WorldWideScience

Sample records for sacrificial layer materials

  1. SU-8 Based MEMS Process with Two Metal Layers using α-Si as a Sacrificial Material

    Ramadan, Khaled S.

    2012-04-01

    Polymer based microelectromechanical systems (MEMS) micromachining is finding more interest in research and applications. This is due to its low cost and less time processing compared with silicon MEMS. SU-8 is a photo-patternable polymer that is used as a structural layer for MEMS and microfluidic devices. In addition to being processed with low cost, it is a biocompatible material with good mechanical properties. Also, amorphous silicon (α-Si) has found use as a sacrificial layer in silicon MEMS applications. α-Si can be deposited at large thicknesses for MEMS applications and also can be released in a dry method using XeF2 which can solve stiction problems related to MEMS applications. In this thesis, an SU-8 MEMS process is developed using amorphous silicon (α-Si) as a sacrificial layer. Electrostatic actuation and sensing is used in many MEMS applications. SU-8 is a dielectric material which limits its direct use in electrostatic actuation. This thesis provides a MEMS process with two conductive metal electrodes that can be used for out-of-plane electrostatic applications like MEMS switches and variable capacitors. The process provides the fabrication of dimples that can be conductive or non-conductive to facilitate more flexibility for MEMS designers. This SU-8 process can fabricate SU-8 MEMS structures of a single layer of two different thicknesses. Process parameters were tuned for two sets of thicknesses which are thin (5-10μm) and thick (130μm). Chevron bent-beam structures and different suspended beams (cantilevers and bridges) were fabricated to characterize the SU-8 process through extracting the density, Young’s Modulus and the Coefficient of Thermal Expansion (CTE) of SU-8. Also, the process was tested and used as an educational tool through which different MEMS structures were fabricated including MEMS switches, variable capacitors and thermal actuators.

  2. A sacrificial-layer approach to prepare microfiltration membranes

    Li, X.-M.; Ji, Y.; He, T.; Wessling, M.

    2008-01-01

    The preparation of hydrophilic microfiltration membranes by a sacrificial layer via co-casting is reported in this paper. The membranes were fabricated using two polymer solutions. Selection of the sacrificial coating layer was based on solution blending between coating solution/PSf solution and co-

  3. Performance characterization of geopolymer composites for hot sodium exposed sacrificial layer in fast breeder reactors

    Haneefa, K. Mohammed, E-mail: mhkolakkadan@gmail.com [Department of Civil Engineering, IIT Madras, Chennai (India); Santhanam, Manu [Department of Civil Engineering, IIT Madras, Chennai (India); Parida, F.C. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2013-12-15

    Highlights: • Performance evaluation of geopolymers subjected to hot liquid sodium is performed. • Apart from mechanical properties, micro-analytical techniques are used for material characterization. • The geopolymer composite showed comparatively lesser damage than conventional cement composites. • Geopolymer technology can emerge as a new choice for sacrificial layer in SCFBRs. - Abstract: A sacrificial layer of concrete is used in sodium cooled fast breeder reactors (SCFBRs) to mitigate thermo-chemical effect of accidentally spilled sodium at and above 550 °C on structural concrete. Performance of this layer is governed by thermo-chemical stability of the ingredients of sacrificial layer concrete. Concrete with limestone aggregate is generally used as a sacrificial layer. Conventional cement based systems exhibit instability in hot liquid sodium environment. Geo-polymer composites are well known to perform excellently at elevated temperatures compared to conventional cement systems. This paper discusses performance of such composites subjected to exposure of hot liquid sodium in air. The investigation includes comprehensive evaluation of various geo-polymer composites before any exposure, after heating to 550 °C in air, and after immersing in hot liquid sodium initially heated to 550 °C in air. Results from the current study indicate that hot liquid sodium produces less damage to geopolymer composites than to the existing conventional cement based system. Hence, the geopolymer technology has potential application in mitigating the degrading effects of sodium fires and can emerge as a new choice for sodium exposed sacrificial layer in SCFBRs.

  4. DNA-templated nanowires as sacrificial materials for creating nanocapillaries

    Stewart, Jacob T.; Becerril, Hector A.; Yang, Weichun; Larsen, Megan G.; Woolley, Adam T.

    2008-08-01

    DNA has shown great promise as a template for the controlled localization of various materials and the construction of wires with nanometer-dimension cross sections. We have recently developed a strategy for fabrication of nanocapillaries, using DNA-templated nanowires as a sacrificial material. We first form metal nanowires through the selective electrochemical deposition of nickel atop a surface-aligned DNA molecule. We then deposit a thin layer of silicon dioxide on top of the DNA nanostructures. Next, we photolithographically pattern openings over the ends of the wires and etch through the silicon dioxide layer to expose the metal nanowires. Finally, we etch out the DNA-templated nickel nanowires. This process results in the formation of nanocapillaries having the same dimensions as the originally formed DNA-templated nanowires. We have characterized these DNA-templated nanocapillaries using atomic force microscopy, optical microscopy and scanning electron microscopy. These constructs have potential for application in nanofluidics, power generation, sample preconcentration, and chemical sensing.

  5. Method of using sacrificial materials for fabricating internal cavities in laminated dielectric structures

    Peterson, Kenneth A.

    2009-02-24

    A method of using sacrificial materials for fabricating internal cavities and channels in laminated dielectric structures, which can be used as dielectric substrates and package mounts for microelectronic and microfluidic devices. A sacrificial mandrel is placed in-between two or more sheets of a deformable dielectric material (e.g., unfired LTCC glass/ceramic dielectric), wherein the sacrificial mandrel is not inserted into a cutout made in any of the sheets. The stack of sheets is laminated together, which deforms the sheet or sheets around the sacrificial mandrel. After lamination, the mandrel is removed, (e.g., during LTCC burnout), thereby creating a hollow internal cavity in the monolithic ceramic structure.

  6. Homeotropic Alignment of a Discotic Liquid Crystal Induced by a Sacrificial Layer

    Pouzet, Eric; De Cupere, Vinciane; Heintz, Christophe;

    2009-01-01

    . Thin films have been characterized by optical and atomic force microscopy, UV-Vis absorption spectroscopy, and grazing incidence wide angle X-ray scattering. The data converge in showing the central role of the sacrificial layer in promoting alignment with the planar molecules orienting parallel...

  7. Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material

    Ramadan, Khaled S.

    2013-02-08

    This work presents an SU-8 surface micromachining process using amorphous silicon as a sacrificial material, which also incorporates two metal layers for electrical excitation. SU-8 is a photo-patternable polymer that is used as a structural layer for MEMS and microfluidic applications due to its mechanical properties, biocompatibility and low cost. Amorphous silicon is used as a sacrificial layer in MEMS applications because it can be deposited in large thicknesses, and can be released in a dry method using XeF2, which alleviates release-based stiction problems related to MEMS applications. In this work, an SU-8 MEMS process was developed using ;-Si as a sacrificial layer. Two conductive metal electrodes were integrated in this process to allow out-of-plane electrostatic actuation for applications like MEMS switches and variable capacitors. In order to facilitate more flexibility for MEMS designers, the process can fabricate dimples that can be conductive or nonconductive. Additionally, this SU-8 process can fabricate SU-8 MEMS structures of a single layer of two different thicknesses. Process parameters were optimized for two sets of thicknesses: thin (5-10 m) and thick (130 m). The process was tested fabricating MEMS switches, capacitors and thermal actuators. © 2013 IOP Publishing Ltd.

  8. Method of Manufacturing A Porous Polymer Component Involving Use of A Dissolvable, Sacrificial Material

    2015-01-01

    and thereby the resulting inner structure of the component 1 is arranged in a controlled and reproducible manner. The sacrificial material 2 and possibly also the component material 3 may e.g. be arranged by use of a 3D-printer or manually. The method may e.g. be used to manufacture a three...

  9. A novel sacrificial-layer process based on anodic bonding and its application in an accelerometer

    Lingyun Wang

    2015-04-01

    Full Text Available It is found in our experiments that the depletion layer of anodic bonding is etched faster than the bulk glass (Pyrex 7740 in hydrofluoric acid (HF. Based on this interesting phenomenon, a novel process of a sacrificial layer is proposed in this paper. In order to deeply understand and investigate the rules concerning the influence of bonding parameters on this effect, firstly the width of the depletion layer under different bonding voltages and temperatures and the selection ratio of etching are revealed. To validate the feasibility of the method, a micro-machined accelerometer is designed and fabricated. The test results of resonant frequency and sensitivity of the fabricated accelerometer are 3254.5 Hz and 829.85–844.93 mV/g, respectively. This was further evidence that the depletion layer could be used as a sacrificial layer and the removable structure could be successfully released by fast etching this layer. The important feature of this method is that only one mask is needed in the whole process and therefore it could greatly simplify the fabrication process of the device.

  10. Fabrication of relaxer-based piezoelectric energy harvesters using a sacrificial poly-Si seeding layer

    Fuentes-Fernandez, E. M A

    2014-08-07

    The effect of a polycrystalline silicon (poly-Si) seeding layer on the properties of relaxor Pb(Zr0.53,Ti0.47)O3-Pb(Zn1/3,Nb2/3)O3 (PZT-PZN) thin films and energy-harvesting cantilevers was studied. We deposited thin films of the relaxor on two substrates, with and without a poly-Si seeding layer. The seeding layer, which also served as a sacrificial layer to facilitate cantilever release, was found to improve morphology, phase purity, crystal orientation, and electrical properties. We attributed these results to reduction of the number of nucleation sites and, therefore, to an increase in relaxor film grain size. The areal power density of the wet-based released harvester was measured. The power density output of the energy harvester with this relaxor composition and the poly-Si seeding layer was 325 μW/cm2.

  11. Altering the dewetting characteristics of ultrathin gold and silver films using a sacrificial antimony layer.

    Farzinpour, P; Sundar, A; Gilroy, K D; Eskin, Z E; Hughes, R A; Neretina, S

    2012-12-14

    Solid state dewetting of ultrathin films is the most straightforward means of fabricating substrate-supported noble metal nanostructures. This assembly process is, however, quite inflexible, yielding either densely packed smaller structures or widely spaced larger structures. Here, we demonstrate the utility of introducing a sacrificial antimony layer between the substrate and noble metal overlayer. We observe an agglomeration process which is radically altered by the concurrent sublimation of antimony. In stark contrast with conventional dewetting, where the thickness of the deposited metal film determines the characteristic length scales of the assembly process, it is the thickness of the sacrificial antimony layer which dictates both the nanoparticle size and interparticle spacing. The result is a far more flexible self-assembly process where the nanoparticle size and areal density can be varied widely. Demonstrations show nanoparticle areal densities which are varied over four orders of magnitude assembled from the identical gold layer thickness, where the accompanying changes to nanostructure size see a systematic shift in the wavelength of the localized surface plasmon resonance. As a pliable self-assembly process, it offers the opportunity to tailor the properties of an ensemble of nanostructures to meet the needs of specific applications.

  12. Metal-Ligand Interactions and Salt Bridges as Sacrificial Bonds in Mussel Byssus-Derived Materials.

    Byette, Frédéric; Laventure, Audrey; Marcotte, Isabelle; Pellerin, Christian

    2016-10-10

    The byssus that anchors mussels to solid surfaces is a protein-based material combining strength and toughness as well as a self-healing ability. These exceptional mechanical properties are explained in part by the presence of metal ions forming sacrificial bonds with amino acids. In this study, we show that the properties of hydrogel films prepared from a byssus protein hydrolyzate (BPH) can also be improved following the biomimetic formation of sacrificial bonds. Strengthening and toughening of the materials are both observed when treating films with multivalent ions (Ca(2+) or Fe(3+)) or at the BPH isoelectric point (pI) as a result of the formation of metal-ligand bonds and salt bridges, respectively. These treatments also provide a self-healing behavior to the films during recovery time following a deformation. While pI and Ca(2+) treatments have a similar but limited pH-dependent effect, the modulus, strength, and toughness of the films increase largely with Fe(3+) concentration and reach much higher values. The affinity of Fe(3+) with multiple amino acid ligands, as shown by vibrational spectroscopy, and the more covalent nature of this interaction can explain these observations. Thus, a judicious choice of treatments on polyampholyte protein-based materials enables control of their mechanical performance and self-healing behavior through the strategic exploitation of reversible sacrificial bonds.

  13. Rolled-Up Nanotech: Illumination-Controlled Hydrofluoric Acid Etching of AlAs Sacrificial Layers

    Costescu Ruxandra

    2009-01-01

    Full Text Available Abstract The effect of illumination on the hydrofluoric acid etching of AlAs sacrificial layers with systematically varied thicknesses in order to release and roll up InGaAs/GaAs bilayers was studied. For thicknesses of AlAs below 10 nm, there were two etching regimes for the area under illumination: one at low illumination intensities, in which the etching and releasing proceeds as expected and one at higher intensities in which the etching and any releasing are completely suppressed. The “etch suppression” area is well defined by the illumination spot, a feature that can be used to create heterogeneously etched regions with a high degree of control, shown here on patterned samples. Together with the studied self-limitation effect, the technique offers a way to determine the position of rolled-up micro- and nanotubes independently from the predefined lithographic pattern.

  14. Rolled-Up Nanotech: Illumination-Controlled Hydrofluoric Acid Etching of AlAs Sacrificial Layers

    Costescu, Ruxandra M.; Deneke, Christoph; Thurmer, Dominic J.; Schmidt, Oliver G.

    2009-12-01

    The effect of illumination on the hydrofluoric acid etching of AlAs sacrificial layers with systematically varied thicknesses in order to release and roll up InGaAs/GaAs bilayers was studied. For thicknesses of AlAs below 10 nm, there were two etching regimes for the area under illumination: one at low illumination intensities, in which the etching and releasing proceeds as expected and one at higher intensities in which the etching and any releasing are completely suppressed. The “etch suppression” area is well defined by the illumination spot, a feature that can be used to create heterogeneously etched regions with a high degree of control, shown here on patterned samples. Together with the studied self-limitation effect, the technique offers a way to determine the position of rolled-up micro- and nanotubes independently from the predefined lithographic pattern.

  15. Development of Sacrificial Material for the Eu-APR1400 Core Catcher

    Suh, Jung Soo; Kim, Mun Soo; Kim, Yong Soo [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    To increase and diversify the export marker of the Korean nuclear reactor design, we developed the Eu- APR1400 reactor design based on the APR1400 reactor design, satisfying the European nuclear design requirements including the European Utility Requirements (EUR) and the Finnish requirements of YVL. As recommended by both requirements, the so called core-catcher molten core ex-vessel cooling facility was developed to manage a severe accident at the Eu-APR1400 reactor involving a core meltdown and to mitigate its consequences. Usually, sacrificial material (SM), which controls the melt properties and modifies melt conditions favorable to corium retention, can be employed to protect the core catcher body from the molten core and increase its cooling capability. The EPR reactor design (by Areva, France) core catcher consists of the initial corium retention space, the transportation channel and the wide spreading room for core melt cooling. The EPR used two kinds of SM to protect the initial core retention space from core melt and to spread the core melt across the wide spreading room using the different compositions. The VVER (Russia) ensures melt localization in a water-cooled vessel located directly beneath the reactor. SM is used to remove the thermal focusing effect by the layer inversion process between metallic and oxidic melts. The functional requirements for the SM determined for the present core catcher are (1) melting spreading improvement, (2) focusing effect prevention, (3) hydrogen explosion prevention, (4) FP (fission product) release decreasing, and (5) melt recriticality exclusion. The rest of the paper is organized as follows. The next section provides detailed descriptions of the composition of the present SM, which satisfies its functional requirements. Following this, the manufacturing process of the SM is presented

  16. Evaluation of Ablation rate by the change of Sacrificial Material for PECS in EU-APR

    Hwang, Do Hyun; Kim, Yong Soo; Lee, Keun Sung [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-05-15

    EU-APR, modified and improved from its original design of APR1400, has been developed to comply with European Utility Requirements (EUR) and nuclear design requirements of the European countries. In EU-APR, Severe Accident Mitigation Systems are dedicated to providing an independent defense line from that of Engineered Safety Feature (ESF) and Diverse Safety Feature (DSF). They consist of Emergency Reactor Depressurization System (ERDS), Passive Ex-vessel corium retaining and Cooling System (PECS), Severe Accident Containment Spray System (SACSS), Hydrogen Mitigation System (HMS) and Containment Filtered Vent System (CFVS). The PECS, so called core catcher, was introduced to prevent the Molten Core Concrete Interaction (MCCI) after Reactor Vessel (RV) failure. The PECS has experienced a lot of changes from its original design. Recently, the most significant change was that as a SM, limestone concrete is installed on PECS's body wall instead of previous sacrificial material rich in Fe{sub 2}O{sub 3}. The main reason of this design change is to overcome the issue that the sacrificial material is ablated rather too fast when reacting with corium that contains a large fraction of Zr metal. Other changes in the geometry of PECS's wall and downcomer design are considered as minor ones. In this paper, the comparison of ablation rates between previous SM and limestone concrete is carried out using MAAP5 code with respective MCCI model according to the material. In this paper, major improvements of MAAP5 model for PECS in EU-APR are presented and the evaluation of ablation rate for the previous SM model and the new LC model is carried out by means of ablation depths with LBLOCA sequence. Two models have respective unique ablation process. The ablation of LC model proceeds at a constant rate regardless of water while the ablation of SM model proceeds at a faster rate before the arrival of cooling water for corium and SM mixture. The change of sacrificial material

  17. Numerically controlled atmospheric-pressure plasma sacrificial oxidation using electrode arrays for improving silicon-on-insulator layer uniformity

    Takei, Hiroyasu; Yoshinaga, Keinosuke; Matsuyama, Satoshi; Yamauchi, Kazuto; Sano, Yasuhisa

    2015-01-01

    Silicon-on-insulator (SOI) wafers are important semiconductor substrates in high-performance devices. In accordance with device miniaturization requirements, ultrathin and highly uniform top silicon layers (SOI layers) are required. A novel method involving numerically controlled (NC) atmospheric-pressure plasma sacrificial oxidation using an electrode array system was developed for the effective fabrication of an ultrathin SOI layer with extremely high uniformity. Spatial resolution and oxidation properties are the key factors controlling ultraprecision machining. The controllability of plasma oxidation and the oxidation properties of the resulting experimental electrode array system were examined. The results demonstrated that the method improved the thickness uniformity of the SOI layer over one-sixth of the area of an 8-in. wafer area.

  18. One-Step Fabrication of Hierarchically Structured Silicon Surfaces and Modification of Their Morphologies Using Sacrificial Layers

    Seong J. Cho

    2013-01-01

    Full Text Available Fabrication of one-dimensional nanostructures is a key issue for optical devices, fluidic devices, and solar cells because of their unique functionalities such as antireflection and superhydrophobicity. Here, we report a novel one-step process to fabricate patternable hierarchical structures consisting of microstructures and one-dimensional nanostructures using a sacrificial layer. The layer plays a role as not only a micromask for producing microstructures but also as a nanomask for nanostructures according to the etching time. Using this method, we fabricated patterned hierarchical structures, with the ability to control the shape and density of the nanostructure. The various architectures provided unique functionalities. For example, our sacrificial-layer etching method allowed nanostructures denser than what would be attainable with conventional processes to form. The dense nanostructure resulted in a very low reflectance of the silicon surface (less than 1%. The nanostructured surface and hierarchically structured surface also exhibited excellent antiwetting properties, with a high contact angle (>165° and low sliding angle (<1°. We believe that our fabrication approach will provide new insight into functional surfaces, such as those used for antiwetting and antireflection surface applications.

  19. BEOL compatible high tunnel magneto resistance perpendicular magnetic tunnel junctions using a sacrificial Mg layer as CoFeB free layer cap

    Swerts, J., E-mail: Johan.Swerts@imec.be; Mertens, S.; Lin, T.; Couet, S.; Tomczak, Y.; Sankaran, K.; Pourtois, G.; Kim, W.; Meersschaut, J.; Souriau, L.; Radisic, D.; Van Elshocht, S.; Kar, G.; Furnemont, A. [imec, Kapeldreef 75, Leuven 3001 (Belgium)

    2015-06-29

    Perpendicularly magnetized MgO-based tunnel junctions are envisaged for future generation spin-torque transfer magnetoresistive random access memory devices. Achieving a high tunnel magneto resistance and preserving it together with the perpendicular magnetic anisotropy during BEOL CMOS processing are key challenges to overcome. The industry standard technique to deposit the CoFeB/MgO/CoFeB tunnel junctions is physical vapor deposition. In this letter, we report on the use of an ultrathin Mg layer as free layer cap to protect the CoFeB free layer from sputtering induced damage during the Ta electrode deposition. When Ta is deposited directly on CoFeB, a fraction of the surface of the CoFeB is sputtered even when Ta is deposited with very low deposition rates. When depositing a thin Mg layer prior to Ta deposition, the sputtering of CoFeB is prevented. The ultra-thin Mg layer is sputtered completely after Ta deposition. Therefore, the Mg acts as a sacrificial layer that protects the CoFeB from sputter-induced damage during the Ta deposition. The Ta-capped CoFeB free layer using the sacrificial Mg interlayer has significantly better electrical and magnetic properties than the equivalent stack without protective layer. We demonstrate a tunnel magneto resistance increase up to 30% in bottom pinned magnetic tunnel junctions and tunnel magneto resistance values of 160% at resistance area product of 5 Ω.μm{sup 2}. Moreover, the free layer maintains perpendicular magnetic anisotropy after 400 °C annealing.

  20. BEOL compatible high tunnel magneto resistance perpendicular magnetic tunnel junctions using a sacrificial Mg layer as CoFeB free layer cap

    Swerts, J.; Mertens, S.; Lin, T.; Couet, S.; Tomczak, Y.; Sankaran, K.; Pourtois, G.; Kim, W.; Meersschaut, J.; Souriau, L.; Radisic, D.; Van Elshocht, S.; Kar, G.; Furnemont, A.

    2015-06-01

    Perpendicularly magnetized MgO-based tunnel junctions are envisaged for future generation spin-torque transfer magnetoresistive random access memory devices. Achieving a high tunnel magneto resistance and preserving it together with the perpendicular magnetic anisotropy during BEOL CMOS processing are key challenges to overcome. The industry standard technique to deposit the CoFeB/MgO/CoFeB tunnel junctions is physical vapor deposition. In this letter, we report on the use of an ultrathin Mg layer as free layer cap to protect the CoFeB free layer from sputtering induced damage during the Ta electrode deposition. When Ta is deposited directly on CoFeB, a fraction of the surface of the CoFeB is sputtered even when Ta is deposited with very low deposition rates. When depositing a thin Mg layer prior to Ta deposition, the sputtering of CoFeB is prevented. The ultra-thin Mg layer is sputtered completely after Ta deposition. Therefore, the Mg acts as a sacrificial layer that protects the CoFeB from sputter-induced damage during the Ta deposition. The Ta-capped CoFeB free layer using the sacrificial Mg interlayer has significantly better electrical and magnetic properties than the equivalent stack without protective layer. We demonstrate a tunnel magneto resistance increase up to 30% in bottom pinned magnetic tunnel junctions and tunnel magneto resistance values of 160% at resistance area product of 5 Ω.μm2. Moreover, the free layer maintains perpendicular magnetic anisotropy after 400 °C annealing.

  1. A novel method to enhance the gettering efficiency in p-type Czochralski silicon by a sacrificial porous silicon layer

    Zhang Caizhen; Wang Yongshun; Wang Zaixing

    2011-01-01

    A new two-step phosphorous diffusion gettering (TSPDG) process using a sacrificial porous silicon layer (PSL) is proposed.Due to a decrease in high temperature time,the TSPDG (PSL) process weakens the deterioration in performances of PSL,and increases the capability of impurity clusters to dissolve and diffuse to the gettering regions.By means of the TSPDG (PSL) process under conditions of 900 ℃/60 min + 700 ℃/30 min,the effective lifetime of minority carriers in solar-grade (SOG) Si is increased to 14.3 times its original value,and the short-circuit current density of solar cells is improved from 23.5 o 28.7 mA/cm2,and the open-circuit voltage from 0.534 to 0.596 V along with the transform efficiency from 8.1% to 11.8%,which are much superior to the results achieved by the PDG (PSL) process at 900 ℃ for 90 min.

  2. Buckle-driven delamination of hydrophobic micro-, nano-, and heterostructured membranes without a sacrificial layer

    Larsen, George K.; Zhao, Yiping

    2013-10-01

    A fabrication method, based on thin film buckling, is demonstrated to form unique membranes that can be used for applications in optics and biosensing. This method should be applicable to a variety of material systems, which, along with its simplicity and compatibility with different film architectures, allows for widespread implementation.A fabrication method, based on thin film buckling, is demonstrated to form unique membranes that can be used for applications in optics and biosensing. This method should be applicable to a variety of material systems, which, along with its simplicity and compatibility with different film architectures, allows for widespread implementation. Electronic supplementary information (ESI) available: Monolayer characterization and details; morphological parameters of the membranes; diffraction pattern images; rigorous coupled wave analysis; pattern transfer fidelity; experimental details. See DOI: 10.1039/c3nr03933a

  3. Sugar-mediated disassembly of mucin/lectin multilayers and their use as pH-Tolerant, on-demand sacrificial layers.

    Polak, Roberta; Crouzier, Thomas; Lim, Rosanna M; Ribbeck, Katharina; Beppu, Marisa M; Pitombo, Ronaldo N M; Cohen, Robert E; Rubner, Michael F

    2014-08-11

    The layer-by-layer (LbL) assembly of thin films on surfaces has proven to be an extremely useful technology for uses ranging from optics to biomedical applications. Releasing these films from the substrate to generate so-called free-standing multilayer films opens a new set of applications. Current approaches to generating such materials are limited because they can be cytotoxic, difficult to scale up, or have undesirable side reactions on the material. In this work, a new sacrificial thin film system capable of chemically triggered dissolution at physiological pH of 7.4 is described. The film was created through LbL assembly of bovine submaxillary mucin (BSM) and the lectin jacalin (JAC) for a (BSM/JAC) multilayer system, which remains stable over a wide pH range (pH 3-9) and at high ionic strength (up to 5 M NaCl). This stability allows for subsequent LbL assembly of additional films in a variety of conditions, which could be released from the substrate by incubation in the presence of a competitive inhibitor sugar, melibiose, which selectively disassembles the (BSM/JAC) section of the film. This novel multilayer system was then applied to generate free-standing, 7 μm diameter, circular ultrathin films, which can be attached to a cell surface as a "backpack". A critical thickness of about 100 nm for the (BSM/JAC) film was required to release the backpacks from the glass substrate, after incubation in melibiose solution at 37 °C for 1 h. Upon their release, backpacks were subsequently attached to murine monocytes without cytotoxicity, thereby demonstrating the compatibility of this mucin-based release system with living cells.

  4. The case for using a sacrificial layer of absorbent insulation in the design of flat and low-sloped roofing

    Stockton, Gregory R.

    2013-05-01

    Beginning about twenty-five years ago, there was a marked increase in the number of single-ply membrane roof designs used to cover and waterproof flat and low-sloped building roofs. Over the past ten years, there has been a substantial increase in the number of installations of white and more reflective single-ply roof systems, mostly using high density cellular foam insulation in the substrate for insulation. A major factor in the increase in the popularity of these highly insulated and more reflective roof systems is the fact that many governments began offering incentives for building owners to use reflective coverings and better insulated roofs. Now, owing to the energy efficient requirements for the design and construction of new buildings put forth in ASHRAE Standard 90.1, "Energy Standard for Buildings Except Low-Rise Residential Buildings" and the world's apparent desire to be "green" (or at least appear to be), more and more roof designs will include these reflective single-ply membranes, which use the cellular foam insulation boards to meet these requirements. Using a lower density traditional insulation will mean that the roof will have to be very thick to comply, increasing the costs of installation. High density cellular foams do not absorb water until time, vapor pressure drive, UV and thermal shock break down the foam and it becomes more absorbent. This could be 5-7 years or longer, depending on the roof construction and other factors. This means that any water that enters the roof through a breach (leak) in the membrane goes straight into the building. This is not a good consequence since the failure mode of any roof is water entering the building. Keeping the water out of the building is the purpose of the waterproofing layer. This paper reviews the techniques of moisture testing on building roofs and infrared (IR) thermography, and puts forth the idea and reasoning behind having a sacrificial layer of very absorbent insulation installed in every

  5. Amor Sacrificial

    Mario Orozco Guzmán

    2011-01-01

    Full Text Available El sacrificio corresponde al amor argumentado. Su ejercicio muchas veces inscrito en el orden sagrado de la cultura no deja de comprometer la participación de la Bemächtigungstrieb", pulsión de apoderamiento. En tanto el sacrificio se rinde al otro para su apaciguamiento o complacencia, por supuesto amor a él, se descubre un desprendimiento de goce, al elevar el mal, la destrucción, al estatuto de soberano bien. La demanda sacrificial atribuida a los dioses introduce la dimensión de falta en estos seres supuestamente omnipotentes. Amor y dioses requieren de su provisión persistente de sacrificios. El cuerpo sometido a la tiranía de la imagen idealizada y exaltada es expuesto a distintos y renovados sacrificios. Y parece que ningún sacrificio fuera satisfactorio. La proclama de guerra puede inscribir de forma preponderante la retórica del sacrificio en su pretensión heroica o de sujeción abominable.

  6. Synthesis of Freestanding Single-crystal Perovskite Films and Heterostructures by Etching of Sacrificial Water-soluble Layers

    Lu, Di; Baek, David J.; Hong, Seung Sae; Kourkoutis, Lena F.; Hikita, Yasuyuki; Hwang, Harold Y.

    2016-08-22

    The ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality and emergent phenomena, as seen in perovskite heterostructures. However, separation of these layers from the growth substrate has proven challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general method to create freestanding perovskite membranes. The key is the epitaxial growth of water-soluble Sr3Al2O6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr3Al2O6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds.

  7. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers.

    Lu, Di; Baek, David J; Hong, Seung Sae; Kourkoutis, Lena F; Hikita, Yasuyuki; Hwang, Harold Y

    2016-12-01

    The ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality and emergent phenomena, as seen in perovskite heterostructures. However, separation of these layers from the growth substrate has proved challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general method to create freestanding perovskite membranes. The key is the epitaxial growth of water-soluble Sr 3Al 2O 6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr 3Al 2O 6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds.

  8. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers

    Lu, Di; Baek, David J.; Hong, Seung Sae; Kourkoutis, Lena F.; Hikita, Yasuyuki; Hwang, Harold Y.

    2016-12-01

    The ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality and emergent phenomena, as seen in perovskite heterostructures. However, separation of these layers from the growth substrate has proved challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general method to create freestanding perovskite membranes. The key is the epitaxial growth of water-soluble Sr 3Al 2O 6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr 3Al 2O 6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds.

  9. Building biomedical materials layer-by-layer

    Paula T. Hammond

    2012-05-01

    Full Text Available In this materials perspective, the promise of water based layer-by-layer (LbL assembly as a means of generating drug-releasing surfaces for biomedical applications, from small molecule therapeutics to biologic drugs and nucleic acids, is examined. Specific advantages of the use of LbL assembly versus traditional polymeric blend encapsulation are discussed. Examples are provided to present potential new directions. Translational opportunities are discussed to examine the impact and potential for true biomedical translation using rapid assembly methods, and applications are discussed with high need and medical return.

  10. Surface imprinting on nano-TiO{sub 2} as sacrificial material for the preparation of hollow chlorogenic acid imprinted polymer and its recognition behavior

    Li Hui, E-mail: lihuijsdx@163.com [College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, Jishou (China); Key Laboratory of Plant Resource Conservation and Utilization, Jishou University, Hunan 416000, Jishou (China); Li Gui [Key Laboratory of Plant Resource Conservation and Utilization, Jishou University, Hunan 416000, Jishou (China); Li Zhiping; Lu Cuimei; Li Yanan [College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, Jishou (China); Tan Xianzhou [Key Laboratory of Plant Resource Conservation and Utilization, Jishou University, Hunan 416000, Jishou (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Used surface imprinting technique with nano-TiO{sub 2} as sacrificial support material. Black-Right-Pointing-Pointer Improved adsorption capability of the H-MIP1 compared with the previous work. Black-Right-Pointing-Pointer Excellent mass transfer dynamics for the H-MIP1. Black-Right-Pointing-Pointer Investigated adsorption thermodynamic of the H-MIP1. - Abstract: Surface imprinting chlorogenic acid (CGA) on nano-TiO{sub 2} particles as sacrificial support material was successfully performed by using 4-vinylpyridine (4-VP) as functional monomer to obtain a hollow CGA-imprinted polymer (H-MIP1). Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM) were utilized for structurally characterizing the polymers obtained and adsorption dynamics and thermodynamic behavior investigated according to different models. Binding selectivity, adsorption capacity and the reusability for this H-MIP1 were also evaluated. This hollow CGA imprinted polymer shows rapid binding dynamics and higher binding capability toward the template molecules. The pseudo first-order kinetic model was shown best to describe the binding process of CGA on the H-MIP1 and Langmuir isotherm model best to fit the experimental adsorption isotherm data. Through adsorption isotherms at different temperatures, thermodynamic parameter values were obtained. Selectivity coefficients for the H-MIP1 toward the template were 2.209, 3.213, 1.746 and 2.353 relative to CA, VA, PCA and GA, respectively. This H-MIP1 was also indicated with a good imprint effect and a high capability to capture CGA from methanol extract of Eucommia ulmoides (E. ulmoides) leaves. Additionally, a good reusability for this imprinted polymer was exhibited during repeated adsorption-desorption use.

  11. Surface imprinting on nano-TiO2 as sacrificial material for the preparation of hollow chlorogenic acid imprinted polymer and its recognition behavior

    Li, Hui; Li, Gui; Li, Zhiping; Lu, Cuimei; Li, Yanan; Tan, Xianzhou

    2013-01-01

    Surface imprinting chlorogenic acid (CGA) on nano-TiO2 particles as sacrificial support material was successfully performed by using 4-vinylpyridine (4-VP) as functional monomer to obtain a hollow CGA-imprinted polymer (H-MIP1). Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM) were utilized for structurally characterizing the polymers obtained and adsorption dynamics and thermodynamic behavior investigated according to different models. Binding selectivity, adsorption capacity and the reusability for this H-MIP1 were also evaluated. This hollow CGA imprinted polymer shows rapid binding dynamics and higher binding capability toward the template molecules. The pseudo first-order kinetic model was shown best to describe the binding process of CGA on the H-MIP1 and Langmuir isotherm model best to fit the experimental adsorption isotherm data. Through adsorption isotherms at different temperatures, thermodynamic parameter values were obtained. Selectivity coefficients for the H-MIP1 toward the template were 2.209, 3.213, 1.746 and 2.353 relative to CA, VA, PCA and GA, respectively. This H-MIP1 was also indicated with a good imprint effect and a high capability to capture CGA from methanol extract of Eucommia ulmoides (E. ulmoides) leaves. Additionally, a good reusability for this imprinted polymer was exhibited during repeated adsorption-desorption use.

  12. Smear layer--materials surface.

    Eick, J D

    1992-01-01

    SEM and TEM photomicrographs were presented of the smear layer and several dentin-adhesive interfaces. It was shown that as the wetting and penetration of the dentin adhesive increased, the shear bond strength also increased. Three categories of dentin adhesives were presented. Category one included Scotchbond, Dentin Adhesit and Gluma, with shear bond strength values between 5 and 7 MPa; the second category, dentin adhesives based on Dr. Bowen's research, included Tenure and Mirage Bond, with shear bond strengths between 8 and 14 MPa; the third category included Superbond and Scotchbond 2, with shear bond strength values up to 20 MPa. Failures occurred at the interface or in the resin adhesive for materials in categories one and two; failures occurred through the dentin or composite for materials in category three.

  13. SCOUR MITIGATION AT BRIDGE PIERS USING SACRIFICIAL PILES

    M. Anisul HAQUE; Md. Munsur RAHMAN; G.M. Tarekul ISLAM; M. Asad HUSSAIN

    2007-01-01

    To mitigate scour around bridge piers, sacrificial piles are economic method where natural processes are involved. The arrangement should be such that scoured materials from the sacrificial piles should have enough volume to fill the scour hole created upstream of the pier in such a way that sediments are trapped inside the scour hole. This concept differs from earlier study made with sacrificial piles that mainly deals to reduce the strength of horseshoe vortex. To determine the effect of sacrificial piles for scour mitigation, alternative arrangements of piles were tested in front of a rectangular pier under clear-water condition and found that when the group of piles is placed at a distance of twice the projected width of the pier, for which percentage of blockage of the pier width is 60%, the scour volume can be reduced upto 61% while the maximum scour depth can be reduced upto 50%.

  14. Structure and properties of layered inorganic materials

    Xue Duan

    2010-01-01

    @@ Inorganic layered materials are a class of advanced functional materials that have attracted considerable attention by virtue of their practical applications in a wide variety of fields. Sys-tematic studies of structure, design, synthesis, and fabrication processing may extend the range of practical utility of inor-ganic layered functional materials, in areas such as food industry,chemical industry, energy engineering, environmental engineer-ing, drug and gene delivery, electronics technology, and materials protection.

  15. Sacrificial wafer bonding for planarization after very deep etching

    Spiering, Vincent L.; Berenschot, J.W.; Elwenspoek, Miko; Fluitman, Jan H.J

    1995-01-01

    A new technique is presented that provides planarization after a very deep etching step in silicon. This offers the possibility for resist spinning and layer patterning as well as realization of bridges or cantilevers across deep holes or grooves. The sacrificial wafer bonding technique contains a w

  16. Sacrificial Template Synthesis and Properties of 3D Hollow-Silicon Nano- and Microstructures.

    Hölken, Iris; Neubüser, Gero; Postica, Vasile; Bumke, Lars; Lupan, Oleg; Baum, Martina; Mishra, Yogendra Kumar; Kienle, Lorenz; Adelung, Rainer

    2016-08-10

    Novel three-dimensional (3D) hollow aero-silicon nano- and microstructures, namely, Si-tetrapods (Si-T) and Si-spheres (Si-S) were synthesized by a sacrificial template approach for the first time. The new Si-T and Si-S architectures were found as most temperature-stable hollow nanomaterials, up to 1000 °C, ever reported. The synthesized aero-silicon or aerogel was integrated into sensor structures based on 3D networks. A single microstructure Si-T was employed to investigate electrical and gas sensing properties. The elaborated hollow microstructures open new possibilities and a wide area of perspectives in the field of nano- and microstructure synthesis by sacrificial template approaches. The enormous flexibility and variety of the hollow Si structures are provided by the special geometry of the sacrificial template material, ZnO-tetrapods (ZnO-T). A Si layer was deposited onto the surface of ZnO-T networks by plasma-enhanced chemical vapor deposition. All samples demonstrated p-type conductivity; hence, the resistance of the sensor structure increased after introducing the reducing gases in the test chamber. These hollow structures and their unique and superior properties can be advantageous in different fields, such as NEMS/MEMS, batteries, dye-sensitized solar cells, gas sensing in harsh environment, and biomedical applications. This method can be extended for synthesis of other types of hollow nanostructures.

  17. Surface micromachined PDMS microfluidic devices fabricated using a sacrificial photoresist

    Ganapathy Subramani, Balasubramanian; Selvaganapathy, Ponnambalam Ravi

    2009-01-01

    PDMS is a widely used material for construction of microfluidic devices. The traditional PDMS microfabrication process, although versatile, cannot be used to form microfluidic devices with embedded tall topological features, such as thick-film electrodes and porous reactor beds. This paper presents an elegant surface micromachining process for microfluidic devices that allows complete leak-proof sealing and a conformal contact of the PDMS with tall pre-existing topographical features and demonstrates this approach by embedding 6 µm thick Ag/AgCl (high capacity 1680 µA s) electrodes inside the microchannels. In this process, thin spin-cast films of the PDMS are used as the structural material and a photoresist is used as the sacrificial material. A crucial parameter, namely adhesion of the spun-cast structural layer to the substrate, was characterized for different pre-polymer ratios using a standard tensile test, and a 1:3 (curing agent:base) combination was found to be the best with a maximum adhesion strength of 7.2 MPa. The elastic property of the PDMS allowed extremely fast release times of ~1 min of the fabricated microchannels. The versatility of this process was demonstrated by the fabrication of a pneumatic microvalve with multi-layered microchannel geometry. The valve closure occurred at 6.37 kPa. Preliminary results of this paper have been presented at the Canadian Workshop on MEMS and Microfluidics, Montréal, Canada, August 2007.

  18. Complex Materials by Atomic Layer Deposition.

    Schwartzberg, Adam M; Olynick, Deirdre

    2015-10-14

    Complex materials are defined as nanostructured materials with combinations of structure and/or composition that lead to performance surpassing the sum of their individual components. There are many methods that can create complex materials; however, atomic layer deposition (ALD) is uniquely suited to control composition and structural parameters at the atomic level. The use of ALD for creating complex insulators, semiconductors, and conductors is discussed, along with its use in novel structural applications.

  19. Thin film of Poly(acrylic acid-co-allyl acrylate as a Sacrificial Protective Layer for Hydrophilic Self Cleaning Glass

    Jānis Lejnieks

    2010-05-01

    Full Text Available Poly(acrylic acid-co-allyl acrylate statistical copolymers were synthesized in a controlled manner in two steps: first tert.butyl acrylate and allyl acrylate were polymerized via atom transfer radical polymerization (ATRP and afterwords the tert.butyl protective groups were removed via hydrolysis. Samples of self cleaning glass (SCG were coated with thin films of poly(acrylic acid-co-allyl acrylate and cross-linked afterwards by UV irradiation (in the presence of a photoinitiator and an accelerator. Solution cast thin films were transparent and homogeneous before and after UV cross-linking. The irradiated samples were found to be hydrophilic (Θ < 20° and water insoluble. The coating prevented the spontaneous hydrophobization of the SCG by residual silicon exhaled from the sealing material. The TiO2 photocatalyst that covers the glass surface was found to strip the protective coating. The rate of the photooxidation process was measured by IR spectroscopy. The real field performance of the protective coating was also tested.

  20. Layered zeolite materials and methods related thereto

    Tsapatsis, Michael; Maheshwari, Sudeep; Bates, Frank S; Koros, William J

    2013-08-06

    A novel oxide material (MIN-I) comprising YO.sub.2; and X.sub.2O.sub.3, wherein Y is a tetravalent element and X is a trivalent element, wherein X/Y=O or Y/X=30 to 100 is provided. Surprisingly, MIN-I can be reversibly deswollen. MIN-I can further be combined with a polymer to produce a nanocomposite, depolymerized to produce predominantly fully exfoliated layers (MIN-2), and pillared to produce a pillared oxide material (MIN-3), analogous to MCM-36. The materials are useful in a wide range of applications, such as catalysts, thin films, membranes, and coatings.

  1. Nano transfer and nanoreplication using deterministically grown sacrificial nanotemplates

    Melechko, Anatoli V [Oak Ridge, TN; McKnight, Timothy E [Greenback, TN; Guillorn, Michael A [Ithaca, NY; Ilic, Bojan [Ithaca, NY; Merkulov, Vladimir I [Knoxville, TX; Doktycz, Mitchel J [Knoxville, TN; Lowndes, Douglas H [Knoxville, TN; Simpson, Michael L [Knoxville, TN

    2012-03-27

    Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. An apparatus, includes a substrate and a nanoconduit material coupled to a surface of the substrate. The substrate defines an aperture and the nanoconduit material defines a nanoconduit that is i) contiguous with the aperture and ii) aligned substantially non-parallel to a plane defined by the surface of the substrate.

  2. Atomic Layer Thermopile Materials: Physics and Application

    P. X. Zhang

    2008-01-01

    Full Text Available New types of thermoelectric materials characterized by highly anisotropic Fermi surfaces and thus anisotropic Seebeck coefficients are reviewed. Early studies revealed that there is an induced voltage in high TC oxide superconductors when the surface of the films is exposed to short light pulses. Subsequent investigations proved that the effect is due to anisotropic components of the Seebeck tensor, and the type of materials is referred to atomic layer thermopile (ALT. Our recent studies indicate that multilayer thin films at the nanoscale demonstrate enhanced ALT properties. This is in agreement with the prediction in seeking the larger figure of merit (ZT thermoelectric materials in nanostructures. The study of ALT materials provides both deep insight of anisotropic transport property of these materials and at the same time potential materials for applications, such as light detector and microcooler. By measuring the ALT properties under various perturbations, it is found that the information on anisotropic transport properties can be provided. The information sometimes is not easily obtained by other tools due to the nanoscale phase coexistence in these materials. Also, some remained open questions and future development in this research direction have been well discussed.

  3. Compressive Failure Mechanisms in Layered Materials

    Sørensen, Kim Dalsten

    Two important failure modes in fiber reinforced composite materials in cluding layers and laminates occur under loading conditions dominated by compression in the layer direction. These two distinctly different failure modes are 1. buckling driven delamination 2. failure by strain localization...... or on cylindrical substrates modeling the delamination as an interface fracture mechanical problem. Here attention is directed towards double-curved substrates, which introduces a new non-dimensional combination of geometric parameters. It is shown for a wide range of parameters that by choosing the two...... nondimensional parameters suitably, one of them plays a very insignificant role on the fracture mechanical parameters such as normalized energy release rate and mode mixity, which has obvious impact on the presentation of the results. In some cases, the local curvatures of the system is so high compared...

  4. Nanomanufacturing : nano-structured materials made layer-by-layer.

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto (University of New Mexico); Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  5. Toughening elastomers with sacrificial bonds and watching them break.

    Ducrot, Etienne; Chen, Yulan; Bulters, Markus; Sijbesma, Rint P; Creton, Costantino

    2014-04-11

    Elastomers are widely used because of their large-strain reversible deformability. Most unfilled elastomers suffer from a poor mechanical strength, which limits their use. Using sacrificial bonds, we show how brittle, unfilled elastomers can be strongly reinforced in stiffness and toughness (up to 4 megapascals and 9 kilojoules per square meter) by introducing a variable proportion of isotropically prestretched chains that can break and dissipate energy before the material fails. Chemoluminescent cross-linking molecules, which emit light as they break, map in real time where and when many of these internal bonds break ahead of a propagating crack. The simple methodology that we use to introduce sacrificial bonds, combined with the mapping of where bonds break, has the potential to stimulate the development of new classes of unfilled tough elastomers and better molecular models of the fracture of soft materials.

  6. Optical modulators with 2D layered materials

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  7. Layered Atom Arrangements in Complex Materials

    K.E. Sikafus; R.W.Grimes; S.M.Corish; A.R. Cleave; M.Tang; C.R.Stanek; B.P. Uberuaga; J.A.Valdez

    2005-04-15

    In this report, we develop an atom layer stacking model to describe systematically the crystal structures of complex materials. To illustrate the concepts, we consider a sequence of oxide compounds in which the metal cations progress in oxidation state from monovalent (M{sup 1+}) to tetravalent (M{sup 4+}). We use concepts relating to geometric subdivisions of a triangular atom net to describe the layered atom patterns in these compounds (concepts originally proposed by Shuichi Iida). We demonstrate that as a function of increasing oxidation state (from M{sup 1+} to M{sup 4+}), the layer stacking motifs used to generate each successive structure (specifically, motifs along a 3 symmetry axis), progress through the following sequence: MMO, MO, M{sub r}O, MO{sub r/s}O{sub u/v}, MOO (where M and O represent fully dense triangular atom nets and r/s and u/v are fractions used to describe partially filled triangular atom nets). We also develop complete crystallographic descriptions for the compounds in our oxidation sequence using trigonal space group R{bar 3}.

  8. Thermoelectric material including conformal oxide layers and method of making the same using atomic layer deposition

    Cho, Jung Young; Ahn, Dongjoon; Salvador, James R.; Meisner, Gregory P.

    2016-06-07

    A thermoelectric material includes a substrate particle and a plurality of conformal oxide layers formed on the substrate particle. The plurality of conformal oxide layers has a total oxide layer thickness ranging from about 2 nm to about 20 nm. The thermoelectric material excludes oxide nanoparticles. A method of making the thermoelectric material is also disclosed herein.

  9. Adaptive Layer Height During DLP Materials Processing

    Pedersen, David Bue; Zhang, Yang; Nielsen, Jakob Skov

    2016-01-01

    This research aim to show how manufacturing speeds during vat polymerisation can be vastly increased through an adaptive layer height strategy that takes the geometry into account through analysis of the relationship between layer height, cross-section variability and surface structure. This allows...

  10. Low temperature sacrificial wafer bonding for planarization after very deep etching

    Spiering, V.L.; Berenschot, J.W.; Elwenspoek, M.; Fluitman, J.H.J.

    1994-01-01

    A new technique, at temperatures of 150°C or 450°C, that provides planarization after a very deep etching step in silicon is presented. Resist spinning and layer patterning as well as realization of bridges or cantilevers across deep holes becomes possible. The sacrificial wafer bonding technique co

  11. Contact mechanics for layered materials with randomly rough surfaces.

    Persson, B N J

    2012-03-07

    The contact mechanics model of Persson is applied to layered materials. We calculate the M function, which relates the surface stress to the surface displacement, for a layered material, where the top layer (thickness d) has different elastic properties than the semi-infinite solid below. Numerical results for the contact area as a function of the magnification are presented for several cases. As an application, we calculate the fluid leak rate for laminated rubber seals.

  12. Atomic layer deposition of nanostructured materials

    Pinna, Nicola

    2012-01-01

    Atomic layer deposition, formerly called atomic layer epitaxy, was developed in the 1970s to meet the needs of producing high-quality, large-area fl at displays with perfect structure and process controllability. Nowadays, creating nanomaterials and producing nanostructures with structural perfection is an important goal for many applications in nanotechnology. As ALD is one of the important techniques which offers good control over the surface structures created, it is more and more in the focus of scientists. The book is structured in such a way to fi t both the need of the expert reader (du

  13. Redox buffered hydrofluoric acid etchant for the reduction of galvanic attack during release etching of MEMS devices having noble material films

    Hankins, Matthew G.

    2009-10-06

    Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.

  14. Nanoscale Surface Modification of Layered Materials

    O'Shea, Aaron

    2011-11-01

    A scanning electron microscope can magnify a sample many times greater than a standard microscope, down to nanoscale dimensions. It can also be used to form patterns on the surfaces of certain materials, a technique used to create microchips. We have developed a technique that simplifies and expedites this process using an unmodified scanning electron microscope. Using this technique, we are able to alter the surface chemistry in a controlled pattern on a special class of materials called transition metal dichalcogenides. These materials have many useful applications: industrial lubricants; high strength nanocomposites; advanced solar cells; and next generation electronics. Altering the surface chemistry of these materials at the nanoscale results in unusual quantum behavior, which is useful in nanotechnology.

  15. Nanoprocessing of layered crystalline materials by atomic force microscopy.

    Miyake, Shojiro; Wang, Mei

    2015-01-01

    By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds. Mica (muscovite), graphite, molybdenum disulfide (MoS2), and boron nitride have layered structures, and there is little interaction between the cleavage planes existing in the basal planes of these materials. Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level. This study reviews research evaluating the nanometer-scale wear and friction as well as the nanometer-scale mechanical processing of muscovite using atomic force microscopy (AFM). It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

  16. Examples of material solutions in bimetallic layered castings

    S. Tenerowicz

    2011-07-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast process so-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. pearlitic grey cast iron, whereas working part (layer is depending on accepted variant plates of alloy steels sort X6Cr13, X12Cr13, X10CrNi18-8 and X2CrNiMoN22-5-3. The ratio of thickness between bearing and working part is 8:1. The verification of the bimetallic layered castings was evaluated on the basis of ultrasonic NDT (non-destructive testing, structure and macro- and microhardness researches.

  17. Porous Materials with Tunable Structure and Mechanical Properties via Templated Layer-by-Layer Assembly.

    Ziminska, Monika; Dunne, Nicholas; Hamilton, Andrew R

    2016-08-31

    The deposition of stiff and strong coatings onto porous templates offers a novel strategy for fabricating macroscale materials with controlled architectures at the micro- and nanoscale. Here, layer-by-layer assembly is utilized to fabricate nanocomposite-coated foams with highly customizable properties by depositing polymer-nanoclay coatings onto open-cell foam templates. The compressive mechanical behavior of these materials evolves in a predictable manner that is qualitatively captured by scaling laws for the mechanical properties of cellular materials. The observed and predicted properties span a remarkable range of density-stiffness space, extending from regions of very soft elastomer foams to very stiff, lightweight honeycomb and lattice materials.

  18. Epitaxially Grown Layered MFI–Bulk MFI Hybrid Zeolitic Materials

    Kim, Wun-gwi

    2012-11-27

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered zeolite material grown epitaxially on the surface of a bulk zeolite material. Specifically, layered (2-D) MFI sheets were grown on the surface of bulk MFI crystals of different sizes (300 nm and 10 μm), thereby resulting in a hybrid material containing a unique morphology of interconnected micropores (∼0.55 nm) and mesopores (∼3 nm). The structure and morphology of this material, referred to as a "bulk MFI-layered MFI" (BMLM) material, was elucidated by a combination of XRD, TEM, HRTEM, SEM, TGA, and N2 physisorption techniques. It is conclusively shown that epitaxial growth of the 2-D layered MFI sheets occurs in at least two principal crystallographic directions of the bulk MFI crystal and possibly in the third direction as well. The BMLM material combines the properties of bulk MFI (micropore network and mechanical support) and 2-D layered MFI (large surface roughness, external surface area, and mesoporosity). As an example of the uses of the BMLM material, it was incorporated into a polyimide and fabricated into a composite membrane with enhanced permeability for CO2 and good CO2/CH4 selectivity for gas separations. SEM-EDX imaging and composition analysis showed that the polyimide and the BMLM interpenetrate into each other, thereby forming a well-adhered polymer/particle microstructure, in contrast with the defective interfacial microstructure obtained using bare MFI particles. Analysis of the gas permeation data with the modified Maxwell model also allows the estimation of the effective volume of the BMLM particles, as well as the CO2 and CH4 gas permeabilities of the interpenetrated layer at the BMLM/polyimide interface. © 2012 American Chemical Society.

  19. Love wave propagation in functionally graded piezoelectric material layer.

    Du, Jianke; Jin, Xiaoying; Wang, Ji; Xian, Kai

    2007-03-01

    An exact approach is used to investigate Love waves in functionally graded piezoelectric material (FGPM) layer bonded to a semi-infinite homogeneous solid. The piezoelectric material is polarized in z-axis direction and the material properties change gradually with the thickness of the layer. We here assume that all material properties of the piezoelectric layer have the same exponential function distribution along the x-axis direction. The analytical solutions of dispersion relations are obtained for electrically open or short circuit conditions. The effects of the gradient variation of material constants on the phase velocity, the group velocity, and the coupled electromechanical factor are discussed in detail. The displacement, electric potential, and stress distributions along thickness of the graded layer are calculated and plotted. Numerical examples indicate that appropriate gradient distributing of the material properties make Love waves to propagate along the surface of the piezoelectric layer, or a bigger electromechanical coupling factor can be obtained, which is in favor of acquiring a better performance in surface acoustic wave (SAW) devices.

  20. Crystallographic dependence of the lateral undercut wet etch rate of Al0.5In0.5P in diluted HCl for III-V sacrificial release

    Ansbæk, Thor; Semenova, Elizaveta; Yvind, Kresten;

    2013-01-01

    The authors investigated the use of InAlP as a sacrificial layer lattice-matched to GaAs when diluted hydrochloric acid is used for sacrificial etching. They show that InAlP can be used to fabricate submicrometer air gaps in micro-opto-electro-mechanical systems and that a selectivity toward Ga...

  1. Designing high-performance layered thermoelectric materials through orbital engineering.

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K H; Fischer, Karl F F; Zhang, Wenqing; Shi, Xun; Iversen, Bo B

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials.

  2. Designing high-performance layered thermoelectric materials through orbital engineering

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.; Fischer, Karl F. F.; Zhang, Wenqing; Shi, Xun; Iversen, Bo B.

    2016-03-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials.

  3. Mechanics of freely-suspended ultrathin layered materials

    Castellanos-Gomez, Andres [Kavli Institute of Nanoscience, Delft University of Technology (Netherlands); Instituto Madrileno de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Madrid (Spain); Singh, Vibhor; Zant, Herre S.J. van der; Steele, Gary A. [Kavli Institute of Nanoscience, Delft University of Technology (Netherlands)

    2015-01-01

    The study of atomically thin two-dimensional materials is a young and rapidly growing field. In the past years, a great advance in the study of the remarkable electrical and optical properties of 2D materials fabricated by exfoliation of bulk layered materials has been achieved. Due to the extraordinary mechanical properties of these atomically thin materials, they also hold a great promise for future applications such as flexible electronics. For example, this family of materials can sustain very large deformations without breaking. Due to the combination of small dimensions, high Young's modulus and high crystallinity of 2D materials, they have attracted the attention of the field of nanomechanical systems as high frequency and high quality factor resonators. In this article, we review experiments on static and dynamic response of 2D materials. We provide an overview and comparison of the mechanics of different materials, and highlight the unique properties of these thin crystalline layers. We conclude with an outlook of the mechanics of 2D materials and future research directions such as the coupling of the mechanical deformation to their electronic structure. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Removal of surface layers from plated materials: upgrading of scrap

    Dapper, G.; Sloterdijk, W.; Verbraak, C.A.

    1978-01-01

    In this paper a description is given of a method developed for the purpose of removing surface layers from plated materials. The principle of separation is based on the difference in vapour pressures and stabilities with the formation of metal chlorides. A series of pyrolytic experiments was carried

  5. Optimization of layered material configuration for shock attenuation

    Verreault, J.; Voort, M.M. van der

    2015-01-01

    Multi-layered materials with alternating impedances as a mean to mitigate sympathetic detonation is considered in this investigation by studying the wave scattering and energy absorption phenomena. This is achieved using an analytical wave-tracking model that accounts for the different wave interact

  6. Designing high-Performance layered thermoelectric materials through orbital engineering

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited...... insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach...... naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth...

  7. Models of failure in compression of layered materials

    Jensen, Henrik Myhre

    1999-01-01

    Compressive failure of fibre reinforced or layered materials by fibre kinking, matrix splitting and fibre/matrix debonding is analysed, The main focus is on brittle matrix composites, however, the analysis of effects due to debonding is carried out in a general framework allowing for arbitrary time......-independent plasticity of the layers. Fibre kinking and matrix splitting are regarded as competing failure modes with the conditions governing the active mode depending on the biaxial stress state in the composite and a combination of micro mechanical parameters. Two criteria for matrix splitting, and two models...

  8. Antitumoral materials with regenerative function obtained using a layer-by-layer technique

    Ficai D

    2015-03-01

    Full Text Available Denisa Ficai,1 Maria Sonmez,1,2 Madalina Georgiana Albu,2 Dan Eduard Mihaiescu,1 Anton Ficai,1 Coralia Bleotu3 1Faculty of Applied Chemistry and Material Science, Politehnica University of Bucharest, 2Leather and Footwear Research Institute, National Research and Development Institute for Textiles and Leather, 3Stefan S Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania Abstract: A layer-by layer technique was successfully used to obtain collagen/hydroxyapatite-magnetite-cisplatin (COLL/HAn-Fe3O4-CisPt, n=1–7 composite materials with a variable content of hydroxyapatite intended for use in the treatment of bone cancer. The main advantages of this system are the possibility of controlling the rate of delivery of cytostatic agents, the presence of collagen and hydroxyapatite to ensure more rapid healing of the injured bone tissue, and the potential for magnetite to be a passive antitumoral component that can be activated when an appropriate external electromagnetic field is applied. In vitro cytotoxicity assays performed on the COLL/HAn-Fe3O4-CisPt materials obtained using a layer-by layer method confirmed their antitumoral activity. Samples with a higher content of hydroxyapatite had more antitumoral activity because of their better absorption of cisplatin and consequently a higher amount of cisplatin being present in the matrices. Keywords: multifunctional materials, antitumoral activity, scaffold, bone grafts

  9. 10th International School of Materials Science and Technology : Intercalation in Layered Materials "Ettore Majorana"

    1986-01-01

    This volume is prepared from lecture notes for the course "Intercalation in Layered Materials" which was held at the Ettore Majorana Centre for Scientific Culture at Erice, Sicily in July, 1986, as part of the International School of Materials Science and Tech­ nology. The course itself consisted of formal tutorial lectures, workshops, and informal discussions. Lecture notes were prepared for the formal lectures, and short summaries of many of the workshop presentations were prepared. This volume is based on these lecture notes and research summaries. The material is addressed to advanced graduate students and postdoctoral researchers and assumes a background in basic solid state physics. The goals of this volume on Intercalation in Layered Materials include an introduc­ tion to the field for potential new participants, an in-depth and broad exposure for stu­ dents and young investigators already working in the field, a basis for cross-fertilization between workers on various layered host materials...

  10. Optical modulators with two-dimensional layered materials

    Sun, Zhipei; Wang, Feng

    2016-01-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.

  11. Electromagnetic wave propagation in alternating material-metamaterial layered structures

    Carrera-Escobedo, V H

    2016-01-01

    Using the transfer matrix method, we examine the parametric behavior of the transmittance of an electromagnetic plane wave propagating in the lossless regime through a periodic multilayered system as a function of the frequency and angle of incidence of the electromagnetic wave for the case in which the periodic structure comprises alternating material-metamaterial layers. A specific example of high transmittance at any angle of incidence in the visible region of the spectrum is identified

  12. Local Structure Analysis of Materials for Solar Cell Absorber Layer

    Jewell, Leila Elizabeth

    2016-01-01

    This dissertation examines solar cell absorber materials that have the potential to replace silicon in solar cells, including several copper-based sulfides and perovskites. Earth-abundant absorbers such as these become even more cost-effective when used in a nanostructured solar cell. Atomic layer deposition (ALD) and chemical vapor deposition (CVD) deposit highly conformal films and hence are important tools for developing extremely thin absorber solar cells with scalability. Thus, the prima...

  13. Nanotubes Motion on Layered Materials: A Registry Perspective

    Oz, Inbal; Itkin, Yaron; Buchwalter, Asaf; Akulov, Katherine; Hod, Oded

    2015-01-01

    At dry and clean material junctions of rigid materials the corrugation of the sliding energy landscape is dominated by variations of Pauli repulsions. These occur when electron clouds centered around atoms in adjacent layers overlap as they slide across each other. In such cases there exists a direct relation between interfacial surface (in)commensurability and superlubricity, a frictionless and wearless tribological state. The Registry Index is a purely geometrical parameter that quanti?es the degree of interlayer commensurability, thus providing a simple and intuitive method for the prediction of sliding energy landscapes at rigid material interfaces. In the present study, we extend the applicability of the Registry Index to non-parallel surfaces, using a model system of nanotubes motion on ?at hexagonal materials. Our method successfully reproduces sliding energy landscapes of carbon nanotubes on Graphene calculated using a Lennard-Jones type and the Kolmogorov-Crespi interlayer potentials. Furthermore, it...

  14. Acoustic scattering reduction using layers of elastic materials

    Dutrion, Cécile; Simon, Frank

    2017-02-01

    Making an object invisible to acoustic waves could prove useful for military applications or measurements in confined space. Different passive methods have been proposed in recent years to avoid acoustic scattering from rigid obstacles. These techniques are exclusively based on acoustic phenomena, and use for instance multiple resonators or scatterers. This paper examines the possibility of designing an acoustic cloak using a bi-layer elastic cylindrical shell to eliminate the acoustic field scattered from a rigid cylinder hit by plane waves. This field depends on the dimensional and mechanical characteristics of the elastic layers. It is computed by a semi-analytical code modelling the vibrations of the coating under plane wave excitation. Optimization by genetic algorithm is performed to determine the characteristics of a bi-layer material minimizing the scattering. Considering an external fluid consisting of air, realistic configurations of elastic coatings emerge, composed of a thick internal orthotopic layer and a thin external isotropic layer. These coatings are shown to enable scattering reduction at a precise frequency or over a larger frequency band.

  15. New buffer layer materials for CIGS solar cells

    Gruhn, Thomas; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University, Mainz (Germany); Kieven, David [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany)

    2009-07-01

    The compound semiconductor CuIn{sub x}Ga{sub (1-x)}Se{sub 2} (CIGSE) are used as absorber material in thin-film photovoltaic cells. In conventional CIGSE based solar cells a thin CdS layer (buffer) significantly improves the photovoltaic performance and efficiencies up to 19.9% have been realized. Since Cd is a toxic heavy metal there is a demand for suitable substitute materials. The first requirements for these materials are an adequate band gap, a crystal structure compatible to that of CIGSE, and an n-type conductivity. An interesting class of materials are half-Heuslers, which are ternary compounds with a C1b MgAgAs structure. For many half-Heusler compounds the crystal structure matches well with the layer of the tetragonal CIGS unit cell. Using ab initio calculations based on B3LYP hybrid functionals, we have studied electronic properties of the most promising half-Heusler materials. Our results affirm the band gap rule for 8-electron half- Heuslers presented.

  16. Development of size-customized hepatocarcinoma spheroids as a potential drug testing platform using a sacrificial gelatin microsphere system.

    Leong, Wenyan; Kremer, Antje; Wang, Dong-An

    2016-06-01

    Sacrificial gelatin microspheres can be developed as a cell delivery vehicle for non-anchorage dependent cells - its incorporation into a macroscopic scaffold system not only allows the cells to be cultured in suspension within cavities left behind by the sacrificial material, it also allows scaffold-free tissue development to be confined within the cavities. In this study, dense and highly viable hepatocarcinoma spheroids were developed by means of encapsulation in sacrificial gelatin microspheres produced via a simple water-in-oil emulsion technique. By initial selection of microsphere size and distribution, spheroid size can be controlled for various applications such as uniform tumor spheroids as a reproducible three-dimensional drug screening and testing platform that better mimics the in vivo nature of tumors (instead of conventional monolayer culture), as this study has suggested as a proof-of-concept with chemotherapy drug Doxorubicin.

  17. Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt†

    Gelber, Matthew K.

    2015-01-01

    Here we demonstrate a method for creating multilayer or 3D microfluidics by casting a curable resin around a water-soluble, freestanding sacrificial mold. We use a purpose-built 3D printer to pattern self-supporting filaments of the sugar alcohol isomalt, which we then back-fill with a transparent epoxy resin. Dissolving the sacrificial mold leaves a network of cylindrical channels as well as input and output ports. We use this technique to fabricate a combinatorial mixer capable of producing 8 combinations of two fluids in ratios ranging from 1 : 100 to 100 : 1. This approach allows rapid iteration on microfluidic chip design and enables the use of geometry and materials not accessible using conventional soft lithography. The ability to precisely pattern round channels in all three dimensions in hard and soft media may prove enabling for many organ-on-chip systems. PMID:25671493

  18. Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt.

    Gelber, Matthew K; Bhargava, Rohit

    2015-04-07

    Here we demonstrate a method for creating multilayer or 3D microfluidics by casting a curable resin around a water-soluble, freestanding sacrificial mold. We use a purpose-built 3D printer to pattern self-supporting filaments of the sugar alcohol isomalt, which we then back-fill with a transparent epoxy resin. Dissolving the sacrificial mold leaves a network of cylindrical channels as well as input and output ports. We use this technique to fabricate a combinatorial mixer capable of producing 8 combinations of two fluids in ratios ranging from 1 : 100 to 100 : 1. This approach allows rapid iteration on microfluidic chip design and enables the use of geometry and materials not accessible using conventional soft lithography. The ability to precisely pattern round channels in all three dimensions in hard and soft media may prove enabling for many organ-on-chip systems.

  19. Encapsulation of the herbicide picloram by using polyelectrolyte biopolymers as layer-by-layer materials.

    Wang, Xiaojing; Zhao, Jing

    2013-04-24

    Microcapsules of the herbicide picloram (PLR) were formulated by a layer-by-layer (LbL) self-assembly method using the polyelectrolyte biopolymers of biocompatible chitosan (CS) and the UV-absorbent sodium lignosulfonate (SL) as shell materials. The herbicide PLR was recrystallized and characterized using XRD analysis. The obtained PLR-loaded microcapsules were characterized by using SEM, FTIR, CLSM, and ζ-potential measurements. The herbicide loading and encapsulation efficiency were also analyzed for the PLR-loaded microcapsules. The influence of LbL layer numbers on herbicide release and photodegradation rates was investigated in vitro. The results showed that the release rates and photodegradation rates of PLR in microcapsules decreased with increasing number of CS/SL self-assembly layers. The results demonstrated that polyelectrolyte biopolymer-based LbL multilayer microcapsules can be a promising approach for the controlled release of PLR as well as other pesticides with poor photostability or short half-release time.

  20. Sacrificial template method of fabricating a nanotube

    Yang, Peidong; He, Rongrui; Goldberger, Joshua; Fan, Rong; Wu, Yi-Ying; Li, Deyu; Majumdar, Arun

    2007-05-01

    Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

  1. Electric Double-layer Capacitor Based on Activated Carbon Material

    2000-01-01

    In this study electric double-layer capacitors (EDLCs) based on activated carbon material and organic electrolyte (tetraethyl ammonium tetrafluoroborate) were explored. The fabrication method for EDLC is presented and the performance of EDLC was examined by using the cyclic voltammetry, constant-current charging and discharging technique, electrochemical impedance spectroscopy measurements. Influence of various components and design parameters on the performance of the capacitors were preliminarily investigated. Up to now, EDLC based on carbon materials can deliver 20.7 W/kg at the discharge rate ofI=0.3 mA, together with the energy density of 8.5 Wh/kg. Equivalent series resistance (ESR) is 0.716 Ω.cm2. The specific power of the capacitor is low and further attempts to raise the power capability of the capacitors are necessary. Some considerations are put forward to further improve the performance of EDLC.

  2. Thermal transport in layered materials for thermoelectrics and thermal management

    Qui, Bo

    Atomic level thermal transport in layered materials, namely, Bi 2Te3 and graphene is investigated using first principles calculations, lattice dynamics (LD) calculations, molecular dynamics simulations, spectral phonon analysis and empirical modeling. These materials resemble geometrically while differ significantly in the nature of thermal transport. Because of their uniquely low/high thermal conductivities, they are of great interest in thermoelectrics and thermal management applications, respectively. Besides Bi2Te3 and graphene, many other materials in the family of layered materials also exhibit great promises for various applications in thermoelectrics, thermal management, and electronics. In order to investigate the thermal properties of general layered materials, we explore the use of tight-binding molecular dynamics (TBMD) approach, which neither relies on the availability of classical potentials nor demands significant computational resources as ab initio MD approach does. In addition, a general model for the effective phonon group velocities, which is relevant for the lattice thermal transport in general few-layer materials, is developed. First of all, two-body interatomic potentials in the Morse potential form have been developed for bismuth telluride. The density functional theory with local-density approximations is first used to calculate the total energies for many artificially distorted Bi2Te3 configurations to produce the energy surface. Then by fitting to this energy surface and other experimental data, the Morse potential form is parameterized. The fitted empirical interatomic potentials are shown to reproduce the elastic and phonon data well. With the classical interatomic potentials developed, molecular dynamics simulations are performed to predict the thermal conductivity of bulk Bi2Te3 at different temperatures, and the results agree with experimental data well. To facilitate phonon-engineering, we predict the thermal conductivity of Bi2Te3

  3. Wide-gap layered oxychalcogenide semiconductors: materials, electronic structures and optoelectronic properties.

    Ueda, Kazushige; Hiramatsu, Hidenori; Hirano, Masahiro; Kamiya, Toshio; Hosono, Hideo

    2006-01-01

    Applying the concept of materials design for transparent conductive oxides to layered oxychalcogenides, several p-type and n-type layered oxychalcogenides were proposed as wide-gap semiconductors and examined their basic optical and electrical properties. The layered oxychalcogenides are composed of ionic oxide layers and covalent chalcogenide layers, which bring wide-gap and conductive properties to these materials, respectively. The electronic structures of the materials were...

  4. Failure modes and materials design for biomechanical layer structures

    Deng, Yan

    Ceramic materials are finding increasing usage in the area of biomechanical replacements---dental crowns, hip and bone implants, etc.---where strength, wear resistance, biocompatibility, chemical durability and even aesthetics are critical issues. Aesthetic ceramic crowns have been widely used in dentistry to replace damaged or missing teeth. However, the failure rates of ceramic crowns, especially all-ceramic crowns, can be 1%˜6% per year, which is not satisfactory to patients. The materials limitations and underlying fracture mechanisms of these prostheses are not well understood. In this thesis, fundamental fracture and damage mechanisms in model dental bilayer and trilayer structures are studied. Principle failure modes are identified from in situ experimentation and confirmed by fracture mechanics analysis. In bilayer structures of ceramic/polycarbonate (representative of ceramic crown/dentin structure), three major damage sources are identified: (i) top-surface cone cracks or (ii) quasiplasticity, dominating in thick ceramic bilayers; (iii) bottom-surface radial cracks, dominating in thin ceramic bilayers. Critical load P for each damage mode are measured in six dental ceramics: Y-TZP zirconia, glass-infiltrated zirconia and alumina (InCeram), glass-ceramic (Empress II), Porcelain (Mark II and Empress) bonded to polymer substrates, as a function of ceramic thickness d in the range of 100 mum to 10 mm. P is found independent of d for mode (i) and (ii), but has a d 2 relations for mode (iii)---bottom surface radial cracking. In trilayer structures of glass/core-ceramic/polycarbonate (representing veneer porcelain/core/dentin structures), three inner fracture origins are identified: radial cracks from the bottom surface in the (i) first and (ii) second layers; and (iii) quasiplasticity in core-ceramic layer. The role of relative veneer/core thickness, d1/d 2 and materials properties is investigated for three core materials with different modulus (114--270GPa

  5. Utilization of Industrial Waste Material in GSB Layer

    U Arun Kumar

    2014-08-01

    Full Text Available India has series of steel plant clusters located along its length and breadth of the territory. Several million metric tons of iron and steel are produced in these plants annually. Along with the production of iron and steel, huge quantities of solid wastes like blast furnace slag and steel slag as well as other wastes such as flue dust, blast furnace sludge, and refractories are also being produced in these plants. These solid wastes can be used as non-traditional/non-conventional aggregates in pavement construction due to acute scarcity of traditional/conventional road construction materials. A study was conducted to investigate the possibility of using Granulated Blast Furnace Slag (GBFS with various blended mixes of traditional/conventional aggregates in subbase layer with different percentages. This study also presents the result of experimental investigation on the influence of Rice husk ash (RHA on the index properties of Red soil which is used as filler material in subbase layer.

  6. Layered cathode materials for lithium ion rechargeable batteries

    Kang, Sun-Ho; Amine, Khalil

    2007-04-17

    A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling.

  7. Optimization of Layered Cathode Materials for Lithium-Ion Batteries

    Christian Julien

    2016-07-01

    Full Text Available This review presents a survey of the literature on recent progress in lithium-ion batteries, with the active sub-micron-sized particles of the positive electrode chosen in the family of lamellar compounds LiMO2, where M stands for a mixture of Ni, Mn, Co elements, and in the family of yLi2MnO3•(1 − yLiNi½Mn½O2 layered-layered integrated materials. The structural, physical, and chemical properties of these cathode elements are reported and discussed as a function of all the synthesis parameters, which include the choice of the precursors and of the chelating agent, and as a function of the relative concentrations of the M cations and composition y. Their electrochemical properties are also reported and discussed to determine the optimum compositions in order to obtain the best electrochemical performance while maintaining the structural integrity of the electrode lattice during cycling.

  8. Large-scale simulations of layered double hydroxide nanocomposite materials

    Thyveetil, Mary-Ann

    Layered double hydroxides (LDHs) have the ability to intercalate a multitude of anionic species. Atomistic simulation techniques such as molecular dynamics have provided considerable insight into the behaviour of these materials. We review these techniques and recent algorithmic advances which considerably improve the performance of MD applications. In particular, we discuss how the advent of high performance computing and computational grids has allowed us to explore large scale models with considerable ease. Our simulations have been heavily reliant on computational resources on the UK's NGS (National Grid Service), the US TeraGrid and the Distributed European Infrastructure for Supercomputing Applications (DEISA). In order to utilise computational grids we rely on grid middleware to launch, computationally steer and visualise our simulations. We have integrated the RealityGrid steering library into the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 1 . which has enabled us to perform re mote computational steering and visualisation of molecular dynamics simulations on grid infrastruc tures. We also use the Application Hosting Environment (AHE) 2 in order to launch simulations on remote supercomputing resources and we show that data transfer rates between local clusters and super- computing resources can be considerably enhanced by using optically switched networks. We perform large scale molecular dynamics simulations of MgiAl-LDHs intercalated with either chloride ions or a mixture of DNA and chloride ions. The systems exhibit undulatory modes, which are suppressed in smaller scale simulations, caused by the collective thermal motion of atoms in the LDH layers. Thermal undulations provide elastic properties of the system including the bending modulus, Young's moduli and Poisson's ratios. To explore the interaction between LDHs and DNA. we use molecular dynamics techniques to per form simulations of double stranded, linear and plasmid DNA up

  9. Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules

    Wang, Chao; Nam, Sung-Wook; Cotte, John M.; Jahnes, Christopher V.; Colgan, Evan G.; Bruce, Robert L.; Brink, Markus; Lofaro, Michael F.; Patel, Jyotica V.; Gignac, Lynne M.; Joseph, Eric A.; Rao, Satyavolu Papa; Stolovitzky, Gustavo; Polonsky, Stanislav; Lin, Qinghuang

    2017-01-01

    Wafer-scale fabrication of complex nanofluidic systems with integrated electronics is essential to realizing ubiquitous, compact, reliable, high-sensitivity and low-cost biomolecular sensors. Here we report a scalable fabrication strategy capable of producing nanofluidic chips with complex designs and down to single-digit nanometre dimensions over 200 mm wafer scale. Compatible with semiconductor industry standard complementary metal-oxide semiconductor logic circuit fabrication processes, this strategy extracts a patterned sacrificial silicon layer through hundreds of millions of nanoscale vent holes on each chip by gas-phase Xenon difluoride etching. Using single-molecule fluorescence imaging, we demonstrate these sacrificial nanofluidic chips can function to controllably and completely stretch lambda DNA in a two-dimensional nanofluidic network comprising channels and pillars. The flexible nanofluidic structure design, wafer-scale fabrication, single-digit nanometre channels, reliable fluidic sealing and low thermal budget make our strategy a potentially universal approach to integrating functional planar nanofluidic systems with logic circuits for lab-on-a-chip applications.

  10. Catechol-based layer-by-layer assembly of composite coatings: a versatile platform to hierarchical nano-materials.

    Wang, C X; Braendle, A; Menyo, M S; Pester, C W; Perl, E E; Arias, I; Hawker, C J; Klinger, D

    2015-08-21

    Inspired by the marine mussel's ability to adhere to surfaces underwater, an aqueous catechol-based dip coating platform was developed. Using a catechol-functionalized polyacrylamide binder in combination with inorganic nanoparticles enables the facile fabrication of robust composite coatings via a layer-by-layer process. This modular assembly of well-defined building blocks provides a versatile alternative to electrostatic driven approaches with layer thickness and refractive indices being readily tunable. The platform nature of this approach enables the fabrication of hierarchically ordered nano-materials such as Bragg stacks.

  11. Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol Deposition Process—Uncoupling Material Synthesis and Layer Formation

    Fabian Panzer

    2016-04-01

    Full Text Available We present the successful fabrication of CH3NH3PbI3 perovskite layers by the aerosol deposition method (ADM. The layers show high structural purity and compactness, thus making them suitable for application in perovskite-based optoelectronic devices. By using the aerosol deposition method we are able to decouple material synthesis from layer processing. Our results therefore allow for enhanced and easy control over the fabrication of perovskite-based devices, further paving the way for their commercialization.

  12. Arhaeoastronomical analysis of Levinsadovka sacrificial complex (South Russia)

    Vodolazhskaya, Larisa

    2013-01-01

    The article presents research data using arhaeoastronomical methods of Levinsadovka settlement sacrificial complex in Northern Black Sea coast. In this work, new method of accounting terrain elevations using topographic maps was developed in arhaeoastronomical studies. Calculations of azimuths of the sun and moon rise and set in the astronomically significant moments of the year were made and astronomical regularities in the organization of the sacrificial complex identified. Related to the moon directions, as the most dedicated, identified. Revealed that the stone tools and fragments, used as sacrifices, mark the direction to the northern minor standstill moonrise. A similar situation was found on two archaeological sites: in Bezymennoye II settlement South sanctuary and in Pustynka settlement religious building. Drawing on ethnographic and folklore data, it is concluded about semiotic connection of stone tools, found in these religious constructions, with the "thunderstones" and meteorites.

  13. Application of multiple graphene layers as catalyst support material in fuel cells

    Saner, Burcu; YÜRÜM, YUDA; Yurum, Yuda

    2010-01-01

    The fuel cell electrode layer is a significant part of a fuel cell. The electrode layer is composed of the catalyst and porous electrode or gas diffusion layer. Catalyst has critical importance due to the influence on the cost and durability of fuel cells. The production of novel catalyst support materials could open up new ways in order to ensure the catalytic activity by lowering the amount of catalyst loaded [1]. At this point, utilization of multiple graphene layers as catalyst support...

  14. Intercalation Assembly Method and Intercalation Process Control of Layered Intercalated Functional Materials

    LI Kaitao; WANG Guirong; LI Dianqing; LIN Yanjun; DUAN Xue

    2013-01-01

    Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years.Based on long term studies on these materials in the State Key Laboratory of Chemical Resource Engineering in Beijing University of Chemical Technology,the principle for the design of controlled intercalation processes in the light of future production processing requirements has been developed.Intercalation assembly methods and technologies have been invented to control the intercalation process for preparing layered intercalated materials with various structures and functions.

  15. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    Doe, Robert E.; Downie, Craig M.; Fischer, Christopher; Lane, George H.; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin A.; Eaglesham, David

    2016-01-19

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  16. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2016-07-26

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  17. ZnO layers grown by Atomic Layer Deposition: A new material for transparent conductive oxide

    Godlewski, M., E-mail: godlew@ifpan.edu.p [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland); Guziewicz, E.; Luka, G.; Krajewski, T. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Lukasiewicz, M.; Wachnicki, L.; Wachnicka, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland); Kopalko, K. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Sarem, A.; Dalati, B. [Department of Physics, Faculty of Science, Tishreen University, Latakia (Syrian Arab Republic)

    2009-12-15

    We demonstrate possibility of a control (by selection of zinc precursors and variation of a growth temperature) of electrical properties of ZnO films grown by Atomic Layer Deposition (ALD). ZnO films grown by ALD are used in test photovoltaic devices (solar cells) as transparent conductive oxides for upper, transparent layer in inorganic and organic solar cells, and as n-type partners of p-type CdTe.

  18. Layer-by-Layer Assembly of Halogen-Free Polymeric Materials on Nylon/Cotton Blend for Flame Retardant Applications

    2015-07-01

    OF HALOGEN-FREE POLYMERIC MATERIALS ON NYLON/COTTON BLEND FOR FLAME RETARDANT APPLICATIONS by Mahesh Narkhede Sammaiah Thota Ravi Mosurkal...Information Security Program Regulation, Chapter IX. For Unclassified/Limited Distribution Documents: Destroy by any method that prevents disclosure ...BY-LAYER ASSEMBLY OF HALOGEN-FREE POLYMERIC MATERIALS ON NYLON/COTTON BLEND FOR FLAME RETARDANT APPLICATIONS 5a. CONTRACT NUMBER W911NF-11-D-0001

  19. Shrinking device realized by using layered structures of homogeneous isotropic materials

    Guo Ya-Nan; Liu Shao-Bin; Zhao Xin; Wang Shen-Yun; Chen Chen

    2012-01-01

    We propose the practical realization of a shrinking device by using layered structures of homogeneous isotropic materials.By mimicking the shrinking device with concentric alternating thin layers of isotropic dielectrics,the permittivity and the permeability in each isotropic layer can be properly determined from the effective medium theory in order to achieve the shrinking effect.The device realized by multilayer coating with dielectrics is validated by TE wave simulation,and good shrinking performance is demonstrated with only a few layers of homogeneous isotropic materials.

  20. Fabrication of metal organic framework materials using a layer-by-layer spin coating approach

    Eddaoudi, Mohamed

    2016-03-17

    Embodiments describe a method of depositing an MOF, including depositing a metal solution onto a substrate, spinning the substrate sufficient to spread the metal solution, depositing an organic ligand solution onto the substrate and spinning the substrate sufficient to spread the organic ligand solution and form a MOF layer.

  1. Multi-layered controllable stiffness beams for morphing: energy, actuation force, and material strain considerations

    Murray, Gabriel; Gandhi, Farhan

    2010-04-01

    Morphing aerospace structures could benefit from the ability of structural elements to transition from a stiff load-bearing state to a relatively compliant state that can undergo large deformation at low actuation cost. The present paper focuses on multi-layered beams with controllable flexural stiffness—comprising polymer layers affixed to the surfaces of a base beam and cover layers, in turn, affixed to the surfaces of the polymer layers. Heating the polymer through the glass transition reduces its shear modulus, decouples the cover layers from the base beam and reduces the overall flexural stiffness. Although the stiffness and actuation force required to bend the beam reduce, the energy required to heat the polymer layer must also be considered. Results show that for beams with low slenderness ratios, relatively thick polymer layers, and cover layers whose extensional stiffness is high, the decoupling of the cover layers through softening of the polymer layers can result in flexural stiffness reductions of over 95%. The energy savings are also highest for these configurations, and will increase as the deformation of the beam increases. The decoupling of the cover layers from the base beam through the softening of the polymer reduces the axial strains in the cover layers significantly; otherwise material failure would prevent large deformation. Results show that when the polymer layer is stiff, the cover layers are the dominant contributors to the total energy in the beam, and the energy in the polymer layers is predominantly axial strain energy. When the polymer layers are softened the energy in the cover layers is a small contributor to the total energy which is dominated by energy in the base beam and shear strain energy in the polymer layer.

  2. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.

    Stefik, Morgan

    2016-07-07

    The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting.

  3. Defect Engineering of 2d Monatomic-Layer Materials

    Peng, Qing; Crean, Jared; Dearden, Albert K.; Huang, Chen; Wen, Xiaodong; Bordas, Stéphane P. A.; de, Suvranu

    2013-08-01

    Atomic-thick monolayer two-dimensional materials present advantageous properties compared to their bulk counterparts. The properties and behavior of these monolayers can be modified by introducing defects, namely defect engineering. In this paper, we review a group of common two-dimensional crystals, including graphene, graphyne, graphdiyne, graphn-yne, silicene, germanene, hexagonal boron nitride monolayers and MoS2 monolayers, focusing on the effect of the defect engineering on these two-dimensional monolayer materials. Defect engineering leads to the discovery of potentially exotic properties that make the field of two-dimensional crystals fertile for future investigations and emerging technological applications with precisely tailored properties.

  4. Three-dimensional textures and defects of soft material layering revealed by thermal sublimation.

    Yoon, Dong Ki; Kim, Yun Ho; Kim, Dae Seok; Oh, Seong Dae; Smalyukh, Ivan I; Clark, Noel A; Jung, Hee-Tae

    2013-11-26

    Layering is found and exploited in a variety of soft material systems, ranging from complex macromolecular self-assemblies to block copolymer and small-molecule liquid crystals. Because the control of layer structure is required for applications and characterization, and because defects reveal key features of the symmetries of layered phases, a variety of techniques have been developed for the study of soft-layer structure and defects, including X-ray diffraction and visualization using optical transmission and fluorescence confocal polarizing microscopy, atomic force microscopy, and SEM and transmission electron microscopy, including freeze-fracture transmission electron microscopy. Here, it is shown that thermal sublimation can be usefully combined with such techniques to enable visualization of the 3D structure of soft materials. Sequential sublimation removes material in a stepwise fashion, leaving a remnant layer structure largely unchanged and viewable using SEM, as demonstrated here using a lamellar smectic liquid crystal.

  5. Experimental Determination of Shock Structures in Hetrogeneous Layered Material Systems

    2005-07-19

    choices for future combat vehicle armor applications, as they possess some clear advantages over more conventional monolithic materials, such as high... Michelson interferometer (WAMI) concept and capable of velocity measurements from either a spectrally or diffusely reflecting specimen surface. Using...3.2. The VALYN VISAR is based on the wide angle Michelson interferometer (WAMI) concept and capable of velocity measurements from either a

  6. Rehabilitation of the Perdew-Burke-Ernzerhof generalized gradient approximation for layered materials

    Peng, Haowei; Perdew, John P.

    2017-02-01

    The structural and energetic properties of layered materials present a challenge to density functional theory with common semilocal approximations to the exchange-correlation energy. By combining the most widely used semilocal generalized gradient approximation (GGA), the Perdew-Burke-Ernzerhof (PBE) one, with the revised Vydrov-van Voorhis nonlocal correlation functional (rVV10), both excellent structural and energetic properties of 28 layered materials have been recovered with a judicious parameter selection. We term the resulting functional PBE+rVV10L, with the "L" indicating that it is for layered materials. Such a combination is not new, and only involves refitting a single global parameter. However, the resulting excellent accuracy suggests such a dispersion-corrected PBE for many aspects of theoretical studies on layered materials. For comparison, we also present the results for PBE+rVV10 where the parameter is determined by 22 interaction energies between molecules.

  7. Charge Transport in Field-Effect Transistors based on Layered Materials and their Heterostructures

    Kumar, Jatinder

    In the quest for energy efficiency and device miniaturization, the research in using atomically thin materials for device applications is gaining momentum. The electronic network in layered materials is different from 3D counterparts. It is due to the interlayer couplings and density of states because of their 2D nature. Therefore, understanding the charge transport in layered materials is fundamental to explore the vast opportunities these ultra-thin materials offer. Hence, the challenges targeted in the thesis are: (1) understanding the charge transport in layered materials based on electronic network of quantum and oxide capacitances, (2) studying thickness dependence, ranging from monolayer to bulk, of full range-characteristics of field-effect transistor (FET) based on layered materials, (3) investigating the total interface trap charges to achieve the ultimate subthreshold slope (SS) theoretically possible in FETs, (4) understanding the effect of the channel length on the performance of layered materials, (5) understanding the effect of substrate on performance of the TMDC FETs and studying if the interface of transition metal dichalcogenides (TMDCs)/hexagonalboron nitride (h-BN) can have less enough trap charges to observe ambipolar behavior, (6) Exploring optoelectronic properties in 2D heterostructures that includes understanding graphene/WS2 heterostructure and its optoelectronic applications by creating a p-n junction at the interface. The quality of materials and the interface are the issues for observing and extracting clean physics out of these layered materials and heterostructures. In this dissertation, we realized the use of quantum capacitance in layered materials, substrate effects and carrier transport in heterostructure.

  8. Atomic layer deposition ultrathin film origami using focused ion beams

    Supekar, O. D.; Brown, J. J.; Eigenfeld, N. T.; Gertsch, J. C.; Bright, V. M.

    2016-12-01

    Focused ion beam (FIB) micromachining is a powerful tool for maskless lithography and in recent years FIB has been explored as a tool for strain engineering. Ion beam induced deformation can be utilized as a means for folding freestanding thin films into complex 3D structures. FIB of high energy gallium (Ga+) ions induces stress by generation of dislocations and ion implantation within material layers, which create creases or folds upon mechanical relaxation enabled by motion of the material layers. One limitation on such processing is the ability to fabricate flat freestanding thin film structures. This capability is limited by the residual stresses formed during processing and fabrication of the films, which can result in initial curvature and deformation of films upon release from a sacrificial fabrication layer. This paper demonstrates folding in freestanding ultrathin films (1:1000) by ion-induced stress relaxation. The ultrathin flat structures are fabricated using atomic layer deposition on sacrificial polyimide. We have demonstrated vertical folding with 30 keV Ga+ ions in structures with lateral dimensions varying from 10 to 50 μm.

  9. Review—Two-Dimensional Layered Materials for Energy Storage Applications

    Kumar, Pushpendra

    2016-07-02

    Rechargeable batteries are most important energy storage devices in modern society with the rapid development and increasing demand for handy electronic devices and electric vehicles. The higher surface-to-volume ratio two-dimensional (2D) materials, especially transition metal dichalcogenides (TMDCs) and transition metal carbide/nitrite generally referred as MXene, have attracted intensive research activities due to their fascinating physical/chemical properties with extensive applications. One of the growing applications is to use these 2D materials as potential electrodes for rechargeable batteries and electrochemical capacitors. This review is an attempt to summarize the research and development of TMDCs, MXenes and their hybrid structures in energy storage systems. (C) The Author(s) 2016. Published by ECS. All rights reserved.

  10. Defect engineering of 2D monatomic-layer materials

    Peng, Qing; Crean,Jared; Dearden, Albert K.; HUANG, CHEN; Wen, Xiaodong; Bordas, Stéphane P. A.; DE, SUVRANU

    2013-01-01

    Atomic-thick monolayer two-dimensional materials present advantageous properties compared to their bulk counterparts. The properties and behavior of these monolayers can be modified by introducing defects, namely defect engineering. In this paper, we review a group of common two-dimensional crystals, including graphene, graphyne, graphdiyne, graphn-yne, silicene, germanene, hexagonal boron nitride monolayers and MoS2 monolayers, focusing on the effect of the defect engineering on these two-di...

  11. Standard test method for laboratory evaluation of magnesium sacrificial anode test specimens for underground applications

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This test method covers a laboratory procedure that measures the two fundamental performance properties of magnesium sacrificial anode test specimens operating in a saturated calcium sulfate, saturated magnesium hydroxide environment. The two fundamental properties are electrode (oxidation potential) and ampere hours (Ah) obtained per unit mass of specimen consumed. Magnesium anodes installed underground are usually surrounded by a backfill material that typically consists of 75 % gypsum (CaSO4·2H2O), 20 % bentonite clay, and 5 % sodium sulfate (Na2SO4). The calcium sulfate, magnesium hydroxide test electrolyte simulates the long term environment around an anode installed in the gypsum-bentonite-sodium sulfate backfill. 1.2 This test method is intended to be used for quality assurance by anode manufacturers or anode users. However, long term field performance properties may not be identical to property measurements obtained using this laboratory test. Note 1—Refer to Terminology G 15 for terms used ...

  12. Geologic Evolution of Mars' North Polar Layered Deposits and Related Materials from Mars Odyssey THEMIS

    Vasavada, A. R.; Richardson, M. I.; Byrne, S.; Ivanov, A. B.; Christensen, P. R.

    2003-01-01

    The presence of a thick sequence of horizontal layers of ice-rich material at Mars north pole, dissected by troughs and eroding at its margins, is undoubtedly telling us something about the evolution of Mars climate we just don't know what yet. The North Polar Layered Deposits (NPLD) most likely formed as astronomically driven climate variations led to the deposition of conformable, areally extensive layers of ice and dust over the polar region. More recently, the balance seems to have fundamentally shifted to net erosion, as evidenced by the many troughs within the NPLD and the steep, arcuate scarps present near its margins, both of which expose layering.

  13. Teo-iconología del poder sacrificial entre los mochica Teo-iconology of sacrificial power among the Moche

    Adolfo Chaparro Amaya

    2011-01-01

    Partiendo de las evidencias icónicas del rasgo predatorio y sus equivalentes narrativos presentes en diferentes piezas de la cultura mochica, el texto busca establecer (i) una metodología de aproximación al sacrificio caníbal que tenga en cuenta diversas formas icónicas de ‹escritura›, y (ii) una explicación so-ciocósmica de la política sacrificial. Al articular lo escritural y lo político, es posible aportar una nueva perspectiva a la rica discusión que sobre las relaciones entre...

  14. Is Self-Sacrificial Competitive Altruism Primarily a Male Activity?

    Francis T. McAndrew

    2012-01-01

    Full Text Available This study explored the basis of self-sacrificial prosocial behavior in small groups. Seventy-eight undergraduates (39M, 39F filled out a thirty-item personality scale and then participated in a “group problem-solving study” in which the monetary success of a three-person group depended upon one of its members volunteering to endure pain (a cold stressor test and inconvenience (being soaked in a dunk tank. There were 13 groups consisting of two females and one male, and 13 groups consisting of two males and one female. Across groups, the behavior of the altruist was judged to be more costly, challenging, and important and he/she was liked better, rewarded with more money, and preferred as a future experimental partner. Groups containing two males showed more evidence of competition to become altruists than groups containing two females, and personality traits were more effective predictors of altruistic behavior in males than in females. We conclude that competition between males and “showing off” are key factors in triggering self-sacrificial altruistic behavior.

  15. Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials

    Ashton, Michael; Paul, Joshua; Sinnott, Susan B.; Hennig, Richard G.

    2017-03-01

    The Materials Project crystal structure database has been searched for materials possessing layered motifs in their crystal structures using a topology-scaling algorithm. The algorithm identifies and measures the sizes of bonded atomic clusters in a structure's unit cell, and determines their scaling with cell size. The search yielded 826 stable layered materials that are considered as candidates for the formation of two-dimensional monolayers via exfoliation. Density-functional theory was used to calculate the exfoliation energy of each material and 680 monolayers emerge with exfoliation energies below those of already-existent two-dimensional materials. The crystal structures of these two-dimensional materials provide templates for future theoretical searches of stable two-dimensional materials. The optimized structures and other calculated data for all 826 monolayers are provided at our database (https://materialsweb.org).

  16. Understanding Thermal Transport in Graded, Layered and Hybrid Materials

    2014-04-01

    Trindade B, Weißgärber T, Kieback B (2008) Mater Sci Eng A 475:39-44. 11 Schubert T, Ciupiński Ł, Zieliński W, Michalski A, Weißgärber T, Kieback B (2008...2011) 1097–1100. 14 Ł. Ciupiński, D. Siemiaszko, M. Rosiński, A. Michalski and K.J. Kurzydłowski, Advanced Materials Research Vol. 59 (2009) pp 120...Trindade B, Weißgärber T, Kieback B (2008) Mater Sci Eng A 475:39-44. 18 Schubert T, Ciupiński Ł, Zieliński W, Michalski A, Weißgärber T, Kieback B (2008

  17. When does self-sacrificial leadership motivate prosocial behavior? It depends on followers’ prevention focus

    D. de Cremer; D.M. Mayer; M. van Dijke; B.C. Schouten; M. Bardes

    2009-01-01

    In the present set of studies, the authors examine the idea that self-sacrificial leadership motivates follower prosocial behavior, particularly among followers with a prevention focus. Drawing on the self-sacrificial leadership literature and regulatory focus theory, the authors provide results fro

  18. Propagation properties for five-layer symmetric slab waveguides including left-handed materials

    SHEN Lu-fa; WANG Zi-hua; LI Su-ping

    2008-01-01

    In this paper,we discussed a slab wave-guide of five layers,The core is a left-handed material,but the claddings are righthanded materials.A dispersion equation of TE modes is obtained by using Maxwell's equations,and some new dispersion characteristics are obtained based on the equation.

  19. Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials

    Yu Zhenzhong; Feng Yijun; Xu Xiaofei; Zhao Junming; Jiang Tian, E-mail: yjfeng@nju.edu.cn [Department of Electronic Engineering, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 (China)

    2011-05-11

    We present optimized design of cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials. Through an optimization procedure based on genetic algorithm, simpler cloak structure and more realizable material parameters can be achieved with better cloak performance than that of an ideal non-magnetic cloak with a reduced set of parameters. We demonstrate that a cloak shell with only five layers of two normal materials can result in an average 20 dB reduction in the scattering width for all directions when covering the inner conducting cylinder with the cloak. The optimized design can substantially simplify the realization of the invisibility cloak, especially in the optical range.

  20. On model materials designed by atomic layer deposition for catalysis purposes

    Diskus, Madeleine

    2011-01-01

    The aim of this work was to investigate the potential of model materials designed by atomic layer deposition toward applications in catalysis research. Molybdenum based catalysts promoted with cobalt were selected as target materials, considering their important roles in various industrial processes. Particular attention was paid to understand the growth dynamics of the ALD processes involved and further to characterize the obtained materials carefully. It was of main concern to verify the fe...

  1. Strength and thickness of the layer of materials used for ceramic veneers bonding.

    Mazurek, Karolina; Mierzwińska-Nastalska, Elżbieta; Molak, Rafał; Kożuchowski, Mariusz; Pakieła, Zbigniew

    2012-01-01

    The use of adhesive bonding systems and composites in prosthetic dentistry brought improved and more aesthetic prosthetic restorations. The adhesive bonding of porcelain veneers is based on the micromechanical and chemical bond between tooth surface, cement layer and ceramic material. The aim of the study was to measure the thickness of the material layer formed during cementing of a ceramic restoration, and - in the second part of the study - to test tension of these cements. The materials investigated comprised dual-curing materials: Variolink II, KoNroot Cem, KoNroot Cem Viscous and Panavia F 2.0, as well as a light-curing composite: Variolink Veneer. The thickness was measured with the use of ZIP Lite 250 optical gauging apparatus. SEM microscope - Hitachi Tabletop Microscope TM-100 - was used to analyse the characteristics of an adhesive bond and filler particle size of particular materials. Tension tests of the cements under study were carried out on the MTS Q Test 10 static electrodynamic apparatus. The tests showed that KoNroot Cem exhibited the best mechanical properties of bonding to enamel and dentin among the materials tested. Variolink II base light-curing cement formed the thinnest layer. All the materials tested formed the layer not exceeding 1/3 of ceramic restoration thickness.

  2. Airflow resistance measurement for a layer of granular material based on the Helmholtz resonance phenomenon.

    Nishizu, Takahisa; Tomatsu, Eiji; Katsuno, Nakako

    2017-04-01

    A Helmholtz resonance technique was employed to predict the airflow resistance of layers of granular materials, namely glass beads, brown rice, soybean, adzuki beans, and corn kernels. Each granular sample was placed on the tube mouth of an open-type Helmholtz resonator. The resonant frequency was determined by measuring the electric impedance of a loudspeaker that was installed in the resonator and driven by a chirp signal linearly sweeping from 90 to 220 Hz for 6.0 s. For a changing sample layer thickness, the resonant frequency was measured, and the specific airflow resistance was calculated by measuring the static pressure drop required for N2 gas to flow through the layer at a constant velocity of 0.042 m/s. When the thickness of the layer was fixed, the Helmholtz resonant frequency decreased as the specific airflow resistance increased, regardless of the kind of granular material.

  3. Direct grafting of anti-fouling polyglycerol layers to steel and other technically relevant materials.

    Weber, Theresa; Bechthold, Maren; Winkler, Tobias; Dauselt, John; Terfort, Andreas

    2013-11-01

    Direct grafting of hyperbranched polyglycerol (PG) layers onto the oxide surfaces of steel, aluminum, and silicon has been achieved through surface-initiated polymerization of 2-hydroxymethyloxirane (glycidol). Optimization of the deposition conditions led to a protocol that employed N-methyl-2-pyrrolidone (NMP) as the solvent and temperatures of 100 and 140 °C, depending on the substrate material. In all cases, a linear growth of the PG layers could be attained, which allows for control of film thickness by altering the reaction time. At layer thicknesses >5 nm, the PG layers completely suppressed the adhesion of albumin, fibrinogen, and globulin. These layers were also at least 90% bio-repulsive for two bacteria strains, E. coli and Acinetobacter baylyi, with further improvement being observed when the PG film thickness was increased to 17 nm (up to 99.9% bio-repulsivity on silicon).

  4. Bleustein-Gulyaev waves in a functionally graded piezoelectric material layered structure

    2009-01-01

    This work presents a theoretical study of the propagation behavior of Bleustein-Gulyaev waves in a layered structure consisting of a functionally graded piezoelectric material(FGPM) layer and a transversely isotropic piezoelectric substrate. The influence of the graded variation of FGPM coefficients on the dispersion relations of Bleustein-Gulyaev waves in the layered structure is investigated. It is demonstrated that,for a certain frequency range of Bleustein-Gulyaev waves,the mechanical perturbations of the particles are restricted in the FPGM layer and the phase velocity is independent of the electrical boundary conditions at the free surface. Results presented in this study can not only provide further insight on the electromechanical coupling behavior of surface waves in FGPM layered structures,but also lend a theoretical basis for the design of high-performance surface acoustic wave(SAW) devices.

  5. Analysis of compressive failure of layered materials by kink band broadening

    Jensen, Henrik Myhre

    1999-01-01

    Failure by steady state kink band broadening in uni-directional fibre composites or layered materials is analysed. An incremental scheme for calculation of kink band broadening stresses and lock-up conditions in the band for arbitrary material behaviour is presented. The method is illustrated by ...... by material data which are representative for polymer matrix composites for which experimental work exists. (C) 1999 Elsevier Science Ltd. All rights reserved.......Failure by steady state kink band broadening in uni-directional fibre composites or layered materials is analysed. An incremental scheme for calculation of kink band broadening stresses and lock-up conditions in the band for arbitrary material behaviour is presented. The method is illustrated...

  6. Analysis of Photothermal Characterization of Layered Materials: Design of Optimal Experiments

    Cole, Kevin D.

    2003-01-01

    In this paper numerical calculations are presented for the steady-periodic temperature in layered materials and functionally-graded materials to simulate photothermal methods for the measurement of thermal properties. No laboratory experiments were performed. The temperature is found from a new Green s function formulation which is particularly well-suited to machine calculation. The simulation method is verified by comparison with literature data for a layered material. The method is applied to a class of two-component functionally-graded materials and results for temperature and sensitivity coefficients are presented. An optimality criterion, based on the sensitivity coefficients, is used for choosing what experimental conditions will be needed for photothermal measurements to determine the spatial distribution of thermal properties. This method for optimal experiment design is completely general and may be applied to any photothermal technique and to any functionally-graded material.

  7. Heterostructures based on two-dimensional layered materials and their potential applications

    Li, Ming-yang

    2015-12-04

    The development of two-dimensional (2D) layered materials is driven by fundamental interest and their potential applications. Atomically thin 2D materials provide a wide range of basic building blocks with unique electrical, optical, and thermal properties which do not exist in their bulk counterparts. The van der Waals interlayer interaction enables the possibility to exfoliate and reassemble different 2D materials into arbitrarily and vertically stacked heterostructures. Recently developed vapor phase growth of 2D materials further paves the way of directly synthesizing vertical and lateral heterojunctions. This review provides insights into the layered 2D heterostructures, with a concise introduction to preparative approaches for 2D materials and heterostructures. These unique 2D heterostructures have abundant implications for many potential applications.

  8. A estrutura sacrificial do compadrio: uma ontologia da desigualdade?

    Marcos Lanna

    2009-01-01

    It is shown that god-parenthood is not only a religious or kinship institution and that it does not reinforce inequalities that supposedly pre-exist it, but rather it is a structure that generates inequalities. God-parenthood is understood as a structure by the description of reciprocity circuits. Understood as the circulation of a child from biological towards spiritual parents, to be returned by "grace", it implies asymmetries and inequalities. It also evokes the ontology of the social, founded on non-mercantile values' circulation, and on what Sahlins (2008 designates "elementary structure of political life". It is shown that reciprocity is related to the sacrificial aspect of the child's gift, and also to other types of considerations, such as that present in the catholic vows. Finally, it is demonstrated the relevancy of this type of analysis for future understandings of other benefits and categories often taken as purely economic ones, such as "labor".

  9. Living bacterial sacrificial porogens to engineer decellularized porous scaffolds.

    Feng Xu

    Full Text Available Decellularization and cellularization of organs have emerged as disruptive methods in tissue engineering and regenerative medicine. Porous hydrogel scaffolds have widespread applications in tissue engineering, regenerative medicine and drug discovery as viable tissue mimics. However, the existing hydrogel fabrication techniques suffer from limited control over pore interconnectivity, density and size, which leads to inefficient nutrient and oxygen transport to cells embedded in the scaffolds. Here, we demonstrated an innovative approach to develop a new platform for tissue engineered constructs using live bacteria as sacrificial porogens. E.coli were patterned and cultured in an interconnected three-dimensional (3D hydrogel network. The growing bacteria created interconnected micropores and microchannels. Then, the scafold was decellularized, and bacteria were eliminated from the scaffold through lysing and washing steps. This 3D porous network method combined with bioprinting has the potential to be broadly applicable and compatible with tissue specific applications allowing seeding of stem cells and other cell types.

  10. Integration of III-V materials and Si-CMOS through double layer transfer process

    Lee, Kwang Hong; Bao, Shuyu; Fitzgerald, Eugene; Tan, Chuan Seng

    2015-03-01

    A method to integrate III-V compound semiconductor and SOI-CMOS on a common Si substrate is demonstrated. The SOI-CMOS layer is temporarily bonded on a Si handle wafer. Another III-V/Si substrate is then bonded to the SOI-CMOS containing handle wafer. Finally, the handle wafer is released to realize the SOI-CMOS on III-V/Si hybrid structure on a common substrate. Through this method, high temperature III-V materials growth can be completed without the presence of the temperature sensitive CMOS layer, hence damage to the CMOS layer is avoided.

  11. Local Structure Analysis and Interface Layer Effect of Phase-Change Recording Material Using Actual Media

    Nakai, Tsukasa; Yoshiki, Masahiko; Satoh, Yasuhiro; Ashida, Sumio

    2008-07-01

    The influences of the interface layer on crystal structure, the local atomic arrangement, and the electronic and chemical structure of a GeBiTe (GBT) phase-change recording material have been investigated using X-ray diffraction (XRD), X-ray absorption fine structure (XAFS), and hard X-ray photoelectron spectroscopy (HX-PES) methods using actual rewritable high-speed HD DVD media without special sample processing. XRD results showed that the crystal structure of laser-crystallized GBT alloy in the actual HD DVD media is the same as that of GeSbTe (GST) alloy, which has a NaCl-type structure. No differences between samples with and without interface layers were found. The lattice constant of GBT is larger than that of GST. Bi increases the lattice constant of GST with respect to the Bi substitution ratio of Sb. According to HX-PES, the DOS of in the recording film amorphous state with an interface layer is closer to that of the crystalline state than the recording film without an interface layer. From XAFS results, clear differences between amorphous (Amo.) and crystalline states (Cry.) were observed. The interatomic distance of amorphous recording material is independent of the existence of an interface layer. On the other hand, the coordination number varied slightly due to the presence of the interface layer. Therefore, the electronic state of the recording layer changes because of the interface layer, although the local structure changes only slightly except for the coordination number. Combining these results, we conclude that the interface layer changes the electronic state of the recording layer and promotes crystallization, but only affects the local structure of the atomic arrangement slightly.

  12. Sacrificial adhesive bonding: a powerful method for fabrication of glass microchips

    Lima, Renato S.; Leão, Paulo A. G. C.; Piazzetta, Maria H. O.; Monteiro, Alessandra M.; Shiroma, Leandro Y.; Gobbi, Angelo L.; Carrilho, Emanuel

    2015-08-01

    A new protocol for fabrication of glass microchips is addressed in this research paper. Initially, the method involves the use of an uncured SU-8 intermediate to seal two glass slides irreversibly as in conventional adhesive bonding-based approaches. Subsequently, an additional step removes the adhesive layer from the channels. This step relies on a selective development to remove the SU-8 only inside the microchannel, generating glass-like surface properties as demonstrated by specific tests. Named sacrificial adhesive layer (SAB), the protocol meets the requirements of an ideal microfabrication technique such as throughput, relatively low cost, feasibility for ultra large-scale integration (ULSI), and high adhesion strength, supporting pressures on the order of 5 MPa. Furthermore, SAB eliminates the use of high temperature, pressure, or potential, enabling the deposition of thin films for electrical or electrochemical experiments. Finally, the SAB protocol is an improvement on SU-8-based bondings described in the literature. Aspects such as substrate/resist adherence, formation of bubbles, and thermal stress were effectively solved by using simple and inexpensive alternatives.

  13. Sacrificial adhesive bonding: a powerful method for fabrication of glass microchips.

    Lima, Renato S; Leão, Paulo A G C; Piazzetta, Maria H O; Monteiro, Alessandra M; Shiroma, Leandro Y; Gobbi, Angelo L; Carrilho, Emanuel

    2015-08-21

    A new protocol for fabrication of glass microchips is addressed in this research paper. Initially, the method involves the use of an uncured SU-8 intermediate to seal two glass slides irreversibly as in conventional adhesive bonding-based approaches. Subsequently, an additional step removes the adhesive layer from the channels. This step relies on a selective development to remove the SU-8 only inside the microchannel, generating glass-like surface properties as demonstrated by specific tests. Named sacrificial adhesive layer (SAB), the protocol meets the requirements of an ideal microfabrication technique such as throughput, relatively low cost, feasibility for ultra large-scale integration (ULSI), and high adhesion strength, supporting pressures on the order of 5 MPa. Furthermore, SAB eliminates the use of high temperature, pressure, or potential, enabling the deposition of thin films for electrical or electrochemical experiments. Finally, the SAB protocol is an improvement on SU-8-based bondings described in the literature. Aspects such as substrate/resist adherence, formation of bubbles, and thermal stress were effectively solved by using simple and inexpensive alternatives.

  14. PECULIARITIES OF LAMB WAVE PROPAGATION THROUGH TWO-LAYERED THIN PLATE MATERIALS

    A. R. Baev

    2008-01-01

    Full Text Available Peculiarities of the plate wave propagation through two-layered thin plate have been analyzed and formulas for velocity determination of the quickest plate mode have been proposed.  The ascertained interaction makes it possible   to determine coating layer thickness in accordance with the given and known elastic parameters of contacting materials. On the basis of the developed methodology experiments have been carried out that revealed qualitative and quantitative correspondence  between theoretical and experimental data. The paper shows a principle possibility for assessment  of  material separation surface by time propagation data of the investigated mode .

  15. Coupling characteristics between five-layer slab wave-guides including left-handed materials

    SHEN Lu-fa; WANG Zi-hua

    2008-01-01

    To obtain the coupling characteristics between slab wave-guides including lift-handed material, we modify the coupledwave equations by using Maxwell's equations. First, we obtain new-couplid wave equations and new-coupling coefficient.Second, the coupling between two identical five-layer slab wave-guides where their cores are left-haaded material, but theircladdings are right-handed materials is studied. The coupling coefficient for even TE mode which is more complex than thatof the riglt-handed material slab wave guides, is obtained.

  16. Layered intercalated functional materials based on efficient utilization of magnesium resources in China

    David; G; EVANS

    2010-01-01

    Mg-based layered intercalated functional materials of the layered double hydroxide type are a significant class of magnesium compounds.Based on long-term studies of these materials in the State Key Laboratory of Chemical Resource Engineering in Beijing University of Chemical Technology,two principles of "using the intended application of a material as a guide to its structure design and synthesis process" and "the design of controlled intercalation processes in the light of future production processing requirements" have been developed.To achieve these objectives,the composition of the host layers and guest interlayer anions was tailored at the microlevel,while the mesostructure and macrostructure were controlled to fabricate different kinds of Mg-based layered intercalated functional materials.These materials have diverse applications in key areas such as catalysis,the environment,and construction,and as polymer additives.Therefore,China’s magnesium resources may be utilized more efficiently for the benefit of society.

  17. Mixed-layered bismuth--oxygen--iodine materials for capture and waste disposal of radioactive iodine

    Krumhansl, James L; Nenoff, Tina M

    2015-01-06

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  18. Atomistic simulation of nanoporous layered double hydroxide materials and their properties. I. Structural modeling

    Kim, Nayong; Kim, Yongman; Tsotsis, Theodore T.; Sahimi, Muhammad

    2005-06-01

    An atomistic model of layered double hydroxides, an important class of nanoporous materials, is presented. These materials have wide applications, ranging from adsorbents for gases and liquid ions to nanoporous membranes and catalysts. They consist of two types of metallic cations that are accommodated by a close-packed configuration of OH- and other anions in a positively charged brucitelike layer. Water and various anions are distributed in the interlayer space for charge compensation. A modified form of the consistent-valence force field, together with energy minimization and molecular dynamics simulations, is utilized for developing an atomistic model of the materials. To test the accuracy of the model, we compare the vibrational frequencies, x-ray diffraction patterns, and the basal spacing of the material, computed using the atomistic model, with our experimental data over a wide range of temperature. Good agreement is found between the computed and measured quantities.

  19. Hybrid magnetic materials based on layered double hydroxides: from the chemistry towards the applications

    ABELLÁN SÁEZ, GONZALO

    2014-01-01

    Layered double hydroxides (LDHs) are the leitmotiv of this dissertation. Contradicting the assertion that “any past was better”, LDHs have been continuously revisited from the middle of the twentieth century, and represent an excellent example of the never-ending beauty of Chemistry. New synthetic perspectives are giving a new impetus to LDH chemistry, which among hybrid materials, are finding their heyday. This is resulting in novel materials and also paving the way for new fundamental and p...

  20. Study of Surface Loss Process on a Simulated Fe-based Material by Thin Layer Activation

    HUANGDong-hui; WANGPing-sheng; ZHANGShi-shen; TIANWei-zhi; NIBang-fa; ZHANGLan-zhi; ZHANGGui-ying; LIUCun-xiong

    2003-01-01

    Taking the advantages of high sensitivity, non-destruction, and the capability of on-line measurement at favorable conditions, thin layer activation (TLA) is recognized as a method of choice in the study on surface loss processes of various materials. In present work, corrosion process of simulated Fe-based material (A3) was studied by TLA. The functionchemical peeling and weighing is established.of the residual activity versus the thickness lost from chemical peeling and weighing is established.

  1. Steady State Crack Propagation in Layered Material Systems Displaying Visco-plastic Behaviour

    Nielsen, Kim Lau

    2012-01-01

    The steady state fracture toughness of elastic visco-plastic materials is studied numerically, using both a conventional and a higher order model. Focus is on the combined effect of strain hardening, strain gradient hardening and strain rate hardening on cracking in layered material systems, and ......, and predictions for the crack tip shielding ratio is brought forward. Included is a novel procedure for extracting information on the rate-independent toughness without approaching this numerically cumbersome limit....

  2. Layered double hydroxides as electrode materials for Ni based batteries and as novel inorganic/organic hybrid materials

    Caravaggio, G.

    2002-07-01

    This study examined the electrochemical properties of layered double hydroxides (LDH) in half-cells to determine if they can be used in nickel-cadmium (Ni-Cd) and nickel-metal hydride (NiMH) batteries. The LDHs were prepared by coprecipitation and were characterized by X-ray diffraction analysis. The nickel-aluminium LDHs were found to be the most stable during potassium hydroxide electrolyte discharge because the aluminium acted in a two fold manner. The high charge to radius ratio increased the electrostatic interaction between the anions and the metal layers. The acidity of the hydroxyl groups was due to the high exchange of electrons. The powders had lower discharge capacity compared to commercial electrode materials because of their low density. The nickel-vanadium LDHs exchanged only up to 1.2 electrons and were stable only up to a maximum of 14 days in electrolytic solutions of the cells. Zinc-aluminium LDHs were also synthesized and intercalated with phenyl phosphonic acid or 1,4-phenylene bis phosphonic acid to create microporous materials. X-ray diffraction, infra-red spectroscopy and nuclear magnetic resonance was used to characterize the compounds and determine crystallographic spacing. Grafting of both phosphonates to the metal layers had occurred and both materials showed little or no microporosity.

  3. Free-edge stress analysis of functionally graded material layered biocomposite laminates.

    Huang, Bin; Kim, Heung Soo

    2014-10-01

    A stress function based theory is proposed to obtain free-edge stress distributions for three-dimensional, orthotropic, linearly elastic rectangular biocomposite laminates with surface-bonded functionally graded materials (FGM). The assumed stress fields automatically satisfy the pointwise equilibrium equation, as well as traction-free and free edge boundary conditions. The complementary virtual work principle, followed by the general eigenvalue solution procedure, is used to obtain 3-D free edge stress states. A typical stacking sequence of composite laminate is used as numerical investigation with surface bonded FGMs. It is shown that with proper exponential factor of FGMs, the interlaminar stresses at the FGM layer interface can be reduced significantly, in return to prevent debonding of FGM layers. This approach can be useful in the design of functionally graded material layered biocomposite structures.

  4. Structural Analysis of Layered Polymer Crystals and Application to Photofunctional Materials Using Organic Intercalation

    Shinya Oshita; Akikazu Matsumoto

    2005-01-01

    @@ 1Introduction We reported that layered polymer crystals are obtained by the topochemical polymerization of 1,3-diene monomers and provided as host material for organic intercalation[1]. For intercalation using various long-alkyl amines as the guest species, its reaction behavior, mechanism, characteristics, and potential to application have been clarified[2]. We also succeeded in the synthesis of several host layered polymer crystals with different tacticities and layer structures[3]. We describe here intercalation using various stereoregular poly(muconic acid)s (PMA) and n-alkylamines as the host and guest compounds, respectively. The reaction behavior and the layered structure of the obtained ammonium polymers are discussed from the viewpoint of stereochemical structure of the host polymers.

  5. Thermophysical Properties of Mars' North Polar Layered Deposits and Related Materials from Mars Odyssey THEMIS

    Vasavada, A. R.; Richardson, M. I.; Byrne, S.; Ivanov, A. B.; Christensen, P. R.

    2003-01-01

    The presence of a thick sequence of horizontal layers of ice-rich material at Mars north pole, dissected by troughs and eroding at its margins, is undoubtedly telling us something about the evolution of Mars climate [1,2] we just don t know what yet. The North Polar Layered Deposits (NPLD) most likely formed as astronomically driven climate variations led to the deposition of conformable, areally extensive layers of ice and dust over the polar region. More recently, the balance seems to have fundamentally shifted to net erosion, as evidenced by the many troughs within the NPLD and the steep, arcuate scarps present near its margins, both of which expose layering. We defined a number of Regions of Interest ROI) for THEMIS to target as part of the Mars Odyssey Participating Scientist program. We use these THEMIS data in order to understand the morphology and color/thermal properties of the NPLD and related materials over relevant (i.e., m to km) spatial scales. We have assembled color mosaics of our ROIs in order to map the distribution of ices, the different layered units, dark material, and underlying basement. The color information from THEMIS is crucial for distinguishing these different units which are less distinct on Mars Orbiter Camera images. We wish to understand the nature of the marginal scarps and their relationship to the dark material. Our next, more ambitious goal is to derive the thermophysical properties of the different geologic materials using THEMIS and Mars Global Surveyor Thermal Emission Spectrometer TES) data.

  6. Layer-by-layer assembly of TiO(2) colloids onto diatomite to build hierarchical porous materials.

    Jia, Yuxin; Han, Wei; Xiong, Guoxing; Yang, Weishen

    2008-07-15

    TiO(2) colloids with the most probably particle size of 10 nm were deposited on the surface of macroporous diatomite by a layer-by-layer (LBL) assembly method with using phytic acid as molecular binder. For preparation of colloidal TiO(2), titanium(IV) isopropoxide (Ti(C(3)H(7)O)(4)) was used as titanium precursor, nitric acid (HNO(3)) as peptizing agent and deionized water and isopropanol (C(3)H(7)OH) as solvent. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N(2) adsorption-desorption, and UV-vis spectra are used to assess the morphology and physical chemistry properties of the resulting TiO(2) coated diatomite. It was shown that the mesoporosity has been introduced into macroporous diatomite by LBL deposition. The mesoporosity was originated from close-packing of the uniform TiO(2) nanoparticles. More TiO(2) could be coated on the surface of diatomite by increasing the deposition cycles. This hierarchical porous material has potential for applications in catalytic reactions involved diffusion limit, especially in photocatalytic reactions.

  7. Comparative dissolution study of drug and inert isomalt based core material from layered pellets.

    Kállai-Szabó, Nikolett; Luhn, Oliver; Bernard, Joerg; Kállai-Szabó, Barnabás; Zelkó, Romána; Antal, István

    2014-09-01

    Layered and coated pellets were formulated to control the release of the diclofenac sodium selected as model drug. A highly water soluble isomalt inert pellet core material was used to osmotically modulate the drug release through the swellable polyvinyl acetate coating layer. Image analysis was applied to determine the shape parameters and the swelling behavior of the pellets. UV-spectroscopy and liquid chromatography with refractive index detection were applied to measure the concentration of the model drug and the core materials. Simultaneous dissolution of both the diclofenac sodium and isomalt was observed. Relationship was found between the dissolution profile of the drug and the core material which linear correlation was independent on the coating level. The latter enables the modulation of drug release beside the permeability control of the swelled coating polymer.

  8. Tensile Properties with or without Heat Dispersion of Automotive Needlepunched Carpets Made up of Two Layers of Different Materials

    ZHANG Yunqing; GUO Zhiying; DONG Xianghuai; LI Dequn

    2008-01-01

    Tensile properties of automotive needlepunched carpets made up of two layers of different materials (a fabric layer and a foam layer) in their thermoforming temperatures ranges with or without heat dispersion were discussed. Effects of forming temperature, extensile speed and fiber orientation on the tensile properties were studied based on an orthogonal experiment design. The experimental results show that automotive carpets are rate-dependent anisotropic materials and more strongly depend on forming temperature than the extensile speed and fiber orientation. Furthermore,contributions of the fabric layer and the foam layer to the overall tensile performance were investigated by comparing the tensile results of single fabric layer with those of the overall carpet. Both the fabric layer and the foam layer show positive effects on the overall tensile strength which is the combination of the two layers' tensile strength and independent of temperature, extensile speed and fiber orientation.On the other hand, their influences on the overall deformation are relatively complicated.

  9. Role of indenter material and size in veneer failure of brittle layer structures.

    Bhowmick, Sanjit; Meléndez-Martínez, Juan José; Hermann, Ilja; Zhang, Yu; Lawn, Brian R

    2007-07-01

    The roles of indenter material and size in the failure of brittle veneer layers in all-ceramic crown-like structures are studied. Glass veneer layers 1 mm thick bonded to alumina layers 0.5 mm thick on polycarbonate bases (representative of porcelain/ceramic-core/dentin) are subject to cyclic contact loading with spherical indenters in water (representative of occlusal biting environment). Two indenter materials-glass and tungsten carbide-and three indenter radii-1.6, 5.0, and 12.5 mm-are investigated in the tests. A video camera is used to follow the near-contact initiation and subsequent downward propagation of cone cracks through the veneer layer to the core interface, at which point the specimen is considered to have failed. Both indenter material and indenter radius have some effect on the critical loads to initiate cracks within the local Hertzian contact field, but the influence of modulus is weaker. The critical loads to take the veneer to failure are relatively insensitive to either of these indenter variables, since the bulk of the cone crack propagation takes place in the contact far field. Clinical implications of the results are considered, including the issue of single-cycle overload versus low-load cyclic fatigue and changes in fracture mode with loading conditions.

  10. Electrical and materials characterization of tungsten-titanium diffusion barrier layers and alloyed silver metallization

    Bhagat, Shekhar Kumar

    With the constant miniaturization of semiconductor devices, research is always ongoing to obtain the best materials and/or materials systems which fulfill all the requirements of an ideal interconnect. Silver (Ag) and silver based alloys are front runners among other metals and alloys being investigated. Ag has a low electrical resistivity (1.59 micro-ohm-centimeters for bulk), very high thermal conductivity (4.25 Watt per centimeters per Kelvin), and has better electromigration resistance than aluminum (Al). In the pure form, however, it has several drawbacks (e.g., a tendency to diffuse in silicon substrate at higher temperatures, inadequate adhesion to silicon dioxide, poor corrosion resistance, and agglomeration at higher temperatures). These drawbacks can be circumvented by the addition of diffusion barrier layers and/or alloying in silver. The present study investigates both routes to make silver a legitimate interconnect material. Initially this study focuses on thermal stability and behavior of tungsten-titanium (W-Ti) barrier layers for Ag metallization. It is shown that Ag thin films are thermally stable up to 650 degrees centigrade with the presence of W-Ti under layers. The effect of a W-Ti layer on the {111} texture formation in Ag thin film is also evaluated in detail. Insertion of a thin W-Ti over layer on Ag thin films is investigated with respect to their thermal stability. This research also evaluates the diffusion of Ag into silicon dioxide and W-Ti barriers. This project shows that W-Ti is an effective barrier layer for silver metallization. Later, the study investigates the effect of Cu addition in silver metallization and its impact on electromigration resistance. It is shown that Cu addition enhances the electromigration lifetime for silver metallization.

  11. Theoretical and experimental investigation on giant magnetoresistive materials with amorphous ferromagnetic layer

    WEN Qi-ye; ZHANG Huai-wu; SONG Yuan-qiang; JIANG Xiang-dong

    2006-01-01

    Pseudo-spin-valve (PSV) sandwiches using amorphous CoNbZr alloy as soft magnetic layer were fabricated by magnetron sputtering. The giant magnetoresistance (GMR) and its dependence on the thickness of magnetic layer were investigated. Anti-parallel magnetization alignments were observed in the samples with very thin CoNbZr thickness (2-4 nm) and a maximum GMR ratio of 6.5% was obtained. The Camley-Barnas semiclassical model was extended for amorphous layer based magnetic sandwiches by considering that the mixed layers exist between the ferromagnetic and nonmagnetic layer. The calculated results agree with the experimental results very well,indicating that the new model gives a more realistic picture of the physical processes that take place in the magnetic sandwiches. Moreover,the calculated results for amorphous sandwiches also clarify that the occurrence of maximum GMR at very small thickness of amorphous layer is ascribed to the short mean-free-path in amorphous materials.

  12. Metallic layered composite materials produced by explosion welding: Structure, properties, and structure of the transition zone

    Mal'tseva, L. A.; Tyushlyaeva, D. S.; Mal'tseva, T. V.; Pastukhov, M. V.; Lozhkin, N. N.; Inyakin, D. V.; Marshuk, L. A.

    2014-10-01

    The structure, morphology, and microhardness of the transition zone in multilayer metallic composite joints are studied, and the cohesion strength of the plates to be joined, the mechanical properties of the formed composite materials, and fracture surfaces are analyzed. The materials to be joined are plates (0.1-1 mm thick) made of D16 aluminum alloy, high-strength maraging ZI90-VI (03Kh12N9K4M2YuT) steel, BrB2 beryllium bronze, and OT4-1 titanium alloy. Composite materials made of different materials are shown to be produced by explosion welding. The dependence of the interface shape (smooth or wavelike) on the physicomechanical properties of the materials to be joined is found. The formation of a wavelike interface is shown to result in the formation of intense-mixing regions in transition zones. Possible mechanisms of layer adhesion are discussed.

  13. Nonlinear Localization due to a Double Negative Defect Layer in a One-Dimensional Photonic Crystal Containing Single Negative Material Layers

    Munazza Zulfiqar Ali; Tariq Abdullah

    2008-01-01

    We investigate the effects of introducing a defect layer in a one-dimensional photonic crystal containing single negative material layers on the transmission properties.The width of the defect layer js taken to be the same or smaller than the period of the structure.Different cases of the defect layer being linear or nonlinear and double positive or double negative are discussed.It is found that only a nonlinear double negative layer givas rises to a localized mode within the zero-φeff gap in this kind of structure.It is also shown that the important characteristics of the nonlinear defect mode such as its frequency,its FWHM and the threshold of the associated bistability can be controlled by changing the widths of the defect layer and the host layers.

  14. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials

    Yu, Woo Jong; Liu, Yuan; Zhou, Hailong; Yin, Anxiang; Li, Zheng; Huang, Yu; Duan, Xiangfeng

    2013-12-01

    Layered materials of graphene and MoS2, for example, have recently emerged as an exciting material system for future electronics and optoelectronics. Vertical integration of layered materials can enable the design of novel electronic and photonic devices. Here, we report highly efficient photocurrent generation from vertical heterostructures of layered materials. We show that vertically stacked graphene-MoS2-graphene and graphene-MoS2-metal junctions can be created with a broad junction area for efficient photon harvesting. The weak electrostatic screening effect of graphene allows the integration of single or dual gates under and/or above the vertical heterostructure to tune the band slope and photocurrent generation. We demonstrate that the amplitude and polarity of the photocurrent in the gated vertical heterostructures can be readily modulated by the electric field of an external gate to achieve a maximum external quantum efficiency of 55% and internal quantum efficiency up to 85%. Our study establishes a method to control photocarrier generation, separation and transport processes using an external electric field.

  15. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation

    Masahide Sato, Nobuhiro Tsuji, Yoritoshi Minamino and Yuichiro Koizumi

    2004-01-01

    Full Text Available The surface of the various kinds of metallic materials sheets were severely deformed by wire-brushing at ambient temperature to achieve nanocrystalline surface layer. The surface layers of the metallic materials developed by the near surface severe plastic deformation (NS-SPD were characterized by means of TEM. Nearly equiaxed nanocrystals with grain sizes ranging from 30 to 200 nm were observed in the near surface regions of all the severely scratched metallic materials, which are Ti-added ultra-low carbon interstitial free steel, austenitic stainless steel (SUS304, 99.99 wt.%Al, commercial purity aluminum (A1050 and A1100, Al–Mg alloy (A5083, Al-4 wt.%Cu alloy, OFHC-Cu (C1020, Cu–Zn alloy (C2600 and Pb-1.5%Sn alloy. In case of the 1050-H24 aluminum, the depth of the surface nanocrystalline layer was about 15 μm. It was clarified that wire-brushing is an effective way of NS-SPD, and surface nanocrystallization can be easily achieved in most of metallic materials.

  16. A novel hybrid material: an inorganic silica aerogel core encapsulated with a tunable organic alginate aerogel layer

    Ülker, Zeynep; Erkey, Can

    2014-01-01

    A novel layered material consisting of a silica aerogel core encapsulated by an alginate aerogel layer was developed. The components of the hybrid aerogel had the high surface area and high porosity of pure aerogels which should lead to development of new layered systems for a wide variety of applications.

  17. Broadband quasi perfect absorption using chirped multi-layer porous materials

    Jiménez, N.; Romero-García, V.; Cebrecos, A.; Picó, R.; Sánchez-Morcillo, V. J.; Garcia-Raffi, L. M.

    2016-12-01

    This work theoretically analyzes the sound absorption properties of a chirped multi-layer porous material including transmission, in particular showing the broadband unidirectional absorption properties of the system. Using the combination of the impedance matching condition and the balance between the leakage and the intrinsic losses, the system is designed to have broadband unidirectional and quasi perfect absorption. The transfer and scattering matrix formalism, together with numerical simulations based on the finite element method are used to demonstrate the results showing excellent agreement between them. The proposed system allows to construct broadband sound absorbers with improved absorption in the low frequency regime using less amount of material than the complete bulk porous layer.

  18. DETERMINATION OF MECHANICAL STRENGTH OF SAME MATERIAL DOUBLE-LAYER RECTANGULAR TABLETS

    ISMAEL HARTRIAN

    2000-07-01

    Full Text Available The mechanical strength of same material composite beams of Avicel PHI02, Starch 1500 and Emcompress were assessed by three-point bending test. To provide an improved method of comparing the strength of the tablets, the tensile strength of the specimens was calculated by equations based on stress analysis. Increasing the compaction pressure led to decrease of the porosity of the compacted tablets while the overall mass of the composite tablets were kept constant. Meanwhile, the values of fracture load and strengths (including tensile and shear raised by increasing the compaction pressure. However, when the lower layer was compacted twice, the value of tensile stress of the lower layer was more than its value in a single compacted tablet with the same material. This observation was attributed to the extent of the reduction of porosity during compaction of the single tablets which raised in their tensile strength values.

  19. Broadband quasi perfect absorption using chirped multi-layer porous materials

    N. Jiménez

    2016-12-01

    Full Text Available This work theoretically analyzes the sound absorption properties of a chirped multi-layer porous material including transmission, in particular showing the broadband unidirectional absorption properties of the system. Using the combination of the impedance matching condition and the balance between the leakage and the intrinsic losses, the system is designed to have broadband unidirectional and quasi perfect absorption. The transfer and scattering matrix formalism, together with numerical simulations based on the finite element method are used to demonstrate the results showing excellent agreement between them. The proposed system allows to construct broadband sound absorbers with improved absorption in the low frequency regime using less amount of material than the complete bulk porous layer.

  20. New materials for optoelectronic devices: Growth and characterization of indium and gallium chalcogenide layer compounds

    Mancini, A.M.; Micocci, G.; Rizzo, A.

    1983-09-01

    The main characteristics and the possible applications of some new materials for optoelectronic devices are analyzed. For this purpose, the most widely used growth methods for obtaining good quality single crystals of indium and gallium chalcogenide layered compounds are described together with the best results obtained by us in the growth of GaS, GaSe, GaTe and InSe. The structural characteristics of these compounds, as inferred by electron and X-ray diffraction are reported. The electrical and optical properties of the various materials are related to the growth methods and are analyzed taking into account the trapping centers present in the energy gaps. The parameters of these centers are reported for all the analyzed layered compounds as determined by different electric and photoelectric techniques.

  1. Analysis of Counterfeit Coated Tablets and Multi-Layer Packaging Materials Using Infrared Microspectroscopic Imaging.

    Winner, Taryn L; Lanzarotta, Adam; Sommer, André J

    2016-06-01

    An effective method for detecting and characterizing counterfeit finished dosage forms and packaging materials is described in this study. Using attenuated total internal reflection Fourier transform infrared spectroscopic imaging, suspect tablet coating and core formulations as well as multi-layered foil safety seals, bottle labels, and cigarette tear tapes were analyzed and compared directly with those of a stored authentic product. The approach was effective for obtaining molecular information from structures as small as 6 μm.

  2. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    Djebbi, Mohamed Amine; Braiek, Mohamed; Namour, Philippe; Ben Haj Amara, Abdesslem; Jaffrezic-Renault, Nicole

    2016-11-01

    Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However, MgAl LDH shows better performance than ZnAl LDH, due to the presence of magnesium cations in the layers. Following the structural, morphological and electrochemical behavior studies of both synthesized LDHs, the prepared LDH modified electrodes were tested through microbial fuel cell configuration, revealing a remarkable, potential new pathway for high-performance and cost-effective electrode use in electrochemical power devices.

  3. Flows induced by sorption on fibrous material in a two-layer oil-water system

    Chaplina, T. O.; Chashechkin, Yu. D.; Stepanova, E. V.

    2016-09-01

    The processes of sorption on fibrous materials in the open elliptic cell filled with a two-layer oil-water liquid at rest are investigated experimentally. When the sorption efficiency dependent on the type of material proves to be reasonably high, large-scale flows are formed in the liquid. In this case, the uniformity of distribution of oil is violated and the free surface of the water is partially restored. The trajectories of motion of individual oil droplets on a released water surface are tracked, and the transfer rates are calculated in various phases of the process.

  4. Grafted, cross-linked carbon black as a double-layer capacitor electrode material

    Richner, R.; Mueller, S.; Wokaun, A.

    2001-03-01

    Isocyanate prepolymers readily react with oxidic functional groups on carbon black. On carbon black grafted with diisocyanates, reactive isocyanate groups are available for cross-linking to a polyurethane system. This cross-linked carbon black was considered as a new active material for electrochemical electrodes. Active material for electric double-layer capacitor electrodes was produced which had values of specific capacitance of up to 200 F/g. Cross-linking efficiencies of up to 58 % of the polymers utilised were achieved. (author)

  5. Solution-processed cathode interfacial layer materials for high-efficiency polymer solar cells

    Biao Xiao

    2015-09-01

    Full Text Available Polymer solar cells (PSCs are a new type of renewable energy source currently being extensively investigated due to perceived advantages; such as being lightweight, low-cost and because of the unlimited materials resource. The power conversion efficiency of state-of-the-art PSCs has increased dramatically in the past few years, obtained mainly through the development of new electron donor polymers, acceptors, and novel device structures through the use of various electrode interfacial materials. In this short review, recent progress in solution-processed cathode interfacial layers that could significantly improve device performances is summarized and highlighted.

  6. Discrimination of tooth layers and dental restorative materials using cutting sounds.

    Zakeri, Vahid; Arzanpour, Siamak; Chehroudi, Babak

    2015-03-01

    Dental restoration begins with removing carries and affected tissues with air-turbine rotary cutting handpieces, and later restoring the lost tissues with appropriate restorative materials to retain the functionality. Most restoration materials eventually fail as they age and need to be replaced. One of the difficulties in replacing failing restorations is discerning the boundary of restorative materials, which causes inadvertent removal of healthy tooth layers. Developing an objective and sensor-based method is a promising approach to monitor dental restorative operations and to prevent excessive tooth losses. This paper has analyzed cutting sounds of an air-turbine handpiece to discriminate between tooth layers and two commonly used restorative materials, amalgam and composite. Support vector machines were employed for classification, and the averaged short-time Fourier transform coefficients were selected as the features. The classifier performance was evaluated from different aspects such as the number of features, feature scaling methods, classification schemes, and utilized kernels. The total classification accuracies were 89% and 92% for cases included composite and amalgam materials, respectively. The obtained results indicated the feasibility and effectiveness of the proposed method.

  7. Production method of raw material dispersion liquid for reaction layer of gas diffusion electrode

    Furuya, Choichi; Motoo, Satoshi

    1987-10-13

    Heretofore, in order to make a raw material dispersion liquid of a reaction layer of a gas diffusion electrode, water repellent carbon, polytetrafluoroethylene, water and a surface active agent are mixed, then a cake is made by filtering this mixed liquid and afterwards the cake is heated and dried before being crushed. Since this crushing is done mechanically, homogeneous fine raw material powders cannot be obtained. Accordingly, even when a reaction layer is made by sintering a mixture of this powder, hydrophilic carbon black or hydrophilic carbon black carrying catalyst, and polytetrafluoroethylene, the hydrophilic part and the water repellent part are not distributed homogeneously and the catalytic performance of the reaction layer declines. In order to solve this, this invention proposes a production method that water repellent carbon black, polyterafluoroethylene, water and a surface active agent are mixed, then this mixture is frozen so that the surface active agent may not become active and homogeneous condensed cores of water repellent carbon black and polytetrafluoroethylene powders may be formed, and afterwards a homogeneous fine raw material dispersion liquid is made from thawing the condensed cores without change by thawing the above frozen mixture.

  8. Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells

    Kim, Yu Geun; Kwon, Ki Chang; Le, Quyet Van; Hong, Kootak; Jang, Ho Won; Kim, Soo Young

    2016-07-01

    Atomically thin two-dimensional materials such as MoS2, WS2, and graphene oxide (GO) are used as hole extraction layers (HEL) in organolead halide perovskites solar cells (PSCs) instead of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HEL. MoS2 and WS2 layers with a polycrystalline structure were synthesized by a chemical deposition method using a uniformly spin-coated (NH4)MoS4 and (NH4)WS4 precursor solution. GO was synthesized by the oxidation of natural graphite powder using Hummers' method. The work functions of MoS2, WS2, and GO are measured to be 5.0, 4.95, and 5.1 eV, respectively. The X-ray diffraction spectrum indicated that the synthesized perovskite material is CH3NH3PbI3-xClx. The PSCs with the p-n junction structure were fabricated based on the CH3NH3PbI3-xClx perovskite layer. The power conversion efficiencies of the MoS2, WS2, and GO-based PSCs were 9.53%, 8.02%, and 9.62%, respectively, which are comparable to those obtained from PEDOT:PSS-based devices (9.93%). These results suggest that two-dimensional materials such as MoS2, WS2, and GO can be promising candidates for the formation of HELs in the PSCs.

  9. Application and Progress of Sacrificial Anodes Used in the Cathodic Protection of Warships%牺牲阳极在舰船阴极保护中的应用和进展

    杨朝晖; 刘斌; 李向阳; 杨海洋

    2014-01-01

    分别论述了铝合金牺牲阳极、锌合金牺牲阳极、铁合金牺牲阳极的研究和发展过程,总结了各种阳极的研发现状、研发热点和相应的阳极产品研发成果,指出了针对特殊环境和细分领域的各种阳极,是阳极新材料未来发展的主要方向。对于铝合金牺牲阳极,介绍了常规铝合金牺牲阳极和包括海水环境低驱动电位阳极、油污海水低驱动电位牺牲阳极、适用于干湿交替环境的阳极和适用于高温环境中的阳极等在内的针对特殊环境和特殊材料的铝合金牺牲阳极在舰船阴极保护领域的应用,总结了船舶用铝合金牺牲阳极的研究进展;对于锌合金牺牲阳极,主要介绍了锌合金牺牲阳极的发展历史、研究现状和相应的阳极产品;对于铁合金牺牲阳极,主要总结了铁合金牺牲阳极的研究现状和在舰船上的实际应用。%In this paper,research and development history of Al-alloy sacrificial anodes,Zn-alloy sacrificial anodes and Fe-alloy sacrificial anodes was referred,as well,research status,hotspot and research achievement of corresponding sac-rificial anode products were summarized,meanwhile,ideas that sacrificial anodes used in the special environment and micro-segments market was direction of future development of new anode materials was pointed out .For the Al-alloy sac-rificial anodes,application of Al-alloy sacrificial anodes used in the normal and special environment for the special materi-als including low-driving potential anode in the normal seawater and in the oil seawater,wet-dry cycling,high temperature environment used in the cathodic protection of warships was introduced,meanwhile,research progress of Al-alloy sacrifi-cial anodes used in the ships was summarized;For the Zn-alloy sacrificial anodes,development status,history and corre-sponding Zn-alloy sacrificial anode products used in the warships was referred;For the Fe-alloy sacrificial anodes

  10. 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder.

    Zocca, A; Elsayed, H; Bernardo, E; Gomes, C M; Lopez-Heredia, M A; Knabe, C; Colombo, P; Günster, J

    2015-05-22

    Silicate bioceramics possess an excellent bioactivity; however, shaping them into complex geometries is still challenging. Therefore, this paper aims to present a new strategy for the shaping of a bioglass-ceramic with controlled geometry and properties starting from a glass powder combined with a preceramic polymer, i.e. a silicon resin, and reactive fillers. The powder-based three-dimensional (3D)-printing of wollastonite (CaSiO3)-based silicate bioceramic parts was demonstrated in this work. The resin plays a dual role, as it not only acts as a non-sacrificial binder for the filler powders in the printing process but it also reacts with the fillers to generate the desired bioceramic phases. The mechanical and physical properties, i.e. ball-on-three-balls test, density, porosity and morphology, were evaluated in 3D-printed discs. These samples possessed a total porosity around 64 vol% and a biaxial flexural strength around 6 MPa. The raw materials used in this work also enabled the 3D-printing of scaffolds possessing a designed multi-scale porosity, suitable bioceramic phase assemblage and a compressive strength of 1 MPa (for cylindrical scaffolds with total porosity ~80 vol%). Solubility in TRIS/HCl and in vitro assays, i.e. viability, cytotoxicity and apoptosis assays, were also performed. In vitro tests indicated good cell viability and no cytotoxicity effect on the cells.

  11. Sacrificial bonds in polymer brushes from rat tail tendon functioning as nanoscale velcro.

    Gutsmann, Thomas; Hassenkam, Tue; Cutroni, Jacqueline A; Hansma, Paul K

    2005-07-01

    Polymers play an important role in many biological systems, so a fundamental understanding of their cross-links is crucial not only for the development of medicines but also for the development of biomimetic materials. The biomechanical movements of all mammals are aided by tendon fibrils. The self-organization and biomechanical functions of tendon fibrils are determined by the properties of the cross-links between their individual molecules and the interactions among the cross-links. The cross-links of collagen and proteoglycan molecules are particularly important in tendons and, perhaps, bone. To probe cross-links between tendon molecules, we used the cantilever tip of an atomic force microscope in a pulling setup. Applying higher forces to rat tail tendon molecules with the tip led to a local disruption of the highly organized shell of tendon fibrils and to the formation or an increase of a polymer brush of molecules sticking out of the surface. The cross-linking between these molecules was influenced by divalent Ca2+ ions. Furthermore, the molecules of the polymer brush seemed to bind back to the fibrils in several minutes. We propose that sacrificial bonds significantly influence the tendon fibrils' self-organization and self-healing and therefore contribute to toughness and strength.

  12. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  13. THz - ToF Optical Layer Analysis (OLA) to determine optical properties of dielectric materials

    Spranger, Holger; Beckmann, Jörg

    2017-02-01

    Electromagnetic waves with frequencies between 0.1 and 10 THz are described as THz-radiation (T-ray). The ability to penetrate dielectric materials makes T-rays attractive to reveal discontinuities in polymer and ceramic materials. THz-Time Domain Spectroscopy Systems (THz-TDS) are available on the market today which operates with THz-pulses transmitted and received by optically pumped semiconductor antennas. In THz-TDS the travelling time (ToF) and shape of the pulse is changed if it interacts with the dielectric material and its inherent discontinuities. A tomogram of the object under the test can be reconstructed from time of flight diffraction (ToFD) scans if a synthetic focusing aperture (SAFT) algorithm is applied. The knowledge of the base materials shape and optical properties is essential for a proper reconstruction result. To obtain these properties a model is assumed which describes the device under the test as multilayer structure composed of thin layers with different dielectric characteristics. The Optical Layer Analysis (OLA) is able to fulfill these requirements. A short description why the optical properties are crucial for meaningful SAFT reconstruction results will be given first. Afterwards the OLA will be derived and applied on representative samples to discuss and evaluate its benefits and limits.

  14. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    Djebbi, Mohamed Amine, E-mail: mohamed.djebbi@etu.univ-lyon1.fr [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Braiek, Mohamed [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Namour, Philippe [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Irstea, 5 rue de la Doua, 69100 Villeurbanne (France); Ben Haj Amara, Abdesslem [Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Jaffrezic-Renault, Nicole [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France)

    2016-11-15

    Highlights: • MgAl and ZnAl LDH nanosheets were chemically synthesized and deposited over carbon electrode materials. • Catalytic performance of both LDHs was investigated for Fe(II) reduction reaction. • Satisfactory results have been achieved with the MgAl LDH material. • MgAl and ZnAl LDH modified carbon felt were applied in MFC as an efficient anode catalyst. • The LDH-modified anode significantly increased power performance of MFC. - Abstract: Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However

  15. Review on the Raman spectroscopy of different types of layered materials.

    Zhang, Xin; Tan, Qing-Hai; Wu, Jiang-Bin; Shi, Wei; Tan, Ping-Heng

    2016-03-28

    Two-dimensional layered materials, such as graphene and transition metal dichalcogenides (TMDs), have been under intensive investigation. The rapid progress of research on graphene and TMDs is now stimulating the exploration of different types of layered materials (LMs). Raman spectroscopy has shown its great potential in the characterization of layer numbers, interlayer coupling and layer-stacking configurations and will benefit the future explorations of other LMs. Lattice vibrations or Raman spectra of many LMs in bulk have been discussed since the 1960s. However, different results were obtained because of differences or limitations in the Raman instruments at early stages. The developments of modern Raman spectroscopy now allow us to revisit the Raman spectra of these LMs under the same experimental conditions. Moreover, to the best of our knowledge, there were limitations in detailed reviews on the Raman spectra of these different LMs. Here, we provide a review on Raman spectra of various LMs, including semiconductors, topological insulators, insulators, semi-metals and superconductors. We firstly introduce a unified method based on symmetry analysis and polarization measurements to assign the observed Raman modes and characterize the crystal structure of different types of LMs. Then, we revisit and update the positions and assignments of vibration modes by re-measuring the Raman spectra of different types of LMs and by comparing our results to those reported in previous papers. We apply the recent advances on the interlayer vibrations of graphene and TMDs to these various LMs and obtain their shear modulus. The observation of the shear modes of LMs in bulk facilitates an accurate and fast characterization of layer numbers during preparation processes in the future by a robust layer-number dependency on the frequencies of the shear modes. We also summarize the recent advances on the layer-stacking dependence on the intensities of interlayer shear vibrations

  16. Surface acoustic admittance and absorption of highly porous, layered, fibrous materials

    Tesar, J. S.; Lambert, R. F.

    1984-01-01

    Some acoustic properties of Kevlar-29 - a fine fibered, layered material is investigated. Kevlar is characterized by very high strength, uniform filaments arranged in a parallel batt where most filaments are random in the x-y plane but ordered as planes in the z direction. For experimental purposes, volume porosity, static flow resistance and mean filament diameter are used to identify the material. To determine the acoustic surface admittance of Kevlar, batts of the material are cut into small pads and placed into a standing wave tube terminated by a rigid brass plug. The attenuation and relative phase shift are recorded at each frequency in the range of 50 to 6000 Hz. Normalized conductance and susceptance are combined to form the acoustic absorption coefficient. The data are compared with theory by plotting the normalized admittance and normal incident absorption coefficient versus cyclic frequency.

  17. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-03-27

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales.

  18. 层状材料及催化%Layered materials and catalysis

    安哲; 何静; 段雪

    2012-01-01

    LDHs(layered double hydroxides)是一类结构可调的阴离子层状及插层结构功能材料,近些年来在催化领域得到了广泛的关注.本文综述了有关LDHs材料构筑原则的理论研究、组装方法及其在多相催化领域应用的最新进展.%Layered double hydroxides (LDHs) refer to a large class of anionic clays with diverse brucite-like layers and intercalated structures, which have attracted increasing interests in recent years due to their potential applications as catalysts, catalyst supports and catalyst precursors. This review summeries the latest development of LDH materials in the theoretical criteria for the layered structures, preparation methodology, and their applications as heterogeneous catalytic materials in selective oxidation, acid-base catalyzed, photocatalytic, bio-catalyzed, and asymmetric synthesis reactions.

  19. Intensifying the Casimir force between two silicon substrates within three different layers of materials

    Seyedzahedi, A. [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Moradian, A., E-mail: a.moradian@uok.ac.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Setare, M.R., E-mail: rezakord@ipm.ir [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2016-04-01

    We investigate the Casimir force for a system composed of two thick slabs as substrates within three different homogeneous layers. We use the scattering approach along with the Matsubara formalism in order to calculate the Casimir force at finite temperature. First, we focus on constructing the reflection matrices and then we calculate the Casimir force for a water–lipid system. According to the conventional use of silicon as a substrate, we apply the formalism to calculate the Casimir force for layers of Au, VO{sub 2}, mica, KCl and foam rubber on the thick slabs of silicon. Afterwards, introducing an increasing factor, we compare our results with Lifshitz force in the vacuum between two semispaces of silicon in order to illustrate the influence of the layers on intensifying the Casimir force. We also calculate the Casimir force between two slabs of the forementioned materials with finite thicknesses to indicate the substrate's role in increasing the obtained Casimir force. Our simple calculation is interesting since one can extend it along with the Rigorous Coupled Wave Analysis to systems containing inhomogeneous layers as good candidates for designing nanomechanical devices.

  20. Li-rich layer-structured cathode materials for high energy Li-ion batteries

    Li, Liu; Lee, Kim Seng; Lu, Li

    2014-08-01

    Li-rich layer-structured xLi2MnO3 ṡ (1 - x)LiMO2 (M = Mn, Ni, Co, etc.) materials have attracted much attention due to their extraordinarily high reversible capacity as the cathode material in Li-ion batteries. To better understand the nature of this type of materials, this paper reviews history of development of the Li-rich cathode materials, and provides in-depth study on complicated crystal structures and reaction mechanisms during electrochemical charge/discharge cycling. Despite the fabulous capability at low rate, several drawbacks still gap this type of high-capacity cathode materials from practical applications, for instance the large irreversible capacity loss at first cycle, poor rate capability, severe voltage decay and capacity fade during electrochemical charge/discharge cycling. This review will also address mechanisms for these inferior properties and propose various possible solutions to solve above issues for future utilization of these cathode materials in commercial Li-ion batteries.

  1. Thermal properties measurement of dry bulk materials with a cylindrical three layers device

    Jannot, Y.; Degiovanni, A.

    2013-09-01

    This paper presents a new method dedicated to thermal properties (conductivity and diffusivity) measurement of dry bulk materials including powders. The cylindrical three layers experimental device (brass/bulk material/stainless steel) and the principle of the measurement method based on a crenel thermal excitation are presented. The one-dimensional modeling of the system is used for a sensitivity analysis and to calculate the standard deviation of the estimation error. Experimental measurements are carried out on three bulk materials: glass beads, cork granules, and expanded polystyrene beads. The estimated thermal properties are compared with the values obtained by other measurement methods. Results are in good agreement with theoretical predictions: both thermal conductivity and diffusivity can be estimated with a good accuracy for low density material like cork granules or expanded polystyrene beads since only thermal diffusivity can be estimated for heavier materials like glass beads. It is finally shown that this method like all transient methods is not suited to the thermal characterization of wet bulk materials.

  2. Tuning the Transport Properties of Layered Materials for Thermoelectric Applications using First-Principles Calculations

    Saeed, Yasir

    2014-05-11

    Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport

  3. Mono-layer BC2 a high capacity anode material for Li-ion batteries

    Hardikar, Rahul; Samanta, Atanu; Han, Sang Soo; Lee, Kwang-Ryeol; Singh, Abhishek

    2015-04-01

    Mono-layer of graphene with high surface area compared to the bulk graphite phase, shows less Li uptake. The Li activity or kinetics can be modified via defects and/or substitutional doping. Boron and Nitrogen are the best known dopants for carbonaceous anode materials. In particular, boron doped graphene shows higher capacity and better Li adsorption compared to Nitrogen doped graphene. Here, using first principles density functional theory calculations, we study the spectrum of boron carbide (BCx) mono-layer phases in order to estimate the maximum gravimetric capacity that can be achieved by substitutional doping in graphene. Our results show that uniformly boron doped BC2 phase shows a high capacity of? 1400 mAh/g, much higher than previously reported capacity of BC3. Supported by Korea Institute of Science and Technology.

  4. Molecular simulation of the adsorption of linear alkane mixtures in pillared layered materials

    LI Wen-zhuo; CHE Yu-liang; LIU Zi-yang; ZHANG Dan

    2007-01-01

    The adsorption isotherms of mixtures of linear alkanes, involving n-pentane, n-hexane, and n-heptane in pillared layered materials (PLMs) with three different porosities ψ=0.98, 0.94 and 0.87, and three pore widths H=1.02, 1.70 and 2.38 nm attemperature T=300 K were simulated by using configurational-bias Monte Carlo (CBMC) techniques in grand canonical ensemble. A grid model was employed to calculate the interaction between a fluid molecule and two layered boards here. For alkane mixtures, the n-heptane, the longest chain component in alkane mixtures, is preferentially adsorbed at low pressures, with its adsorption increasing and then decreasing as the pressure increases continuously while the n-pentane, the shortest chain component in alkane mixtures, is still adsorbed at high pressures; the adsorption of the longest chain component of alkane mixtures increases as the pore width and the porosity of PLMs increase.

  5. Bioelectronic interfaces by spontaneously organized peptides on 2D atomic single layer materials

    Hayamizu, Yuhei; So, Christopher R.; Dag, Sefa; Page, Tamon S.; Starkebaum, David; Sarikaya, Mehmet

    2016-09-01

    Self-assembly of biological molecules on solid materials is central to the “bottom-up” approach to directly integrate biology with electronics. Inspired by biology, exquisite biomolecular nanoarchitectures have been formed on solid surfaces. We demonstrate that a combinatorially-selected dodecapeptide and its variants self-assemble into peptide nanowires on two-dimensional nanosheets, single-layer graphene and MoS2. The abrupt boundaries of nanowires create electronic junctions via spatial biomolecular doping of graphene and manifest themselves as a self-assembled electronic network. Furthermore, designed peptides form nanowires on single-layer MoS2 modifying both its electric conductivity and photoluminescence. The biomolecular doping of nanosheets defined by peptide nanostructures may represent the crucial first step in integrating biology with nano-electronics towards realizing fully self-assembled bionanoelectronic devices.

  6. Suitability of polystyrene as a functional barrier layer in coloured food contact materials.

    Genualdi, Susan; Addo Ntim, Susana; Begley, Timothy

    2015-01-01

    Functional barriers in food contact materials (FCMs) are used to prevent or reduce migration from inner layers in multilayer structures to food. The effectiveness of functional barrier layers was investigated in coloured polystyrene (PS) bowls due to their intended condition of use with hot liquids such as soups or stew. Migration experiments were performed over a 10-day period using USFDA-recommended food simulants (10% ethanol, 50% ethanol, corn oil and Miglyol) along with several other food oils. At the end of the 10 days, solvent dyes had migrated from the PS bowls at 12, 1 and 31,000 ng cm(-)(2) into coconut oil, palm kernel oil and Miglyol respectively, and in coconut oil and Miglyol the colour change was visible to the human eye. Scanning electron microscope (SEM) images revealed that the functional barrier was no longer intact for the bowls exposed to coconut oil, palm kernel oil, Miglyol, 10% ethanol, 50% ethanol and goat's milk. Additional tests showed that 1-dodecanol, a lauryl alcohol derived from palm kernel oil and coconut oil, was present in the PS bowls at an average concentration of 11 mg kg(-1). This compound is likely to have been used as a dispersing agent for the solvent dye and aided the migration of the solvent dye from the PS bowl into the food simulant. The solvent dye was not found in the 10% ethanol, 50% ethanol and goat's milk food simulants above their respective limits of detection, which is likely to be due to its insolubility in aqueous solutions. A disrupted barrier layer is of concern because if there are unregulated materials in the inner layers of the laminate, they may migrate to food, and therefore be considered unapproved food additives resulting in the food being deemed adulterated under the Federal Food Drug and Cosmetic Act.

  7. Finite Element Analysis of Layered Fiber Composite Structures Accounting for the Material's Microstructure and Delamination

    Stier, Bertram; Simon, Jaan-Willem; Reese, Stefanie

    2015-04-01

    The present paper focuses on composite structures which consist of several layers of carbon fiber reinforced plastics (CFRP). For such layered composite structures, delamination constitutes one of the major failure modes. Predicting its initiation is essential for the design of these composites. Evaluating stress-strength relation based onset criteria requires an accurate representation of the through-the-thickness stress distribution, which can be particularly delicate in the case of shell-like structures. Thus, in this paper, a solid-shell finite element formulation is utilized which allows to incorporate a fully three-dimensional material model while still being suitable for applications involving thin structures. Moreover, locking phenomena are cured by using both the EAS and the ANS concept, and numerical efficiency is ensured through reduced integration. The proposed anisotropic material model accounts for the material's micro-structure by using the concept of structural tensors. It is validated by comparison to experimental data as well as by application to numerical examples.

  8. Heat transfer at the sintered layer-polysynthetic material interface inside heat micro pipes

    Sprinceana, Siviu; Mihai, Ioan

    2016-12-01

    If micro heat pipe heat transfers, the inside working fluid goes through a biphasic state. The flow of the liquid and the vapor thereof by the capillary beds of frittered copper and the layer of capillary polysynthetic material and migration of vapors liquid from the end, takes the heat flow towards the end where a transfer of heat may occur only if there is a difference in temperature between the end of a flat micro heat pipe that gives the acquirer heat and heat flux. The porosity of the material is total pore of the total material volume. In the analysis of heat and mass transfer through porous media, both convective and conductive transfer forms can not be separated, because of the surfaces in contact between the two capillar layers. It had been studied the dependence of the rate of flow of liquid through the frittered porous media, and Reynolds polysynthetic. It tracks changes in the Reynolds number based on the interior capillary porosity. They traced in Mathcad [1] the graphs for changing the Reynolds number of capillary pressure by capillary porosity.

  9. Properties of photocured epoxy resin materials for application in piezoelectric ultrasonic transducer matching layers.

    Trogé, Alexandre; O'Leary, Richard L; Hayward, Gordon; Pethrick, Richard A; Mullholland, Anthony J

    2010-11-01

    This paper describes the acoustic properties of a range of epoxy resins prepared by photocuring that are suitable for application in piezoelectric ultrasonic transducer matching layers. Materials, based on blends of diglycidyl ether of Bisphenol A and 1,4-cyclohexanedimethanol diglycidyl ether, are described. Furthermore, in order to vary the elastic character of the base resin, samples containing polymer microspheres or barium sulfate particles are also described. The acoustic properties of the materials are determined by a liquid coupled through transmission methodology, capable of determining the velocity and attenuation of longitudinal and shear waves propagating in an isotropic layer. Measured acoustic properties are reported which demonstrate materials with specific acoustic impedance varying in the range 0.88-6.25 MRayls. In the samples comprising blends of resin types, a linear variation in the acoustic velocities and density was observed. In the barium sulfate filled samples, acoustic impedance showed an approximately linear variation with composition, reflecting the dominance of the density variation. While such variations can be predicted by simple mixing laws, relaxation and scattering effects influence the attenuation in both the blended and filled resins. These phenomena are discussed with reference to dynamic mechanical thermal analysis and differential scanning calorimetry of the samples.

  10. Electronic and material characterization of silicon-germanium and silicon-germanium-carbon epitaxial layers

    Peterson, Jeffrey John

    This dissertation presents results of material and electronic characterization of strained SiGe and SiGeC epitaxial layers grown on (100) silicon using Atmospheric Pressure Chemical Vapor Deposition and Reduced Pressure Chemical Vapor Deposition. Fabrication techniques for SiGe and SiGeC are also presented. Materials characterization of epitaxial SiGe and SiGeC was done to characterize crystallinity using visual, microscopic, and Rutherford Backscattering (RBS) characterization. Surface roughness was characterized and found to correspond roughly with epitaxial crystal quality. Spectroscopic ellipsometry was used to study epitaxial layer composition and thickness, requiring development of models for nSiGe and nSiGeC versus composition (the first published for nSiGeC) and generation of ellipsometric nomograms. X-ray diffraction (XRD) measurements of epitaxial strain and relaxation showed Ge composition dominates the stress, although strain compensation due to C was observed. XRD, Raman, and Fourier Transform Infrared (FTIR) characterization were done to characterize substitutional C in SiGeC epitaxial layers, finding that C incorporation into SiGeC saturates for C contents >1%. Fabrication techniques for SiGe and SiGeC were examined. Low thermal budget processing of strained layers were investigated as well as fabrication techniques using advantageous material properties of SiGe and SiGeC. Ti/Al contacts were developed and characterized for electrical contact to SiGe and SiGeC. Schottky contacts of Pt silicide on SiGe and SiGeC was done; formation and resistivity were characterized. Four separate resistivity characterization structures have been fabricated using mesa-etch and Si etch-stop techniques. A NPN Heterojunction Bipolar transistor has been fabricated using successive mesa-etches and SiGe (or SiGeC) etch-stops. Electronic characterization of in-situ doped SiGe and SiGeC epitaxial layers was done to determine resistivity, mobility, and bandgap. Resistivities

  11. Raman and Photoluminescence Studies of In-plane Anisotropic Layered Materials

    Pant, Anupum

    This thesis presents systematic studies on angle dependent Raman and Photoluminescence (PL) of a new class of layered materials, Transition Metal Trichalcogenides (TMTCs), which are made up of layers possessing anisotropic structure within the van-der-Waals plane. The crystal structure of individual layer of MX3 compounds consists of aligned nanowire like 1D chains running along the b-axis direction. The work focuses on the growth of two members of this family - ZrS3 and TiS3 - through Chemical Vapor Transport Method (CVT), with consequent angle dependent Raman and PL studies which highlight their in-plane optically anisotropic properties. Results highlight that the optical properties of few-layer flakes are highly anisotropic as evidenced by large PL intensity variation with polarization direction (in ZrS3) and an intense variation in Raman intensity with variation in polarization direction (in both ZrS3 and TiS3). Results suggest that light is efficiently absorbed when E-field of the polarized incident excitation laser is polarized along the chain (b-axis). It is greatly attenuated and absorption is reduced when field is polarized perpendicular to the length of 1D-like chains, as wavelength of the exciting light is much longer than the width of each 1D chain. Observed PL variation with respect to the azimuthal flake angle is similar to what has been previously observed in 1D materials like nanowires. However, in TMTCs, since the 1D chains interact with each other, it gives rise to a unique linear dichroism response that falls between 2D and 1D like behavior. These results not only mark the very first demonstration of high PL polarization anisotropy in 2D systems, but also provide a novel insight into how interaction between adjacent 1D-like chains and the 2D nature of each layer influences the overall optical anisotropy of Quasi-1D materials. The presented results are anticipated to have impact in technologies involving polarized detection, near-field imaging

  12. Drying of a tape-cast layer: Numerical modelling of the evaporation process in a graded/layered material

    Jabbaribehnam, Mirmasoud; Jambhekar, V. A.; Hattel, Jesper Henri;

    2016-01-01

    Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of water-based tape cast ceramics. In this paper we present a coupled free-flow-porous-media model on the Representative Elementary Volume (REV) scale for coupling non-isothermal multi...... in accordance with the available results from the literature. We elaborate on and discuss the characteristic drying-rate curve for a single layer ceramic, and compare it with that of a graded/layered ceramic. We, moreover, show the influence of the mean diameter of particles of the porous medium (dp) — which...... directly affects the intrinsic permeability (K) based on the well-known Ergun's equation — of each single ceramic layer on the drying behaviour of a graded/layered ceramic....

  13. Design and Optimization of Passive UHF RFID Tag Antenna for Mounting on or inside Material Layers

    Shao, Shuai

    There is great desire to employ passive UHF RFID tags for inventory tracking and sensing in a diversity of applications and environments. Owing to its battery-free operation, non-line-of sight detection, low cost, long read range and small form factor, each year billions of RFID tags are being deployed in retail, logistics, manufacturing, biomedical inventories, among many other applications. However, the performance of these RFID systems has not met expectations. This is because a tag's performance deteriorates significantly when mounted on or inside arbitrary materials. The tag antenna is optimized only for a given type of material at a certain location of placement, and detuning takes place when attached to or embedded in materials with dielectric properties outside the design range. Thereby, different customized tags may be needed for identifying objects even within the same class of products. This increases the overall cost of the system. Furthermore, conventional copper foil-based RFID tag antennas are prone to metal fatigue and wear, and cannot survive hostile environments where antennas could be deformed by external forces and failures occur. Therefore, it is essential to understand the interaction between the antenna and the material in the vicinity of the tag, and design general purpose RFID tag antennas possessing excellent electrical performance as well as robust mechanical structure. A particularly challenging application addressed here is designing passive RFID tag antennas for automotive tires. Tires are composed of multiple layers of rubber with different dielectric properties and thicknesses. Furthermore, metallic plies are embedded in the sidewalls and steel belts lie beneath the tread to enforce mechanical integrity. To complicate matters even more, a typical tire experiences a 10% stretching during the construction process. This dissertation focuses on intuitively understanding the interaction between the antenna and the material in the

  14. he sacrificial emplotment of national identity. Pádraic Pearse and the 1916 Easter uprising

    Patrick Colm Hogan

    2014-06-01

    Full Text Available A sense of national identification remains amorphous and inert unless it is cognitively structured and motivationally oriented. Perhaps the most consequential way of structuring and orienting nationalism is through emplotment (organizing in the form of a story. Emplotment commonly follows one of a few cross-culturally recurring genres. In nationalist contexts, the heroic genre—treating military conflict, loss or potential loss, and reasserted sovereignty–is the default form. However, this default may be overridden in particular circumstances. When social devastation precludes heroic achievement, a sacrificial emplotment—treating collective sin, punishment, sacrifice, and redemption—is often particularly salient. Earlier work has examined cases of sacrificial emplotment in its most extreme varieties (treating Hitler and Gandhi. The following essay considers a more ordinary case, the sacrificial nationalism of the prominent Irish anti-colonial revolutionary, Pádraic Pearse, as represented in his plays.

  15. Formation of spatially and geometrically controlled three-dimensional tissues in soft gels by sacrificial micromolding.

    Cerchiari, Alec; Garbe, James C; Todhunter, Michael E; Jee, Noel Y; Pinney, James R; LaBarge, Mark A; Desai, Tejal A; Gartner, Zev J

    2015-06-01

    Patterned three-dimensional (3D) cell culture models aim to more accurately represent the in vivo architecture of a tissue for the purposes of testing drugs, studying multicellular biology, or engineering functional tissues. However, patterning 3D multicellular structures within very soft hydrogels (<500 Pa) that mimic the physicochemical environment of many tissues remains a challenge for existing methods. To overcome this challenge, we use a Sacrificial Micromolding technique to temporarily form spatially and geometrically defined 3D cell aggregates in degradable scaffolds before transferring and culturing them in a reconstituted extracellular matrix. Herein, we demonstrate that Sacrificial Micromolding (1) promotes cyst formation and proper polarization of established epithelial cell lines, (2) allows reconstitution of heterotypic cell-cell interactions in multicomponent epithelia, and (3) can be used to control the lumenization-state of epithelial cysts as a function of tissue size. In addition, we discuss the potential of Sacrificial Micromolding as a cell-patterning tool for future studies.

  16. Automatized channel for resistivity measurements in layered materials by four-point probe technique

    Gryaznov, A. O.; Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.

    2016-09-01

    An automatized channel for measuring the resistivity in materials by the four-point probe technique was developed. The installation was based on Cascade Microtech MPS150 microprobe station, National Instruments PXIe-4143 power supply unit and PXI-4072 digital multimeter. Registration modes of surface and bulk specific resistance for samples with positioning the probes in a line or at square vertices were implemented. Measurements under corresponding modes were carried out for metallic, semiconducting bulk samples and thin coatings. Conductive and optical properties of 10, 20 and 30 nm Au layers formed on quartz glass by magnetron sputtering were investigated.

  17. Ultra-low material pixel layers for the Mu3e experiment

    Berger, N; Henkelmann, L; Herkert, A; Aeschbacher, F Meier; Ng, Y W; Noehte, L O S; Schöning, A; Wiedner, D

    2016-01-01

    The upcoming Mu3e experiment will search for the charged lepton flavour violating decay of a muon at rest into three electrons. The maximal energy of the electrons is 53 MeV, hence a low material budget is a key performance requirement for the tracking detector. In this paper we summarize our approach to meet the requirement of about 0.1 % of a radiation length per pixel detector layer. This includes the choice of thinned active monolithic pixel sensors in HV-CMOS technology, ultra-thin flexible printed circuits, and helium gas cooling.

  18. Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage.

    Guan, Cao; Wang, John

    2016-10-01

    Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.

  19. From spent Mg/Al layered double hydroxide to porous carbon materials.

    Laipan, Minwang; Zhu, Runliang; Chen, Qingze; Zhu, Jianxi; Xi, Yunfei; Ayoko, Godwin A; He, Hongping

    2015-12-30

    Adsorption has been considered as an efficient method for the treatment of dye effluents, but proper disposal of the spent adsorbents is still a challenge. This work attempts to provide a facile method to reutilize the spent Mg/Al layered double hydroxide (Mg/Al-LDH) after the adsorption of orange II (OII). Herein, the spent hybrid was carbonized under the protection of nitrogen, and then washed with acid to obtain porous carbon materials. Thermogravimetric analysis results suggested that the carbonization could be well achieved above 600°C, as mass loss of the spent hybrid gradually stabilized. Therefore, the carbonization process was carried out at 600, 800, and 1000°C, respectively. Scanning electron microscope showed that the obtained carbon materials possessed a crooked flaky morphology. Nitrogen adsorption-desorption results showed that the carbon materials had large BET surface area and pore volume, e.g., 1426 m(2)/g and 1.67 cm(3)/g for the sample carbonized at 800°C. Moreover, the pore structure and surface chemistry compositions were tunable, as they were sensitive to the temperature. Toluene adsorption results demonstrated that the carbon materials had high efficiency in toluene removal. This work provided a facile approach for synthesizing porous carbon materials using spent Mg/Al-LDH.

  20. Broadband quasi perfect absorption using chirped multi-layer porous materials

    Jiménez, Noé; Cebrecos, Alejandro; Picó, Rubén; Sánchez-Morcillo, Víctor J; García-Raffi, Lluis M

    2016-01-01

    This work theoretically analyzes the sound absorption properties of a chirped multi-layer porous material including transmission, in particular showing the broadband unidirectional absorption properties of the system. Using the combination of the impedance matching condition and the balance between the leakage and the intrinsic losses as well as the critical coupling condition, the system is designed to have broadband unidirectional and nearly perfect absorption. The transfer and scattering matrix formalism, together with full wave numerical simulations are used to demonstrate the results showing excellent agreement between them. The proposed system allows to construct broadband sound absorbers with improved absorption in the low frequency regime using less than 15 \\% of the complete porous material.

  1. Rational design of new electrolyte materials for electrochemical double layer capacitors

    Schütter, Christoph; Husch, Tamara; Viswanathan, Venkatasubramanian; Passerini, Stefano; Balducci, Andrea; Korth, Martin

    2016-09-01

    The development of new electrolytes is a centerpiece of many strategies to improve electrochemical double layer capacitor (EDLC) devices. We present here a computational screening-based rational design approach to find new electrolyte materials. As an example application, the known chemical space of almost 70 million compounds is investigated in search of electrochemically more stable solvents. Cyano esters are identified as especially promising new compound class. Theoretical predictions are validated with subsequent experimental studies on a selected case. These studies show that based on theoretical predictions only, a previously untested, but very well performing compound class was identified. We thus find that our rational design strategy is indeed able to successfully identify completely new materials with substantially improved properties.

  2. Electrochemical Effects of Atomic Layer Deposition on Cathode Materials for Lithium Batteries

    Scott, Isaac David

    One of the greatest challenges of modern society is to stabilize a consistent energy supply that will meet our growing energy demand while decreasing the use of fossil fuels and the harmful green house gases which they produce. Developing reliable and safe solutions has driven research into exploring alternative energy sources for transportation including fuel cells, hydrogen storage, and lithium-ion batteries (LIBs). For the foreseeable future, though, rechargeable batteries appear to be the most practically viable power source. To deploy LIBs in next-generation vehicles, it is essential to develop electrodes with durability, high energy density, and high power. Unfortunately, the power capability of LIBs is generally hindered by Li+-ion diffusion in micrometer-sized materials and the formation of an insulating solid electrolyte interface (SEI) layer on the surface of the active material. In addition, degradation of the battery material due to chemical and electrochemical reactions with the electrolyte lead to both capacity fade and safety concerns both at room and higher temperatures. The current study focuses on mitigating these issues for high voltage cathode materials by both using nanoscale particles to improve Li+-ion diffusion and using ultrathin nanoscale coatings to protect the battery materials from undesirable side reactions. The electrode material is coated with Al2O3 using atomic layer deposition (ALD), which is a method to grow conformal thin films with atomic thickness (angstrom level control) using sequential, self-limiting surface reactions. First, nano-LiCoO 2 is employed to demonstrate the effectiveness of ALD coatings and demonstrates a profound increase in rate performance (>250% improvement) over generally employed micrometer-sized particles. Second, the cathode materials LiNi 0.8Co0.15Al0.05O2, LiNi0.33Mn 0.33Co0.33O2, LiMn2O4, and LiNi0.5Mn1.5O4 were used to demonstrate the benefits ALD coatings have on thermal runaway. The results show a

  3. Holographic recording characteristics and applications of single-layer panchromatic dichromated gelatin material

    Zhu, Jianhua; Xu, Min; Chen, Ligong; Guo, Yongkang; Guo, Lurong

    2005-09-01

    A high-quality single-layer panchromatic dichromated gelatin material is achieved successfully by employing new types of multi-color photosensitizers and photochemical promoters to conventional photo-crosslinking gelatin system. Its holographic recording characteristics such as spectral response, the photosensitivity of three primary colors, spectral selectivity of volume reflection hologram, angular and wavelength selectivity of volume transmission hologram, are studied in detail. Using red, green and blue lasers, namely three primary colors, the bright volume transmission and reflection holograms can be recorded on the panchromatic material at the exposure level of 30 mJ/cm2. Some preliminary results of space, angle and wavelength multiplexing holographic storage for storing multiple binary and grey-tone optical images, are also reported in this paper.

  4. Cooperation of micro- and meso-porous carbon electrode materials in electric double-layer capacitors

    Zheng, Cheng [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Qi, Li; Wang, Hongyu [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Yoshio, Masaki [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2010-07-01

    The capacitive characteristics of micro- and meso-porous carbon materials have been compared in cyclic voltammetric studies and galvanostatic charge-discharge tests. Meso-porous carbon can keep certain high capacitance values at high scan rates, whereas micro-porous carbon possesses very high capacitance values at low scan rates but fades quickly as the scan rate rises up. For better performance of electric double-layer capacitors (EDLCs), the cooperative application of both kinds of carbon materials has been proposed in the following two ways: mixing both kinds of carbons in the same electrode or using the asymmetric configuration of carbon electrodes in the same EDLC. The cooperative effect on the electrochemical performance has also been addressed. (author)

  5. Sputtered platinum-iridium layers as electrode material for functional electrostimulation

    Ganske, G., E-mail: ganske@iwe1.rwth-aachen.d [Institute of Materials in Electrical Engineering I, RWTH Aachen University, Sommerfeldstr. 24, D-52074 Aachen (Germany); Slavcheva, E. [Institute of Materials in Electrical Engineering I, RWTH Aachen University, Sommerfeldstr. 24, D-52074 Aachen (Germany); Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Ooyen, A. van; Mokwa, W.; Schnakenberg, U. [Institute of Materials in Electrical Engineering I, RWTH Aachen University, Sommerfeldstr. 24, D-52074 Aachen (Germany)

    2011-03-31

    In this study co-sputtered layers of platinum-iridium (PtIr) are investigated as stimulation electrode material. The effects of different sputter parameters on the morphology and the electrochemical behavior are examined. It is shown that films sputtered at the lowest incident energy possess the highest charge storage capacity (CSC). At a Pt:Ir atomic-ratio of 55:45 the obtained CSC of 22 mC/cm{sup 2} is enhanced compared to the standard stimulation material platinum (16 mC/cm{sup 2}) but inferior to iridium which has a CSC of 35 mC/cm{sup 2}. Long term cyclic voltammetry measurements show that PtIr can be activated which increases the CSC to 29 mC/cm{sup 2}. Also a change in the film morphology is observed. Sputtered platinum-iridium films promise to combine high mechanical strength and increased charge storage capacity.

  6. Comprehensive study on the light shielding potential of thermotropic layers for the development of new materials.

    Gruber, D P; Winkler, G; Resch, K

    2015-01-10

    In recent years thermotropic overheating protection glazings have been the focus for both solar thermal collector technology and architecture. A thermotropic glazing changes its light transmittance from highly transparent to light diffusing upon reaching a certain threshold temperature autonomously and reversibly. In thermotropic systems with fixed domains (TSFD) the scattering domains are embedded in a polymer matrix, which exhibits a sudden change of the refractive index upon reaching a threshold temperature. The aim of the present study was to comprehensively investigate the light shielding characteristics and potential of TSFD materials by applying simulation of light scattering in particle-filled layers. In random walk simulations a variety of parameters were varied systematically, and the effect on the light transmission behavior of TSFD was studied. The calculation steps of the simulation process are shown in detail. The simulations demonstrate that there is great potential for the production of functional materials with high overheating protection efficiency.

  7. Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron.

    Helber, Bernd; Chazot, Olivier; Hubin, Annick; Magin, Thierry E

    2016-06-09

    Ablative Thermal Protection Systems (TPS) allowed the first humans to safely return to Earth from the moon and are still considered as the only solution for future high-speed reentry missions. But despite the advancements made since Apollo, heat flux prediction remains an imperfect science and engineers resort to safety factors to determine the TPS thickness. This goes at the expense of embarked payload, hampering, for example, sample return missions. Ground testing in plasma wind-tunnels is currently the only affordable possibility for both material qualification and validation of material response codes. The subsonic 1.2MW Inductively Coupled Plasmatron facility at the von Karman Institute for Fluid Dynamics is able to reproduce a wide range of reentry environments. This protocol describes a procedure for the study of the gas/surface interaction on ablative materials in high enthalpy flows and presents sample results of a non-pyrolyzing, ablating carbon fiber precursor. With this publication, the authors envisage the definition of a standard procedure, facilitating comparison with other laboratories and contributing to ongoing efforts to improve heat shield reliability and reduce design uncertainties. The described core techniques are non-intrusive methods to track the material recession with a high-speed camera along with the chemistry in the reactive boundary layer, probed by emission spectroscopy. Although optical emission spectroscopy is limited to line-of-sight measurements and is further constrained to electronically excited atoms and molecules, its simplicity and broad applicability still make it the technique of choice for analysis of the reactive boundary layer. Recession of the ablating sample further requires that the distance of the measurement location with respect to the surface is known at all times during the experiment. Calibration of the optical system of the applied three spectrometers allowed quantitative comparison. At the fiber scale

  8. Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron

    Helber, Bernd; Chazot, Olivier; Hubin, Annick; Magin, Thierry E.

    2016-01-01

    Ablative Thermal Protection Systems (TPS) allowed the first humans to safely return to Earth from the moon and are still considered as the only solution for future high-speed reentry missions. But despite the advancements made since Apollo, heat flux prediction remains an imperfect science and engineers resort to safety factors to determine the TPS thickness. This goes at the expense of embarked payload, hampering, for example, sample return missions. Ground testing in plasma wind-tunnels is currently the only affordable possibility for both material qualification and validation of material response codes. The subsonic 1.2MW Inductively Coupled Plasmatron facility at the von Karman Institute for Fluid Dynamics is able to reproduce a wide range of reentry environments. This protocol describes a procedure for the study of the gas/surface interaction on ablative materials in high enthalpy flows and presents sample results of a non-pyrolyzing, ablating carbon fiber precursor. With this publication, the authors envisage the definition of a standard procedure, facilitating comparison with other laboratories and contributing to ongoing efforts to improve heat shield reliability and reduce design uncertainties. The described core techniques are non-intrusive methods to track the material recession with a high-speed camera along with the chemistry in the reactive boundary layer, probed by emission spectroscopy. Although optical emission spectroscopy is limited to line-of-sight measurements and is further constrained to electronically excited atoms and molecules, its simplicity and broad applicability still make it the technique of choice for analysis of the reactive boundary layer. Recession of the ablating sample further requires that the distance of the measurement location with respect to the surface is known at all times during the experiment. Calibration of the optical system of the applied three spectrometers allowed quantitative comparison. At the fiber scale

  9. Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition

    Zhuiykov, Serge; Kawaguchi, Toshikazu; Hai, Zhenyin; Karbalaei Akbari, Mohammad; Heynderickx, Philippe M.

    2017-01-01

    Atomic Layer Deposition (ALD) is an enabling technology which provides coating and material features with significant advantages compared to other existing techniques for depositing precise nanometer-thin two-dimensional (2D) nanostructures. It is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. ALD is especially advantageous when the film quality or thickness is critical, offering ultra-high aspect ratios. ALD provides digital thickness control to the atomic level by depositing film one atomic layer at a time, as well as pinhole-free films even over a very large and complex areas. Digital control extends to sandwiches, hetero-structures, nano-laminates, metal oxides, graded index layers and doping, and it is perfect for conformal coating and challenging 2D electrodes for various functional devices. The technique's capabilities are presented on the example of ALD-developed ultra-thin 2D tungsten oxide (WO3) over the large area of standard 4" Si substrates. The discussed advantages of ALD enable and endorse the employment of this technique for the development of hetero-nanostructure 2D semiconductors with unique properties.

  10. Characterization of Elastic-plastic Material Properties for IMC Layer of ENEPIG by Using Reverse Algorithm

    Kim, Jong-Min; Lee, Hyun-Boo; Chang, Yoon-Suk; Choi, Jae-Boong; Kim, Young-Jin; Ji, Kum-Young

    2010-05-01

    Recently, the reliability assurance of lead-free solder to prevent environmental contamination is quite important issue for chip-scale packaging. Although lots of efforts have been devoted to the solder undergone drop, shear and creep loads, there was a little research on IMC due primarily to its thickness restriction and geometric irregularity. However, the IMC is known as the weakest layer governing failures of the solder joint. The present work is to characterize realistic material properties of the IMC for ENEPIG process. Lee's modified reverse algorithm was adopted to determine elastic-plastic stress-strain curve and so forth, after examining several methods, which requires inherently elastic data. In this context, a series of nano-indentation tests as well as corresponding simulations were carried out by changing indentation depths from 200 to 400 nm and strain rates from 0.05 to 0.10 1/s. It would be conclude that effect of strain rate is relatively small and IMC layer should be more than 5 times of indentation depth when using the recommended method, which are applicable to generate realistic material properties for further diverse structural integrity simulations.

  11. Material and Doping Dependence of the Nodal and Anti-Nodal Dispersion Renormalizations in Single- and Multi-Layer Cuprates

    Johnston, S.; /Waterloo U. /SLAC; Lee, W.S.; /Stanford U., Geballe Lab. /SLAC; Nowadnick, E.A.; /SLAC /Stanford U., Phys. Dept.; Moritz, B.; /SLAC /North Dakota U.; Shen, Z.-X.; /Stanford U., Geballe Lab. /SLAC /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.; Devereaux, T.P.; /Stanford U., Geballe Lab. /SLAC

    2010-02-15

    In this paper we present a review of bosonic renormalization effects on electronic carriers observed from angle-resolved photoemission spectra in the cuprates. Specifically, we discuss the viewpoint that these renormalizations represent coupling of the electrons to the lattice and review how materials dependence, such as the number of CuO{sub 2} layers, and doping dependence can be understood straightforwardly in terms of several aspects of electron-phonon coupling in layered correlated materials.

  12. Distinguishing crystallite size effects from those of structural disorder on the powder X-ray diffraction patterns of layered materials

    Sylvia Britto; Sumy Joseph; P Vishnu Kamath

    2010-09-01

    Both crystallite size effects and structural disorder contribute to the broadening of lines in the powder X-ray diffraction (PXRD) patterns of layered materials. Stacking faults, in particular, are ubiquitous in layered materials and aside from broadening also induce peaks due to select reflections to shift away from the Bragg positions. The effect of structural disorder has to be suitably discounted before the application of the Scherrer formula for the estimation of crystallite size.

  13. Intercalation of Mg-ions in layered V2O5 cathode materials for rechargeable Mg-ion batteries

    Sørensen, Daniel Risskov; Johannesen, Pætur; Christensen, Christian Kolle;

    The development of functioning rechargeable Mg-ion batteries is still in its early stage, and a coarse screening of suitable cathode materials is still on-going. Within the intercalation-type cathodes, layered crystalline materials are of high interest as they are known to perform well in Li......-ion intercalation batteries and are also increasingly being explored for Na-ion batteries. Here, we present an investigation of the layered material orthorhombic V2O5, which is a classical candidate for an ion-intercalation material having a high theoretical capacity1. We present discharge-curves for the insertion...

  14. Assessment of doses caused by electrons in thin layers of tissue-equivalent materials, using MCNP.

    Heide, Bernd

    2013-10-01

    Absorbed doses caused by electron irradiation were calculated with Monte Carlo N-Particle transport code (MCNP) for thin layers of tissue-equivalent materials. The layers were so thin that the calculation of energy deposition was on the border of the scope of MCNP. Therefore, in this article application of three different methods of calculation of energy deposition is discussed. This was done by means of two scenarios: in the first one, electrons were emitted from the centre of a sphere of water and also recorded in that sphere; and in the second, an irradiation with the PTB Secondary Standard BSS2 was modelled, where electrons were emitted from an (90)Sr/(90)Y area source and recorded inside a cuboid phantom made of tissue-equivalent material. The speed and accuracy of the different methods were of interest. While a significant difference in accuracy was visible for one method in the first scenario, the difference in accuracy of the three methods was insignificant for the second one. Considerable differences in speed were found for both scenarios. In order to demonstrate the need for calculating the dose in thin small zones, a third scenario was constructed and simulated as well. The third scenario was nearly equal to the second one, but a pike of lead was assumed to be inside the phantom in addition. A dose enhancement (caused by the pike of lead) of ∼113 % was recorded for a thin hollow cylinder at a depth of 0.007 cm, which the basal-skin layer is referred to in particular. Dose enhancements between 68 and 88 % were found for a slab with a radius of 0.09 cm for all depths. All dose enhancements were hardly noticeable for a slab with a cross-sectional area of 1 cm(2), which is usually applied to operational radiation protection.

  15. Effect of Electric Discharge Machining on Material Removal Rate and White Layer Composition

    SHAHID MEHMOOD

    2017-01-01

    Full Text Available In this study the MRR (Material Removal Rate of the aerospace grade (2024 T6 aluminum alloy 2024 T6 has been determined with copper electrode and kerosene oil is used as dielectric liquid. Discharge energy is controlled by electric current while keeping Pulse-ON time and Pulse-OFF time as constant. The characteristics of the EDMed (Electric Discharge Machined surface are discussed. The sub-surface defect due to arcing has been explained. As the surface material of tool electrode and workpiece melts simultaneously and there are chances of the contamination of both surfaces by the contents of each other. Therefore, the EDS (Energy Dispersive Spectroscopy of the white layer and base material of the workpiece was performed by SEM (Scanning Electron Microscope at the discharge currents of 3, 6 and 12 amperes. It was conformed that the contamination of the surface of the workpiece material occurred by carbon, copper and oxygen contents. The quantitative analysis of these contents with respect to the discharge current has been presented in this paper.

  16. Wear Resistance of Piston Sleeve Made of Layered Material Structure: MMC A356R, Anti-Abrasion Layer and FGM Interface

    Hernik Szymon

    2016-09-01

    Full Text Available The aim of this paper is the numerical analysis of the one of main part of car engine – piston sleeve. The first example is for piston sleeve made of metal matrix composite (MMC A356R. The second improved material structure is layered. Both of them are comparison to the classical structure of piston sleeve made of Cr-Ni stainless steel. The layered material structure contains the anti-abrasion layer at the inner surface of piston sleeve, where the contact and friction is highest, FGM (functionally graded material interface and the layer of virgin material on the outer surface made of A356R. The complex thermo-elastic model with Archard's condition as a wear law is proposed. The piston sleeve is modelling as a thin walled cylindrical axisymmetric shell. The coupled between the formulation of thermo-elasticity of cylindrical axisymmetric shell and the Archard’s law with functionally changes of local hardness is proposed.

  17. White Organic Light-Emitting Diodes Using Two Phosphorescence Materials in a Starburst Hole-Transporting Layer

    Tomoya Inden

    2012-01-01

    Full Text Available We fabricated two kinds of white organic light-emitting diodes (WOLEDs; one consisted of two emissive materials of red and blue, and the other of three emissive materials of red, green, and blue. The red and blue emissive materials were phosphorescent. We evaluated the thickness dependence of the CIE coordinate, the external quantum efficiency (EQE, and the luminance by changing the thicknesses of the Ir(btp2acac and FIrpic layers. Samples consisting of three emissive materials revealed the best CIE coordinate and the best EQE in the same sample structure. On the other hand, the samples consisting of two emissive materials revealed the best CIE coordinate and the best EQE in different structures. The best CIE coordinate of (0.33, 0.36 was observed by changing the thicknesses of the stacked active layers. The best EQE was 9.73%, which was observed in the sample consisting of different thickness of stacked active layers.

  18. In Situ XRD Investigations on Structural Change of P2-Layered Materials during Electrochemical Sodiation/Desodiation

    Jung, Young Hwa; Johnsen, Rune E.; Christiansen, Ane Sælland;

    2014-01-01

    Sodium layered oxides (NaxMO2) are attractive as positive electrode materials for rechargeable sodium-ion batteries (SIBs) due to high capacity, fast ionic diffusion and simple synthetic process. O3-layered lithium compounds have led successful commercialization of current lithium-ion batteries......, No.194), which is identical to P2-layered structure. The structural changes in hexagonal P2-layered oxides have been investigated during electrochemical sodiation/desodiation by in-situ synchrotron X-ray diffractions of a capillary based micro battery cell. From the result of in-situ studies...

  19. Large pore volume mesoporous copper particles and scaffold microporous carbon material obtained from an inorganic-organic nanohybrid material, copper-succinate-layered hydroxide.

    Ghotbi, Mohammad Yeganeh; Bagheri, Narjes; Sadrnezhaad, S K

    2011-10-01

    Copper-succinate-layered hydroxide (CSLH), a new nanohybrid material, was synthesized as an inorganic-organic nanohybrid, in which organic moiety was intercalated between the layers of a single cation layered material, copper hydroxide nitrate. Microporous scaffold carbon material was obtained by thermal decomposition of the nanohybrid at 500 °C under argon atmosphere followed by acid washing process. Furthermore, the heat-treated product of the nanohybrid at 600 °C was ultrafine mesoporous metallic copper particles. The results of this study confirmed the great potential of CSLH to produce the carbon material with large surface area (580 m(2)/g) and high pore volume copper powder (2.04 cm(3)/g).

  20. Fluorine uptake into the human tooth from a thin layer of F-releasing material

    Yamamoto, H. [Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871 (Japan)]. E-mail: yhiroko@dent.osaka-u.ac.jp; Nomachi, M. [Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 (Japan); Yasuda, K. [Wakasa Wan Energy Research Center, Tsuruga, Fukui, 914-0192 (Japan); Iwami, Y. [Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Ebisu, S. [Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Komatsu, H. [Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8585 (Japan); Sakai, T. [Advanced Radiation Technology Center, JAERI, Takasaki, Gunma, 370-1292 (Japan); Kamiya, T. [Advanced Radiation Technology Center, JAERI, Takasaki, Gunma, 370-1292 (Japan)

    2007-07-15

    Using the proton induced gamma-ray emission (PIGE) method (TIARA, Japan), we have studied fluorine (F) distribution in the human tooth under various conditions. Here, we report F uptake into the human tooth from a thin layer of F-releasing low viscous resin (FLVR). Crowns of human teeth were horizontally cut and the dentin of the cut surface was first covered with four kinds of FLVR (FL-Bond, Reactmer Bond, Xeno Bond, and Protect Liner F; thickness, 50-150 {mu}m) according to the manufacturers' instructions. Non-F-releasing and F-releasing filling resins were also hardened, on the cut surfaces of crowns covered with four kinds of FLVR thin layers. The type of the non-F-releasing filling materials used was LITE FIL IIP: G1-A (FL-Bond and LITE FIL IIP), G2-A (Reactmer Bond and LITE FIL IIP), G3-A (Xeno Bond and LITE FIL IIP), and G4-A (Protect Liner F and LITE FIL IIP). The types of F-releasing filling materials used were G1-B (FL-Bond and Beautifil), G2-B (Reactmer Bond and Reactmer Paste), G3-B (Xeno Bond and Xeno CF Paste), and G4-B (Protect Liner F and Teethmate F-1). Treatment and measurements of specimens were the same as previously reported [H. Yamamoto, M. Nomahci, K. Yasuda, Y. Iwami, S. Ebisu, N. Yamamoto, T. Sakai, T. Kamiya, Nucl. Instr. and Meth. B 210 (2003) 388]. F uptake from specimens following one month of application was estimated from 2-D maps. F penetration was observed in all teeth of G1-A-G4-A groups. The maximum values of F concentration in each tooth and F penetration depth were larger for larger F concentrations in FLVR. FLVR was useful for the F uptake into the tooth, and the F distribution near the thin layer of FLVR depended on the materials used. Between G1-A and G1-B or G4-A and G4-B, the F uptake was significantly different. We were able to obtain fundamental data, which were useful for the analysis of F transportation relating to prevention of caries.

  1. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds

    Mohanty, Soumyaranjan; Larsen, Layla Bashir; Trifol Guzman, Jon

    2015-01-01

    One of the major challenges in producing large scale engineered tissue is the lack of ability to create large highly perfused scaffolds in which cells can grow at a high cell density and viability. Here, we explore 3D printed polyvinyl alcohol (PVA) as a sacrificial mould in a polymer casting...

  2. Encapsulation of sacrificial silicon containing particles for SH oxide ceramics via a boehmite precursor route

    Carabat, A.L.; Van der Zwaag, S.; Sloof, W.G.

    2013-01-01

    Easy crack propagation in oxide ceramic coatings limits their application in high temperature environment (e.g. such as engines and gas turbine components) [1]. In order to overcome this problem, incorporation of sacrificial particles into an oxide ceramic coating may be a viable option. Particles o

  3. Monitoring the Startup of a Sacrificial Concrete Sewer for Odor Control

    Nielsen, Asbjørn Haaning; Vollertsen, Jes

    2014-01-01

    with extended retention time. For the purpose of the study, a 50-m long sacrificial concrete gravity sewer was constructed using a high alkalinity concrete pipe. The monitoring campaign reported in this paper covers the first 9 months of operation. The results clearly demonstrate the ability of the system...

  4. Structural Phase Transition and Material Properties of Few-Layer Monochalcogenides

    Mehboudi, Mehrshad; Fregoso, Benjamin M.; Yang, Yurong; Zhu, Wenjuan; van der Zande, Arend; Ferrer, Jaime; Bellaiche, L.; Kumar, Pradeep; Barraza-Lopez, Salvador

    2016-12-01

    GeSe and SnSe monochalcogenide monolayers and bilayers undergo a two-dimensional phase transition from a rectangular unit cell to a square unit cell at a critical temperature Tc well below the melting point. Its consequences on material properties are studied within the framework of Car-Parrinello molecular dynamics and density-functional theory. No in-gap states develop as the structural transition takes place, so that these phase-change materials remain semiconducting below and above Tc. As the in-plane lattice transforms from a rectangle into a square at Tc, the electronic, spin, optical, and piezoelectric properties dramatically depart from earlier predictions. Indeed, the Y and X points in the Brillouin zone become effectively equivalent at Tc, leading to a symmetric electronic structure. The spin polarization at the conduction valley edge vanishes, and the hole conductivity must display an anomalous thermal increase at Tc. The linear optical absorption band edge must change its polarization as well, making this structural and electronic evolution verifiable by optical means. Much excitement is drawn by theoretical predictions of giant piezoelectricity and ferroelectricity in these materials, and we estimate a pyroelectric response of about 3 ×10-12 C /K m here. These results uncover the fundamental role of temperature as a control knob for the physical properties of few-layer group-IV monochalcogenides.

  5. Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties

    Zhao, Zhisheng; Wang, Erik F.; Yan, Hongping; Kono, Yoshio; Wen, Bin; Bai, Ligang; Shi, Feng; Zhang, Junfeng; Kenney-Benson, Curtis; Park, Changyong; Wang, Yanbin; Shen, Guoyin

    2015-02-01

    Type-II glass-like carbon is a widely used material with a unique combination of properties including low density, high strength, extreme impermeability to gas and liquid and resistance to chemical corrosion. It can be considered as a carbon-based nanoarchitectured material, consisting of a disordered multilayer graphene matrix encasing numerous randomly distributed nanosized fullerene-like spheroids. Here we show that under both hydrostatic compression and triaxial deformation, this high-strength material is highly compressible and exhibits a superelastic ability to recover from large strains. Under hydrostatic compression, bulk, shear and Young’s moduli decrease anomalously with pressure, reaching minima around 1-2 GPa, where Poisson’s ratio approaches zero, and then revert to normal behaviour with positive pressure dependences. Controlling the concentration, size and shape of fullerene-like spheroids with tailored topological connectivity to graphene layers is expected to yield exceptional and tunable mechanical properties, similar to mechanical metamaterials, with potentially wide applications.

  6. Photon tunneling and transmittance resonance through a multi-layer structure with a left-handed material

    He Ying; Zhang Xia; Yang Yan-Fang; Li Chun-Fang

    2011-01-01

    This paper investigates the photon tunneling and transmittance resonance through a multi-layer structure including a left-handed material(LHM). An analytical expression for the transmittance in a five-layer structure is given by the analytical transfer matrix method. The transmittance is studied as a function of the refractive index and the width of the LHM layer. The perfect photon tunneling results from the multi-layer structure, especially from the relation between the magnitude of the refractive index and the width of the LHM layer and those of the adjoining layers.Photons may tunnel through a much greater distance in this structure. Transmittance resonance happens, the peaks and valleys appear periodically at the resonance thickness. For an LHM with inherent losses, the perfect transmittance is suppressed.

  7. Materials for the active layer of organic photovoltaics: ternary solar cell approach.

    Chen, Yung-Chung; Hsu, Chih-Yu; Lin, Ryan Yeh-Yung; Ho, Kuo-Chuan; Lin, Jiann T

    2013-01-01

    Power conversion efficiencies in excess of 7% have been achieved with bulk heterojunction (BHJ)-type organic solar cells using two components: p- and n-doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful design of the additional component is required to achieve optimal panchromatic absorption, suitable energy-level offset, balanced electron and hole mobility, and good light-harvesting efficiency. This article reviews the recent progress on ternary organic photovoltaic systems, including polymer/small molecule/functional fullerene, polymer/polymer/functional fullerene, small molecule/small molecule/functional fullerene, polymer/functional fullerene I/functional fullerene II, and polymer/quantum dot or metal/functional fullerene systems.

  8. Band Gap Tuning in 2D Layered Materials by Angular Rotation

    Javier Polanco-Gonzalez

    2017-02-01

    Full Text Available We present a series of computer-assisted high-resolution transmission electron (HRTEM simulations to determine Moiré patters by induced twisting effects between slabs at rotational angles of 3°, 5°, 8°, and 16°, for molybdenum disulfide, graphene, tungsten disulfide, and tungsten selenide layered materials. In order to investigate the electronic structure, a series of numerical simulations using density functional methods (DFT methods was completed using Cambridge serial total energy package (CASTEP with a generalized gradient approximation to determine both the band structure and density of states on honeycomb-like new superlattices. Our results indicated metallic transitions when the rotation approached 8° with respect to each other laminates for most of the two-dimensional systems that were analyzed.

  9. Filler-depletion layer adjacent to interface impacts performance of thermal interface material

    Susumu Yada

    2016-01-01

    Full Text Available When installing thermal interface material (TIM between heat source and sink to reduce contact thermal resistance, the interfacial thermal resistance (ITR between the TIM and heat source/sink may become important, especially when the TIM thickness becomes smaller in the next-generation device integration. To this end, we have investigated ITR between TIM and aluminum surface by using the time-domain thermoreflectance method. The measurements reveal large ITR attributed to the depletion of filler particles in TIM adjacent to the aluminum surface. The thickness of the depletion layer is estimated to be about 100 nm. As a consequence, the fraction of ITR to the total contact thermal resistance becomes about 20% when the TIM thickness is about 50 μm (current thickness, and it exceeds 50% when the thickness is smaller than 10 μm (next-generation thickness.

  10. Chemical resistance of thin film materials based on metal oxides grown by atomic layer deposition

    Sammelselg, Väino, E-mail: vaino.sammelselg@ut.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu (Estonia); Netšipailo, Ivan; Aidla, Aleks; Tarre, Aivar; Aarik, Lauri; Asari, Jelena; Ritslaid, Peeter; Aarik, Jaan [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2013-09-02

    Etching rate of technologically important metal oxide thin films in hot sulphuric acid was investigated. The films of Al-, Ti-, Cr-, and Ta-oxides studied were grown by atomic layer deposition (ALD) method on silicon substrates from different precursors in large ranges of growth temperatures (80–900 °C) in order to reveal process parameters that allow deposition of coatings with higher chemical resistance. The results obtained demonstrate that application of processes that yield films with lower concentration of residual impurities as well as crystallization of films in thermal ALD processes leads to significant decrease of etching rate. Crystalline films of materials studied showed etching rates down to values of < 5 pm/s. - Highlights: • Etching of atomic layer deposited thin metal oxide films in hot H{sub 2}SO{sub 4} was studied. • Smallest etching rates of < 5 pm/s for TiO{sub 2}, Al{sub 2}O{sub 3}, and Cr{sub 2}O{sub 3} were reached. • Highest etching rate of 2.8 nm/s for Al{sub 2}O{sub 3} was occurred. • Remarkable differences in etching of non- and crystalline films were observed.

  11. Layered and intercalated hydrotalcite-like materials as thermal stabilizers in PVC resin

    Lin, Yanjun; Wang, Jianrong; Evans, David G.; Li, Dianqing

    2006-05-01

    In the light of the accepted mechanism of thermal stabilization of PVC by layered double hydroxides (LDHs), the layer cations and interlayer counterions in LDHs were tailored to give MgZnAl-CO3-LDH and MgZnAl-maleate-LDH. These materials were characterized by XRD, FT-IR, and TG DTA. The thermal stability of PVC composites containing different LDH additives was tested in sheets having a thickness of about 1 mm. The results showed that compared with MgAl-CO3-LDH, MgZnAl-CO3-LDH enhances the thermal stability of PVC in terms of both long-term stability and early coloring. After intercalation of maleate in the LDH by reaction of maleic acid with the MgZnAl-CO3-LDH precursor, the interlayer distance increases from 0.75 to 1.11 nm. Since Cl- promotes the autocatalytic dehydrochlorination of PVC, which is responsible for its degradation, an increased interlayer distance should facilitate entry of Cl- into the interlayer galleries and inhibit the decomposition of PVC. In addition, maleic acid has a conjugated C=C double bond which can react with double bond formed in the dehydrochlorination of PVC and thus further inhibit the autocatalytic degradation reaction. The results show that the early coloring of PVC is markedly improved and the long-term stability slightly reduced by addition of the MgZnAl-maleate-LDH.

  12. Atomistic simulation of nanoporous layered double hydroxide materials and their properties. II. Adsorption and diffusion

    Kim, Nayong; Harale, Aadesh; Tsotsis, Theodore T.; Sahimi, Muhammad

    2007-12-01

    Nanoporous layered double hydroxide (LDH) materials have wide applications, ranging from being good adsorbents for gases (particularly CO2) and liquid ions to membranes and catalysts. They also have applications in medicine, environmental remediation, and electrochemistry. Their general chemical composition is [M1-xIIMxIII(OH-)2]x+[Xn/mm -•nH2O], where M represents a metallic cation (of valence II or III), and Xn/mm - is an m-valence inorganic, or heteropolyacid, or organic anion. We study diffusion and adsorption of CO2 in a particular LDH with MII=Mg, MIII=Al, and x ≃0.71, using an atomistic model developed based on energy minimization and molecular dynamics simulations, together with a modified form of the consistent-valence force field. The adsorption isotherms and self-diffusivity of CO2 in the material are computed over a range of temperature, using molecular simulations. The computed diffusivities are within one order of magnitude of the measured ones at lower temperatures, while agreeing well with the data at high temperatures. The measured and computed adsorption isotherms agree at low loadings, but differ by about 25% at high loadings. Possible reasons for the differences between the computed properties and the experimental data are discussed, and a model for improving the accuracy of the computed properties is suggested. Also studied are the material's hydration and swelling properties. As water molecules are added to the pore space, the LDH material swells to some extent, with the hydration energy exhibiting interesting variations with the number of the water molecules added. The implications of the results are discussed.

  13. Emergency sacrificial sealing method in filters, equipment, or systems

    Brown, Erik P

    2014-09-30

    A system seals a filter or equipment component to a base and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment component to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.

  14. Emergency sacrificial sealing method in filters, equipment, or systems

    Brown, Erik P.

    2017-02-28

    A system seals a filter or equipment component to abase and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment component to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.

  15. Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective.

    Abellán, Gonzalo; Martí-Gastaldo, Carlos; Ribera, Antonio; Coronado, Eugenio

    2015-06-16

    Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorganic molecular tectons into an extended architecture of hybrid nature or by intercalation of organic moieties within the empty channels or interlamellar space offered by inorganic solids with three-dimensional (MOFs, zeolites, and mesoporous hosts) or layered structures (phosphates, silicates, metal dichalcogenides, or anionic clays). This Account specifically illustrates the use of layered double hydroxides (LDHs) in the preparation of magnetic hybrids, in line with the development of soft inorganic chemistry processes (also called "Chimie Douce"), which has significantly contributed to boost the preparation hybrid materials based on solid-state hosts and subsequent development of applications. Several features sustain the importance of LDHs in this context. Their magnetism can be manipulated at a molecular level by adequate choice of constituting metals and interlayer separation for tuning the nature and extent of magnetic interactions across and between planes. They display unparalleled versatility in accommodating a broad range of anionic species in their interlamellar space that encompasses not only simple anions but chemical systems of increasing dimensionality and functionalities. Their swelling characteristics allow for their exfoliation in organic solvents with high

  16. A Reverse Numerical Approach to Determine Elastic-plastic Properties of Multi-layer Material Systems with Flat Cylindrical Indenters

    2007-01-01

    In the present study, the indentation testing with a flat cylindrical indenter on typical multi-layer material systems was simulated successfully by finite element method. The emphasis was put on the methods of extracting the yield stresses and strain-hardening modulus of upper and middle-layers of three-layer material systems from the indentation testing. The slope of the indentation depth to the applied indentation stress curve was found to have a turning point, which can be used to determine the yield stress of the upper-layer. Then, a different method was also presented to determine the yield stress of the middle-layer. This method was based on a set of assumed applied indentation stresses which were to be intersected by the experimental results in order to meet the requirement of having the experimental indentation depth. At last, a reverse numerical algorithm was explored to determine the yield stresses of upper and middle-layers simultaneously by using the indentation testing with two different size indenters. This method assumed two ranges of yield stresses to simulate the indentation behavior. The experimental depth behavior was used to intersect the simulated indentation behavior. And the intersection corresponded to the values of yield stresses of upper and middle-layers. This method was also used further to determine the strain-hardening modulus of upper and middle-layers simultaneously.

  17. Study of multi-layer active magnetic regenerators using magnetocaloric materials with first and second order phase transition

    Lei, T.; Engelbrecht, K.; Nielsen, K. K.; Neves Bez, H.; Bahl, C. R. H.

    2016-09-01

    Magnetocaloric materials (MCM) with a first order phase transition (FOPT) usually exhibit a large, although sharp, isothermal entropy change near their Curie temperature, compared to materials with a second order phase transition (SOPT). Experimental results of applying FOPT materials in recent magnetocaloric refrigerators (MCR) demonstrated the great potential for these materials, but a thorough study on the impact of the moderate adiabatic temperature change and strong temperature dependence of the magnetocaloric effect (MCE) is lacking. Besides, comparing active magnetic regenerators (AMR) using FOPT and SOPT materials is also of fundamental interest. We present modeling results of multi-layer AMRs using FOPT and SOPT materials based on a 1D numerical model. First the impact of isothermal entropy change, adiabatic temperature change and shape factor describing the temperature dependence of the MCE are quantified and analyzed by using artificially built magnetocaloric properties. Then, based on measured magnetocaloric properties of La(Fe,Mn,Si)13H y and Gd, an investigation on how to layer typical FOPT and SOPT materials with different temperature spans is carried out. Moreover, the sensitivity of variation in Curie temperature distribution for both groups of AMRs is investigated. Finally, a concept of mixing FOPT and SOPT materials is studied for improving the stability of layered AMRs with existing materials.

  18. Laser etching of transparent materials at a backside surface adsorbed layer

    Boehme, R. [Leibniz-Institut fuer Oberflaechenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Hirsch, D. [Leibniz-Institut fuer Oberflaechenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Zimmer, K. [Leibniz-Institut fuer Oberflaechenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany)]. E-mail: klaus.zimmer@iom-leipzig.de

    2006-04-30

    The laser etching using a surface adsorbed layer (LESAL) is a new method for precise etching of transparent materials with pulsed UV-laser beams. The influence of the processing parameters to the etch rate and the surface roughness for etching of fused silica, quartz, sapphire, and magnesium fluoride (MgF{sub 2}) is investigated. Low etch rates of 1 nm/pulse and low roughness of about 1 nm rms were found for fused silica and quartz. This is an indication that different structural modifications of the material do not affect the etching significantly as long as the physical properties are not changed. MgF{sub 2} and sapphire feature a principal different etch behavior with a higher etch rate and a higher roughness. Both incubation effects as well as the temperature dependence of the etch rate can be interpreted by the formation of a modified near surface region due to the laser irradiation. At repetition rates up to 100 Hz, no changes of the etch rate have been observed at moderate laser fluences.

  19. Improving quality of textile wastewater with organic materials as multi soil layering

    Supriyadi; Widijanto, H.; Pranoto; Dewi, AK

    2016-02-01

    On agricultural land, fresh water is needed especially for irrigation. Alternative ways to fulfill needs of fresh water is by utilizing wastewater from industry. Wastewater that produced in the industry in Surakarta is over flowing especially textile wastewater. Wastewater that produced from industry has many pollutants that affected decreasing fresh water quality for irrigation. Multi Soil Layering (MSL) is one of method that utilize the soil ability as main media by increasing its function of soil structure to purify wastewater, so it does not contaminate the environment and reusable. This research was purposed to know affectivity of organic materials (such as rice straw, baggase, sawdust, coconut fibre, and corncob) and dosage (5%, 10% and 25%) in MSL, also get alternative purification ways with easy and cheaper price as natural adsorbent. This study using field and laboratory experiment. The result shows that MSL can be an alternative method of purification of wastewater. The appropriate composition of organic materials that can be used as adsorbent is MSL with wood sawdust 10% dosage because it can increase pH, decrease the number of Cr, ammonia, and phosphate but less effective to decrease BOD and COD.

  20. Direct formation of gold nanoparticles on substrates using a novel ZnO sacrificial templated-growth hydrothermal approach and their properties in organic memory device

    Goh, Lean Poh; Razak, Khairunisak Abdul; Ridhuan, Nur Syafinaz; Cheong, Kuan Yew; Ooi, Poh Choon; Aw, Kean Chin

    2012-10-01

    This study describes a novel fabrication technique to grow gold nanoparticles (AuNPs) directly on seeded ZnO sacrificial template/polymethylsilsesquioxanes (PMSSQ)/Si using low-temperature hydrothermal reaction at 80°C for 4 h. The effect of non-annealing and various annealing temperatures, 200°C, 300°C, and 400°C, of the ZnO-seeded template on AuNP size and distribution was systematically studied. Another PMMSQ layer was spin-coated on AuNPs to study the memory properties of organic insulator-embedded AuNPs. Well-distributed and controllable AuNP sizes were successfully grown directly on the substrate, as observed using a field emission scanning electron microscope followed by an elemental analysis study. A phase analysis study confirmed that the ZnO sacrificial template was eliminated during the hydrothermal reaction. The AuNP formation mechanism using this hydrothermal reaction approach was proposed. In this study, the AuNPs were charge-trapped sites and showed excellent memory effects when embedded in PMSSQ. Optimum memory properties of PMMSQ-embedded AuNPs were obtained for AuNPs synthesized on a seeded ZnO template annealed at 300°C, with 54 electrons trapped per AuNP and excellent current-voltage response between an erased and programmed device.

  1. An analysis of surface acoustic wave propagation in a plate of functionally graded materials with a layered model

    2008-01-01

    In a homogeneous plate, Rayleigh waves will have a symmetric and anti-symmetric mode regarding to the mid-plane with different phase velocities. If plate properties vary along the thickness, or the plate is of functionally graded material (FGM), the symmetry of modes and frequency behavior will be modified, thus producing dif-ferent features for engineering applications such as amplifying or reducing the velocity and deformation. This kind of effect can also be easily realized by utilizing a layered structure with desired material properties that can produce these effects in terms of velocity and displacements, since Rayleigh waves in a solid with gen-eral material property grading schemes are difficult to analyze with known methods. Solutions from layered structures with exponential and polynomial property grad-ing schemes are obtained from the layered model and comparisons with known analytical results are made to validate the method and examine possible applica-tions of such structures in engineering.

  2. Dependences of optical properties of spherical two-layered nanoparticles on parameters of gold core and material shell

    Pustovalov, V. K.; Astafyeva, L. G.; Zharov, V. P.

    2013-12-01

    Modeling of nonlinear dependences of optical properties of spherical two-layered gold core and some material shell nanoparticles (NPs) placed in water on parameters of core and shell was carried out on the basis of the extended Mie theory. Efficiency cross-sections of absorption, scattering and extinction of radiation with wavelength 532 nm by core-shell NPs in the ranges of core radii r00=5-40 nm and of relative NP radii r1/r00=1-8 were calculated (r1-radius of two-layered nanoparticle). Shell materials were used with optical indexes in the ranges of refraction n1=0.2-1.5 and absorption k1=0-3.5 for the presentation of optical properties of wide classes of shell materials (including dielectrics, metals, polymers, vapor shell around gold core). Results show nonlinear dependences of optical properties of two-layered NPs on optical indexes of shell material, core r00 and relative NP r1/r00 radii. Regions with sharp decrease and increase of absorption, scattering and extinction efficiency cross-sections with changing of core and shell parameters were investigated. These dependences should be taken into account for applications of two-layered NPs in laser nanomedicine and optical diagnostics of tissues. The results can be used for experimental investigation of shell formation on NP core and optical determination of geometrical parameters of core and shell of two-layered NPs.

  3. Fabrication of Meso-Porous Sintered Metal Thin Films by Selective Etching of Silica Based Sacrificial Template

    Ludovic F. Dumee

    2014-08-01

    Full Text Available Meso-porous metal materials have enhanced surface energies offering unique surface properties with potential applications in chemical catalysis, molecular sensing and selective separation. In this paper, commercial 20 nm diameter metal nano-particles, including silver and copper were blended with 7 nm silica nano-particles by shear mixing. The resulted powders were cold-sintered to form dense, hybrid thin films. The sacrificial silica template was then removed by selective etching in 12 wt% hydrofluoric acid solutions for 15 min to reveal a purely metallic meso-porous thin film material. The impact of the initial silica nano-particle diameter (7–20 nm as well as the sintering pressure (5–20 ton·m−2 and etching conditions on the morphology and properties of the final nano-porous thin films were investigated by porometry, pyknometery, gas and liquid permeation and electron microscopy. Furthermore, the morphology of the pores and particle aggregation during shear mixing were assessed through cross-sectioning by focus ion beam milling. It is demonstrated that meso-pores ranging between 50 and 320 nm in average diameter and porosities up to 47% can be successfully formed for the range of materials tested.

  4. Characteristics of damaged layer in micro-machining of copper material

    Dong-Hee KWON; Jeong-Suk KIM; Myung-Chang KANG; Se-Hun KWON; Jong-Hwan LEE

    2009-01-01

    The study on damaged layer is necessary for improving the machinability in micro-machining because the damaged layer affects the micro mold life and micro machine parts. This study examined the ultra-precision micro-machining characteristics, such as cutting speed, feed rate and cutting depth, of a micro-damaged layer produced by an ultra-high speed air turbine spindle. The micro cutting force, surface roughness and plastic deformation layer were investigated according to the machining conditions. The damaged layer was measured using optical microscope on samples prepared through metallographic techniques. The scale of the damaged layer depends on the cutting process parameters, particularly, the feed per tooth and axial depth of the cut. According to the experimental results, the depth of the damaged layer is increased by increasing the feed per tooth and cutting depth, also the damaged layer occurs less in down-milling compared with up-milling during the micro-machining operation.

  5. Optimizing the design of bio-inspired functionally graded material (FGM) layer in all-ceramic dental restorations.

    Cui, Chang; Sun, Jian

    2014-01-01

    Due to elastic modulus mismatch between the different layers in all-ceramic dental restorations, high tensile stress concentrates at the interface between the ceramic core and cement. In natural tooth structure, stress concentration is reduced by the functionally graded structure of dentin-enamel junction (DEJ) which interconnects enamel and dentin. Inspired by DEJ, the aim of this study was to explore the optimum design of a bio-inspired functionally graded material (FGM) layer in all-ceramic dental restorations to achieve excellent stress reduction and distribution. Three-dimensional finite element model of a multi-layer structure was developed, which comprised bilayered ceramic, bio-inspired FGM layer, cement, and dentin. Finite element method and first-order optimization technique were used to realize the optimal bio-inspired FGM layer design. The bio-inspired FGM layer significantly reduced stress concentration at the interface between the crown and cement, and stresses were evenly distributed in FGM layer. With the optimal design, an elastic modulus distribution similar to that in DEJ occurred in the FGM layer.

  6. Compound surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a periodically multilayered isotropic dielectric material

    Chiadini, Francesco; Scaglione, Antonio; Lakhtakia, Akhlesh

    2015-01-01

    Multiple p- and s-polarized compound surface plasmon-polariton (SPP) waves at a fixed frequency can be guided by a structure consisting of a metal layer sandwiched between a homogeneous isotropic dielectric (HID) material and a periodic multilayered isotropic dielectric (PMLID) material. For any thickness of the metal layer, at least one compound SPP wave must exist. It possesses the p-polarization state, is strongly bound to the metal/HID interface when the metal thickness is large but to both metal/dielectric interfaces when the metal thickness is small. When the metal layer vanishes, this compound SPP wave transmutes into a Tamm wave. Additional compound SPP waves exist, depending on the thickness of the metal layer, the relative permittivity of the HID material, and the period and the composition of the PMLID material. Some of these are p polarized, the others being s polarized. All of them differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. The...

  7. Van der Waals Layered Materials: Surface Morphology, Interlayer Interaction, and Electronic Structure

    Yeh, Po-Chun

    The search for new ultrathin materials as the "new silicon" has begun. In this dissertation, I examine (1) the surface structure, including the growth, the crystal quality, and thin film surface corrugation of a monolayer sample and a few layers of MoS2 and WSe2, and (2) their electronic structure. The characteristics of these electronic systems depend intimately on the morphology of the surfaces they inhabit, and their interactions with the substrate or within layers. These physical properties will be addressed in each chapter. This thesis has dedicated to the characterization of mono- and a few layers of MoS2 and WSe2 that uses surface-sensitive probes such as low-energy electron microscopy and diffraction (LEEM and LEED). Prior to our studies, the characterization of monolayer MoS2 and WSe2 has been generally limited to optical and transport probes. Furthermore, the heavy use of thick silicon oxide layer as the supporting substrate has been important in order to allow optical microscopic characterization of the 2D material. Hence, to the best of our knowledge, this has prohibited studies of this material on other surfaces, and it has precluded the discovery of potentially rich interface interactions that may exist between MoS 2 and its supporting substrate. Thus, in our study, we use a so-called SPELEEM system (Spectroscopic Photo-Emission and Low Energy Electron Microscopy) to address these imaging modalities: (1) real-space microscopy, which would allow locating of monolayer MoS2 samples, (2) spatially-resolved low-energy diffraction which would allow confirmation of the crystalline quality and domain orientation of MoS2 samples, and, (3) spatially-resolved spectroscopy, which would allow electronic structure mapping of MoS2 samples. Moreover, we have developed a preparation procedure for samples that yield, a surface-probe ready, ultra-clean, and can be transferred on an arbitrary substrate. To fully understand the physics in MoS2 such as direct

  8. Leaching of iodide (I(-)) and iodate (IO3(-)) anions from synthetic layered double hydroxide materials.

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2016-09-15

    Several studies have previously demonstrated that layered double hydroxides (LDHs) show considerable potential for the adsorption of radioiodine from aqueous solution; however, few studies have demonstrated that these materials are able to store radioactive (131)I for an acceptable period. The leaching of iodide (I(-)) and iodate (IO3(-)) form Mg/Al LDHs has been carried out. Contact time appeared to be a more significant variable for the leaching of iodate (IO3(-)) compared to that of iodide (I(-)). Experimental results are fitted to the pseudo second order model, suggesting that diffusion is likely to be the rate-limiting step. The presence of carbonate in the leaching solution appeared to significantly increase the leaching of iodide (I(-)) as did the presence of chloride to a lesser extent. The maximum amount of iodate (IO3(-)) leached using ultrapure water as the leaching solution was 21% of the iodate (IO3(-)) originally present. The corresponding result for iodide (I(-)) was even lower at 3%.

  9. A sodium layered manganese oxides as 3V cathode materials for secondary lithium batteries

    Bach, S.; Pereira-Ramos, J.P. [Laboratoire d' Electrochimie, Catalyse et Synthese Organique, CNRS, UMR 7582, 2, rue Henri-Dunant, 94320 Thiais (France); Willmann, P. [CNES, 18, Avenue Edouard Belin, 31401-Toulouse, Cedex 9 (France)

    2006-10-25

    The synthesis of a new anhydrous sodium manganese oxide {alpha}-Na{sub 0.66}MnO{sub 2.13} obtained via a sol-gel process in organic medium is reported. The partial and limited removal of sodium ions from the layered host lattice (hexagonal symmetry; a=2.84A, c=11.09A) allows to get a high and stable specific capacity of 180mAhg{sup -1} at C/20 in the cycling limits 4.3/2V with a mean working voltage of 3V without the emergence of a spinel phase. By introducing acetylene black in solution during the sol-gel reaction, a composite material containing 8wt.% AB has been obtained. The rate capability is shown to be significantly improved leading to an increase of the available specific capacity with for instance 200 and 90mAhg{sup -1} at C/20 and C rate. This effect is ascribed to a better electronic contact between particles and/or the modification of the oxide surface which makes the intercalation process more homogeneous and more efficient. (author)

  10. A sodium layered manganese oxides as 3 V cathode materials for secondary lithium batteries

    Bach, S. [Laboratoire d' Electrochimie, Catalyse et Synthese Organique, CNRS, UMR 7582, 2, rue Henri-Dunant, 94320 Thiais (France)]. E-mail: bach@glvt-cnrs.fr; Pereira-Ramos, J.P. [Laboratoire d' Electrochimie, Catalyse et Synthese Organique, CNRS, UMR 7582, 2, rue Henri-Dunant, 94320 Thiais (France); CNES, 18, Avenue Edouard Belin, 31401-Toulouse, Cedex 9 (France); Willmann, P. [CNES, 18, Avenue Edouard Belin, 31401-Toulouse, Cedex 9 (France)

    2006-10-25

    The synthesis of a new anhydrous sodium manganese oxide {alpha}-Na{sub 0.66}MnO{sub 2.13} obtained via a sol-gel process in organic medium is reported. The partial and limited removal of sodium ions from the layered host lattice (hexagonal symmetry; a = 2.84 A, c = 11.09 A) allows to get a high and stable specific capacity of 180 mAh g{sup -1} at C/20 in the cycling limits 4.3/2 V with a mean working voltage of 3 V without the emergence of a spinel phase. By introducing acetylene black in solution during the sol-gel reaction, a composite material containing 8 wt.% AB has been obtained. The rate capability is shown to be significantly improved leading to an increase of the available specific capacity with for instance 200 and 90 mAh g{sup -1} at C/20 and C rate. This effect is ascribed to a better electronic contact between particles and/or the modification of the oxide surface which makes the intercalation process more homogeneous and more efficient.

  11. Few-layer Phosphorene: An Ideal 2D Material For Tunnel Transistors

    Ameen, Tarek A.; Ilatikhameneh, Hesameddin; Klimeck, Gerhard; Rahman, Rajib

    2016-06-01

    2D transition metal dichalcogenides (TMDs) have attracted a lot of attention recently for energy-efficient tunneling-field-effect transistor (TFET) applications due to their excellent gate control resulting from their atomically thin dimensions. However, most TMDs have bandgaps (Eg) and effective masses (m*) outside the optimum range needed for high performance. It is shown here that the newly discovered 2D material, few-layer phosphorene, has several properties ideally suited for TFET applications: 1) direct Eg in the optimum range ~1.0-0.4 eV, 2) light transport m* (0.15 m0), 3) anisotropic m* which increases the density of states near the band edges, and 4) a high mobility. These properties combine to provide phosphorene TFET outstanding ION ~ 1 mA/um, ON/OFF ratio ~ 106 for a 15 nm channel and 0.5 V supply voltage, thereby significantly outperforming the best TMD-TFETs and CMOS in many aspects such as ON/OFF current ratio and energy-delay products. Furthermore, phosphorene TFETS can scale down to 6 nm channel length and 0.2 V supply voltage within acceptable range in deterioration of the performance metrics. Full-band atomistic quantum transport simulations establish phosphorene TFETs as serious candidates for energy-efficient and scalable replacements of MOSFETs.

  12. Multiple pass and multiple layer friction stir welding and material enhancement processes

    Feng, Zhili [Knoxville, TN; David, Stan A [Knoxville, TN; Frederick, David Alan [Harriman, TN

    2010-07-27

    Processes for friction stir welding, typically for comparatively thick plate materials using multiple passes and multiple layers of a friction stir welding tool. In some embodiments a first portion of a fabrication preform and a second portion of the fabrication preform are placed adjacent to each other to form a joint, and there may be a groove adjacent the joint. The joint is welded and then, where a groove exists, a filler may be disposed in the groove, and the seams between the filler and the first and second portions of the fabrication preform may be friction stir welded. In some embodiments two portions of a fabrication preform are abutted to form a joint, where the joint may, for example, be a lap joint, a bevel joint or a butt joint. In some embodiments a plurality of passes of a friction stir welding tool may be used, with some passes welding from one side of a fabrication preform and other passes welding from the other side of the fabrication preform.

  13. Characterization of material properties of soft solid thin layers with acoustic radiation force and wave propagation.

    Urban, Matthew W; Nenadic, Ivan Z; Qiang, Bo; Bernal, Miguel; Chen, Shigao; Greenleaf, James F

    2015-10-01

    Evaluation of tissue engineering constructs is performed by a series of different tests. In many cases it is important to match the mechanical properties of these constructs to those of native tissues. However, many mechanical testing methods are destructive in nature which increases cost for evaluation because of the need for additional samples reserved for these assessments. A wave propagation method is proposed for characterizing the shear elasticity of thin layers bounded by a rigid substrate and fluid-loading, similar to the configuration for many tissue engineering applications. An analytic wave propagation model was derived for this configuration and compared against finite element model simulations and numerical solutions from the software package Disperse. The results from the different models found very good agreement. Experiments were performed in tissue-mimicking gelatin phantoms with thicknesses of 1 and 4 mm and found that the wave propagation method could resolve the shear modulus with very good accuracy, no more than 4.10% error. This method could be used in tissue engineering applications to monitor tissue engineering construct maturation with a nondestructive wave propagation method to evaluate the shear modulus of a material.

  14. Thermal stress in a bi-material assembly with a 'piecewise-continuous' bonding layer: theorem of three axial forces

    Suhir, E.

    2009-02-01

    We consider a bi-material assembly with a 'piecewise-continuous' bonding layer. The layer is characterized by different elastic constants of its 'pieces' (segments) and is assumed to be thin. Young's moduli of all the 'pieces' of the bonding layer are significantly lower than the moduli of the adherend materials. In such a situation the coefficient of thermal expansion (CTE) of the bonding material need not be accounted for. Only the interfacial compliance of the bonding layer is important. This is indeed the case for the majority of electronic, opto-electronic or photonic assemblies. We consider the situation when the assembly is manufactured at an elevated temperature and is subsequently cooled down to a low (say, room) temperature. The objective of the analysis is to develop a simple, easy-to-use and physically meaningful analytical ('mathematical') predictive model for the evaluation of the interfacial shearing stresses that arise at the boundaries of the 'pieces' (segments) of the bonding layer and at the assembly edge. The basic equation is obtained for the thermally induced forces acting in the adherends' cross-sections that correspond to the boundaries between the dissimilar portions of the bonding layer. This equation has the form of the theorem of three (bending) moments in the theory of multi-span beams lying on separate simple supports and could therefore be called the 'theorem of three axial forces'. We show, as an illustration, how this equation could be employed to design a bi-material assembly with an inhomogeneous bonding layer and with low interfacial shearing stresses. Low shearing stresses will certainly result in lower peeling stresses as well. The numerical example is carried out for an assembly with a relatively high-modulus bonding material in its mid-portion (aimed primarily at providing good adhesion and, if necessary, good heat transfer as well) and a low-modulus material in its peripheral portions (aimed primarily at bringing down the

  15. Influence of Mg and Ti on the microstructure and electrochemical performance of aluminum alloy sacrificial anodes

    MA Jingling; WEN Jiuba; LI Xudong; ZHAO Shengli; YAN Yanfu

    2009-01-01

    The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-ln sacrificial anodes. The electrochemical behavior of the aluminum sacrificial anode with 3 wt.% sodium chlo-fide solution was studied by electrochemical impedance spectroscopy (EIS) tests. It was found that a microstructure with few precipitates and refined grains could be achieved by adding 1 wt.% Mg and 0.05 wt.% Ti to the Al-Zn-In alloy, resulting in the improved current capacity and efficiency of the alloy. The equivalent circuit based on the EIS experimental data revealed less corrosion and lower adsorbed corrosion pro-duction on the surface of the aluminum alloy with a combination of 1 wt.% Mg and 0.05 wt.% Ti, which suggested that the corrosion behav-ior seemed to be strongly related to the presence of precipitate particles in the aluminum alloy, and moderate amounts of precipitate particles could be beneficial to the electrochemical performance of the aluminum alloy sacrificial anode.

  16. 'Utilitarian' judgments in sacrificial moral dilemmas do not reflect impartial concern for the greater good.

    Kahane, Guy; Everett, Jim A C; Earp, Brian D; Farias, Miguel; Savulescu, Julian

    2015-01-01

    A growing body of research has focused on so-called 'utilitarian' judgments in moral dilemmas in which participants have to choose whether to sacrifice one person in order to save the lives of a greater number. However, the relation between such 'utilitarian' judgments and genuine utilitarian impartial concern for the greater good remains unclear. Across four studies, we investigated the relationship between 'utilitarian' judgment in such sacrificial dilemmas and a range of traits, attitudes, judgments and behaviors that either reflect or reject an impartial concern for the greater good of all. In Study 1, we found that rates of 'utilitarian' judgment were associated with a broadly immoral outlook concerning clear ethical transgressions in a business context, as well as with sub-clinical psychopathy. In Study 2, we found that 'utilitarian' judgment was associated with greater endorsement of rational egoism, less donation of money to a charity, and less identification with the whole of humanity, a core feature of classical utilitarianism. In Studies 3 and 4, we found no association between 'utilitarian' judgments in sacrificial dilemmas and characteristic utilitarian judgments relating to assistance to distant people in need, self-sacrifice and impartiality, even when the utilitarian justification for these judgments was made explicit and unequivocal. This lack of association remained even when we controlled for the antisocial element in 'utilitarian' judgment. Taken together, these results suggest that there is very little relation between sacrificial judgments in the hypothetical dilemmas that dominate current research, and a genuine utilitarian approach to ethics.

  17. Determination of interfacial layers in high - k ALD nanolaminate materials by ARXPS and SRXPS measurements.

    Wyrodek, Jakub; Tallarida, Massimo; Schmeisser, Dieter [Brandenburgische Technische Universitaet, Angewandte Physik-Sensorik, Cottbus (Germany); Weisheit, Martin [GLOBALFOUNDRIES, Dresden (Germany)

    2010-07-01

    The interfacial layers of high dielectric constant (high-k) nanolaminate films are here explored. Problems concerning ALD nanolaminate layers deals mainly with lack of accurate methods to determine in depth profile of few nm thick stacks. Modified angle resolved XPS (ARXPS) and synchrotron radiation XPS(SRXPS) are proposed as methods suitable in layer profiling. Studied stacks containing ZrO/HfO or AlO/ZrO, were prepared on Si substrates by atomic layer deposition (ALD). Two sets of experiments were covered. First dealt with initial growth (up to 20 cycles, with thickness d<2 nm) of AlO/ZrO and included layer by layer insitu investigation by SRXPS. Second experiment refer to industrial grown ZrO/HfO films (d{proportional_to}3 nm) processed with various parameters resulting in both, layer by layer and homogenous depositions. For those samples ex situ XPS, with angle dependent variation of probing depth, measurements were covered. By comparing obtained intensity ratios for different angles with computational developed stack model it was found that no simple layer by layer but some intermixing growth occurred including interaction with silicon substrate.

  18. Compound surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a structurally chiral material

    Chiadini, Francesco; Scaglione, Antonio; Lakhtakia, Akhlesh

    2015-01-01

    Multiple compound surface plasmon-polariton (SPP) waves can be guided by a structure consisting of a sufficiently thick layer of metal sandwiched between a homogeneous isotropic dielectric (HID) material and a dielectric structurally chiral material (SCM). The compound SPP waves are strongly bound to both metal/dielectric interfaces when the thickness of the metal layer is comparable to the skin depth but just to one of the two interfaces when the thickness is much larger. The compound SPP waves differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. Some compound SPP waves are not greatly affected by the choice of the direction of propagation in the transverse plane but others are, depending on metal thickness. For fixed metal thickness, the number of compound SPP waves depends on the relative permittivity of the HID material, which can be useful for sensing applications.

  19. Method Logical Study on Surface Loss Process of Fe- and Ti- Based Materials by Thin Layer Activation

    2002-01-01

    Taking the advantages of high sensitivity, non-destruction, and the capability of on-line measurementat favorable conditions, thin layer activation (TLA) is recognized as a method of choice in the study onsurface loss processes of various materials. In present work, the radioactivity of product nuclides as

  20. Layer-by-Layer Assembled Films of Perylene Diimide- and Squaraine-Containing Metal-Organic Framework-like Materials: Solar Energy Capture and Directional Energy Transfer.

    Park, Hea Jung; So, Monica C; Gosztola, David; Wiederrecht, Gary P; Emery, Jonathan D; Martinson, Alex B F; Er, Süleyman; Wilmer, Christopher E; Vermeulen, Nicolaas A; Aspuru-Guzik, Alán; Stoddart, J Fraser; Farha, Omar K; Hupp, Joseph T

    2016-09-28

    We demonstrate that thin films of metal-organic framework (MOF)-like materials, containing two perylenediimides (PDICl4, PDIOPh2) and a squaraine dye (S1), can be fabricated by layer-by-layer assembly (LbL). Interestingly, these LbL films absorb across the visible light region (400-750 nm) and facilitate directional energy transfer. Due to the high spectral overlap and oriented transition dipole moments of the donor (PDICl4 and PDIOPh2) and acceptor (S1) components, directional long-range energy transfer from the bluest to reddest absorber was successfully demonstrated in the multicomponent MOF-like films. These findings have significant implications for the development of solar energy conversion devices based on MOFs.

  1. Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor.

    Rusi

    Full Text Available The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm(-2. The structure and elements of the composite was investigated using X-ray diffraction (XRD and energy dispersive X-ray (EDX. The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV and galvanostatic charge-discharge (CD. As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg(-1 at current density of 1.85 Ag(-1 in 0.5 M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5 M KOH and 0.5 M KOH/0.04 M K3Fe(CN 6 electrolytes. The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 10(3 Fg(-1 and an energy density of 309 Whkg(-1 in a 0.5 M KOH/0.04 M K3Fe(CN 6 electrolyte at a current density of 10 Ag(-1. The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications.

  2. Tube Formation in Nanoscale Materials

    Yan Chenglin

    2008-01-01

    Full Text Available Abstract The formation of tubular nanostructures normally requires layered, anisotropic, or pseudo-layered crystal structures, while inorganic compounds typically do not possess such structures, inorganic nanotubes thus have been a hot topic in the past decade. In this article, we review recent research activities on nanotubes fabrication and focus on three novel synthetic strategies for generating nanotubes from inorganic materials that do not have a layered structure. Specifically, thermal oxidation method based on gas–solid reaction to porous CuO nanotubes has been successfully established, semiconductor ZnS and Nb2O5nanotubes have been prepared by employing sacrificial template strategy based on liquid–solid reaction, and an in situ template method has been developed for the preparation of ZnO taper tubes through a chemical etching reaction. We have described the nanotube formation processes and illustrated the detailed key factors during their growth. The proposed mechanisms are presented for nanotube fabrication and the important pioneering studies are discussed on the rational design and fabrication of functional materials with tubular structures. It is the intention of this contribution to provide a brief account of these research activities.

  3. Study of multi-layer active magnetic regenerators using magnetocaloric materials with first and second order phase transition

    Lei, Tian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein;

    2016-01-01

    Magnetocaloric materials (MCM) with a first order phase transition (FOPT) usually exhibit a large, although sharp, isothermal entropy change near their Curie temperature, compared to materials with a second order phase transition (SOPT). Experimental results of applying FOPT materials in recent...... FOPT and SOPT materials is also of fundamental interest. We present modeling results of multi-layer AMRs using FOPT and SOPT materials based on a 1D numerical model. First the impact of isothermal entropy change, adiabatic temperature change and shape factor describing the temperature dependence...... magnetocaloric refrigerators (MCR) demonstrated the great potential for these materials, but a thorough study on the impact of the moderate adiabatic temperature change and strong temperature dependence of the magnetocaloric effect (MCE) is lacking. Besides, comparing active magnetic regenerators (AMR) using...

  4. Electrochemical atomic layer deposition of copper nanofilms on ruthenium

    Gebregziabiher, Daniel K.; Kim, Youn-Geun; Thambidurai, Chandru; Ivanova, Valentina; Haumesser, Paul-Henri; Stickney, John L.

    2010-04-01

    As ULSI scales to smaller and smaller dimensions, it has become necessary to form layers of materials only a few nm thick. In addition, trenches are now being incorporated in ULSI formation which require conformal coating and will not be amenable to CMP. Atomic layer deposition (ALD) is being developed to address such issues. ALD is the formation of materials layer by layer using self-limiting reactions. This article describes the formation of Cu seed layers (for the Cu damascene process) on a Ru barrier layer. The deposit was formed by the electrochemical analog of ALD, using electrochemical self-limiting reactions which are referred to as underpotential deposition (UPD). Monolayer restricted galvanic displacement was used to form atomic layers of Cu. First Pb UPD was deposited, forming a sacrificial layer, and then a Cu +2 solution was flushed into the cell and Pb was exchanged for Cu. A linear dependence was shown for Cu growth over 8 ALD cycles, and STM showed a conformal deposition, as expected for an ALD process. Relative Cu coverages were determined using Auger electron spectroscopy, while absolute Cu coverages were obtained from coulometry during oxidative stripping of the deposits. Use of a Cl - containing electrolyte results in Cu deposits covered with an atomic layer of Cl atoms, which have been shown to protect the surfaced from oxidation during various stages of the deposition process. The 10 nm thick Ru substrates were formed on Si(1 0 0) wafers, and were partially oxidized upon receipt. Electrochemical reduction, prior to Cu deposition, removed the oxygen and some traces of carbon, the result of transport. Ion bombardment proved to clean all oxygen and carbon traces from the surface.

  5. Intercalation assembly of optical hybrid materials based on layered terbium hydroxide hosts and organic sensitizer anions guests

    Liang-Liang Liu; Qin Wang; Dan Xia; Ting-Ting Shen; Ming-Hui Yu; Wei-Sheng Liu; Yu Tang

    2013-01-01

    Optical hybrid materials based on inorganic hosts and organic sensitizer guests hold promise for a virtually unlimited number of applications.In particular,the interaction and the combination of the properties of a defined inorganic matrix and a specific sensitizer could lead to synergistic effects in luminescence enhancing and tuning.The current article focuses on the intercalation assembly of optical hybrid materials based on the layered terbium hydroxide (LTbH) hosts and organic divalent carboxylic sensitizer anion guests by a hydrothermal process.The studies on the interactions between hosts and guests indicate that the type and arrangement of organic guests in the layer spacing of the LTbH hosts can make a difference in the luminescence of the hybrid inorganic-organic materials.

  6. Tribological Investigations of Hard-Faced Layers and Base Materials of Forging Dies with Different Kinds of Lubricants Applied

    V. Lazić

    2010-12-01

    Full Text Available This paper gives a procedure for choosing the right technology for reparative hard facing of damaged forging dies. Since they are subject to impact loads and cyclic temperature elevations, forging dies should be made of steel that is able to withstand great impact loads, maintain good mechanical properties at elevated temperatures and that is resistant to wear and thermal fatigue. For these reasons, forging dies are made of conditionally weldable alloy tool steels; however it makes hard facing of damaged tools even more difficult. In this paper, wear resistance of base materials, hard-faced layers and heat-affected zones are tribologically investigated when two different lubricants - pure synthetical oil LM 76 and LM 76 with 6% molybdenum disulfide (MoS2 are applied. Tribological investigations have shown that the wear resistance of the hard faced layers is considerably greater than the wear resistance of the base material. However, the base material has better properties concerning friction.

  7. Effects of bituminous layer as backfill material on mechanical behavior in tunnel model

    Moriyoshi, Akihiro; Takano, Shin-ei; Urata, Hiroyuki; Suzuki, Tetsuya; Yoshida, Takaki

    2001-01-01

    This paper describes the effects of bituminous material as a backfill material on mechanical behavior in model tunnel in laboratory. It is known that load spreading and relaxation of bituminous material are good properties. Then if we use bituminous material as a backfill material of tunnel, the tunnel will have waterproof, good load spreading property. We used new bituminous material (Aquaphalt) which can solidify in water. We conducted relaxation test in tension for new bituminous mat...

  8. Spectroscopic investigations on thin adhesive layers in multi-material laminates.

    Voronko, Yuliya; Chernev, Boril S; Eder, Gabriele C

    2014-01-01

    Three different spectroscopic approaches, Raman linescans, Raman imaging, and attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) imaging were evaluated for the visualization of the thin adhesive layers (3-6 μm) present in polymeric photovoltaic backsheets. The cross-sections of the multilayer laminates in the original, weathered, and artificially aged samples were investigated spectroscopically in order to describe the impact of the environmental factors on the evenness and thickness of the adhesive layers. All three methods were found to be suitable tools to detect and visualize these thin layers within the original and aged polymeric laminates. However, as the adhesive layer is not very uniform in thickness and partly disintegrates upon weathering and/or artificial aging, Raman linescans yield only qualitative information and do not allow for an estimation of the layer thickness. Upon increasing the measuring area by moving from one-dimensional linescans to two-dimensional Raman images, a much better result could be achieved. Even though a longer measuring time has to be taken into account, the information on the uniformity and evenness of the adhesive layer obtainable using the imaging technique is much more comprehensive. Although Raman spectroscopy is known to have the superior lateral resolution as compared with ATR FT-IR spectroscopy, the adhesive layers of the samples used within this study (layer thickness 3-6 μm) could also be detected and visualized by applying the ATR FT-IR spectroscopic imaging method. However, the analysis of the images was quite a demanding task, as the thickness of the adhesive layer was in the region of the resolution limit of this method. The information obtained for the impact of artificial aging and weathering on the adhesive layer obtained using Raman imaging and ATR FT-IR imaging was in good accordance.

  9. Surface modification for patterned cell growth on substrates with pronounced topographies using sacrificial photoresist and parylene-C peel-off

    Larramendy, Florian; Yoshida, Shotaro; Jalabert, Laurent; Takeuchi, Shoji; Paul, Oliver

    2016-09-01

    A range of methods including soft lithography are available for patterning protein layers for cell adhesion on quasi-planar substrates. Suitably structured, these layers favor the geometrically constrained, controlled growth of cells and the development of cellular extensions on them. For this purpose, the ability to control the shape and dimension of cell-adhesive areas with high precision is crucial. For more advanced studies of cell interactions, the surface modification or functionalization of substrates with complex topographies is desirable. This paper describes a simple technique allowing to produce surface modification patterns using delicate molecules such as laminin on substrates exhibiting pronounced topographies with recessed and protruding microstructures. The technique is based on the combination of sacrificial photoresist structures with a connected parylene-C layer. This layer locally adheres to the substrate wherever the substrate needs to be protected against the surface modification. After surface modification, the parylene-C layer is peeled off. Patterns comprising arbitrary networks of modified and unmodified substrate areas can thus be realized. We demonstrate the technique with the guided growth of neuron-like PC12 cells on networks of laminin lines on substrates structured with micropillars and microwells.

  10. Templating Sol-Gel Hematite Films with Sacrificial Copper Oxide: Enhancing Photoanode Performance with Nanostructure and Oxygen Vacancies.

    Li, Yang; Guijarro, Néstor; Zhang, Xiaoli; Prévot, Mathieu S; Jeanbourquin, Xavier A; Sivula, Kevin; Chen, Hong; Li, Yongdan

    2015-08-12

    Nanostructuring hematite films is a critical step for enhancing photoelectrochemical performance by circumventing the intrinsic limitations on minority carrier transport. Herein, we present a novel sol-gel approach that affords nanostructured hematite films by including CuO as sacrificial templating agent. First, by annealing in air at 450 °C a film comprising an intimate mixture of CuO and Fe2O3 nanoparticles is obtained. The subsequent treatment with NaCl and annealing at 700 °C under Argon reveals a nanostructured highly crystalline hematite film devoid of copper. Photoelectrochemical investigations reveal that the incorporation of CuO as templating agent and the inert conditions employed during the annealing play a crucial role in the performance of the hematite electrodes. Mott-Schottky analysis shows a higher donor concentration when annealing in inert conditions, and even higher when combined with the NaCl treatment. These findings agree well with the presence of an oxygen-deficient shell on the material's surface evidenced by FT-IR and XPS measurements. Likewise, the incorporation of the CuO enhances the photocurrent obtained at 1.23 V from 0.55 to 0.8 mA·cm(-2) because of an improved nanostructure. Optimized films demonstrate an incident photon-to-current efficiency (IPCE) of 52% at 380 nm when applying 1.23 V versus RHE, and a faradaic efficiency for water splitting close to unity.

  11. Stabilization of green bodies via sacrificial gelling agent during electrophoretic deposition

    Worsley, Marcus A.; Kuntz, Joshua D.; Rose, Klint A.

    2016-03-22

    In one embodiment, a method for electrophoretic deposition of a three-dimensionally patterned green body includes suspending a first material in a gelling agent above a patterned electrode of an electrophoretic deposition (EPD) chamber, and gelling the suspension while applying a first electric field to the suspension to cause desired patterning of the first material in a resulting gelation. In another embodiment, a ceramic, metal, or cermet includes a plurality of layers, wherein each layer includes a gradient in composition, microstructure, and/or density in an x-y plane oriented parallel to a plane of deposition of the plurality of layers along a predetermined distance in a z-direction perpendicular to the plane of deposition.

  12. Band engineering in a van der Waals heterostructure using a 2D polar material and a capping layer

    Cho, Sung Beom; Chung, Yong-Chae

    2016-06-01

    Van der Waals (vdW) heterostructures are expected to play a key role in next-generation electronic and optoelectronic devices. In this study, the band alignment of a vdW heterostructure with 2D polar materials was studied using first-principles calculations. As a model case study, single-sided fluorographene (a 2D polar material) on insulating (h-BN) and metallic (graphite) substrates was investigated to understand the band alignment behavior of polar materials. Single-sided fluorographene was found to have a potential difference along the out-of-plane direction. This potential difference provided as built-in potential at the interface, which shift the band alignment between h-BN and graphite. The interface characteristics were highly dependent on the interface terminations because of this built-in potential. Interestingly, this band alignment can be modified with a capping layer of graphene or BN because the capping layer triggered electronic reconstruction near the interface. This is because the bonding nature is not covalent, but van der Waals, which made it possible to avoid Fermi-level pinning at the interface. The results of this study showed that diverse types of band alignment can be achieved using polar materials and an appropriate capping layer.

  13. Sensitivity study of multi-layer active magnetic regenerators using first order magnetocaloric material La(Fe,Mn,Si)13Hy

    Lei, Tian; Nielsen, Kaspar Kirstein; Engelbrecht, Kurt;

    2015-01-01

    We present simulation results of multi-layer active magnetic regenerators using the solid-state refrigerant La(Fe,Mn,Si)13Hy. This material presents a large, however quite sharp, isothermal entropy change that requires a careful choice of number of layers and working temperature for multi-layer r...

  14. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials

    Chia-Chun Ho

    2015-03-01

    Full Text Available The multi-soil-layering (MSL system primarily comprises two parts, specifically, the soil mixture layer (SML and the permeable layer (PL. In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3−-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%.

  15. Flaw investigation in a multi-layered, multi-material composite: Using air-coupled ultrasonic resonance imaging

    Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.

    2012-05-01

    Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite.

  16. Recent Advances in Layered Metal Chalcogenides as Superconductors and Thermoelectric Materials: Fe-Based and Bi-Based Chalcogenides.

    Mizuguchi, Yoshikazu

    2016-04-01

    Recent advances in layered (Fe-based and Bi-based) chalcogenides as superconductors or functional materials are reviewed. The Fe-chalcogenide (FeCh) family are the simplest Fe-based high-Tc superconductors. The superconductivity in the FeCh family is sensitive to external or chemical pressure, and high Tc is attained when the local structure (anion height) is optimized. The Bi-chalcogenide (BiCh2) family are a new group of layered superconductors with a wide variety of stacking structures. Their physical properties are also sensitive to external or chemical pressure. Recently, we revealed that the emergence of superconductivity and the Tc in this family correlate with the in-plane chemical pressure. Since the flexibility of crystal structure and electronic states are an advantage of the BiCh2 family for designing functionalities, I briefly review recent developments in this family as not only superconductors but also other functional materials.

  17. Employment of encapsulated Si with mesoporous TiO2 layer asanode material for lithium secondary batteries

    Sang-Eun PARK; Bo-Eun KIM; Sang-Wha LEE; Joong-Kee LEE

    2009-01-01

    Silicon composite of nano-capsule type is newly applied as an active anode material for lithium ion batteries. TiO2-encapsulated silicon powders were synthesized by a sol-gel reaction with titanium ethoxide. Silicon nanoparticles were successfully embedded into porous titanium oxide capsules that played as a buffer layer against drastic volume changes of silicon during the charge-discharge cycling, consequently leading to the retardation of the capacity fading of intrinsic silicon materials. The electrochemical and structural properties of silicon nanocomposites with different surface areas of encapsulating TiO2 layer were characterized by X-ray diffraction(XRD), nitrogen gas adsorption analysis by the Brunauer-Emmett-Teller(BET) equation, transmission electron microscopy(TEM), and galvanostatic charge-discharge experiments.

  18. Highly-ordered layered organo-mineral materials prepared via reactions of n-alkylphosphonic acids with apatite.

    Gelfer, Mikhail Y; Burger, Christian; Hsiao, Benjamin S; D'Andrea, Susan C; Fadeev, Alexander Y

    2006-03-15

    This work describes a novel class of layered organo-mineral materials manufactured via a single-step solution-phase reaction of n-alkylphosphonic acids (CnH(2n+1)P(O)(OH)2) with calcium hydroxyapatite mineral (CaHAP). TEM, SAXS, WAXS, FTIR, and Vapor Phase Adsorption data suggest that these alkyl-CaHAP materials present a surface-modified CaHAP matrix coated with ordered layers of calcium alkylphosphonates that are strongly adhered to the surface. Interlayer spacing increases from 1.47 (C3-CaHAP) to 4.77 nm (C18-CaHAP). According to FTIR, ordering of alkyl chains improves with the alkyl chain length. The organic loads in these alkyl-CaHAP can be controlled over a wide range (up to approximately 60%) by varying alkyl chain and the concentration of alkylphosphonic acids in the solution.

  19. Nanocomposite Material Based on GaSe and InSe Layered Crystals Intercalated by RbNO3 Ferroelectric

    Z.R. Kudrynskyi

    2013-10-01

    Full Text Available In the present study, we established for the first time that single-crystal samples of gallium GaSe and indium InSe selenides can be intercalated by molecules of RbNO3 ferroelectric salt rubidium nitrate. We investigated kinetics of the intercalation process at different temperature-time regimes. Structural properties of the intercalate nanocomposites were studied by X-ray diffraction. The studied structures can be presented as composite superlattices which consist of a lattice of anisotropic layered semiconductor with embedded ferroelectric layers. We established that GaSe nanocomposite material exhibits electric energy storage properties. Energy storage properties are associated with polarization of the intercalated ferroelectric under external electric field. We developed a solid state electric energy storage device on the basis of GaSe nanocomposite material.

  20. Adhesive and Stress-Strain Properties of the Polymeric Layered Materials Reinforced by the Knitted Net

    Rakhimov Farhod Hushbakovich

    2012-10-01

    Full Text Available It is known that the textile materials (woven fabric and mesh used for reinforcing of various polymer films and coatings. This paper discusses reinforcement of thermoplastic polymers based on PE (Polyethylene and PVC (Polyvinyl Chloride with a knitted mesh weave loin. According by the research identified adhesion, strength and deformation properties of new polymer laminates. The production of such materials has been discussed in detail and performance of resultant composites material is analyzed and compared with other materials.

  1. Recent Advances in Stimuli-Responsive Photofunctional Materials Based on Accommodation of Chromophore into Layered Double Hydroxide Nanogallery

    Wu Li

    2013-01-01

    Full Text Available The assembly of photofunctional molecules into host matrices has become an important strategy to achieve tunable fluorescence and to develop intelligent materials. The stimuli-responsive photofunctional materials based on chromophores-assembled layered double hydroxides (LDHs have received much attention from both academic and industry fields as a result of their advantages, such as high photo/thermal stability, easy processing, and well reversibility, which can construct new types of smart luminescent nanomaterials (e.g., ultrathin film and nanocomposite for sensor and switch applications. In this paper, external environmental stimuli have mainly involved physical (such as temperature, pressure, light, and electricity and chemical factors (such as pH and metal ion; recent progress on the LDH-based organic-inorganic stimuli-responsive materials has been summarized. Moreover, perspectives on further development of these materials are also discussed.

  2. Characterization of the Minimum Effective Layer of Thermal Insulation Material Tow-plaster from the Method of Thermal Impedance

    M.S. Ould Brahim

    2011-04-01

    Full Text Available Our objective in this study is to determine the effective thermal insulating layer of a composite towplaster. The characterization of thermal insulating material is proposed from the study of the thermal impedance in dynamic two-dimensional frequency. Thermo physical properties of the material tow-plaster are determined from the study of the thermal impedance. Nyquist representations have introduced an interpretation of certain phenomena of heat transfer from the series and shunt resistors. The overall coefficient of heat exchange is determined from the Bode plots. A method for determining the thermal conductivity is proposed.

  3. Development of advanced material composites for use as internal insulation for LH2 tanks (gas layer concept)

    Gille, J. P.

    1972-01-01

    A program is described that was conducted to develop an internal insulation system for potential application to the liquid hydrogen tanks of a reusable booster, where the tanks would be subjected to repeated high temperatures. The design of the internal insulation is based on a unique gas layer concept, in which capillary or surface tension effects are used to maintain a stable gas layer, within a cellular core structure, between the tank wall and the contained liquid hydrogen. Specific objectives were to select materials for insulation systems that would be compatible with wall temperatures of 350 F and 650 F during reentry into the earth's atmosphere, and to fabricate and test insulation systems under conditions simulating the operating environment. A materials test program was conducted to evaluate the properties of candidate materials at elevated temperatures and at the temperature of liquid hydrogen, and to determine the compatibility of the materials with a hydrogen atmosphere at the appropriate elevated temperature. The materials that were finally selected included Kapton polyimide films, silicone adhesives, fiber glass batting, and in the case of the 350 F system, Teflon film.

  4. Embedding dynamical mean-field theory for superconductivity in layered materials and heterostructures

    Petocchi, Francesco; Capone, Massimo

    2016-06-01

    We study layered systems and heterostructures of s -wave superconductors by means of a suitable generalization of dynamical mean-field theory. In order to reduce the computational effort, we consider an embedding scheme in which a relatively small number of active layers is embedded in an effective potential accounting for the effect of the rest of the system. We introduce a feedback of the active layers on the embedding potential that improves on previous approaches and essentially eliminates the effects of the finiteness of the active slab allowing for cheap computation of very large systems. We extend the method to the superconducting state, and we benchmark the approach by means of simple paradigmatic examples showing some examples on how an interface affects the superconducting properties. As examples, we show that superconductivity can penetrate from an intermediate coupling superconductor into a weaker coupling one for around ten layers, and that the first two layers of a system with repulsive interaction can turn superconducting by proximity effects even when charge redistribution is inhibited.

  5. Biomimetic hydration lubrication with various polyelectrolyte layers on cross-linked polyethylene orthopedic bearing materials.

    Kyomoto, Masayuki; Moro, Toru; Saiga, Kenichi; Hashimoto, Masami; Ito, Hideya; Kawaguchi, Hiroshi; Takatori, Yoshio; Ishihara, Kazuhiko

    2012-06-01

    Natural joints rely on fluid thin-film lubrication by the hydrated polyelectrolyte layer of cartilage. However, current artificial joints with polyethylene (PE) surfaces have considerably less efficient lubrication and thus much greater wear, leading to osteolysis and aseptic loosening. This is considered a common factor limiting prosthetic longevity in total hip arthroplasty (THA). However, such wear could be mitigated by surface modification to mimic the role of cartilage. Here we report the development of nanometer-scale hydrophilic layers with varying charge (nonionic, cationic, anionic, or zwitterionic) on cross-linked PE (CLPE) surfaces, which could fully mimic the hydrophilicity and lubricity of the natural joint surface. We present evidence to support two lubrication mechanisms: the primary mechanism is due to the high level of hydration in the grafted layer, where water molecules act as very efficient lubricants; and the secondary mechanism is repulsion of protein molecules and positively charged inorganic ions by the grafted polyelectrolyte layer. Thus, such nanometer-scaled hydrophilic polymers or polyelectrolyte layers on the CLPE surface of acetabular cup bearings could confer high durability to THA prosthetics.

  6. Formation of upper rim acylated calix[4]arenes using a sacrifici al zinc anode

    Louati, Alain; Vataj, Rame; Gabelica, Valérie; Lejeune, Manuel; MATT, DOMINIQUE

    2005-01-01

    A straightforward electrosynthetic method is described, which allows upper rim acylation of non-p-halogenated calix[4]-arenes. For example, a solution of tetrapropoxycalix[4]arene 4 was electrolysed in the presence of ZnBr2, in an undivided cell fitted with a sacrificial zinc anode using pure acetonitrile as solvent, yielding an organozinc species, which was then treated with acetyl chloride in the presence of a palladium catalyst to afford 5,11-diacety1-25,26,27,28-tetrapropoxycalix[4]arene ...

  7. Synthesis and study of photovoltaic performance on various photoelectrode materials for DSSCs: Optimization of compact layer on nanometer thickness

    Surya, Subramanian; Thangamuthu, Rangasamy; Senthil Kumar, Sakkarapalayam Murugesan; Murugadoss, Govindhasamy

    2017-02-01

    Dye-sensitized solar cells (DSSCs) have gained widespread attention in recent years because of their low production costs, ease of fabrication process and tuneable optical properties, such as colour and transparency. In this work, we explored a strategy wherein nanoparticles of pure TiO2, TiO2sbnd SnO2 nanocomposite, Sn (10%) doped TiO2 and SnO2 synthesized by the simple chemical precipitation method were employed as photoelectrodes to enhance the photovoltaic conversion efficiency of solar cells. The nanoparticles were characterized by different characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM with EDX), transmission electron microscopy (TEM), high resolution electron microscopy (HR-TEM), UV-Visible absorbance (UV-vis), photoluminescence (PL), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) measurements. Moreover, we also demonstrated the effect of thin compact layer in DSSCs by architecture with various precursor materials of different concentrations. We found that the optimized compact layer material TDIP (titanium diisopropoxide) with a concentration of 0.3 M % is produced the highest efficiency of 2.25% for Sn (10%) doped TiO2 electron transport material (ETM) and 4.38% was achieved for pure TiO2 ETM using SnCl2 compact layer with 0.1 M concentrations.

  8. THE ACOUSTIC ABSORPTION IN LAYERED POLYMER MATERIALS%分层高分子介质中的声吸收

    朱金华; 刘巨斌; 姚树人; 王源升

    2001-01-01

    初步建立了分层高分子材料对水声吸收的数 学模型,测试了分层高分子材料的水声吸收性能并与数学模型的计算结果进行了比较,发现 应用该模型的计算结果与实测结果比较吻合,表明该数学模型在较大程度上能够反映分层高 分子声吸收性能的特性。%The mathematical model of acoustic absorption of layered polymer materials was established. The acoustic absorption coeffi cients of layered polymer materials were determined and compared with the data calculated by the mathematical model. It is found that the tested data are fairly good agreement with the calculated data. This mathematical model can be used to estimate the acoustic absorption property of layered polymer materials.

  9. Surface Wave Propagation in a Microstretch Thermoelastic Diffusion Material under an Inviscid Liquid Layer

    Rajneesh Kumar

    2014-01-01

    Full Text Available The present investigation deals with the propagation of Rayleigh type surface waves in an isotropic microstretch thermoelastic diffusion solid half space under a layer of inviscid liquid. The secular equation for surface waves in compact form is derived after developing the mathematical model. The dispersion curves giving the phase velocity and attenuation coefficients with wave number are plotted graphically to depict the effect of an imperfect boundary alongwith the relaxation times in a microstretch thermoelastic diffusion solid half space under a homogeneous inviscid liquid layer for thermally insulated, impermeable boundaries and isothermal, isoconcentrated boundaries, respectively. In addition, normal velocity component is also plotted in the liquid layer. Several cases of interest under different conditions are also deduced and discussed.

  10. Production of Quasicomposite Surface Layer of a Metal Material by Shock Wave Strain Hardening

    A.V. Kirichek

    2014-07-01

    Full Text Available Quite often in order to improve the performance of a product it is necessary to form a strengthened structure that will be extremely hard and have good plasticity at the same time. One way to meet this challenge is to apply shock wave mechanical hardening to produce micro- or nanocrystalline heterogeneous structures in homogeneous metals or alloys. A peculiar feature of such structure is its layer-by-layer formation with smooth transition between hard and plastic areas, which improves the performance of the strengthened item significantly

  11. Novel layered pesticide slow/controlled release materials--supramolecular structure and slow release property of glyphosate intercalated layered double hydroxides

    MENG Jinhong; ZHANG Hui; David G. Evans; DUAN Xue

    2005-01-01

    Two different interlayer structured glyphosate (GLY) intercalated MgAl layered double hydroxides, as novel pesticide slow/controlled release materials, have been synthesized by co-precipitation method under various reaction pH values. The slow/controlled release properties have been tested in Na2CO3 aqueous solution. The release mechanism has been interpreted on the basis of the ion-exchange between the guest GLY anions in the lamellar host and in the release media, and the diffusion process of GLY anions in the interstice and interlayer of GLY intercalates, i.e. diffusion through the particles, is the rate-limiting step of GLY release process. The GLY intercalate assembled at lower pH, possessing higher interlayer gallery height and vertical monolayered arrangement of guest anions in the interlayer with larger packing density, exhibits better slow release property than that assembled at higher pH. The results reveal that the layered double hydroxides have potential application in the pesticide slow/controlled release area.

  12. Influence of ink layers on the colourfastness to rubbing of printed textile materials

    Kašiković, Nemanja; Novaković, Dragoljub; Vladić, Gojko; id_orcid 0000-0002-8211-6140; Avramović, Darko

    2012-01-01

    Textile materials printed with screen or digital printing during the exploitation can be under the influence of various environmental elements and treatments. This paper presents research regarding influence of rubbing treatment on changes of printed textile material characteristics which are obtained by inkjet printing technique. Research was done on textile materials composed of 100 % polyester on which the test chart was printed. Test chart consisted of four colour fields each 100% of one ...

  13. Trapping and depth profile of tritium in surface layers of metallic materials

    Matsuyama, M., E-mail: masao@ctg.u-toyama.ac.jp [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Chen, Z. [The Southwestern Institute of Physics, Chengdu 610041, Sichuan (China); Nisimura, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Akamaru, S.; Torikai, Y.; Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Ashikawa, N. [National Institute for Fusion Science, Toki 509-5292 (Japan); Oya, Y.; Okuno, K. [Radiochemistry Research Laboratory, Shizuoka University, Shizuoka 422-8529 (Japan); Hino, T. [Laboratory of Plasma Physics and Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2011-10-01

    Tritium amount retained in surface layers and release behavior from surface layers were examined using SS316L samples exposed to plasmas in the Large Helical Device and a commercial Cu-Be alloy plate. BIXS analyses and observation by SEM indicate that carbon and titanium deposited on the plasma-facing surface of the SS316L samples. Larger amount of tritium was trapped in the plasma-facing surface in comparison with the polished surface. Higher enrichment of tritium in surface layers was similarly found in the polished surface of both samples. The amount of surface tritium in both samples was almost same, while the bulk concentration of tritium in Cu-Be was much lower than that in SS316L. Tritium release from the SS316L and Cu-Be samples into water was examined by immersion experiments. Tritium elution was observed for both samples, but changes in the residual tritium amount in surface layers were different from each other.

  14. A stable lithium-rich surface structure for lithium-rich layered cathode materials

    Kim, Sangryun; Cho, Woosuk; Zhang, Xiaobin; Oshima, Yoshifumi; Choi, Jang Wook

    2016-11-01

    Lithium ion batteries are encountering ever-growing demand for further increases in energy density. Li-rich layered oxides are considered a feasible solution to meet this demand because their specific capacities often surpass 200 mAh g-1 due to the additional lithium occupation in the transition metal layers. However, this lithium arrangement, in turn, triggers cation mixing with the transition metals, causing phase transitions during cycling and loss of reversible capacity. Here we report a Li-rich layered surface bearing a consistent framework with the host, in which nickel is regularly arranged between the transition metal layers. This surface structure mitigates unwanted phase transitions, improving the cycling stability. This surface modification enables a reversible capacity of 218.3 mAh g-1 at 1C (250 mA g-1) with improved cycle retention (94.1% after 100 cycles). The present surface design can be applied to various battery electrodes that suffer from structural degradations propagating from the surface.

  15. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches

    Hausbrand, R., E-mail: hausbrand@surface.tu-darmstadt.de; Cherkashinin, G.; Ehrenberg, H.; Gröting, M.; Albe, K.; Hess, C.; Jaegermann, W.

    2015-02-15

    Graphical abstract: - Highlights: • Description of recent in operando and in situ analysis methodology. • Surface science approach using photoemission for analysis of cathode surfaces and interfaces. • Ageing and fatigue of layered oxide Li-ion battery cathode materials from the atomistic point of view. • Defect formation and electronic structure evolution as causes for cathode degradation. • Significance of interfacial energy alignment and contact potential for side reactions. - Abstract: This overview addresses the atomistic aspects of degradation of layered LiMO{sub 2} (M = Ni, Co, Mn) oxide Li-ion battery cathode materials, aiming to shed light on the fundamental degradation mechanisms especially inside active cathode materials and at their interfaces. It includes recent results obtained by novel in situ/in operando diffraction methods, modelling, and quasi in situ surface science analysis. Degradation of the active cathode material occurs upon overcharge, resulting from a positive potential shift of the anode. Oxygen loss and eventual phase transformation resulting in dead regions are ascribed to changes in electronic structure and defect formation. The anode potential shift results from loss of free lithium due to side reactions occurring at electrode/electrolyte interfaces. Such side reactions are caused by electron transfer, and depend on the electron energy level alignment at the interface. Side reactions at electrode/electrolyte interfaces and capacity fade may be overcome by the use of suitable solid-state electrolytes and Li-containing anodes.

  16. Numerical simulation of the throwing power of cathodic prevention applied to marine reinforced concrete piles by means of sacrificial anodes

    Bertolini, Luca; Redaelli, Elena [Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica ' G. Natta' , Via Mancinelli, 7, 20131 Milan (Italy)

    2004-07-01

    The paper deals with the determination of current and potential distribution in reinforced concrete elements partially submerged in seawater aimed at predicting the throwing power of cathodic prevention applied by means of sacrificial anodes. Previous laboratory studies carried out on reinforced concrete columns 15 cm x 15 cm x 120 cm showed that the use of sacrificial anodes placed in the solution at the bottom of the column could provide protection of corroding steel bars in the emerged part of the pile up to about 60 cm from the water level. However, if sacrificial anodes were applied when the concrete was chloride free and steel bars were still passive, even the highest bar, placed at 1 m from the level of water, was protected. This is due to the higher polarizability of passive steel, that makes the throwing power of cathodic prevention higher compared to that of cathodic protection. In order to extend the results obtained on small-scale specimens to elements of higher dimensions, numerical simulations of current and potential distribution were carried out. Two-dimensional models were set up of reinforced concrete piles containing steel bars at different heights protected with sacrificial anodes placed in the water in which they were partially submerged. Boundary conditions describing the electrochemical behaviour of bars were obtained from polarisation curves measured on the previously mentioned columns. Values of concrete conductivity at different heights from the water level were also obtained from those tests. Several cases were considered, representative of conditions differing in electrochemical behaviour of steel bars, dimensions of element, position of sacrificial anodes. The paper discusses the results obtained from the models and compares them in terms of the throwing power that can be reached by using sacrificial anodes immersed in the seawater to protect reinforcing steel bars in the emerged part of a pile. (authors)

  17. Exciton Dynamics and Many Body Interactions in Layered Semiconducting Materials Revealed with Non-linear Coherent Spectroscopy

    Dey, Prasenjit

    Atomically thin, semiconducting transition metal dichalogenides (TMDs), a special class of layered semiconductors, that can be shaped as a perfect two dimensional material, have garnered a lot of attention owing to their fascinating electronic properties which are achievable at the extreme nanoscale. In contrast to graphene, the most celebrated two-dimensional (2D) material thus far; TMDs exhibit a direct band gap in the monolayer regime. The presence of a non-zero bandgap along with the broken inversion symmetry in the monolayer limit brands semiconducting TMDs as the perfect candidate for future optoelectronic and valleytronics-based device application. These remarkable discoveries demand exploration of different materials that possess similar properties alike TMDs. Recently, III-VI layered semiconducting materials (example: InSe, GaSe etc.) have also emerged as potential materials for optical device based applications as, similar to TMDs, they can be shaped into a perfect two-dimensional form as well as possess a sizable band gap in their nano-regime. The perfect 2D character in layered materials cause enhancement of strong Coulomb interaction. As a result, excitons, a coulomb bound quasiparticle made of electron-hole pair, dominate the optical properties near the bandgap. The basis of development for future optoelectronic-based devices requires accurate characterization of the essential properties of excitons. Two fundamental parameters that characterize the quantum dynamics of excitons are: a) the dephasing rate, gamma, which represents the coherence loss due to the interaction of the excitons with their environment (for example- phonons, impurities, other excitons, etc.) and b) excited state population decay rate arising from radiative and non-radiative relaxation processes. The dephasing rate is representative of the time scale over which excitons can be coherently manipulated, therefore accurately probing the source of exciton decoherence is crucial for

  18. Effect of Oxide Inclusions on Electrochemical Properties of Aluminium Sacrificial Anodes

    M. Emamy; A. Keyvani; M. Mahta; J. Campbell

    2009-01-01

    Oxide films are incorporated into melts by an entrainment process, and are expected to be present in most metals, but particularly cast Al alloys. The oxides are necessarily present as folded-over double films (bifilms) that are effectively cracks. Their effect on the electrochemical behaviour of cast Al-5Zn-0.02ln sacrificial anodes was studied in 3 wt pct sodium chloride solution using the NACE efficiency evaluation. Three methods were employed to entrain progressive amounts of oxide in the alloy, including the addition of Al-Zn-ln maching chips to the charge, increasing the pouring height, and agitating the melt. The introduction of oxide bifilms in the cast alloy resulted in the deterioration of the electrochemical properties of the sacrificial anodes, such as current capacity and anode efficiency, and introduced increasing variability in these properties. The results suggest that corrosion behaviour is strongly related to the presence of bifilms suspended in the liquid alloy because bifilms provide crack paths allowing the corrodant to penetrate deeply into the metal matrix, and simultaneously provide localized galvanic cells because of the precipitation of Fe rich intermetallic compounds on their outer surfaces.

  19. Magnesium-Based Sacrificial Anode Cathodic Protection Coatings (Mg-Rich Primers for Aluminum Alloys

    Michael D. Blanton

    2012-09-01

    Full Text Available Magnesium is electrochemically the most active metal employed in common structural alloys of iron and aluminum. Mg is widely used as a sacrificial anode to provide cathodic protection of underground and undersea metallic structures, ships, submarines, bridges, decks, aircraft and ground transportation systems. Following the same principle of utilizing Mg characteristics in engineering advantages in a decade-long successful R&D effort, Mg powder is now employed in organic coatings (termed as Mg-rich primers as a sacrificial anode pigment to protect aerospace grade aluminum alloys against corrosion. Mg-rich primers have performed very well on aluminum alloys when compared against the current chromate standard, but the carcinogenic chromate-based coatings/pretreatments are being widely used by the Department of Defense (DoD to protect its infrastructure and fleets against corrosion damage. Factors such as reactivity of Mg particles in the coating matrix during exposure to aggressive corrosion environments, interaction of atmospheric gases with Mg particles and the impact of Mg dissolution, increases in pH and hydrogen gas liberation at coating-metal interface, and primer adhesion need to be considered for further development of Mg-rich primer technology.

  20. From a Philosophical point of view, can the Budism Be An Anti-Sacrificial Science?

    Francisco Felizol Marques

    2014-04-01

    Full Text Available Both on Buddhist tradition and René Girard´s thought ignorance and desire are on the basis of suffering and violence. The Buddhist tradition puts/takes ignorance, that nothing exists in and by itself, avydia as the cause of all sufferings because it generates a chain of desire / aversion that leads us to an imprisonment where we move from desiring an object to another. Girard´s perspective founds violence´s origin on the ignorance of our mimetic desire. The subject ignores that, far from being free, autonomous and differentiated, as the "romantic lie" prays, he only desires and wants by imitating a model. Neither the subject nor the object, which the subject freely thinks to desire, exist free for themselves. While this model prevails, he will react more and more violently to the claims of the subject; and even if the subject overtakes its model, he will greedily seek another and another model, always doomed to deception. If we add to this the proximity of the two anti-sacrificial perspectives, displayed on the descriptive closeness of the samsara´s wheel and the circular and sacrificial time of a pagan society, we find between Girard and the buddhist tradition enough common points for their mutual understanding.

  1. Design strategy of two-dimensional material field-effect transistors: Engineering the number of layers in phosphorene FETs

    Yin, Demin; Yoon, Youngki

    2016-06-01

    Thickness or the number of layers in 2D semiconductors is a key parameter to determine the material's electronic properties and the overall device performance of 2D material electronics. Here, we discuss the engineering practice of optimizing material and device parameters of phosphorene field-effect transistors (FETs) by means of self-consistent atomistic quantum transport simulations, where the impacts of different numbers of phosphorene layers on various device characteristics are explored in particular, considering two specific target applications of high-performance and low-power devices. Our results suggest that, for high-performance applications, monolayer phosphorene should be utilized in a conventional FET structure since it can provide the equally large on current as other multilayer phosphorenes (Ion > 1 mA/μm) without showing a penalty of relatively lower density of states, along with favorableness for steep switching and large immunity to gate-induced drain leakage. On the other hand, more comprehensive approach is required for low-power applications, where operating voltage, doping concentration, and channel length should be carefully engineered along with the thickness of phosphorene in tunnel FET (TFET) structure to achieve ultra-low leakage current without sacrificing on current significantly. Our extensive simulation results revealed that either bilayer or trilayer phosphorene can provide the best performance in TFET with the maximum Ion/Ioff of ˜2 × 1011 and the subthreshold swing as low as 13 mV/dec. In addition, our comparative study of phosphorene-based conventional FET and TFET clearly shows the feasibility and the limitation of each device for different target applications, providing irreplaceable insights into the design strategy of phosphorene FETs that can be also extended to other similar layered material electronic devices.

  2. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries

    Cao, Ming-Hui; Wang, Yong; Shadike, Zulipiya; Yue, Ji-Li; Hu, Enyuan; Bak, Seong-Min; Zhou, Yong-Ning; Yang, Xiao-Qing; Fu, Zheng-Wen

    2017-01-01

    Chromium-based layered cathode materials suffer from the irreversible disproportionation reaction of Cr4+ to Cr3+ and Cr6+, which hinders the reversible multi-electron redox of Cr ions in layered cathodes, and limits their capacity and reversibility. To address this problem, a novel O3-type layer-structured transition metal oxide of NaCr1/3Fe1/3Mn1/3O2 (NCFM) was designed and studied as a cathode material. A high reversible capacity of 186 mA h g-1 was achieved at a current rate of 0.05C in a voltage range of 1.5 to 4.2 V. X-ray diffraction revealed an O3 → (O3 + P3) → (P3 + O3'') → O3'' phase-transition pathway for NCFM during charge. X-ray absorption, X-ray photoelectron and electron energy-loss spectroscopy measurements revealed the electronic structure changes of NCFM during Na+ deintercalation/intercalation processes. It is confirmed that the disproportionation reaction of Cr4+ to Cr3+ and Cr6+ can be effectively suppressed by Fe3+ and Mn4+ substitution. These results demonstrated that the reversible multi-electron oxidation/reduction of Cr ions can be achieved in NCFM during charge and discharge accompanied by CrO6 octahedral distortion and recovery.

  3. Sacrificial structures for deep reactive ion etching of high-aspect ratio kinoform silicon x-ray lenses

    Stöhr, Frederik; Michael-Lindhard, Jonas; Hübner, Jörg

    2015-01-01

    investigated how sacrificial structures in the form of guarding walls and pillars may be utilized to facilitate accurate control of the etch profile. Unlike other sacrificial structuring approaches, no silicon-on-insulator substrates or multiple lithography steps are required. In addition, the safe removal...... control in the manufacture of x-ray lenses that are very sensitive to sidewall shape nonuniformities. Compound kinoform lenses for focusing hard x-rays with structure heights of 200 lm were manufactured, and the lenses were tested in terms of their focusing ability and refracting qualities using...

  4. Bulk and surface acoustic waves in solid-fluid Fibonacci layered materials.

    Quotane, I; El Boudouti, E H; Djafari-Rouhani, B; El Hassouani, Y; Velasco, V R

    2015-08-01

    We study theoretically the propagation and localization of acoustic waves in quasi-periodic structures made of solid and fluid layers arranged according to a Fibonacci sequence. We consider two types of structures: either a given Fibonacci sequence or a periodic repetition of a given sequence called Fibonacci superlattice. Various properties of these systems such as: the scaling law and the self-similarity of the transmission spectra or the power law behavior of the measure of the energy spectrum have been highlighted for waves of sagittal polarization in normal and oblique incidence. In addition to the allowed modes which propagate along the system, we study surface modes induced by the surface of the Fibonacci superlattice. In comparison with solid-solid layered structures, the solid-fluid systems exhibit transmission zeros which can break the self-similarity behavior in the transmission spectra for a given sequence or induce additional gaps other than Bragg gaps in a periodic structure.

  5. Effect of Nickel Alloying Layer on Hydrogen Absorption Ability of Zr-Al Getter Material

    LIU Chao-Zhuo; SHI Li-Qun

    2004-01-01

    @@ By using ion beam sputtering, an 85-A thick nickel layer was deposited on the Zr-Al alloy (non-evaporable getter) to improve the characteristic of the hydrogen absorption. The presputtering for 15 min to clean the surface passivation layer and the vacuum heating treatment of the sample at 750 ℃ for 1 h for surface alloying can improve the ability of the gas absorption. The gas absorption experiments show fast absorption kinetics of the hydrogen pumping and good durability against contaminable gases. The Rutherford-back-scattering spectra and the secondaryion mass spectroscopy demonstrate the formation of an alloy of Zr, Al, and Ni in the near-surface area after the thermal process. The elastic recoil detection analysis indicates that the sample holds the original high capacity of hydrogen.

  6. Preparation and Characterization of TiO2/CdS Layers as Potential Photoelectrocatalytic Materials

    Teofil-Danut Silipas

    2011-01-01

    Full Text Available The TiO2/CdS semiconductor composites were prepared on
    indium tin oxide (ITO substrates in di®erent mass proportions via wet-chemical techniques using bi-distilled water, acetyl-acetone, poly-propylene-glycol and Triton X-100 as additives. The composite layers were annealed in normal conditions at the temperature of 450±C, 120 min. with a rate of temperature increasing of 5±C/min. The structural and optical properties of all the TiO2/CdS ayers were characterized by X-ray di®raction, UV-VIS spectroscopy, spectrofluorimetry and FT/IR microscopy. The microstructural properties of the deposited TiO2/CdS layers can be modi¯ed by varying the mass proportions of TiO2:CdS. The good crystallinity level and the high optical adsorption of
    the TiO2/CdS layers make them attractive for photoelectrochemical cell applications.

  7. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations

    Moreno-Gordaliza, Estefanía, E-mail: emorenog@ucm.es [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid (Spain); Stigter, Edwin C.A. [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Molecular Cancer Research, Universitair Medisch Centrum Utrecht, Wilhelmina Kinder Ziekenhuis, Lundlaan 6, 3584, EA Utrecht (Netherlands); Lindenburg, Petrus W.; Hankemeier, Thomas [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands)

    2016-06-07

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10{sup −9} m{sup 2} V{sup −1} s{sup −1}) when compared with unmodified fused silica (5.9 ± 0.1 10{sup −8} m{sup 2} V{sup −1} s{sup −1}). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1–1.8% coefficient-of-variation (CV) within a day) and 2–3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. - Highlights: • New coating using recrystallized surface-layer proteins on

  8. Highly condensed fluorinated methacrylate hybrid material for transparent low-kappa passivation layer in LCD-TFT.

    Oh, Ji-Hoon; Kwak, Seung-Yeon; Yang, Seung-Cheol; Bae, Byeong-Soo

    2010-03-01

    Photocurable and highly condensed fluorinated methacrylate oligosiloxane, with a low dielectric constant (kappa = 2.54), was prepared by a nonhydrolytic sol-gel condensation reaction. The oligosiloxane resin was then spin-coated, photocured, and thermally baked in order to fabricate a fluorinated methacrylate hybrid material (FM hybrimer) thin film. This study investigated the application of this FM hybrimer film as a low-kappa passivation layer in LCD-based thin film transistors (TFT). It was found that a dielectric constant as low as kappa = 2.54 could be obtained, without introducing pores in the dense FM hybrimer films. This study compares FM hybrimer film characteristics with those required for passivation layers in LCD-TFTs, including thermal stability, optical transmittance, hydrophobicity, gap fill, and planarization effects as well as electrical insulation.

  9. A replacement of high-k process for CMOS transistor by atomic layer deposition

    Han, Jin-Woo; Choi, Byung Joon; Yang, J. Joshua; Moon, Dong-Il; Choi, Yang-Kyu; Williams, R. Stanley; Meyyappan, M.

    2013-08-01

    A replacement of high-k process was implemented on an independent double gate FinFET, following the ordinary gate-first process with minor modifications. The present scheme involves neither exotic materials nor unprecedented processing. After the source/drain process, the sacrificial gate oxide was selectively substituted with amorphous Ta2O5 via conformal plasma enhanced atomic layer deposition. The present gate-first gate-dielectric-last scheme combines the advantages of the process and design simplicity of the gate-first approach and the control of the effective gate workfunction and the interfacial oxide of the gate-dielectric-last approach. Electrical characterization data and cross-sectional images are provided as evidence of the concept.

  10. A new route for local probing of inner interactions within a layered double hydroxide/benzene derivative hybrid material.

    Fleutot, S; Dupin, J C; Baraille, I; Forano, C; Renaudin, G; Leroux, F; Gonbeau, D; Martinez, H

    2009-05-14

    This paper presents the preparation and characterization of hybrid hydrotalcite-type layered double hydroxides (Zn1-xAlx(OH)2HBSx.nH2O, with x=0.33) where HBS is the 4-phenol sulfonate, with a detailed analysis of the grafting process of this organic entity onto the host lattice. As a set of the usual techniques (XRD, TG-DT/MS, FTIR and 27Al MAS NMR) was used to characterize the hybrid materials, this work focuses on a joint study by X-ray photoelectron spectroscopy and some quantum-calculation modeling in order to highlight the nature of the interactions between the organic and the mineral sub-systems. For the as-prepared hybrid material, the main results lead to a quasi-vertical orientation of the organic molecules within the mineral sheets via H-bond stabilization. By heating the hybrid material up to 200 degrees C, the structure shrinks with the condensation of the organics; the different theoretical modeling done gives an energy-stable situation when a direct attachment of the HBS sulfonate group sets up with the mineral layers, in agreement with the recorded XPS experimental data.

  11. Gamma-ray double-layered transmission exposure buildup factors of some engineering materials, a comparative study

    Mann, Kulwinder Singh; Heer, Manmohan Singh; Rani, Asha

    2016-08-01

    Comparative study on various deterministic methods and formulae of double layered transmission exposure buildup factors (DLEBF) for point isotropic gamma-ray sources has been performed and the results are provided here. This investigation has been performed on some commonly available engineering materials for the purpose of gamma-ray shielding. In reality, the presence of air around the gamma-ray shield motivated to focus this study on exposure buildup factor (EBF). DLEBF have been computed at four energies viz. 0.5, 1.0, 2.0 and 3.0 MeV for various combinations of the chosen five samples taken two at a time with combined optical thickness up to 8 mean free path (mfp). For the necessary computations for DLEBF, a computer program (BUF-toolkit) has been designed. Comparison of Monte Carlo (EGS4-code) and Geometric Progression (G.P.) fitting point kernel methods were done for DLEBF computation. It is concluded that empirical formula given by Lin and Jiang using EBF computed by G.P. fitting formula is the most accurate and easiest method for DLEBF computations. It was observed that DLEBF values at selected energies for two layered slabs with an orientation (low-Z material followed by high-Z material) were lower than the opposite orientation. For optical thickness up to 8 mfp and chosen energy range (0.5-3.0 MeV), Aluminum-Lime Stone shield, appears to provide the best protection against the gamma-rays.

  12. Material identification in x-ray microscopy and micro CT using multi-layer, multi-color scintillation detectors.

    Modgil, Dimple; Rigie, David S; Wang, Yuxin; Xiao, Xianghui; Vargas, Phillip A; La Rivière, Patrick J

    2015-10-21

    We demonstrate that a dual-layer, dual-color scintillator construct for microscopic CT, originally proposed to increase sensitivity in synchrotron imaging, can also be used to perform material quantification and classification when coupled with polychromatic illumination. We consider two different approaches to data handling: (1) a data-domain material decomposition whose estimation performance can be characterized by the Cramer-Rao lower bound formalism but which requires careful calibration and (2) an image-domain material classification approach that is more robust to calibration errors. The data-domain analysis indicates that useful levels of SNR (>5) could be achieved in one second or less at typical bending magnet fluxes for relatively large amounts of contrast (several mm path length, such as in a fluid flow experiment) and at typical undulator fluxes for small amount of contrast (tens of microns path length, such as an angiography experiment). The tools introduced could of course be used to study and optimize parameters for a wider range of potential applications. The image domain approach was analyzed in terms of its ability to distinguish different elemental stains by characterizing the angle between the lines traced out in a two-dimensional space of effective attenuation coefficient in the front and back layer images. This approach was implemented at a synchrotron and the results were consistent with simulation predictions.

  13. Layer-by-layer encapsulated nano-emulsion of ionic liquid loaded with functional material for extraction of Cd(2+) ions from aqueous solutions.

    Elizarova, Iuliia S; Luckham, Paul F

    2017-04-01

    Ionic liquids can serve as an environmentally-friendly replacement for solvents in emulsions, therefore they are considered suitable to be used as an emulsified medium for various active materials one of which are extractors of metal ions. Increasing the extraction efficiency is considered to be one of the key objectives when working with such extraction systems. One way to improve the extraction efficiency is to increase the contact area between the extractant and the working ionic solution. This can be accomplished by creating a nano-emulsion of ionic liquid containing such an extractant. Since emulsification of ionic liquid is not always possible in the sample itself, there is a necessity of creating a stable emulsion that can be added externally and on demand to samples from which metal ions need to be extracted. We propose a method of fabrication of a highly-stable extractant-loaded ionic liquid-in-water nano-emulsion via a low-energy phase reversal emulsification followed by continuous layer-by-layer polyelectrolyte deposition process to encapsulate the nano-emulsion and enhance the emulsion stability. Such a multilayered stabilized nano-emulsion was tested for extraction of Cd(2+) and Ca(2+) ions in order to determine its extraction efficiency and selectivity. It was found to be effective in the extraction of Cd(2+) ions with near 100% cadmium removal, as well as being selective since no Ca(2+) ions were extracted. The encapsulated emulsion was removed from samples post-extraction using two methods - filtration and magnetic separation, both of which were shown to be viable under different circumstances - larger and mechanically stronger capsules could be removed by filtration, however magnetic separation worked better for both smaller and bigger capsules. The long-term stability of nano-emulsion was also tested being a very important characteristic for its proposed use: it was found to be highly stable after four months of storage time.

  14. Thermal shock problem of a generalized thermoelastic layered composite material with variable thermal conductivity

    2006-01-01

    Full Text Available The dynamic treatment of one-dimensional generalized thermoelastic problem of heat conduction is made for a layered thin plate which is exposed to a uniform thermal shock taking into account variable thermal conductivity. The basic equations are transformed by Laplace transform and solved by a direct method. The solution was applied for a plate of sandwich structure, which is thermally shocked, and is traction-free in the outer sides. The inverses of Laplace transforms are obtained numerically. The temperature, the stress, and the displacement distributions are represented graphically.

  15. Mass transfer across combustion gas thermal boundary layers - Power production and materials processing implications

    Rosner, D. E.

    1985-01-01

    The effects of Soret diffusion (for vapors) and thermophoresis (for particles) are illustrated using recent optical experiments and boundary layer computations. Mass transfer rate augmentations of up to a factor of 1000 were observed and predicted for submicron-particle capture by cooled solid surfaces, while mass transfer suppressions of more than 10 to the -10th-fold were predicted for 'overheated' surfaces. It is noted that the results obtained are of interest in connection with such technological applications as fly-ash capture in power generation equipment and glass droplet deposition in optical-waveguide manufacture.

  16. Preliminary study on piezoresistive and piezoelectric properties of a double-layer soft material for tactile sensing

    Dan He

    2015-06-01

    Full Text Available This paper describes a double-layer simplified sensor unit based on the interesting electromechanical properties of MWNT mixed by polymer composite and PVDF films, which is envisaged to imitate the distributed tactile receptors of human hands so as to help the disabled to recover the basic tactile perception. This paper shows the fabrication and performance research of such a new piezoelectric-piezoresistive composite material which indicates a promising .application in prosthtic hand.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6454

  17. Enhanced Photoactivity of Layered Nanocomposite Materials Containing Rare Earths, Titanium Dioxide and Clay

    2006-01-01

    The nanocomposite materials containing rare earths, titanium dioxide and clay (RE/TiO2/Clay) were characterized and tested for the photocatalytic decomposition of formaldehyde. The results show that nanocomposite materials prepared by doping appropriate rare earth elements have better photocatalytic properties than that prepared by doping excessive rare earth elements. The photocatalytic mechanism of composite materials was studied by integrating the theory of photocatalysis with experiment results. Because the site of photocatalytic reaction was limited in the interspace of clay, photocatalytic reaction occurred by two steps: firstly, organic molecules dispersed into the interlayers of clay; secondly, organic molecules and photocatalyst of RE/TiO2 occurred photocatalytic reaction, resulting in forming carbon dioxide.

  18. Features in Energy Accumulation in Double Layer on the surface of Graphene Material

    Kompan, Mikhail Evgenievich; Maslov, Alexander Yurievich; Kuznetsov, Viktor Petrovich; Krivchenko, Viktor Aleksandrovich

    2015-01-01

    An application of quantum size carbon structures--graphenes as electrodes of supercapacitors is studied. A fundamental limit of energy and power density arising from quantum nature of objects due to singularity in graphene density of states near Dirac point is determined and technical solutions to partially offset the negative factors are considered. The maximum possible specific capacitance of nanostructured electrode materials is determined.

  19. Polycrystalline SiC as source material for the growth of fluorescent SiC layers

    Kaiser, M.; Hupfer, T.; Jokubavicus, V.;

    2013-01-01

    Polycrystalline doped SiC act as source for fluorescent SiC. We have studied the growth of individual grains with different polytypes in the source material. We show an evolution and orientation of grains of different polytypes in polycrystalline SiC ingots grown by the Physical Vapor Transport...

  20. Disordered 3 D Multi-layer Graphene Anode Material from CO2 for Sodium-Ion Batteries.

    Smith, Kassiopeia; Parrish, Riley; Wei, Wei; Liu, Yuzi; Li, Tao; Hu, Yun Hang; Xiong, Hui

    2016-06-22

    We report the application of disordered 3 D multi-layer graphene, synthesized directly from CO2 gas through a reaction with Li at 550 °C, as an anode for Na-ion batteries (SIBs) toward a sustainable and greener future. The material exhibited a reversible capacity of ∼190 mA h g(-1) with a Coulombic efficiency of 98.5 % at a current density of 15 mA g(-1) . The discharge capacity at higher potentials (>0.2 V vs. Na/Na(+) ) is ascribed to Na-ion adsorption at defect sites, whereas the capacity at low potentials (CO2 gas makes it attractive not only as an anode material for SIBs but also to mitigate CO2 emission.

  1. ZnO grown by atomic layer deposition: A material for transparent electronics and organic heterojunctions

    Guziewicz, E.; Godlewski, M.; Krajewski, T.; Wachnicki, Ł.; Szczepanik, A.; Kopalko, K.; Wójcik-Głodowska, A.; Przeździecka, E.; Paszkowicz, W.; Łusakowska, E.; Kruszewski, P.; Huby, N.; Tallarida, G.; Ferrari, S.

    2009-06-01

    We report on zinc oxide thin films grown by atomic layer deposition at a low temperature, which is compatible with a low thermal budget required for some novel electronic devices. By selecting appropriate precursors and process parameters, we were able to obtain films with controllable electrical parameters, from heavily n-type to the resistive ones. Optimization of the growth process together with the low temperature deposition led to ZnO thin films, in which no defect-related photoluminescence bands are observed. Such films show anticorrelation between mobility and free-electron concentration, which indicates that low n electron concentration is a result of lower number of defects rather than the self-compensation effect.

  2. Multifunctional-layered materials for creating membrane-restricted nanodomains and nanoscale imaging

    Srinivasan, P., E-mail: prasri@ece.ucsb.edu, E-mail: srinivasan@lifesci.ucsb.edu [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA and Neuroscience Research Institute, University of California, Santa Barbara, California 93106 (United States)

    2016-01-18

    Experimental platform that allows precise spatial positioning of biomolecules with an exquisite control at nanometer length scales is a valuable tool to study the molecular mechanisms of membrane bound signaling. Using micromachined thin film gold (Au) in layered architecture, it is possible to add both optical and biochemical functionalities in in vitro. Towards this goal, here, I show that docking of complementary DNA tethered giant phospholiposomes on Au surface can create membrane-restricted nanodomains. These nanodomains are critical features to dissect molecular choreography of membrane signaling complexes. The excited surface plasmon resonance modes of Au allow label-free imaging at diffraction-limited resolution of stably docked DNA tethered phospholiposomes, and lipid-detergent bicelle structures. Such multifunctional building block enables realizing rigorously controlled in vitro set-up to model membrane anchored biological signaling, besides serving as an optical tool for nanoscale imaging.

  3. Influence of compliance of the substrate materials on polymerization contraction stress in thin resin composite layers.

    Alster, D; Venhoven, B A; Feilzer, A J; Davidson, C L

    1997-02-01

    The present study determined in a laboratory set-up the influence of compliance of the substrate material on polymerisation contraction stress for various thicknesses of bonded dental resin composite films. When the compliance of the tensilometer set-up was increased from 0.029 micron MPa-1 to 0.150 micron MPa-1, the contraction stress in films with a thickness of 100 microns and a diameter of 5.35 mm decreased from 22 to 7 MPa. For the 700 microns samples the stress decreased from 12 to 11 MPa. It was concluded that if compliance from the substrate materials is possible, a thinner resin composite film may effect a more reliable bond.

  4. Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries

    Kang, Sun-Ho; Amine, Khalil

    2008-01-01

    A positive electrode active material for lithium-ion rechargeable batteries of general formula Li.sub.1+xNi.sub..alpha.Mn.sub..beta.A.sub..gamma.O.sub.2 and further wherein A is Mg, Zn, Al, Co, Ga, B, Zr, or Ti and 0material is manufactured by employing either a solid state reaction method or an aqueous solution method or a sol-gel method which is followed by a rapid quenching from high temperatures into liquid nitrogen or liquid helium.

  5. Using multi-shell phase change materials layers for cooling a lithium-ion battery

    Nasehi Ramin

    2016-01-01

    Full Text Available One of the cooling methods in engineering systems is usage of phase change materials. Phase change materials or PCMs, which have high latent heats, are usually used where high energy absorption in a constant temperature is required. This work presents a numerical analysis of PCMs effects on cooling Li-ion batteries and their decrease in temperature levels during intense discharge. In this study, three PCM shells with different thermo-physical specifications located around a battery pack is examined. The results of each possible arrangement are compared together and the best arrangement leading to the lowest battery temperature during discharge is identified. In addition, the recovery time for the system which is the time required for the PCMs to refreeze is investigated.

  6. Few layered vanadyl phosphate nano sheets-MWCNT hybrid as an electrode material for supercapacitor application

    Dutta, Shibsankar; De, Sukanta

    2016-05-01

    It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (- COOH group) and α-Vanadyl phosphates (VOPO42H2O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na2SO4 aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236 F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.

  7. Synthesis of Hollow Silica Nanospheres by Sacrificial Polystyrene Templates for Thermal Insulation Applications

    Linn Ingunn C. Sandberg

    2013-01-01

    Full Text Available Monodisperse polystyrene (PS spheres with controllable size have been synthesized by a straight forward and simple procedure. The as-synthesized PS spheres have a typical diameter ranging from ~180 nm to ~900 nm, where a reduced sphere size is obtained by increasing the polyvinylpyrrolidone (PVP/styrene weight ratio. The PS spheres function as sacrificial templates for the fabrication of hollow silica nanospheres (HSNSs for thermal insulation applications. By modifying the silica coating process, HSNSs with different surface roughness are obtained. All resulting HSNSs show typically a thermal conductivity of about 20 mW/(mK, indicating that the surface phonon scattering is probably not significant in these HSNS samples.

  8. Nickel oxide nanotube synthesis using multiwalled carbon nanotubes as sacrificial templates for supercapacitor application

    Abdalla, Ahmed M.; Sahu, Rakesh P.; Wallar, Cameron J.; Chen, Ri; Zhitomirsky, Igor; Puri, Ishwar K.

    2017-02-01

    A novel approach for the fabrication of nickel oxide nanotubes based on multiwalled carbon nanotubes as a sacrificial template is described. Electroless deposition is employed to deposit nickel onto carbon nanotubes. The subsequent annealing of the product in the presence of air oxidizes nickel to nickel oxide, and carbon is released as gaseous carbon dioxide, leaving behind nickel oxide nanotubes. Electron microscopy and elemental mapping confirm the formation of nickel oxide nanotubes. New chelating polyelectrolytes are used as dispersing agents to achieve high colloidal stability for both the nickel-coated carbon nanotubes and the nickel oxide nanotubes. A gravimetric specific capacitance of 245.3 F g-1 and an areal capacitance of 3.28 F cm-2 at a scan rate of 2 mV s-1 is achieved, with an electrode fabricated using nickel oxide nanotubes as the active element with a mass loading of 24.1 mg cm-2.

  9. Influences from the Huns on Scandinavian Sacrificial Customs during 300-500 AD

    Marianne Görman

    2016-01-01

    Full Text Available Votive offerings may be our main source of knowledge concerning the religion of the Iron Age before the Vikings. An important question is the connection between two kinds of sacrificial finds, i.e. horse sacrifices and burial offerings. They are contemporary and they share the same background. They can both be traced back to the Huns. This means that in all probability religious ideas occurred in southern Scandinavia during the fourth to the sixth century which were strongly influenced by the Huns, who were powerful in Central Europe at that time. The explanation of this is probably that some Scandinavians, for instance by serving as mercenaries, had come in contact with the Huns and, at least to some extent, assimilated their ways of thinking and their religious ideas.

  10. De un sendero sacrificial surcado de goce // from a sacrificed path plow through of pleasure

    Mario Orozco Guzmán

    2011-06-01

    Full Text Available El presente trabajo discierne un semblante maldito del sacrificio. En nombre del amor se ha idealizado el sacrificio como paradigma de su audacia y heroísmo, mientras la cultura se ha encargado de enaltecer la proeza sacrificial como puesta en acto del amor. El destinatario de esta inmolación suprema inscribe la producción del goce divino en calidad de objeto “a”, tal como lo revelan sacrificios paradigmáticos presentes en la historia y la literatura. // The current work discerns a cursed countenance from the sacrifice. The sacrifice has been idealized in love's name, as paradigm of its courage and heroism, meanwhile the culture has taken charge of dignifying the sacrificed feat as event in the love act. The addressee of this supreme immolation registers the production of the divine enjoyment as “a” object, just as it is revealed by paradigmatic sacrifices present on history and literature.

  11. Synthesis and Functionalization of Atomic Layer Boron Nitride Nanosheets for Advanced Material Applications

    2014-06-05

    Coatings with Controllable Water Repellency . ACS nano 5: 6507–6515. doi:10.1021/nn201838w. [28] Zhu M, Wang J, Outlaw R A, Hou K, Manos D M...monitoring, water purification, secure space-to-space communications, NASA aerospace applications, information storage technology, flame sensing and...non-metallic material. In terms of band structure, classical semiconductors, insulators, ceramics, gemstones, minerals, and glasses can be treated

  12. Critical factors in manufacturing multi-layer tablets--assessing material attributes, in-process controls, manufacturing process and product performance.

    Vaithiyalingam, Sivakumar R; Sayeed, Vilayat A

    2010-10-15

    Advancement in the fields of material science, analytical methodologies, instrumentation, automation, continuous monitoring, feed forward/feed back control and comprehensive data collection have led to continual improvement of pharmaceutical tablet manufacturing technology, notably the multi-layer tablets. This review highlights the material attributes, formulation design, process parameters that impact the performance, and manufacturability of the multi-layer tablets. It also highlights on critical-to-quality elements that needs to be addressed in the regulatory submission.

  13. Can sacrificial feeding areas protect aquatic plants from herbivore grazing? Using behavioural ecology to inform wildlife management.

    Wood, Kevin A; Stillman, Richard A; Daunt, Francis; O'Hare, Matthew T

    2014-01-01

    Effective wildlife management is needed for conservation, economic and human well-being objectives. However, traditional population control methods are frequently ineffective, unpopular with stakeholders, may affect non-target species, and can be both expensive and impractical to implement. New methods which address these issues and offer effective wildlife management are required. We used an individual-based model to predict the efficacy of a sacrificial feeding area in preventing grazing damage by mute swans (Cygnus olor) to adjacent river vegetation of high conservation and economic value. The accuracy of model predictions was assessed by a comparison with observed field data, whilst prediction robustness was evaluated using a sensitivity analysis. We used repeated simulations to evaluate how the efficacy of the sacrificial feeding area was regulated by (i) food quantity, (ii) food quality, and (iii) the functional response of the forager. Our model gave accurate predictions of aquatic plant biomass, carrying capacity, swan mortality, swan foraging effort, and river use. Our model predicted that increased sacrificial feeding area food quantity and quality would prevent the depletion of aquatic plant biomass by swans. When the functional response for vegetation in the sacrificial feeding area was increased, the food quantity and quality in the sacrificial feeding area required to protect adjacent aquatic plants were reduced. Our study demonstrates how the insights of behavioural ecology can be used to inform wildlife management. The principles that underpin our model predictions are likely to be valid across a range of different resource-consumer interactions, emphasising the generality of our approach to the evaluation of strategies for resolving wildlife management problems.

  14. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material

    Ford, M.A.; Cahoon, D.R.; Lynch, J.C.

    1999-01-01

    Thin-layer deposition of dredged material on coastal marsh by means of high-pressure spray dredging (Jet-Spray??2) technology has been proposed as a mechanism to minimize wetland impacts associated with traditional bucket dredging technologies and to restore soil elevations in deteriorated marshes of the Mississippi River delta. The impact of spray dredging on vegetated marsh and adjacent shallow-water habitat (formerly vegetated marsh that deteriorated to open water) was evaluated in a 0.5-ha Spartina alterniflora-dominated salt marsh in coastal Louisiana. The thickness of dredged sediment deposits was determined from artificial soil marker horizons and soil elevation change was determined from sedimentation-erosion tables (SET) established prior to spraying in both sprayed and reference marshes. The vertical accretion and elevation change measurements were made simultaneously to allow for calculation of shallow (~5 m depth) subsidence (accretion minus elevation change). Measurements made immediately following spraying in July 1996 revealed that stems of S. alterniflora were knocked down by the force of the spray and covered with 23 mm of dredged material. Stems of S. alterniflora soon recovered, and by July 1997 the percent cover of S. alterniflora had increased three-fold over pre-project conditions. Thus, the layer of dredged material was thin enough to allow for survival of the S. alterniflora plants, with no subsequent colonization by plant species typical of higher marsh zones. By February 1998, 62 mm of vertical accretion accumulated at this site, and little indication of disturbance was noted. Although not statistically significant, soil elevation change was greater than accretion on average at both the spray and reference marshes, suggesting that subsurface expansion caused by increased root biomass production and/or pore water storage influence elevation in this marsh region. In the adjacent shallow water pond, 129 mm of sediment was deposited in July

  15. Carbon materials with quasi-graphene layers: The dielectric, percolation properties and the electronic transport mechanism

    Lu Ming-Ming; Yuan Jie; Wen Bo; Liu Jia; Cao Wen-Qiang; Cao Mao-Sheng

    2013-01-01

    We investigate the dielectric properties of muhi-walled carbon nanotubes (MWCNTs) and graphite filling in SiO2 with the filling concentration of 2-20 wt.% in the frequency range of 102-107 Hz.M WCNTs and graphite have general electrical properties and percolation phenomena owing to their quasi-structure made up of graphene layers.Both permittivity ε and conductivity σ exhibit jumps around the percolation threshold.Variations of dielectric properties of the composites are in agreement with the percolation theory.All the percolation phenomena are determined by hopping and migrating electrons,which are attributed to the special electronic transport mechanism of the fillers in the composites.However,the twin-percolation phenomenon exists when the concentration of MWCNTs is between 5-10 wt.% and 15-20 wt.% in the MWCNTs/SiO2 composites,while in the graphite/SiO2 composites,there is only one percolation phenomenon in the graphite concentration of 10-15 wt.%.The unique twin-percolation phenomenon of MWCNTs/SiO2 is described and attributed to the electronic transfer mechanism,especially the network effect of MWCNTs in the composites.The network formation plays an essential role in determining the second percolation threshold of MWCNTs/SiO2.

  16. Electrode materials

    Amine, Khalil; Abouimrane, Ali; Belharouak, Ilias

    2017-01-31

    A process for forming a surface-treatment layer on an electroactive material includes heating the electroactive material and exposing the electroactive material to a reducing gas to form a surface-treatment layer on the electroactive material, where the surface-treatment layer is a layer of partial reduction of the electroactive material.

  17. A Fractographic Study of Bending/Torsion Fatigue Failure in Metallic Materials with Protective Surface Layers

    Karel Slámečka

    2016-01-01

    Full Text Available Results are given of a fractographic study of biaxial in-phase bending/torsion fatigue fractures in specimens made of nitrided steel and nickel-based superalloy with protective coatings (diffusion coatings and plasma-sprayed thermal barrier coatings. Fracture surfaces were examined by optical and scanning electron microscopes while stereophotogrammetry and optical profilometry were employed to obtain 3D surface data of selected fracture surface regions. The studied materials exhibited a wide range of fracture mechanisms depending on the microstructure and applied mechanical loading.

  18. Layered materials with coexisting acidic and basic sites for catalytic one-pot reaction sequences.

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2009-06-17

    Acidic montmorillonite-immobilized primary amines (H-mont-NH(2)) were found to be excellent acid-base bifunctional catalysts for one-pot reaction sequences, which are the first materials with coexisting acid and base sites active for acid-base tamdem reactions. For example, tandem deacetalization-Knoevenagel condensation proceeded successfully with the H-mont-NH(2), affording the corresponding condensation product in a quantitative yield. The acidity of the H-mont-NH(2) was strongly influenced by the preparation solvent, and the base-catalyzed reactions were enhanced by interlayer acid sites.

  19. A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution

    El Mofid, Wassima; Ivanov, Svetlozar; Konkin, Alexander; Bund, Andreas

    2014-12-01

    The method of self-combustion synthesis was applied to prepare double Al- and Fe-substituted LiNi0.6Mn0.2Co0.15Al0.025Fe0.025O2 (NMCAF) and non-substituted LiNi0.6Mn0.2Co0.2O2 (NMC-3:1:1) cathode materials for lithium ion batteries. The novel NMCAF structure obtained by simultaneous cationic substitution showed an improved capacity and high stability during electrochemical cycling. X-ray diffraction patterns proved that both materials have a layered α-NaFeO2 type structure with a good hexagonal ordering. It was found that NMCAF has increased a and c lattice parameters due to a structural expansion caused by Al and Fe ion substitution. Rietveld refinement analysis revealed a significant decrease of the cationic mixing after the metal substitution, suggesting a structural stabilization. Electron paramagnetic resonance (EPR) spectroscopy showed that Al and Fe substitution markedly influenced the EPR spectrum of NMC-(3:1:1). The EPR spectral lines of both materials are attributed to Mn4+ and Ni2+ present in the structure. The change in the Ni2+ line after the metal substitution suggests a redistribution of the Ni ions in the structure, which can be related to the diminished cation mixing in the NMCAF. The improved electrochemical behavior of NMCAF is closely connected to the stabilization of the layered structure and the reduction of the cation mixing after metal substitution.

  20. Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure

    Suman, S. D.; Hirwani, C. K.; Chaturvedi, A.; Panda, S. K.

    2017-02-01

    In the present investigation, static bending and strength behaviour of the laminated composite plate embedded with magnetostrictive (MS) material has been computed numerically using commercial finite element tool. For the analysis purpose, a simulation model of the laminated plate embedded with and without MS material is derived using the batch input technique popularly termed as ANSYS parametric design language (APDL). The MS bonded composite model is discretised with the help of available suitable element from ANSYS element library. The elements are chosen suitably by considering the compatibility between the mechanical and the magnetic fluxes indices. For the calculation of the necessary responses, APDL code has been prepared in ANSYS environment. Further, the stability of the model has been checked by computing the responses for various mesh sizes. Subsequently, the accuracy of the model has also been checked by conducting the comparison test. For the comparison, central deflection of the clamped Graphite/Epoxy laminated plate embedded with Terfenol-D has been evaluated and compare them with those of the available earlier published literature. The comparison study clearly indicates that, the present responses are in-line and showing good agreement with that of the reference. Further, the versatility and the applicability of the simulation model has been proven by solving the different illustrations. In the illustration, the influence of the different geometrical parameter such as thickness ratio and aspect ratio on the bending behaviour has been investigated and discussed in detail.

  1. Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.

    Ling, Xi; Fang, Wenjing; Lee, Yi-Hsien; Araujo, Paulo T; Zhang, Xu; Rodriguez-Nieva, Joaquin F; Lin, Yuxuan; Zhang, Jin; Kong, Jing; Dresselhaus, Mildred S

    2014-06-11

    Realizing Raman enhancement on a flat surface has become increasingly attractive after the discovery of graphene-enhanced Raman scattering (GERS). Two-dimensional (2D) layered materials, exhibiting a flat surface without dangling bonds, were thought to be strong candidates for both fundamental studies of this Raman enhancement effect and its extension to meet practical applications requirements. Here, we study the Raman enhancement effect on graphene, hexagonal boron nitride (h-BN), and molybdenum disulfide (MoS2), by using the copper phthalocyanine (CuPc) molecule as a probe. This molecule can sit on these layered materials in a face-on configuration. However, it is found that the Raman enhancement effect, which is observable on graphene, hBN, and MoS2, has different enhancement factors for the different vibrational modes of CuPc, depending strongly on the surfaces. Higher-frequency phonon modes of CuPc (such as those at 1342, 1452, 1531 cm(-1)) are enhanced more strongly on graphene than that on h-BN, while the lower frequency phonon modes of CuPc (such as those at 682, 749, 1142, 1185 cm(-1)) are enhanced more strongly on h-BN than that on graphene. MoS2 demonstrated the weakest Raman enhancement effect as a substrate among these three 2D materials. These differences are attributed to the different enhancement mechanisms related to the different electronic properties and chemical bonds exhibited by the three substrates: (1) graphene is zero-gap semiconductor and has a nonpolar C-C bond, which induces charge transfer (2) h-BN is insulating and has a strong B-N bond, while (3) MoS2 is semiconducting with the sulfur atoms on the surface and has a polar covalent bond (Mo-S) with the polarity in the vertical direction to the surface. Therefore, the different Raman enhancement mechanisms differ for each material: (1) charge transfer may occur for graphene; (2) strong dipole-dipole coupling may occur for h-BN, and (3) both charge transfer and dipole-dipole coupling may

  2. A Method to Predict the Thickness of Poorly-Bonded Material Along Spray and Spray-Layer Boundaries in Cold Spray Deposition

    Li, Yangfan; Hamada, Yukitaka; Otobe, Katsunori; Ando, Teiichi

    2017-02-01

    Multi-traverse CS provides a unique means for the production of thick coatings and bulk materials from powders. However, the material along spray and spray-layer boundaries is often poorly bonded as it is laid by the leading and trailing peripheries of the spray that carry powder particles with insufficient kinetic energy. For the same reason, the splats in the very first layer deposited on the substrate may not be bonded well either. A mathematical spray model was developed based on an axisymmetric Gaussian mass flow rate distribution and a stepped deposition yield to predict the thickness of such poorly-bonded layers in multi-traverse CS deposition. The predicted thickness of poorly-bonded layers in a multi-traverse Cu coating falls in the range of experimental values. The model also predicts that the material that contains poorly bonded splats could exceed 20% of the total volume of the coating.

  3. A Method to Predict the Thickness of Poorly-Bonded Material Along Spray and Spray-Layer Boundaries in Cold Spray Deposition

    Li, Yangfan; Hamada, Yukitaka; Otobe, Katsunori; Ando, Teiichi

    2016-12-01

    Multi-traverse CS provides a unique means for the production of thick coatings and bulk materials from powders. However, the material along spray and spray-layer boundaries is often poorly bonded as it is laid by the leading and trailing peripheries of the spray that carry powder particles with insufficient kinetic energy. For the same reason, the splats in the very first layer deposited on the substrate may not be bonded well either. A mathematical spray model was developed based on an axisymmetric Gaussian mass flow rate distribution and a stepped deposition yield to predict the thickness of such poorly-bonded layers in multi-traverse CS deposition. The predicted thickness of poorly-bonded layers in a multi-traverse Cu coating falls in the range of experimental values. The model also predicts that the material that contains poorly bonded splats could exceed 20% of the total volume of the coating.

  4. Topography preserved microwave plasma etching for top-down layer engineering in MoS2 and other van der Waals materials.

    Varghese, Abin; Sharma, Chithra H; Thalakulam, Madhu

    2017-03-17

    A generic and universal layer engineering strategy for van der Waals (vW) materials, scalable and compatible with the current semiconductor technology, is of paramount importance in realizing all-two-dimensional logic circuits and to move beyond the silicon scaling limit. In this letter, we demonstrate a scalable and highly controllable microwave plasma based layer engineering strategy for MoS2 and other vW materials. Using this technique we etch MoS2 flakes layer-by-layer starting from an arbitrary thickness and area down to the mono- or the few-layer limit. From Raman spectroscopy, atomic force microscopy, photoluminescence spectroscopy, scanning electron microscopy and transmission electron microscopy, we confirm that the structural and morphological properties of the material have not been compromised. The process preserves the pre-etch layer topography and yields a smooth and pristine-like surface. We explore the electrical properties utilising a field effect transistor geometry and find that the mobility values of our samples are comparable to those of the pristine ones. The layer removal does not involve any reactive gasses or chemical reactions and relies on breaking the weak inter-layer vW interaction making it a generic technique for a wide spectrum of layered materials and heterostructures. We demonstrate the wide applicability of the technique by extending it to other systems such as graphene, h-BN and WSe2. In addition, using microwave plasma in combination with standard lithography, we illustrate a lateral patterning scheme making this process a potential candidate for large scale device fabrication in addition to layer engineering.

  5. Gate-tunable diode and photovoltaic effect in an organic-2D layered material p-n junction.

    Vélez, Saül; Ciudad, David; Island, Joshua; Buscema, Michele; Txoperena, Oihana; Parui, Subir; Steele, Gary A; Casanova, Fèlix; van der Zant, Herre S J; Castellanos-Gomez, Andres; Hueso, Luis E

    2015-10-01

    The semiconducting p-n junction is a simple device structure with great relevance for electronic and optoelectronic applications. The successful integration of low-dimensional materials in electronic circuits has opened the way forward for producing gate-tunable p-n junctions. In that context, we present here an organic (Cu-phthalocyanine)-2D layered material (MoS2) hybrid p-n junction with both gate-tunable diode characteristics and photovoltaic effect. Our proof-of-principle devices show multifunctional properties with diode rectifying factors of up to 10(4), while under light exposure they exhibit photoresponse with a measured external quantum efficiency of ∼11%. As for their photovoltaic properties, we found open circuit voltages of up to 0.6 V and optical-to-electrical power conversion efficiency of 0.7%. The extended catalogue of known organic semiconductors and two-dimensional materials offer the prospect for tailoring the properties and the performance of the resulting devices, making organic-2D p-n junctions promising candidates for future technological applications.

  6. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0materials and their use in electrochemical devices are also described.

  7. Analysis of tenth-value-layers for common shielding materials for a robotically mounted stereotactic radiosurgery machine.

    Rodgers, James E

    2007-04-01

    Tenth-value-layers (TVLs) for a 6 MV stereotactic radiosurgery (SRS) x-ray beam have been computed using Monte Carlo methods for radiation transport simulation. The first and equilibrium TVLs were determined in the three most common building materials used in radiation therapy vault construction: ordinary concrete, lead, and steel (iron). In contrast to broad-beam 6 MV TVL data found in the literature, the SRS TVLs can change rapidly with the size of the radiation field incident on the barrier. This research has investigated characteristics of TVLs as a function of field size (diameter) at the barrier for all materials, with special attention given to the TVL properties in iron. The x-ray spectrum used to perform these simulations was generated for the CyberKnife accelerator with the BEAMnrc Monte Carlo code. Using this spectrum as input to the MCNP5 Monte Carlo code, predicted tissue-maximum-ratio (TMR) values for a 6-cm-diameter field (at 80 cm from the target) were benchmarked against measured TMR data. The MCNP5 code was used to simulate all barrier transmissions, keeping the standard error of each data point below 1% of the mean. Results compare very well with previous measured concrete TVLs and also with published broad-beam 6 MV TVL data for all three barrier materials.

  8. Honeycomb core material for sandwich construction - with common hexagonal walls bonded by thermoplastic resin and free walls carrying layer of resin and masking agent

    unknown

    1991-01-01

    Abstract of NL 8902116 (A) In a honeycomb core material for a sandwich construction, the common hexagonal walls are bonded together by a thermoplastic resin, and the free hexagonal walls carry a layer of the same resin and also a masking agent. - A number of plates of raw material are given strips

  9. Dependence of Z Parameter for Tensile Strength of Multi-Layered Interphase in Polymer Nanocomposites to Material and Interphase Properties

    Zare, Yasser; Rhee, Kyong Yop

    2017-01-01

    In this work, the Z interphase parameter which determines the tensile strength of interphase layers in polymer nanocomposites is presented as a function of various material and interphase properties. In this regard, the simple Pukanszky model for tensile strength of polymer nanocomposites is applied and the dependency of Z to different characteristics of constituents and interphase are illustrated by contour plots. The interphase strength ( σ i) and B interfacial parameter in Pukanszky model show direct links with Z parameter. Also, it is found that the volume fractions of nanoparticles and interphase reveal dissimilar effects on Z. A high Z is obtained by a low nanoparticle volume fraction and high content of interphase, but the best values of Z are associated with the level of B parameter.

  10. Understanding Voltage Decay in Lithium-Rich Manganese-Based Layered Cathode Materials by Limiting Cutoff Voltage.

    Yang, Jingsong; Xiao, Lifen; He, Wei; Fan, Jiangwei; Chen, Zhongxue; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2016-07-27

    The effect of the cutoff voltages on the working voltage decay and cyclability of the lithium-rich manganese-based layered cathode (LRMO) was investigated by electrochemical measurements, electrochemical impedance spectroscopy, ex situ X-ray diffraction, transmission electron microscopy, and energy dispersive spectroscopy line scan technologies. It was found that both lower (2.0 V) and upper (4.8 V) cutoff voltages cause severe voltage decay with cycling due to formation of the spinel phase and migration of the transition metals inside the particles. Appropriate cutoff voltage between 2.8 and 4.4 V can effectively inhibit structural variation as the electrode demonstrates 92% capacity retention and indiscernible working voltage decay over 430 cycles. The results also show that phase transformation not only on high charge voltage but also on low discharge voltage should be addressed to obtain highly stable LRMO materials.

  11. Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional battery applications.

    Gowda, Sanketh R; Reddy, Arava Leela Mohana; Shaijumon, Manikoth M; Zhan, Xiaobo; Ci, Lijie; Ajayan, Pulickel M

    2011-01-12

    Various three-dimensional (3D) battery architectures have been proposed to address effective power delivery in micro/nanoscale devices and for increasing the stored energy per electrode footprint area. One step toward obtaining 3D configurations in batteries is the formation of core-shell nanowires that combines electrode and electrolyte materials. One of the major challenges however in creating such architectures has been the coating of conformal thin nanolayers of polymer electrolytes around nanostructured electrodes. Here we show conformal coatings of 25-30 nm poly(methyl methacralate) electrolyte layers around individual Ni-Sn nanowires used as anodes for Li ion battery. This configuration shows high discharge capacity and excellent capacity retention even at high rates over extended cycling, allowing for scalable increase in areal capacity with electrode thickness. Our results demonstrate conformal nanoscale anode-electrolyte architectures for an efficient Li ion battery system.

  12. DYNAMIC BEHAVIOR OF TWO UNEQUAL PARALLEL PERMEABLE INTERFACE CRACKS IN A PIEZOELECTRIC LAYER BONDED TO TWO HALF PIEZOELECTRIC MATERIALS PLANES

    SUN Jian-liang; ZHOU Zhen-gong; WANG Biao

    2005-01-01

    The dynamic behavior of two unequal parallel permeable interface cracks in a piezoelectric layer bonded to two half-piezoelectric material planes subjected to harmonic anti-plane shear waves is investigated. By using the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations in which the unknown variables were the jumps of the displacements across the crack surfaces. Numerical results are presented graphically to show the effects of the geometric parameters, the frequency of the incident wave on the dynamic stress intensity factors and the electric displacement intensity factors. Especially, the present problem can be returned to static problem of two parallel permeable interface cracks. Compared with the solutions of impermeable crack surface condition, it is found that the electric displacement intensity factors for the permeable crack surface conditions are much smaller.

  13. Effect of initial stress on Love waves in a piezoelectric structure carrying a functionally graded material layer.

    Qian, Zheng-Hua; Jin, Feng; Lu, Tianjian; Kishimoto, Kikuo; Hirose, Sohichi

    2010-01-01

    The effect of initial stress on the propagation behavior of Love waves in a piezoelectric half-space of polarized ceramics carrying a functionally graded material (FGM) layer is analytically investigated in this paper from the three-dimensional equations of linear piezoelectricity. The analytical solutions are obtained for the dispersion relations of Love wave propagating in this kind of structure with initial stress for both electrical open case and electrical short case, respectively. One numerical example is given to graphically illustrate the effect of initial stress on dispersive curve, phase velocity and electromechanical coupling factor of the Love wave propagation. The results reported here are meaningful for the design of surface acoustic wave (SAW) devices with high performance.

  14. Atomic layer deposition of environmentally benign SnTiO{sub x} as a potential ferroelectric material

    Chang, Siliang; Selvaraj, Sathees Kannan [Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Choi, Yoon-Young; Hong, Seungbum [Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Nakhmanson, Serge M. [Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Takoudis, Christos G., E-mail: takoudis@uic.edu [Department of Bioengineering and Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States)

    2016-01-15

    Inspired by the need to discover environmentally friendly, lead-free ferroelectric materials, here the authors report the atomic layer deposition of tin titanate (SnTiO{sub x}) aiming to obtain the theoretically predicted perovskite structure that possesses ferroelectricity. In order to establish the growth conditions and probe the film structure and ferroelectric behavior, the authors grew SnTiO{sub x} films on the commonly used Si(100) substrate. Thin films of SnTiO{sub x} have been successfully grown at a deposition temperature of 200 °C, with a Sn/Ti atomic layer deposition (ALD) cycle ratio of 2:3 and postdeposition heat treatments under different conditions. X-ray photoelectron spectroscopy revealed excellent composition tunability of ALD. X-ray diffraction spectra suggested anatase phase for all films annealed at 650 and 350 °C, with peak positions shifted toward lower 2-theta angles indicating enlarged unit cell volume. The film annealed in O{sub 2} at 350 °C exhibited piezoresponse amplitude and phase hysteresis loops, indicative of the existence of switchable polarization.

  15. To the analysis of the theory of mathematical model of hydrodynamics of a bulk layer of a mix of vegetative materials

    S. A. Bikov

    2012-01-01

    Full Text Available The article presents the results of research work on finding out the interdependence between the dynamic separation of the working apparatus (machine, statistic separation and the degree of filling the apparatus (machine. The final mathematic model of calculating separation - an important hydrodynamic parameter of a layer of vegetable material while extragent is being filtrated through it. The authors worked out a universal method of defining hydrodynamic characteristics of a layer of material which can be applied to any vegetable materials and their mixtures worked up as required.

  16. A functionalized phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild process for heavy metal uptake

    Daikopoulos, Chris [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Bourlinos, Athanasios B. [Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, Athens 15310 (Greece); Georgiou, Yiannis [Laboratory of Physical Chemistry, Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, Agrinio 30100 (Greece); Deligiannakis, Yiannis, E-mail: ideligia@cc.uoi.gr [Laboratory of Physical Chemistry, Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, Agrinio 30100 (Greece); Zboril, Radek [Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University, Olomouc 77146 (Czech Republic); Karakassides, Michael A. [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece)

    2014-04-01

    Highlights: • Novel phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild xerogel process. • Surface Complexation Modeling reveals that PSLM bears 2 types of functional groups able to bind heavy metal. • Maximum metal uptake capacities were found 2.72 mmol g{sup −1} for Cu{sup 2+}, 1.67 mmol g{sup −1} for Pb{sup 2+} and 1.00 mmol g{sup −1} for Cd{sup 2+} at pH 7. • EPR spectroscopy reveals local coordination environment for Cu{sup 2+} ions. - Abstract: A phosphonate-rich organosilica layered hybrid material (PSLM) made of 3-(trihydroxysilyl)propyl methylphosphonate, monosodium salt, as the single silica source, has been obtained from its aqueous solution through a xerogel process and mild thermal aging. The method is simple, affording bulk quantities of powdered PSLM in a single-step. The hybrid is stable in water and possesses a high content of phosphonate groups fixed on the solid matrix. In addition, PSLM shows good thermal stability, which exceeds 300 °C in air. The material was characterized using SEM, TEM, XRD, FT-IR and TGA techniques. Potentiometric titrations show that PSLM bears high-surface density of phosphonate groups (3 mmol g{sup −1}). As a result, the material displays high metal uptake capacity for heavy metal ions such as Cu{sup 2+} (2.72 mmol g{sup −1}), Pb{sup 2+} (1.67 mmol g{sup −1}) and Cd{sup 2+} (1.00 mmol g{sup −1}) at neutral pH values e.g. the pH of natural waters. Detailed theoretical modeling using a Surface Complexation Model combined with Electron Paramagnetic Resonance (EPR) spectroscopy shows that the surface distribution of surface bound Cu{sup 2+} ions is rather homogeneous e.g. copper-binding phosphonate sites are arranged in average distances 5–8 Å.

  17. The properties of thickness-twist (TT) wave modes in a rotated Y-cut quartz plate with a functionally graded material top layer.

    Wang, Bin; Qian, Zhenghua; Li, Nian; Sarraf, Hamid

    2016-01-01

    We propose the use of thickness-twist (TT) wave modes of an AT-cut quartz crystal plate resonator for measurement of material parameters, such as stiffness, density and material gradient, of a functionally graded material (FGM) layer on its surface, whose material property varies exponentially in thickness direction. A theoretical analysis of dispersion relations for TT waves is presented using Mindlin's plate theory, with displacement mode shapes plotted, and the existence of face-shear (FS) wave modes discussed. Through numerical examples, the effects of material parameters (stiffness, density and material gradient) on dispersion curves, cutoff frequencies and mode shapes are thoroughly examined, which can act as a theoretical reference for measurements of unknown properties of FGM layer.

  18. Synthesis and Characteristics of Valeric Acid-Zinc Layered Hydroxide Intercalation Material for Insect Pheromone Controlled Release Formulation

    Rozita Ahmad

    2016-01-01

    Full Text Available A new intercalation compound of insect pheromone, valeric acid (VA, based on zinc layered hydroxide (ZLH as host release material, was successfully prepared through coprecipitation method. The as-produced organic-inorganic nanolayered material, valerate nanohybrid, VAN, shows the formation of a new peak at lower 2θ angle with basal spacing of 19.8 Å with no ZnO reflections, which indicate that the intercalation of anion between the inorganic ZLH interlamellae was accomplished. The elemental, FTIR, and ATR analyses of the nanohybrid supported the fact that the intercalation with the percentage anion loading was calculated to be 23.0% (w/w. The thermal stability property of the resulting nanohybrid was enhanced compared to the unbound anion. Field emission scanning electron micrograph of the ZnO has a nonuniform granular structure but transforms into flake-like structure with various sizes after the intercalation process. Release kinetics of anion from the interlayer of intercalated compound exhibited a slow release behavior governed by the pseudo-second-order kinetic model at different pHs of aqueous media. The valerate anion was released from VAN with the highest release rate at pH 4. These findings provide the basis to further development of controlled release formulation for insect pheromone based on ZLH intercalation.

  19. Bamboo-like Te Nanotubes with Tailored Dimensions Synthesized from Segmental NiFe Nanowires as Sacrificial Templates

    Suh, Ho Young; Jung, Hyun Sung; Myung, No Sang [University of California-Riverside, Riverside (United States); Hong, Kim In [KICET, Seoul (Korea, Republic of)

    2014-09-15

    Bamboo-like Te nanotubes were synthesized via the galvanic displacement reaction of NiFe nanowires with Ni-rich and Fe-rich segments. The thick and thin components of the synthesized Te nanotubes were converted from the Ni-rich and Fe-rich segments in the NiFe nanowires respectively. The dimensions of the Te nanotubes were controlled by employing sacrificial NiFe nanowires with tailored dimensions as the template for the galvanic displacement reaction. The segment lengths of the Te nanotubes were found to be dependent on those of the sacrificial NiFe nanowires. The galvanic displacement reaction was characterized by analyzing the open circuit potential and the corrosion resistance.

  20. Synthesis of Ag-Mn3O4 core-shell nanorods and Mn3O4 nanotubes from sacrificial Ag nanorod templates.

    Dong, Hyunbae; Koh, Eoi Kwan; Lee, Sang-Yup

    2009-11-01

    Our research focuses on the preparation of Ag-Mn3O4 core-shell nanorods and Mn3O4 nanotubes which have various engineering applications. Hausmannite manganese oxide (Mn3O4) nanotubes were synthesized via a galvanic replacement reaction at mild reaction conditions. The Mn3O4 nanotubes were prepared by solidification of manganese ions on a sacrificial silver nanorod due to the standard reduction potential difference between solid silver and manganese ions. The Mn ions were reduced to solid while the solid Ag rod was oxidized to ions. Ag-Mn3O4 core-shell nanorods and Mn3O4 nanotubes were simply prepared by changing the amount of manganese ions. The Mn3O4 layer in the nanorods and nanotubes had a Hausmannite crystalline structure and showed weak hysteresis of magnetism. This weak magnetism is likely due to the diamagnetic property of silver and multiple magnetic domain of Mn3O4. This simple replacement reaction could be applied to various oxide nanotube fabrications with exact shape control.

  1. A Search for the Optimum Lithium Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries

    Ates, Mehmet Nurullah; Mukerjee, Sanjeev; Abraham, K. M.

    2015-01-01

    We report the results of a comprehensive study of the relationship between electrochemical performance in Li cells and chemical composition of a series of Li rich layered metal oxides of the general formula xLi2MnO3 · (1-x)LiMn0.33Ni0.33Co0.33O2 in which x = 0,1, 0.2, 0,3, 0.5 or 0.7, synthesized using the same method. In order to identify the cathode material having the optimum Li cell performance we first varied the ratio between Li2MnO3 and LiMO2 segments of the composite oxides while maintaining the same metal ratio residing within their LiMO2 portions. The materials with the overall composition 0.5Li2MnO3 · 0.5LiMO2 containing 0.5 mole of Li2MnO3 per mole of the composite metal oxide were found to be the optimum in terms of electrochemical performance. The electrochemical properties of these materials were further tuned by changing the relative amounts of Mn, Ni and Co in the LiMO2 segment to produce xLi2MnO3 · (1-x)LiMn0.50Ni0.35Co0.15O2 with enhanced capacities and rate capabilities. The rate capability of the lithium rich compound in which x = 0.3 was further increased by preparing electrodes with about 2 weight-percent multiwall carbon nanotube in the electrode. Lithium cells prepared with such electrodes were cycled at the 4C rate with little fade in capacity for over one hundred cycles. PMID:26478598

  2. A comparative study of semiconductor photocatalysts for hydrogen production by visible light using different sacrificial substrates in aqueous media

    Sabate, J.; Cervera-March, S.; Simarro, R.; Gimenez, J. (Barcelona Univ. (ES). Dept. of Chemical Engineering)

    1990-01-01

    Different semiconductor photocatalytic systems to produce H{sub 2} by visible light have been tested: (1) Pt/TiO{sub 2} plus sensitizers like Ru(bipy){sub 3}{sup 2+} and RuL{sub 3}{sup 2+} (L = 2,2'-bipyridine-4,4'dicarboxylate), (2) naked CdS, Pt/CdS and RuO{sub 2}/CdS, and (3) mixtures of CdS + Pt/TiO{sub 2}, and CdS and ZnS coprecipitated on {gamma}-Al{sub 2}O{sub 3}. EDTA, isopropanol, sulfide and sulfide/sulfite mixtures were used as sacrificial agents. The photocatalytic systems which used sensitizers showed a poor stability and they only produced H{sub 2} when EDTA was used as sacrificial agent. The mixture CdS + Pt/TiO{sub 2} gave the highest reaction rates for H{sub 2} production in isopropanol medium, and CdS, naked or with Pt deposits, produced the best results when sulfide or sulfide/sulfite as sacrificial agents were used. The addition of sulfite to a sulfide aqueous solution increased the H{sub 2} production rate about four times with respect to the case when only sulfide was employed. The maximum photochemical and energy efficiencies obtained were 13.2 and 5.0%, respectively, with reference to the wavelength range 300-520 nm. (author).

  3. Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy.

    Zhang, Jicheng; Gao, Rui; Sun, Limei; Li, Zhengyao; Zhang, Heng; Hu, Zhongbo; Liu, Xiangfeng

    2016-09-14

    Recently, spinel-layered integrated Li-rich cathode materials have attracted great interest due to the large enhancement of their electrochemical performances. However, the modification mechanism and the effect of the integrated spinel phase on Li-rich layered cathode materials are still not very clear. Herein, we have successfully synthesized the spinel-layered integrated Li-rich cathode material using a facile non-stoichiometric strategy (NS-LNCMO). The rate capability (84 mA h g(-1)vs. 28 mA h g(-1), 10 C), cycling stability (92.4% vs. 80.5%, 0.2 C), low temperature electrochemical capability (96.5 mA h g(-1)vs. 59 mA h g(-1), -20 °C), initial coulomb efficiency (92% vs. 79%) and voltage fading (2.77 V vs. 3.02 V, 200 cycles@1 C) of spinel-layered integrated Li-rich cathode materials have been significantly improved compared with a pure Li-rich phase cathode. Some new insights into the effect of the integrated spinel phase on a layered Li-rich cathode have been proposed through a comparison of the structure evolution of the integrated and Li-rich only materials before and after cycling. The Li-ion diffusion coefficient of NS-LNCMO has been enlarged by about 3 times and almost does not change even after 100 cycles indicating an enhanced structure stability. The integration of the spinel phase not only enhances the structure stability of the layered Li-rich phase during charging-discharging but also expands the interslab spacing of the Li-ion diffusion layer, and elongates TM-O covalent bond lengths, which lowers the activation barrier of Li(+)-transportation, and alleviates the structure strain during the cycling procedure.

  4. A sacrificial millipede altruistically protects its swarm using a drone blood enzyme, mandelonitrile oxidase.

    Ishida, Yuko; Kuwahara, Yasumasa; Dadashipour, Mohammad; Ina, Atsutoshi; Yamaguchi, Takuya; Morita, Masashi; Ichiki, Yayoi; Asano, Yasuhisa

    2016-06-06

    Soldiers of some eusocial insects exhibit an altruistic self-destructive defense behavior in emergency situations when attacked by large enemies. The swarm-forming invasive millipede, Chamberlinius hualienensis, which is not classified as eusocial animal, exudes irritant chemicals such as benzoyl cyanide as a defensive secretion. Although it has been thought that this defensive chemical was converted from mandelonitrile, identification of the biocatalyst has remained unidentified for 40 years. Here, we identify the novel blood enzyme, mandelonitrile oxidase (ChuaMOX), which stoichiometrically catalyzes oxygen consumption and synthesis of benzoyl cyanide and hydrogen peroxide from mandelonitrile. Interestingly the enzymatic activity is suppressed at a blood pH of 7, and the enzyme is segregated by membranes of defensive sacs from mandelonitrile which has a pH of 4.6, the optimum pH for ChuaMOX activity. In addition, strong body muscle contractions are necessary for de novo synthesis of benzoyl cyanide. We propose that, to protect its swarm, the sacrificial millipede also applies a self-destructive defense strategy-the endogenous rupturing of the defensive sacs to mix ChuaMOX and mandelonitrile at an optimum pH. Further study of defensive systems in primitive arthropods will pave the way to elucidate the evolution of altruistic defenses in the animal kingdom.

  5. Sprayed-zinc sacrificial anodes for reinforced concrete in marine service

    Saguees, A.A. [Univ. of South Florida, Tampa, FL (United States). Dept. of Civil and Environmental Engineering; Powers, R.G. [Florida Dept. of Transportation, Gainesville, FL (United States)

    1996-07-01

    The use of sacrificial anodes consisting of sprayed zinc on the surface of concrete containing corroding reinforcing steel bars was examined in field tests and laboratory experiments. The anodes were sprayed directly onto the external surface of spalled regions of marine substructure elements. Electrical contact between the steel and zinc was achieved efficiently by spraying directly over exposed steel. Field tests were conducted in the Florida Keys and in Tampa Bay. The installations were performed economically and were functional as much as 5 y following placement. Protective current densities reaching 1 mA/ft{sup 2} (1 {micro}A/cm{sup 2}) of the reinforcing steel were achieved. Tests with reinforcing steel probes and with entire reinforcement assemblies showed steel polarization decays (upon temporary disconnection) typically exceeding 100 mV even after several years of service. Laboratory tests revealed concrete resistivity in the marine substructure conditions of interest did not represent a main limiting factor in performance of the galvanic anodes. However, absence of direct wetting of the anode surface could result in long-term loss of adequate current delivery, even when the concrete was in contact with air of 85% relative humidity (RH). Periodic water contact (by seawater mist, splash, or weather exposure) was considered a necessary factor for long-term anode performance. The method was considered a competitive alternative to impressed-current cathodic protection (CP) and a considerable improvement over simple gunite repair of corrosion-damaged substructure concrete.

  6. Electrochemical treatment of Orange II dye solution-Use of aluminum sacrificial electrodes and floc characterization

    Mollah, M. Yousuf A. [Department of Chemistry, University of Dhaka, Dhaka-1000 (Bangladesh); Gomes, Jewel A.G., E-mail: jewel.gomes@lamar.edu [Dan F. Smith Department of Chemical Engineering, Lamar University, P.O. Box 10053, Beaumont, TX 77710 (United States); Das, Kamol K.; Cocke, David L. [Gill Chair of Chemical Engineering, Lamar University, P.O. Box 10053, Beaumont, TX 77710 (United States)

    2010-02-15

    Electrocoagulation (EC) of Orange II dye in a flow through cell with aluminum as sacrificial electrodes was carried out under varying conditions of dye concentration, current density, flow rate, conductivity, and the initial pH of the solution in order to optimize the operating parameters for maximum benefits. Maximum removal efficiency of 94.5% was obtained at the following conditions: dye concentration = 10 ppm, current density = 160 A/m{sup 2}, initial pH 6.5, conductance = 7.1 mS/cm, flow rate = 350 mL/min, and concentration of added NaCl = 4.0 g/L of dye solution. The EC-floc was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy, and powder X-ray diffraction techniques. The removal mechanism has been proposed that is in compliance with the Pourbaix diagram, solubility curve of aluminum oxides/hydroxides, and physico-chemical properties of the EC-floc.

  7. Fabrication of Porous Hydroxyapatite through Combination of Sacrificial Template and Direct Foaming Techniques

    Serena M Best

    2011-04-01

    Full Text Available The porous hydroxyapatite (HA bioceramics were prepared through combination of sacrificial template and direct foaming techniques using PMMA granules (varied from 5 to 50wt% in content as a template and H2O2 solution (varied from 5 to 30wt% in concentration as a foaming agent, respectively. The effects of PMMA content and H2O2 concentration on final porosity, microstructure and mechanical strengths were studied. The porous samples using PMMA provided the porosity ranging from 52% to 75%, the samples using H2O2 had the porosity ranging from 82% to 85%, and the sample using both pore formers provided the porosity ranging between 84% and 90%. The higher content of PMMA and concentration of H2O2 led the porosity increased, leading to a decrease in the compressive and flexural strengths. Furthermore, this combination technique allowed interconnected pores having two levels of pore size, which were come from PMMA and H2O2. The PMMA formed the small pores with the diameter ranging between 100 and 300 ?m, while H2O2 provided the larger pores with the diameter ranging from 100 to 1,000 ?m depending on concentration.

  8. Sacrificial Silver Nanoparticles: Reducing GeI2 To Form Hollow Germanium Nanoparticles by Electroless Deposition.

    Nolan, Bradley M; Chan, Eric K; Zhang, Xinming; Muthuswamy, Elayaraja; van Benthem, Klaus; Kauzlarich, Susan M

    2016-05-24

    Herein we report the electroless deposition of Ge onto sacrificial Ag nanoparticle (NP) templates to form hollow Ge NPs. The formation of AgI is a necessary component for this reaction. Through a systematic study of surface passivating ligands, we determined that tri-n-octylphosphine is necessary to facilitate the formation of hollow Ge NPs by acting as a transport agent for GeI2 and the oxidized Ag(+) cation (i.e., AgI product). Annular dark-field (ADF) scanning transmission electron microscopy (STEM) imaging of incomplete reactions revealed Ag/Ge core/shell NPs; in contrast, completed reactions displayed hollow Ge NPs with pinholes which is consistent with the known method for dissolution of the nanotemplate. Characterization of the hollow Ge NPs was performed by transmission electron microscopy, ADF-STEM, energy-dispersive X-ray spectroscopy, UV-vis spectrophotometry, and Raman spectroscopy. The galvanic replacement reaction of Ag with GeI2 offers a versatile method for controlling the structure of Ge nanomaterials.

  9. XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO2 thin films to produce a new hybrid material coating

    Drevet, R.; Dragoé, D.; Barthés-Labrousse, M. G.; Chaussé, A.; Andrieux, M.

    2016-10-01

    This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO2) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO2 layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.

  10. Materials based on carbon-filled porous layers of PVC cyclam derivatives cross-linked with the surfaces of asbestos fabric fibers

    Tzivadze, A. Yu.; Fridman, A. Ya.; Morozova, E. M.; Sokolova, N. P.; Voloshchuk, A. M.; Petukhova, G. A.; Bardishev, I. I.; Gorbunov, A. M.; Novikov, A. K.; Polyakova, I. Ya.; Titova, V. N.; Yavich, A. A.; Petrova, N. V.

    2016-08-01

    The synthesis of bilayer materials with porous upper layers composed of PVC hydroxyethylcyclam derivatives filled with carbon and a layer consisting of hydroxyethylcyclam, cross-linked via Si-O-C groups with the silica chains of a developed surface of asbestos fabric, is described. The aza-crown groups in these materials are bound with aqua complexes of H2SO4 or NaOH. The structure of the materials is examined, their adsorption characteristics are determined, and the rate of motion of H+ or OH- ions in electrochemical bridges is measured, while the formation of H2 and O2 in their cathodic and anodic polarization is determined as a function of voltage. It is shown that the upper layer of these materials is adsorption-active and electronand H+- or OH-- conductive, while the bottom layer is only H+- or OH-- conductive; through it, the upper layer is supplied with the H+ or OH- ions needed for the regeneration of the aqua complexes broken down to H2 and O2 on carbon particles.

  11. Materials

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  12. 33 CFR 183.512 - Fuel tanks: Prohibited materials.

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks: Prohibited materials... tanks: Prohibited materials. (a) A fuel tank must not be constructed from terneplate. (b) Unless it has an inorganic sacrificial galvanic coating on the inside and outside of the tank, a fuel tank must...

  13. Sodium montmorillonite/amine-containing drugs complexes: new insights on intercalated drugs arrangement into layered carrier material.

    Murilo L Bello

    Full Text Available Layered drug delivery carriers are current targets of nanotechnology studies since they are able to accommodate pharmacologically active substances and are effective at modulating drug release. Sodium montmorillonite (Na-MMT is a clay that has suitable properties for developing new pharmaceutical materials due to its high degree of surface area and high capacity for cation exchange. Therefore Na-MMT is a versatile material for the preparation of new drug delivery systems, especially for slow release of protonable drugs. Herein, we describe the intercalation of several amine-containing drugs with Na-MMT so we can derive a better understanding of how these drugs molecules interact with and distribute throughout the Na-MMT interlayer space. Therefore, for this purpose nine sodium montmorillonite/amine-containing drugs complexes (Na-MMT/drug were prepared and characterized. In addition, the physicochemical properties of the drugs molecules in combination with different experimental conditions were assessed to determine how these factors influenced experimental outcomes (e.g. increase of the interlayer spacing versus drugs arrangement and orientation. We also performed a molecular modeling study of these amine-containing drugs associated with different Na-MMT/drug complex models to analyze the orientation and arrangement of the drugs molecules in the complexes studied. Six amine-containing drugs (rivastigmine, doxazosin, 5-fluorouracil, chlorhexidine, dapsone, nystatin were found to successfully intercalate Na-MMT. These findings provide important insights on the interlayer aspect of the molecular systems formed and may contribute to produce more efficient drug delivery nanosystems.

  14. Magnesium-containing layered double hydroxides as orthopaedic implant coating materials--An in vitro and in vivo study.

    Weizbauer, Andreas; Kieke, Marc; Rahim, Muhammad Imran; Angrisani, Gian Luigi; Willbold, Elmar; Diekmann, Julia; Flörkemeier, Thilo; Windhagen, Henning; Müller, Peter Paul; Behrens, Peter; Budde, Stefan

    2016-04-01

    The total hip arthroplasty is one of the most common artificial joint replacement procedures. Several different surface coatings have been shown to improve implant fixation by facilitating bone ingrowth and consequently enhancing the longevity of uncemented orthopaedic hip prostheses. In the present study, two different layered double hydroxides (LDHs), Mg-Fe- and Mg-Al-LDH, were investigated as potential magnesium (Mg)-containing coating materials for orthopaedic applications in comparison to Mg hydroxide (Mg(OH)2). In vitro direct cell compatibility tests were carried out using the murine fibroblast cell line NIH 3T3 and the mouse osteosarcoma cell line MG 63. The host response of bone tissue was evaluated in in vivo experiments with nine rabbits. Two cylindrical pellets (3 × 3 mm) were implanted into each femoral condyle of the left hind leg. The samples were analyzed histologically and with μ-computed tomography (μ-CT) 6 weeks after surgery. An in vitro cytotoxicity test determined that more cells grew on the LDH pellets than on the Mg(OH)2-pellets. The pH value and the Mg(2+) content of the cell culture media were increased after incubation of the cells on the degradable samples. The in vivo tests demonstrated the formation of fibrous capsules around Mg(OH)2 and Mg-Fe-LDH. In contrast, the host response of the Mg-Al-LDH samples indicated that this Mg-containing biomaterial is a potential candidate for implant coating.

  15. Improving the fluorescence polarization method to evaluate the orientation of fluorescent systems adsorbed in ordered layered materials

    Salleres, Sandra [Departamento de Quimica Fisica, Universidad del Pais Vasco UPV/EHU, Apartado 644, 48080 Bilbao (Spain); Arbeloa, Fernando Lopez, E-mail: fernando.lopezarbeloa@ehu.e [Departamento de Quimica Fisica, Universidad del Pais Vasco UPV/EHU, Apartado 644, 48080 Bilbao (Spain); Martinez, Virginia Martinez; Arbeloa, Teresa; Lopez Arbeloa, Inigo [Departamento de Quimica Fisica, Universidad del Pais Vasco UPV/EHU, Apartado 644, 48080 Bilbao (Spain)

    2009-11-15

    The fluorescence polarization method, recently developed for the evaluation of the preferential orientation of fluorescent dyes adsorbed in layered materials [F. Lopez Arbeloa, V. Martinez Martinez, J. Photochem. Photobiol. A: Chem. 181 (2006) 44], is readapted to improve its application. Fluorescence polarization was previously obtained by recording the emission intensity for two orthogonal orientations of the emission polarizer (i.e., the horizontal and vertical polarized light) after excitation with vertical or horizontal polarized light. In the method proposed in this work, samples are excited with unpolarized light, reducing the polarization effect of the excitation light scattering at those emission wavelengths close to the excitation wavelength. Moreover, the present method decreases the effect of the orientation of other non-fluorescent species present in the system, which are active in the excitation process. Consequently, the new method is more simple, precise and sensitive. It is applied to evaluate the orientation of rhodamine 6G dye adsorbed in ordered laponite clay films with low and moderated dye loadings.

  16. Preparation of mesoporous carbon/polypyrrole composite materials and their supercapacitive properties

    WU-JUN ZOU

    2011-08-01

    Full Text Available We synthesized mesoporous carbons/polypyrrole composites, using a chemical oxidative polymerization and calcium carbonate as a sacrificial template. N2 adsorption-desorption method, Fourier infrared spectroscopy, and transmission electron microscopy were used to characterize the structure and morphology of the composites. The measurement results indicated that as-synthesized carbon with the disordered mesoporous structure and a pore size of approximately 5 nm was uniformly coated by polypyrrole. The electrochemical behavior of the resulting composite was examined by cyclic voltammetry and cycle life measurements, and the obtained results showed that the specific capacitance of the resulting composite electrode was as high as 313 F g−1, nearly twice the capacitance of pure mesoporous carbon electrode (163 F g–1. This reveals that the electrochemical performance of these materials is governed by a combination of the electric double layer capacitance of mesoporous carbon and pseudocapacitance of polypyrrole.

  17. Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co and Mn with Li in Layered Lithium Transition-Metal Oxide Cathode Materials

    Yan, Pengfei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zheng, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lv, Dongping [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wei, Yi [Peking Univ., Beijing (China); Zheng, Jiaxin [Peking Univ., Beijing (China); Wang, Zhiguo [Univ. of Electronic Science and Technology of China, Chengdu (China); Kuppan, Saravanan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, Jianguo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Luo, Langli [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Danny J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olszta, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amine, Khalil [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, Jun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xiao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pan, Feng [Peking Univ., Beijing (China); Chen, Guoying [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Jiguang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Chong M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-06

    Capacity and voltage fading of layer structured cathode based on lithium transition metal oxide is closely related to the lattice position and migration behavior of the transition metal ions. However, it is scarcely clear about the behavior of each of these transition metal ions. We report direct atomic resolution visualization of interatomic layer mixing of transition metal (Ni, Co, Mn) and lithium ions in layer structured oxide cathodes for lithium ion batteries. Using chemical imaging with aberration corrected scanning transmission electron microscope (STEM) and DFT calculations, we discovered that in the layered cathodes, Mn and Co tend to reside almost exclusively at the lattice site of transition metal (TM) layer in the structure or little interlayer mixing with Li. In contrast, Ni shows high degree of interlayer mixing with Li. The fraction of Ni ions reside in the Li layer followed a near linear dependence on total Ni concentration before reaching saturation. The observed distinctively different behavior of Ni with respect to Co and Mn provides new insights on both capacity and voltage fade in this class of cathode materials based on lithium and TM oxides, therefore providing scientific basis for selective tailoring of oxide cathode materials for enhanced performance.

  18. Quantification of Hydrogen Concentrations in Surface and Interface Layers and Bulk Materials through Depth Profiling with Nuclear Reaction Analysis.

    Wilde, Markus; Ohno, Satoshi; Ogura, Shohei; Fukutani, Katsuyuki; Matsuzaki, Hiroyuki

    2016-03-29

    Nuclear reaction analysis (NRA) via the resonant (1)H((15)N,αγ)(12)C reaction is a highly effective method of depth profiling that quantitatively and non-destructively reveals the hydrogen density distribution at surfaces, at interfaces, and in the volume of solid materials with high depth resolution. The technique applies a (15)N ion beam of 6.385 MeV provided by an electrostatic accelerator and specifically detects the (1)H isotope in depths up to about 2 μm from the target surface. Surface H coverages are measured with a sensitivity in the order of ~10(13) cm(-2) (~1% of a typical atomic monolayer density) and H volume concentrations with a detection limit of ~10(18) cm(-3) (~100 at. ppm). The near-surface depth resolution is 2-5 nm for surface-normal (15)N ion incidence onto the target and can be enhanced to values below 1 nm for very flat targets by adopting a surface-grazing incidence geometry. The method is versatile and readily applied to any high vacuum compatible homogeneous material with a smooth surface (no pores). Electrically conductive targets usually tolerate the ion beam irradiation with negligible degradation. Hydrogen quantitation and correct depth analysis require knowledge of the elementary composition (besides hydrogen) and mass density of the target material. Especially in combination with ultra-high vacuum methods for in-situ target preparation and characterization, (1)H((15)N,αγ)(12)C NRA is ideally suited for hydrogen analysis at atomically controlled surfaces and nanostructured interfaces. We exemplarily demonstrate here the application of (15)N NRA at the MALT Tandem accelerator facility of the University of Tokyo to (1) quantitatively measure the surface coverage and the bulk concentration of hydrogen in the near-surface region of a H2 exposed Pd(110) single crystal, and (2) to determine the depth location and layer density of hydrogen near the interfaces of thin SiO2 films on Si(100).

  19. System and Method for Fabricating Super Conducting Circuitry on Both Sides of an Ultra-Thin Layer

    Brown, Ari D. (Inventor); Mikula, Vilem (Inventor)

    2017-01-01

    A method of fabricating circuitry in a wafer includes depositing a superconducting metal on a silicon on insulator wafer having a handle wafer, coating the wafer with a sacrificial layer and bonding the wafer to a thermally oxide silicon wafer with a first epoxy. The method includes flipping the wafer, thinning the flipped wafer by removing a handle wafer, etching a buried oxide layer, depositing a superconducting layer, bonding the wafer to a thermally oxidized silicon wafer having a handle wafer using an epoxy, flipping the wafer again, thinning the flipped wafer, etching a buried oxide layer from the wafer and etching the sacrificial layer from the wafer. The result is a wafer having superconductive circuitry on both sides of an ultra-thin silicon layer.

  20. Sprayed-zinc sacrificial anodes for reinforced concrete in marine service

    Saguees, A.A. [Univ. of South Florida, Tampa, FL (United States). Dept. of Civil Engineering and Mechanics; Powers, R.G. [Florida Department of Transportation, Gainesville, FL (United States). Materials Office

    1995-12-01

    The use of sacrificial anodes consisting of sprayed zinc on the surface of concrete containing corroding reinforcing steel bars has been examined by means of field tests and laboratory experiments. The anodes are sprayed directly on the external surface of spalled regions of marine substructure elements. Electrical contact between the steel and zinc can be achieved efficiently by directly spraying over exposed steel. Field tests were made in the substructure of bridges in the Florida Keys and in Tampa Bay. The installations were performed economically and were functional after as much as 5 years following placement. Protective current densities reaching 1 mA/ft{sup 2} (1 {micro}A/cm{sup 2}) of the reinforcing steel were achieved routinely. Tests with reinforcing steel probes and with entire reinforcement assemblies showed steel polarization decays (upon temporary disconnection) typically exceeding 100 mV even after several years of service. The laboratory tests revealed that in the marine substructure conditions of interest concrete resistivity does not represent a main limiting factor in the performance of the galvanic anodes. However, absence of direct wetting of the anode surface can result in long-term loss of adequate current delivery, even when the concrete is in contact with air of 85% relative humidity. Periodic water contact (as caused by seawater mist, splash or weather exposure) is considered a necessary factor for long-term anode performance. The method is considered as a competitive alternative to impressed-current cathodic protection systems, and a considerable improvement over simple gunite repair of corrosion damaged substructure concrete.

  1. Long-term performance of different aluminum alloy designs as sacrificial anodes for rebars

    de Rincón, O.

    2003-12-01

    Full Text Available This paper presents the performance of various cathodic-protection designs using Aluminum alloys to protect prestressed piles. The results obtained with different system designs (bracelete type-Al/Zn/In alloy, thermosprayed aluminum (3-year evaluation and conventional Al/Zn/In anocies in an epoxy-painted steel bracelet (12-year evaluation, indicated that all of these systems may be used as sacrificial anodes for pile protection. However, the thermosprayed aluminum type can not be used in prestressed concrete piles because the very negative potentials ( < -1100 mV vs. Cu/CuSO4 they supply to the reinforcement could lead to hydrogen embrittlement.

    Este trabajo presenta la realización de varios diseños de protección catódica utilizando aleaciones de aluminio para la protección de pilotes pretensados. Los resultados obtenidos con diferentes diseños (aleación de Al/Zn/In, tipo brazalete y aluminio termorociado (3 años de evaluación y ánodos convencionales de Al/Zn/In colocados en un brazalete de acero pintado con epoxy (12 años de evaluación, indicaron que todos estos sistemas pueden ser utilizados como ánodos de sacrificio para la protección de los pilotes. Sin embargo, el sistema con aluminio termorociado no puede ser utilizado en pilotes de acero pretensado debido al potencial muy negativo alcanzado por la armadura (<-1100 mV vs Cu/CuSO4, lo cual podría inducir a daños por hidrógeno.

  2. A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues.

    Hibbert, Sarah A; Watson, Rachel E B; Gibbs, Neil K; Costello, Patrick; Baldock, Clair; Weiss, Anthony S; Griffiths, Christopher E M; Sherratt, Michael J

    2015-08-01

    as a consequence of an evolutionary pressure to express sacrificial protein sunscreens which reduce UVR penetration and hence mitigate tissue damage.

  3. The analysis of the influence of the material antifrictional layer frictional properties on the parameters of the spherical bearing contact zone

    Kamenskikh, A. A.; Trufanov, N. A.

    2017-02-01

    The paper presents data on the influence of the frictional properties of a material antifrictional layer on the parameters of the spherical bearing contact zone. The dependences of the friction coefficient from the load were obtained as a result of the study. Series of numerical experiments were conducted to investigate the frictional properties of a materials contact pair in the work. Regularities of the relative contact pressure and relative contact tangential stress were obtained for seven variants of the load-friction coefficient for the spherical bearing with a layer of modified fluoroplastic. The study puts emphasis on the fact that that adhesion area of the contact surface is reduced and the load is increased taking into account the fact that the friction properties of the layer has been fixed in the study.

  4. Properties of defect mode and optical enhancement of 1D photonic crystals with a defect layer of negative refractive index material

    CHEN Xian-feng; SHEN Xiao-ming; JIANG Mei-ping; SHI Du-fang

    2005-01-01

    The band gap properties of one-dimensional photonic crystals with a defect layer of negative refractive index materials are studied.The defect mode width is bigger than that of conventional one-dimensional photonic crystals with a defect layer of positive refractive index materials.The defect mode of the former is different from that of the latter,shifts towards the direction of high frequency (short wavelength),and has a bigger shifting velocity.Furthermore the effects on the transmission properties of the former photonic crystals caused by change in the position of the defect layer of negative refractive index are investigated.Finally the optical enhancement of the former photonic crystals is also investigated.

  5. The Effect of Powder Particle Biencapsulation with Ni-P Layer on Local Corrosion of Bonded Nd-(Fe,Co-B Magnetic Material

    Klimecka-Tatar D.

    2015-04-01

    Full Text Available Effect of the Nd-(Fe,Co-B powder particle biencapsulation with Ni-P layer on bonded magnetic materials corrosion behaviour has been investigated. Bonded magnets were prepared from single-phase, nanocrystalline magnetic Nd11Fe77Co5B6 powder. Powder particles before consolidation were preliminary etched and then coated with bilayer (powder biencapsulation. The powder surface was coated as a first with autocatalytic applied Ni-P layer during 5, 15 and 30 minutes in Ni(II containing bath and the second layer was thermosetting epoxy-resin. Impact of the used biencapsulation process was rated on the basis of polarization curves recorded in phosphate environment with addition of chloric ions. It has been established that the used biencapsulation method satisfactorily isolate individual particles of the powder and consequently, significantly inhibits corrosion processes of the final material, especially in passivating environment containing Cl-.

  6. Initial evaluation and comparison of plasma damage to atomic layer carbon materials using conventional and low T{sub e} plasma sources

    Jagtiani, Ashish V.; Miyazoe, Hiroyuki; Chang, Josephine; Farmer, Damon B.; Engel, Michael; Neumayer, Deborah; Han, Shu-Jen; Engelmann, Sebastian U., E-mail: suengelm@us.ibm.com; Joseph, Eric A. [IBM, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Boris, David R.; Hernández, Sandra C.; Walton, Scott G. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Lock, Evgeniya H. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-01-15

    The ability to achieve atomic layer precision is the utmost goal in the implementation of atomic layer etch technology. Carbon-based materials such as carbon nanotubes (CNTs) and graphene are single atomic layers of carbon with unique properties and, as such, represent the ultimate candidates to study the ability to process with atomic layer precision and assess impact of plasma damage to atomic layer materials. In this work, the authors use these materials to evaluate the atomic layer processing capabilities of electron beam generated plasmas. First, the authors evaluate damage to semiconducting CNTs when exposed to beam-generated plasmas and compare these results against the results using typical plasma used in semiconductor processing. The authors find that the beam generated plasma resulted in significantly lower current degradation in comparison to typical plasmas. Next, the authors evaluated the use of electron beam generated plasmas to process graphene-based devices by functionalizing graphene with fluorine, nitrogen, or oxygen to facilitate atomic layer deposition (ALD). The authors found that all adsorbed species resulted in successful ALD with varying impact on the transconductance of the graphene. Furthermore, the authors compare the ability of both beam generated plasma as well as a conventional low ion energy inductively coupled plasma (ICP) to remove silicon nitride (SiN) deposited on top of the graphene films. Our results indicate that, while both systems can remove SiN, an increase in the D/G ratio from 0.08 for unprocessed graphene to 0.22 to 0.26 for the beam generated plasma, while the ICP yielded values from 0.52 to 1.78. Generally, while some plasma-induced damage was seen for both plasma sources, a much wider process window as well as far less damage to CNTs and graphene was observed when using electron beam generated plasmas.

  7. The effect of doping (Mn,B)3O4 materials as protective layers in different metallic interconnects for Solid Oxide Fuel Cells

    Miguel-Pérez, Verónica; Martínez-Amesti, Ana; Nó, María Luisa; Larrañaga, Aitor; Arriortua, María Isabel

    2013-12-01

    Spinel oxides with the general formula of (Mn,B)3O4 (B = Co, Fe) were used as barrier materials between the cathode and the metallic interconnect to reduce the rate of cathode degradation by Cr poisoning. The effect of doping at the B position was investigated terms of microstructure and electrical conductivity to determine its behaviour and effectiveness as a protective layer in contact with three metallic materials (Crofer 22 APU, SS430 and Conicro 4023 W 188). The analysis showed that the use of these materials considerably decreased the reactivity and diffusion of Cr between the cathode and the metallic interconnects. The protective layer doped with Fe at the B position exhibited the least amount of reactivity with the interconnector and cathode materials. The worst results were observed for SS430 cells coated with a protective layer perhaps due to their low Cr content. The Crofer 22 APU and Conicro 4023 W 188 samples exhibited very similar conductivity results in the presence of the MnCo1.9Fe0.1O4 protective coating. As a result, these two material combinations are a promising option for use as bipolar plates in SOFC.

  8. Optimized design on multi-layer iron fiber electromagnetic shielding materials%铁纤维多层电磁屏蔽材料优化设计

    曲兆明; 王庆国; 秦思良; 胡小锋

    2011-01-01

    The relationship between shielding effectiveness of iron fiber multi-layer electromagnetic shielding materials and dimension, concentration of filler and thickness of each layer was presented based on strong fluctuation theory and electromagnetic field theory. Three-layer iron fiber composite was optimized using genetic algorithms from 8GHz to 12GHz and the optimization parameters of every layer were presented under the targets of shielding effectiveness not below 35dB and the total thickness not exceeding 5mm. The feasibility of design on broadband, thin-layer iron fiber electromagnetic shielding materials was verified by the example.%应用强扰动理论及电磁场理论建立了填充铁纤维多层电磁屏蔽材料屏蔽效能与填料尺寸、浓度及各层厚度的关系.基于遗传算法对频带8~18GHz内填充铁纤维三层屏蔽复合材料进行了优化设计,在屏蔽效能不小于35dB、总厚度不超过5mm的优化目标下,得到了各层材料的最佳结构参数配比.算例分析验证了填充铁纤维实现宽带薄层电磁屏蔽材料的可行性.

  9. Hollow microneedles for intradermal injection fabricated by sacrificial micromolding and selective electrodeposition.

    Norman, James J; Choi, Seong-O; Tong, Nhien T; Aiyar, Avishek R; Patel, Samirkumar R; Prausnitz, Mark R; Allen, Mark G

    2013-04-01

    Limitations with standard intradermal injections have created a clinical need for an alternative, low-cost injection device. In this study, we designed a hollow metal microneedle for reliable intradermal injection and developed a high-throughput micromolding process to produce metal microneedles with complex geometries. To fabricate the microneedles, we laser-ablated a 70 μm × 70 μm square cavity near the tip of poly(lactic acid) (PLA) microneedles. The master structure was a template for multiple micromolded poly(lactic acid-co-glycolic acid) (PLGA) replicas. Each replica was sputtered with a gold seed layer with minimal gold deposited in the cavity due to masking effects. In this way, nickel was electrodeposited selectively outside of the cavity, after which the polymer replica was dissolved to produce a hollow metal microneedle. Force-displacement tests showed the microneedles, with 12 μm thick electrodeposition, could penetrate skin with an insertion force 9 times less than their axial failure force. We injected fluid with the microneedles into pig skin in vitro and hairless guinea pig skin in vivo. The injections targeted 90 % of the material within the skin with minimal leakage onto the skin surface. We conclude that hollow microneedles made by this simple microfabrication method can achieve targeted intradermal injection.

  10. Tamm plasmon-polariton with negative group velocity induced by a negative index meta-material capping layer at metal-Bragg reflector interface.

    Liu, Cunding; Kong, Mingdong; Li, Bincheng

    2014-05-05

    Influence of a negative refractive index meta-material (NIM) capping layer on properties of Tamm plasmon-polariton at the interface of metal-Bragg reflector structure is investigated. Conditions for excitation of the plasmon-polariton is determined from reflectivity mapping calculation and analyzed with cavity mode theory. For specific thicknesses of capping layers, Tamm plasmon-polariton with negative group velocity is revealed in a wide region of frequency. Different from backward optical propagation induced by negative effective-group-refractive-index in dispersive media, negative group velocity of Tamm plasmon-polariton results from opposite signs of cross-section-integrated field energy and Poynting vector.

  11. A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues

    Sarah A. Hibbert

    2015-08-01

    exposure as a consequence of an evolutionary pressure to express sacrificial protein sunscreens which reduce UVR penetration and hence mitigate tissue damage.

  12. Depth Profiling of SBS/PET Layered Materials Using Step-Scan Phase Modulation FTIR-PAS with G2D Correlation Analysis%Depth Profiling of SBS/PET Layered Materials Using Step-Scan Phase Modulation FTIR-PAS with G2D Correlation Analysis

    2011-01-01

    Step-scan phase modulation FTIR-photoacoustic spectroscopy (PAS) provides a way to study the depth profile of layered materials and has been described elsewhere. Thermal diffusion length was kept identical through phase modulation in the whole wavenumber region. Phase rotation method is used in depth profile of SBS/PET layered samples and the spectral information of any depth can be obtained.

  13. Early Shang Sacrificial Site in the Shang City at Yanshi,Henan%河南偃师商城商代早期王室祭祀遗址

    中国社会科学院考古研究所

    2002-01-01

    The Shang city in Yanshi was the capital of the early Shang Dynasty. In the north of its palace city, a group of remains were found to be vestiges of Shang royal aristocrats' sacrificial activities. The main part consists roughly of three zones with a little difference from each other. The victims commonest seen in the sacrificial area are pigs, which are buried together with or without other species of animals. The rest of offerings include human victims and plants. The sacrificial area was used at many stages of the Shang cultural remains in the Shang city of Yanshi, from the first phase of the first period through the sixth phase of the third period. Its discovery clarified the layout and area division of the palace city and enriched the knowledge of it. Large quantities of serial charcoal samples and pigs' remains provided comparable "dual" serial data for dating the function of the Shang city in Yanshi.

  14. Room temperature plasma oxidation: A new process for preparation of ultrathin layers of silicon oxide, and high dielectric constant materials

    Tinoco, J.C. [Seccion de Electronica del Estado Solido, Depto. Ingenieria Electrica, CINVESTAV-IPN, Av. IPN, No. 2508, CP 07730, Mexico D.F. (Mexico) and Facultad de Ingenieria y Arquitectura, Universidad de San Martin de Porres (FIA-USMP), Av. La Fontana 1250, La Molina, Lima 12 (Peru)]. E-mail: jcesartinoco@yahoo.com.mx; Estrada, M. [Seccion de Electronica del Estado Solido, Depto. Ingenieria Electrica, CINVESTAV-IPN, Av. IPN, No. 2508, CP 07730, Mexico D.F. (Mexico)]. E-mail: mestrada@mail.cinvestav.mx; Baez, H. [Seccion de Electronica del Estado Solido, Depto. Ingenieria Electrica, CINVESTAV-IPN, Av. IPN, No. 2508, CP 07730, Mexico D.F. (Mexico); Cerdeira, A. [Seccion de Electronica del Estado Solido, Depto. Ingenieria Electrica, CINVESTAV-IPN, Av. IPN, No. 2508, CP 07730, Mexico D.F. (Mexico)

    2006-02-21

    In this paper we present basic features and oxidation law of the room temperature plasma oxidation (RTPO), as a new process for preparation of less than 2 nm thick layers of SiO{sub 2}, and high-k layers of TiO{sub 2}. We show that oxidation rate follows a potential law dependence on oxidation time. The proportionality constant is function of pressure, plasma power, reagent gas and plasma density, while the exponent depends only on the reactive gas. These parameters are related to the physical phenomena occurring inside the plasma, during oxidation. Metal-Oxide-Semiconductor (MOS) capacitors fabricated with these layers are characterized by capacitance-voltage, current-voltage and current-voltage-temperature measurements. Less than 2.5 nm SiO{sub 2} layers with surface roughness similar to thermal oxide films, surface state density below 3 x 10{sup 11} cm{sup -2} and current density in the expected range for each corresponding thickness, were obtained by RTPO in a parallel-plate reactor, at 180 mW/cm{sup 2} and pressure range between 9.33 and 66.5 Pa (0.07 and 0.5 Torr) using O{sub 2} and N{sub 2}O as reactive gases. MOS capacitors with TiO{sub 2} layers formed by RTPO of sputtered Ti layers are also characterized. Finally, MOS capacitors with stacked layers of TiO{sub 2} over SiO{sub 2}, both layers obtained by RTPO, were prepared and evaluated to determine the feasibility of the use of TiO{sub 2} as a candidate for next technology nodes.

  15. Depth profiling of SBS/PET layered materials using step-scan phase modulation Fourier transform infrared photoacoustic spectroscopy and two-dimensional correlation analysis

    2010-01-01

    This paper demonstrates the application of step-scan phase modulation Fourier transform infrared photoacoustic spectroscopy(FTIR-PAS) in non-destructively depth profiling of styrene-butadiene-styrene block copolymer/polyethylene terephthalate(SBS/PET) layered materials.The surface thicknesses of three layered samples were determined to be 1.2,4.3 and 9.4μm by using phase difference analysis,overcoming the spatial detection limits of FTIR.Combined with generalized two-dimensional(G2D) FTIR correlation analysis,the spatial origins of peaks in the SBS/PET spectrum are identified with those having overlapping peaks between different layers are resolved.

  16. Neighboring Hetero-Atom Assistance of Sacrificial Amines to Hydrogen Evolution Using Pt-Loaded TiO2-Photocatalyst

    Masahide Yasuda

    2014-05-01

    Full Text Available Photocatalytic H2 evolution was examined using Pt-loaded TiO2-photocatalyst in the presence of amines as sacrificial agents. In the case of amines with all of the carbon attached to the hetero-atom such as 2-aminoethanol, 1,2-diamonoethane, 2-amino-1,3-propanediol, and 3-amino-1,2-propanediol, they were completely decomposed into CO2 and water to quantitatively evolve H2. On the other hand, the amines with both hetero-atoms and one methyl group at the β-positions (neighboring carbons of amino group such as 2-amino-1-propanol and 1,2-diaminopropane were partially decomposed. Also, the photocatalytic H2 evolution using amines without the hetero-atoms at the β-positions such as ethylamine, propylamine, 1-butylamine, 1,3-diaminopropane, 2-propylamine, and 2-butylamine was inefficient. Thus, it was found that the neighboring hetero-atom strongly assisted the degradation of sacrificial amines. Moreover, rate constants for H2 evolution were compared among amines. In conclusion, the neighboring hetero-atom did not affect the rate constants but enhanced the yield of hydrogen evolution.

  17. Experimental Study of the Effectiveness of Sacrificial Cladding Using Polymeric Foams as Crushable Core with a Simply Supported Steel Beam

    H. Ousji

    2016-01-01

    Full Text Available The present paper focuses on the study of the effectiveness of the sacrificial cladding using polymeric foam as crushable core to reduce the delivered blast energy using a simplified structure. The latter consists of a simply supported steel beam under a localized blast load. The tested sacrificial cladding has a cross-sectional area of 80 × 80 mm2. The effect of the front plate mass and the crushable core properties (plateau stress and thickness is studied. Three polymeric foams are investigated: (a the expanded polystyrene foam (PS13 with a density of 13 kg/m3, (b the closed-cell polyurethane (PU30 with a density of 30 kg/m3, and (c the open-cell polyurethane (PU50 with a density of 50 kg/m3. Four front plate masses are used: 144, 188, 336, and 495 g. All possible combinations are tested to determine their absorption capacity. The obtained results show that the absorption capability increases by increasing the front plate mass, the plateau stress, and the thickness of the crushable core. The open-cell polyurethane PU50 performs better. Disintegration problems are observed on the expanded polystyrene PS13 after the end of the compression process.

  18. Flaw detection in multi-layer, multi-material composites by resonance imaging: Utilizing Air-coupled Ultrasonics and Finite Element Modeling

    Livings, Richard Andrew

    2011-12-01

    Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite.

  19. Micro-Raman Spectroscopy of Mechanically Exfoliated Few-Quintuple Layers of Bi(2)Te(3), Bi(2)Se(3) and Sb(2)Te(3) Materials

    2012-01-01

    Bismuth telluride - Bi(2)Te(3)- and related compounds have recently attracted strong interest owing to the discovery of the topological insulator properties in many members of this family of materials. The few-quintuple films of these materials are particularly interesting from the physics point of view. We report results of the micro-Raman spectroscopy study of the "graphene-like" exfoliated few-quintuple layers of Bi(2)Te(3), Bi(2)Se(3) and Sb(2)Te(3). It is found that crystal symmetry brea...

  20. Influence of pulsed d. c. -glow-discharge on the phase constitution of nitride layers during plasma nitrocarburizing of sintered materials

    Rie, K.T.; Schnatbaum, F. (Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung, Technische Univ. Braunschweig (Germany))

    1991-07-07

    In the past it was shown that plasma diffusion treatment of sintered materials has several advantages over conventional processes such as gas or salt bath nitriding and nitrocarburizing. The large number of parameters in plasma diffusion treatment allows close control of the process so that surface layers with defined microstructures and properties can be obtained. Durig plasma diffusion treatment the phase constitution of the nitride compound layer can be influenced by varying the gas mixture. By using a pulsed d.c. glow discharge the phase constitution and the microstructure of the compound layer can be influenced by varying the pulse duration and pulse repetition time. The number of micropores in the compound layer can be reduced in a pulsed d.c. glow discharge by pulsing the plasma, i.e. by reducing the plasma power. The phase constitution can be influenced by the pulse duration and pulse repetition time. With short pulse duration and long pulse repetition time the formation of Fe{sub 3}C in the compound layer can be suppressed. The amount of {gamma}' and {epsilon} phase present can be influenced. (orig.).

  1. Hydrothermal synthesis of layer-controlled MoS2/graphene composite aerogels for lithium-ion battery anode materials

    Zhao, Bing; Wang, Zhixuan; Gao, Yang; Chen, Lu; Lu, Mengna; Jiao, Zheng; Jiang, Yong; Ding, Yuanzhang; Cheng, Lingli

    2016-12-01

    Layer-controlled MoS2/graphene aerogels (MoS2/GA) composites are synthesized by a facile hydrothermal route, in which few-layer (5-15 layers) MoS2 nanosheets with high crystalline are decorated on the surface of graphene nanosheets homogeneously and tightly. The number of the MoS2 layers can be easily controlled through adjusting the amount of molybdenum source in the reaction system. Moreover, the growth mechanism of the lay-controlled MoS2/GA composites is proposed. The three-dimensional MoS2/GA with macroporous micro-structure not only shortens the transportation length of electrons and ions, but also restrains the re-stacking of MoS2 effectively, stabilizing the electrode structure during repeated charging/discharging processes. Electrochemical tests demonstrate that this few-layer MoS2/GA composite exhibits a high reversible capacity of 1085.0 mAh g-1 at current density of 100 mA g-1, as well as extraordinarily high cycling stability and rate capability.

  2. Surface layer structure and average contact temperature of copper-containing materials under dry sliding with high electric current density

    Fadin, V. V.; Aleutdinova, M. I.; Rubtsov, V. Ye.; Aleutdinov, K. A.

    2016-11-01

    Dry sliding of copper and powder composites of Cu-Fe and Cu-Fe-graphite compositions against 1045 steel under electric current of contact density higher than 250 A/cm2 has been studied, which demonstrated the change in surface layer structure and formation of tribolayer consisting of iron, copper and FeO oxide. Signs of quasi-viscous flow of worn surface were observed. It was noted that the thin contact layer containing about 40 at % of oxygen and 40% of Fe was the main factor decreasing the adhesion interaction. It was affirmed that the introduction of graphite into the primary structure of the composite leads to rather low content of FeO oxide and to the increased tendency of surface layer to catastrophic deterioration under sliding with contact current density of about 300 A/cm2. The temperature of contact did not exceed 400°C.

  3. 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    A 3D hierarchical computational model of deformation and stiffness of wood, which takes into account the structures of wood at several scale levels (cellularity, multilayered nature of cell walls, composite-like structures of the wall layers) is developed. At the mesoscale, the softwood cell...... is presented as a 3D hexagon-shape-tube with multilayered walls. The layers in the softwood cell are considered as considered as composite reinforced by microfibrils (celluloses). The elastic properties of the layers are determined with Halpin–Tsai equations, and introduced into mesoscale finite element...... cellular model. With the use of the developed hierarchical model, the influence of the microstructure, including microfibril angles (MFAs, which characterizes the orientation of the cellulose fibrils with respect to the cell axis), the thickness of the cell wall, the shape of the cell cross...

  4. Oil-material fractionation in Gulf deep water horizontal intrusion layer: Field data analysis with chemodynamic fate model for Macondo 252 oil spill.

    Melvin, A T; Thibodeaux, L J; Parsons, A R; Overton, E; Valsaraj, K T; Nandakumar, K

    2016-04-15

    Among the discoveries of the Deepwater Horizon blowout was the so-called "sub-surface plume"; herein termed the "oil-trapping layer". Hydrocarbons were found positioned at ~1100-1300m with thickness ~100-150m and moving horizontally to the SW in a vertically stratified layer at the junction of the cold abyssal water and the permanent thermocline. This study focuses on its formation process and fate of the hydrocarbons within. The originality of this work to the field is two-fold, first it provides a conceptual framework which places layer origin in the context of a horizontal "intrusion" from the near-field, vertical, blow-out plume and second, it offers a theoretical model for the hydrocarbon chemicals within the horizontal layer as it moves far-afield. The model quantifies the oil-material fractionation process for the soluble and fine particle. The classical Box model, retrofitted with an internal gradient, the "G-Box", allows an approach that includes turbulent eddy diffusion coupled with droplet rise velocity and reactive decay to produce a simple, explicit, transparent, algebraic model with few parameters for the fate of the individual fractions. Computations show the soluble and smallest liquid droplets moving very slowly vertically through the layer appearing within the trapping layer at low concentration with high persistence. The larger droplets move-through this trapping zone quickly, attain high concentrations, and eventually form the sea surface slick. It impacts the field of oil spill engineering science by providing the conceptual idea and the algorithms for projecting the quantities and fractions of oil-material in a deep water, horizontal marine current being dispersed and moving far afield. In the field of oil spill modeling this work extends the current generation near-field plume source models to the far-field. The theory portrays the layer as an efficient oil-material trap. The model-forecasted concentration profiles for alkanes and aromatics

  5. Synthesis and Characterization of a Layered Manganese Oxide: Materials Chemistry for the Inorganic or Instrumental Methods Lab

    Ching, Stanton; Neupane, Ram P.; Gray, Timothy P.

    2006-01-01

    A three-week laboratory project involving synthesis and characterization of a layered manganese oxide provides an excellent vehicle for teaching important concepts of inorganic chemistry and instrumental methods related to non-molecular systems. Na-birnessite is an easily prepared manganese oxide with a 7 A interlayer spacing and Na[superscript +]…

  6. Copper(ii) tungstate nanoflake array films: sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting

    Hu, Dianyi; Diao, Peng; Xu, Di; Xia, Mengyang; Gu, Yue; Wu, Qingyong; Li, Chao; Yang, Shubin

    2016-03-01

    We report the preparation of CuWO4 nanoflake (NF) array films by using a solid phase reaction method in which WO3 NFs were employed as sacrificial templates. The SEM, TEM and XRD results demonstrated that the obtained CuWO4 films possessed a network structure that was composed of single crystalline NFs intersected with each other. The CuWO4 NF films showed superior photoelectrochemical (PEC) activity to other CuWO4 photoanodes reported recently for the oxygen evolution reaction (OER). We attributed the high activity to the unique morphological and crystalline structure of the CuWO4 film, which enhanced the photoactivity by providing a large specific area, a short hole transport distance from the inside of CuWO4 to the CuWO4/solution interface, and a low grain boundary density. Hydrogen treatment by annealing the CuWO4 NF film in mixed gases of H2 and Ar could further enhance the photoactivity, as hydrogen treatment significantly increased the electron density of CuWO4 by generating oxygen vacancy in the lattice. The photocurrent density for OER obtained on the hydrogen-treated (H-treated) CuWO4 NF film is the largest ever reported on CuWO4 photoanodes in the literature. Moreover, the CuWO4 photoanodes exhibit good stability in weak alkaline solution, while the H-treated CuWO4 photoanodes exhibit acceptable stability. This work not only reveals the potential of CuWO4 as a photoanode material for solar water splitting but also shows that the construction of nanostructured CuWO4 photoanodes is a promising method to achieve high PEC activity toward OER.We report the preparation of CuWO4 nanoflake (NF) array films by using a solid phase reaction method in which WO3 NFs were employed as sacrificial templates. The SEM, TEM and XRD results demonstrated that the obtained CuWO4 films possessed a network structure that was composed of single crystalline NFs intersected with each other. The CuWO4 NF films showed superior photoelectrochemical (PEC) activity to other CuWO4

  7. Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries

    Chong, Shaokun; Chen, Yuanzhen; Yan, Wuwei; Guo, Shengwu; Tan, Qiang; Wu, Yifang; Jiang, Tao; Liu, Yongning

    2016-11-01

    Li-rich layered oxides have been regarded as valuable cathode materials for high energy density lithium-ion batteries. However, high initial irreversible capacity, bad rate capability, as well as serious capacity fading and voltage decay hinder their commercial application. In this paper, a nano CoF2 protective layer is coated on the surface of Li1.2Ni0.2Mn0.6O2 via a facial wet chemistry method. A high initial discharge capacity of 264.4 mAh g-1 is obtained for 0.5% CoF2-coated sample and 259.1 mAh g-1 for 1% CoF2-coated sample owing to the suppression of irreversible release of O2 and the contribution of electrochemical conversion of CoF2/LiF. Furthermore, 1% CoF2-coated sample exhibits the excellent rate capability of 167.5 mAh g-1 at 5 C rate, the superior cycling stability with the capacity retention of 241.0 mAh g-1 and the ameliorative voltage drop of 0.312 V at 0.1C after 100 cycles. The enhanced rate performance as well as stability of capacity and voltage can be attributed to the nano coatings which inhibit the electrolyte-electrode side reaction, enhance the electrochemical kinetics and mitigate structure transition from layered to spinel phase.

  8. 锂离子电池层状正极材料的研究进展%Research Process on Layer Cathode Material for Li-ion Batteries

    杨世霞

    2012-01-01

    The paper mainly introduced the research process on layer cathode materials- LiCoO2, LiNiO2, Li MnO2 at present. The advantages and disadvantages of the three layer cathode materials were displayed, and also ways of the modification of LiCoO2 and LiNiO2: doping and coating. The structure and the properties of the layer cathode materials are prompted severely through modification which pointed out a way for the more widely apply of Li-ion batteries. What was more, I showed a prospect of apply of the cathode materials on Li-ion batteries.%文絮主要综述当前锂离子电池层状正极材料-LiCoO2、LiNiO2、LiMnO2的研究进展。阐述了三种层状盐结构正极材料的优缺点,对LiCoO2和LiNiO2正极材料的改性方法:掺杂和包覆处理。通过改性,层状正极材料豹结构和性能均有较大改善,为锂离子电池更为广泛的工业应用指明道路。对锂离子电池正极材料未来的应用前景做了一些展槊。

  9. Fabrication of Three Dimensional Tissue Engineering Polydimethylsiloxane ( PDMS) Microporous Scaffolds Integrated in a Bioreactor Using a 3D Printed Water Dissolvable Sacrificial Mould

    Mohanty, Soumyaranjan; Mantis, Ioannis; Chetan, Aradhya Mallikarjunaiah

    2015-01-01

    We present a new scalable and general approach for manufacturing structured pores/channels in 3D polymer based scaffolds. The method involves 3D printing of a sacrificial polyvinyl alcohol (PVA) mould whose geometrical features are designed according to the required vascular channel network. Poly...

  10. Sacrificial anode stability and polarization potential variation in a ternary Al-xZn-xMg alloy in a seawater-marine environment

    Muazu, Abubakar; Aliyu, Yaro Shehu; Abdulwahab, Malik; Idowu Popoola, Abimbola Patricia

    2016-06-01

    In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarized potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the Al-6%Zn-1%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic Al2Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.

  11. Proteins dominate in the surface layers formed on materials exposed to extracellular polymeric substances from bacterial cultures.

    Yang, Yi; Wikieł, Agata J; Dall'Agnol, Leonardo T; Eloy, Pierre; Genet, Michel J; Moura, José J G; Sand, Wolfgang; Dupont-Gillain, Christine C; Rouxhet, Paul G

    2016-01-01

    The chemical compositions of the surface conditioning layers formed by different types of solutions (from isolated EPS to whole culture media), involving different bacterial strains relevant for biocorrosion were compared, as they may influence the initial step in biofilm formation. Different substrata (polystyrene, glass, steel) were conditioned and analyzed by X-ray photoelectron spectroscopy. Peak decomposition and assignment were validated by correlations between independent spectral data and the ubiquitous presence of organic contaminants on inorganic substrata was taken into account. Proteins or peptides were found to be a major constituent of all conditioning layers and polysaccharides were not present in appreciable concentrations; the proportion of nitrogen which may be due to DNA was lower than 15%. There was no significant difference between the compositions of the adlayers formed from different conditioning solutions, except for the adlayers produced with tightly bound EPS extracted from D. alaskensis.

  12. Animals and ritual. Faunal remains from sacrificial altars of El Alto de Garajonay (La Gomera, Canary Islands, Spain

    Verónica ALBERTO BARROSO

    2015-11-01

    Full Text Available This paper addresses the meaning of animals in the sanctuary of Garajonay, in La Gomera. It is a main sacred place for the Prehispanic population, in which they systematically used to perform ritual celebrations within the time period between ss. vii-xii ad cal. These activities took place in the sacrificial altars where various products, essential for the survival of the ancient inhabitants, were burned. For this purpose faunal repertoires have been studied, establishing their composition and processing patterns. It is concluded a standardized behavior defined by the sacrifice of domestic animals, with a rigid selection of skeletal parts actives in the ritual. In that process the fire plays a key role, contributing to the consecration of certain social practices. It has also been analyzed the meaning of such practices in the ideological framework of those populations.

  13. Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries.

    Xie, Xiuqiang; Wang, Shijian; Kretschmer, Katja; Wang, Guoxiu

    2017-03-20

    Rechargeable batteries, such as lithium-ion and sodium-ion batteries, have been considered as promising energy conversion and storage devices with applications ranging from small portable electronics, medium-sized power sources for electromobility, to large-scale grid energy storage systems. Wide implementations of these rechargeable batteries require the development of electrode materials that can provide higher storage capacities than current commercial battery systems. Within this greater context, this review will present recent progresses in the development of the 2D material as anode materials for battery applications represented by studies conducted on graphene, molybdenum disulfide, and MXenes. This review will also discuss remaining challenges and future perspectives of 2D materials in regards to a full utilization of their unique properties and interactions with other battery components.

  14. Laser induced forward transfer aluminum layers: Process investigation by time resolved imaging

    Mattle, Thomas [General Energies Research Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Shaw-Stewart, James [General Energies Research Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Laboratory for Functional Polymers, Empa Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Schneider, Christof W. [General Energies Research Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energies Research Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Wokaun, Alexander [General Energies Research Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Side- and front-on shadowgraphy. Black-Right-Pointing-Pointer Aluminum flyer is ejected intact for all tested energies. Black-Right-Pointing-Pointer Indications of bending of the aluminum flyer are shown. - Abstract: Laser induced forward transfer of an aluminum thin film on a triazene polymer as a sacrificial layer has been studied with time resolved imaging. Both side- and front-on imaging of the process give a more detailed understanding of the stability of the ejected material during flight. For high fluence ablation (800 mJ/cm{sup 2}) the flyer is stable for 400 ns and gets decomposed completely when interacting with the shockwave after 1 {mu}s. Material detachments on the edges of the flyer are observed at an early stage of the ablation process (<200 ns) which leads to a pixel smaller than its ablation cross section. For low laser fluence (200 mJ/cm{sup 2}) the flyer has the size of the ablation spot and keeps its shape for nearly 1 {mu}s. The back pressure of the decomposed triazene polymer bends the flyer towards the direction of flight and indications for folding are observed.

  15. Study on metal microparticle content of the material transferred with Absorbing Film Assisted Laser Induced Forward Transfer when using silver absorbing layer

    Smausz, T. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: tomi@physx.u-szeged.hu; Hopp, B. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Kecskemeti, G. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Bor, Z. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary)

    2006-04-30

    Absorbing Film Assisted Laser Induced Forward Transfer (AFA-LIFT) is a modified LIFT method where a high absorption coefficient thin film coating of a transparent substrate is used to transform the laser energy into kinetic in order to transfer the 'target' material spread on it. This method can be used for the transfer of biomaterials and living cells, which could be damaged by direct irradiation of the laser beam. In previous experiments, {approx}50-100 nm thick metal films have been used as absorbing layer. The transferred material can also contain metal microparticles originating from the absorbing thin film and acting as non-desired impurities in some cases. The aim of our work was to study how the properties (number, size and covered area) of metal particles transferred during the AFA-LIFT process depend on film thickness and the applied fluence. Silver thin films with different thickness (50-400 nm) were used as absorbing layers and real experimental conditions were modeled by a 100 {mu}m thick water layer. The particles transferred without the use of water layer were also studied. The threshold laser fluence for the complete removal of the absorber from the irradiated area was found to strongly increase with increasing film thickness. The deposited micrometer and submicrometer particles were observed with optical microscope and atomic force microscope. Their size ranged from 100 nm to 20 {mu}m and depended on the laser fluence. The increase in fluence resulted in an increasing number of particles of smaller average size.

  16. Synthesis optimisation and characterisation of the organic-inorganic layered materials ZnS(m-xylylenediamine)1/2 and ZnS(p-xylylenediamine)1/2

    Luberda-Durnaś, K.; Guillén, A. González; Łasocha, W.

    2016-06-01

    Hybrid organic-inorganic layered materials of the type ZnS(amine)1/2, where amine=m-xylylenediamine (MXDA) or p-xylylenediamine (PXDA), were synthesised using a simple solvothermal method. Since the samples crystallised in the form of very fine powder, X-ray powder diffraction techniques were used for structural characterisation. The crystal structure studies, involving direct methods, show that both compounds crystallised in the orthorhombic crystal system, but in different space groups: ZnS(MXDA)1/2 in non-centrosymmetric Ccm21, ZnS(PXDA)1/2 in centrosymmetric Pcab. The obtained materials are built according to similar orders: semiconducting monolayers with the formula ZnS, parallel to the (010) plane, are separated by diamines. The organic and inorganic fragments are connected by covalent bonds between metal atoms of the layers and nitrogen atoms of the amino groups. The optical properties of the hybrid materials differ from those of their bulk counterpart. In both compounds a blue-shift of about 0.8 or 0.9 eV was observed with reference to the bulk phase of ZnS.

  17. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    Fleutot, Benoit; Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie

    2017-04-01

    Li4Ti5O12 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li3PO4 coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li3PO4 coated Li4Ti5O12 is improved at high C-rate by the surface modification (improvement of 30 mAh g-1 at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  18. Ultrathin Epitaxial Ferromagneticγ-Fe2O3Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors

    Li, Peng

    2016-06-01

    In spintronics, identifying an effective technique for generating spin-polarized current has fundamental importance. The spin-filtering effect across a ferromagnetic insulating layer originates from unequal tunneling barrier heights for spin-up and spin-down electrons, which has shown great promise for use in different ferromagnetic materials. However, the low spin-filtering efficiency in some materials can be ascribed partially to the difficulty in fabricating high-quality thin film with high Curie temperature and/or partially to the improper model used to extract the spin-filtering efficiency. In this work, a new technique is successfully developed to fabricate high quality, ferrimagnetic insulating γ-Fe2O3 films as spin filter. To extract the spin-filtering effect of γ-Fe2O3 films more accurately, a new model is proposed based on Fowler–Nordheim tunneling and Zeeman effect to obtain the spin polarization of the tunneling currents. Spin polarization of the tunneled current can be as high as −94.3% at 2 K in γ-Fe2O3 layer with 6.5 nm thick, and the spin polarization decays monotonically with temperature. Although the spin-filter effect is not very high at room temperature, this work demonstrates that spinel ferrites are very promising materials for spin injection into semiconductors at low temperature, which is important for development of novel spintronics devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  19. Charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process

    Villeneuve-Faure, C.; Makasheva, K.; Boudou, L.; Teyssedre, G.

    2016-06-01

    Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms.

  20. Charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process.

    Villeneuve-Faure, C; Makasheva, K; Boudou, L; Teyssedre, G

    2016-06-17

    Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms.

  1. PbI2-Based Dipping-Controlled Material Conversion for Compact Layer Free Perovskite Solar Cells.

    Zheng, Enqiang; Wang, Xiao-Feng; Song, Jiaxing; Yan, Lulin; Tian, Wenjing; Miyasaka, Tsutomu

    2015-08-19

    A two-step sequential deposition method has been extensively employed to prepare the CH3NH3PbI3 active layer from the PbI2 precursor in perovskite solar cells (PSCs). The variation of the photovoltaic performance of PSCs made by this method was always attributed to different dipping times that induce complete/incomplete conversion of PbI2 into CH3NH3PbI3. To solve this issue, we employed a solvent vapor annealing (SVA) method to prepare PbI2 crystallites with large grain size for preparation of high quality perovskite. With this method, the increased PbI2 dipping time in CH3NH3I solution was found to reduce the photovoltaic performance of resulting PSCs without a significant change in PbI2/CH3NH3PbI3 contents in the perovskite films. We attribute this abnormal reduction of the photovoltaic performance to intercalation/deintercalation of the PbI2 core with a CH3NH3PbI3 shell, which causes the doping effect on both the PbI2 and CH3NH3PbI3 crystal lattices and the formation of a CH3NH3PbI3 capping layer on the surface, as revealed by UV-vis absorption, X-ray diffraction, FT-IR, and scanning electron microscope measurements. Based on our findings, a multistep dipping-drying process was employed as an alternative method to improve the crystalline quality. The method achieved power conversion efficiency up to 11.4% for the compact layer free PSC sharing a simple device structure of ITO/perovskite/spiro-OMeTAD/Ag.

  2. Predicted Thermoelectric Properties of the Layered XBi4S7 (X = Mn, Fe) Based Materials: First Principles Calculations

    Azam, Sikander; Khan, Saleem Ayaz; Goumri-Said, Souraya; Kanoun, Mohammed Benali

    2017-01-01

    We report a theoretical investigation of electronic structures, optical and thermoelectric properties of two ternary-layered chalcogenides, MnBi4S7 and FeBi4S7 , by combining the first principles density functional calculations and semi-local Boltzmann transport theory. The calculated electronic band structure have demonstrated that both compounds exhibit indirect band gaps. The optical transitions are explored via the dielectric function (real and imaginary parts) along with other related optical constants including refractive index, reflectivity, and energy loss spectrum. These chalcogenides have exhibited interesting thermoelectric properties such as Seebeck's coefficient, electrical and thermal conductivity, and power factor as function of temperatures.

  3. Effect of gradient dielectric coefficient in a functionally graded material (FGM) substrate on the propagation behavior of love waves in an FGM-piezoelectric layered structure.

    Cao, Xiaoshan; Shi, Junping; Jin, Feng

    2012-06-01

    The propagation behavior of Love waves in a layered structure that includes a functionally graded material (FGM) substrate carrying a piezoelectric thin film is investigated. Analytical solutions are obtained for both constant and gradient dielectric coefficients in the FGM substrate. Numerical results show that the gradient dielectric coefficient decreases phase velocity in any mode, and the electromechanical coupling factor significantly increases in the first- and secondorder modes. In some modes, the difference in Love waves' phase velocity between these two types of structure might be more than 1%, resulting in significant differences in frequency of the surface acoustic wave devices.

  4. Catalytic Graphitization for Preparation of Porous Carbon Material Derived from Bamboo Precursor and Performance as Electrode of Electrical Double-Layer Capacitor

    Tsubota, Toshiki; Maguchi, Yuta; Kamimura, Sunao; Ohno, Teruhisa; Yasuoka, Takehiro; Nishida, Haruo

    2015-12-01

    The combination of addition of Fe (as a catalyst for graphitization) and CO2 activation (a kind of gaseous activation) was applied to prepare a porous carbon material from bamboo powder (a waste product of superheated steam treatment). Regardless of the heat treatment temperature, many macropores were successfully formed after the heating process by removal of Fe compounds. A turbostratic carbon structure was generated in the Fe-added sample heated at 850°C. It was confirmed that the added Fe acted as a template for pore formation. Moreover, it was confirmed that the added Fe acted as a catalyst for graphitization. The resulting electrochemical performance as the electrode of an electrical double-layer capacitor, as demonstrated by cyclic voltammetry, electrochemical impedance spectroscopy, and charge-discharge testing, could be explained based on the graphitization and activation effects. Addition of Fe could affect the electrical properties of carbon material derived from bamboo.

  5. Blast wave attenuation by lightly destructable granular materials

    Golub, V. V.; Lu, F. K.; Medin, S. A.; Mirova, O. A.; Parshikov, A. N.; Petukhov, V. A.; Volodin, V. V.

    Terrorist bombings are a dismal reality nowadays. One of the most effective ways for protection against blast overpressure is the use of lightly compacted materials such as sand [1] and aqueous foam [2] as a protective envelope or barrier. According to [1], shock wave attenuation in a mine tunnel (one-dimensional case) behind a destroyed object is given by q_e ≈ q {1}/{1 + 4(S/q)^{1/6} bρ _{mat} /L^{1/3} }where qe — effective charge, S — exposed area of the obstacle, q — TNT equivalent (grams), L — distance between charge and obstacle, b — obstacle thickness and ρ mat — material density. This empirical equation is applicable only in a one-dimensional case but not for a less confined environment. Another way of protecting a structure against blast is to coat the surface with a sacrificial layer. In [3] full-scale experiments were carried out to investigate the behaviour of a covering of aluminum foam under the effect of a blast wave.

  6. Diagnosing, Optimizing and Designing Ni & Mn based Layered Oxides as Cathode Materials for Next Generation Li-ion Batteries and Na-ion Batteries

    Liu, Haodong

    The progressive advancements in communication and transportation has changed human daily life to a great extent. While important advancements in battery technology has come since its first demonstration, the high energy demands needed to electrify the automotive industry have not yet been met with the current technology. One considerable bottleneck is the cathode energy density, the Li-rich layered oxide compounds xLi2MnO3.(1-x)LiMO 2 (M= Ni, Mn, Co) (0.5= Co) (0.5=discharge capacities greater than 280 mAh g-1 (almost twice the practical capacity of LiCoO 2). In this work, neutron diffraction under operando battery cycling is developed to study the lithium and oxygen dynamics of Li-rich compounds that exhibits oxygen activation at high voltage. The measured lattice parameter changes and oxygen position show movement of oxygen and lattice contractions during the high voltage plateau until the end of charge. Lithium migration kinetics for the Li-rich material is observed under operando conditions for the first time to reveal the rate of lithium extraction from the lithium layer and transition metal layer are related to the different charge and discharge characteristics. In the second part, a combination of multi-modality surface sensitive tools was applied in an attempt to obtain a complete picture to understand the role of NH4F and Al2O3 surface co-modification on Li-rich. The enhanced discharge capacity of the modified material can be primary assigned to three aspects: decreased irreversible oxygen loss, the activation of cathode material was facilitated with pre-activated Mn3+ on the surface, and stabilization of the Ni redox pair. These insights will provide guidance for the surface modification in high voltage cathode battery materials of the future. In the last part, the idea of Li-rich has transferred to the Na-ion battery cathode. A new O3 - Na0.78Li0.18Ni0.25Mn 0.583Ow is prepared as the cathode material for Na-ion batteries, delivering exceptionally high

  7. Eu-doped Mg-Al layered double hydroxide as a responsive fluorescent material and its interaction with glutamic acid.

    Chen, Yufeng; Li, Fei; Yu, Gensheng; Wei, Junchao

    2012-10-01

    The paper describes a study on the fluorescence of a Eu-doped Mg-Al layered double hydroxide (Eu-doped LDH) response to glutamic acid (Glu). Various characterizations (UV-Vis transmittance, TG-DTA and IR-spectrum) indicated that there is an interaction between the Eu-doped LDH and Glu. Fluorescent study was found that the red emissions resulted from (5)D(0)-(7)F(J) transition (J=1, 2) of Eu(3+) markedly decreased, while the blue emission at 440 nm contributed to Glu shifted to low energy after the addition of Glu to the Eu-doped LDH. The fluorescent changes may be relevant to the hydrogen-bond interaction between the Eu-doped LDH and Glu, and the mechanism of the interaction between Eu-doped LDH and Glu was discussed.

  8. Solvent effects of a dimethyldicyanoquinonediimine buffer layer as N-type material on the performance of organic photovoltaic cells.

    Yang, Eui Yeol; Oh, Se Young

    2014-08-01

    In the present work, we have fabricated organic photovoltaic cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/DMDCNQI/Al using a dip-coating method with various solvent systems. We have investigated solvent effects (such as solubility, viscosity and vapor pressure) in deposition of a thin DMDCNQI buffer layer on the performance of organic photovoltaic cells. The solvent system which had low viscosity and good solubility properties, made a dense and uniform DMDCNQI ultra thin film, resulting in a high performance device. In particular, a prepared organic photovoltaic cell was fabricated using a cosolvent system (methanol:methylenechloride = 3:1) and showed a maximum power conversion efficiency of 4.53%.

  9. Incorporating a hole-transport material into the emissive layer of solid-state light-emitting electrochemical cells to improve device performance.

    Huang, Po-Chin; Krucaite, Gintare; Su, Hai-Ching; Grigalevicius, Saulius

    2015-07-14

    Solid-state light-emitting electrochemical cells (LECs) based on ionic transition metal complexes (iTMCs) have several advantages such as high efficiency, low operation voltage and simple device structure. To improve the device efficiency of iTMC-based LECs for practical applications, improving the carrier balance to achieve a centered recombination zone would be an important issue. In this work, incorporating a hole-transport material (HTM) into the emissive layer of iTMC-based LECs is shown to improve device performance. When mixed with an HTM (12%), the LECs based on a Ru complex exhibit 1.9× and 1.5× enhancement in peak light output and peak external quantum efficiency (EQE) as compared to neat-film devices. Furthermore, over 2× enhancement in stabilized EQE can be achieved in LECs mixed with an HTM. It is attributed to that a more centered recombination zone in LECs mixed with an HTM is beneficial in reducing exciton quenching in the recombination zone approaching extended doped layers. Estimating the temporal evolution of the recombination zone in the LECs mixed with an HTM by employing the microcavity effect is demonstrated to confirm the physical origin for improved device performance. These results reveal that incorporating of an HTM in the emissive layer of LECs based on an iTMC is a feasible way to improve carrier balance and thus enhance light output and device efficiency.

  10. Atomic-layer electroless deposition: a scalable approach to surface-modified metal powders.

    Cappillino, Patrick J; Sugar, Joshua D; El Gabaly, Farid; Cai, Trevor Y; Liu, Zhi; Stickney, John L; Robinson, David B

    2014-04-29

    Palladium has a number of important applications in energy and catalysis in which there is evidence that surface modification leads to enhanced properties. A strategy for preparing such materials is needed that combines the properties of (i) scalability (especially on high-surface-area substrates, e.g. powders); (ii) uniform deposition, even on substrates with complex, three-dimensional features; and (iii) low-temperature processing conditions that preserve nanopores and other nanostructures. Presented herein is a method that exhibits these properties and makes use of benign reagents without the use of specialized equipment. By exposing Pd powder to dilute hydrogen in nitrogen gas, sacrificial surface PdH is formed along with a controlled amount of dilute interstitial hydride. The lattice expansion that occurs in Pd under higher H2 partial pressures is avoided. Once the flow of reagent gas is terminated, addition of metal salts facilitates controlled, electroless deposition of an overlayer of subnanometer thickness. This process can be cycled to create thicker layers. The approach is carried out under ambient processing conditions, which is an advantage over some forms of atomic layer deposition. The hydride-mediated reaction is electroless in that it has no need for connection to an external source of electrical current and is thus amenable to deposition on high-surface-area substrates having rich, nanoscale topography as well as on insulator-supported catalyst particles. STEM-EDS measurements show that conformal Rh and Pt surface layers can be formed on Pd powder with this method. A growth model based on energy-resolved XPS depth profiling of Rh-modified Pd powder is in general agreement. After two cycles, deposits are consistent with 70-80% coverage and a surface layer with a thickness from 4 to 8 Å.

  11. Interfacial effect on the electrochemical properties of the layered graphene/metal sulfide composites as anode materials for Li-ion batteries

    Lv, Yagang; Chen, Biao; Zhao, Naiqin; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Liu, Enzuo

    2016-09-01

    The layered graphene/metal sulfide composites exhibit excellent electrochemical properties as anode materials for lithium ion battery, due to the synergistic effect between metal sulfide and graphene which still needs to be further understood. In this study, Li adsorption and diffusion on MoS2 and SnS2 monolayers and Li2S surface, as well as at their interfaces with graphene, are systematically investigated through first-principles calculations. The analysis of charge density difference, Bader charge, and density of states indicates that the adsorbed Li atoms interact with both the S atoms at metal sulfide surfaces and C atoms in graphene, resulting in larger Li adsorption energies at the interfaces compared with that on the corresponding surfaces, but with almost no enhancement of the energy barriers for Li atom diffusion. The enhanced Li adsorption capability at Li2S/G interface contributes to the extra storage capacity of graphene/metal sulfide composites. Furthermore, the synergistic mechanism between metal sulfide and graphene is revealed. Moreover, band structure analysis shows the electronic conductivity is enhanced with the incorporation of graphene. The results corroborate the interfacial pseudocapacity-like Li atom storage mechanism, and are helpful for the design of layered graphene/metal sulfide composites as anode materials for lithium ion batteries.

  12. 新型抗滑薄层胶结材料试验研究%Model Experimental Study on Anti-sliding Layer Cementing Materials

    王小元

    2012-01-01

    Sliding security processing on the road to a thin layer of pavement,in asphalt pavement construction,focus on the performance of the cementing material of the thin layer of pavement,including the basic performance of materials and their adhesion to the road,wear resistance the effect of skid resistance,the results show that the binder adhesive properties,good corrosion resistance and water resistance,by its preparation sliding thin layer of good resistance to abrasion and environmental effects of aging traffic load,thus increasing the abrasion resistance of the asphalt pavement,extending the durability of the pavement skid structure.%文中以在沥青路面施工薄层铺装的方式对路面进行抗滑安全性处理,重点研究了该薄层铺装胶结材料的各项性能,包括材料基本性能及其对路面附着能力、耐磨性、抗滑能力的影响作用,结果表明该胶结料粘结性能、抗腐蚀性及防水性能较好,由其制备的抗滑薄层能较好抵抗行车荷载的磨耗及环境老化作用,从而增强了沥青路面的耐磨耗性能,延长了路面抗滑构造的耐久性。

  13. Removal of TcO4- from Representative Nuclear Waste Streams with Layered Potassium Metal Sulfide Materials

    Neeway, James J.; Asmussen, Robert M.; Lawter, Amanda R.; Bowden, Mark E.; Lukens, Wayne W.; Sarma, Debajit; Riley, Brian J.; Kanatzidis, Mercouri G.; Qafoku, Nikolla

    2016-06-01

    Many efforts have focused on the sequestration and immobilization of 99Tc because the radionuclide is highly mobile in oxidizing environments and presents serious health risks due to its radiotoxicity and long half-life (t1/2 = 213 000 a). One of the more common methods for Tc removal from solution and immobilization in solids is based on reducing Tc from highly soluble Tc(VII) to sparingly soluble Tc(IV). In order to remove solution Tc through this reduction process, the Tc-sequestering solid must contain a reducing agent and, ideally, the Tc-sequestering material would function in a large range of chemical environments. For long-term stability, the reduced Tc would preferentially be incorporated into the resulting mineral structure instead of simply being sorbed onto the mineral surface. Here, we report results obtained from batch sorption experiments performed in anoxic and oxic conditions with two sulfide-containing potassium metal sulfide (KMS) materials, known as KMS-2 and KMS-2-SS. In deionized water in anoxic conditions after 15 d of contact, KMS-2 is capable of removing ~45% of Tc and KMS-2-SS is capable of removing ~90% of Tc. The improved performance of KMS-2-SS compared to KMS-2 in deionized water in anoxic conditions appears to be linked both to a higher pH resulting from the batch sorption experiments performed with KMS-2-SS and a higher overall purity of KMS-2-SS. Both materials perform even better in highly caustic (pH~13.5), high ionic strength (8.0 M) simulated Hanford low-activity waste solutions, removing more than 90% Tc after 15 d of contact in anoxic conditions. Post-reaction solids analysis indicate that Tc(VII) is reduced to Tc(IV) and that Tc(IV) is bonded to S atoms in the resulting KMS-2 structure in a Tc2S7 form. In contrast to previous ion exchange experiments with other KMS materials, the batch sorption experiments examining Tc removal cause the initially crystalline KMS materials to lose much of their initial long-range order.

  14. Anisotropic thermoelectric properties of layered compounds in SnX2 (X = S, Se): a promising thermoelectric material.

    Sun, Bao-Zhen; Ma, Zuju; He, Chao; Wu, Kechen

    2015-11-28

    Thermoelectrics interconvert heat to electricity and are of great interest in waste heat recovery, solid-state cooling and so on. Here we assessed the potential of SnS2 and SnSe2 as thermoelectric materials at the temperature gradient from 300 to 800 K. Reflecting the crystal structure, the transport coefficients are highly anisotropic between a and c directions, in particular for the electrical conductivity. The preferred direction for both materials is the a direction in TE application. Most strikingly, when 800 K is reached, SnS2 can show a peak power factor (PF) of 15.50 μW cm(-1) K(-2) along the a direction, while a relatively low value (11.72 μW cm(-1) K(-2)) is obtained in the same direction of SnSe2. These values are comparable to those observed in thermoelectrics such as SnSe and SnS. At 300 K, the minimum lattice thermal conductivity (κmin) along the a direction is estimated to be about 0.67 and 0.55 W m(-1) K(-1) for SnS2 and SnSe2, respectively, even lower than the measured lattice thermal conductivity of Bi2Te3 (1.28 W m(-1) K(-1) at 300 K). The reasonable PF and κmin suggest that both SnS2 and SnSe2 are potential thermoelectric materials. Indeed, the estimated peak ZT can approach 0.88 for SnSe2 and a higher value of 0.96 for SnS2 along the a direction at a carrier concentration of 1.94 × 10(19) (SnSe2) vs. 2.87 × 10(19) cm(-3) (SnS2). The best ZT values in SnX2 (X = S, Se) are comparable to that in Bi2Te3 (0.8), a typical thermoelectric material. We hope that this theoretical investigation will provide useful information for further experimental and theoretical studies on optimizing the thermoelectric properties of SnX2 materials.

  15. Electrochemical Kinetics and Performance of Layered Composite Cathode Material Li[Li0.2Ni0.2Mn0.6]O2

    Zheng, Jianming; Shi, Wei; Gu, Meng; Xiao, Jie; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang

    2013-10-10

    Lithium-rich, manganese-rich (LMR) layered composite cathode material Li[Li0.2Ni0.2Mn0.6]O2 has been successfully prepared by a co-precipitation method and its structure is confirmed by XRD characterization. The material delivers a high discharge capacity of 281 mAh g-1, when charged and discharged at a low current density of 10 mA g-1. However, significant increase of cell polarization and decrease of discharge capacity are observed at voltages below 3.5 V with increasing current densities. Galvanostatic intermittent titration technique (GITT) analysis demonstrates that lithium ion intercalation/de-intercalation reactions in this material are kinetically controlled by Li2MnO3 and its activated MnO2 component. The relationship between the electrochemical kinetics and rate performance as well as cycling stability has been systematically investigated. High discharge capacity of 149 mAh g-1 can be achieved at 10 C charge rate and C/10 discharge rate. The result demonstrates that the Li2MnO3 based material could withstand high charge rate (except initial activation process), which is very promising for practical applications. A lower discharge current density is preferred to overcome the kinetic barrier of lithium ion intercalation into MnO2 component, in order to achieve higher discharge capacity even at high charge rates.

  16. Innovation in Layer-by-Layer Assembly.

    Richardson, Joseph J; Cui, Jiwei; Björnmalm, Mattias; Braunger, Julia A; Ejima, Hirotaka; Caruso, Frank

    2016-12-14

    Methods for depositing thin films are important in generating functional materials for diverse applications in a wide variety of fields. Over the last half-century, the layer-by-layer assembly of nanoscale films has received intense and growing interest. This has been fueled by innovation in the available materials and assembly technologies, as well as the film-characterization techniques. In this Review, we explore, discuss, and detail innovation in layer-by-layer assembly in terms of past and present developments, and we highlight how these might guide future advances. A particular focus is on conventional and early developments that have only recently regained interest in the layer-by-layer assembly field. We then review unconventional assemblies and approaches that have been gaining popularity, which include inorganic/organic hybrid materials, cells and tissues, and the use of stereocomplexation, patterning, and dip-pen lithography, to name a few. A relatively recent development is the use of layer-by-layer assembly materials and techniques to assemble films in a single continuous step. We name this "quasi"-layer-by-layer assembly and discuss the impacts and innovations surrounding this approach. Finally, the application of characterization methods to monitor and evaluate layer-by-layer assembly is discussed, as innovation in this area is often overlooked but is essential for development of the field. While we intend for this Review to be easily accessible and act as a guide to researchers new to layer-by-layer assembly, we also believe it will provide insight to current researchers in the field and help guide future developments and innovation.

  17. Atomic layer deposition of NiS and its application as cathode material in dye sensitized solar cell

    Mahuli, Neha [Center for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Sarkar, Shaibal K., E-mail: shaibal.sarkar@iitb.ac.in [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-01-15

    Nickel sulfide (NiS) is grown by atomic layer deposition (ALD) using sequential exposures of bis(2,2,6,6-tetramethylheptane-3,5-dionate)nickel(II) [Ni(thd){sub 2}] and hydrogen sulfide (H{sub 2}S) at 175 °C. Complementary combinations of in situ and ex situ characterization techniques are used to understand the deposition chemistry and the nature of film growth. The saturated growth rate of ca. 0.21 Å per ALD cycle is obtained, which is constant within the ALD temperature window (175–250 °C). As deposited films on glass substrates are found polycrystalline without any preferred orientation. Electrical transport measurement reveals degenerative/semimetallic characteristics with a carrier concentration of ca. 9 × 10{sup 22} cm{sup −3} at room temperature. The ALD grown NiS thin film demonstrates high catalytic activity for the reduction of I{sup −}/I{sub 3}{sup −} electrolyte that opens its usage as cost-effective counter electrode in dye sensitized solar cells, replacing Pt.

  18. Impurities, Defects and Diffusion in Semiconductors: Bulk and Layered Structures. Materials Research Society Symposium Proceedings. Volume 163

    1990-11-21

    Processing and Science, D.B. Poker, C. Ortiz, 1989, ISBN: 1-55899-025-9 Volume 153-Interfaces Between Polymers , Metals, and Ceramics, B.M. DeKoven, A.J...Interfaces in Composite Materials, C.G. Pantano, E.J.H. Chen, 1989, ISBN 1-55899-058-5 Volume 171- Polymer Based Molecular Composites, D.W. Schaefer, J.E...electrical characteristics of a semiconductor such as its free carrier concentration, mobility and minority cartier lifetime are determined by the

  19. Influence of soft bonding layer material viscoplasticity on thermal lens and aspherical aberration of high-power thin disk laser

    Wang, Mu; Zhu, Guangzhi; Zhu, Xiao; Feng, Yufan; Gao, Jiapeng

    2016-11-01

    An numerical model considering solder viscoplasticity is developed to analyze the thermal deformation of laser disk with indium bonded. The characteristic of soft bonding material is described using Anand viscoplasticity model. The Finite Element Method analytical results show that the back surface of laser disk with pumping will deform more significantly with time and finally be steady. Correspondingly the refraction power increase gradually and diffraction loss induced by aspherical aberration decrease gradually. Futhermore when pump spot is larger the refraction power and aspherical aberration will change more due to solder viscoplasticity.

  20. Effect of graphene layer thickness and mechanical compliance on interfacial heat flow and thermal conduction in solid-liquid phase change materials.

    Warzoha, Ronald J; Fleischer, Amy S

    2014-08-13

    Solid-liquid phase change materials (PCMs) are attractive candidates for thermal energy storage and electronics cooling applications but have limited applicability in state-of-the-art technologies due to their low intrinsic thermal conductivities. Recent efforts to incorporate graphene and multilayer graphene into PCMs have led to the development of thermal energy storage materials with remarkable values of bulk thermal conductivity. However, the full potential of graphene as a filler material for the thermal enhancement of PCMs remains unrealized, largely due to an incomplete understanding of the physical mechanisms that govern thermal transport within graphene-based nanocomposites. In this work, we show that the number of graphene layers (n) within an individual graphene nanoparticle has a significant effect on the bulk thermal conductivity of an organic PCM. Results indicate that the bulk thermal conductivity of PCMs can be tuned by over an order of magnitude simply by adjusting the number of graphene layers (n) from n = 3 to 44. Using scanning electron microscopy in tandem with nanoscale analytical techniques, the physical mechanisms that govern heat flow within a graphene nanocomposite PCM are found to be nearly independent of the intrinsic thermal conductivity of the graphene nanoparticle itself and are instead found to be dependent on the mechanical compliance of the graphene nanoparticles. These findings are critical for the design and development of PCMs that are capable of cooling next-generation electronics and storing heat effectively in medium-to-large-scale energy systems, including solar-thermal power plants and building heating and cooling systems.

  1. Study on the Gamma Passive Analysis for the Thickness of Two Layer Shield Materials%双层屏蔽厚度γ反解技术研究

    张连平; 吴伦强; 韦孟伏

    2015-01-01

    分析高分辨(能谱获取测量对象特定信息在军控核查领域有重要应用,根据多组不同能峰强度比等信息反解给出源外屏蔽材料几何信息有望有效消除未知包装容器对容器内部材料特性认识的影响。分析建立了反解源外双层屏蔽厚度的方法,实验测量反解了钚源和152 Eu点源外双层屏蔽材料的厚度,152 Eu点源的解析结果明显优于钚源,分析了实验解析结果与实际厚度值之间存在一定偏差的原因。%Acquiring the special information about measured object by gamma spectrum has important application in the field of arms control verification.The geometry information of the shield material out of source has been obtained by several group of intensity ratio of different energy gamma rays, which would reduce the affect for the evaluation of the inner assembly characteristic when the packaging is unknown.In this paper, the method of an-alyzing the thickness of several layers shield materials has been established, and the thickness of several layer shield materials out of plutonium source and 152 Eu source has been analyzed based on the experiment, the result of the 152 Eu source is better than the plutonium source obviously, the reason of the disagreement between the ex-periment result and the actual value has been analyzed.

  2. Microgel-based engineered nanostructures and their applicability with template-directed layer-by-layer polyelectrolyte assembly in protein encapsulation.

    Shenoy, Dinesh B; Sukhorukov, Gleb B

    2005-05-23

    A novel strategy for the fabrication of microcapsules is elaborated by employing biomacromolecules and a dissolvable template. Calcium carbonate (CaCO(3)) microparticles were used as sacrificial templates for the two-step deposition of polyelectrolyte coatings by surface controlled precipitation (SCP) followed by the layer-by-layer (LbL) adsorption technique to form capsule shells. When sodium alginate was used for inner shell assembly, template decomposition with an acid resulted in simultaneous formation of microgel-like structures due to calcium ion-induced gelation. An extraction of the calcium after further LbL treatment resulted in microcapsules filled with the biopolymer. The hollow as well as the polymer-filled polyelectrolyte capsules were characterized using confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and scanning force microscopy (SFM). The results demonstrated multiple functionalities of the CaCO(3) core - as supporting template, porous core for increased polymer accommodation/immobilization, and as a source of shell-hardening material. The LbL treatment of the core-inner shell assembly resulted in further surface stabilization of the capsule wall and supplementation of a nanostructured diffusion barrier for encapsulated material. The polymer forming the inner shell governs the chemistry of the capsule interior and could be engineered to obtain a matrix for protein/drug encapsulation or immobilization. The outer shell could be used to precisely tune the properties of the capsule wall and exterior. [Diagram: see text] Confocal laser scanning microscopy (CLSM) image of microcapsules (insert is after treating with rhodamine 6G to stain the capsule wall).

  3. Directing Hybrid Structures by Combining Self-Assembly of Functional Block Copolymers and Atomic Layer Deposition: A Demonstration on Hybrid Photovoltaics.

    Moshonov, Moshe; Frey, Gitti L

    2015-11-24

    The simplicity and versatility of block copolymer self-assembly offers their use as templates for nano- and meso-structured materials. However, in most cases, the material processing requires multiple steps, and the block copolymer is a sacrificial building block. Here, we combine a self-assembled block copolymer template and atomic layer deposition (ALD) of a metal oxide to generate functional hybrid films in a simple process with no etching or burning steps. This approach is demonstrated by using the crystallization-induced self-assembly of a rod-coil block copolymer, P3HT-b-PEO, and the ALD of ZnO. The block copolymer self-assembles into fibrils, ∼ 20 nm in diameter and microns long, with crystalline P3HT cores and amorphous PEO corona. The affinity of the ALD precursors to the PEO corona directs the exclusive deposition of crystalline ZnO within the PEO domains. The obtained hybrid structure possesses the properties desired for photovoltaic films: donor-acceptor continuous nanoscale interpenetrated networks. Therefore, we integrated the films into single-layer hybrid photovoltaics devices, thus demonstrating that combining self-assembly of functional block copolymers and ALD is a simple approach to direct desired complex hybrid morphologies.

  4. Sputtering of ZnO buffer layer on Si for GaN blue light emitting materials

    2000-01-01

    The preparation of high quality ZnO/Si substrates for the growth of GaN blue light emitting materials is considered. ZnO thin films have been deposited on Si(100) and Si(111) substrates by conventional magnetron sputtering. Morphology, crystallinity and c-axis preferred orientation of ZnO thin films have been investigated by transmitting electron microscopy (TEM), X-ray diffraction (XRD) and X-ray rocking curve (XRC). It is proved that the ZnO thin films have perfect structure. The full-width-at-half-maximum (FWHM) of the ZnO(002) XRC of these films is about 1°, while the minimum is 0.353°. This result is better than the minimum FWHM (about 2°) reported by other research groups. Moreover, comparison and discussion are given on film structure of ZnO/Si(100) and ZnO/Si(111)

  5. Sputtering of ZnO buffer layer on Si for GaN blue light emitting materials

    贺洪波; 范正修; 姚振钰; 汤兆胜

    2000-01-01

    The preparation of high quality ZnO/Si substrates for the growth of GaN blue light emitting materials is considered. ZnO thin films have been deposited on Si (100) and Si (111) substrates by conventional magnetron sputtering. Morphology, crystallinity and c-axis preferred orientation of ZnO thin films have been investigated by transmitting electron microscopy (TEM), X-ray diffraction (XRD) and X-ray rocking curve (XRC). It is proved that the ZnO thin films have perfect structure. The full-width-at-half-maximum (FWHM) of the ZnO(002) XRC of these films is about 1°, while the minimum is 0.353°. This result is better than the minimum FWHM (about 2°) reported by other research groups. Moreover, comparison and discussion are given on film structure of ZnO/Si(100) and ZnO/Si(111).

  6. Few-layer MoS2-anchored graphene aerogel paper for free-standing electrode materials.

    Lee, Wee Siang Vincent; Peng, Erwin; Loh, Tamie Ai Jia; Huang, Xiaolei; Xue, Jun Min

    2016-04-21

    To reduce the reliance on polymeric binders, conductive additives, and metallic current collectors during the electrode preparation process, as well as to assess the true performance of lithium ion battery (LIB) anodes, a free-standing electrode has to be meticulously designed. Graphene aerogel is a popular scaffolding material that has been widely used with embedded nanoparticles for application in LIB anodes. However, the current graphene aerogel/nanoparticle composite systems still involve decomposition into powder and the addition of additives during electrode preparation because of the thick aerogel structure. To further enhance the capacity of the system, MoS2 was anchored onto a graphene aerogel paper and the composite was used directly as an LIB anode. The resultant additive-free MoS2/graphene aerogel paper composite exhibited long cyclic performance with 101.1% retention after 700 cycles, which demonstrates the importance of free-standing electrodes in enhancing cyclic stability.

  7. Effective material parameter retrieval for thin sheets: theory and application to graphene, thin silver films, and single-layer metamaterials

    Tassin, Philippe; Soukoulis, Costas M; 10.1016/j.physb.2012.01.119

    2012-01-01

    An important tool in the field of metamaterials is the extraction of effective material parameters from simulated or measured scattering parameters of a sample. Here we discuss a retrieval method for thin-film structures that can be approximated by a two-dimensional scattering sheet. We determine the effective sheet conductivity from the scattering parameters and we point out the importance of the magnetic sheet current to avoid an overdetermined inversion problem. Subsequently, we present two applications of the sheet retrieval method. First, we determine the effective sheet conductivity of thin silver films and we compare the resulting conductivities with the sheet conductivity of graphene. Second, we apply the method to a cut-wire metamaterial with an electric dipole resonance. The method is valid for thin-film structures such as two-dimensional metamaterials and frequency-selective surfaces and can be easily generalized for anisotropic or chiral media.

  8. Effective material parameter retrieval for thin sheets: theory and application to graphene, thin silver films, and single-layer metamaterials

    Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas

    2012-01-30

    An important tool in the field of metamaterials is the extraction of effective material parameters from simulated or measured scattering parameters of a sample. Here we discuss a retrieval method for thin-film structures that can be approximated by a two-dimensional scattering sheet. We determine the effective sheet conductivity from the scattering parameters and we point out the importance of the magnetic sheet current to avoid an overdetermined inversion problem. Subsequently, we present two applications of the sheet retrieval method. First, we determine the effective sheet conductivity of thin silver films and we compare the resulting conductivities with the sheet conductivity of graphene. Second, we apply the method to a cut-wire metamaterial with an electric dipole resonance. The method is valid for thin-film structures such as two-dimensional metamaterials and frequency-selective surfaces and can be easily generalized for anisotropic or chiral media.

  9. Effective material parameter retrieval for thin sheets: Theory and application to graphene, thin silver films, and single-layer metamaterials

    Tassin, Philippe, E-mail: tassin@ameslab.gov [Ames Laboratory - U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Koschny, Thomas, E-mail: koschny@ameslab.gov [Ames Laboratory - U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Soukoulis, Costas M., E-mail: soukoulis@ameslab.gov [Ames Laboratory - U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Institute of Electronic Structure and Lasers (IESL), FORTH, 71110 Heraklion, Crete (Greece)

    2012-10-15

    An important tool in the field of metamaterials is the extraction of effective material parameters from simulated or measured scattering parameters of a sample. Here we discuss a retrieval method for thin-film structures that can be approximated by a two-dimensional scattering sheet. We determine the effective sheet conductivity from the scattering parameters and we point out the importance of the magnetic sheet current to avoid an overdetermined inversion problem. Subsequently, we present two applications of the sheet retrieval method. First, we determine the effective sheet conductivity of thin silver films and we compare the resulting conductivities with the sheet conductivity of graphene. Second, we apply the method to a cut-wire metamaterial with an electric dipole resonance. The method is valid for thin-film structures such as two-dimensional metamaterials and frequency-selective surfaces and can be easily generalized for anisotropic or chiral media.

  10. Few-layer MoS2-anchored graphene aerogel paper for free-standing electrode materials

    Lee, Wee Siang Vincent; Peng, Erwin; Loh, Tamie Ai Jia; Huang, Xiaolei; Xue, Jun Min

    2016-04-01

    To reduce the reliance on polymeric binders, conductive additives, and metallic current collectors during the electrode preparation process, as well as to assess the true performance of lithium ion battery (LIB) anodes, a free-standing electrode has to be meticulously designed. Graphene aerogel is a popular scaffolding material that has been widely used with embedded nanoparticles for application in LIB anodes. However, the current graphene aerogel/nanoparticle composite systems still involve decomposition into powder and the addition of additives during electrode preparation because of the thick aerogel structure. To further enhance the capacity of the system, MoS2 was anchored onto a graphene aerogel paper and the composite was used directly as an LIB anode. The resultant additive-free MoS2/graphene aerogel paper composite exhibited long cyclic performance with 101.1% retention after 700 cycles, which demonstrates the importance of free-standing electrodes in enhancing cyclic stability.To reduce the reliance on polymeric binders, conductive additives, and metallic current collectors during the electrode preparation process, as well as to assess the true performance of lithium ion battery (LIB) anodes, a free-standing electrode has to be meticulously designed. Graphene aerogel is a popular scaffolding material that has been widely used with embedded nanoparticles for application in LIB anodes. However, the current graphene aerogel/nanoparticle composite systems still involve decomposition into powder and the addition of additives during electrode preparation because of the thick aerogel structure. To further enhance the capacity of the system, MoS2 was anchored onto a graphene aerogel paper and the composite was used directly as an LIB anode. The resultant additive-free MoS2/graphene aerogel paper composite exhibited long cyclic performance with 101.1% retention after 700 cycles, which demonstrates the importance of free-standing electrodes in enhancing cyclic

  11. Manejo post sacrificial del cuerpo humano: evidencias e implicaciones rituales en un entierro del Clásico Terminal en Lagartero, Chiapas

    Judith Lizbeth Ruiz González

    2016-06-01

    Full Text Available Durante 2011 se llevaron a cabo labores de exploración arqueológica en el sitio de Lagartero, en el estado de Chiapas; se recuperó, en un contexto no funerario, un entierro primario con características particulares. Se identificaron segmentos anatómicos incompletos de un individuo masculino, adulto joven, con marcas de corte distribuidas en varias áreas de los huesos. Se puede considerar que se trata de evidencia del tratamiento post sacrificial del cuerpo humano y el posible aprovechamiento de alguna de sus partes con propósitos rituales o como materia prima para la manufactura de utensilios, herramientas, ornatos u otros objetos. A partir de la concepción maya de lo que es el cuerpo humano se pretende entender el porqué del manejo post sacrificial que se dio al cadáver.

  12. SIMS Analysis on Ion Implantation of Fluorine at Interface between Top Silicon and Insulator Layers in SOI Materials%SOI材料中绝缘层界面处离子注入氟的SIMS剖析

    方培源; 曹永明

    2005-01-01

    Silicon-on-insulator (SOI) is well known as "new technology of Si semiconductor IC process in 21 Contrary". Recently, SOI materials have been identified as the first choice of the semiconductor materials for fabricating low voltage and low power circuits. In order to improve the working performance of the SOI circuit under the radiating circumstance, ion implantation of fluorine impurity into the insulator layers in SOI materials is used for hardening the thermal gate oxide layer. Proper implantation depth of fluorine would further improve radiate resistance performance of the SOI circuit. This paper describes the SIMS analysis results of fluorine impurity implantation profile at the interface between top silicon layer and oxide insulator layer.

  13. Forming openings to semiconductor layers of silicon solar cells by inkjet printing

    Lennon, Alison J.; Utama, Roland Y.; Lenio, Martha A.T.; Ho-Baillie, Anita W.Y.; Kuepper, Nicole B.; Wenham, Stuart R. [The University of New South Wales, ARC Photovoltaics Centre of Excellence, Sydney 2052 (Australia)

    2008-11-15

    An inkjet printing method for forming openings to buried semiconductor layers of silicon solar cells is described. The method uses an overlying resist as a sacrificial layer onto which a plasticiser for the resist polymer is deposited in a programmed pattern using inkjet printing. At the locations where the plasticiser is printed, the resist becomes permeable to aqueous etching solutions, enabling openings to be created in underlying dielectric or silicon layer(s). The formed openings can be used to create metal contacts to the buried silicon layers of the solar cell. The permeability of the resist to aqueous etchants can be reversed, thus enabling a single resist layer to be used to create more than one set of openings in the underlying layers. The proposed method may also be applied more generally to the formation of patterns of openings in layers of semiconductor or microelectromechanical devices. (author)

  14. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-06-01

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.

  15. A Study on the Effects of Layout and Material Type of the Middle Layer on Elasticity Module of I-Beams

    Mahdi Mashmoul

    2016-12-01

    Full Text Available The present study aimed to investigate the effect of layout and material type of the middle layer on elasticity module of I beams made out of PopulusNigra, Plywood, and MDF in three forms of wooden material, zinc-coated sheets and compound materials. In order to in order to make the beams, PopulusNigra of 100 * 6* 4 centimeter size was used in the wings of the beam and the body of the beam was made of plywood, MDF and zinc-coated sheet of 100* 18 centimeter size. Combining the above-mentioned factors, nine treatments were created which were repeated four times and created 36 I beams the elasticity module of which were tested using mechanic al gauging device. Two-factor factorial test was used in a random form of statistical analysis and the means were compared through Duncan’s multiple range test (DMRT. Results revealed that maximum elasticity module was for zinc-coated beams and minimum module was observed in beams made of MDF.

  16. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-01-01

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption. PMID:27312225

  17. Zeolitic imidazolate framework-8 (ZIF-8) as a sacrificial template: one-pot synthesis of hollow poly(dopamine) nanocapsules and yolk-structured poly(dopamine) nanocomposites

    Ran, Jingyu; Xiao, Lihua; Wu, Weidang; Liu, Yike; Qiu, Wei; Wu, Jianming

    2017-02-01

    Hollow poly(dopamine) (PDA) nanocapsules and yolk-structured PDA nanocomposites were prepared by an aqueous one-pot synthesis method utilizing zeolitic imidazolate framework-8 (ZIF-8) nanocrystals as a sacrificial template without any special etchant. The resulting PDA nanocapsules show negligible cytotoxicity in HeLa cells after incubation for 48 h at various doses, which implies their potential as candidates for practical applications in drug transport and targeting.

  18. Sacrificial hydrogen generation from aqueous triethanolamine with Eosin Y-sensitized Pt/TiO2 photocatalyst in UV, visible and solar light irradiation.

    Chowdhury, Pankaj; Gomaa, Hassan; Ray, Ajay K

    2015-02-01

    In this paper, we have studied Eosin Y-sensitized sacrificial hydrogen generation with triethanolamine as electron donor in UV, visible, and solar light irradiation. Aeroxide TiO2 was loaded with platinum metal via solar photo-deposition method to reduce the electron hole recombination process. Photocatalytic sacrificial hydrogen generation was influenced by several factors such as platinum loading (wt%) on TiO2, solution pH, Eosin Y to Pt/TiO2 mass ratio, triethanolamine concentration, and light (UV, visible and solar) intensities. Detailed reaction mechanisms in visible and solar light irradiation were established. Oxidation of triethanolamine and formaldehyde formation was correlated with hydrogen generation in both visible and solar lights. Hydrogen generation kinetics followed a Langmuir-type isotherm with reaction rate constant and adsorption constant of 6.77×10(-6) mol min(-1) and 14.45 M(-1), respectively. Sacrificial hydrogen generation and charge recombination processes were studied as a function of light intensities. Apparent quantum yields (QYs) were compared for UV, visible, and solar light at four different light intensities. Highest QYs were attained at lower light intensity because of trivial charge recombination. At 30 mW cm(-2) we achieved QYs of 10.82%, 12.23% and 11.33% in UV, visible and solar light respectively.

  19. Hydrogel Layers on the Surface of Polyester-Based Materials for Improvement of Their Biointeractions and Controlled Release of Proteins

    Viktor Korzhikov-Vlakh

    2016-12-01

    Full Text Available The modification of bioresorbable polyester surfaces in order to alter their biointeractions presents an important problem in biomedical polymer science. In this study, the covalent modification of the surface of poly(lactic acid-based (PLA-based films with poly(acryl amide and sodium alginate hydrogels was performed to change the non-specific polyester interaction with proteins and cells, as well as to make possible the covalent attachment of low-molecular weight ligands and to control protein release. The effect of such modification on the film surface properties was studied. Parameters such as swelling, water contact angle, surface area, and binding capacity of low-molecular weight substances were evaluated and compared. The comparative study of adsorption of model protein (BSA on the surface of non-modified and modified films was investigated and the protein release was evaluated. Cell viability on the surface of hydrogel-coated films was also tested. The developed approach could be applied for the modification of PLA-based scaffolds for tissue engineering and will be further studied for molecular-imprinting of biomolecules on the surface of polyester-based materials for control of biointeractions.

  20. Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review

    Pelosato, Renato; Cordaro, Giulio; Stucchi, Davide; Cristiani, Cinzia; Dotelli, Giovanni

    2015-12-01

    Nowadays, the cathode is the most studied component in Intermediate Temperature-Solid Oxide Fuel Cells (IT-SOFCs). Decreasing SOFCs operating temperature implies slow oxygen reduction kinetics and large polarization losses. Double perovskites with general formula REBaCo2O5+δ are promising mixed ionic-electronic conductors, offering a remarkable enhancement of the oxygen diffusivity and surface exchange respect to disordered perovskites. In this review, more than 250 compositions investigated in the literature were analyzed. The evaluation was performed in terms of electrical conductivity, Area Specific Resistance (ASR), chemical compatibility with electrolytes and Thermal Expansion Coefficient (TEC). The most promising materials have been identified as those bearing the mid-sized rare earths (Pr, Nd, Sm, Gd). Doping strategies have been analyzed: Sr doping on A site promotes higher electrical conductivity, but worsen ASR and TECs; B-site doping (Fe, Ni, Mn) helps lowering TECs, but is detrimental for the electrochemical properties. A promising boost of the electrochemical activity is obtained by simply introducing a slight Ba under-stoichiometry. Still, the high sensitivity of the electrochemical properties against slight changes in the stoichiometry hamper a conclusive comparison of all the investigated compounds. Opportunities for an improvement of double perovskite cathodes performance is tentatively foreseen in combining together the diverse effective doping strategies.

  1. Synthesis and structural characterization of zirconium phosphate adipate dimethyl sulphoxide: A new lambda-type organic-inorganic layered material

    Hussein Alhendawi

    2014-07-01

    −Zirconium phosphate adipate dimethyl sulphoxide, -ZrPO4(OOC-(CH2)4-COOH)(CH3)2SO, is prepared by means of topotactic anion exchange of the chloride ligand of -Zirconium phosphate, -ZrPO4Cl(CH3)2SO, with adipate. The samples are characterized by thermal analyses, X-ray diffractometry and FT-IR spectrophotometry. The used analysis approaches provide strong evidence that the chloride monovalent anions of -Zirconium phosphate are completely exchanged with the carboxylate groups of the adipate monoanionic ligands. Moreover, the adipate ligands replace the chloride anions in a 1:1 stoichiometry. In this case the formula of the derivative should contain the monoanionic adipate fragment: (OOC-(CH2)4-COOH). This formula is in agreement with TGA and elemental analysis. With respect to intercalation properties, the synthesized adipate-solid phase has a higher acidic character and a larger gallery height in comparison to the pristine -Zirconium phosphate (1.47, 1.02 nm, respectively). Therefore, this material is expected to be a suitable host for intercalation of huge basic guests.

  2. Morphological and Structural Studies of Titanate and Titania Nanostructured Materials Obtained after Heat Treatments of Hydrothermally Produced Layered Titanate

    Mohd Hasmizam Razali

    2012-01-01

    Full Text Available Different types of titanate and titania nanostructured materials have been successfully synthesised and characterized using field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, X-ray diffraction (XRD and raman spectroscopy. Elemental analysis was determined by energy dispersive X-ray spectroscopy (EDX analyzer while thermogravimetric-differential scanning calorimetry (TG-DSC was used to determine thermal stability. In this study, we found that nanotubes were formed during the washing treatment stage with HCl and distilled water. When the pH of the washing solution was 12, sodium titanate nanotubes were obtained, while when the pH of the washing solution was 7, hydrogen titanate nanotubes were obtained. Sodium titanate nanotubes were thermally stable up to 500°C; however, at 700°C, the nanotubes structure transform to solid nanorods. Meanwhile, hydrogen titanate nanotubes decomposed to produce titania nanotubes after heat treatment at 300°C for 2 hours. At 500°C, the tubular structure broke to small segments due to destruction of the nanotube. Further heat treatment at 700°C, led to the destruction and collapse of the nanotubes structure produce titania nanoparticles.

  3. 层状钴基正极材料的改性研究%Modification of layered Co-based cathode material

    杨占旭; 乔庆东; 任铁强; 李琪

    2012-01-01

    Layered LiCoO2 has been the dominant cathode material for commercial Li-ion batteries because of its ease of production, good rate capability and stable discharge voltage platform. However, layered LiCoO2 shows poor overcharge tolerance and thermal stability, which restrict its commercialization. In this article, the progress in ion substitution and surface treatment of layered LiCoO2 to improve the structural and thermal stability at home and abroad has been described in detail. The mechanism has been discussed as well.%层状LiCoO2是目前商品化的主要正极材料,具有易于制备、较好的倍率性能以及放电电压平稳等优点,但其抗过充电性能和热稳定性差限制了其应用.详细阐述了国内外关于层状LiCoO2正极材料的改性研究进展,包括体相掺杂和表面包覆改性两种方法提高材料的抗过充电性能和热稳定性,并对体相掺杂和表面包覆层状LiCoO2正极材料电化学性能提高的机理进行了讨论.

  4. Preparation of ZnO Nanoparticles and Photocatalytic H2 Production Activity from Different Sacrificial Reagent Solutions

    Tian-you Peng; Hong-jin Lv; Peng Zeng; Xiao-hu Zhang

    2011-01-01

    ZnO nanoparticles were synthesized via a direct precipitation method followed by a heterogeneous azeotropic distillation and calcination processes,and then characterized by X-ray power diffraction,scanning electron microscopy,transmission electron microscopy,and nitrogen adsorption-desorption measurement.The effects of Pt-loading amount,calcination temperature,and sacrificial reagents on the photocatalytic H2 evolution efficiency from the present ZnO suspension were investigated.The experimental results indicate that ZnO nanoparticles calcined at 400 ℃ exhibit the best photoactivity for the H2 production in comparison with the samples calcined at 300 and 500 ℃,and the photocatalytic H2 production efficiency from a methanol solution is much higher than that from a triethanolamine solution.It can be ascribed to the oxidization of methanol also contributes to the H2 production during the photochemical reaction process.Moreover,the photocatalytic mechanism for the H2 production from the present ZnO suspension system containing methanol solution is also discussed in detail.

  5. Optimization of Manganese and Magnesium Contents in As-cast Aluminum-Zinc-Indium Alloy as Sacrificial Anode

    Mohammed R. Saeri; Ahmad Keywni

    2011-01-01

    In this study, effects of manganese and magnesium content on the electrochemical properties of Al-Zn-ln sacrificial anode were studied in 0.5 mol/L NaCl solution (pH=5). The aluminum base alloy with different amounts of Mn and Mg were melted at 750℃, then casted at molds at 25℃. Corrosion experiments were mounted to determine the optimal effect of Mn and Mg on the efficiencies of the aluminum alloy anodes. The corroded and unexposed sample surfaces were subjected to microstructure characterization by optical and scanning electron microscopy. AI-Zn-ln alloy doped with 0%, 0.01%, 0.05%.0.2% and 0.3% by weights of Mn and 0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0% by weights of Mg were prepared to determine the effect of Mn and Mg on anode efficiency in the environment. The different microstructures of the evolved AI- Zn-ln-Mg-Mn alloy were correlated with the anode efficiencies. The Al-5.0%Zn-2.0%Mg-0.15%Mn-0.02%ln gave the best anode efficiency (about 83%). The microstructures of the corroded surface of the optimized alloy revealed decreased distribution of the pockets of localized attacks which are characteristics of pitting (or crevice) corrosion.

  6. Comparative toxicities of aluminum and zinc from sacrificial anodes or from sulfate salt in sea urchin embryos and sperm.

    Caplat, Christelle; Oral, Rahime; Mahaut, Marie-Laure; Mao, Andrea; Barillier, Daniel; Guida, Marco; Della Rocca, Claudio; Pagano, Giovanni

    2010-09-01

    The toxicity of aluminum or zinc from either sacrificial anodes (SA) or their sulfate salts (SS) was evaluated in sea urchin (Paracentrotus lividus) embryos or sperm exposed to Al(III) or Zn(II) (SA or SS, 0.1-10 microM), scoring developmental defects (DDs), fertilization rate (FR), and mitotic abnormalities. A significant DD increase was observed in SS, but not SA Al(III)- and Zn(II)-exposed embryos vs. controls. Both Al(III) and Zn(II), up to 10 microM, from SA and SS, inhibited mitotic activity and induced mitotic aberrations in exposed embryos. SA-Al(III)-exposed sperm displayed a significant FR increase, unlike Al(III) sulfate overlapping with controls. Both SA-Zn(II) and Zn(II) sulfate sperm exposure resulted in a significant FR increase. The offspring of SA-Al(III)-exposed sperm displayed a significant DD decrease, unlike Al(III) sulfate exposure. Zinc sulfate sperm exposure resulted in a significant increase in offspring DDs, whereas SA-Zn(II) sperm exposure decreased DDs. Together, exposures to SA-dissolved Al(III) or Zn(II) resulted in lesser, if any toxicity, up to hormesis, compared to SS. Studies of metal speciation should elucidate the present results.

  7. Analisa Teknis dan Ekonomis Penggunaan ICCP (Impressed Current Cathodic Protection Dibandingkan dengan Sacrificial Anode dalam Proses Pencegahan Korosi

    Afif Wiludin

    2013-03-01

    Full Text Available Perlindungan badan kapal  terhadap korosi dengan  menggunakan  metode perlindungan katodik pada prinsipnya adalah sel elektrokimia untuk mengendalikan korosi dengan mengkonsentrasikan reaksi oksigen pada sel galvanik dan menekan korosi pada katoda dalam sel yang sama. Pada proteksi katodik, logam yang akan dilindungi dijadikan katoda dan reaksi oksidasi terjadi di anoda. Ada dua macam cathodic protection yaitu Sacrificial Anode Cathodic Protection (SACP dan Impressed Current Cathodic Protection (ICCP. Dilakukan penelitian tentang analisa teknis dan ekonomis penggunaan ICCP dibandingkan dengan SACP dalam proses pencegahan korosi, kedua sistem dibandingkan dalam jangka 20 tahun, dari segi teknis dengan menggunakan perbandingan perhitungan sesuai standar DnV, yang dibandingkan dari tahap design, tahap instalasi, dan maintenance, dari segi ekonomis perbandingan dibedakan dari tahap pengadaan komponen-komponen sistem, tahap instalasi, dan tahap maintenance. Data perbandingan diperoleh dengan perhitungan sesuai standar, study literature, diskusi dan interview. Hasil perhitungan perbandingan yang diperkirakan selama 20 tahun, dari segi teknis kedua sistem memenuhi standar yang berdasar pada sistem perhitungan standar DnV B-401, sedangkan dari segi ekonomis, biaya untuk sistem ICCP sebesar Rp. 205.405.000,00 dan sistem SACP sebesar Rp. 562.590.000,00, sehingga lebih ekonomis menggunakan sistem ICCP sebesar Rp 357.185.000, 00 atau 63,49% dari biaya untuk sistem SACP

  8. Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries

    Qin, Wei; Chen, Taiqiang; Lu, Ting; Chua, Daniel H. C.; Pan, Likun

    2016-01-01

    Layered nickel sulfide (NS)-reduced graphene oxide (RGO) composites are prepared via a simple microwave-assisted method and subsequent annealing in N2/H2 atmosphere. A detailed array of characterization tools are used to study their morphology, structure and electrochemical performance. It was found that these composites exhibit significantly improved sodium-ion storage ability as compared with pure NS under galvanostatic cycling at a specific current of 100 mA g-1 in a potential limitation of 0.005-3.0 V. Furthermore, the composite with the RGO content of 35 wt.% achieves a high maximum reversible specific capacity of about 391.6 mAh g-1 at a specific current of 100 mA g-1 after 50 cycles. These results prove that NS-RGO composites are highly promising when applied directly as anode materials in sodium-ion batteries.

  9. Overview of recent tritium target filling, layering, and material testing at Los Alamos national laboratory in support of inertial fusion experiments

    Ebey, P. S.; Dole, J. M.; Geller, D. A.; Hoffer, J. K.; Morris, J.; Nobile, A.; Schoonover, J. R.; Wilson, D. [MS-C927, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Bonino, M.; Harding, D.; Sangster, C.; Shmayda, W. [Laboratory for Laser Energetics LLE, Univ. of Rochester, 250 East River Road, Rochester, NY 14623 (United States); Nikroo, A.; Sheliak, J. D. [General Atomics GA (United States); Burmann, J.; Cook, B.; Letts, S.; Sanchez, J. [Lawrence Livermore National Laboratory LLNL (United States)

    2008-07-15

    The Tritium Science and Engineering (AET-3) Group at Los Alamos National Laboratory (LANL) performs a variety of activities to support Inertial Fusion (IF) research - both to further fundamental fusion science and to develop technologies in support of Inertial Fusion Energy (IFE) power generation. Inertial fusion ignition target designs have a smooth spherical shell of cryogenic Deuterium-Tritium (DT) solid contained within a metal or plastic shell that is a few mm in diameter. Fusion is attained by imploding these shells under the symmetric application of energy beams. For IFE targets the DT solid must also survive the process of injecting it into the power plant reactor. Non-ignition IF targets often require a non-cryogenic DT gas fill of a glass or polymeric shell. In this paper an overview will be given of recent LANL activities to study cryogenic DT layering, observe tritium exposure effects on IF relevant materials, and fill targets in support of IF implosion experiments. (authors)

  10. Synthesis and characterization of multi-layer core-shell structural LiFeBO3/C as a novel Li-battery cathode material

    Zhang, Bao; Ming, Lei; Zheng, Jun-chao; Zhang, Jia-feng; Shen, Chao; Han, Ya-dong; Wang, Jian-long; Qin, Shan-e.

    2014-09-01

    A multi-layer core-shell structural LiFeBO3/C has been successfully synthesized via spray-drying and carbothermal method using LiBO2·8H2O, Fe(NO3)3·9H2O, and citric acid as starting materials. The Rietveld refinement results indicate the sample consists of two phases: LiFeBO3 [94(6)% w/w], and LiFeO2 [6(4)% w/w]. SEM images show that the LiFeBO3 powders consist of rough similar-spherical particles with a size distribution ranging from 1 μm to 5 μm. TEM results present that the LiFeBO3 spherical particles are well coated by nano-carbon webs and form a multi-layer core-shell structure. The amount of carbon was determined to be 6.50% by C/S analysis. The prepared LiFeBO3-LiFeO2/C presents an initial discharge capacity of 196.5 mAh g-1 at the current density of 10 mA g-1 between 1.5 and 4.5 V, and it can deliver a discharge capacity of 136.1 mAh g-1 after 30 cycles, presents excellent electrochemical properties, indicating the surface sensitivity in the air was restrained.

  11. Electrosynthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electrooxidation in Alkaline Media

    Biuck Habibi

    2017-04-01

    Full Text Available In this study, Ni-Al layered double hydroxide (LDH-Pt nanoparticles (PtNPs as an inorganic nano-composite was electrosynthesized on the glassy carbon electrode (GCE by a facile and fast two-step electrochemical process. Structure and physicochemical properties of PtNPs/Ni-Al LDH/GCE were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry and electrochemical methods. Then, electrocatalytic and stability characterizations of the PtNPs/Ni-Al LDH/GCE for methanol oxidation in alkaline media were investigated in detail by cyclic voltammetry, chronoamperometry, and chronopotentiometry measurements. PtNPs/Ni-Al LDH/GCE exhibited higher electrocatalytic activity than PtNPs/GCE and Ni-Al LDH/GCE. Also, the resulted chronoam-perograms indicated that the PtNPs/Ni-Al LDH/GCE has a better stability. Copyright © 2017 BCREC GROUP. All rights reserved Received: 30th March 2016; Revised: 29th July 2016; Accepted: 9th September 2016 How to Cite: Habibi, B., Ghaderi, S. (2017. Electro Synthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electro-Oxidation in Alkaline Media. Bulletin of Chemical Reaction Engineering & Catalysis, 12(1: 1-13 (doi:10.9767/bcrec.12.1.460.1-13 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.460.1-13

  12. W-doped TiO2 mesoporous electron transport layer for efficient hole transport material free perovskite solar cells employing carbon counter electrodes

    Xiao, Yuqing; Cheng, Nian; Kondamareddy, Kiran Kumar; Wang, Changlei; Liu, Pei; Guo, Shishang; Zhao, Xing-Zhong

    2017-02-01

    Doping of TiO2 by metal elements for the scaffold layer of the perovskite solar cells has been proved to be one of the effective methods to improve the power conversion efficiency. In the present work, we report the impact of doping of TiO2 nanoparticles with different amounts of tungsten (W) on the photovoltaic properties of hole transport material free perovskite solar cells (PSCs) that employ carbon counter electrode. Light doping with W (less than 1000 ppm) improves the power conversion efficiencies (PCEs) of solar cells by promoting the electron conductivity in the TiO2 layer which facilitates electron transfer and collection. With the incorporation of W, average efficiency of PSCs is increased from 9.1% for the un-doped samples to 10.53% for the 1000 ppm W-doped samples, mainly originates from the increase of short circuit current density and fill factor. Our champion cell exhibits an impressive PCE of 12.06% when using the 1000 ppm W-doped TiO2 films.

  13. Layered exfoliable crystalline materials based on Sm-, Eu- and Eu/Gd-2-phenylsuccinate frameworks. Crystal structure, topology and luminescence properties.

    Gomez, G E; Bernini, M C; Brusau, E V; Narda, G E; Vega, D; Kaczmarek, A M; Van Deun, R; Nazzarro, M

    2015-02-21

    Three new layered metal-organic frameworks (MOFs) based on 2-phenylsuccinic acid (H2psa) and lanthanide ions with the formula [Ln2(C10H8O4)3(H2O)] (Ln = Eu, Sm and Eu-Gd) have been synthesized under solvothermal conditions and fully characterized by single-crystal X-ray diffraction, thermal and vibrational analyses. The compounds are isostructural featuring 2D frameworks that consist of infinite zigzag chains composed of [LnO8] and [LnO8(H2O)] edge-sharing polyhedra linked by psa ligands leading to layers further connected by weak π-π interactions in an edge orientation. Moreover, a topological study was carried out to obtain the simplified net for better comparison with structurally related compounds. The crystals were exfoliated into nanolayers after miniaturization by addition of sodium acetate as a capping agent in the reaction medium. Scanning electron microscopy was applied to characterize the miniaturized samples whereas the exfoliated hybrid nanosheets were studied by atomic force microscopy. The photoluminescence (PL) properties of the bulk compounds as well as the miniaturized and exfoliated materials were investigated and compared with other related ones. An exhaustive study of the Eu(iii)-based MOFs was performed on the basis of the obtained PL parameters (excitation and emission spectra, kr, knr, intrinsic quantum yields and lifetimes) to explore the underlying structure-property relationships.

  14. Structural and thermal stabilities of layered Li(Ni 1/3Co 1/3Mn 1/3)O 2 materials in 18650 high power batteries

    He, Yan-Bing; Ning, Feng; Yang, Quan-Hong; Song, Quan-Sheng; Li, Baohua; Su, Fangyuan; Du, Hongda; Tang, Zhi-Yuan; Kang, Feiyu

    The structural and thermal stabilities of the layered Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathode materials under high rate cycling and abusive conditions are investigated using the commercial 18650 Li(Ni 1/3Co 1/3Mn 1/3)O 2/graphite high power batteries. The Li(Ni 1/3Co 1/3Mn 1/3)O 2 materials maintain their layered structure even when the power batteries are subjected to 200 cycles with 10 C discharge rate at temperatures of 25 and 50 °C, whereas their microstructure undergoes obvious distortion, which leads to the relatively poor cycling performance of power batteries at high charge/discharge rates and working temperature. Under abusive conditions, the increase in the battery temperature during overcharge is attributed to both the reactions of electrolyte solvents with overcharged graphite anode and Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathode and the Joule heat that results from the great increase in the total resistance (R cell) of batteries. The reactions of fully charged Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathodes and graphite anodes with electrolyte cannot be activated during short current test in the fully charged batteries. However, these reactions occur at around 140 °C in the fully charged batteries during oven test, which is much lower than the temperature of about 240 °C required for the reactions outside batteries.

  15. Improving the Efficiency Enhancement of Photonic Crystal Based InGaN Solar Cell by Using a GaN Cap Layer

    T. F. Gundogdu

    2014-01-01

    Full Text Available We studied a high indium content (0.8 InGaN based solar cell design where the active InGaN layer is sandwiched between a GaN cap layer and a GaN spacer layer. The incorporation of the sacrificial cap layer allows for the etching of the front surface without removing the active InGaN resulting in a 50% enhancement of the short-circuit current density for a 15 nm-thick InGaN layer.

  16. Electronic structure of layered quaternary chalcogenide materials for band-gap engineering: The example of Cs2MIIM3IVQ8

    Besse, Rafael; Sabino, Fernando P.; Da Silva, Juarez L. F.

    2016-04-01

    Quaternary chalcogenide materials offer a wide variety of chemical and physical properties, and hence, those compounds have been widely studied for several technological applications. Recently, experimental studies have found that the chalcogenide Cs2MIIM3IVQ8 family (MII = Mg , Zn , Cd , Hg , MIV = Ge , Sn and Q = S , Se , Te ), which includes 24 compounds, yields a wide range of band gaps, namely, from 1.07 to 3.4 eV, and hence, they have attracted great interest. To obtain an improved atomistic understanding of the role of the cations and anions on the physical properties, we performed a first-principles investigation of the 24 Cs2MIIM3IVQ8 compounds employing density functional theory within semilocal and hybrid exchange-correlation energy functionals and the addition of van der Waals corrections to improve the description of the weakly interacting layers. Our lattice parameters are in good agreement with the available experimental data (i.e., 11 compounds), and the equilibrium volume increases linearly by increasing the atomic number of the chalcogen, which can be explained by the increased atomic radius of the chalcogen atoms from S to Te . We found that van der Waals corrections play a crucial role in the lattice parameter in the stacking direction of the Cs2MIIM3IVQ8 layers, while the binding energy per unit area has similar magnitude as obtained for different layered materials. We obtained that the band gaps follow a linear relation as a function of the unit cell volume, which can be explained by the atomic size of the chalcogen atom and the relative position of the Q p states within the band structure. The fundamental and optical band gaps differ by less than 0.1 eV. The band gaps obtained with the hybrid functional are in good agreement with the available experimental data. Furthermore, we found from the Bader analysis, that the Coulomb interations among the cations and anions play a crucial role on the energetic properties.

  17. Porosity in hybrid materials

    Schaefer, D.W.; Beaucage, G.; Loy, D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-12-31

    Multicomponent, or hybrid composites are emerging as precursors to porous materials. Sacrifice of an ephemeral phase can be used to generate porosity, the nature of which depends on precursor structure. Retention of an organic constituent, on the other hand, can add desirable toughness to an otherwise brittle ceramic. We use small-angle x-ray and neutron scattering to examine porosity in both simple and hybrid materials. We find that microphase separation controls porosity in almost all systems studied. Pore distributions are controlled by the detailed bonding within and between phases as well as the flexibility of polymeric constituents. Thus hybridization opens new regions of pore distributions not available in simple systems. We look at several sacrificial concepts and show that it is possible to generate multimodal pore size distributions due to the complicated phase structure in the precursor.

  18. In-Situ Growth of Yb2O3 Layer for Sublimation Suppression for Yb14MnSb11 Thermoelectric Material for Space Power Applications

    Nesbitt, James A.; Opila, Elizabeth J.; Nathal, Michael V.

    2012-01-01

    The compound Yb14MnSb11 is a p-type thermoelectric material of interest to the National Aeronautics and Space Administration (NASA) as a candidate replacement for the state-of-the-art Si-Ge used in current radioisotope thermoelectric generators (RTGs). Ideally, the hot end of this leg would operate at 1000 C in the vacuum of space. Although Yb14MnSb11 shows the potential to double the value of the thermoelectric figure of merit (zT) over that of Si-Ge at 1000 C, it suffers from a high sublimation rate at elevated temperatures and would require a coating in order to survive the required RTG lifetime of 14 years. The purpose of the present work is to measure the sublimation rate of Yb14MnSb11 and to investigate sublimation suppression for this material. This paper reports on the sublimation rate of Yb14MnSb11 at 1000 C (approximately 3 x 10(exp -3) grams per square centimeter hour) and efforts to reduce the sublimation rate with an in situ grown Yb2O3 layer. Despite the success in forming thin, dense, continuous, and adherent oxide scales on Yb14MnSb11, the scales did not prove to be sublimation barriers.

  19. Supracolloidal Assemblies as Sacrificial Templates for Porous Silk-Based Biomaterials

    John G. Hardy

    2015-08-01

    Full Text Available Tissues in the body are hierarchically structured composite materials with tissue-specific properties. Urea self-assembles via hydrogen bonding interactions into crystalline supracolloidal assemblies that can be used to impart macroscopic pores to polymer-based tissue scaffolds. In this communication, we explain the solvent interactions governing the solubility of urea and thereby the scope of compatible polymers. We also highlight the role of solvent interactions on the morphology of the resulting supracolloidal crystals. We elucidate the role of polymer-urea interactions on the morphology of the pores in the resulting biomaterials. Finally, we demonstrate that it is possible to use our urea templating methodology to prepare Bombyx mori silk protein-based biomaterials with pores that human dermal fibroblasts respond to by aligning with the long axis of the pores. This methodology has potential for application in a variety of different tissue engineering niches in which cell alignment is observed, including skin, bone, muscle and nerve.

  20. Development of Plasma-Sprayed Molybdenum Carbide-Based Anode Layers with Various Metal Oxides for SOFC

    Faisal, N. H.; Ahmed, R.; Katikaneni, S. P.; Souentie, S.; Goosen, M. F. A.

    2015-12-01

    Air plasma-sprayed (APS) coatings provide an ability to deposit a range of novel fuel cell materials at competitive costs. This work develops three separate types of composite anodes (Mo-Mo2C/Al2O3, Mo-Mo2C/ZrO2, Mo-Mo2C/TiO2) using a combination of APS process parameters on Hastelloy®X for application in intermediate temperature proton-conducting solid oxide fuel cells. Commercially available carbide of molybdenum powder catalyst (Mo-Mo2C) and three metal oxides (Al2O3, ZrO2, TiO2) was used to prepare three separate composite feedstock powders to fabricate three different anodes. Each of the modified composition anode feedstock powders included a stoichiometric weight ratio of 0.8:0.2. The coatings were characterized by scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction, nanoindentation, and conductivity. We report herein that three optimized anode layers of thicknesses between 200 and 300 µm and porosity as high as 20% for Mo-Mo2C/Al2O3 (250-µm thick) and Mo-Mo2C/TiO2 (300 µm thick) and 17% for Mo-Mo2C/ZrO2 (220-µm thick), controllable by a selection of the APS process parameters with no addition of sacrificial pore-forming material. The nanohardness results indicate the upper layers of the coatings have higher values than the subsurface layers in coatings with some effect of the deposition on the substrate. Mo-Mo2C/ZrO2 shows high electrical conductivity.

  1. Preparation of hydroxyapatite coating by using a sacrificial anode method%单室牺牲阳极-水热合成法制备羟基磷灰石涂层

    梁成浩; 陈邦义; 黄乃宝

    2012-01-01

    采用单室牺牲阳极-水热合成法在TAMZ钛合金表面制备生物活性羟基磷灰石涂层,通过X-射线衍射分析、傅立叶变换红外光谱和扫描电子显微镜技术对涂层进行检测,探讨涂层制备过程的反应机理.结果表明,金属基体表面首先形成与羟基磷灰石同晶型的缺钙磷灰石层,经水热处理后转化为羟基磷灰石涂层.钙磷灰石涂层在制备过程中存在取向生长,主要由针状和片状晶体组成,水热处理后晶体排布更为致密.制备的涂层上不存在镁元素.%A sacrificial anode method was applied to prepare a bioactive hydroxyapatite(HAP) coating on TAMZ Ti alloy.The coatings were characterized by X-ray diffraction(XRD),Fourier infrared spectra(FTIR) and scanning electron microscopy(SEM).Results show that a calcium deficient hydroxyapatite(CDHA) layer,which has the same crystals as HAP,formed on TAMZ surface during the electrochemical process.By a steam treatment,this layer transforms into HAP coating.The coatings are mainly composed of plate-like and needle-like crystals existing preferential orientation,and after steam treatment the pores between crystals decrease.In addition,magnesium element does not deposit on the coatings.

  2. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design

    Sagar Singh

    2016-03-01

    Full Text Available Single-unit recording neural probes have significant advantages towards improving signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface devices. Long-term effectiveness is unfortunately limited by the chronic injury response, which has been linked to the mechanical mismatch between rigid probes and compliant brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion of these probes without buckling requires supporting elements such as a stiff coating with a biodegradable polymer. For these coated probes, there is a design trade-off between the potential for successful insertion into brain tissue and the degree of trauma generated by the insertion. The objective of this study was to develop and validate a finite element model (FEM to simulate insertion of coated neural probes of varying dimensions and material properties into brain tissue. Simulations were performed to predict the buckling and insertion forces during insertion of coated probes into a tissue phantom with material properties of brain. The simulations were validated with parallel experimental studies where probes were inserted into agarose tissue phantom, ex vivo chick embryonic brain tissue, and ex vivo rat brain tissue. Experiments were performed with uncoated copper wire and both uncoated and coated SU-8 photoresist and Parylene C probes. Model predictions were found to strongly agree with experimental results (<10% error. The ratio of the predicted buckling force-to-predicted insertion force, where a value greater than one would ideally be expected to result in successful insertion, was plotted against the actual success rate from experiments. A sigmoidal relationship was observed, with a ratio of 1.35 corresponding to equal probability of insertion and failure, and a ratio of 3.5 corresponding to a 100% success rate. This ratio was dubbed the “safety factor”, as it indicated the degree to which the coating

  3. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design.

    Singh, Sagar; Lo, Meng-Chen; Damodaran, Vinod B; Kaplan, Hilton M; Kohn, Joachim; Zahn, Jeffrey D; Shreiber, David I

    2016-03-04

    Single-unit recording neural probes have significant advantages towards improving signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface devices. Long-term effectiveness is unfortunately limited by the chronic injury response, which has been linked to the mechanical mismatch between rigid probes and compliant brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion of these probes without buckling requires supporting elements such as a stiff coating with a biodegradable polymer. For these coated probes, there is a design trade-off between the potential for successful insertion into brain tissue and the degree of trauma generated by the insertion. The objective of this study was to develop and validate a finite element model (FEM) to simulate insertion of coated neural probes of varying dimensions and material properties into brain tissue. Simulations were performed to predict the buckling and insertion forces during insertion of coated probes into a tissue phantom with material properties of brain. The simulations were validated with parallel experimental studies where probes were inserted into agarose tissue phantom, ex vivo chick embryonic brain tissue, and ex vivo rat brain tissue. Experiments were performed with uncoated copper wire and both uncoated and coated SU-8 photoresist and Parylene C probes. Model predictions were found to strongly agree with experimental results (experiments. A sigmoidal relationship was observed, with a ratio of 1.35 corresponding to equal probability of insertion and failure, and a ratio of 3.5 corresponding to a 100% success rate. This ratio was dubbed the "safety factor", as it indicated the degree to which the coating should be over-designed to ensure successful insertion. Probability color maps were generated to visually compare the influence of design parameters. Statistical metrics derived from the color maps and multi-variable regression analysis confirmed

  4. Fully integrated and encapsulated micro-fabricated vacuum diode and method of manufacturing same

    Resnick, Paul J.; Langlois, Eric

    2015-12-01

    Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.

  5. Method of manufacturing a fully integrated and encapsulated micro-fabricated vacuum diode

    Resnick, Paul J.; Langlois, Eric

    2014-08-26

    Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.

  6. Artificial layered perovskite oxides A(B{sub 0.5}B′{sub 0.5})O{sub 3} as potential solar energy conversion materials

    Chen, Hungru [Environmental Remediation Materials Unit, National Institute for Materials Sciences, Ibaraki 305-0044 (Japan); Umezawa, Naoto [Environmental Remediation Materials Unit, National Institute for Materials Sciences, Ibaraki 305-0044 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin (China)

    2015-02-07

    Perovskite oxides with a d{sup 0} electronic configuration are promising photocatalysts and exhibit high electron mobilities. However, their band gaps are too large for efficient solar energy conversion. On the other hand, transition metal cations with partially filled d{sup n} electronic configurations give rise to visible light absorption. In this study, by using hybrid density functional theory calculations, it is demonstrated that the virtues of the two categories of materials can be combined in perovskite oxide A(B{sub 0.5}B′{sub 0.5})O{sub 3} with a layered B-site ordering along the [001] direction. The electronic structures of the four selected perovskite oxide compounds, La(Ti{sub 0.5}Ni{sub 0.5})O{sub 3}, La(Ti{sub 0.5}Zn{sub 0.5})O{sub 3}, Sr(Nb{sub 0.5}Cr{sub 0.5})O{sub 3}, and Sr(Nb{sub 0.5}Fe{sub 0.5})O{sub 3} are calculated and discussed.

  7. Visible-light-responsive photocatalysts toward water oxidation based on NiTi-layered double hydroxide/reduced graphene oxide composite materials.

    Li, Bei; Zhao, Yufei; Zhang, Shitong; Gao, Wa; Wei, Min

    2013-10-23

    A visible-light responsive photocatalyst was fabricated by anchoring NiTi-layered double hydroxide (NiTi-LDH) nanosheets to the surface of reduced graphene oxide sheets (RGO) via an in situ growth method; the resulting NiTi-LDH/RGO composite displays excellent photocatalytic activity toward water splitting into oxygen with a rate of 1.968 mmol g(-1) h(-1) and a quantum efficiency as high as 61.2% at 500 nm, which is among the most effective visible-light photocatalysts. XRD patterns and SEM images indicate that the NiTi-LDH nanosheets (diameter: 100-200 nm) are highly dispersed on the surface of RGO. UV-vis absorption spectroscopy exhibits that the introduction of RGO enhances the visible-light absorption range of photocatalysts, which is further verified by the largely decreased band gap (∼1.78 eV) studied by cyclic voltammetry measurements. Moreover, photoluminescence (PL) measurements indicate a more efficient separation of electron-hole pairs; electron spin resonance (ESR) and Raman scattering spectroscopy confirm the electrons transfer from NiTi-LDH nanosheets to RGO, accounting for the largely enhanced carrier mobility and the resulting photocatalytic activity in comparison with pristine NiTi-LDH material. Therefore, this work demonstrates a facile approach for the fabrication of visible-light responsive NiTi-LDH/RGO composite photocatalysts, which can be used as a promising candidate in solar energy conversion and environmental science.

  8. Deformation and fracture of a composite material based on a high-strength maraging steel covered with a melt-quenched Co69Fe4Cr4Si12B11 alloy layer

    Sevost'yanov, M. A.; Kolmakov, A. G.; Molokanov, V. V.; Zabolotnyi, V. T.; Umnov, P. P.; Umnova, N. V.

    2011-04-01

    Multifractal analysis is used to study the deformation and fracture of a promising composite material consisting of a wire base made of K17N9M14 maraging steel covered with a surface layer made from a Co69Fe4Cr4Si12B11 amorphous alloy. As compared to its components, this material has a substantially better set of the mechanical properties.

  9. Analysis of the Deformability of Two-Layer Materials AZ31/Eutectic / Analiza Możliwości Odkształcania Plastycznego Materiału Dwuwarstwowego AZ31/Eutektyka

    Mola R.

    2015-12-01

    Full Text Available The paper present the results of physical simulation of the deformation of the two-layered AZ31/eutectic material using the Gleeble 3800 metallurgical processes simulator. The eutectic layer was produced on the AZ31 substrate using thermochemical treatment. The specimens of AZ31 alloy were heat treated in contact with aluminium powder at 445°C in a vacuum furnace. Depending on the heating time, Al-enriched surface layers with a thickness of 400, 700 and 1100 μm were fabricated on a substrate which was characterized by an eutectic structure composed of the Mg17Al12 phase and a solid solution of aluminium in magnesium. In the study, physical simulation of the fabricated two-layered specimens with a varying thickness of the eutectic layer were deformed using the plane strain compression test at various values of strain rates. The testing results have revealed that it is possible to deform the two-layered AZ31/eutectic material at low strain rates and small deformation values.

  10. Progress in the Research on Materials of Fire Proof Layer of Fire Resistant Cable%耐火电缆耐火绝缘层材料的研究进展

    邵海彬; 张其土; 魏方明; 王庭慰

    2011-01-01

    Insulating material composition, material selection, performance and research progress of the three types of fire-resistant insulating layer materials are described. There are obvious disadvantages in production, installation and price of fire-resistant cables using mica tape and magnesium hydroxide (MgO) as fire-resistant insulating layer. While there are obvious advantages in production, installation and price of fire-resistant cables using fast ceramilying fire-resistant layer as fire-resistant insulating layer. Further more, research work in material selection and new product development should be reinforced.%介绍了不同类型耐火绝缘层材料的组成、材料选择、性能特点及研究概况.分析认为以云母带和氧化镁为耐火绝层缘材料制备耐火电缆在生产、安装施工、成本等方面存在明显不足,而快速陶瓷化耐火绝缘层材料在生产、安装施工、成本等方面优点突出.进一步指出,应在材料选择、新产品开发等方面加强对快速陶瓷化耐火绝缘层的研究.

  11. Progress in the Research on Materials of Fire Proof Layer of Fire Resistant Cable%耐火电缆耐火绝缘层材料的研究进展

    邵海彬; 张其土; 魏方明; 王庭慰

    2012-01-01

    介绍了不同类型耐火绝缘层材料的组成、材料选择、性能特点及研究概况.分析认为以云母带和氧化镁为耐火绝层缘材料制备耐火电缆在生产、安装施工、成本等方面存在明显不足,而快速陶瓷化耐火绝缘层材料在生产、安装施工、成本等方面优点突出.进一步指出,应在材料选择、新产品开发等方面加强对快速陶瓷化耐火绝缘层的研究.%Insulating material composition, material selection, performance and research progress of the three types of fire-resistant insulating layer materials are described. There are obvious disadvantages in production, installation and price of fire-resistant cables using mica tape and magnesium hydroxide (MgO) as fire-resistant insulating layer. While there are obvious advantages in production, installation and price of fire-resistant cabtes using fast cerami-fying fire-resistant layer as fire-resistant insulating layer. Further more, research work in material selection and new product development should be reinforced.

  12. The Sacrificial Crisis

    Östman, Lars

    2007-01-01

    Med udgangspunkt i Jesus´ lidelseshistorie forsøger artiklen via den franske religionsfilosof René Girards tanker om den hellige krise at knytte an til en generel teori om en tilstand, hvor lov og ret er suspenderede. Gennem en kritisk og perspektiverende læsning af Carl Schmitt forståes denne kr...

  13. A Discussion on the Sacrificial Culture of Dokeduoer Mountain%多克多尔山祭祀文化浅论

    原昊

    2016-01-01

    多克多尔山祭祀文化是蒙古族传统民俗文化的重要遗存。努图克人奉多克多尔山为神山,其神话传说及山神祭祀习俗源远流长。随着现代社会的发展,多克多尔山祭祀文化面临消亡的危险。为了避免这种情况,我们应该加强对该山祭祀文化的保护、研究及传承工作。%The sacrificial culture of Dokeduoer Mountain is the important historical remains of Mongolian traditional custom culture .Nu-tuke peoples worship Dokeduoer Mountain as a holy mountain , and the myth, legend as well as the custom of god sacrifice about the mountain has a long history .With the development of modern society , the sacrificial culture of Dokeduoer Mountain is facing the danger of elimination .In order to avoid this kind of circumstance , we should strengthen the perfecting , studying and inheriting work .

  14. The correlation between materials, processes and final properties in the pipeline coating system with polyethylene in triple layer; A correlacao entre materiais, processos e propriedades finais no sistema de revestimento de tubos com polietileno em tripla camada

    Oliveira, Luiz C.; Campos, Paulo H. [Confab Industrial S.A., Pindamonhangaba, SP (Brazil); Silva, Christian E.; Santos, Paulo T. [Soco-Ril do Brasil S.A., Pindamonhangaba, SP (Brazil)

    2003-07-01

    The use of anticorrosion coating is a common practice in industrial pipeline applications. Among the several coatings types to buried and submerged pipelines, over all, the Fusion Bonded Epoxy and Three Layer Polyethylene coating systems have been large employed. They have showed an excellent performance protecting the pipe metal from external corrosive environment, considerably decreasing the designed cathodic protection requirements, basically in the first years of pipeline operation. Coating system success depends on not only of a suitable design or of the materials technology, but also depends on the process parameters and the raw material characteristics exhibited during the application. In this paper will be presented in a theoretical approach how the process parameters and the raw materials characteristics may affect the three layer polyethylene anticorrosion coating final properties. (author)

  15. A Study of Broadband, Thin-Layer Electromagnetic Protection Materials Based on Genetic Algorithms%基于遗传算法的宽带薄层电磁防护材料研究

    秦思良; 王庆国; 曲兆明

    2011-01-01

    针对电磁防护材料需要具有宽频带和低厚度的特点,构造了防护材料的优化目标函数.采用遗传算法对多层防护材料进行优化,在给定屏蔽效能阈值和总厚度限制的要求下,得到了多层匹配后具有良好电磁防护性能的防护材料.%The optimized functions of multi-layered electromagnetic protection materials have been established, based on the requirements of maximum protection bandwidth and given thickness. The genetic algorithm has been employed to optimize the multi-layered protection materials with given thickness and shielding efficiency. Protection materials with good electromagnetic protection properties have been obtained by using the genetic algorithm.

  16. Effects of Al2O3 Particulates on the Thickness of Reaction Layer of Al2O3 Joints Brazed with Al2O3-Particulate-Contained Composite Filler Materials

    Jianguo YANG; Jingwei WU; Hongyuan FANG

    2003-01-01

    In order to understand the rate-controlling process for the interfacial layer growth of brazing joints brazed with activecomposite filler materials, the thickness of brazing joints brazed with conventional active filler metal and activecomposite filler materials with different volume fraction of Al2O3 particulate was studied. The experimental resultsindicate although there are Al2O3 particulates added into active filler metals, the time dependence of interfacial layergrowth is t2 as described by Fickian law for the joints brazed with conventional active filler metal. It also shows thatthe key factor affecting the interfacial layer growth is the volume fraction of alumina in the composite filler materialcompared with the titanium weight fraction in the filler material.

  17. Research Progress on Buffer Layer Materials of CIGS Thin Film Solar Cell%CIGS薄膜太阳能电池缓冲层材料的研究进展

    王卫兵; 刘平; 李伟; 马凤仓; 刘新宽; 陈小红

    2012-01-01

    CIGS薄膜太阳能电池的缓冲层为低带隙CIGS吸收层与高带隙ZnO窗口层之间形成过渡,减少两者带隙的晶格失配和带隙失调,并可防止溅射ZnO窗口层时给CIGS吸收层带来损害等,对提高CIGS薄膜太阳能电池效率起了重要作用.介绍了CIGS薄膜太阳能电池缓冲层材料的分类和制备工艺,主要阐述了CdS、ZnS及In2S3薄膜缓冲层材料及化学水浴法、原子层化学气相沉积法、金属化合物化学气相沉积法等制备工艺的研究现状,最后指出CIGS太阳能电池缓冲层在制备工艺、环境保护及大规模工业化生产中遇到的问题,并展望了其发展方向.%The buffer layers of CTGS thin film solar cells can form transition layers between low band gap CIGS absorber layers and high band gap of ZnO window layers, which reduces the lattice matching and band gap difference, and prevents damage of CIGS absorber layer from sputtering ZnO window layer, and therefore plays an important role in improving efficiency of CIGS thin film solar cells. Classification and preparation technology of CIGS thim film solar cells material are discussed, including the research progress of CdS,ZnS and In2S3 thin film buffer layer materials, and chemical bath deposition (CBD), atomic layer chemical vapor deposition (ALCVD), metal organic chemical vapor deposition (MOCVD) and other preparation technologies. The problems and development directions of buffer layer materials of CIGS thin film solar cells in preparation process, environment protection and large-scale industrial production are finally prospected.

  18. Mixed mosaic membranes prepared by layer-by-layer assembly for ionic separations.

    Rajesh, Sahadevan; Yan, Yu; Chang, Hsueh-Chia; Gao, Haifeng; Phillip, William A

    2014-12-23

    Charge mosaic membranes, which possess distinct cationic and anionic domains that traverse the membrane thickness, are capable of selectively separating dissolved salts from similarly sized neutral solutes. Here, the generation of charge mosaic membranes using facile layer-by-layer assembly methodologies is reported. Polymeric nanotubes with pore walls lined by positively charged polyethylenimine moieties or negatively charged poly(styrenesulfonate) moieties were prepared via layer-by-layer assembly using track-etched membranes as sacrificial templates. Subsequently, both types of nanotubes were deposited on a porous support in order to produce mixed mosaic membranes. Scanning electron microscopy demonstrates that the facile deposition techniques implemented result in nanotubes that are vertically aligned without overlap between adjacent elements. Furthermore, the nanotubes span the thickness of the mixed mosaic membranes. The effects of this unique nanostructure are reflected in the transport characteristics of the mixed mosaic membranes. The hydraulic permeability of the mixed mosaic membranes in piezodialysis operations was 8 L m(-2) h(-1) bar(-1). Importantly, solute rejection experiments demonstrate that the mixed mosaic membranes are more permeable to ionic solutes than similarly sized neutral molecules. In particular, negative rejection of sodium chloride is observed (i.e., the concentration of NaCl in the solution that permeates through a mixed mosaic membrane is higher than in the initial feed solution). These properties illustrate the ability of mixed mosaic membranes to permeate dissolved ions selectively without violating electroneutrality and suggest their utility in ionic separations.

  19. Metal deposition using seed layers

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  20. Photovoltaic performance of bithiazole-bridged dyes-sensitized solar cells employing semiconducting quantum dot CuInS2 as barrier layer material.

    Guo, Fuling; He, Jinxiang; Li, Jing; Wu, Wenjun; Hang, Yandi; Hua, Jianli

    2013-10-15

    In this work, the quantum dot CuInS2 layer was deposited on TiO2 film using successive ionic layer absorption and reaction (SILAR) method, and then two bithiazole-bridged dyes (BTF and BTB) were sensitized on the CuInS2/TiO2 films to form dye/CuInS2/TiO2 photoanodes for DSSCs. It was found that the quantum dots CuInS2 as an energy barrier layer not only could effectively improve open-circuit voltage (Voc) of solar cell, but also increase short-circuit photocurrent (Jsc) compared to the large decrease in Jsc of ZnO as energy barrier layer. The electrochemical impedance spectroscopy (EIS) measurement showed that the CuInS2 formed a barrier layer to suppress the recombination from injection electron to the electrolyte and improve open-circuit voltage. Finally, the open-circuit voltage increased about 22 and 27mV for BTF and BTB-/CuInS2/TiO2-based cells, the overall conversion efficiencies also reached to 7.20% and 6.74%, respectively.