections during pregnancy. Factors controlling this property are virtually unknown. This study explores a possible role of trefoil...

  1. Nonlinear dynamics aspects of subcritical transitions and singular flows in viscoelastic fluids

    NARCIS (Netherlands)

    Becherer, Paul

    2008-01-01

    Recently, there has been a renewed interest in theoretical aspects of flows of viscoelastic fluids (such as dilute polymer solutions). This thesis addresses two distinct issues related to such flows. Motivated by the possible occurrence of subcritical (finite-amplitude) instabilities in parallel

  2. Investigation of particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid.

    Science.gov (United States)

    Yuan, Dan; Zhang, Jun; Yan, Sheng; Peng, Gangrou; Zhao, Qianbin; Alici, Gursel; Du, Hejun; Li, Weihua

    2016-08-01

    In this work, particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid was experimentally investigated. The 4.8-μm micro-particles were dispersed in a polyethylene oxide (PEO) viscoelastic solution, and then the solution was injected into a straight rectangular channel with a deionised (DI) water Newtonian sheath flow. Micro-particles suspended in PEO solution migrated laterally to a DI water stream, but migration in the opposite direction from a DI water stream to a PEO solution stream or from one DI water stream to another DI water stream could not be achieved. The lateral migration of particles depends on the viscoelastic properties of the sample fluids. Furthermore, the effects of channel length, flow rate, and PEO concentration were studied. By using viscoelastic sample flow and Newtonian sheath flow, a selective particle lateral migration can be achieved in a simple straight channel, without any external force fields. This particle lateral migration technique could be potentially used in solution exchange fields such as automated cell staining and washing in microfluidic platforms, and holds numerous biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Stress-based viscoelastic master curve construction of model tire tread compounds

    NARCIS (Netherlands)

    Maghami, S.; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.; Tolpekina, T.V.; Schultz, S.; Gögelein, C.; Wrana, C.; Asier, Alonso

    2013-01-01

    One of the important aspects in the development of new tire compounds is the correlation between the dynamic mechanical properties of the rubber, measured on laboratory scale, and the actual tire performance. In order to predict wet traction, the viscoelastic behavior of the rubber materials at high

  4. A viscoelastic fluid model for describing the mechanics of a Coarse ligated plasma clot

    Energy Technology Data Exchange (ETDEWEB)

    Anand, M.; Rajagopal, K.R. [Texas A and M University, Department of Mechanical Engineering, College Station, TX (United States); Rajagopal, K. [Duke University Medical Center, Department of Surgery, Durham, NC (United States)

    2006-09-15

    Thrombi are formed at the end of a series of complex biochemical processes. There are various types of thrombi, and their rheological properties change depending on the conditions during clot formation. In this paper, a model for a particular type of clot, formed from human plasma, is proposed within a thermodynamic framework that recognizes that viscoelastic fluids possess multiple natural configurations. (orig.)

  5. Shear Rheology of a Suspension of Deformable Solids in Viscoelastic Fluid via Immersed Boundary Techniques

    Science.gov (United States)

    Guido, Christopher; Shaqfeh, Eric

    2017-11-01

    The simulation of fluids with suspended deformable solids is important to the design of microfluidic devices with soft particles and the examination of blood flow in complex channels. The fluids in these applications are often viscoelastic, motivating the development of a high-fidelity simulation tool with general constitutive model implementations for both the viscoelastic fluid and deformable solid. The Immersed Finite Element Method (IFEM) presented by Zhang et al. (2007) allows for distinct fluid and solid grids to be utilized reducing the need for costly re-meshing when particles translate. We discuss a modified version of the IFEM that allows for the simulation of deformable particles in viscoelastic flows. This simulation tool is validated for simple Newtonian shear flows with elastic particles that obey a Neo-Hookean Law. The tool is used to further explore the rheology of a dilute suspension of Neo-Hookean particles in a Giesekus fluid. The results show that dilute suspensions of soft particles have viscosities that decrease as the Capillary number becomes higher in both the case of a Newtonian and viscoelastic fluid. A discussion of multiple particle results will be included. NSF CBET-1066263 and 1066334.

  6. A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis.

    Science.gov (United States)

    Glass, Dianne H; Roberts, Cynthia J; Litsky, Alan S; Weber, Paul A

    2008-09-01

    To develop a method for evaluating viscosity and elasticity of the cornea and to examine the effect that both properties have on hysteresis. A three-component spring and dashpot model was created in Simulink in Matlab to represent the purely elastic and viscoelastic behavior of the cornea during a measurement using device called an ocular response analyzer (ORA). Values for elasticity and viscosity were varied while sinusoidal stress was applied to the model. The simulated stresses were used to determine how hysteresis is affected by the individual components of elasticity, viscosity, and maximum stress. To validate the model, high-speed photography was used to measure induced strain in a corneal phantom during ORA measurement. This measured strain was compared with the strains simulated by the model. When the spring in the viscoelastic portion of the model was stiffened, hysteresis decreased. When the spring in the purely elastic element was stiffened, hysteresis increased. If both springs were stiffened together, hysteresis peaked strongly as a function of the viscosity of the viscoelastic element. Below the peak value, lower elasticity was associated with higher hysteresis. Above the peak value, higher elasticity was associated with higher hysteresis. In addition, hysteresis increased as the air maximum pressure was increased. Measurements from phantom corresponded to predictions from the model. A viscoelastic model is presented to illustrate how changing viscosity and elasticity may affect hysteresis. Low hysteresis can be associated with either high elasticity or low elasticity, depending on the viscosity, a finding consistent with clinical reports.

  7. Lagrangian Finite Element Method for 3D Time-Dependent Viscoelastic Flow Computations using Integral Models

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    2000-01-01

    The 3D-LIM has as yet been used to simulate the following two three-dimensional problems. First, the method has been used to simulete for viscoelastic end-plate instability that occurs under certain conditions in the transient filament stretching apparatus for pressure sensitive adhesives...

  8. An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids

    Science.gov (United States)

    Xu, Xiaoyang; Deng, Xiao-Long

    2016-04-01

    In this paper, an improved weakly compressible smoothed particle hydrodynamics (SPH) method is proposed to simulate transient free surface flows of viscous and viscoelastic fluids. The improved SPH algorithm includes the implementation of (i) the mixed symmetric correction of kernel gradient to improve the accuracy and stability of traditional SPH method and (ii) the Rusanov flux in the continuity equation for improving the computation of pressure distributions in the dynamics of liquids. To assess the effectiveness of the improved SPH algorithm, a number of numerical examples including the stretching of an initially circular water drop, dam breaking flow against a vertical wall, the impact of viscous and viscoelastic fluid drop with a rigid wall, and the extrudate swell of viscoelastic fluid have been presented and compared with available numerical and experimental data in literature. The convergent behavior of the improved SPH algorithm has also been studied by using different number of particles. All numerical results demonstrate that the improved SPH algorithm proposed here is capable of modeling free surface flows of viscous and viscoelastic fluids accurately and stably, and even more important, also computing an accurate and little oscillatory pressure field.

  9. Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography.

    Science.gov (United States)

    Hong, Xiaowei; Stegemann, Jan P; Deng, Cheri X

    2016-05-01

    Characterization of the microscale mechanical properties of biomaterials is a key challenge in the field of mechanobiology. Dual-mode ultrasound elastography (DUE) uses high frequency focused ultrasound to induce compression in a sample, combined with interleaved ultrasound imaging to measure the resulting deformation. This technique can be used to non-invasively perform creep testing on hydrogel biomaterials to characterize their viscoelastic properties. DUE was applied to a range of hydrogel constructs consisting of either hydroxyapatite (HA)-doped agarose, HA-collagen, HA-fibrin, or preosteoblast-seeded collagen constructs. DUE provided spatial and temporal mapping of local and bulk displacements and strains at high resolution. Hydrogel materials exhibited characteristic creep behavior, and the maximum strain and residual strain were both material- and concentration-dependent. Burger's viscoelastic model was used to extract characteristic parameters describing material behavior. Increased protein concentration resulted in greater stiffness and viscosity, but did not affect the viscoelastic time constant of acellular constructs. Collagen constructs exhibited significantly higher modulus and viscosity than fibrin constructs. Cell-seeded collagen constructs became stiffer with altered mechanical behavior as they developed over time. Importantly, DUE also provides insight into the spatial variation of viscoelastic properties at sub-millimeter resolution, allowing interrogation of the interior of constructs. DUE presents a novel technique for non-invasively characterizing hydrogel materials at the microscale, and therefore may have unique utility in the study of mechanobiology and the characterization of hydrogel biomaterials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Hall effect on MHD flow of visco-elastic micro-polar fluid layer ...

    African Journals Online (AJOL)

    0. (0,0, ). H. = H о is applied along z-axis. Fig. 1: Geometry of the problem. Here, we have taken Rivlin-Ericksen visco-elastic fluid in which when the fluid permeates a porous medium, the gross effect is represented by Darcy's law and the usual viscous term in the momentum equation is replaced by the resistance term. 1.

  11. Heat transfer in MHD flow of dusty viscoelastic (Walters' liquid model ...

    Indian Academy of Sciences (India)

    Heat transfer in MHD flow of dusty viscoelastic (Walters' liquid model-B) stratified fluid in porous medium under variable viscosity. Om Prakash ... Expressions for the velocity of fluid and particle phases, temperature field, Nusselt number, skin friction and flow flux are obtained within the channel. The effects of various ...

  12. Simulations of viscoelastic fluids using a coupled lattice Boltzmann method: Transition states of elastic instabilities

    Directory of Open Access Journals (Sweden)

    Jin Su

    2017-11-01

    Full Text Available Elastic instabilities could happen in viscoelastic flows as the Weissenberg number is enlarged, and this phenomenon makes the numerical simulation of viscoelastic fluids more difficult. In this study, we introduce a coupled lattice Boltzmann method to solve the equations of viscoelastic fluids, which has a great capability of simulating the high Weissenberg number problem. Different from some traditional methods, two kinds of distribution functions are defined respectively for the evolution of the momentum and stress tensor equations. We mainly aim to investigate some key factors of the symmetry-breaking transition induced by elastic instability of viscoelastic fluids using this numerical coupled lattice Boltzmann method. In the results, we firstly find that the ratio of kinematical viscosity has an important influence on the transition of the elastic instability; the transition between the single stationary and cycling dominant vortex can be controlled via changing the ratio of kinematical viscosity in a periodic extensional flow. Finally, we can also observe a new transition state of instability for the flow showing the banded structure at higher Weissenberg number.

  13. Use of viscoelastic substance in ophthalmic surgery — focus on sodium hyaluronate

    Directory of Open Access Journals (Sweden)

    Tomomi Higashide

    2008-03-01

    Full Text Available Tomomi Higashide, Kazuhisa SugiyamaDepartment of Ophthalmology, Kanazawa University Graduate School of Medical Science, Kanazawa, JapanAbstract: Among viscoelastic substances, sodium hyaluronate has become the most popular for intraocular surgeries since the introduction of Healon® (sodium hyaluronate 1%, 4 × 106 daltons in 1979. This review focuses on the recent development of a new generation of sodium hyaluronate agents with new rheologic properties and the relevant new techniques used in cataract, glaucoma, corneal, and vitreoretinal surgeries. The introduction of sodium hyaluronate agents with different rheologic properties has improved the safety and reliability of intraocular surgeries. Although there have been numerous studies reporting the effectiveness of viscoelastic substances in intraocular surgeries, rigorous validation by multi-center randomized control trials is lacking in many cases. At present, no single viscoelastic agent is most suitable to all of the various intraocular surgical techniques. Therefore, ophthalmologic surgeons should keep up with recent developments of viscoelastic agents and relevant surgical techniques for better patient care.Keywords: sodium hyaluronate, cataract surgery, glaucoma surgery, corneal transplantation, vitreoretinal surgery

  14. Role of viscoelasticity in instability in plane shear flow over a ...

    Indian Academy of Sciences (India)

    The stability of the flow of a viscoelastic fluid over a deformable elastic solid medium is reviewed focusing on the role played by the fluid elasticity on the earlier known instability modes for the Newtonian fluids. In particular, two classes of modes are emphasized: the viscous mode for the creeping flow, and the wall mode for ...

  15. Viscoelastic properties of poly(butylene succinate)-co-adipate) nanocomposites

    CSIR Research Space (South Africa)

    Al-Thabaiti, SA

    2015-03-01

    Full Text Available This article reports the viscoelastic properties of poly[(butylene succinate)-co-adipate] (PBSA) nanocomposites. The nanocomposites of PBSA with various loadings of organically modified clay were prepared by melt-mixing in a batch-mixer. The solid...

  16. Effects of viscoelasticity on drop impact and spreading on a solid surface

    Science.gov (United States)

    Izbassarov, Daulet; Muradoglu, Metin

    2016-06-01

    The effects of viscoelasticity on drop impact and spreading on a flat solid surface are studied computationally using a finite-difference-front-tracking method. The finitely extensible nonlinear elastic-Chilcott-Rallison model is used to account for the fluid viscoelasticity. It is found that viscoelasticity favors advancement of contact line during the spreading phase, leading to a slight increase in the maximum spreading, in agreement with experimental observations [Huh, Jung, Seo, and Lee, Microfluid. Nanofluid. 18, 1221 (2015), 10.1007/s10404-014-1518-4]. However, in contrast with the well-known antirebound effects of polymeric additives, the viscoelasticity is found to enhance the tendency of the drop rebound in the receding phase. These results suggest that the antirebound effects are mainly due to the polymer-induced modification of wetting properties of the substrate rather than the change in the material properties of the drop fluid. A model is proposed to test this hypothesis. It is found that the model results in good qualitative agreement with the experimental observations and the antirebound behavior can be captured by the modification of surface wetting properties in the receding phase.

  17. Linear viscoelastic properties of olefinic thermoplastic elastomer blends: melt state properties

    NARCIS (Netherlands)

    Sengupta, P.; Sengers, W.G.F.; Noordermeer, Jacobus W.M.; Picken, S.J.; Gotsis, A.D.

    2004-01-01

    The linear viscoelastic properties of two types of olefinic thermoplastic elastomer blends were studied using dynamic rheology. The first type consists of a blend of PP, SEBS and oil and has a co-continuous morphology. The second type consists of vulcanised EPDM particles dispersed in a PP matrix.

  18. Alteration of brain viscoelasticity after shunt treatment in normal pressure hydrocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Freimann, Florian Baptist; Sprung, Christian [Charite - University Medicine Berlin, Campus Virchow-Klinikum, Neurosurgical Department, Berlin (Germany); Streitberger, Kaspar-Josche; Klatt, Dieter; Sack, Ingolf [Charite - University Medicine Berlin, Campus Charite Mitte, Department of Radiology, Berlin (Germany); Lin, Kui; McLaughlin, Joyce [Rensselaer Polytechnic Institute, Mathematics Department, Troy, NY (United States); Braun, Juergen [Charite - University Medicine Campus Benjamin Franklin, Institute of Medical Informatics, Berlin (Germany)

    2012-03-15

    Normal pressure hydrocephalus (NPH) represents a chronic neurological disorder with increasing incidence. The symptoms of NPH may be relieved by surgically implanting a ventriculoperitoneal shunt to drain excess cerebrospinal fluid. However, the pathogenesis of NPH is not yet fully elucidated, and the clinical response of shunt treatment is hard to predict. According to current theories of NPH, altered mechanical properties of brain tissue seem to play an important role. Magnetic resonance elastography (MRE) is a unique method for measuring in vivo brain mechanics. In this study cerebral MRE was applied to test the viscoelastic properties of the brain in 20 patients with primary (N = 14) and secondary (N = 6) NPH prior and after (91 {+-} 16 days) shunt placement. Viscoelastic parameters were derived from the complex modulus according to the rheological springpot model. This model provided two independent parameters {mu} and {alpha}, related to the inherent rigidity and topology of the mechanical network of brain tissue. The viscoelastic parameters {mu} and {alpha} were found to be decreased with -25% and -10%, respectively, compared to age-matched controls (P < 0.001). Interestingly, {alpha} increased after shunt placement (P < 0.001) to almost normal values whereas {mu} remained symptomatically low. The results indicate the fundamental role of altered viscoelastic properties of brain tissue during disease progression and tissue repair in NPH. Clinical improvement in NPH is associated with an increasing complexity of the mechanical network whose inherent strength, however, remains degraded. (orig.)

  19. Relationship between viscoelastic properties of soft denture liners and clinical efficacy

    Directory of Open Access Journals (Sweden)

    Hiroshi Murata

    2008-10-01

    Full Text Available Soft denture liners are applied for denture wearers who cannot tolerate a hard-based denture due to a thin and non-resilient oral mucosa and/or severe alveolar resorption. This material distributes and absorbs masticatory forces by means of the cushioning effect. Clinical success of the materials depends both on their viscoelastic properties and on durability. Acrylic resins and silicones are mainly available for permanent soft liners. The acrylic permanent soft liners demonstrate viscoelastic behavior while silicone permanent soft liners demonstrate elastic behavior. The improvement in masticatory function is greater in dentures lined with the acrylic materials than in those lined with silicone products. However, the acrylic materials exhibit a more marked change in viscoelastic properties and loss of cushioning effect over time than silicones. From the standpoint of durability, the silicones are preferred. It is important to understand viscoelastic properties and durability of each soft denture liner and to select the material according to the clinical situations and purposes. The ideal permanent soft liners have a relatively high value of loss tangent and storage modulus, and high durability. Further research is necessary to develop the ideal soft denture liner.

  20. Lagrangian viscoelastic flow computations using a generalized molecular stress function model

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.

    2002-01-01

    A new finite element technique for the numerical simulation of 3D time-dependent flow of viscoelastic fluid is presented. The technique is based on a Lagrangian kinematics description of the fluid flow. It represents a further development of the 3D Lagrangian integral method (3D-LIM) from a Rivlin–Sawyers...