WorldWideScience

Sample records for sacrificial layer materials

  1. SU-8 Based MEMS Process with Two Metal Layers using α-Si as a Sacrificial Material

    KAUST Repository

    Ramadan, Khaled S.

    2012-04-01

    Polymer based microelectromechanical systems (MEMS) micromachining is finding more interest in research and applications. This is due to its low cost and less time processing compared with silicon MEMS. SU-8 is a photo-patternable polymer that is used as a structural layer for MEMS and microfluidic devices. In addition to being processed with low cost, it is a biocompatible material with good mechanical properties. Also, amorphous silicon (α-Si) has found use as a sacrificial layer in silicon MEMS applications. α-Si can be deposited at large thicknesses for MEMS applications and also can be released in a dry method using XeF2 which can solve stiction problems related to MEMS applications. In this thesis, an SU-8 MEMS process is developed using amorphous silicon (α-Si) as a sacrificial layer. Electrostatic actuation and sensing is used in many MEMS applications. SU-8 is a dielectric material which limits its direct use in electrostatic actuation. This thesis provides a MEMS process with two conductive metal electrodes that can be used for out-of-plane electrostatic applications like MEMS switches and variable capacitors. The process provides the fabrication of dimples that can be conductive or non-conductive to facilitate more flexibility for MEMS designers. This SU-8 process can fabricate SU-8 MEMS structures of a single layer of two different thicknesses. Process parameters were tuned for two sets of thicknesses which are thin (5-10μm) and thick (130μm). Chevron bent-beam structures and different suspended beams (cantilevers and bridges) were fabricated to characterize the SU-8 process through extracting the density, Young’s Modulus and the Coefficient of Thermal Expansion (CTE) of SU-8. Also, the process was tested and used as an educational tool through which different MEMS structures were fabricated including MEMS switches, variable capacitors and thermal actuators.

  2. A sacrificial-layer approach to prepare microfiltration membranes

    NARCIS (Netherlands)

    Li, X.-M.; Ji, Y.; He, T.; Wessling, M.

    2008-01-01

    The preparation of hydrophilic microfiltration membranes by a sacrificial layer via co-casting is reported in this paper. The membranes were fabricated using two polymer solutions. Selection of the sacrificial coating layer was based on solution blending between coating solution/PSf solution and co-

  3. Performance characterization of geopolymer composites for hot sodium exposed sacrificial layer in fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Haneefa, K. Mohammed, E-mail: mhkolakkadan@gmail.com [Department of Civil Engineering, IIT Madras, Chennai (India); Santhanam, Manu [Department of Civil Engineering, IIT Madras, Chennai (India); Parida, F.C. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2013-12-15

    Highlights: • Performance evaluation of geopolymers subjected to hot liquid sodium is performed. • Apart from mechanical properties, micro-analytical techniques are used for material characterization. • The geopolymer composite showed comparatively lesser damage than conventional cement composites. • Geopolymer technology can emerge as a new choice for sacrificial layer in SCFBRs. - Abstract: A sacrificial layer of concrete is used in sodium cooled fast breeder reactors (SCFBRs) to mitigate thermo-chemical effect of accidentally spilled sodium at and above 550 °C on structural concrete. Performance of this layer is governed by thermo-chemical stability of the ingredients of sacrificial layer concrete. Concrete with limestone aggregate is generally used as a sacrificial layer. Conventional cement based systems exhibit instability in hot liquid sodium environment. Geo-polymer composites are well known to perform excellently at elevated temperatures compared to conventional cement systems. This paper discusses performance of such composites subjected to exposure of hot liquid sodium in air. The investigation includes comprehensive evaluation of various geo-polymer composites before any exposure, after heating to 550 °C in air, and after immersing in hot liquid sodium initially heated to 550 °C in air. Results from the current study indicate that hot liquid sodium produces less damage to geopolymer composites than to the existing conventional cement based system. Hence, the geopolymer technology has potential application in mitigating the degrading effects of sodium fires and can emerge as a new choice for sodium exposed sacrificial layer in SCFBRs.

  4. Method of using sacrificial materials for fabricating internal cavities in laminated dielectric structures

    Science.gov (United States)

    Peterson, Kenneth A.

    2009-02-24

    A method of using sacrificial materials for fabricating internal cavities and channels in laminated dielectric structures, which can be used as dielectric substrates and package mounts for microelectronic and microfluidic devices. A sacrificial mandrel is placed in-between two or more sheets of a deformable dielectric material (e.g., unfired LTCC glass/ceramic dielectric), wherein the sacrificial mandrel is not inserted into a cutout made in any of the sheets. The stack of sheets is laminated together, which deforms the sheet or sheets around the sacrificial mandrel. After lamination, the mandrel is removed, (e.g., during LTCC burnout), thereby creating a hollow internal cavity in the monolithic ceramic structure.

  5. Homeotropic Alignment of a Discotic Liquid Crystal Induced by a Sacrificial Layer

    DEFF Research Database (Denmark)

    Pouzet, Eric; De Cupere, Vinciane; Heintz, Christophe;

    2009-01-01

    A convenient method to induce face-on orientation of an alkoxy phtalocyanine discotic mesogen is described. The alignment is imposed by the confinement of the discotic thin films with a top sacrificial polymer layer that is easily removed by washing with a selective solvent, after thermal annealing....... Thin films have been characterized by optical and atomic force microscopy, UV-Vis absorption spectroscopy, and grazing incidence wide angle X-ray scattering. The data converge in showing the central role of the sacrificial layer in promoting alignment with the planar molecules orienting parallel to the...

  6. Polymer films as planarization and sacrificial layers for uncooled infrared focal plane arrays

    Science.gov (United States)

    Liu, Huan; Liu, Weiguo; Cai, Changlong; Zhou, Shun

    2011-02-01

    This paper presents a planarization procedure using polymer films to achieve a flat CMOS surface of Readout Integrated Circuit (ROIC) for the integration between uncooled infrared focal plane arrays and ROIC. At the same time, the polymer film is also used as the sacrificial layers. After amorphous Silicon (a-Si) film was deposited using plasma enhanced chemical vapor deposition (PECVD), and patterned using inductively coupled plasma (ICP), the polymer sacrificial layer should be removed to form a-Si self-supporting micro-bridge structure. So the thickness of polymer film determine the height of the micro-bridge; the soft curing temperature determines if the contact hole can be etched by developer during the first photolithography; and the rate of dry etching determines whether the sacrificial layers of the structure can be released successfully. In this paper, the curing temperature, surface roughness, etching process of polymer films are systematically researched. On this basis, polymer film as planarization successfully reduces the 2μm height of the bumps on ROIC to less than 83 nm, over the planarized polymer mesas, bolometer arrays are fabricated. Then the polymer film as sacrificial are removed by ICP and 160x120 self-supporting micro-bridge structure arrays are successfully fabricated.

  7. Improvement in semiconductor laser printing using a sacrificial protecting layer for organic thin-film transistors fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Ludovic, E-mail: rapp@lp3.univ-mrs.fr [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France); Cibert, Christophe [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France); Nenon, Sebastien [CINaM (Centre Interdisciplinaire de Nanoscience de Marseille) - UPR 3118 CNRS - Universite Aix Marseille, Case 913, Campus de Luminy, 13288 Marseille Cedex 09 (France); Alloncle, Anne Patricia [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France); Nagel, Matthias [Empa, Swiss Federal Laboratories for Materials Testing and Reasearch, Laboratory for Functional Polymers, Uberlandstrasse 129, 8600 Duebendorf (Switzerland); Lippert, Thomas [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen PSI (Switzerland); Videlot-Ackermann, Christine; Fages, Frederic [CINaM (Centre Interdisciplinaire de Nanoscience de Marseille) - UPR 3118 CNRS - Universite Aix Marseille, Case 913, Campus de Luminy, 13288 Marseille Cedex 09 (France); Delaporte, Philippe [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France)

    2011-04-01

    Laser-induced forward transfer (LIFT) has been used to deposit pixels of an organic semiconductor, distyryl-quaterthiophenes (DS4T). The dynamics of the process have been investigated by shadowgraphic imaging for the nanosecond (ns) and picosecond (ps) regime on a time-scale from the laser iradiation to 1.5 {mu}s. The morphology of the deposit has been studied for different conditions. Intermediate sacrificial layer of gold or triazene polymer has been used to trap the incident radiation. Its role is to protect the layer to be transferred from direct irradiation and to provide a mechanical impulse strong enough to eject the material.

  8. Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material

    Science.gov (United States)

    Ramadan, Khaled S.; Nasr, Tarek; Foulds, Ian G.

    2013-03-01

    This work presents an SU-8 surface micromachining process using amorphous silicon as a sacrificial material, which also incorporates two metal layers for electrical excitation. SU-8 is a photo-patternable polymer that is used as a structural layer for MEMS and microfluidic applications due to its mechanical properties, biocompatibility and low cost. Amorphous silicon is used as a sacrificial layer in MEMS applications because it can be deposited in large thicknesses, and can be released in a dry method using XeF2, which alleviates release-based stiction problems related to MEMS applications. In this work, an SU-8 MEMS process was developed using α-Si as a sacrificial layer. Two conductive metal electrodes were integrated in this process to allow out-of-plane electrostatic actuation for applications like MEMS switches and variable capacitors. In order to facilitate more flexibility for MEMS designers, the process can fabricate dimples that can be conductive or nonconductive. Additionally, this SU-8 process can fabricate SU-8 MEMS structures of a single layer of two different thicknesses. Process parameters were optimized for two sets of thicknesses: thin (5-10 µm) and thick (130 µm). The process was tested fabricating MEMS switches, capacitors and thermal actuators.

  9. Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material

    KAUST Repository

    Ramadan, Khaled S.

    2013-02-08

    This work presents an SU-8 surface micromachining process using amorphous silicon as a sacrificial material, which also incorporates two metal layers for electrical excitation. SU-8 is a photo-patternable polymer that is used as a structural layer for MEMS and microfluidic applications due to its mechanical properties, biocompatibility and low cost. Amorphous silicon is used as a sacrificial layer in MEMS applications because it can be deposited in large thicknesses, and can be released in a dry method using XeF2, which alleviates release-based stiction problems related to MEMS applications. In this work, an SU-8 MEMS process was developed using ;-Si as a sacrificial layer. Two conductive metal electrodes were integrated in this process to allow out-of-plane electrostatic actuation for applications like MEMS switches and variable capacitors. In order to facilitate more flexibility for MEMS designers, the process can fabricate dimples that can be conductive or nonconductive. Additionally, this SU-8 process can fabricate SU-8 MEMS structures of a single layer of two different thicknesses. Process parameters were optimized for two sets of thicknesses: thin (5-10 m) and thick (130 m). The process was tested fabricating MEMS switches, capacitors and thermal actuators. © 2013 IOP Publishing Ltd.

  10. A novel sacrificial-layer process based on anodic bonding and its application in an accelerometer

    Directory of Open Access Journals (Sweden)

    Lingyun Wang

    2015-04-01

    Full Text Available It is found in our experiments that the depletion layer of anodic bonding is etched faster than the bulk glass (Pyrex 7740 in hydrofluoric acid (HF. Based on this interesting phenomenon, a novel process of a sacrificial layer is proposed in this paper. In order to deeply understand and investigate the rules concerning the influence of bonding parameters on this effect, firstly the width of the depletion layer under different bonding voltages and temperatures and the selection ratio of etching are revealed. To validate the feasibility of the method, a micro-machined accelerometer is designed and fabricated. The test results of resonant frequency and sensitivity of the fabricated accelerometer are 3254.5 Hz and 829.85–844.93 mV/g, respectively. This was further evidence that the depletion layer could be used as a sacrificial layer and the removable structure could be successfully released by fast etching this layer. The important feature of this method is that only one mask is needed in the whole process and therefore it could greatly simplify the fabrication process of the device.

  11. Chemically Compatible Sacrificial Layer-Assisted Lift-Off Patterning Method for Fabrication of Organic Light-Emitting Displays

    Science.gov (United States)

    Choi, Wonsuk; Kim, Min-Hoi; Lee, Sin-Doo

    2011-08-01

    We developed a generic platform to pattern combinatorial functional layers composed of different classes of organic materials using a repetitive lift-off method based on a chemically compatible sacrificial layer (SL) for organic light-emitting diodes (OLEDs). The essential features come from the chemically compatible SL of a fluorous-polymer that can be generated by laser-inscription or transfer-printing. The precise registration of lateral patterns of different materials was achieved on a single substrate through a series of SL-assisted lift-off processes. The chemical compatibility of the SL and the stability of the light-emitting characteristics were shown in a fluorous-solvent treated monochrome OLEDs.

  12. Fabrication of relaxer-based piezoelectric energy harvesters using a sacrificial poly-Si seeding layer

    KAUST Repository

    Fuentes-Fernandez, E. M A

    2014-08-07

    The effect of a polycrystalline silicon (poly-Si) seeding layer on the properties of relaxor Pb(Zr0.53,Ti0.47)O3-Pb(Zn1/3,Nb2/3)O3 (PZT-PZN) thin films and energy-harvesting cantilevers was studied. We deposited thin films of the relaxor on two substrates, with and without a poly-Si seeding layer. The seeding layer, which also served as a sacrificial layer to facilitate cantilever release, was found to improve morphology, phase purity, crystal orientation, and electrical properties. We attributed these results to reduction of the number of nucleation sites and, therefore, to an increase in relaxor film grain size. The areal power density of the wet-based released harvester was measured. The power density output of the energy harvester with this relaxor composition and the poly-Si seeding layer was 325 μW/cm2.

  13. Method of Manufacturing A Porous Polymer Component Involving Use of A Dissolvable, Sacrificial Material

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a method of manufacturing a porous polymer component 1 with structured and/or random pores 4 and/or channels 5. The method comprises arranging a dissolvable, sacrificial material 2 in a geometrical arrangement corresponding to an inner structure to be obtained in ......-dimensional scaffold for tissue engineering....

  14. Film transfer enabled by nanosheet seed layers on arbitrary sacrificial substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dral, A. P.; Nijland, M.; Koster, G.; Elshof, J. E. ten, E-mail: j.e.tenelshof@utwente.nl [MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands)

    2015-05-01

    An approach for film transfer is demonstrated that makes use of seed layers of nanosheets on arbitrary sacrificial substrates. Epitaxial SrTiO{sub 3}, SrRuO{sub 3}, and BiFeO{sub 3} films were grown on Ca{sub 2}Nb{sub 3}O{sub 10} nanosheet seed layers on phlogopite mica substrates. Cleavage of the mica substrates enabled film transfer to flexible polyethylene terephthalate substrates. Electron backscatter diffraction, X-ray diffraction, and atomic force microscopy confirmed that crystal orientation and film morphology remained intact during transfer. The generic nature of this approach is illustrated by growing films on zinc oxide substrates with a nanosheet seed layer. Film transfer to a flexible substrate was accomplished via acid etching.

  15. Stretching-tunable metal gratings fabricated on an elastomeric substrate using a water-soluble sacrificial layer

    Science.gov (United States)

    Gu, Ronghua; Ji, Min; Xuan, Yan; Cui, Yushuang; Yuan, Changsheng; Li, Wen-Di; Ge, Haixiong; Chen, Yanfeng

    2015-11-01

    We report a new method to fabricate stretching-tunable metal gratings on elastomeric substrates by combining nanoimprint lithography and metal transfer using a patterned sacrificial layer. Fabrication of metal lines with a period of 550 nm and a linewidth of 270 nm was demonstrated on polydimethylsiloxane (PDMS) membranes using this process. Optical diffraction characterization was used to measure the period of stretched gratings on the PDMS membrane and demonstrates tuning of the grating period by deforming the carrying PDMS substrate. The pattern transfer process using a water-soluble sacrificial layer can also be applied to fabrication of other deformable micro- and nano-devices.

  16. Rolled-Up Nanotech: Illumination-Controlled Hydrofluoric Acid Etching of AlAs Sacrificial Layers

    Directory of Open Access Journals (Sweden)

    Costescu Ruxandra

    2009-01-01

    Full Text Available Abstract The effect of illumination on the hydrofluoric acid etching of AlAs sacrificial layers with systematically varied thicknesses in order to release and roll up InGaAs/GaAs bilayers was studied. For thicknesses of AlAs below 10 nm, there were two etching regimes for the area under illumination: one at low illumination intensities, in which the etching and releasing proceeds as expected and one at higher intensities in which the etching and any releasing are completely suppressed. The “etch suppression” area is well defined by the illumination spot, a feature that can be used to create heterogeneously etched regions with a high degree of control, shown here on patterned samples. Together with the studied self-limitation effect, the technique offers a way to determine the position of rolled-up micro- and nanotubes independently from the predefined lithographic pattern.

  17. Layered materials

    Science.gov (United States)

    Johnson, David; Clarke, Simon; Wiley, John; Koumoto, Kunihito

    2014-06-01

    Layered compounds, materials with a large anisotropy to their bonding, electrical and/or magnetic properties, have been important in the development of solid state chemistry, physics and engineering applications. Layered materials were the initial test bed where chemists developed intercalation chemistry that evolved into the field of topochemical reactions where researchers are able to perform sequential steps to arrive at kinetically stable products that cannot be directly prepared by other approaches. Physicists have used layered compounds to discover and understand novel phenomena made more apparent through reduced dimensionality. The discovery of charge and spin density waves and more recently the remarkable discovery in condensed matter physics of the two-dimensional topological insulating state were discovered in two-dimensional materials. The understanding developed in two-dimensional materials enabled subsequent extension of these and other phenomena into three-dimensional materials. Layered compounds have also been used in many technologies as engineers and scientists used their unique properties to solve challenging technical problems (low temperature ion conduction for batteries, easy shear planes for lubrication in vacuum, edge decorated catalyst sites for catalytic removal of sulfur from oil, etc). The articles that are published in this issue provide an excellent overview of the spectrum of activities that are being pursued, as well as an introduction to some of the most established achievements in the field. Clusters of papers discussing thermoelectric properties, electronic structure and transport properties, growth of single two-dimensional layers, intercalation and more extensive topochemical reactions and the interleaving of two structures to form new materials highlight the breadth of current research in this area. These papers will hopefully serve as a useful guideline for the interested reader to different important aspects in this field and

  18. UV-Enhanced Sacrificial Layer Stabilised Graphene Oxide Hollow Fibre Membranes for Nanofiltration

    Science.gov (United States)

    Chong, J. Y.; Aba, N. F. D.; Wang, B.; Mattevi, C.; Li, K.

    2015-11-01

    Graphene oxide (GO) membranes have demonstrated great potential in gas separation and liquid filtration. For upscale applications, GO membranes in a hollow fibre geometry are of particular interest due to the high-efficiency and easy-assembly features at module level. However, GO membranes were found unstable in dry state on ceramic hollow fibre substrates, mainly due to the drying-related shrinkage, which has limited the applications and post-treatments of GO membranes. We demonstrate here that GO hollow fibre membranes can be stabilised by using a porous poly(methyl methacrylate) (PMMA) sacrificial layer, which creates a space between the hollow fibre substrate and the GO membrane thus allowing stress-free shrinkage. Defect-free GO hollow fibre membrane was successfully determined and the membrane was stable in a long term (1200 hours) gas-tight stability test. Post-treatment of the GO membranes with UV light was also successfully accomplished in air, which induced the creation of controlled microstructural defects in the membrane and increased the roughness factor of the membrane surface. The permeability of the UV-treated GO membranes was greatly enhanced from 0.07 to 2.8 L m-2 h-1 bar-1 for water, and 0.14 to 7.5 L m-2 h-1 bar-1 for acetone, with an unchanged low molecular weight cut off (~250 Da).

  19. Microfeature edge quality enhancement in excimer laser micromachining of metal films by coating with a sacrificial polymer layer

    International Nuclear Information System (INIS)

    A novel technique for enhanced excimer laser micromachining of metallic thin films by first coating the metal film with a thin polymer film is presented. The sacrificial polymer film acts as a protective and a clamping layer, preventing the metal film from undergoing cracking and damage during the laser ablation. The machined patterns are characterized regarding their quality in terms of edge roughness, lateral overcut and boundary integrity in proximity machining. Significant improvement in these aspects is observed when the machining is carried out on metal films coated with thin polymer films. Details of the effects of the fluence and spot overlap on the micromachined patterns are investigated. The technique allows sharp machining of micropatterns on thin metal films, over length scales ranging from hundreds of micrometers down to a single micrometer, thereby proving to be the only technique that can be used to laser micromachine thin films at the length scale of a single micrometer. This technique is expected to be useful for large scale patterning of metallic films, particularly for plasmonic applications and infrared/terahertz metamaterials. (paper)

  20. A novel method to enhance the gettering efficiency in p-type Czochralski silicon by a sacrificial porous silicon layer

    Institute of Scientific and Technical Information of China (English)

    Zhang Caizhen; Wang Yongshun; Wang Zaixing

    2011-01-01

    A new two-step phosphorous diffusion gettering (TSPDG) process using a sacrificial porous silicon layer (PSL) is proposed.Due to a decrease in high temperature time,the TSPDG (PSL) process weakens the deterioration in performances of PSL,and increases the capability of impurity clusters to dissolve and diffuse to the gettering regions.By means of the TSPDG (PSL) process under conditions of 900 ℃/60 min + 700 ℃/30 min,the effective lifetime of minority carriers in solar-grade (SOG) Si is increased to 14.3 times its original value,and the short-circuit current density of solar cells is improved from 23.5 o 28.7 mA/cm2,and the open-circuit voltage from 0.534 to 0.596 V along with the transform efficiency from 8.1% to 11.8%,which are much superior to the results achieved by the PDG (PSL) process at 900 ℃ for 90 min.

  1. Buckle-driven delamination of hydrophobic micro-, nano-, and heterostructured membranes without a sacrificial layer

    Science.gov (United States)

    Larsen, George K.; Zhao, Yiping

    2013-10-01

    A fabrication method, based on thin film buckling, is demonstrated to form unique membranes that can be used for applications in optics and biosensing. This method should be applicable to a variety of material systems, which, along with its simplicity and compatibility with different film architectures, allows for widespread implementation.A fabrication method, based on thin film buckling, is demonstrated to form unique membranes that can be used for applications in optics and biosensing. This method should be applicable to a variety of material systems, which, along with its simplicity and compatibility with different film architectures, allows for widespread implementation. Electronic supplementary information (ESI) available: Monolayer characterization and details; morphological parameters of the membranes; diffraction pattern images; rigorous coupled wave analysis; pattern transfer fidelity; experimental details. See DOI: 10.1039/c3nr03933a

  2. Amor Sacrificial

    Directory of Open Access Journals (Sweden)

    Mario Orozco Guzmán

    2011-01-01

    Full Text Available El sacrificio corresponde al amor argumentado. Su ejercicio muchas veces inscrito en el orden sagrado de la cultura no deja de comprometer la participación de la Bemächtigungstrieb", pulsión de apoderamiento. En tanto el sacrificio se rinde al otro para su apaciguamiento o complacencia, por supuesto amor a él, se descubre un desprendimiento de goce, al elevar el mal, la destrucción, al estatuto de soberano bien. La demanda sacrificial atribuida a los dioses introduce la dimensión de falta en estos seres supuestamente omnipotentes. Amor y dioses requieren de su provisión persistente de sacrificios. El cuerpo sometido a la tiranía de la imagen idealizada y exaltada es expuesto a distintos y renovados sacrificios. Y parece que ningún sacrificio fuera satisfactorio. La proclama de guerra puede inscribir de forma preponderante la retórica del sacrificio en su pretensión heroica o de sujeción abominable.

  3. The case for using a sacrificial layer of absorbent insulation in the design of flat and low-sloped roofing

    Science.gov (United States)

    Stockton, Gregory R.

    2013-05-01

    Beginning about twenty-five years ago, there was a marked increase in the number of single-ply membrane roof designs used to cover and waterproof flat and low-sloped building roofs. Over the past ten years, there has been a substantial increase in the number of installations of white and more reflective single-ply roof systems, mostly using high density cellular foam insulation in the substrate for insulation. A major factor in the increase in the popularity of these highly insulated and more reflective roof systems is the fact that many governments began offering incentives for building owners to use reflective coverings and better insulated roofs. Now, owing to the energy efficient requirements for the design and construction of new buildings put forth in ASHRAE Standard 90.1, "Energy Standard for Buildings Except Low-Rise Residential Buildings" and the world's apparent desire to be "green" (or at least appear to be), more and more roof designs will include these reflective single-ply membranes, which use the cellular foam insulation boards to meet these requirements. Using a lower density traditional insulation will mean that the roof will have to be very thick to comply, increasing the costs of installation. High density cellular foams do not absorb water until time, vapor pressure drive, UV and thermal shock break down the foam and it becomes more absorbent. This could be 5-7 years or longer, depending on the roof construction and other factors. This means that any water that enters the roof through a breach (leak) in the membrane goes straight into the building. This is not a good consequence since the failure mode of any roof is water entering the building. Keeping the water out of the building is the purpose of the waterproofing layer. This paper reviews the techniques of moisture testing on building roofs and infrared (IR) thermography, and puts forth the idea and reasoning behind having a sacrificial layer of very absorbent insulation installed in every

  4. Comparison of solvent and sacrificial volume-material-based lamination processes of low-temperature co-fired ceramics tapes

    Science.gov (United States)

    Malecha, Karol; Jurków, Dominik; Golonka, Leszek J.

    2009-06-01

    The lamination process determines the quality of low temperature co-fired ceramics (LTCC) based spatial structures. This paper compares two methods of the microchannel fabrication process in zero-shrinkage LTCC substrates. The first one is based on a two-step lamination process and uses various sacrificial volume materials (SVM). The second one is based on the cold chemical lamination (CCL) process. On the one hand, the SVM gives the possibility of decreasing the deformation of the three-dimensional (3D) structures during the lamination process. The channel volume is filled with a special fugitive material. It protects the spatial structure from deformation during lamination, and evaporates completely during the co-firing process. The bonding quality and strength depend strongly on the fugitive phase type. On the other hand, the CCL is a solvent-based method. It is another alternative for bonding of green ceramic tapes. A special liquid agent is screen printed on the green tape, which melts the tape surface. Then the tapes are stacked and compressed at room temperature by a printing roll. The influence of each method on the microchannel geometry is analyzed in this paper. The resulting structures' bonding quality and mechanical properties are examined by a scanning electron microscope (SEM).

  5. Improving Efficiency of Aluminium Sacrificial Anode Using Cold Work Process

    Science.gov (United States)

    Asmara, Y. P.; Siregar, J. P.; Tezara, C.; Ann, Chang Tai

    2016-02-01

    Aluminium is one of the preferred materials to be used as sacrificial anode for carbon steel protection. The efficiency of these can be low due to the formation of oxide layer which passivate the anodes. Currently, to improve its efficiency, there are efforts using a new technique called surface modifications. The objective of this research is to study corrosion mechanism of aluminium sacrificial anode which has been processed by cold work. The cold works are applied by reducing the thickness of aluminium sacrificial anodes at 20% and 40% of thickness reduction. The cathodic protection experiments were performed by immersion of aluminium connected to carbon steel cylinder in 3% NaCl solutions. Visual inspections using SEM had been conducted during the experiments and corrosion rate data were taken in every week for 8 weeks of immersion time. Corrosion rate data were measured using weight loss and linear polarization technique (LPR). From the results, it is observed that cold worked aluminium sacrificial anode have a better corrosion performance. It shows higher corrosion rate and lower corrosion potential. The anodes also provided a long functional for sacrificial anode before it stop working. From SEM investigation, it is shown that cold works have changed the microstructure of anodes which is suspected in increasing corrosion rate and cause de-passivate of the surface anodes.

  6. Synthesis of Freestanding Single-crystal Perovskite Films and Heterostructures by Etching of Sacrificial Water-soluble Layers

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Di; Baek, David J.; Hong, Seung Sae; Kourkoutis, Lena F.; Hikita, Yasuyuki; Hwang, Harold Y.

    2016-08-22

    The ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality and emergent phenomena, as seen in perovskite heterostructures. However, separation of these layers from the growth substrate has proven challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general method to create freestanding perovskite membranes. The key is the epitaxial growth of water-soluble Sr3Al2O6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr3Al2O6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds.

  7. Structure Characterization of HSQ Films for Low Dielectrics Using D5 as Sacrificial Porous Materials

    Institute of Scientific and Technical Information of China (English)

    YIN Gui-Qin; NING Zhao-Yuan; YUAN Qiang-Hua

    2007-01-01

    Low-density materials,commercially available hydrogensilsesquioxane (HSQ) offer a low dielectric constant.HSQ films can be obtained by spin on deposition (SOD).In this work,low-dielectric-constant HSQ films are prepared by using D5(decamethylcyclopentasiloxane)as sacritficial porous materials.The dielectric constant of silica films significantly changes from 3.0 to 2.4.We report the structural aspects of the films in relation to their composition after annealed at 300℃.400℃,and 500℃ for 1.5h in nitrogen ambient and annealed at 400℃ for 1.5h in vacuum.sj-OH appears after annealed at 400℃ for 1.5h in vacuum.The results indicate that the proper condition is in nitrogen anlbient.Intensity of the Si-H peak increases with the increasing temperature.Fourier transform infrared spectroscopy is used to identify the network structure and cage structure of Si-O-Si bonds and other possible bonds.Djelectric constant k is significantly lowered by annealing at 350℃ for 1.5 h in nitrogen ambient.The I-V and C-V measurements are used to determine the dielectric constant,the electric resistivity and the breakdown electric field.

  8. A concave-patterned TiN/PECVD-Si3N4 /TiN diaphragm MEMS acoustic sensor based on a polyimide sacrificial layer

    Science.gov (United States)

    Lee, Jaewoo; Jeon, J. H.; Je, C. H.; Kim, Y.-G.; Lee, S. Q.; Yang, W. S.; Lee, J. S.; Lee, S.-G.

    2015-12-01

    In this paper, we present a concave-patterned TiN/PECVD-Si3N4 /TiN diaphragm micro-electro-mechanical system (MEMS) acoustic sensor based on a polyimide sacrificial layer. The use of the spin-coated polyimide eliminates the additional Al pad process of conventional device fabrication due to simple O2 ashing to release the sacrificial layer, simplifying the photolithography process. Also, to adjust the acoustic sensor for a bottom-ported package, its diaphragm was implemented to be placed over the back-plate. The TiN/PECVD-Si3N4/TiN multi-layer diaphragm was formed with the stress controllability of PECVD-Si3N4 from  -162 MPa to  +109 MPa. Furthermore, a parallel-plate capacitance model on the basis of an approximately linearized electric field method (ALEM) is proposed to evaluate the capacitance of two plates. The modelled capacitance showed less than 3.7% error in FEM simulation, demonstrating the validity of the proposed model. At a zero-bias voltage, the effective intrinsic and parasitic capacitances in the active area were 1.656 pF and 0.388 pF, respectively. Moreover, with a pull-in analytical model by using ALEM, the effective tensile stress for the diaphragm was extracted to  +31.5 MPa, where the pull-in voltage was 10.7 V. In succession, the dynamic response for the open-circuit sensitivity was modelled with an equivalent circuit model based on lumped parameters. The measured open-circuit sensitivity of  -45.1 dBV Pa-1 at 1 kHz with a bias of 9.6 V was only slightly different from the modelled sensitivity of  -45.0 dBV Pa-1. Thus, these results demonstrate that the proposed sensor is suitable for a front-end voice capture module.

  9. A concave-patterned TiN/PECVD-Si3N4 /TiN diaphragm MEMS acoustic sensor based on a polyimide sacrificial layer

    International Nuclear Information System (INIS)

    In this paper, we present a concave-patterned TiN/PECVD-Si3N4 /TiN diaphragm micro-electro-mechanical system (MEMS) acoustic sensor based on a polyimide sacrificial layer. The use of the spin-coated polyimide eliminates the additional Al pad process of conventional device fabrication due to simple O2 ashing to release the sacrificial layer, simplifying the photolithography process. Also, to adjust the acoustic sensor for a bottom-ported package, its diaphragm was implemented to be placed over the back-plate. The TiN/PECVD-Si3N4/TiN multi-layer diaphragm was formed with the stress controllability of PECVD-Si3N4 from  −162 MPa to  +109 MPa. Furthermore, a parallel-plate capacitance model on the basis of an approximately linearized electric field method (ALEM) is proposed to evaluate the capacitance of two plates. The modelled capacitance showed less than 3.7% error in FEM simulation, demonstrating the validity of the proposed model. At a zero-bias voltage, the effective intrinsic and parasitic capacitances in the active area were 1.656 pF and 0.388 pF, respectively. Moreover, with a pull-in analytical model by using ALEM, the effective tensile stress for the diaphragm was extracted to  +31.5 MPa, where the pull-in voltage was 10.7 V. In succession, the dynamic response for the open-circuit sensitivity was modelled with an equivalent circuit model based on lumped parameters. The measured open-circuit sensitivity of  −45.1 dBV Pa−1 at 1 kHz with a bias of 9.6 V was only slightly different from the modelled sensitivity of  −45.0 dBV Pa−1. Thus, these results demonstrate that the proposed sensor is suitable for a front-end voice capture module. (paper)

  10. Building biomedical materials layer-by-layer

    Directory of Open Access Journals (Sweden)

    Paula T. Hammond

    2012-05-01

    Full Text Available In this materials perspective, the promise of water based layer-by-layer (LbL assembly as a means of generating drug-releasing surfaces for biomedical applications, from small molecule therapeutics to biologic drugs and nucleic acids, is examined. Specific advantages of the use of LbL assembly versus traditional polymeric blend encapsulation are discussed. Examples are provided to present potential new directions. Translational opportunities are discussed to examine the impact and potential for true biomedical translation using rapid assembly methods, and applications are discussed with high need and medical return.

  11. CMUTs with high-K atomic layer deposition dielectric material insulation layer.

    Science.gov (United States)

    Xu, Toby; Tekes, Coskun; Degertekin, F

    2014-12-01

    Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (Six)Ny)) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2) such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD Six)Ny) and 100-nm HfO2) insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure. PMID:25474786

  12. SCOUR MITIGATION AT BRIDGE PIERS USING SACRIFICIAL PILES

    Institute of Scientific and Technical Information of China (English)

    M. Anisul HAQUE; Md. Munsur RAHMAN; G.M. Tarekul ISLAM; M. Asad HUSSAIN

    2007-01-01

    To mitigate scour around bridge piers, sacrificial piles are economic method where natural processes are involved. The arrangement should be such that scoured materials from the sacrificial piles should have enough volume to fill the scour hole created upstream of the pier in such a way that sediments are trapped inside the scour hole. This concept differs from earlier study made with sacrificial piles that mainly deals to reduce the strength of horseshoe vortex. To determine the effect of sacrificial piles for scour mitigation, alternative arrangements of piles were tested in front of a rectangular pier under clear-water condition and found that when the group of piles is placed at a distance of twice the projected width of the pier, for which percentage of blockage of the pier width is 60%, the scour volume can be reduced upto 61% while the maximum scour depth can be reduced upto 50%.

  13. Growth and sacrificial oxidation of transition metal nanolayers

    NARCIS (Netherlands)

    T. Tsarfati,; Zoethout, E.; van de Kruijs, R.; F. Bijkerk,

    2009-01-01

    Growth and oxidation of Au, Pt, Pd, Rh, Cu, Ru, Ni and Co layers of 0.3-4.3 nm thickness on Mo have been investigated with ARPES and AFM. Co and Ni layers oxidize while the Mo remains metallic. For nobler metals, the on top O and oxidation state of subsurface Mo increase, suggesting sacrificial e(-)

  14. Growth and sacrificial oxidation of transition metal nanolayers

    NARCIS (Netherlands)

    Tsarfati, Tim; Zoethout, Erwin; Kruijs, van de Robbert; Bijkerk, Fred

    2009-01-01

    Growth and oxidation of Au, Pt, Pd, Rh, Cu, Ru, Ni and Co layers of 0.3–4.3 nm thickness on Mo have been investigated with ARPES and AFM. Co and Ni layers oxidize while the Mo remains metallic. For nobler metals, the on top O and oxidation state of subsurface Mo increase, suggesting sacrificial e− d

  15. Structure and properties of layered inorganic materials

    Institute of Scientific and Technical Information of China (English)

    Xue Duan

    2010-01-01

    @@ Inorganic layered materials are a class of advanced functional materials that have attracted considerable attention by virtue of their practical applications in a wide variety of fields. Sys-tematic studies of structure, design, synthesis, and fabrication processing may extend the range of practical utility of inor-ganic layered functional materials, in areas such as food industry,chemical industry, energy engineering, environmental engineer-ing, drug and gene delivery, electronics technology, and materials protection.

  16. Sacrificial Template Synthesis and Properties of 3D Hollow-Silicon Nano- and Microstructures.

    Science.gov (United States)

    Hölken, Iris; Neubüser, Gero; Postica, Vasile; Bumke, Lars; Lupan, Oleg; Baum, Martina; Mishra, Yogendra Kumar; Kienle, Lorenz; Adelung, Rainer

    2016-08-10

    Novel three-dimensional (3D) hollow aero-silicon nano- and microstructures, namely, Si-tetrapods (Si-T) and Si-spheres (Si-S) were synthesized by a sacrificial template approach for the first time. The new Si-T and Si-S architectures were found as most temperature-stable hollow nanomaterials, up to 1000 °C, ever reported. The synthesized aero-silicon or aerogel was integrated into sensor structures based on 3D networks. A single microstructure Si-T was employed to investigate electrical and gas sensing properties. The elaborated hollow microstructures open new possibilities and a wide area of perspectives in the field of nano- and microstructure synthesis by sacrificial template approaches. The enormous flexibility and variety of the hollow Si structures are provided by the special geometry of the sacrificial template material, ZnO-tetrapods (ZnO-T). A Si layer was deposited onto the surface of ZnO-T networks by plasma-enhanced chemical vapor deposition. All samples demonstrated p-type conductivity; hence, the resistance of the sensor structure increased after introducing the reducing gases in the test chamber. These hollow structures and their unique and superior properties can be advantageous in different fields, such as NEMS/MEMS, batteries, dye-sensitized solar cells, gas sensing in harsh environment, and biomedical applications. This method can be extended for synthesis of other types of hollow nanostructures. PMID:27428091

  17. Layer like porous materials with hierarchical structure.

    Science.gov (United States)

    Roth, Wieslaw J; Gil, Barbara; Makowski, Wacław; Marszalek, Bartosz; Eliášová, Pavla

    2016-06-13

    Many chemical compositions produce layered solids consisting of extended sheets with thickness not greater than a few nanometers. The layers are weakly bonded together in a crystal and can be modified into various nanoarchitectures including porous hierarchical structures. Several classes of 2-dimensional (2D) materials have been extensively studied and developed because of their potential usefulness as catalysts and sorbents. They are discussed in this review with focus on clays, layered transition metal oxides, silicates, layered double hydroxides, metal(iv) phosphates and phosphonates, especially zirconium, and zeolites. Pillaring and delamination are the primary methods for structural modification and pore tailoring. The reported approaches are described and compared for the different classes of materials. The methods of characterization include identification by X-ray diffraction and microscopy, pore size analysis and activity assessment by IR spectroscopy and catalytic testing. The discovery of layered zeolites was a fundamental breakthrough that created unprecedented opportunities because of (i) inherent strong acid sites that make them very active catalytically, (ii) porosity through the layers and (iii) bridging of 2D and 3D structures. Approximately 16 different types of layered zeolite structures and modifications have been identified as distinct forms. It is also expected that many among the over 200 recognized zeolite frameworks can produce layered precursors. Additional advances enabled by 2D zeolites include synthesis of layered materials by design, hierarchical structures obtained by direct synthesis and top-down preparation of layered materials from 3D frameworks. PMID:26489452

  18. Novel Applications of Aryltriazene Photopolymers as Sacrificial Release Layers for Laser-assisted Forward Transfer of Sensitive Materials

    Institute of Scientific and Technical Information of China (English)

    M.Nagel; R.Fardel; F.Nüesch; T.Lippert

    2007-01-01

    1 Results Key chraracteristics of high-performance photopolymers are not only their photosensitivity but also a clean and controlled photodecomposition without carbonization upon laser irradiation.Tailor-made photodecomposible polymers with UV-sensitive aryltriazene chromophores covalently incorporated in the main chain proved to have convincing laser ablation properties at low threshold fluences.An improved synthesis procedure for such metastable compounds was developed and sets of new aryltriazene pho...

  19. Understanding Radionuclide Interactions with Layered Materials

    Science.gov (United States)

    Wang, Y.

    2015-12-01

    Layered materials play an important role in nuclear waste management and environmental cleanup. Better understanding of radionuclide interactions with those materials is critical for engineering high-performance materials for various applications. This presentation will provide an overview on radionuclide interactions with two general categories of layered materials - cationic clays and anionic clays - from a perspective of nanopore confinement. Nanopores are widely present in layered materials, either as the interlayers or as inter-particle space. Nanopore confinement can significantly modify chemical reactions in those materials. This effect may cause the preferential enrichment of radionuclides in nanopores and therefore directly impact the mobility of the radionuclides. This effect also implies that conventional sorption measurements using disaggregated samples may not represent chemical conditions in actual systems. The control of material structures on ion exchange, surface complexation, and diffusion in layered materials will be systematically examined, and the related modeling approaches will be discussed. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.

  20. Complex Materials by Atomic Layer Deposition.

    Science.gov (United States)

    Schwartzberg, Adam M; Olynick, Deirdre

    2015-10-14

    Complex materials are defined as nanostructured materials with combinations of structure and/or composition that lead to performance surpassing the sum of their individual components. There are many methods that can create complex materials; however, atomic layer deposition (ALD) is uniquely suited to control composition and structural parameters at the atomic level. The use of ALD for creating complex insulators, semiconductors, and conductors is discussed, along with its use in novel structural applications.

  1. Nano transfer and nanoreplication using deterministically grown sacrificial nanotemplates

    Science.gov (United States)

    Melechko, Anatoli V.; McKnight, Timothy E.; Guillorn, Michael A.; Ilic, Bojan; Merkulov, Vladimir I.; Doktycz, Mitchel J.; Lowndes, Douglas H.; Simpson, Michael L.

    2012-03-27

    Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. An apparatus, includes a substrate and a nanoconduit material coupled to a surface of the substrate. The substrate defines an aperture and the nanoconduit material defines a nanoconduit that is i) contiguous with the aperture and ii) aligned substantially non-parallel to a plane defined by the surface of the substrate.

  2. Layered zeolite materials and methods related thereto

    Science.gov (United States)

    Tsapatsis, Michael; Maheshwari, Sudeep; Bates, Frank S; Koros, William J

    2013-08-06

    A novel oxide material (MIN-I) comprising YO.sub.2; and X.sub.2O.sub.3, wherein Y is a tetravalent element and X is a trivalent element, wherein X/Y=O or Y/X=30 to 100 is provided. Surprisingly, MIN-I can be reversibly deswollen. MIN-I can further be combined with a polymer to produce a nanocomposite, depolymerized to produce predominantly fully exfoliated layers (MIN-2), and pillared to produce a pillared oxide material (MIN-3), analogous to MCM-36. The materials are useful in a wide range of applications, such as catalysts, thin films, membranes, and coatings.

  3. Compressive Failure Mechanisms in Layered Materials

    DEFF Research Database (Denmark)

    Sørensen, Kim Dalsten

    into kink bands. The present thesis falls into two parts dealing with the two failure modes. In the first part of the thesis the effects of system geometry on buckling driven delamination is investigated. Previous work has focused on buckling driven delamination of surface layers on flat substrates......Two important failure modes in fiber reinforced composite materials in cluding layers and laminates occur under loading conditions dominated by compression in the layer direction. These two distinctly different failure modes are 1. buckling driven delamination 2. failure by strain localization...... nondimensional parameters suitably, one of them plays a very insignificant role on the fracture mechanical parameters such as normalized energy release rate and mode mixity, which has obvious impact on the presentation of the results. In some cases, the local curvatures of the system is so high compared...

  4. Condenser optic with sacrificial reflective surface

    Science.gov (United States)

    Tichenor, Daniel A.; Kubiak, Glenn D.; Lee, Sung Hun

    2007-07-03

    Employing collector optics that has a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics is normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.

  5. Scanning Tunneling Microscopy of Layered Materials

    Science.gov (United States)

    Qin, Xiaorong

    This dissertation describes studies of the surfaces of layered materials, including graphite intercalation compounds, transition-metal-dichalcogenides, and single layers of MoS_2. with scanning tunneling microscopy (STM). In order to understand how tunneling images reflect the atomic nature of sample surfaces, the electronic and structural properties of intercalated graphite surfaces imaged with STM have been investigated theoretically. The corrugation amplitude (CA) and carbon site asymmetry (CSA) are sensitive to the number of graphite layers covering the first intercalate layer, to the amount and distribution of the charge transferred from intercalate to host and to the surface subband structure. The CA and CSA can be used to map the stage domains across a freshly cleaved surface. The STM images of the surfaces of both donor and acceptor graphite intercalation compounds are discussed. The theory successfully explained the available experimental results, and yielded some predictions which have been verified in recent experiments. A STM system for operation in air was assembled. The crystalline surfaces of graphite and three transition-metal -dichalcogenides (2H-MoS_2, WTe _2 and ReSe_2) have been studied with the STM system. Single layers of MoS_2 can be obtained by the exfoliation of lithium-intercalated MoS_2 powder in water and in several alcohols. In the STM observations, the samples were prepared by depositing either an aqueous or butanol suspension of single-layer MoS_2 on graphite substrates to form restacked films with two monolayers of solvent molecules included between the layers of MoS_2 . The real-space images obtained from the films all showed the existence of an approximate 2 x 1 superstructure on the surfaces, although the 2 x 1 pattern can be modulated by the interface interaction between the MoS_2 layer and the solvent molecules. These results, in conjunction with existing x-ray diffraction and Raman results, imply that the single layers of MoS_2

  6. Atomic Layer Thermopile Materials: Physics and Application

    Directory of Open Access Journals (Sweden)

    P. X. Zhang

    2008-01-01

    Full Text Available New types of thermoelectric materials characterized by highly anisotropic Fermi surfaces and thus anisotropic Seebeck coefficients are reviewed. Early studies revealed that there is an induced voltage in high TC oxide superconductors when the surface of the films is exposed to short light pulses. Subsequent investigations proved that the effect is due to anisotropic components of the Seebeck tensor, and the type of materials is referred to atomic layer thermopile (ALT. Our recent studies indicate that multilayer thin films at the nanoscale demonstrate enhanced ALT properties. This is in agreement with the prediction in seeking the larger figure of merit (ZT thermoelectric materials in nanostructures. The study of ALT materials provides both deep insight of anisotropic transport property of these materials and at the same time potential materials for applications, such as light detector and microcooler. By measuring the ALT properties under various perturbations, it is found that the information on anisotropic transport properties can be provided. The information sometimes is not easily obtained by other tools due to the nanoscale phase coexistence in these materials. Also, some remained open questions and future development in this research direction have been well discussed.

  7. Nanomanufacturing : nano-structured materials made layer-by-layer.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto (University of New Mexico); Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  8. Optical modulators with 2D layered materials

    Science.gov (United States)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  9. Layered Atom Arrangements in Complex Materials

    Energy Technology Data Exchange (ETDEWEB)

    K.E. Sikafus; R.W.Grimes; S.M.Corish; A.R. Cleave; M.Tang; C.R.Stanek; B.P. Uberuaga; J.A.Valdez

    2005-04-15

    In this report, we develop an atom layer stacking model to describe systematically the crystal structures of complex materials. To illustrate the concepts, we consider a sequence of oxide compounds in which the metal cations progress in oxidation state from monovalent (M{sup 1+}) to tetravalent (M{sup 4+}). We use concepts relating to geometric subdivisions of a triangular atom net to describe the layered atom patterns in these compounds (concepts originally proposed by Shuichi Iida). We demonstrate that as a function of increasing oxidation state (from M{sup 1+} to M{sup 4+}), the layer stacking motifs used to generate each successive structure (specifically, motifs along a 3 symmetry axis), progress through the following sequence: MMO, MO, M{sub r}O, MO{sub r/s}O{sub u/v}, MOO (where M and O represent fully dense triangular atom nets and r/s and u/v are fractions used to describe partially filled triangular atom nets). We also develop complete crystallographic descriptions for the compounds in our oxidation sequence using trigonal space group R{bar 3}.

  10. Thermoelectric material including conformal oxide layers and method of making the same using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Young; Ahn, Dongjoon; Salvador, James R.; Meisner, Gregory P.

    2016-06-07

    A thermoelectric material includes a substrate particle and a plurality of conformal oxide layers formed on the substrate particle. The plurality of conformal oxide layers has a total oxide layer thickness ranging from about 2 nm to about 20 nm. The thermoelectric material excludes oxide nanoparticles. A method of making the thermoelectric material is also disclosed herein.

  11. CMUTs with High-K Atomic Layer Deposition Dielectric Material Insulation Layer

    OpenAIRE

    Xu, Toby; Tekes, Coskun; Degertekin, F. Levent

    2014-01-01

    Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especiall...

  12. Contact mechanics for layered materials with randomly rough surfaces.

    Science.gov (United States)

    Persson, B N J

    2012-03-01

    The contact mechanics model of Persson is applied to layered materials. We calculate the M function, which relates the surface stress to the surface displacement, for a layered material, where the top layer (thickness d) has different elastic properties than the semi-infinite solid below. Numerical results for the contact area as a function of the magnification are presented for several cases. As an application, we calculate the fluid leak rate for laminated rubber seals.

  13. Redox buffered hydrofluoric acid etchant for the reduction of galvanic attack during release etching of MEMS devices having noble material films

    Science.gov (United States)

    Hankins, Matthew G.

    2009-10-06

    Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.

  14. Van der Waals stacked 2D layered materials for optoelectronics

    Science.gov (United States)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  15. Gate induced superconductivity in layered material based electronic double layer field effect transistors

    NARCIS (Netherlands)

    Ye, J. T.; Inoue, S.; Kobayashi, K.; Kasahara, Y.; Yuan, H. T.; Shimotani, H.; Iwasa, Y.

    2010-01-01

    Applying the principle of field effect transistor to layered materials provides new opportunities to manipulate their electronic properties for interesting sciences and applications. Novel gate dielectrics like electronic double layer (EDL) formed by ionic liquids are demonstrated to achieve an elec

  16. A templated electrosynthesis of macroporous NiAl layered double hydroxides thin films.

    Science.gov (United States)

    Prevot, Vanessa; Forano, Claude; Khenifi, Aicha; Ballarin, Barbara; Scavetta, Erika; Mousty, Christine

    2011-02-14

    Colloidal crystals of polystyrene (PS) beads self-assembled on Pt electrode were used as a sacrificial template to electrosynthesis thin films of macroporous Layered Double Hydroxides (LDH). Such nanostructured materials display a high internal surface area and porosity leading to enhanced electrochemical performance. PMID:21125133

  17. Examples of material solutions in bimetallic layered castings

    Directory of Open Access Journals (Sweden)

    S. Tenerowicz

    2011-07-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast process so-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. pearlitic grey cast iron, whereas working part (layer is depending on accepted variant plates of alloy steels sort X6Cr13, X12Cr13, X10CrNi18-8 and X2CrNiMoN22-5-3. The ratio of thickness between bearing and working part is 8:1. The verification of the bimetallic layered castings was evaluated on the basis of ultrasonic NDT (non-destructive testing, structure and macro- and microhardness researches.

  18. Epitaxially Grown Layered MFI–Bulk MFI Hybrid Zeolitic Materials

    KAUST Repository

    Kim, Wun-gwi

    2012-11-27

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered zeolite material grown epitaxially on the surface of a bulk zeolite material. Specifically, layered (2-D) MFI sheets were grown on the surface of bulk MFI crystals of different sizes (300 nm and 10 μm), thereby resulting in a hybrid material containing a unique morphology of interconnected micropores (∼0.55 nm) and mesopores (∼3 nm). The structure and morphology of this material, referred to as a "bulk MFI-layered MFI" (BMLM) material, was elucidated by a combination of XRD, TEM, HRTEM, SEM, TGA, and N2 physisorption techniques. It is conclusively shown that epitaxial growth of the 2-D layered MFI sheets occurs in at least two principal crystallographic directions of the bulk MFI crystal and possibly in the third direction as well. The BMLM material combines the properties of bulk MFI (micropore network and mechanical support) and 2-D layered MFI (large surface roughness, external surface area, and mesoporosity). As an example of the uses of the BMLM material, it was incorporated into a polyimide and fabricated into a composite membrane with enhanced permeability for CO2 and good CO2/CH4 selectivity for gas separations. SEM-EDX imaging and composition analysis showed that the polyimide and the BMLM interpenetrate into each other, thereby forming a well-adhered polymer/particle microstructure, in contrast with the defective interfacial microstructure obtained using bare MFI particles. Analysis of the gas permeation data with the modified Maxwell model also allows the estimation of the effective volume of the BMLM particles, as well as the CO2 and CH4 gas permeabilities of the interpenetrated layer at the BMLM/polyimide interface. © 2012 American Chemical Society.

  19. C60 ion sputtering of layered organic materials

    International Nuclear Information System (INIS)

    Two different organic materials, Irganox1010 and Irganox3114, were vacuum deposited as alternating layers. The layers of Irganox3114 were thin (∼2.5 nm) in comparison to the Irganox1010 (∼55 or ∼90 nm); we call these 'organic delta layers'. Both materials are shown to have identical sputtering yields and the alternating layers may be used to determine some of the important metrological parameters for cluster ion beam depth profiling of organic materials. The sputtering yield for C60 ions is shown to diminish with ion dose. Comparison with atomic force microscopy data from films of pure Irganox1010, demonstrates that the depth resolution is limited by the development of topography. Secondary ion intensities are a well-behaved function of sputtering yield and may be employed to obtain useful analytical information. Organic delta layers are shown to be valuable reference materials for comparing the capabilities of different cluster ion sources and experimental arrangements for the depth profiling of organic materials.

  20. Designing high-Performance layered thermoelectric materials through orbital engineering

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.;

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited...... insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach......-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials....

  1. Layered material characterization using ultrasonic transmission. An inverse estimation methodology.

    Science.gov (United States)

    Messineo, María G; Rus, Guillermo; Eliçabe, Guillermo E; Frontini, Gloria L

    2016-02-01

    This paper presents an inverse methodology with the aim to characterize a layered material through the identification of acoustical and mechanical properties of its layers. The framework to accomplish this objective is provided by the Inverse Problems (IPs) theory. Material characterization refers to the detection and localization of discontinuities, as well as to the identification of physical properties, in order to predict the material behaviour. In this particular case, the IP is solved in the form of a parameter estimation problem, in which the goal is the estimation of the characteristic acoustic impedance, transit time, and attenuation of each layer. These parameters are directly related to relevant material properties, such as the speed of sound, density, elastic modulus and elastic energy dissipation constants. The IP solution is obtained by minimizing a cost functional formulated as the least squares error between the waveform calculated using an equivalent model, and the measured waveform obtained from ultrasonic transmission tests. The applied methodology allowed the accurate estimation of the desired parameters in materials composed of up to three layers. As a second contribution, a power law frequency dependence of the wave attenuation was identified for several homogeneous materials, based on the same ultrasonic transmission experiments. PMID:26456278

  2. Designing high-performance layered thermoelectric materials through orbital engineering.

    Science.gov (United States)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K H; Fischer, Karl F F; Zhang, Wenqing; Shi, Xun; Iversen, Bo B

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials.

  3. Designing high-performance layered thermoelectric materials through orbital engineering

    Science.gov (United States)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.; Fischer, Karl F. F.; Zhang, Wenqing; Shi, Xun; Iversen, Bo B.

    2016-03-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials.

  4. Unidirectional reflectionless phenomenon in periodic ternary layered material.

    Science.gov (United States)

    Yang, Erchan; Lu, Yonghua; Wang, Yong; Dai, Yanmeng; Wang, Pei

    2016-06-27

    Unidirectional reflectionless phenomenon is reported in periodic ternary layered material (PTLM). The unit of the material is composed of two real dielectric layers and a complex medium (loss or gain) layer. The model is analyzed by coupled mode theory. Because of the asymmetric coupling between the forward and backward propagating modes, the left- and right-side reflectivities of this PTLM are generally unequal. The necessary and sufficient (NS) condition for unidirectional reflectionless phenomenon is presented in a concise formulation. And the underlying physical mechanism of the unidirectional reflectionless phenomenon in this material is revealed by numerical simulations. Both unidirectional reflectionless and symmetric reflection phenomena can be realized by judicious choice of the structural and optical parameters. PMID:27410586

  5. Epitaxial Growth of GaN-based LEDs on Simple Sacrificial Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ian Ferguson; Chris Summers

    2009-12-31

    The objective of this project is to produce alternative substrate technologies for GaN-based LEDs by developing an ALD interlayer of Al{sub 2}O{sub 3} on sacrificial substrates such as ZnO and Si. A sacrificial substrate is used for device growth that can easily be removed using a wet chemical etchant leaving only the thin GaN epi-layer. After substrate removal, the GaN LED chip can then be mounted in several different ways to a metal heat sink/reflector and light extraction techniques can then be applied to the chip and compared for performance. Success in this work will lead to high efficiency LED devices with a simple low cost fabrication method and high product yield as stated by DOE goals for its solid state lighting portfolio.

  6. Mechanics of freely-suspended ultrathin layered materials

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos-Gomez, Andres [Kavli Institute of Nanoscience, Delft University of Technology (Netherlands); Instituto Madrileno de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Madrid (Spain); Singh, Vibhor; Zant, Herre S.J. van der; Steele, Gary A. [Kavli Institute of Nanoscience, Delft University of Technology (Netherlands)

    2015-01-01

    The study of atomically thin two-dimensional materials is a young and rapidly growing field. In the past years, a great advance in the study of the remarkable electrical and optical properties of 2D materials fabricated by exfoliation of bulk layered materials has been achieved. Due to the extraordinary mechanical properties of these atomically thin materials, they also hold a great promise for future applications such as flexible electronics. For example, this family of materials can sustain very large deformations without breaking. Due to the combination of small dimensions, high Young's modulus and high crystallinity of 2D materials, they have attracted the attention of the field of nanomechanical systems as high frequency and high quality factor resonators. In this article, we review experiments on static and dynamic response of 2D materials. We provide an overview and comparison of the mechanics of different materials, and highlight the unique properties of these thin crystalline layers. We conclude with an outlook of the mechanics of 2D materials and future research directions such as the coupling of the mechanical deformation to their electronic structure. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Removal of surface layers from plated materials: upgrading of scrap

    NARCIS (Netherlands)

    Dapper, G.; Sloterdijk, W.; Verbraak, C.A.

    1978-01-01

    In this paper a description is given of a method developed for the purpose of removing surface layers from plated materials. The principle of separation is based on the difference in vapour pressures and stabilities with the formation of metal chlorides. A series of pyrolytic experiments was carried

  8. Optimization of layered material configuration for shock attenuation

    NARCIS (Netherlands)

    Verreault, J.; Voort, M.M. van der

    2015-01-01

    Multi-layered materials with alternating impedances as a mean to mitigate sympathetic detonation is considered in this investigation by studying the wave scattering and energy absorption phenomena. This is achieved using an analytical wave-tracking model that accounts for the different wave interact

  9. Models of failure in compression of layered materials

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre

    1999-01-01

    Compressive failure of fibre reinforced or layered materials by fibre kinking, matrix splitting and fibre/matrix debonding is analysed, The main focus is on brittle matrix composites, however, the analysis of effects due to debonding is carried out in a general framework allowing for arbitrary ti...

  10. LayerOptics: Microscopic modeling of optical coefficients in layered materials

    Science.gov (United States)

    Vorwerk, Christian; Cocchi, Caterina; Draxl, Claudia

    2016-04-01

    Theoretical spectroscopy is a powerful tool to describe and predict optical properties of materials. While nowadays routinely performed, first-principles calculations only provide bulk dielectric tensors in Cartesian coordinates. These outputs are hardly comparable with experimental data, which are typically given by macroscopic quantities, crucially depending on the laboratory setup. Even more serious discrepancies can arise for anisotropic materials, e.g., organic crystals, where off-diagonal elements of the dielectric tensor can significantly contribute to the spectral features. Here, we present LayerOptics, a versatile and user-friendly implementation, based on the solution of the Maxwell's equations for anisotropic materials, to compute optical coefficients in anisotropic layered materials. We apply this tool for post-processing full dielectric tensors of molecular materials, including excitonic effects, as computed from many-body perturbation theory using the exciting code. For prototypical examples, ranging from optical to X-ray frequencies, we show the importance of combining accurate ab initio methods to obtain dielectric tensors, with the solution of the Maxwell's equations to compute optical coefficients accounting for optical anisotropy of layered systems. Good agreement with experimental data supports the potential of our approach, in view of achieving microscopic understanding of spectroscopic properties in complex materials.

  11. Development of size-customized hepatocarcinoma spheroids as a potential drug testing platform using a sacrificial gelatin microsphere system.

    Science.gov (United States)

    Leong, Wenyan; Kremer, Antje; Wang, Dong-An

    2016-06-01

    Sacrificial gelatin microspheres can be developed as a cell delivery vehicle for non-anchorage dependent cells - its incorporation into a macroscopic scaffold system not only allows the cells to be cultured in suspension within cavities left behind by the sacrificial material, it also allows scaffold-free tissue development to be confined within the cavities. In this study, dense and highly viable hepatocarcinoma spheroids were developed by means of encapsulation in sacrificial gelatin microspheres produced via a simple water-in-oil emulsion technique. By initial selection of microsphere size and distribution, spheroid size can be controlled for various applications such as uniform tumor spheroids as a reproducible three-dimensional drug screening and testing platform that better mimics the in vivo nature of tumors (instead of conventional monolayer culture), as this study has suggested as a proof-of-concept with chemotherapy drug Doxorubicin. PMID:27040260

  12. Antitumoral materials with regenerative function obtained using a layer-by-layer technique

    Directory of Open Access Journals (Sweden)

    Ficai D

    2015-03-01

    Full Text Available Denisa Ficai,1 Maria Sonmez,1,2 Madalina Georgiana Albu,2 Dan Eduard Mihaiescu,1 Anton Ficai,1 Coralia Bleotu3 1Faculty of Applied Chemistry and Material Science, Politehnica University of Bucharest, 2Leather and Footwear Research Institute, National Research and Development Institute for Textiles and Leather, 3Stefan S Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania Abstract: A layer-by layer technique was successfully used to obtain collagen/hydroxyapatite-magnetite-cisplatin (COLL/HAn-Fe3O4-CisPt, n=1–7 composite materials with a variable content of hydroxyapatite intended for use in the treatment of bone cancer. The main advantages of this system are the possibility of controlling the rate of delivery of cytostatic agents, the presence of collagen and hydroxyapatite to ensure more rapid healing of the injured bone tissue, and the potential for magnetite to be a passive antitumoral component that can be activated when an appropriate external electromagnetic field is applied. In vitro cytotoxicity assays performed on the COLL/HAn-Fe3O4-CisPt materials obtained using a layer-by layer method confirmed their antitumoral activity. Samples with a higher content of hydroxyapatite had more antitumoral activity because of their better absorption of cisplatin and consequently a higher amount of cisplatin being present in the matrices. Keywords: multifunctional materials, antitumoral activity, scaffold, bone grafts

  13. Nanoscale layered double hydroxide materials for corrosion resistance

    OpenAIRE

    Rangel, C. M.; Travassos, Maria Antónia

    2007-01-01

    Layered Double Hydroxides (LDHμs), represented by the general formula [MII (1-x)MIIIx(OH)2[An-x/n].zH2O or [MIMIII2(OH)6[An-1/n].zH2O], where MI, MII, MIII are mono-, di- and tri-valent metal cations, are being researched as anion-exchange materials which interesting intercalation chemistry that accommodate a wide range of applications from heterogeneous catalysis to storage and subsequent controlled release of bioactive agents. In this work, layered double hydroxides containing a monovalent...

  14. Galvanic aspects of aluminum sacrificial anode alloys in seawater.

    OpenAIRE

    Cummings, Jon Richard

    2012-01-01

    Galvanic aspects of aluminum sacrificial anode alloys in artificial seawater were investigated. Specifically, two mercury-bearing alloys and one tin-bearing alloy were studied. The polarization behavior of the aluminum sacrificial anode alloys coupled to HY-80 steel is discussed. Current versus time curves were obtained for aluminum/steel galvanic couples immersed in artificial seawater for specific intervals. Scanning elecron microscopy was used to characterize the anode dissolution patt...

  15. Sacrificial Template-Based Synthesis of Unified Hollow Porous Palladium Nanospheres for Formic Acid Electro-Oxidation

    OpenAIRE

    Xiaoyu Qiu; Hanyue Zhang; Yuxuan Dai; Fengqi Zhang; Peishan Wu; Pin Wu; Yawen Tang

    2015-01-01

    Large scale syntheses of uniform metal nanoparticles with hollow porous structure have attracted much attention owning to their high surface area, abundant active sites and relatively efficient catalytic activity. Herein, we report a general method to synthesize hollow porous Pd nanospheres (Pd HPNSs) by templating sacrificial SiO2 nanoparticles with the assistance of polyallylamine hydrochloride (PAH) through layer-by-layer self-assembly. The chemically inert PAH is acting as an efficient st...

  16. 10th International School of Materials Science and Technology : Intercalation in Layered Materials "Ettore Majorana"

    CERN Document Server

    1986-01-01

    This volume is prepared from lecture notes for the course "Intercalation in Layered Materials" which was held at the Ettore Majorana Centre for Scientific Culture at Erice, Sicily in July, 1986, as part of the International School of Materials Science and Tech­ nology. The course itself consisted of formal tutorial lectures, workshops, and informal discussions. Lecture notes were prepared for the formal lectures, and short summaries of many of the workshop presentations were prepared. This volume is based on these lecture notes and research summaries. The material is addressed to advanced graduate students and postdoctoral researchers and assumes a background in basic solid state physics. The goals of this volume on Intercalation in Layered Materials include an introduc­ tion to the field for potential new participants, an in-depth and broad exposure for stu­ dents and young investigators already working in the field, a basis for cross-fertilization between workers on various layered host materials...

  17. Optical modulators with two-dimensional layered materials

    CERN Document Server

    Sun, Zhipei; Wang, Feng

    2016-01-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.

  18. Bioactive Gyroid Scaffolds Formed by Sacrificial Templating of Nanocellulose and Nanochitin Hydrogels as Instructive Platforms for Biomimetic Tissue Engineering

    OpenAIRE

    Torres-Rendon, Jose Guillermo; Femmer, Tim; De Laporte, Laura; Tigges, Thomas; Rahimi, Khoshrow; Gremse, Felix; Zafarnia, Sara; Lederle, Wiltrud; Ifuku, Shinsuke; Wessling, Matthias; Hardy, John G.; Walther, Andreas

    2015-01-01

    A sacrificial templating process using lithographically printed minimal surface structures allows complex de novo geometries of delicate hydrogel materials. The hydrogel scaffolds based on cellulose and chitin nanofibrils show differences in terms of attachment of human mesenchymal stem cells, and allow their differentiation into osteogenic outcomes. The approach here serves as a first example toward designer hydrogel scaffolds viable for biomimetic tissue engineering.

  19. Sacrificial template method of fabricating a nanotube

    Science.gov (United States)

    Yang, Peidong; He, Rongrui; Goldberger, Joshua; Fan, Rong; Wu, Yi-Ying; Li, Deyu; Majumdar, Arun

    2007-05-01

    Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

  20. Atomic layer deposited aluminum oxide barrier coatings for packaging materials

    Energy Technology Data Exchange (ETDEWEB)

    Hirvikorpi, Terhi, E-mail: terhi.hirvikorpi@vtt.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Vaehae-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Mustonen, Tuomas, E-mail: tuomas.mustonen@vtt.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Iiskola, Eero, E-mail: eero.iiskola@kcl.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Karppinen, Maarit, E-mail: maarit.karppinen@tkk.f [Laboratory of Inorganic Chemistry, Department of Chemistry, Helsinki University of Technology, P.O. Box 6100, FI-02015 TKK (Finland)

    2010-03-01

    Thin aluminum oxide coatings have been deposited at a low temperature of 80 {sup o}C on various uncoated papers, polymer-coated papers and boards and plain polymer films using the atomic layer deposition (ALD) technique. The work demonstrates that such ALD-grown Al{sub 2}O{sub 3} coatings efficiently enhance the gas-diffusion barrier performance of the studied porous and non-porous materials towards oxygen, water vapor and aromas.

  1. A Dynamical Model for a Thin Layer of Granular Materials

    Institute of Scientific and Technical Information of China (English)

    MIAO Guo-Qing; SUI Lei; WEI Rong-Jue

    2001-01-01

    A dynamical model is presented for a thin layer of granular materials similar to that for shallow viscous fluids.We have obtained analytically the expressions for the "thermal expansion", dispersion relation, and dependence of instability onset on driving frequency and viscosity, which are in agreement with experiments. The numerical calculation for the nonlinear problem reproduces the experimental phenomena for a one-dimensional system.

  2. Electromagnetic wave propagation in alternating material-metamaterial layered structures

    CERN Document Server

    Carrera-Escobedo, V H

    2016-01-01

    Using the transfer matrix method, we examine the parametric behavior of the transmittance of an electromagnetic plane wave propagating in the lossless regime through a periodic multilayered system as a function of the frequency and angle of incidence of the electromagnetic wave for the case in which the periodic structure comprises alternating material-metamaterial layers. A specific example of high transmittance at any angle of incidence in the visible region of the spectrum is identified

  3. Nanotubes Motion on Layered Materials: A Registry Perspective

    CERN Document Server

    Oz, Inbal; Itkin, Yaron; Buchwalter, Asaf; Akulov, Katherine; Hod, Oded

    2015-01-01

    At dry and clean material junctions of rigid materials the corrugation of the sliding energy landscape is dominated by variations of Pauli repulsions. These occur when electron clouds centered around atoms in adjacent layers overlap as they slide across each other. In such cases there exists a direct relation between interfacial surface (in)commensurability and superlubricity, a frictionless and wearless tribological state. The Registry Index is a purely geometrical parameter that quanti?es the degree of interlayer commensurability, thus providing a simple and intuitive method for the prediction of sliding energy landscapes at rigid material interfaces. In the present study, we extend the applicability of the Registry Index to non-parallel surfaces, using a model system of nanotubes motion on ?at hexagonal materials. Our method successfully reproduces sliding energy landscapes of carbon nanotubes on Graphene calculated using a Lennard-Jones type and the Kolmogorov-Crespi interlayer potentials. Furthermore, it...

  4. Encapsulation of the herbicide picloram by using polyelectrolyte biopolymers as layer-by-layer materials.

    Science.gov (United States)

    Wang, Xiaojing; Zhao, Jing

    2013-04-24

    Microcapsules of the herbicide picloram (PLR) were formulated by a layer-by-layer (LbL) self-assembly method using the polyelectrolyte biopolymers of biocompatible chitosan (CS) and the UV-absorbent sodium lignosulfonate (SL) as shell materials. The herbicide PLR was recrystallized and characterized using XRD analysis. The obtained PLR-loaded microcapsules were characterized by using SEM, FTIR, CLSM, and ζ-potential measurements. The herbicide loading and encapsulation efficiency were also analyzed for the PLR-loaded microcapsules. The influence of LbL layer numbers on herbicide release and photodegradation rates was investigated in vitro. The results showed that the release rates and photodegradation rates of PLR in microcapsules decreased with increasing number of CS/SL self-assembly layers. The results demonstrated that polyelectrolyte biopolymer-based LbL multilayer microcapsules can be a promising approach for the controlled release of PLR as well as other pesticides with poor photostability or short half-release time.

  5. Cellulose Nanofibril Hydrogel Tubes as Sacrificial Templates for Freestanding Tubular Cell Constructs.

    Science.gov (United States)

    Torres-Rendon, Jose Guillermo; Köpf, Marius; Gehlen, David; Blaeser, Andreas; Fischer, Horst; De Laporte, Laura; Walther, Andreas

    2016-03-14

    The merging of defined nanoscale building blocks with advanced additive manufacturing techniques is of eminent importance for the preparation of multiscale and highly functional materials with de novo designed hierarchical architectures. Here, we demonstrate that hydrogels of cellulose nanofibrils (CNF) can be processed into complex shapes, and used as a sacrificial template to prepare freestanding cell constructs. We showcase our approach for the fabrication of hollow fibers using a controlled extrusion through a circular die into a coagulation bath. The dimensions of the hollow fibers are tunable, and the final tubes combine the nanofibrillar porosity of the CNF hydrogel with a submillimeter wall thickness and centimeter-scale length provided by the additive manufacturing technique. We demonstrate that covalent and supramolecular cross-linking of the CNFs can be used to tailor the mechanical properties of the hydrogel tubes within 1 order of magnitude and in an attractive range for the mechanosensation of cells. The resulting tubes are highly biocompatible and allow for the growth of mouse fibroblasts into confluent cell layers in their inner lumen. A detailed screening of several cellulases enables degradation of the scaffolding, temporary CNF hydrogel tube in a quick and highly cell-friendly way, and allows the isolation of coherent cell tubes. We foresee that the growing capabilities of hydrogel printing techniques in combination with the attractive features of CNFs-sustainable, globally abundant, biocompatible and enzymatically degradable-will allow making plant-based biomaterials with hierarchical structures and on-demand degradation useful, for instance, to engineer complex tissue structures to replace animal models, and for implants. PMID:26812393

  6. Electric Double-layer Capacitor Based on Activated Carbon Material

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this study electric double-layer capacitors (EDLCs) based on activated carbon material and organic electrolyte (tetraethyl ammonium tetrafluoroborate) were explored. The fabrication method for EDLC is presented and the performance of EDLC was examined by using the cyclic voltammetry, constant-current charging and discharging technique, electrochemical impedance spectroscopy measurements. Influence of various components and design parameters on the performance of the capacitors were preliminarily investigated. Up to now, EDLC based on carbon materials can deliver 20.7 W/kg at the discharge rate ofI=0.3 mA, together with the energy density of 8.5 Wh/kg. Equivalent series resistance (ESR) is 0.716 Ω.cm2. The specific power of the capacitor is low and further attempts to raise the power capability of the capacitors are necessary. Some considerations are put forward to further improve the performance of EDLC.

  7. Thermal transport in layered materials for thermoelectrics and thermal management

    Science.gov (United States)

    Qui, Bo

    Atomic level thermal transport in layered materials, namely, Bi 2Te3 and graphene is investigated using first principles calculations, lattice dynamics (LD) calculations, molecular dynamics simulations, spectral phonon analysis and empirical modeling. These materials resemble geometrically while differ significantly in the nature of thermal transport. Because of their uniquely low/high thermal conductivities, they are of great interest in thermoelectrics and thermal management applications, respectively. Besides Bi2Te3 and graphene, many other materials in the family of layered materials also exhibit great promises for various applications in thermoelectrics, thermal management, and electronics. In order to investigate the thermal properties of general layered materials, we explore the use of tight-binding molecular dynamics (TBMD) approach, which neither relies on the availability of classical potentials nor demands significant computational resources as ab initio MD approach does. In addition, a general model for the effective phonon group velocities, which is relevant for the lattice thermal transport in general few-layer materials, is developed. First of all, two-body interatomic potentials in the Morse potential form have been developed for bismuth telluride. The density functional theory with local-density approximations is first used to calculate the total energies for many artificially distorted Bi2Te3 configurations to produce the energy surface. Then by fitting to this energy surface and other experimental data, the Morse potential form is parameterized. The fitted empirical interatomic potentials are shown to reproduce the elastic and phonon data well. With the classical interatomic potentials developed, molecular dynamics simulations are performed to predict the thermal conductivity of bulk Bi2Te3 at different temperatures, and the results agree with experimental data well. To facilitate phonon-engineering, we predict the thermal conductivity of Bi2Te3

  8. Failure modes and materials design for biomechanical layer structures

    Science.gov (United States)

    Deng, Yan

    Ceramic materials are finding increasing usage in the area of biomechanical replacements---dental crowns, hip and bone implants, etc.---where strength, wear resistance, biocompatibility, chemical durability and even aesthetics are critical issues. Aesthetic ceramic crowns have been widely used in dentistry to replace damaged or missing teeth. However, the failure rates of ceramic crowns, especially all-ceramic crowns, can be 1%˜6% per year, which is not satisfactory to patients. The materials limitations and underlying fracture mechanisms of these prostheses are not well understood. In this thesis, fundamental fracture and damage mechanisms in model dental bilayer and trilayer structures are studied. Principle failure modes are identified from in situ experimentation and confirmed by fracture mechanics analysis. In bilayer structures of ceramic/polycarbonate (representative of ceramic crown/dentin structure), three major damage sources are identified: (i) top-surface cone cracks or (ii) quasiplasticity, dominating in thick ceramic bilayers; (iii) bottom-surface radial cracks, dominating in thin ceramic bilayers. Critical load P for each damage mode are measured in six dental ceramics: Y-TZP zirconia, glass-infiltrated zirconia and alumina (InCeram), glass-ceramic (Empress II), Porcelain (Mark II and Empress) bonded to polymer substrates, as a function of ceramic thickness d in the range of 100 mum to 10 mm. P is found independent of d for mode (i) and (ii), but has a d 2 relations for mode (iii)---bottom surface radial cracking. In trilayer structures of glass/core-ceramic/polycarbonate (representing veneer porcelain/core/dentin structures), three inner fracture origins are identified: radial cracks from the bottom surface in the (i) first and (ii) second layers; and (iii) quasiplasticity in core-ceramic layer. The role of relative veneer/core thickness, d1/d 2 and materials properties is investigated for three core materials with different modulus (114--270GPa

  9. Utilization of Industrial Waste Material in GSB Layer

    Directory of Open Access Journals (Sweden)

    U Arun Kumar

    2014-08-01

    Full Text Available India has series of steel plant clusters located along its length and breadth of the territory. Several million metric tons of iron and steel are produced in these plants annually. Along with the production of iron and steel, huge quantities of solid wastes like blast furnace slag and steel slag as well as other wastes such as flue dust, blast furnace sludge, and refractories are also being produced in these plants. These solid wastes can be used as non-traditional/non-conventional aggregates in pavement construction due to acute scarcity of traditional/conventional road construction materials. A study was conducted to investigate the possibility of using Granulated Blast Furnace Slag (GBFS with various blended mixes of traditional/conventional aggregates in subbase layer with different percentages. This study also presents the result of experimental investigation on the influence of Rice husk ash (RHA on the index properties of Red soil which is used as filler material in subbase layer.

  10. Characterization and optimization of OLED materials and layer sequences

    Science.gov (United States)

    Kowalsky, Wolfgang; Becker, Edo; Benstem, Torsten; Johannes, Hans-Hermann; Metzdorf, Dirk; Neuner, H.; Schoebel, Joerg

    2001-02-01

    In recent years, considerable effort has been put into the development of light emitting devices based on evaporated layers of organic semiconductors. To date, matrix displays consisting of organic light emitting diodes (OLEDs) have been brought into marketable commodity. OLED matrix displays offer high contrast, wide viewing angle and a broad temperature range at low power consumption. In contrast to polymer devices, OLEDs are processed in ultrahigh vacuum systems. The organic source materials are sublimated from effusion cells. Due to the sensitivity of organic thin films, device structuring by conventional etching techniques is not feasible and alternative structuring techniques were developed. Electrical current in organic devices is limited by the low conductivity of organic semiconductors and by energy barriers at the metal-organic semiconductor interface. Photoelectric measurements facilitate the determination of barrier height differences between various electrode setups. Further insight in the energy band alignment at organic heterointerfaces are gained by ultraviolet photoelectron spectroscopy (UPS). In addition to widely employed electrical (I-V, C-V) and optical (P-I) measurements, thermally stimulated current (TSC) and luminescence (TSL) allow the characterization and a more detailed understanding of carrier traps and charge transport in organic devices. Energy transfer in a doped OLED emitting layer can be investigated by time-resolved photoluminescence measurements.

  11. Optimization of Layered Cathode Materials for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Christian Julien

    2016-07-01

    Full Text Available This review presents a survey of the literature on recent progress in lithium-ion batteries, with the active sub-micron-sized particles of the positive electrode chosen in the family of lamellar compounds LiMO2, where M stands for a mixture of Ni, Mn, Co elements, and in the family of yLi2MnO3•(1 − yLiNi½Mn½O2 layered-layered integrated materials. The structural, physical, and chemical properties of these cathode elements are reported and discussed as a function of all the synthesis parameters, which include the choice of the precursors and of the chelating agent, and as a function of the relative concentrations of the M cations and composition y. Their electrochemical properties are also reported and discussed to determine the optimum compositions in order to obtain the best electrochemical performance while maintaining the structural integrity of the electrode lattice during cycling.

  12. Layered cathode materials for lithium ion rechargeable batteries

    Science.gov (United States)

    Kang, Sun-Ho; Amine, Khalil

    2007-04-17

    A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling.

  13. Encapsulation of Phase Change Materials Using Layer-by-Layer Assembled Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Qiangying Yi

    2015-01-01

    Full Text Available Phase change materials absorb the thermal energy when changing their phases (e.g., solid-to-liquid at constant temperatures to achieve the latent heat storage. The major drawbacks such as limited thermal conductivity and leakage prevent the PCMs from wide application in desired areas. In this work, an environmentally friendly and low cost approach, layer-by-layer (LbL assembly technique, was applied to build up ultrathin shells to encapsulate the PCMs and therefore to regulate their changes in volume when the phase change occurs. Generally, the oppositely charged strong polyelectrolytes Poly(diallyldimethylammonium chloride (PDADMAC and Poly(4-styrenesulfonic acid sodium salt (PSS were employed to fabricate multilayer shells on emulsified octadecane droplets using either bovine serum albumin (BSA or sodium dodecyl sulfate (SDS as surfactant. Specifically, using BSA as the surfactant, polyelectrolyte encapsulated octadecane spheres in size of ∼500 nm were obtained, with good shell integrity, high octadecane content (91.3% by mass, and good thermal stability after cycles of thermal treatments.

  14. Large-scale simulations of layered double hydroxide nanocomposite materials

    Science.gov (United States)

    Thyveetil, Mary-Ann

    Layered double hydroxides (LDHs) have the ability to intercalate a multitude of anionic species. Atomistic simulation techniques such as molecular dynamics have provided considerable insight into the behaviour of these materials. We review these techniques and recent algorithmic advances which considerably improve the performance of MD applications. In particular, we discuss how the advent of high performance computing and computational grids has allowed us to explore large scale models with considerable ease. Our simulations have been heavily reliant on computational resources on the UK's NGS (National Grid Service), the US TeraGrid and the Distributed European Infrastructure for Supercomputing Applications (DEISA). In order to utilise computational grids we rely on grid middleware to launch, computationally steer and visualise our simulations. We have integrated the RealityGrid steering library into the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 1 . which has enabled us to perform re mote computational steering and visualisation of molecular dynamics simulations on grid infrastruc tures. We also use the Application Hosting Environment (AHE) 2 in order to launch simulations on remote supercomputing resources and we show that data transfer rates between local clusters and super- computing resources can be considerably enhanced by using optically switched networks. We perform large scale molecular dynamics simulations of MgiAl-LDHs intercalated with either chloride ions or a mixture of DNA and chloride ions. The systems exhibit undulatory modes, which are suppressed in smaller scale simulations, caused by the collective thermal motion of atoms in the LDH layers. Thermal undulations provide elastic properties of the system including the bending modulus, Young's moduli and Poisson's ratios. To explore the interaction between LDHs and DNA. we use molecular dynamics techniques to per form simulations of double stranded, linear and plasmid DNA up

  15. Effects of free layer materials and thickness on TMR behaviour in magnetic tunnel junctions

    NARCIS (Netherlands)

    Lim, Woo Chang; Park, Byong Guk; Bae, Ji Young; Lee, Taek Dong

    2004-01-01

    In order to study the effects of free layer thickness on MR ratio and switching field, we changed the free layer material and its thickness. In the regime of an extremely thin free layer, both MR ratio and switching field decreased with decreasing free layer thickness. There is a critical thickness,

  16. Tritium permeation inhibiting layer for high-temperature materials

    International Nuclear Information System (INIS)

    In order to prevent tritium contaminations, several spinel layers, which are separated by metallic intermediate layers (Fe, Ni) and covered by a metal layer (Ni), are deposited on the reactor components of a HTR which consist, e.g., of a steel with a high nickel content. The spinel layers are between 3 and 2 m thick. With this measure, tritium permeation could be reduced by a factor of 3 x 10 (steam spinellisation). (orig./PW)

  17. Three-dimensional silicone microfluidic interconnection scheme using sacrificial wax filaments

    Science.gov (United States)

    Dharmatilleke, Saman; Henderson, H. Thurman; Bhansali, Shekhar; Ahn, Chong H.

    2000-08-01

    A very simple room-temperature procedure is presented herein for formation of true three-dimensionality of microplumbing in plastic (silicone elastomer in this case), by molding the plastic to simply encapsulate a pre-formed network of sacrificial wax threads or other connected wax configurations which are ultimately to become micro channels and cavities in the plastic motherboard. When these wax sacrificial areas are etched away with acetone, precise cavities, channels, and capillaries results with direct arbitrary three- dimensionality for the first time. This method leads also to a simple and effective external interconnect scheme where ordinary fused silica tubes may be press-fitted into the surface opening to withstand high pressure. This method may be extended for connection of multiple levels of silicone motherboards together using small sections of fused silica tubing, with no loss of stacking volume because of the lack of any connector lips or bosses. An array of micro channels having circular cross sections with diameters of 100, 150 and 200 microns were molded on silicone elastomer using wax thread. The wax thread was dissolved in acetone after the silicon elastometer became components (motherboards) while being able to control the channel lengths within the stacks as desired. Mixing chambers were also molded in a single silicone elastomer layer, because true three-dimensionality is trivially possible without the complexity of multi stacked lithography.

  18. Arhaeoastronomical analysis of Levinsadovka sacrificial complex (South Russia)

    CERN Document Server

    Vodolazhskaya, Larisa

    2013-01-01

    The article presents research data using arhaeoastronomical methods of Levinsadovka settlement sacrificial complex in Northern Black Sea coast. In this work, new method of accounting terrain elevations using topographic maps was developed in arhaeoastronomical studies. Calculations of azimuths of the sun and moon rise and set in the astronomically significant moments of the year were made and astronomical regularities in the organization of the sacrificial complex identified. Related to the moon directions, as the most dedicated, identified. Revealed that the stone tools and fragments, used as sacrifices, mark the direction to the northern minor standstill moonrise. A similar situation was found on two archaeological sites: in Bezymennoye II settlement South sanctuary and in Pustynka settlement religious building. Drawing on ethnographic and folklore data, it is concluded about semiotic connection of stone tools, found in these religious constructions, with the "thunderstones" and meteorites.

  19. Graphene coated with controllable N-doped carbon layer by molecular layer deposition as electrode materials for supercapacitors

    Science.gov (United States)

    Chen, Yao; Gao, Zhe; Zhang, Bin; Zhao, Shichao; Qin, Yong

    2016-05-01

    In this work, graphene is coated with nitrogen-doped carbon layer, which is produced by a carbonization process of aromatic polyimide (PI) films deposited on the surfaces of graphene by molecular layer deposition (MLD). The utilization of MLD not only allows uniform coating of PI layers on the surfaces of pristine graphene without any surface treatment, but also enables homogenous dispersion of doped nitrogen atoms in the carbonized products. The as-prepared N-doped carbon layer coated graphene (NC-G) exhibited remarkable capacitance performance as electrode materials for supercapacitor, showing a high specific capacitance of 290.2 F g-1 at current density of 1 A g-1 in 6 M KOH aqueous electrolyte, meanwhile maintaining good rate performance and stable cycle capability. The NC-G synthesized by this way represents an alternative promising candidate as electrode material for supercapacitors.

  20. Layer-by-layer polypyrrole coated graphite oxide and graphene nanosheets as catalyst support materials for fuel cells

    OpenAIRE

    Saner Okan, Burcu; Alkan Gürsel, Selmiye; Alkan Gursel, Selmiye; YÜRÜM, YUDA; Yurum, Yuda

    2013-01-01

    For the production of advanced type of catalyst support materials, the distinguished properties of graphene nanosheets were combined with the structural properties of conducting polypyrrole by the incorporation of graphene nanosheets into a polymer matrix by the proposed simple and low-cost fabrication technique. A precise tuning of electrical conductivity and thermal stability was also achieved by controlling the thickness of randomly dispersed graphene nanosheets by a layer-by-layer polymer...

  1. Sacrificial amphiphiles: Eco-friendly chemical herders as oil spill mitigation chemicals.

    Science.gov (United States)

    Gupta, Deeksha; Sarker, Bivas; Thadikaran, Keith; John, Vijay; Maldarelli, Charles; John, George

    2015-06-01

    Crude oil spills are a major threat to marine biota and the environment. When light crude oil spills on water, it forms a thin layer that is difficult to clean by any methods of oil spill response. Under these circumstances, a special type of amphiphile termed as "chemical herder" is sprayed onto the water surrounding the spilled oil. The amphiphile forms a monomolecular layer on the water surface, reducing the air-sea surface tension and causing the oil slick to retract into a thick mass that can be burnt in situ. The current best-known chemical herders are chemically stable and nonbiodegradable, and hence remain in the marine ecosystem for years. We architect an eco-friendly, sacrificial, and effective green herder derived from the plant-based small-molecule phytol, which is abundant in the marine environment, as an alternative to the current chemical herders. Phytol consists of a regularly branched chain of isoprene units that form the hydrophobe of the amphiphile; the chain is esterified to cationic groups to form the polar group. The ester linkage is proximal to an allyl bond in phytol, which facilitates the hydrolysis of the amphiphile after adsorption to the sea surface into the phytol hydrophobic tail, which along with the unhydrolyzed herder, remains on the surface to maintain herding action, and the cationic group, which dissolves into the water column. Eventual degradation of the phytol tail and dilution of the cation make these sacrificial amphiphiles eco-friendly. The herding behavior of phytol-based amphiphiles is evaluated as a function of time, temperature, and water salinity to examine their versatility under different conditions, ranging from ice-cold water to hot water. The green chemical herder retracted oil slicks by up to ~500, 700, and 2500% at 5°, 20°, and 35°C, respectively, during the first 10 min of the experiment, which is on a par with the current best chemical herders in practice. PMID:26601197

  2. Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol Deposition Process—Uncoupling Material Synthesis and Layer Formation

    Directory of Open Access Journals (Sweden)

    Fabian Panzer

    2016-04-01

    Full Text Available We present the successful fabrication of CH3NH3PbI3 perovskite layers by the aerosol deposition method (ADM. The layers show high structural purity and compactness, thus making them suitable for application in perovskite-based optoelectronic devices. By using the aerosol deposition method we are able to decouple material synthesis from layer processing. Our results therefore allow for enhanced and easy control over the fabrication of perovskite-based devices, further paving the way for their commercialization.

  3. Catechol-based layer-by-layer assembly of composite coatings: a versatile platform to hierarchical nano-materials.

    Science.gov (United States)

    Wang, C X; Braendle, A; Menyo, M S; Pester, C W; Perl, E E; Arias, I; Hawker, C J; Klinger, D

    2015-08-21

    Inspired by the marine mussel's ability to adhere to surfaces underwater, an aqueous catechol-based dip coating platform was developed. Using a catechol-functionalized polyacrylamide binder in combination with inorganic nanoparticles enables the facile fabrication of robust composite coatings via a layer-by-layer process. This modular assembly of well-defined building blocks provides a versatile alternative to electrostatic driven approaches with layer thickness and refractive indices being readily tunable. The platform nature of this approach enables the fabrication of hierarchically ordered nano-materials such as Bragg stacks.

  4. Noise and vibration level reduction by covering metal structures with layers of damping materials. [considering viscoelastic insulation layers

    Science.gov (United States)

    Rugina, I.; Paven, H. T. O.

    1974-01-01

    One of the most important methods of reducing the noise and vibration level is the damping of the secondary sources, such as metal plates, often used in vehicle structures, by means of covering materials with high internal viscosity. Damping layers are chosen at an optimum thickness corresponding to the frequency and temperature range in which a certain structure works. The structure's response corresponding to various real situations is analyzed by means of a measuring chain including electroacoustical or electromechanical transducers. The experimental results provide the dependence of the loss factor and damping transmission coefficient as a function of the damping layer thickness or of the frequency for various viscoelastic covering materials.

  5. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    Energy Technology Data Exchange (ETDEWEB)

    Doe, Robert E.; Downie, Craig M.; Fischer, Christopher; Lane, George H.; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin A.; Eaglesham, David

    2016-01-19

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  6. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    Science.gov (United States)

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2015-10-27

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  7. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    Energy Technology Data Exchange (ETDEWEB)

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2016-07-26

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  8. Intercalation Assembly Method and Intercalation Process Control of Layered Intercalated Functional Materials

    Institute of Scientific and Technical Information of China (English)

    LI Kaitao; WANG Guirong; LI Dianqing; LIN Yanjun; DUAN Xue

    2013-01-01

    Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years.Based on long term studies on these materials in the State Key Laboratory of Chemical Resource Engineering in Beijing University of Chemical Technology,the principle for the design of controlled intercalation processes in the light of future production processing requirements has been developed.Intercalation assembly methods and technologies have been invented to control the intercalation process for preparing layered intercalated materials with various structures and functions.

  9. Ultralight Weight Optical Systems using Nano-Layered Synthesized Materials

    OpenAIRE

    Clark, Natalie; Breckinridge, James

    2014-01-01

    Optical imaging is important for many NASA science missions. Even though complex optical systems have advanced, the optics, based on conventional glass and mirrors, require components that are thick, heavy and expensive. As the need for higher performance expands, glass and mirrors are fast approaching the point where they will be too large, heavy and costly for spacecraft, especially small satellite systems. NASA Langley Research Center is developing a wide range of novel nano-layered synthe...

  10. Standard test method for laboratory evaluation of magnesium sacrificial anode test specimens for underground applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This test method covers a laboratory procedure that measures the two fundamental performance properties of magnesium sacrificial anode test specimens operating in a saturated calcium sulfate, saturated magnesium hydroxide environment. The two fundamental properties are electrode (oxidation potential) and ampere hours (Ah) obtained per unit mass of specimen consumed. Magnesium anodes installed underground are usually surrounded by a backfill material that typically consists of 75 % gypsum (CaSO4·2H2O), 20 % bentonite clay, and 5 % sodium sulfate (Na2SO4). The calcium sulfate, magnesium hydroxide test electrolyte simulates the long term environment around an anode installed in the gypsum-bentonite-sodium sulfate backfill. 1.2 This test method is intended to be used for quality assurance by anode manufacturers or anode users. However, long term field performance properties may not be identical to property measurements obtained using this laboratory test. Note 1—Refer to Terminology G 15 for terms used ...

  11. Fabrication of metal organic framework materials using a layer-by-layer spin coating approach

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-17

    Embodiments describe a method of depositing an MOF, including depositing a metal solution onto a substrate, spinning the substrate sufficient to spread the metal solution, depositing an organic ligand solution onto the substrate and spinning the substrate sufficient to spread the organic ligand solution and form a MOF layer.

  12. Tribological and Wear Properties of Multi-Layered Materials

    Directory of Open Access Journals (Sweden)

    V. Bria

    2011-09-01

    Full Text Available The usage of fabrics as reinforcements in composites is spreading due to fabrics’ properties. The use of fabrics allows obtaining of sinuous surfaces, for instance, unlike the use of prepregs. Using fabrics as reinforcements it is also possible to obtain laminate-like materials having the same matrix in all their volume. In the case of pre-pregs usage always it is necessary to discuss about the bonding between individual plies. For this study eight materials were formed. The forming method consisted in placing the pre-polymer imbued fabric pieces into a mould to obtain plates of composites. Two types of fabric were used: one simple type of untwisted tows of carbon fibres and the second one simple type of alternated untwisted tows of carbon and aramide fibres. Both fabrics were prepared in order to ensure the matrix adherence. The polymer matrix is realised from epoxy system EPIPHEN RE 4020 / EPIPHEN DE 4020 filled with clay and talc in equal amounts of 5% (weight ratio. The use of clay and talc were meant to improve the thermal dimensional stability of final materials. Tribological properties of formed materials were studied using pin-on-disk method with steel disk and pins made of materials. Both orientation of reinforcement fibres relative to friction direction were taken into account. Results are encouraging further studies in order to identify the best solution of forming a multi-component material with more than one designable property.

  13. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.

    Science.gov (United States)

    Stefik, Morgan

    2016-07-01

    The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting. PMID:27246652

  14. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.

    Science.gov (United States)

    Stefik, Morgan

    2016-07-01

    The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting.

  15. When does self-sacrificial leadership motivate prosocial behavior? It depends on followers’ prevention focus

    NARCIS (Netherlands)

    D. de Cremer; D.M. Mayer; M. van Dijke; B.C. Schouten; M. Bardes

    2009-01-01

    In the present set of studies, the authors examine the idea that self-sacrificial leadership motivates follower prosocial behavior, particularly among followers with a prevention focus. Drawing on the self-sacrificial leadership literature and regulatory focus theory, the authors provide results fro

  16. 46 CFR 35.01-25 - Sacrificial anode installations-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... submitted for approval. The anode should be magnesium free and the silicon content limited to trace amounts... 46 Shipping 1 2010-10-01 2010-10-01 false Sacrificial anode installations-TB/ALL. 35.01-25 Section... Operating Requirements § 35.01-25 Sacrificial anode installations—TB/ALL. (a) The installation of...

  17. Radionuclide separations using pillared layered materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Clearfield, A. [Texas A and M Univ., College Station, TX (United States). Research Foundation

    1995-08-31

    The objective of this project is to prepare an all inorganic strontium specific sorbent or ion exchanger for the removal of highly alkaline nuclear waste solutions. A series of clays and layered titanates were pillared and calcined to convert their essentially two dimensional structure to three dimensional porous structures with high surface areas. The pillaring agents were alumina, zirconia, chromia and silica based. The pillared clays, particularly those containing Zr pillars, achieved moderate (Kd as high at 13,700 ml/g with V:m = 28) selectivities for Sr{sup 2+}. In contrast, the silica pillared titanates showed exceptional affinities for Sr{sup 2+} with Kd values in excess of 100,000 ml/g in 5M NaNO{sup 3} + 1M NaOH. These latter results suggest a more detailed study of the pillared titanates in the presence of simulants closely resembling real waste solutions.

  18. Atomic layer deposition on polymer based flexible packaging materials: Growth characteristics and diffusion barrier properties

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, Tommi O., E-mail: tommi.kaariainen@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Cameron, David C., E-mail: david.cameron@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Lahtinen, Kimmo, E-mail: kimmo.lahtinen@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland); Johansson, Petri, E-mail: petri.johansson@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland)

    2011-03-01

    One of the most promising areas for the industrial application of atomic layer deposition (ALD) is for gas barrier layers on polymers. In this work, a packaging material system with improved diffusion barrier properties has been developed and studied by applying ALD on flexible polymer based packaging materials. Nanometer scale metal oxide films have been applied to polymer-coated papers and their diffusion barrier properties have been studied by means of water vapor and oxygen transmission rates. The materials for the study were constructed in two stages: the paper was firstly extrusion coated with polymer film, which was then followed by the ALD deposition of oxide layer. The polymers used as extrusion coatings were polypropylene, low and high density polyethylene, polylactide and polyethylene terephthalate. Water vapor transmission rates (WVTRs) were measured according to method SCAN-P 22:68 and oxygen transmission rates (O{sub 2}TRs) according to a standard ASTM D 3985. According to the results a 10 nm oxide layer already decreased the oxygen transmission by a factor of 10 compared to uncoated material. WVTR with 40 nm ALD layer was better than the level currently required for most common dry flexible packaging applications. When the oxide layer thickness was increased to 100 nm and above, the measured WVTRs were limited by the measurement set up. Using an ALD layer allowed the polymer thickness on flexible packaging materials to be reduced. Once the ALD layer was 40 nm thick, WVTRs and O{sub 2}TRs were no longer dependent on polymer layer thickness. Thus, nanometer scale ALD oxide layers have shown their feasibility as high quality diffusion barriers on flexible packaging materials.

  19. Charge Transport in Field-Effect Transistors based on Layered Materials and their Heterostructures

    Science.gov (United States)

    Kumar, Jatinder

    In the quest for energy efficiency and device miniaturization, the research in using atomically thin materials for device applications is gaining momentum. The electronic network in layered materials is different from 3D counterparts. It is due to the interlayer couplings and density of states because of their 2D nature. Therefore, understanding the charge transport in layered materials is fundamental to explore the vast opportunities these ultra-thin materials offer. Hence, the challenges targeted in the thesis are: (1) understanding the charge transport in layered materials based on electronic network of quantum and oxide capacitances, (2) studying thickness dependence, ranging from monolayer to bulk, of full range-characteristics of field-effect transistor (FET) based on layered materials, (3) investigating the total interface trap charges to achieve the ultimate subthreshold slope (SS) theoretically possible in FETs, (4) understanding the effect of the channel length on the performance of layered materials, (5) understanding the effect of substrate on performance of the TMDC FETs and studying if the interface of transition metal dichalcogenides (TMDCs)/hexagonalboron nitride (h-BN) can have less enough trap charges to observe ambipolar behavior, (6) Exploring optoelectronic properties in 2D heterostructures that includes understanding graphene/WS2 heterostructure and its optoelectronic applications by creating a p-n junction at the interface. The quality of materials and the interface are the issues for observing and extracting clean physics out of these layered materials and heterostructures. In this dissertation, we realized the use of quantum capacitance in layered materials, substrate effects and carrier transport in heterostructure.

  20. Scanning tunnelling microscopy observations of biomolecules on layered materials.

    Science.gov (United States)

    Jungblut, H; Campbell, S A; Giersig, M; Müller, D J; Lewerenz, H J

    1992-01-01

    Scanning tunnelling microscopy (STM) has been performed on the reverse transcriptases of the human immunodeficiency virus (HIV-1) and the moloney murine leukaemia virus (MuLV). The biological molecules are adsorbed on n-type semiconducting MoTe2. The p66 (66 kD) subunit of the RT of HIV-1 is imaged by STM. Both STM and processed transmission electron microscopy (TEM) data show a spherical and horseshoe-like shape of external diameter ca. 65 A, depending on the angle of observation. The STM results show a larger diameter which is related to the curvature radius of the tip of the probing needle. The RTs of HIV-1 and MuLV exhibit a circular hole of ca. 20 A diameter in accordance with structure predictions and functioning considerations. The surface-molecule interaction is discussed in terms of the electronic properties of the semiconductor surface including the influence of small defect sites at the layered crystal surface. PMID:1285040

  1. A estrutura sacrificial do compadrio: uma ontologia da desigualdade?

    Directory of Open Access Journals (Sweden)

    Marcos Lanna

    2009-01-01

    It is shown that god-parenthood is not only a religious or kinship institution and that it does not reinforce inequalities that supposedly pre-exist it, but rather it is a structure that generates inequalities. God-parenthood is understood as a structure by the description of reciprocity circuits. Understood as the circulation of a child from biological towards spiritual parents, to be returned by "grace", it implies asymmetries and inequalities. It also evokes the ontology of the social, founded on non-mercantile values' circulation, and on what Sahlins (2008 designates "elementary structure of political life". It is shown that reciprocity is related to the sacrificial aspect of the child's gift, and also to other types of considerations, such as that present in the catholic vows. Finally, it is demonstrated the relevancy of this type of analysis for future understandings of other benefits and categories often taken as purely economic ones, such as "labor".

  2. Low-frequency interlayer vibration modes in two-dimensional layered materials

    Science.gov (United States)

    Ji, Jianting; Dong, Shan; Zhang, Anmin; Zhang, Qingming

    2016-06-01

    Two-dimensional (2D) layered materials have been attracted tremendous research interest because of their novel photoelectric properties. If a single atomic layer instead of individual atoms is taken as a rigid motion object, two unique interlayer vibrations, i.e. compression/breathing and shear motions, at ultra-low frequencies can be expected and actually have been observed in many layered materials. The vibrations stem from the interlayer van der Waals interaction and can be well described by a conventional linear-chain model in most cases. The vibration frequencies strongly depend on layer thickness, which enables an accurate determination of layer numbers. A quick and nondestructive determination of flake thickness is particularly important for the materials, since the physical properties can be dramatically changed in the cases of several atomic layers. As a measure of interlayer coupling, the low-frequency modes are also sensitive to the stacking methods of atomic layers and the overlapping of different kinds of 2D materials. This allows the modes to play a key role in the applications like van der Waals heterojunctions. In this paper, we will give a brief review on the experimental observations and theoretical understanding of the interlayer modes in several typical 2D systems, as well as their actual and potential applications.

  3. Anomalous elastic buckling of layered crystalline materials in the absence of structure slenderness

    Science.gov (United States)

    Ren, Manrui; Liu, Yilun; Zhe Liu, Jefferson; Wang, Lifeng; Zheng, Quanshui

    2016-03-01

    Layered crystalline materials, such as graphene, boron nitride, tungsten sulfate, phosphorene, etc., have attracted enormous attentions, due to their unique crystal structures and superior mechanical, thermal, and physical properties. Making use of mechanical buckling is a promising route to control their structural morphology and thus tune their physical properties, giving rise to many novel applications. In this paper, we employ molecular dynamics (MD) simulations and theoretical modeling to study the compressive buckling of a column made of layered crystalline materials with the crystal layers parallel to the compressive direction. We find that the mechanical buckling of the layered crystalline materials exhibits two anomalous and counter-intuitive features as approaching the zero slenderness ratio. First, the critical buckling strain εcr has a finite value that is much lower than the material's elastic limit strain. A continuum mechanics model (by homogenizing the layered materials) is proposed for the εcr, which agrees well with the results of MD simulations. We find that the εcr solely depends on elastic constants without any structural dimension, which appears to be an intrinsic material property and thus is defined as intrinsic buckling strain (IBS), εcrIBS , in this paper. Second, below a certain nanoscale length, l0, in the compressive direction (e.g., about 20 nm for graphite), the critical buckling strain εcr shows a size effect, i.e., increasing as the column length L decreases. To account for the size effect, inspired by our recently developed multi-beam shear model (Liu et al., 2011), a bending energy term of individual crystal layer is introduced in our continuum model. The theoretical model of εcr agrees well with the size effects observed in MD simulations. This study could lay a ground for engineering layered crystalline materials in various nano-materials and nano-devices via mechanical buckling.

  4. Sacrificial adhesive bonding: a powerful method for fabrication of glass microchips

    Science.gov (United States)

    Lima, Renato S.; Leão, Paulo A. G. C.; Piazzetta, Maria H. O.; Monteiro, Alessandra M.; Shiroma, Leandro Y.; Gobbi, Angelo L.; Carrilho, Emanuel

    2015-08-01

    A new protocol for fabrication of glass microchips is addressed in this research paper. Initially, the method involves the use of an uncured SU-8 intermediate to seal two glass slides irreversibly as in conventional adhesive bonding-based approaches. Subsequently, an additional step removes the adhesive layer from the channels. This step relies on a selective development to remove the SU-8 only inside the microchannel, generating glass-like surface properties as demonstrated by specific tests. Named sacrificial adhesive layer (SAB), the protocol meets the requirements of an ideal microfabrication technique such as throughput, relatively low cost, feasibility for ultra large-scale integration (ULSI), and high adhesion strength, supporting pressures on the order of 5 MPa. Furthermore, SAB eliminates the use of high temperature, pressure, or potential, enabling the deposition of thin films for electrical or electrochemical experiments. Finally, the SAB protocol is an improvement on SU-8-based bondings described in the literature. Aspects such as substrate/resist adherence, formation of bubbles, and thermal stress were effectively solved by using simple and inexpensive alternatives.

  5. Method of forming aluminum oxynitride material and bodies formed by such methods

    Science.gov (United States)

    Bakas, Michael P [Ammon, ID; Lillo, Thomas M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID

    2010-11-16

    Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

  6. Propagation properties for five-layer symmetric slab waveguides including left-handed materials

    Institute of Scientific and Technical Information of China (English)

    SHEN Lu-fa; WANG Zi-hua; LI Su-ping

    2008-01-01

    In this paper,we discussed a slab wave-guide of five layers,The core is a left-handed material,but the claddings are righthanded materials.A dispersion equation of TE modes is obtained by using Maxwell's equations,and some new dispersion characteristics are obtained based on the equation.

  7. An advanced tunnel oxide layer process for 65 nm NOR floating-gate flash memories

    International Nuclear Information System (INIS)

    An advanced tunnel oxide layer process for 65 nm NOR-type floating-gate flash memory is proposed to improve tunnel oxide quality by an additive sacrificial oxide layer growth. The sacrificial oxide layer process effectively controls the thickness variation of tunnel oxide and improves the flatness of the SiO2/Si interface across the active area. The interface traps’ generation during program/erase cycling of flash cells is found to be reduced, and the reliability property is significantly improved as compared to flash cells without the sacrificial oxide layer process. The technology is applicable to further scaled floating-gate flash memories. (paper)

  8. Analysis of compressive failure of layered materials by kink band broadening

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre

    1999-01-01

    Failure by steady state kink band broadening in uni-directional fibre composites or layered materials is analysed. An incremental scheme for calculation of kink band broadening stresses and lock-up conditions in the band for arbitrary material behaviour is presented. The method is illustrated...... by material data which are representative for polymer matrix composites for which experimental work exists. (C) 1999 Elsevier Science Ltd. All rights reserved....

  9. On model materials designed by atomic layer deposition for catalysis purposes

    OpenAIRE

    2011-01-01

    The aim of this work was to investigate the potential of model materials designed by atomic layer deposition toward applications in catalysis research. Molybdenum based catalysts promoted with cobalt were selected as target materials, considering their important roles in various industrial processes. Particular attention was paid to understand the growth dynamics of the ALD processes involved and further to characterize the obtained materials carefully. It was of main concern to verify the fe...

  10. Bleustein-Gulyaev waves in a functionally graded piezoelectric material layered structure

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This work presents a theoretical study of the propagation behavior of Bleustein-Gulyaev waves in a layered structure consisting of a functionally graded piezoelectric material(FGPM) layer and a transversely isotropic piezoelectric substrate. The influence of the graded variation of FGPM coefficients on the dispersion relations of Bleustein-Gulyaev waves in the layered structure is investigated. It is demonstrated that,for a certain frequency range of Bleustein-Gulyaev waves,the mechanical perturbations of the particles are restricted in the FPGM layer and the phase velocity is independent of the electrical boundary conditions at the free surface. Results presented in this study can not only provide further insight on the electromechanical coupling behavior of surface waves in FGPM layered structures,but also lend a theoretical basis for the design of high-performance surface acoustic wave(SAW) devices.

  11. Spatial quadratic solitons guided by narrow layers of a nonlinear material

    CERN Document Server

    Shapira, Asia; Malomed, Boris A; Arie, Ady

    2011-01-01

    We report analytical solutions for spatial solitons supported by layers of a quadratically nonlinear material embedded into a linear planar waveguide. A full set of symmetric, asymmetric, and antisymmetric modes pinned to a symmetric pair of the nonlinear layers is obtained. The solutions describe a bifurcation of the subcritical type, which accounts for the transition from the symmetric to asymmetric modes. The antisymmetric states (which do not undergo the bifurcation) are completely stable (the stability of the solitons pinned to the embedded layers is tested by means of numerical simulations). Exact solutions are also found for nonlinear layers embedded into a nonlinear waveguide, including the case when the uniform and localized nonlinearities have opposite signs (competing nonlinearities). For the layers embedded into the nonlinear medium, stability properties are explained by comparison to the respective cascading limit.

  12. Heterostructures based on two-dimensional layered materials and their potential applications

    KAUST Repository

    Li, Ming-yang

    2015-12-04

    The development of two-dimensional (2D) layered materials is driven by fundamental interest and their potential applications. Atomically thin 2D materials provide a wide range of basic building blocks with unique electrical, optical, and thermal properties which do not exist in their bulk counterparts. The van der Waals interlayer interaction enables the possibility to exfoliate and reassemble different 2D materials into arbitrarily and vertically stacked heterostructures. Recently developed vapor phase growth of 2D materials further paves the way of directly synthesizing vertical and lateral heterojunctions. This review provides insights into the layered 2D heterostructures, with a concise introduction to preparative approaches for 2D materials and heterostructures. These unique 2D heterostructures have abundant implications for many potential applications.

  13. Suicide as a derangement of the self-sacrificial aspect of eusociality.

    Science.gov (United States)

    Joiner, Thomas E; Hom, Melanie A; Hagan, Christopher R; Silva, Caroline

    2016-04-01

    Building upon the idea that humans may be a eusocial species (i.e., rely on multigenerational and cooperative care of young, utilize division of labor for successful survival), we conjecture that suicide among humans represents a derangement of the self-sacrificial aspect of eusociality. In this article, we outline the characteristics of eusociality, particularly the self-sacrificial behavior seen among other eusocial species (e.g., insects, shrimp, mole rats). We then discuss parallels between eusocial self-sacrificial behavior in nonhumans and suicide in humans, particularly with regard to overarousal states, withdrawal phenomena, and perceptions of burdensomeness. In so doing, we make the argument that death by suicide among humans is an exemplar of psychopathology and is due to a derangement of the self-sacrificial behavioral suite found among eusocial species. Implications and future directions for research are also presented. PMID:26524155

  14. Struvite precipitation and phosphorus removal using magnesium sacrificial anode.

    Science.gov (United States)

    Kruk, Damian J; Elektorowicz, Maria; Oleszkiewicz, Jan A

    2014-04-01

    Struvite precipitation using magnesium sacrificial anode as the only source of magnesium is presented. High-purity magnesium alloy cast anode was found to be very effective in recovery of high-quality struvite from water solutions and from supernatant of fermented waste activated sludge from a wastewater treatment plant that does not practice enhanced biological phosphorus removal. Struvite purity was strongly dependent on the pH and the electric current density. Optimum pH of the 24 mM phosphorus and 46 mM ammonia solution (1:1.9 P:N ratio) was in the broad range between 7.5 and 9.3, with struvite purity exceeding 90%. Increasing the current density resulted in elevated struvite purity. No upper limits were observed in the studied current range of 0.05-0.2 A. Phosphorus removal rate was proportional to the current density and comparable for tests with water solutions and with the supernatant from fermented sludge. The highest P-removal rate achieved was 4.0 mg PO4-P cm(-2) h(-1) at electric current density of 45 A m(-2). Initial substrate concentrations affected the rate of phosphorus removal. The precipitated struvite accumulated in bulk liquid with significant portions attached to the anode surface from which regular detachment occurred. PMID:24387911

  15. PECULIARITIES OF LAMB WAVE PROPAGATION THROUGH TWO-LAYERED THIN PLATE MATERIALS

    Directory of Open Access Journals (Sweden)

    A. R. Baev

    2008-01-01

    Full Text Available Peculiarities of the plate wave propagation through two-layered thin plate have been analyzed and formulas for velocity determination of the quickest plate mode have been proposed.  The ascertained interaction makes it possible   to determine coating layer thickness in accordance with the given and known elastic parameters of contacting materials. On the basis of the developed methodology experiments have been carried out that revealed qualitative and quantitative correspondence  between theoretical and experimental data. The paper shows a principle possibility for assessment  of  material separation surface by time propagation data of the investigated mode .

  16. Antifouling and Antibacterial Multifunctional Polyzwitterion/Enzyme Coating on Silicone Catheter Material Prepared by Electrostatic Layer-by-Layer Assembly.

    Science.gov (United States)

    Vaterrodt, Anne; Thallinger, Barbara; Daumann, Kevin; Koch, Dereck; Guebitz, Georg M; Ulbricht, Mathias

    2016-02-01

    The formation of bacterial biofilms on indwelling medical devices generally causes high risks for adverse complications such as catheter-associated urinary tract infections. In this work, a strategy for synthesizing innovative coatings of poly(dimethylsiloxane) (PDMS) catheter material, using layer-by-layer assembly with three novel functional polymeric building blocks, is reported, i.e., an antifouling copolymer with zwitterionic and quaternary ammonium side groups, a contact biocidal derivative of that polymer with octyl groups, and the antibacterial hydrogen peroxide (H2O2) producing enzyme cellobiose dehydrogenase (CDH). CDH oxidizes oligosaccharides by transferring electrons to oxygen, resulting in the production of H2O2. The design and synthesis of random copolymers which combine segments that have antifouling properties by zwitterionic groups and can be used for electrostatically driven layer-by-layer (LbL) assembly at the same time were based on the atom-transfer radical polymerization of dimethylaminoethyl methacrylate and subsequent partial sulfobetainization with 1,3-propane sultone followed by quaternization with methyl iodide only or octyl bromide and thereafter methyl iodide. The alternating multilayer systems were formed by consecutive adsorption of the novel polycations with up to 50% zwitterionic groups and of poly(styrenesulfonate) as the polyanion. Due to its negative charge, enzyme CDH was also firmly embedded as a polyanionic layer in the multilayer system. This LbL coating procedure was first performed on prefunctionalized silicon wafers and studied in detail with ellipsometry as well as contact angle (CA) and zetapotential (ZP) measurements before it was transferred to prefunctionalized PDMS and analyzed by CA and ZP measurements as well as atomic force microscopy. The coatings comprising six layers were stable and yielded a more neutral and hydrophilic surface than did PDMS, the polycation with 50% zwitterionic groups having the largest

  17. Layered intercalated functional materials based on efficient utilization of magnesium resources in China

    Institute of Scientific and Technical Information of China (English)

    David; G; EVANS

    2010-01-01

    Mg-based layered intercalated functional materials of the layered double hydroxide type are a significant class of magnesium compounds.Based on long-term studies of these materials in the State Key Laboratory of Chemical Resource Engineering in Beijing University of Chemical Technology,two principles of "using the intended application of a material as a guide to its structure design and synthesis process" and "the design of controlled intercalation processes in the light of future production processing requirements" have been developed.To achieve these objectives,the composition of the host layers and guest interlayer anions was tailored at the microlevel,while the mesostructure and macrostructure were controlled to fabricate different kinds of Mg-based layered intercalated functional materials.These materials have diverse applications in key areas such as catalysis,the environment,and construction,and as polymer additives.Therefore,China’s magnesium resources may be utilized more efficiently for the benefit of society.

  18. Coupling characteristics between five-layer slab wave-guides including left-handed materials

    Institute of Scientific and Technical Information of China (English)

    SHEN Lu-fa; WANG Zi-hua

    2008-01-01

    To obtain the coupling characteristics between slab wave-guides including lift-handed material, we modify the coupledwave equations by using Maxwell's equations. First, we obtain new-couplid wave equations and new-coupling coefficient.Second, the coupling between two identical five-layer slab wave-guides where their cores are left-haaded material, but theircladdings are right-handed materials is studied. The coupling coefficient for even TE mode which is more complex than thatof the riglt-handed material slab wave guides, is obtained.

  19. Mixed-layered bismuth--oxygen--iodine materials for capture and waste disposal of radioactive iodine

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, James L; Nenoff, Tina M

    2015-01-06

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  20. Multi-layered Poly-Dimethylsiloxane As A Non-Hermetic Packaging Material For Medical MEMS

    OpenAIRE

    Lachhman, S.; Zorman, C.A.; Ko, W.H.

    2012-01-01

    Poly-dimethylsiloxane (PDMS) is an attractive material for packaging implantable biomedical microdevices owing to its biocompatibility, ease in application, and bio-friendly mechanical properties. Unfortunately, devices encapsulated by PDMS lack the longevity for use in chronic implant applications due to defect-related moisture penetration through the packaging layer. This paper describes an effort to improve the performance of PDMS as packaging material by constructing the encapsulant from ...

  1. Hybrid magnetic materials based on layered double hydroxides: from the chemistry towards the applications

    OpenAIRE

    Abellán Sáez, Gonzalo

    2014-01-01

    Layered double hydroxides (LDHs) are the leitmotiv of this dissertation. Contradicting the assertion that “any past was better”, LDHs have been continuously revisited from the middle of the twentieth century, and represent an excellent example of the never-ending beauty of Chemistry. New synthetic perspectives are giving a new impetus to LDH chemistry, which among hybrid materials, are finding their heyday. This is resulting in novel materials and also paving the way for new fundamental and p...

  2. Steady State Crack Propagation in Layered Material Systems Displaying Visco-plastic Behaviour

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2012-01-01

    The steady state fracture toughness of elastic visco-plastic materials is studied numerically, using both a conventional and a higher order model. Focus is on the combined effect of strain hardening, strain gradient hardening and strain rate hardening on cracking in layered material systems, and ......, and predictions for the crack tip shielding ratio is brought forward. Included is a novel procedure for extracting information on the rate-independent toughness without approaching this numerically cumbersome limit....

  3. Effect of biomolecules adsorption on oxide layers developed on metallic materials used in cooling water systems

    International Nuclear Information System (INIS)

    This thesis was carried out in the frame of the BIOCOR ITN European project, in collaboration with the industrial partner RSE S.p.A. (Italy). Metallic materials commonly used in cooling systems of power plants may be affected by bio-corrosion induced by biofilm formation. The objective of this work was to study the influence of biomolecules adsorption, which is the initial stage of biofilm formation, on the electrochemical behaviour and the surface chemical composition of three metallic materials (70Cu-30Ni alloy, 304L stainless steel and titanium) in seawater environments. In a first step, the interactions between a model protein, the bovine serum albumin (BSA), and the surface of these materials were investigated. Secondly, tightly bound (TB) and loosely bound (LB) extracellular polymeric substances (EPS), that play a fundamental role in the different stages of biofilm formation, maturation and maintenance, were extracted from Pseudomonas NCIMB 2021 marine strain, and their effects on oxide layers were also evaluated. For that purpose, electrochemical measurements (corrosion potential E(corr) vs time, polarization curves and electrochemical impedance spectroscopy (EIS)) performed during the very first steps of oxide layers formation (1 h immersion time) were combined to surface analysis by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ions mass spectrometry (ToF-SIMS). Compared to 70Cu-30Ni alloy in static artificial seawater (ASW) without biomolecules, for which a thick duplex oxide layer (outer redeposited Cu2O layer and inner oxidized nickel layer) is shown, the presence of BSA, TB EPS and LB EPS leads to a mixed oxide layer (oxidized copper and nickel) with a lower thickness. In the biomolecules-containing solutions, this oxide layer is covered by an adsorbed organic layer, mainly composed of proteins. A model is proposed to analyse impedance data obtained at E(corr). The results show a slow-down of the anodic reaction in the presence of

  4. Structural Analysis of Layered Polymer Crystals and Application to Photofunctional Materials Using Organic Intercalation

    Institute of Scientific and Technical Information of China (English)

    Shinya Oshita; Akikazu Matsumoto

    2005-01-01

    @@ 1Introduction We reported that layered polymer crystals are obtained by the topochemical polymerization of 1,3-diene monomers and provided as host material for organic intercalation[1]. For intercalation using various long-alkyl amines as the guest species, its reaction behavior, mechanism, characteristics, and potential to application have been clarified[2]. We also succeeded in the synthesis of several host layered polymer crystals with different tacticities and layer structures[3]. We describe here intercalation using various stereoregular poly(muconic acid)s (PMA) and n-alkylamines as the host and guest compounds, respectively. The reaction behavior and the layered structure of the obtained ammonium polymers are discussed from the viewpoint of stereochemical structure of the host polymers.

  5. A fluorescent, photochromic and thermochromic trifunctional material based on a layered metal-viologen complex.

    Science.gov (United States)

    Wan, Fang; Qiu, Li-Xia; Zhou, Liang-Liang; Sun, Yan-Qiong; You, Yi

    2015-11-14

    The azide anion as an energy acceptor and an electron donor has been introduced into a metal-viologen compound to form a 2D layered viologen-based trifunctional material, which exhibits the rare discolored function of reversible photochromism and thermochromism. Interestingly, its fluorescence can be switched by visible light irradiation and heating in air. PMID:26445888

  6. Film of lignocellulosic carbon material for self-supporting electrodes in electric double-layer capacitors

    Directory of Open Access Journals (Sweden)

    Tsubasa Funabashi

    2013-09-01

    Full Text Available A novel thin, wood-based carbon material with heterogeneous pores, film of lignocellulosic carbon material (FLCM, was successfully fabricated by carbonizing softwood samples of Picea jezoensis (Jezo spruce. Simultaneous increase in the specific surface area of FLCM and its affinity for electrolyte solvents in an electric double-layer capacitor (EDLC were achieved by the vacuum ultraviolet/ozone (VUV/O3 treatment. This treatment increased the specific surface area of FLCM by 50% over that of original FLCM. The results obtained in this study confirmed that FLCM is an appropriate self-supporting EDLC electrode material without any warps and cracks.

  7. 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder.

    Science.gov (United States)

    Zocca, A; Elsayed, H; Bernardo, E; Gomes, C M; Lopez-Heredia, M A; Knabe, C; Colombo, P; Günster, J

    2015-06-01

    Silicate bioceramics possess an excellent bioactivity; however, shaping them into complex geometries is still challenging. Therefore, this paper aims to present a new strategy for the shaping of a bioglass-ceramic with controlled geometry and properties starting from a glass powder combined with a preceramic polymer, i.e. a silicon resin, and reactive fillers. The powder-based three-dimensional (3D)-printing of wollastonite (CaSiO3)-based silicate bioceramic parts was demonstrated in this work. The resin plays a dual role, as it not only acts as a non-sacrificial binder for the filler powders in the printing process but it also reacts with the fillers to generate the desired bioceramic phases. The mechanical and physical properties, i.e. ball-on-three-balls test, density, porosity and morphology, were evaluated in 3D-printed discs. These samples possessed a total porosity around 64 vol% and a biaxial flexural strength around 6 MPa. The raw materials used in this work also enabled the 3D-printing of scaffolds possessing a designed multi-scale porosity, suitable bioceramic phase assemblage and a compressive strength of 1 MPa (for cylindrical scaffolds with total porosity ~80 vol%). Solubility in TRIS/HCl and in vitro assays, i.e. viability, cytotoxicity and apoptosis assays, were also performed. In vitro tests indicated good cell viability and no cytotoxicity effect on the cells. PMID:26000907

  8. Tensile Properties with or without Heat Dispersion of Automotive Needlepunched Carpets Made up of Two Layers of Different Materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yunqing; GUO Zhiying; DONG Xianghuai; LI Dequn

    2008-01-01

    Tensile properties of automotive needlepunched carpets made up of two layers of different materials (a fabric layer and a foam layer) in their thermoforming temperatures ranges with or without heat dispersion were discussed. Effects of forming temperature, extensile speed and fiber orientation on the tensile properties were studied based on an orthogonal experiment design. The experimental results show that automotive carpets are rate-dependent anisotropic materials and more strongly depend on forming temperature than the extensile speed and fiber orientation. Furthermore,contributions of the fabric layer and the foam layer to the overall tensile performance were investigated by comparing the tensile results of single fabric layer with those of the overall carpet. Both the fabric layer and the foam layer show positive effects on the overall tensile strength which is the combination of the two layers' tensile strength and independent of temperature, extensile speed and fiber orientation.On the other hand, their influences on the overall deformation are relatively complicated.

  9. Theoretical and experimental investigation on giant magnetoresistive materials with amorphous ferromagnetic layer

    Institute of Scientific and Technical Information of China (English)

    WEN Qi-ye; ZHANG Huai-wu; SONG Yuan-qiang; JIANG Xiang-dong

    2006-01-01

    Pseudo-spin-valve (PSV) sandwiches using amorphous CoNbZr alloy as soft magnetic layer were fabricated by magnetron sputtering. The giant magnetoresistance (GMR) and its dependence on the thickness of magnetic layer were investigated. Anti-parallel magnetization alignments were observed in the samples with very thin CoNbZr thickness (2-4 nm) and a maximum GMR ratio of 6.5% was obtained. The Camley-Barnas semiclassical model was extended for amorphous layer based magnetic sandwiches by considering that the mixed layers exist between the ferromagnetic and nonmagnetic layer. The calculated results agree with the experimental results very well,indicating that the new model gives a more realistic picture of the physical processes that take place in the magnetic sandwiches. Moreover,the calculated results for amorphous sandwiches also clarify that the occurrence of maximum GMR at very small thickness of amorphous layer is ascribed to the short mean-free-path in amorphous materials.

  10. Application and Progress of Sacrificial Anodes Used in the Cathodic Protection of Warships%牺牲阳极在舰船阴极保护中的应用和进展

    Institute of Scientific and Technical Information of China (English)

    杨朝晖; 刘斌; 李向阳; 杨海洋

    2014-01-01

    分别论述了铝合金牺牲阳极、锌合金牺牲阳极、铁合金牺牲阳极的研究和发展过程,总结了各种阳极的研发现状、研发热点和相应的阳极产品研发成果,指出了针对特殊环境和细分领域的各种阳极,是阳极新材料未来发展的主要方向。对于铝合金牺牲阳极,介绍了常规铝合金牺牲阳极和包括海水环境低驱动电位阳极、油污海水低驱动电位牺牲阳极、适用于干湿交替环境的阳极和适用于高温环境中的阳极等在内的针对特殊环境和特殊材料的铝合金牺牲阳极在舰船阴极保护领域的应用,总结了船舶用铝合金牺牲阳极的研究进展;对于锌合金牺牲阳极,主要介绍了锌合金牺牲阳极的发展历史、研究现状和相应的阳极产品;对于铁合金牺牲阳极,主要总结了铁合金牺牲阳极的研究现状和在舰船上的实际应用。%In this paper,research and development history of Al-alloy sacrificial anodes,Zn-alloy sacrificial anodes and Fe-alloy sacrificial anodes was referred,as well,research status,hotspot and research achievement of corresponding sac-rificial anode products were summarized,meanwhile,ideas that sacrificial anodes used in the special environment and micro-segments market was direction of future development of new anode materials was pointed out .For the Al-alloy sac-rificial anodes,application of Al-alloy sacrificial anodes used in the normal and special environment for the special materi-als including low-driving potential anode in the normal seawater and in the oil seawater,wet-dry cycling,high temperature environment used in the cathodic protection of warships was introduced,meanwhile,research progress of Al-alloy sacrifi-cial anodes used in the ships was summarized;For the Zn-alloy sacrificial anodes,development status,history and corre-sponding Zn-alloy sacrificial anode products used in the warships was referred;For the Fe-alloy sacrificial anodes

  11. DETERMINATION OF MECHANICAL STRENGTH OF SAME MATERIAL DOUBLE-LAYER RECTANGULAR TABLETS

    Directory of Open Access Journals (Sweden)

    ISMAEL HARTRIAN

    2000-07-01

    Full Text Available The mechanical strength of same material composite beams of Avicel PHI02, Starch 1500 and Emcompress were assessed by three-point bending test. To provide an improved method of comparing the strength of the tablets, the tensile strength of the specimens was calculated by equations based on stress analysis. Increasing the compaction pressure led to decrease of the porosity of the compacted tablets while the overall mass of the composite tablets were kept constant. Meanwhile, the values of fracture load and strengths (including tensile and shear raised by increasing the compaction pressure. However, when the lower layer was compacted twice, the value of tensile stress of the lower layer was more than its value in a single compacted tablet with the same material. This observation was attributed to the extent of the reduction of porosity during compaction of the single tablets which raised in their tensile strength values.

  12. Extremely Efficient Liquid Exfoliation and Dispersion of Layered Materials by Unusual Acoustic Cavitation

    Science.gov (United States)

    Han, Joong Tark; Jang, Jeong In; Kim, Haena; Hwang, Jun Yeon; Yoo, Hyung Keun; Woo, Jong Seok; Choi, Sua; Kim, Ho Young; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Cho, Kilwon; Lee, Geon-Woong

    2014-01-01

    Layered materials must be exfoliated and dispersed in solvents for diverse applications. Usually, highly energetic probe sonication may be considered to be an unfavourable method for the less defective exfoliation and dispersion of layered materials. Here we show that judicious use of ultrasonic cavitation can produce exfoliated transition metal dichalcogenide nanosheets extraordinarily dispersed in non-toxic solvent by minimising the sonolysis of solvent molecules. Our method can also lead to produce less defective, large graphene oxide nanosheets from graphite oxide in a short time (within 10 min), which show high electrical conductivity (>20,000 S m−1) of the printed film. This was achieved by adjusting the ultrasonic probe depth to the liquid surface to generate less energetic cavitation (delivered power ~6 W), while maintaining sufficient acoustic shearing (0.73 m s−1) and generating additional microbubbling by aeration at the liquid surface. PMID:24875584

  13. Single-Layered Hittorf's Phosphorus: A Wide-Bandgap High Mobility 2D Material.

    Science.gov (United States)

    Schusteritsch, Georg; Uhrin, Martin; Pickard, Chris J

    2016-05-11

    We propose here a two-dimensional material based on a single layer of violet or Hittorf's phosphorus. Using first-principles density functional theory, we find it to be energetically very stable, comparable to other previously proposed single-layered phosphorus structures. It requires only a small energetic cost of approximately 0.04 eV/atom to be created from its bulk structure, Hittorf's phosphorus, or a binding energy of 0.3-0.4 J/m(2) per layer, suggesting the possibility of exfoliation in experiments. We find single-layered Hittorf's phosphorus to be a wide band gap semiconductor with a direct band gap of approximately 2.5 eV, and our calculations show it is expected to have a high and highly anisotropic hole mobility with an upper bound lying between 3000-7000 cm(2) V(-1) s(-1). These combined properties make single-layered Hittorf's phosphorus a very good candidate for future applications in a wide variety of technologies, in particular for high frequency electronics, and optoelectronic devices operating in the low wavelength blue color range. PMID:27110837

  14. Analysis of Counterfeit Coated Tablets and Multi-Layer Packaging Materials Using Infrared Microspectroscopic Imaging.

    Science.gov (United States)

    Winner, Taryn L; Lanzarotta, Adam; Sommer, André J

    2016-06-01

    An effective method for detecting and characterizing counterfeit finished dosage forms and packaging materials is described in this study. Using attenuated total internal reflection Fourier transform infrared spectroscopic imaging, suspect tablet coating and core formulations as well as multi-layered foil safety seals, bottle labels, and cigarette tear tapes were analyzed and compared directly with those of a stored authentic product. The approach was effective for obtaining molecular information from structures as small as 6 μm.

  15. Analysis of Counterfeit Coated Tablets and Multi-Layer Packaging Materials Using Infrared Microspectroscopic Imaging.

    Science.gov (United States)

    Winner, Taryn L; Lanzarotta, Adam; Sommer, André J

    2016-06-01

    An effective method for detecting and characterizing counterfeit finished dosage forms and packaging materials is described in this study. Using attenuated total internal reflection Fourier transform infrared spectroscopic imaging, suspect tablet coating and core formulations as well as multi-layered foil safety seals, bottle labels, and cigarette tear tapes were analyzed and compared directly with those of a stored authentic product. The approach was effective for obtaining molecular information from structures as small as 6 μm. PMID:27068491

  16. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    Science.gov (United States)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Namour, Philippe; Ben Haj Amara, Abdesslem; Jaffrezic-Renault, Nicole

    2016-11-01

    Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However, MgAl LDH shows better performance than ZnAl LDH, due to the presence of magnesium cations in the layers. Following the structural, morphological and electrochemical behavior studies of both synthesized LDHs, the prepared LDH modified electrodes were tested through microbial fuel cell configuration, revealing a remarkable, potential new pathway for high-performance and cost-effective electrode use in electrochemical power devices.

  17. Review on the Raman spectroscopy of different types of layered materials

    Science.gov (United States)

    Zhang, Xin; Tan, Qing-Hai; Wu, Jiang-Bin; Shi, Wei; Tan, Ping-Heng

    2016-03-01

    Two-dimensional layered materials, such as graphene and transition metal dichalcogenides (TMDs), have been under intensive investigation. The rapid progress of research on graphene and TMDs is now stimulating the exploration of different types of layered materials (LMs). Raman spectroscopy has shown its great potential in the characterization of layer numbers, interlayer coupling and layer-stacking configurations and will benefit the future explorations of other LMs. Lattice vibrations or Raman spectra of many LMs in bulk have been discussed since the 1960s. However, different results were obtained because of differences or limitations in the Raman instruments at early stages. The developments of modern Raman spectroscopy now allow us to revisit the Raman spectra of these LMs under the same experimental conditions. Moreover, to the best of our knowledge, there were limitations in detailed reviews on the Raman spectra of these different LMs. Here, we provide a review on Raman spectra of various LMs, including semiconductors, topological insulators, insulators, semi-metals and superconductors. We firstly introduce a unified method based on symmetry analysis and polarization measurements to assign the observed Raman modes and characterize the crystal structure of different types of LMs. Then, we revisit and update the positions and assignments of vibration modes by re-measuring the Raman spectra of different types of LMs and by comparing our results to those reported in previous papers. We apply the recent advances on the interlayer vibrations of graphene and TMDs to these various LMs and obtain their shear modulus. The observation of the shear modes of LMs in bulk facilitates an accurate and fast characterization of layer numbers during preparation processes in the future by a robust layer-number dependency on the frequencies of the shear modes. We also summarize the recent advances on the layer-stacking dependence on the intensities of interlayer shear vibrations

  18. Fatigue crack growth and fracture mechanics analysis of a working roll surface layer material

    Directory of Open Access Journals (Sweden)

    M. Drobne

    2014-10-01

    Full Text Available Fatigue crack growth and fracture mechanics analysis of a working roll surface layer material is presented in this paper. The research is done on a hot strip mill working roll where High Chromium Steel is used for roll’s shell material. To obtain corresponding parameters, a rectangular single edge notched bend specimens – SENB, according to standard BS 7448, were used. The fatigue crack growth analysis was done on a resonant testing machine with use of special crack gauges, while for fracture mechanics parameters the electro–mechanical testing machine was used.

  19. Grafted, cross-linked carbon black as a double-layer capacitor electrode material

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R.; Mueller, S.; Wokaun, A.

    2001-03-01

    Isocyanate prepolymers readily react with oxidic functional groups on carbon black. On carbon black grafted with diisocyanates, reactive isocyanate groups are available for cross-linking to a polyurethane system. This cross-linked carbon black was considered as a new active material for electrochemical electrodes. Active material for electric double-layer capacitor electrodes was produced which had values of specific capacitance of up to 200 F/g. Cross-linking efficiencies of up to 58 % of the polymers utilised were achieved. (author)

  20. Solution-processed cathode interfacial layer materials for high-efficiency polymer solar cells

    Directory of Open Access Journals (Sweden)

    Biao Xiao

    2015-09-01

    Full Text Available Polymer solar cells (PSCs are a new type of renewable energy source currently being extensively investigated due to perceived advantages; such as being lightweight, low-cost and because of the unlimited materials resource. The power conversion efficiency of state-of-the-art PSCs has increased dramatically in the past few years, obtained mainly through the development of new electron donor polymers, acceptors, and novel device structures through the use of various electrode interfacial materials. In this short review, recent progress in solution-processed cathode interfacial layers that could significantly improve device performances is summarized and highlighted.

  1. Discrimination of tooth layers and dental restorative materials using cutting sounds.

    Science.gov (United States)

    Zakeri, Vahid; Arzanpour, Siamak; Chehroudi, Babak

    2015-03-01

    Dental restoration begins with removing carries and affected tissues with air-turbine rotary cutting handpieces, and later restoring the lost tissues with appropriate restorative materials to retain the functionality. Most restoration materials eventually fail as they age and need to be replaced. One of the difficulties in replacing failing restorations is discerning the boundary of restorative materials, which causes inadvertent removal of healthy tooth layers. Developing an objective and sensor-based method is a promising approach to monitor dental restorative operations and to prevent excessive tooth losses. This paper has analyzed cutting sounds of an air-turbine handpiece to discriminate between tooth layers and two commonly used restorative materials, amalgam and composite. Support vector machines were employed for classification, and the averaged short-time Fourier transform coefficients were selected as the features. The classifier performance was evaluated from different aspects such as the number of features, feature scaling methods, classification schemes, and utilized kernels. The total classification accuracies were 89% and 92% for cases included composite and amalgam materials, respectively. The obtained results indicated the feasibility and effectiveness of the proposed method.

  2. Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells

    Science.gov (United States)

    Kim, Yu Geun; Kwon, Ki Chang; Le, Quyet Van; Hong, Kootak; Jang, Ho Won; Kim, Soo Young

    2016-07-01

    Atomically thin two-dimensional materials such as MoS2, WS2, and graphene oxide (GO) are used as hole extraction layers (HEL) in organolead halide perovskites solar cells (PSCs) instead of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HEL. MoS2 and WS2 layers with a polycrystalline structure were synthesized by a chemical deposition method using a uniformly spin-coated (NH4)MoS4 and (NH4)WS4 precursor solution. GO was synthesized by the oxidation of natural graphite powder using Hummers' method. The work functions of MoS2, WS2, and GO are measured to be 5.0, 4.95, and 5.1 eV, respectively. The X-ray diffraction spectrum indicated that the synthesized perovskite material is CH3NH3PbI3-xClx. The PSCs with the p-n junction structure were fabricated based on the CH3NH3PbI3-xClx perovskite layer. The power conversion efficiencies of the MoS2, WS2, and GO-based PSCs were 9.53%, 8.02%, and 9.62%, respectively, which are comparable to those obtained from PEDOT:PSS-based devices (9.93%). These results suggest that two-dimensional materials such as MoS2, WS2, and GO can be promising candidates for the formation of HELs in the PSCs.

  3. Production method of raw material dispersion liquid for reaction layer of gas diffusion electrode

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Choichi; Motoo, Satoshi

    1987-10-13

    Heretofore, in order to make a raw material dispersion liquid of a reaction layer of a gas diffusion electrode, water repellent carbon, polytetrafluoroethylene, water and a surface active agent are mixed, then a cake is made by filtering this mixed liquid and afterwards the cake is heated and dried before being crushed. Since this crushing is done mechanically, homogeneous fine raw material powders cannot be obtained. Accordingly, even when a reaction layer is made by sintering a mixture of this powder, hydrophilic carbon black or hydrophilic carbon black carrying catalyst, and polytetrafluoroethylene, the hydrophilic part and the water repellent part are not distributed homogeneously and the catalytic performance of the reaction layer declines. In order to solve this, this invention proposes a production method that water repellent carbon black, polyterafluoroethylene, water and a surface active agent are mixed, then this mixture is frozen so that the surface active agent may not become active and homogeneous condensed cores of water repellent carbon black and polytetrafluoroethylene powders may be formed, and afterwards a homogeneous fine raw material dispersion liquid is made from thawing the condensed cores without change by thawing the above frozen mixture.

  4. he sacrificial emplotment of national identity. Pádraic Pearse and the 1916 Easter uprising

    Directory of Open Access Journals (Sweden)

    Patrick Colm Hogan

    2014-06-01

    Full Text Available A sense of national identification remains amorphous and inert unless it is cognitively structured and motivationally oriented. Perhaps the most consequential way of structuring and orienting nationalism is through emplotment (organizing in the form of a story. Emplotment commonly follows one of a few cross-culturally recurring genres. In nationalist contexts, the heroic genre—treating military conflict, loss or potential loss, and reasserted sovereignty–is the default form. However, this default may be overridden in particular circumstances. When social devastation precludes heroic achievement, a sacrificial emplotment—treating collective sin, punishment, sacrifice, and redemption—is often particularly salient. Earlier work has examined cases of sacrificial emplotment in its most extreme varieties (treating Hitler and Gandhi. The following essay considers a more ordinary case, the sacrificial nationalism of the prominent Irish anti-colonial revolutionary, Pádraic Pearse, as represented in his plays.

  5. The effect of temperature, material properties of adhesive layer and geometry on a bi‑material structure

    International Nuclear Information System (INIS)

    Approximate analytical models are used to present the influence of the type of adhesive on the behaviour of the peeling stress, debond lengths and plastic zones in a structure consisting of two plates (fabricated from Alumina and Aluminium). The plates are bonded together by an interface zero thickness adhesive layer and subjected to thermal loading. The thermal peeling stress is caused by the thermal and elastic mismatch of the two-plate structure undergoing change of the temperature. It is determined via the interfacial shearing stress. The interface is assumed to exhibit brittle failure under critical shear stress. The peeling stress and the delamination on the interfacial boundary in a bi-material structure are calculated and compared accounting for two different adhesives. Key words: delamination of adhesively bonded bi-material structure, thermal loading, interfacial thermal stresses

  6. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    Science.gov (United States)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  7. Microscopic observation of pattern attack by aggressive ions on finished surface of aluminium alloy sacrificial anode

    International Nuclear Information System (INIS)

    This paper presents the results of a microscopic observation on submerged finished surface of aluminium alloy sacrificial anode. Experimental tests were carried out on polished surface aluminium anode exposed to seawater containing aggressive ions in order to observe of pattern corrosion attack on corroding surface of anode. Results have shown, at least under the present testing condition, that surface of sacrificial anode were attack by an aggressive ion such as chloride along grain boundaries. In addition, results of microanalysis showed that the corrosion products on surface of aluminium alloy have Al, Zn and O element for all sample and within the pit was consists of Al, Zn, O and Cl element. (author)

  8. Large-Area Quality Control of Atomically-Thin Layered Materials

    Science.gov (United States)

    Nolen, Craig Merten

    Fast progress in chemical vapor deposition of graphene and other quasi-two-dimensional layered materials such as topological insulators call for development of a reliable high-throughput method of layered materials identification and quality control. The number of atomic planes in graphene or other ultra-thin films has to be determined very fast and over large wafer-scale areas. The previously existed methods of accurate counting of the number of atomic planes in few-layer graphene were primarily based on micro-Raman spectroscopy. These methods were local, slow, and could not be scaled up to characterize the whole wafers. In this dissertation research I proposed and developed an automatic approach for graphene inspection over the wafer-size areas. The proposed method can be scaled up for industrial use. It is based on the image processing analysis of the pseudo-color contrasts uniquely assigned to each few-layer graphene region characterized by a specific number of atomic planes. The initial calibration of the technique is performed with the help of micro-Raman spectroscopy. The image processing is also used to account for the lighting non-uniformity of the samples. Implementation of the technique developed in this dissertation research reduces the cost and time required for graphene identification and quality assessment, and can become the next major impetus for practical applications of graphene, few-layer graphene and other atomically-thin films. The technique was tested on mechanically exfoliated graphene and then extended to the chemical-vapor-deposited graphene, and to bismuth telluride topological insulator thin films. The second part of the dissertation research deals with development of the electrostatic transfer process. The investigated approach allows one to transfer the patterned few-layer graphene films controllably to Si3N4 substrates compatible with other materials. The large-area quality control and graphene transfer techniques developed in this

  9. A Method to Estimate the Dynamic Displacement and Stress of a Multi-layered Pavement with Bituminous or Concrete Materials

    OpenAIRE

    LU, ZHENG; Yao, Hailin; Zhang, JingBo

    2014-01-01

    In this research work, a method to estimate the dynamic characteristics of a multilayered pavement with bituminous or concrete materials is proposed. A mechanical model is established to investigate the dynamic displacement and stress of the multi-layered pavement structure. Both the flexible and the rigid pavements, corresponding to bituminous materials and concrete materials, respectively, are studied. The theoretical solutions of the multi-layered pavement structure are deduced considering...

  10. Review on the Raman spectroscopy of different types of layered materials.

    Science.gov (United States)

    Zhang, Xin; Tan, Qing-Hai; Wu, Jiang-Bin; Shi, Wei; Tan, Ping-Heng

    2016-03-28

    Two-dimensional layered materials, such as graphene and transition metal dichalcogenides (TMDs), have been under intensive investigation. The rapid progress of research on graphene and TMDs is now stimulating the exploration of different types of layered materials (LMs). Raman spectroscopy has shown its great potential in the characterization of layer numbers, interlayer coupling and layer-stacking configurations and will benefit the future explorations of other LMs. Lattice vibrations or Raman spectra of many LMs in bulk have been discussed since the 1960s. However, different results were obtained because of differences or limitations in the Raman instruments at early stages. The developments of modern Raman spectroscopy now allow us to revisit the Raman spectra of these LMs under the same experimental conditions. Moreover, to the best of our knowledge, there were limitations in detailed reviews on the Raman spectra of these different LMs. Here, we provide a review on Raman spectra of various LMs, including semiconductors, topological insulators, insulators, semi-metals and superconductors. We firstly introduce a unified method based on symmetry analysis and polarization measurements to assign the observed Raman modes and characterize the crystal structure of different types of LMs. Then, we revisit and update the positions and assignments of vibration modes by re-measuring the Raman spectra of different types of LMs and by comparing our results to those reported in previous papers. We apply the recent advances on the interlayer vibrations of graphene and TMDs to these various LMs and obtain their shear modulus. The observation of the shear modes of LMs in bulk facilitates an accurate and fast characterization of layer numbers during preparation processes in the future by a robust layer-number dependency on the frequencies of the shear modes. We also summarize the recent advances on the layer-stacking dependence on the intensities of interlayer shear vibrations

  11. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    Science.gov (United States)

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-01-01

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales. PMID:24670975

  12. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    Science.gov (United States)

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-03-27

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales.

  13. 层状材料及催化%Layered materials and catalysis

    Institute of Scientific and Technical Information of China (English)

    安哲; 何静; 段雪

    2012-01-01

    LDHs(layered double hydroxides)是一类结构可调的阴离子层状及插层结构功能材料,近些年来在催化领域得到了广泛的关注.本文综述了有关LDHs材料构筑原则的理论研究、组装方法及其在多相催化领域应用的最新进展.%Layered double hydroxides (LDHs) refer to a large class of anionic clays with diverse brucite-like layers and intercalated structures, which have attracted increasing interests in recent years due to their potential applications as catalysts, catalyst supports and catalyst precursors. This review summeries the latest development of LDH materials in the theoretical criteria for the layered structures, preparation methodology, and their applications as heterogeneous catalytic materials in selective oxidation, acid-base catalyzed, photocatalytic, bio-catalyzed, and asymmetric synthesis reactions.

  14. Thermal properties measurement of dry bulk materials with a cylindrical three layers device

    Science.gov (United States)

    Jannot, Y.; Degiovanni, A.

    2013-09-01

    This paper presents a new method dedicated to thermal properties (conductivity and diffusivity) measurement of dry bulk materials including powders. The cylindrical three layers experimental device (brass/bulk material/stainless steel) and the principle of the measurement method based on a crenel thermal excitation are presented. The one-dimensional modeling of the system is used for a sensitivity analysis and to calculate the standard deviation of the estimation error. Experimental measurements are carried out on three bulk materials: glass beads, cork granules, and expanded polystyrene beads. The estimated thermal properties are compared with the values obtained by other measurement methods. Results are in good agreement with theoretical predictions: both thermal conductivity and diffusivity can be estimated with a good accuracy for low density material like cork granules or expanded polystyrene beads since only thermal diffusivity can be estimated for heavier materials like glass beads. It is finally shown that this method like all transient methods is not suited to the thermal characterization of wet bulk materials.

  15. Tuning the Transport Properties of Layered Materials for Thermoelectric Applications using First-Principles Calculations

    KAUST Repository

    Saeed, Yasir

    2014-05-11

    Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport

  16. Mono-layer BC2 a high capacity anode material for Li-ion batteries

    Science.gov (United States)

    Hardikar, Rahul; Samanta, Atanu; Han, Sang Soo; Lee, Kwang-Ryeol; Singh, Abhishek

    2015-04-01

    Mono-layer of graphene with high surface area compared to the bulk graphite phase, shows less Li uptake. The Li activity or kinetics can be modified via defects and/or substitutional doping. Boron and Nitrogen are the best known dopants for carbonaceous anode materials. In particular, boron doped graphene shows higher capacity and better Li adsorption compared to Nitrogen doped graphene. Here, using first principles density functional theory calculations, we study the spectrum of boron carbide (BCx) mono-layer phases in order to estimate the maximum gravimetric capacity that can be achieved by substitutional doping in graphene. Our results show that uniformly boron doped BC2 phase shows a high capacity of? 1400 mAh/g, much higher than previously reported capacity of BC3. Supported by Korea Institute of Science and Technology.

  17. Few layer epitaxial germanene: a novel two-dimensional Dirac material.

    Science.gov (United States)

    Dávila, María Eugenia; Le Lay, Guy

    2016-01-01

    Monolayer germanene, a novel graphene-like germanium allotrope akin to silicene has been recently grown on metallic substrates. Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. Here, we show that few layer germanene, which we create by dry epitaxy on a gold template, possesses Dirac cones thanks to a reduced interaction. This finding established on synchrotron-radiation-based photoemission, scanning tunneling microscopy imaging and surface electron diffraction places few layer germanene among the rare two-dimensional Dirac materials. Since germanium is currently used in the mainstream Si-based electronics, perspectives of using germanene for scaling down beyond the 5 nm node appear very promising. Other fascinating properties seem at hand, typically the robust quantum spin Hall effect for applications in spintronics and the engineering of Floquet Majorana fermions by light for quantum computing. PMID:26860590

  18. Molecular simulation of the adsorption of linear alkane mixtures in pillared layered materials

    Institute of Scientific and Technical Information of China (English)

    LI Wen-zhuo; CHE Yu-liang; LIU Zi-yang; ZHANG Dan

    2007-01-01

    The adsorption isotherms of mixtures of linear alkanes, involving n-pentane, n-hexane, and n-heptane in pillared layered materials (PLMs) with three different porosities ψ=0.98, 0.94 and 0.87, and three pore widths H=1.02, 1.70 and 2.38 nm attemperature T=300 K were simulated by using configurational-bias Monte Carlo (CBMC) techniques in grand canonical ensemble. A grid model was employed to calculate the interaction between a fluid molecule and two layered boards here. For alkane mixtures, the n-heptane, the longest chain component in alkane mixtures, is preferentially adsorbed at low pressures, with its adsorption increasing and then decreasing as the pressure increases continuously while the n-pentane, the shortest chain component in alkane mixtures, is still adsorbed at high pressures; the adsorption of the longest chain component of alkane mixtures increases as the pore width and the porosity of PLMs increase.

  19. A new low-cost, thick-film metallization transfer process onto PDMS using a sacrificial copper seed

    Science.gov (United States)

    Hilbich, Daniel; Khosla, Ajit; Shannon, Lesley; Gray, Bonnie L.

    2014-04-01

    We present a new low cost microfabrication technology that utilizes a sacrificial conductive paint transfer method to realize thick film copper microstructures that are embedded in polydimethylsiloxane (PDMS). This process has reduced fabrication complexity and cost compared to existing metal-on-PDMS techniques, which enables large scale rapid prototyping of designs using minimal laboratory equipment. This technology differs from others in its use of a conductive copper paint seed layer and a unique transfer process that results in copper microstuctures embedded in PDMS. By embedding microstructures flush with PDMS surface, rather than fabricating the microstructures on the substrate surface, we produce a metallization layer that adheres to PDMS without the need for surface modifications. The fabrication process begins with the deposition of the seed layer onto a flexible substrate via airbrushing. A dry film photoresist layer is laminated on top and patterned using standard techniques. Electroplated copper is grown on the seed layer through the photoresist mask and transferred to PDMS through a unique baking procedure. This baking transfer process releases the electroplated copper from the seed layer, permanently embedding it into the cured PDMS without cracking or otherwise deforming it. We have performed initial characterizations of the copper microstructures in terms of feature size, film thickness, surface roughness, resistivity, and reliability under flexing. Initial results show that we can achieve films 25-75 micrometers in thickness, with reliable feature sizes down to 100 micrometers and a film resistivity of approximately 7.15 micro-Ω-cm. Process variants and future work are discussed, as well as large scale adaptations and rapid prototyping. Finally, we outline the potential uses of this technology in flexible electronics, particularly in high power applications.

  20. Drying of a tape-cast layer: Numerical modelling of the evaporation process in a graded/layered material

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Jambhekar, V. A.; Hattel, Jesper Henri;

    2016-01-01

    Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of water-based tape cast ceramics. In this paper we present a coupled free-flow-porous-media model on the Representative Elementary Volume (REV) scale for coupling non-isothermal multi...... in accordance with the available results from the literature. We elaborate on and discuss the characteristic drying-rate curve for a single layer ceramic, and compare it with that of a graded/layered ceramic. We, moreover, show the influence of the mean diameter of particles of the porous medium (dp) — which...... directly affects the intrinsic permeability (K) based on the well-known Ergun's equation — of each single ceramic layer on the drying behaviour of a graded/layered ceramic....

  1. Finite Element Analysis of Layered Fiber Composite Structures Accounting for the Material's Microstructure and Delamination

    Science.gov (United States)

    Stier, Bertram; Simon, Jaan-Willem; Reese, Stefanie

    2015-04-01

    The present paper focuses on composite structures which consist of several layers of carbon fiber reinforced plastics (CFRP). For such layered composite structures, delamination constitutes one of the major failure modes. Predicting its initiation is essential for the design of these composites. Evaluating stress-strength relation based onset criteria requires an accurate representation of the through-the-thickness stress distribution, which can be particularly delicate in the case of shell-like structures. Thus, in this paper, a solid-shell finite element formulation is utilized which allows to incorporate a fully three-dimensional material model while still being suitable for applications involving thin structures. Moreover, locking phenomena are cured by using both the EAS and the ANS concept, and numerical efficiency is ensured through reduced integration. The proposed anisotropic material model accounts for the material's micro-structure by using the concept of structural tensors. It is validated by comparison to experimental data as well as by application to numerical examples.

  2. Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials

    International Nuclear Information System (INIS)

    Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy. The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS2) and graphene-like BN sheets

  3. Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Chunqiang, E-mail: chunqiang.zhuang@bjut.edu.cn [Beijing Key Laboratory of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Liu, Lei [Institute of Earthquake Science, China Earthquake Administration, Beijing 10036 (China)

    2015-03-21

    Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy. The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS{sub 2}) and graphene-like BN sheets.

  4. Processing of hazardous material, or damage treatment method for shallow layer underground storage structure

    International Nuclear Information System (INIS)

    In radioactive waste processing facilities and shallow layer underground structures for processing hazardous materials, sheet piles having freezing pipes at the joint portions are spiked into soils at the periphery of a damaged portion of the shallow layer underground structure for processing or storing hazardous materials. Liquid nitrogen is injected to the freezing pipes to freeze the joint portions of adjacent sheet piles. With such procedures, continuous waterproof walls are formed surrounding the soils at the peripheries of the damaged portion. Further, freezing pipes are disposed in the surrounding soils, and liquid nitrogen is injected to freeze the soils. The frozen soils are removed, and artificial foundation materials are filled in the space except for the peripheries of the damaged portion after the removal thereof, and liquid suspension is filled in the peripheries of the damaged portion, and restoration steps for closing the damaged portion are applied. Then, the peripheries of the damaged portion are buried again. With such procedures, series of treatments for removing contaminated soils and repairing a damaged portion can be conducted efficiently at a low cost. (T.M.)

  5. Raman and Photoluminescence Studies of In-plane Anisotropic Layered Materials

    Science.gov (United States)

    Pant, Anupum

    This thesis presents systematic studies on angle dependent Raman and Photoluminescence (PL) of a new class of layered materials, Transition Metal Trichalcogenides (TMTCs), which are made up of layers possessing anisotropic structure within the van-der-Waals plane. The crystal structure of individual layer of MX3 compounds consists of aligned nanowire like 1D chains running along the b-axis direction. The work focuses on the growth of two members of this family - ZrS3 and TiS3 - through Chemical Vapor Transport Method (CVT), with consequent angle dependent Raman and PL studies which highlight their in-plane optically anisotropic properties. Results highlight that the optical properties of few-layer flakes are highly anisotropic as evidenced by large PL intensity variation with polarization direction (in ZrS3) and an intense variation in Raman intensity with variation in polarization direction (in both ZrS3 and TiS3). Results suggest that light is efficiently absorbed when E-field of the polarized incident excitation laser is polarized along the chain (b-axis). It is greatly attenuated and absorption is reduced when field is polarized perpendicular to the length of 1D-like chains, as wavelength of the exciting light is much longer than the width of each 1D chain. Observed PL variation with respect to the azimuthal flake angle is similar to what has been previously observed in 1D materials like nanowires. However, in TMTCs, since the 1D chains interact with each other, it gives rise to a unique linear dichroism response that falls between 2D and 1D like behavior. These results not only mark the very first demonstration of high PL polarization anisotropy in 2D systems, but also provide a novel insight into how interaction between adjacent 1D-like chains and the 2D nature of each layer influences the overall optical anisotropy of Quasi-1D materials. The presented results are anticipated to have impact in technologies involving polarized detection, near-field imaging

  6. The influence of Ti and Sr alloying elements on electrochemical properties of aluminum sacrificial anodes

    Energy Technology Data Exchange (ETDEWEB)

    Saremi, M.; Sina, H.; Keyvani, A.; Emamy, M. [Metallurgy and Materials Department, University of Tehran, P.O. Box 11365/4563, Tehran (Iran)

    2004-07-01

    Aluminum sacrificial anodes are widely used in cathodic protection of alloys in seawater. The interesting properties due to low specific weight, low electrode potential and high current capacity are often hindered by the presence of a passive oxide film which causes several difficulties in their practical application. In this investigation, the electrochemical behavior of Al- 5Zn-0.02In sacrificial anode is studied in 3 wt. % sodium chloride solution. The experiments focused on the influence of Ti and Sr as alloying elements on electrochemical behavior of aluminum sacrificial anode. Ti and Sr are used in different concentrations from 0.03 to 0.1 wt.% 0.01 to 0.05 wt.%, respectively. NACE efficiency and polarization tests are used in this case. It is shown that by using 0.03 wt.% Ti and 0.01 wt.% Sr as the alloying elements to investigate the anodic behavior of the anodes, homogeneous microstructures are obtained which results in improvement of electrochemical properties of aluminum sacrificial anode such as current capacity and anode efficiency. (authors)

  7. Sidetracked by trolleys: Why sacrificial moral dilemmas tell us little (or nothing) about utilitarian judgment.

    Science.gov (United States)

    Kahane, Guy

    2015-01-01

    Research into moral decision-making has been dominated by sacrificial dilemmas where, in order to save several lives, it is necessary to sacrifice the life of another person. It is widely assumed that these dilemmas draw a sharp contrast between utilitarian and deontological approaches to morality, and thereby enable us to study the psychological and neural basis of utilitarian judgment. However, it has been previously shown that some sacrificial dilemmas fail to present a genuine contrast between utilitarian and deontological options. Here, I raise deeper problems for this research paradigm. Even when sacrificial dilemmas present a contrast between utilitarian and deontological options at a philosophical level, it is misleading to interpret the responses of ordinary folk in these terms. What is currently classified as "utilitarian judgment" does not in fact share essential features of a genuine utilitarian outlook, and is better explained in terms of commonsensical moral notions. When subjects deliberate about such dilemmas, they are not deciding between opposing utilitarian and deontological solutions, but engaging in a richer process of weighing opposing moral reasons. Sacrificial dilemmas therefore tell us little about utilitarian decision-making. An alternative approach to studying proto-utilitarian tendencies in everyday moral thinking is proposed. PMID:25791902

  8. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan; Larsen, Layla Bashir; Trifol Guzman, Jon;

    2015-01-01

    One of the major challenges in producing large scale engineered tissue is the lack of ability to create large highly perfused scaffolds in which cells can grow at a high cell density and viability. Here, we explore 3D printed polyvinyl alcohol (PVA) as a sacrificial mould in a polymer casting...

  9. Encapsulation of sacrificial silicon containing particles for SH oxide ceramics via a boehmite precursor route

    NARCIS (Netherlands)

    Carabat, A.L.; Van der Zwaag, S.; Sloof, W.G.

    2013-01-01

    Easy crack propagation in oxide ceramic coatings limits their application in high temperature environment (e.g. such as engines and gas turbine components) [1]. In order to overcome this problem, incorporation of sacrificial particles into an oxide ceramic coating may be a viable option. Particles o

  10. Design and Optimization of Passive UHF RFID Tag Antenna for Mounting on or inside Material Layers

    Science.gov (United States)

    Shao, Shuai

    There is great desire to employ passive UHF RFID tags for inventory tracking and sensing in a diversity of applications and environments. Owing to its battery-free operation, non-line-of sight detection, low cost, long read range and small form factor, each year billions of RFID tags are being deployed in retail, logistics, manufacturing, biomedical inventories, among many other applications. However, the performance of these RFID systems has not met expectations. This is because a tag's performance deteriorates significantly when mounted on or inside arbitrary materials. The tag antenna is optimized only for a given type of material at a certain location of placement, and detuning takes place when attached to or embedded in materials with dielectric properties outside the design range. Thereby, different customized tags may be needed for identifying objects even within the same class of products. This increases the overall cost of the system. Furthermore, conventional copper foil-based RFID tag antennas are prone to metal fatigue and wear, and cannot survive hostile environments where antennas could be deformed by external forces and failures occur. Therefore, it is essential to understand the interaction between the antenna and the material in the vicinity of the tag, and design general purpose RFID tag antennas possessing excellent electrical performance as well as robust mechanical structure. A particularly challenging application addressed here is designing passive RFID tag antennas for automotive tires. Tires are composed of multiple layers of rubber with different dielectric properties and thicknesses. Furthermore, metallic plies are embedded in the sidewalls and steel belts lie beneath the tread to enforce mechanical integrity. To complicate matters even more, a typical tire experiences a 10% stretching during the construction process. This dissertation focuses on intuitively understanding the interaction between the antenna and the material in the

  11. Automatized channel for resistivity measurements in layered materials by four-point probe technique

    Science.gov (United States)

    Gryaznov, A. O.; Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.

    2016-09-01

    An automatized channel for measuring the resistivity in materials by the four-point probe technique was developed. The installation was based on Cascade Microtech MPS150 microprobe station, National Instruments PXIe-4143 power supply unit and PXI-4072 digital multimeter. Registration modes of surface and bulk specific resistance for samples with positioning the probes in a line or at square vertices were implemented. Measurements under corresponding modes were carried out for metallic, semiconducting bulk samples and thin coatings. Conductive and optical properties of 10, 20 and 30 nm Au layers formed on quartz glass by magnetron sputtering were investigated.

  12. Surface Modification of Nano Porous Materials for Electric Double Layer Capacitors Application

    OpenAIRE

    Tashima, Daisuke; Kurosawatsu, Kenji; Sung, Youl-Moon; Otsubo, Masahisa; Honda, Chikahisa

    2007-01-01

    In this work, carbonaceous materials were modified in order to improve capacitance and charge density in electric double layer capacitors (EDLCs). Optimal conditions for plasma surface treatment of activated carbon have been examined for times from 10 min to 1 h at 150 ℃. The plasma is a high-frequency glow discharge in N2. The pressure of the gas is 13.3 Pa. The electrode is set up so that the EDLC sample is covered with the glow discharge. Space charge density can be improved by plasma surf...

  13. Ultra-low material pixel layers for the Mu3e experiment

    CERN Document Server

    Berger, N; Henkelmann, L; Herkert, A; Aeschbacher, F Meier; Ng, Y W; Noehte, L O S; Schöning, A; Wiedner, D

    2016-01-01

    The upcoming Mu3e experiment will search for the charged lepton flavour violating decay of a muon at rest into three electrons. The maximal energy of the electrons is 53 MeV, hence a low material budget is a key performance requirement for the tracking detector. In this paper we summarize our approach to meet the requirement of about 0.1 % of a radiation length per pixel detector layer. This includes the choice of thinned active monolithic pixel sensors in HV-CMOS technology, ultra-thin flexible printed circuits, and helium gas cooling.

  14. Proper restorative material selection, digital processes allow highly esthetic shade match combined with layered porcelain.

    Science.gov (United States)

    Kahng, Luke S

    2014-03-01

    Today's digital technologies are affording dentists and laboratory technicians more control over material choices for creating restorations and fabricating dental prostheses. Digital processes can potentially enable technicians to create ideal marginal areas and account for the thickness and support of layering porcelain over substructures in the design process. In this case report of a restoration of a single central incisor, a number of issues are addressed that are central to using the newest digital technology. As demonstrated, shade selection is a crucial early step in any restorative case preparation. PMID:24773196

  15. The effect of gamma-irradiation on few-layered graphene materials

    Energy Technology Data Exchange (ETDEWEB)

    Ansón-Casaos, A., E-mail: alanson@icb.csic.es [Instituto de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza (Spain); Puértolas, J.A. [Department of Materials Science and Technology-EINA, Instituto de Investigación en Ingeniería de Aragón, I3A, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Pascual, F.J. [Department of Materials Science and Technology-EINA, Instituto de Investigación en Ingeniería de Aragón, I3A, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Centro Universitario de la Defensa de Zaragoza, Academia General Militar, Carretera de Huesca s/n, E-50090 Zaragoza (Spain); Hernández-Ferrer, J. [Instituto de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza (Spain); Castell, P. [AITIIP Technological Center, Polígono Industrial Empresarium, C/Romero 12, 50720 Zaragoza (Spain); Benito, A.M.; Maser, W.K.; Martínez, M.T. [Instituto de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza (Spain)

    2014-05-01

    Highlights: • The effect of γ-irradiation was studied on two graphene materials. • Both graphene materials were examined in their oxidized and post-reduced forms. • We comparatively characterized γ-irradiation and chemical reduction effects. • Irradiation caused modifications in the graphene carbon lattice. • Small changes in the oxygen content occurred during irradiation. - Abstract: The effect of γ-irradiation on the structure and composition of chemically synthesized few-layered graphene materials was studied. Fully oxidized graphene oxide and graphene nanoribbons, as well as their respective chemically post-reduced forms, were treated under γ-irradiation in an air-sealed environment. Three different irradiation doses of 60, 90 and 150 kGy were applied. Structure and composition of the irradiated materials were analyzed by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The XRD patterns were not affected by γ-irradiation, and small changes were observed in the FTIR and TGA results. However, significant modifications were detected by Raman spectroscopy and XPS, particularly in the Raman G/D band intensity ratios and in the C 1s XPS profiles. Comparatively, the changes in Raman and XPS spectra after γ-irradiation were even greater than those occurring during the chemical reduction of graphene oxides. Our results indicate that the graphene carbon lattice was strongly affected by γ-irradiation, but the materials experienced small variations in their oxygen content.

  16. An analytical model for dispersion of material in the atmospheric planetary boundary layer in presence of precipitation

    International Nuclear Information System (INIS)

    An analytical model for the dispersion of particulates and finely divided material released into the atmosphere near the ground is presented. The possible precipitation when the particles are dense enough and large enough to have deposition velocity, is taken into consideration. The model is derived analytically in the mixing layer or Ekman boundary layer where the mixing process is a direct consequence of turbulent and convective motions generated in the boundary layer. (author)

  17. Casimir Piston of Real Materials and its Application to Multi-Layer Models

    CERN Document Server

    Teo, L P

    2009-01-01

    In this article, we derive the formula for the Casimir force acting on a piston made of real material moving inside a perfectly conducting rectangular box. It is shown that by taking suitable limits, one recovers the formula for the Casimir force acting on a perfectly conducting piston or an infinitely permeable piston. Lipshitz formula for finite temperature Casimir force acting on parallel plates made of real materials is re-derived by considering the five-layer model in the context of piston approach. It is observed that the divergences of the Casimir force will only cancel under certain conditions, for example, when the regions separated by the plates are filled with isorefractive media.

  18. Broadband quasi perfect absorption using chirped multi-layer porous materials

    CERN Document Server

    Jiménez, Noé; Cebrecos, Alejandro; Picó, Rubén; Sánchez-Morcillo, Víctor J; García-Raffi, Lluis M

    2016-01-01

    This work theoretically analyzes the sound absorption properties of a chirped multi-layer porous material including transmission, in particular showing the broadband unidirectional absorption properties of the system. Using the combination of the impedance matching condition and the balance between the leakage and the intrinsic losses as well as the critical coupling condition, the system is designed to have broadband unidirectional and nearly perfect absorption. The transfer and scattering matrix formalism, together with full wave numerical simulations are used to demonstrate the results showing excellent agreement between them. The proposed system allows to construct broadband sound absorbers with improved absorption in the low frequency regime using less than 15 \\% of the complete porous material.

  19. Cooperation of micro- and meso-porous carbon electrode materials in electric double-layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Cheng [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Qi, Li; Wang, Hongyu [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Yoshio, Masaki [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2010-07-01

    The capacitive characteristics of micro- and meso-porous carbon materials have been compared in cyclic voltammetric studies and galvanostatic charge-discharge tests. Meso-porous carbon can keep certain high capacitance values at high scan rates, whereas micro-porous carbon possesses very high capacitance values at low scan rates but fades quickly as the scan rate rises up. For better performance of electric double-layer capacitors (EDLCs), the cooperative application of both kinds of carbon materials has been proposed in the following two ways: mixing both kinds of carbons in the same electrode or using the asymmetric configuration of carbon electrodes in the same EDLC. The cooperative effect on the electrochemical performance has also been addressed. (author)

  20. Comprehensive study on the light shielding potential of thermotropic layers for the development of new materials.

    Science.gov (United States)

    Gruber, D P; Winkler, G; Resch, K

    2015-01-10

    In recent years thermotropic overheating protection glazings have been the focus for both solar thermal collector technology and architecture. A thermotropic glazing changes its light transmittance from highly transparent to light diffusing upon reaching a certain threshold temperature autonomously and reversibly. In thermotropic systems with fixed domains (TSFD) the scattering domains are embedded in a polymer matrix, which exhibits a sudden change of the refractive index upon reaching a threshold temperature. The aim of the present study was to comprehensively investigate the light shielding characteristics and potential of TSFD materials by applying simulation of light scattering in particle-filled layers. In random walk simulations a variety of parameters were varied systematically, and the effect on the light transmission behavior of TSFD was studied. The calculation steps of the simulation process are shown in detail. The simulations demonstrate that there is great potential for the production of functional materials with high overheating protection efficiency. PMID:25967611

  1. Sputtered platinum-iridium layers as electrode material for functional electrostimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ganske, G., E-mail: ganske@iwe1.rwth-aachen.d [Institute of Materials in Electrical Engineering I, RWTH Aachen University, Sommerfeldstr. 24, D-52074 Aachen (Germany); Slavcheva, E. [Institute of Materials in Electrical Engineering I, RWTH Aachen University, Sommerfeldstr. 24, D-52074 Aachen (Germany); Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Ooyen, A. van; Mokwa, W.; Schnakenberg, U. [Institute of Materials in Electrical Engineering I, RWTH Aachen University, Sommerfeldstr. 24, D-52074 Aachen (Germany)

    2011-03-31

    In this study co-sputtered layers of platinum-iridium (PtIr) are investigated as stimulation electrode material. The effects of different sputter parameters on the morphology and the electrochemical behavior are examined. It is shown that films sputtered at the lowest incident energy possess the highest charge storage capacity (CSC). At a Pt:Ir atomic-ratio of 55:45 the obtained CSC of 22 mC/cm{sup 2} is enhanced compared to the standard stimulation material platinum (16 mC/cm{sup 2}) but inferior to iridium which has a CSC of 35 mC/cm{sup 2}. Long term cyclic voltammetry measurements show that PtIr can be activated which increases the CSC to 29 mC/cm{sup 2}. Also a change in the film morphology is observed. Sputtered platinum-iridium films promise to combine high mechanical strength and increased charge storage capacity.

  2. Holographic recording characteristics and applications of single-layer panchromatic dichromated gelatin material

    Science.gov (United States)

    Zhu, Jianhua; Xu, Min; Chen, Ligong; Guo, Yongkang; Guo, Lurong

    2005-09-01

    A high-quality single-layer panchromatic dichromated gelatin material is achieved successfully by employing new types of multi-color photosensitizers and photochemical promoters to conventional photo-crosslinking gelatin system. Its holographic recording characteristics such as spectral response, the photosensitivity of three primary colors, spectral selectivity of volume reflection hologram, angular and wavelength selectivity of volume transmission hologram, are studied in detail. Using red, green and blue lasers, namely three primary colors, the bright volume transmission and reflection holograms can be recorded on the panchromatic material at the exposure level of 30 mJ/cm2. Some preliminary results of space, angle and wavelength multiplexing holographic storage for storing multiple binary and grey-tone optical images, are also reported in this paper.

  3. Rational design of new electrolyte materials for electrochemical double layer capacitors

    Science.gov (United States)

    Schütter, Christoph; Husch, Tamara; Viswanathan, Venkatasubramanian; Passerini, Stefano; Balducci, Andrea; Korth, Martin

    2016-09-01

    The development of new electrolytes is a centerpiece of many strategies to improve electrochemical double layer capacitor (EDLC) devices. We present here a computational screening-based rational design approach to find new electrolyte materials. As an example application, the known chemical space of almost 70 million compounds is investigated in search of electrochemically more stable solvents. Cyano esters are identified as especially promising new compound class. Theoretical predictions are validated with subsequent experimental studies on a selected case. These studies show that based on theoretical predictions only, a previously untested, but very well performing compound class was identified. We thus find that our rational design strategy is indeed able to successfully identify completely new materials with substantially improved properties.

  4. Emergency sacrificial sealing method in filters, equipment, or systems

    Science.gov (United States)

    Brown, Erik P

    2014-09-30

    A system seals a filter or equipment component to a base and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment component to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.

  5. Investigation of epitaxial silicon layers as a material for radiation hardened silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Brookhaven National Lab., Upton, NY (United States); Eremin, V.; Ilyashenko, I.; Ivanov, A.; Verbitskaya, E. [Russian Academy of Sciences, St. Petersburg (Russian Federation). Ioffe Physico-Technical Inst.; CERN RD-48 ROSE Collaboration

    1997-12-01

    Epitaxial grown thick layers ({ge} 100 micrometers) of high resistivity silicon (Epi-Si) have been investigated as a possible candidate of radiation hardened material for detectors for high-energy physics. As grown Epi-Si layers contain high concentration (up to 2 {times} 10{sup 12} cm{sup {minus}3}) of deep levels compared with that in standard high resistivity bulk Si. After irradiation of test diodes by protons (E{sub p} = 24 GeV) with a fluence of 1.5 {times} 10{sup 11} cm{sup {minus}2}, no additional radiation induced deep traps have been detected. A reasonable explanation is that there is a sink of primary radiation induced defects (interstitial and vacancies), possibly by as-grown defects, in epitaxial layers. The ``sinking`` process, however, becomes non-effective at high radiation fluences (10{sup 14} cm{sup {minus}2}) due to saturation of epitaxial defects by high concentration of radiation induced ones. As a result, at neutron fluence of 1 {times} 10{sup 14} cm{sup {minus}2} the deep level spectrum corresponds to well-known spectrum of radiation induced defects in high resistivity bulk Si. The net effective concentration in the space charge region equals to 3 {times} 10{sup 12} cm{sup {minus}3} after 3 months of room temperature storage and reveals similar annealing behavior for epitaxial as compared to bulk silicon.

  6. Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron

    Science.gov (United States)

    Helber, Bernd; Chazot, Olivier; Hubin, Annick; Magin, Thierry E.

    2016-01-01

    Ablative Thermal Protection Systems (TPS) allowed the first humans to safely return to Earth from the moon and are still considered as the only solution for future high-speed reentry missions. But despite the advancements made since Apollo, heat flux prediction remains an imperfect science and engineers resort to safety factors to determine the TPS thickness. This goes at the expense of embarked payload, hampering, for example, sample return missions. Ground testing in plasma wind-tunnels is currently the only affordable possibility for both material qualification and validation of material response codes. The subsonic 1.2MW Inductively Coupled Plasmatron facility at the von Karman Institute for Fluid Dynamics is able to reproduce a wide range of reentry environments. This protocol describes a procedure for the study of the gas/surface interaction on ablative materials in high enthalpy flows and presents sample results of a non-pyrolyzing, ablating carbon fiber precursor. With this publication, the authors envisage the definition of a standard procedure, facilitating comparison with other laboratories and contributing to ongoing efforts to improve heat shield reliability and reduce design uncertainties. The described core techniques are non-intrusive methods to track the material recession with a high-speed camera along with the chemistry in the reactive boundary layer, probed by emission spectroscopy. Although optical emission spectroscopy is limited to line-of-sight measurements and is further constrained to electronically excited atoms and molecules, its simplicity and broad applicability still make it the technique of choice for analysis of the reactive boundary layer. Recession of the ablating sample further requires that the distance of the measurement location with respect to the surface is known at all times during the experiment. Calibration of the optical system of the applied three spectrometers allowed quantitative comparison. At the fiber scale

  7. Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron.

    Science.gov (United States)

    Helber, Bernd; Chazot, Olivier; Hubin, Annick; Magin, Thierry E

    2016-01-01

    Ablative Thermal Protection Systems (TPS) allowed the first humans to safely return to Earth from the moon and are still considered as the only solution for future high-speed reentry missions. But despite the advancements made since Apollo, heat flux prediction remains an imperfect science and engineers resort to safety factors to determine the TPS thickness. This goes at the expense of embarked payload, hampering, for example, sample return missions. Ground testing in plasma wind-tunnels is currently the only affordable possibility for both material qualification and validation of material response codes. The subsonic 1.2MW Inductively Coupled Plasmatron facility at the von Karman Institute for Fluid Dynamics is able to reproduce a wide range of reentry environments. This protocol describes a procedure for the study of the gas/surface interaction on ablative materials in high enthalpy flows and presents sample results of a non-pyrolyzing, ablating carbon fiber precursor. With this publication, the authors envisage the definition of a standard procedure, facilitating comparison with other laboratories and contributing to ongoing efforts to improve heat shield reliability and reduce design uncertainties. The described core techniques are non-intrusive methods to track the material recession with a high-speed camera along with the chemistry in the reactive boundary layer, probed by emission spectroscopy. Although optical emission spectroscopy is limited to line-of-sight measurements and is further constrained to electronically excited atoms and molecules, its simplicity and broad applicability still make it the technique of choice for analysis of the reactive boundary layer. Recession of the ablating sample further requires that the distance of the measurement location with respect to the surface is known at all times during the experiment. Calibration of the optical system of the applied three spectrometers allowed quantitative comparison. At the fiber scale

  8. Sacrificial Template-Based Synthesis of Unified Hollow Porous Palladium Nanospheres for Formic Acid Electro-Oxidation

    Directory of Open Access Journals (Sweden)

    Xiaoyu Qiu

    2015-06-01

    Full Text Available Large scale syntheses of uniform metal nanoparticles with hollow porous structure have attracted much attention owning to their high surface area, abundant active sites and relatively efficient catalytic activity. Herein, we report a general method to synthesize hollow porous Pd nanospheres (Pd HPNSs by templating sacrificial SiO2 nanoparticles with the assistance of polyallylamine hydrochloride (PAH through layer-by-layer self-assembly. The chemically inert PAH is acting as an efficient stabilizer and complex agent to control the synthesis of Pd HPNSs, probably accounting for its long aliphatic alkyl chains, excellent coordination capability and good hydrophilic property. The physicochemical properties of Pd HPNSs are thoroughly characterized by various techniques, such as transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy. The growth mechanism of Pd HPNSs is studied based on the analysis of diverse experimental observations. The as-prepared Pd HPNSs exhibit clearly enhanced electrocatalytic activity and durability for the formic oxidation reaction (FAOR in acid medium compared with commercial Pd black.

  9. A Method to Estimate the Dynamic Displacement and Stress of a Multi-layered Pavement with Bituminous or Concrete Materials

    Directory of Open Access Journals (Sweden)

    Zheng LU

    2014-12-01

    Full Text Available In this research work, a method to estimate the dynamic characteristics of a multilayered pavement with bituminous or concrete materials is proposed. A mechanical model is established to investigate the dynamic displacement and stress of the multi-layered pavement structure. Both the flexible and the rigid pavements, corresponding to bituminous materials and concrete materials, respectively, are studied. The theoretical solutions of the multi-layered pavement structure are deduced considering the compatibility condition at the interface of the structural layers. By introducing FFT (Fast Fourier Transform algorithm, some numerical results are presented. Comparisons of the theoretical and experimental result implied that the proposed method is reasonable in predicting the stress and displacement of a multi-layered pavement with bituminous or concrete materials. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6071

  10. Multifunctional polyelectrolyte multilayers as nanofiltration membranes and as sacrificial layers for easy membrane cleaning

    NARCIS (Netherlands)

    Ilyas, Shazia; Grooth, de Joris; Nijmeijer, Kitty; Vos, de Wiebe M.

    2015-01-01

    This manuscript investigates the modification of an ultra-filtration (UF) membrane support with polyelectrolyte multilayers (PEMs) consisting of the weak polyelectrolytes poly(allyl amine) hydrochloride (PAH) and poly(acrylic acid) (PAA). These prepared polyelectrolyte multilayer membranes have a du

  11. Crystallization of amorphous silicon thin films using nanoenergetic intermolecular materials with buffer layers

    Science.gov (United States)

    Lee, Choong Hee; Jeong, Tae Hoon; Kim, Do Kyung; Jeong, Woong Hee; Kang, Myung-Koo; Hwang, Tae Hyung; Kim, Hyun Jae

    2009-02-01

    Optimization of the crystallization of amorphous silicon (a-Si) using a mixture of nanoenergetic materials of iron oxide/aluminum (Fe 2O 3/Al) was studied. To achieve high-quality polycrystalline Si (poly-Si) thin films, silicon oxide (SiO 2) and silver (Ag) layer were deposited on the a-Si as buffer layers to prevent the metal diffusion in a-Si during thermite reaction and to transport the thermal energy released from nanoenergetic materials, respectively. Raman measurement was used to define the crystallinity of poly-Si. For molar ratio of Al and Fe of 2 with 100-nm-thick-SiO 2, Raman measurement showed the 519.59 cm -1 of peak position and the 5.08 cm -1 of full width at half maximum with 353 MPa of low tensile stress indicating high quality poly-Si thin film. These results showed that optimized thermite reaction could be used successfully in crystallization of a-Si to high -quality poly-Si thin films.

  12. Characterization of Elastic-plastic Material Properties for IMC Layer of ENEPIG by Using Reverse Algorithm

    Science.gov (United States)

    Kim, Jong-Min; Lee, Hyun-Boo; Chang, Yoon-Suk; Choi, Jae-Boong; Kim, Young-Jin; Ji, Kum-Young

    2010-05-01

    Recently, the reliability assurance of lead-free solder to prevent environmental contamination is quite important issue for chip-scale packaging. Although lots of efforts have been devoted to the solder undergone drop, shear and creep loads, there was a little research on IMC due primarily to its thickness restriction and geometric irregularity. However, the IMC is known as the weakest layer governing failures of the solder joint. The present work is to characterize realistic material properties of the IMC for ENEPIG process. Lee's modified reverse algorithm was adopted to determine elastic-plastic stress-strain curve and so forth, after examining several methods, which requires inherently elastic data. In this context, a series of nano-indentation tests as well as corresponding simulations were carried out by changing indentation depths from 200 to 400 nm and strain rates from 0.05 to 0.10 1/s. It would be conclude that effect of strain rate is relatively small and IMC layer should be more than 5 times of indentation depth when using the recommended method, which are applicable to generate realistic material properties for further diverse structural integrity simulations.

  13. Electrical and material characterization of tantalum pentoxide (Ta2O5) charge trapping layer memory

    International Nuclear Information System (INIS)

    In this experiment, tantalum pentoxide (Ta2O5) was used in a metal/oxide/high-k Ta2O5/oxide/silicon (MOHOS) novel nanocrystal memory as a trapping layer. Post-annealing treatment, which can passivate defects and improve the material quality of the high-k dielectric, was applied to optimize device performance for a better memory window and faster P/E (program/erase) cycle. Material and electrical characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and electrical measurements were performed to analyze the device under different annealing conditions. The Ta2O5 charge trapping layer memory annealed at 900 deg. C had a higher window of 3.3 V in the current-voltage (C-V) hysteresis loop, and a higher charge retention capability than the samples prepared under various annealing conditions. These higher levels were due to the higher probability of deep-level charge trapping and lower leakage current.

  14. Assessment of doses caused by electrons in thin layers of tissue-equivalent materials, using MCNP.

    Science.gov (United States)

    Heide, Bernd

    2013-10-01

    Absorbed doses caused by electron irradiation were calculated with Monte Carlo N-Particle transport code (MCNP) for thin layers of tissue-equivalent materials. The layers were so thin that the calculation of energy deposition was on the border of the scope of MCNP. Therefore, in this article application of three different methods of calculation of energy deposition is discussed. This was done by means of two scenarios: in the first one, electrons were emitted from the centre of a sphere of water and also recorded in that sphere; and in the second, an irradiation with the PTB Secondary Standard BSS2 was modelled, where electrons were emitted from an (90)Sr/(90)Y area source and recorded inside a cuboid phantom made of tissue-equivalent material. The speed and accuracy of the different methods were of interest. While a significant difference in accuracy was visible for one method in the first scenario, the difference in accuracy of the three methods was insignificant for the second one. Considerable differences in speed were found for both scenarios. In order to demonstrate the need for calculating the dose in thin small zones, a third scenario was constructed and simulated as well. The third scenario was nearly equal to the second one, but a pike of lead was assumed to be inside the phantom in addition. A dose enhancement (caused by the pike of lead) of ∼113 % was recorded for a thin hollow cylinder at a depth of 0.007 cm, which the basal-skin layer is referred to in particular. Dose enhancements between 68 and 88 % were found for a slab with a radius of 0.09 cm for all depths. All dose enhancements were hardly noticeable for a slab with a cross-sectional area of 1 cm(2), which is usually applied to operational radiation protection.

  15. Imaging Fourier transform spectroscopy of the boundary layer plume from laser irradiated polymers and carbon materials

    Science.gov (United States)

    Acosta, Roberto I.

    The high-energy laser (HEL) lethality community needs for enhanced laser weapons systems requires a better understanding of a wide variety of emerging threats. In order to reduce the dimensionality of laser-materials interaction it is necessary to develop novel predictive capabilities of these events. The objective is to better understand the fundamentals of laser lethality testing by developing empirical models from hyperspectral imagery, enabling a robust library of experiments for vulnerability assessments. Emissive plumes from laser irradiated fiberglass reinforced polymers (FRP), poly(methyl methacrylate) (PMMA) and porous graphite targets were investigated primarily using a mid-wave infrared (MWIR) imaging Fourier transform spectrometer (FTS). Polymer and graphite targets were irradiated with a continuous wave (cw) fiber lasers. Data was acquired with a spectral resolution of 2 cm-1 and spatial resolution as high as 0.52 mm2 per pixel. Strong emission from H2O, CO, CO2 and hydrocarbons were observed in the MWIR between 1900-4000 cm-1. A single-layer radiative transfer model was developed to estimate spatial maps of temperature and column densities of CO and CO2 from the hyperspectral imagery of the boundary layer plume. The spectral model was used to compute the absorption cross sections of CO and CO2, using spectral line parameters from the high temperature extension of the HITRAN. Also, spatial maps of gas-phase temperature and methyl methacrylate (MMA) concentration were developed from laser irradiated carbon black-pigmented PMMA at irradiances of 4-22 W/cm2. Global kinetics interplay between heterogeneous and homogeneous combustion kinetics are shown from experimental observations at high spatial resolutions. Overall the boundary layer profile at steady-state is consistent with CO being mainly produced at the surface by heterogeneous reactions followed by a rapid homogeneous combustion in the boundary layer towards buoyancy.

  16. Distinguishing crystallite size effects from those of structural disorder on the powder X-ray diffraction patterns of layered materials

    Indian Academy of Sciences (India)

    Sylvia Britto; Sumy Joseph; P Vishnu Kamath

    2010-09-01

    Both crystallite size effects and structural disorder contribute to the broadening of lines in the powder X-ray diffraction (PXRD) patterns of layered materials. Stacking faults, in particular, are ubiquitous in layered materials and aside from broadening also induce peaks due to select reflections to shift away from the Bragg positions. The effect of structural disorder has to be suitably discounted before the application of the Scherrer formula for the estimation of crystallite size.

  17. Material and Doping Dependence of the Nodal and Anti-Nodal Dispersion Renormalizations in Single- and Multi-Layer Cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.; /Waterloo U. /SLAC; Lee, W.S.; /Stanford U., Geballe Lab. /SLAC; Nowadnick, E.A.; /SLAC /Stanford U., Phys. Dept.; Moritz, B.; /SLAC /North Dakota U.; Shen, Z.-X.; /Stanford U., Geballe Lab. /SLAC /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.; Devereaux, T.P.; /Stanford U., Geballe Lab. /SLAC

    2010-02-15

    In this paper we present a review of bosonic renormalization effects on electronic carriers observed from angle-resolved photoemission spectra in the cuprates. Specifically, we discuss the viewpoint that these renormalizations represent coupling of the electrons to the lattice and review how materials dependence, such as the number of CuO{sub 2} layers, and doping dependence can be understood straightforwardly in terms of several aspects of electron-phonon coupling in layered correlated materials.

  18. Wear Resistance of Piston Sleeve Made of Layered Material Structure: MMC A356R, Anti-Abrasion Layer and FGM Interface

    Directory of Open Access Journals (Sweden)

    Hernik Szymon

    2016-09-01

    Full Text Available The aim of this paper is the numerical analysis of the one of main part of car engine – piston sleeve. The first example is for piston sleeve made of metal matrix composite (MMC A356R. The second improved material structure is layered. Both of them are comparison to the classical structure of piston sleeve made of Cr-Ni stainless steel. The layered material structure contains the anti-abrasion layer at the inner surface of piston sleeve, where the contact and friction is highest, FGM (functionally graded material interface and the layer of virgin material on the outer surface made of A356R. The complex thermo-elastic model with Archard's condition as a wear law is proposed. The piston sleeve is modelling as a thin walled cylindrical axisymmetric shell. The coupled between the formulation of thermo-elasticity of cylindrical axisymmetric shell and the Archard’s law with functionally changes of local hardness is proposed.

  19. White Organic Light-Emitting Diodes Using Two Phosphorescence Materials in a Starburst Hole-Transporting Layer

    Directory of Open Access Journals (Sweden)

    Tomoya Inden

    2012-01-01

    Full Text Available We fabricated two kinds of white organic light-emitting diodes (WOLEDs; one consisted of two emissive materials of red and blue, and the other of three emissive materials of red, green, and blue. The red and blue emissive materials were phosphorescent. We evaluated the thickness dependence of the CIE coordinate, the external quantum efficiency (EQE, and the luminance by changing the thicknesses of the Ir(btp2acac and FIrpic layers. Samples consisting of three emissive materials revealed the best CIE coordinate and the best EQE in the same sample structure. On the other hand, the samples consisting of two emissive materials revealed the best CIE coordinate and the best EQE in different structures. The best CIE coordinate of (0.33, 0.36 was observed by changing the thicknesses of the stacked active layers. The best EQE was 9.73%, which was observed in the sample consisting of different thickness of stacked active layers.

  20. Forced vibrations of a layer of a viscoelastic material under the action of a convective wave of shear stresses

    Science.gov (United States)

    Kulik, V. M.

    2014-11-01

    A two-dimensional problem of deformation of a layer of a viscoelastic material glued to a solid base by a traveling wave of shear stress is solved. Analytical expressions for two shear compliance components corresponding to two surface displacement components are obtained. It is shown that the dimensionless compliance components depend only on the viscoelastic properties of the material, the ratio of the wavelength to the layer thickness λ/H, and the ratio of the wave velocity to the propagation rate of shear vibrations V/C {/t 0}. Data on the dynamic compliance in the ranges 0.2 layer are presented.

  1. In Situ XRD Investigations on Structural Change of P2-Layered Materials during Electrochemical Sodiation/Desodiation

    DEFF Research Database (Denmark)

    Jung, Young Hwa; Johnsen, Rune E.; Christiansen, Ane Sælland;

    2014-01-01

    Sodium layered oxides (NaxMO2) are attractive as positive electrode materials for rechargeable sodium-ion batteries (SIBs) due to high capacity, fast ionic diffusion and simple synthetic process. O3-layered lithium compounds have led successful commercialization of current lithium-ion batteries; as...... lattice (P63/mmc, No.194), which is identical to P2-layered structure. The structural changes in hexagonal P2-layered oxides have been investigated during electrochemical sodiation/desodiation by in-situ synchrotron X-ray diffractions of a capillary based micro battery cell. From the result of in...

  2. Sacrificial Tamper Slows Down Sample Explosion in FLASH Diffraction Experiments

    Science.gov (United States)

    Hau-Riege, Stefan P.; Boutet, Sébastien; Barty, Anton; Bajt, Saša; Bogan, Michael J.; Frank, Matthias; Andreasson, Jakob; Iwan, Bianca; Seibert, M. Marvin; Hajdu, Janos; Sakdinawat, Anne; Schulz, Joachim; Treusch, Rolf; Chapman, Henry N.

    2010-02-01

    Intense and ultrashort x-ray pulses from free-electron lasers open up the possibility for near-atomic resolution imaging without the need for crystallization. Such experiments require high photon fluences and pulses shorter than the time to destroy the sample. We describe results with a new femtosecond pump-probe diffraction technique employing coherent 0.1 keV x rays from the FLASH soft x-ray free-electron laser. We show that the lifetime of a nanostructured sample can be extended to several picoseconds by a tamper layer to dampen and quench the sample explosion, making <1nm resolution imaging feasible.

  3. Fluorine uptake into the human tooth from a thin layer of F-releasing material

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H. [Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871 (Japan)]. E-mail: yhiroko@dent.osaka-u.ac.jp; Nomachi, M. [Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 (Japan); Yasuda, K. [Wakasa Wan Energy Research Center, Tsuruga, Fukui, 914-0192 (Japan); Iwami, Y. [Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Ebisu, S. [Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Komatsu, H. [Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8585 (Japan); Sakai, T. [Advanced Radiation Technology Center, JAERI, Takasaki, Gunma, 370-1292 (Japan); Kamiya, T. [Advanced Radiation Technology Center, JAERI, Takasaki, Gunma, 370-1292 (Japan)

    2007-07-15

    Using the proton induced gamma-ray emission (PIGE) method (TIARA, Japan), we have studied fluorine (F) distribution in the human tooth under various conditions. Here, we report F uptake into the human tooth from a thin layer of F-releasing low viscous resin (FLVR). Crowns of human teeth were horizontally cut and the dentin of the cut surface was first covered with four kinds of FLVR (FL-Bond, Reactmer Bond, Xeno Bond, and Protect Liner F; thickness, 50-150 {mu}m) according to the manufacturers' instructions. Non-F-releasing and F-releasing filling resins were also hardened, on the cut surfaces of crowns covered with four kinds of FLVR thin layers. The type of the non-F-releasing filling materials used was LITE FIL IIP: G1-A (FL-Bond and LITE FIL IIP), G2-A (Reactmer Bond and LITE FIL IIP), G3-A (Xeno Bond and LITE FIL IIP), and G4-A (Protect Liner F and LITE FIL IIP). The types of F-releasing filling materials used were G1-B (FL-Bond and Beautifil), G2-B (Reactmer Bond and Reactmer Paste), G3-B (Xeno Bond and Xeno CF Paste), and G4-B (Protect Liner F and Teethmate F-1). Treatment and measurements of specimens were the same as previously reported [H. Yamamoto, M. Nomahci, K. Yasuda, Y. Iwami, S. Ebisu, N. Yamamoto, T. Sakai, T. Kamiya, Nucl. Instr. and Meth. B 210 (2003) 388]. F uptake from specimens following one month of application was estimated from 2-D maps. F penetration was observed in all teeth of G1-A-G4-A groups. The maximum values of F concentration in each tooth and F penetration depth were larger for larger F concentrations in FLVR. FLVR was useful for the F uptake into the tooth, and the F distribution near the thin layer of FLVR depended on the materials used. Between G1-A and G1-B or G4-A and G4-B, the F uptake was significantly different. We were able to obtain fundamental data, which were useful for the analysis of F transportation relating to prevention of caries.

  4. Direct formation of gold nanoparticles on substrates using a novel ZnO sacrificial templated-growth hydrothermal approach and their properties in organic memory device

    Science.gov (United States)

    Goh, Lean Poh; Razak, Khairunisak Abdul; Ridhuan, Nur Syafinaz; Cheong, Kuan Yew; Ooi, Poh Choon; Aw, Kean Chin

    2012-10-01

    This study describes a novel fabrication technique to grow gold nanoparticles (AuNPs) directly on seeded ZnO sacrificial template/polymethylsilsesquioxanes (PMSSQ)/Si using low-temperature hydrothermal reaction at 80°C for 4 h. The effect of non-annealing and various annealing temperatures, 200°C, 300°C, and 400°C, of the ZnO-seeded template on AuNP size and distribution was systematically studied. Another PMMSQ layer was spin-coated on AuNPs to study the memory properties of organic insulator-embedded AuNPs. Well-distributed and controllable AuNP sizes were successfully grown directly on the substrate, as observed using a field emission scanning electron microscope followed by an elemental analysis study. A phase analysis study confirmed that the ZnO sacrificial template was eliminated during the hydrothermal reaction. The AuNP formation mechanism using this hydrothermal reaction approach was proposed. In this study, the AuNPs were charge-trapped sites and showed excellent memory effects when embedded in PMSSQ. Optimum memory properties of PMMSQ-embedded AuNPs were obtained for AuNPs synthesized on a seeded ZnO template annealed at 300°C, with 54 electrons trapped per AuNP and excellent current-voltage response between an erased and programmed device.

  5. Fabrication of Meso-Porous Sintered Metal Thin Films by Selective Etching of Silica Based Sacrificial Template

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumee

    2014-08-01

    Full Text Available Meso-porous metal materials have enhanced surface energies offering unique surface properties with potential applications in chemical catalysis, molecular sensing and selective separation. In this paper, commercial 20 nm diameter metal nano-particles, including silver and copper were blended with 7 nm silica nano-particles by shear mixing. The resulted powders were cold-sintered to form dense, hybrid thin films. The sacrificial silica template was then removed by selective etching in 12 wt% hydrofluoric acid solutions for 15 min to reveal a purely metallic meso-porous thin film material. The impact of the initial silica nano-particle diameter (7–20 nm as well as the sintering pressure (5–20 ton·m−2 and etching conditions on the morphology and properties of the final nano-porous thin films were investigated by porometry, pyknometery, gas and liquid permeation and electron microscopy. Furthermore, the morphology of the pores and particle aggregation during shear mixing were assessed through cross-sectioning by focus ion beam milling. It is demonstrated that meso-pores ranging between 50 and 320 nm in average diameter and porosities up to 47% can be successfully formed for the range of materials tested.

  6. Materials for the active layer of organic photovoltaics: ternary solar cell approach.

    Science.gov (United States)

    Chen, Yung-Chung; Hsu, Chih-Yu; Lin, Ryan Yeh-Yung; Ho, Kuo-Chuan; Lin, Jiann T

    2013-01-01

    Power conversion efficiencies in excess of 7% have been achieved with bulk heterojunction (BHJ)-type organic solar cells using two components: p- and n-doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful design of the additional component is required to achieve optimal panchromatic absorption, suitable energy-level offset, balanced electron and hole mobility, and good light-harvesting efficiency. This article reviews the recent progress on ternary organic photovoltaic systems, including polymer/small molecule/functional fullerene, polymer/polymer/functional fullerene, small molecule/small molecule/functional fullerene, polymer/functional fullerene I/functional fullerene II, and polymer/quantum dot or metal/functional fullerene systems.

  7. Filler-depletion layer adjacent to interface impacts performance of thermal interface material

    Directory of Open Access Journals (Sweden)

    Susumu Yada

    2016-01-01

    Full Text Available When installing thermal interface material (TIM between heat source and sink to reduce contact thermal resistance, the interfacial thermal resistance (ITR between the TIM and heat source/sink may become important, especially when the TIM thickness becomes smaller in the next-generation device integration. To this end, we have investigated ITR between TIM and aluminum surface by using the time-domain thermoreflectance method. The measurements reveal large ITR attributed to the depletion of filler particles in TIM adjacent to the aluminum surface. The thickness of the depletion layer is estimated to be about 100 nm. As a consequence, the fraction of ITR to the total contact thermal resistance becomes about 20% when the TIM thickness is about 50 μm (current thickness, and it exceeds 50% when the thickness is smaller than 10 μm (next-generation thickness.

  8. Chemical Fouling Reduction of a Submersible Steel Spectrophotometer in Estuarine Environments Using a Sacrificial Zinc Anode.

    Science.gov (United States)

    Tait, Zachary S; Thompson, Megan; Stubbins, Aron

    2015-07-01

    The availability of in situ spectrophotometers, such as the S::CAN spectro::lyser, has expanded the possibilities for high-frequency water quality data collection. However, biological and chemical fouling can degrade the performance of in situ spectrophotometers, especially in saline environments with rapid flow rates. A complex freshwater washing system has been previously designed to reduce chemical fouling for the S::CAN spectro::lyser spectrophotometer. In the current study, we present a simpler, cheaper alternative: the attachment of a sacrificial zinc anode. Results are presented detailing the S::CAN spectro::lyser performance with and without the addition of the sacrificial anode. Attachment of the zinc anode provided efficient corrosion protection during 2-wk deployments in a highly dynamic (average tidal range, 2.5 m) saline tidal saltmarsh creek at Groves Creek, Skidaway Institute of Oceanography, Savannah, GA. PMID:26437114

  9. Sacrificial Microchannel Sealing by Glass-Frit Reflow for Chip Scale Atomic Magnetometer

    Science.gov (United States)

    Tsujimoto, Kazuya; Hirai, Yoshikazu; Sugano, Koji; Tsuchiya, Toshiyuki; Tabata, Osamu

    A novel sealing technique using sacrificial microchannels was proposed for atmosphere control in a micromachined alkali gas-filled cell for a chip scale atomic magnetometer. The microchannels act as feedthrough connecting the cell to outside atmosphere during evacuation and gas-filling steps, and eventually they are sealed by glass-frit reflow. Si microchannel dedicated as a sacrificial microchannel was proposed and its feasibility was successfully demonstrated by experiments. The simulation results clarified the glass-frit reflow characteristics and its dependence on cross-sectional shape of the microchannel. Hermeticity of the proposed sealing technique of less than 10-12Pa·m3/s leak rate was verified by a high resolution helium leak test.

  10. Sacrificial structures for deep reactive ion etching of high-aspect ratio kinoform silicon x-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik; Michael-Lindhard, Jonas; Hübner, Jörg;

    2015-01-01

    This article describes the realization of complex high-aspect ratio silicon structures with feature dimensions from 100 lm to 100nm by deep reactive ion etching using the Bosch process. As the exact shape of the sidewall profiles can be crucial for the proper functioning of a device, the authors...... investigated how sacrificial structures in the form of guarding walls and pillars may be utilized to facilitate accurate control of the etch profile. Unlike other sacrificial structuring approaches, no silicon-on-insulator substrates or multiple lithography steps are required. In addition, the safe removal of...... the sacrificial structures was accomplished by thermal oxidation and subsequent selective wet etching. The effects of the dimensions and relative placement of sacrificial walls and pillars on the etching result were determined through systematic experiments. The authors applied this process for exact...

  11. Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective.

    Science.gov (United States)

    Abellán, Gonzalo; Martí-Gastaldo, Carlos; Ribera, Antonio; Coronado, Eugenio

    2015-06-16

    Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorganic molecular tectons into an extended architecture of hybrid nature or by intercalation of organic moieties within the empty channels or interlamellar space offered by inorganic solids with three-dimensional (MOFs, zeolites, and mesoporous hosts) or layered structures (phosphates, silicates, metal dichalcogenides, or anionic clays). This Account specifically illustrates the use of layered double hydroxides (LDHs) in the preparation of magnetic hybrids, in line with the development of soft inorganic chemistry processes (also called "Chimie Douce"), which has significantly contributed to boost the preparation hybrid materials based on solid-state hosts and subsequent development of applications. Several features sustain the importance of LDHs in this context. Their magnetism can be manipulated at a molecular level by adequate choice of constituting metals and interlayer separation for tuning the nature and extent of magnetic interactions across and between planes. They display unparalleled versatility in accommodating a broad range of anionic species in their interlamellar space that encompasses not only simple anions but chemical systems of increasing dimensionality and functionalities. Their swelling characteristics allow for their exfoliation in organic solvents with high

  12. A field study of the effectiveness of sacrificial anodes in ballast tanks of merchant ships

    OpenAIRE

    De Baere, K.; Verstraelen, H; Lemmens, L.; Lenaerts, S.; Dewil, R; Van Ingelgem, Y.; Potters, G.

    2014-01-01

    Sacrificial anodes have become a standard practice for the protection of ballast tanks of merchant vessels against corrosive damage. A well protected tank should extend the life span of a ship and consequently enhances its economic value. An in situ survey comprising more than 100 merchant vessels provided the opportunity to measure the impact of these anodes on the life expectancy of these vessels. Contrary to the general belief of these anodes' beneficial effect, no significant difference w...

  13. 'Utilitarian' judgments in sacrificial moral dilemmas do not reflect impartial concern for the greater good.

    Science.gov (United States)

    Kahane, Guy; Everett, Jim A C; Earp, Brian D; Farias, Miguel; Savulescu, Julian

    2015-01-01

    A growing body of research has focused on so-called 'utilitarian' judgments in moral dilemmas in which participants have to choose whether to sacrifice one person in order to save the lives of a greater number. However, the relation between such 'utilitarian' judgments and genuine utilitarian impartial concern for the greater good remains unclear. Across four studies, we investigated the relationship between 'utilitarian' judgment in such sacrificial dilemmas and a range of traits, attitudes, judgments and behaviors that either reflect or reject an impartial concern for the greater good of all. In Study 1, we found that rates of 'utilitarian' judgment were associated with a broadly immoral outlook concerning clear ethical transgressions in a business context, as well as with sub-clinical psychopathy. In Study 2, we found that 'utilitarian' judgment was associated with greater endorsement of rational egoism, less donation of money to a charity, and less identification with the whole of humanity, a core feature of classical utilitarianism. In Studies 3 and 4, we found no association between 'utilitarian' judgments in sacrificial dilemmas and characteristic utilitarian judgments relating to assistance to distant people in need, self-sacrifice and impartiality, even when the utilitarian justification for these judgments was made explicit and unequivocal. This lack of association remained even when we controlled for the antisocial element in 'utilitarian' judgment. Taken together, these results suggest that there is very little relation between sacrificial judgments in the hypothetical dilemmas that dominate current research, and a genuine utilitarian approach to ethics.

  14. Influence of Mg and Ti on the microstructure and electrochemical performance of aluminum alloy sacrificial anodes

    Institute of Scientific and Technical Information of China (English)

    MA Jingling; WEN Jiuba; LI Xudong; ZHAO Shengli; YAN Yanfu

    2009-01-01

    The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-ln sacrificial anodes. The electrochemical behavior of the aluminum sacrificial anode with 3 wt.% sodium chlo-fide solution was studied by electrochemical impedance spectroscopy (EIS) tests. It was found that a microstructure with few precipitates and refined grains could be achieved by adding 1 wt.% Mg and 0.05 wt.% Ti to the Al-Zn-In alloy, resulting in the improved current capacity and efficiency of the alloy. The equivalent circuit based on the EIS experimental data revealed less corrosion and lower adsorbed corrosion pro-duction on the surface of the aluminum alloy with a combination of 1 wt.% Mg and 0.05 wt.% Ti, which suggested that the corrosion behav-ior seemed to be strongly related to the presence of precipitate particles in the aluminum alloy, and moderate amounts of precipitate particles could be beneficial to the electrochemical performance of the aluminum alloy sacrificial anode.

  15. Nano-photonic phenomena in van der Waals atomic layered materials

    Science.gov (United States)

    Basov, Dmitri

    Layered van der Waals (vdW) crystals reveal diverse classes of light-matter modes (polaritons) including: surface plasmon polaritons in graphene, hyperbolic phonon polaritons in boron nitride, exciton polaritons in MoS2, Cooper pair plasmon polaritons in high-Tc cuprates, topological plasmon polaritons and many others. Polaritons in vdW materials are of considerable technological interest. For example, polaritonic modes enable sub diffractional focusing and imaging in infrared frequencies. Applications apart, infrared nano-imaging of propagating polaritons facilitates experimental access to new physics of vdW materials not attainable with conventional spectroscopic methods. I will discuss two recent experiments performed in our group that utilize unique virtues of polaritons. Nano-imaging of plasmon polaritons in moire superlattices formed in graphene on boron nitride has allowed us to establish the important features of the electronic structure of this interesting from of graphene. Pump-probe hyper-spectral images of non-equilibrium plasmon polaritons in graphene revealed novel aspects of carrier relaxation.

  16. Improving quality of textile wastewater with organic materials as multi soil layering

    Science.gov (United States)

    Supriyadi; Widijanto, H.; Pranoto; Dewi, AK

    2016-02-01

    On agricultural land, fresh water is needed especially for irrigation. Alternative ways to fulfill needs of fresh water is by utilizing wastewater from industry. Wastewater that produced in the industry in Surakarta is over flowing especially textile wastewater. Wastewater that produced from industry has many pollutants that affected decreasing fresh water quality for irrigation. Multi Soil Layering (MSL) is one of method that utilize the soil ability as main media by increasing its function of soil structure to purify wastewater, so it does not contaminate the environment and reusable. This research was purposed to know affectivity of organic materials (such as rice straw, baggase, sawdust, coconut fibre, and corncob) and dosage (5%, 10% and 25%) in MSL, also get alternative purification ways with easy and cheaper price as natural adsorbent. This study using field and laboratory experiment. The result shows that MSL can be an alternative method of purification of wastewater. The appropriate composition of organic materials that can be used as adsorbent is MSL with wood sawdust 10% dosage because it can increase pH, decrease the number of Cr, ammonia, and phosphate but less effective to decrease BOD and COD.

  17. Study of multi-layer active magnetic regenerators using magnetocaloric materials with first and second order phase transition

    Science.gov (United States)

    Lei, T.; Engelbrecht, K.; Nielsen, K. K.; Neves Bez, H.; Bahl, C. R. H.

    2016-09-01

    Magnetocaloric materials (MCM) with a first order phase transition (FOPT) usually exhibit a large, although sharp, isothermal entropy change near their Curie temperature, compared to materials with a second order phase transition (SOPT). Experimental results of applying FOPT materials in recent magnetocaloric refrigerators (MCR) demonstrated the great potential for these materials, but a thorough study on the impact of the moderate adiabatic temperature change and strong temperature dependence of the magnetocaloric effect (MCE) is lacking. Besides, comparing active magnetic regenerators (AMR) using FOPT and SOPT materials is also of fundamental interest. We present modeling results of multi-layer AMRs using FOPT and SOPT materials based on a 1D numerical model. First the impact of isothermal entropy change, adiabatic temperature change and shape factor describing the temperature dependence of the MCE are quantified and analyzed by using artificially built magnetocaloric properties. Then, based on measured magnetocaloric properties of La(Fe,Mn,Si)13H y and Gd, an investigation on how to layer typical FOPT and SOPT materials with different temperature spans is carried out. Moreover, the sensitivity of variation in Curie temperature distribution for both groups of AMRs is investigated. Finally, a concept of mixing FOPT and SOPT materials is studied for improving the stability of layered AMRs with existing materials.

  18. Symmetry lowering in LaOBiS2. A mother material for BiS2-based layered superconductors

    International Nuclear Information System (INIS)

    We report X-ray diffraction studies of single-crystal samples of LaOBiS2 and CeOBiS2, which are mother materials for BiS2-based layered superconductors. The structural symmetry in LaOBiS2 is lowered from tetragonal to monoclinic, whereas no such symmetry lowering occurs in CeOBiS2. Crystal structure analysis demonstrates that the space group of LaOBiS2 is monoclinic P21m. The in-plane S atoms uniformly shift along the a-axis in each BiS2 layer. Because the directions of the shift are opposite in the two adjacent BiS2 layers, the spatial inversion symmetry remains. The distortion is attributed to the in-plane lattice mismatch between the BiS2 layers and the block layers. (author)

  19. Structure and mechanical properties of the three-layer material based on a vanadium alloy and corrosion-resistant steel

    Science.gov (United States)

    Nikulin, S. A.; Rozhnov, A. B.; Nechaikina, T. A.; Rogachev, S. O.; Zavodchikov, S. Yu.; Khatkevich, V. M.

    2014-10-01

    The quality of three-layer pipes has been studied; they are manufactured by hot pressing of a three-layer assembly of tubular billets followed by forging and cold rolling. The operating core is made from a V-4Ti-4Cr alloy. The protective claddings are made from corrosion-resistant steels of two grades, 08Kh17T and 20Kh13. The results of investigation into the structure and microhardness of the junction zone of steel and the vanadium alloy, which includes a contact zone and a transition diffusion layer, are reported. The 08Kh17T steel is shown to be a preferred cladding material.

  20. Synthesis, characterization, and application of novel microporous mixed metal oxides, and nanostructured layered material-polymer films

    Science.gov (United States)

    Jeong, Hae-Kwon

    Zeolites are microporous crystalline aluminosilicates with pores and cavities of molecular dimension. They consist of interconnected aluminum and silicon tetrahedra to build a variety of 3D open framework structures. Due to their structure, stability, and activity, zeolites have been widely used in a broad variety of applications in industry. It is, therefore, of great interest to make new structures with potentially novel properties. In this regard, there has recently been a growing interest in the synthesis of novel mixed metal oxides with octahedral and tetrahedral units owing to the possibility to find unique electronic and optical properties. Hence, these materials can find advanced applications as well as conventional applications, just like zeolites. Research efforts have led to the discovery of several mixed octahedral and tetrahedral metal oxides with novel crystal structures including titanium silicates and cerium silicate. Layered materials with transport paths along the thickness of the layers are of particular interest due to potential usage as selective layers of nanometer scale in nanocomposite membranes. A new layered silicate (we call AMH-3) has been synthesized under hydrothermal conditions. The crystal structure solution via powder X-ray diffraction has revealed its unique layer structure of three dimensional microporosity within layers. Layered materials with porous layers will open up new areas of applications, such as selective nanocomposite separation membranes. Polymer/selective-flake nanocomposite membranes have been fabricated for the first time, which can, in principle, be scaled down to submicrometer structures. A layered aluminophosphate with a porous net layer is used as a selective phase and a polyimide as a continuous phase. The microstructures of the nanocomposite membranes were investigated using various characterization techniques. Nanocomposite membranes with 10 wt% layered aluminophosphate show substantial enhancement in

  1. [Co/Ni]-CoFeB hybrid free layer stack materials for high density magnetic random access memory applications

    Science.gov (United States)

    Liu, E.; Swerts, J.; Couet, S.; Mertens, S.; Tomczak, Y.; Lin, T.; Spampinato, V.; Franquet, A.; Van Elshocht, S.; Kar, G.; Furnemont, A.; De Boeck, J.

    2016-03-01

    Alternative free layer materials with high perpendicular anisotropy are researched to provide spin-transfer-torque magnetic random access memory stacks' sufficient thermal stability at critical dimensions of 20 nm and below. We demonstrate a high tunnel magetoresistance (TMR) MgO-based magnetic tunnel junction stack with a hybrid free layer design made of a [Co/Ni] multilayer and CoFeB. The seed material on which the [Co/Ni] multilayer is deposited determines its switching characteristics. When deposited on a Pt seed layer, soft magnetic switching behavior with high squareness is obtained. When deposited on a NiCr seed, the perpendicular anisotropy remains high, but the squareness is low and coercivity exceeds 1000 Oe. Interdiffusion of the seed material with the [Co/Ni] multilayers is found to be responsible for the different switching characteristics. In optimized stacks, a TMR of 165% and low resistance-area (RA) product of 7.0 Ω μm2 are attained for free layers with an effective perpendicular magnetic anisotropy energy of 1.25 erg/cm2, which suggests that the hybrid free layer materials may be a viable candidate for high density magnetic random access memory applications.

  2. Interlayer material transport during layer-normal shortening. Part I. The model

    NARCIS (Netherlands)

    Molen, I. van der

    1985-01-01

    To analyse mass-transfer during deformation, the case is considered of a multilayer experiencing a layer-normal shortening that is volume constant on the scale of many layers. Strain rate is homogeneously distributed on the layer-scale if diffusion is absent; when transport of matter between the lay

  3. Synthesis of polyaniline/carbon black hybrid hollow microspheres by layer-by-layer assembly used as electrode materials for supercapacitors

    International Nuclear Information System (INIS)

    Graphical abstract: The polyaniline/carbon black hybrid hollow microspheres with a external diameter about 3.0 μm were prepared via layer-by-layer assembly technique, and the electrochemical tests showed that polyaniline/carbon black hybrid hollow microspheres would be a potential candidates of electrode materials for supercapacitors with high specific capacitance. Highlights: ► The PAn/CB hybrid hollow microspheres were prepared via LBL technique. ► The specific capacitance increased with the increase in the adsorption of PAn and CB. ► The hollow structure and synergistic effect of shell enhance the specific capacitance. ► The PAn/CB hollow microsphere is a candidate of electrode material for supercapacitor. -- Abstract: The polyaniline (PAn)/carbon black (CB) hybrid hollow microspheres have been prepared by the layer-by-layer assembly technique alternately adsorbing of PAn and CB onto the polystyrene sulfonate microsphere templates after etching the templates by dialysis. The hollow structure of the obtained hybrid hollow microspheres was characterized by transmission electron microscopy, which indicated that the external diameter of the hollow microspheres was about 3.0 μm. When the hybrid hollow microsphere were used as the electrode material for supercapacitors, the results showed that the specific capacitance increased with the increase in the adsorption numbers of PAn and CB, which was as high as 532 F g−1 at a charge–discharge current density of 10 mA cm−2 in 1.0 M H2SO4 electrolyte after alternately adsorbing of PAn and CB six times

  4. Revisiting Surface Modification of Graphite: Dual-Layer Coating for High-Performance Lithium Battery Anode Materials.

    Science.gov (United States)

    Song, Gyujin; Ryu, Jaegeon; Ko, Seunghee; Bang, Byoung Man; Choi, Sinho; Shin, Myoungsoo; Lee, Sang-Young; Park, Soojin

    2016-06-01

    Surface modification of electrode active materials has garnered considerable attention as a facile way to meet stringent requirements of advanced lithium-ion batteries. Here, we demonstrated a new coating strategy based on dual layers comprising antimony-doped tin oxide (ATO) nanoparticles and carbon. The ATO nanoparticles are synthesized via a hydrothermal method and act as electronically conductive/electrochemically active materials. The as-synthesized ATO nanoparticles are introduced on natural graphite along with citric acid used as a carbon precursor. After carbonization, the carbon/ATO-decorated natural graphite (c/ATO-NG) is produced. In the (carbon/ATO) dual-layer coating, the ATO nanoparticles coupled with the carbon layer exhibit unprecedented synergistic effects. The resultant c/ATO-NG anode materials display significant improvements in capacity (530 mA h g(-1) ), cycling retention (capacity retention of 98.1 % after 50 cycles at a rate of C/5), and low electrode swelling (volume expansion of 38 % after 100 cycles) which outperform that of typical graphite materials. Furthermore, a full-cell consisting of a c/ATO-NG anode and an LiNi0.5 Mn1.5 O4 cathode presents excellent cycle retention (capacity retention of >80 % after 100 cycles). We envision that the dual-layer coating concept proposed herein opens a new route toward high-performance anode materials for lithium-ion batteries. PMID:27027583

  5. Van der Waals Layered Materials: Surface Morphology, Interlayer Interaction, and Electronic Structure

    Science.gov (United States)

    Yeh, Po-Chun

    The search for new ultrathin materials as the "new silicon" has begun. In this dissertation, I examine (1) the surface structure, including the growth, the crystal quality, and thin film surface corrugation of a monolayer sample and a few layers of MoS2 and WSe2, and (2) their electronic structure. The characteristics of these electronic systems depend intimately on the morphology of the surfaces they inhabit, and their interactions with the substrate or within layers. These physical properties will be addressed in each chapter. This thesis has dedicated to the characterization of mono- and a few layers of MoS2 and WSe2 that uses surface-sensitive probes such as low-energy electron microscopy and diffraction (LEEM and LEED). Prior to our studies, the characterization of monolayer MoS2 and WSe2 has been generally limited to optical and transport probes. Furthermore, the heavy use of thick silicon oxide layer as the supporting substrate has been important in order to allow optical microscopic characterization of the 2D material. Hence, to the best of our knowledge, this has prohibited studies of this material on other surfaces, and it has precluded the discovery of potentially rich interface interactions that may exist between MoS 2 and its supporting substrate. Thus, in our study, we use a so-called SPELEEM system (Spectroscopic Photo-Emission and Low Energy Electron Microscopy) to address these imaging modalities: (1) real-space microscopy, which would allow locating of monolayer MoS2 samples, (2) spatially-resolved low-energy diffraction which would allow confirmation of the crystalline quality and domain orientation of MoS2 samples, and, (3) spatially-resolved spectroscopy, which would allow electronic structure mapping of MoS2 samples. Moreover, we have developed a preparation procedure for samples that yield, a surface-probe ready, ultra-clean, and can be transferred on an arbitrary substrate. To fully understand the physics in MoS2 such as direct

  6. New PACVD-hard material layers for wear protection of high-speed steel

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, K.; Leonhardt, A. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Langer, U.; Kuenanz, K. [Technische Universitaet Dresden, Institut fuer Produktionstechnik, D-01062, Dresden (Germany)

    1997-10-01

    TiC/C, (Ti,Al)N and (Ti,Al)C layers have been deposited employing PACVD under dc-pulse discharge conditions and were investigated with respect to their composition and structure. The layer hardness can be varied in a large range by varying the Al content and the C content in the case of the TiC/C layers. By incorporation of C in TiC layers the friction coefficient can be decreased. Analogously to TiN layers, oxygen impurities cause a drastic hardness decrease in (Ti,Al)N layers. It was demonstrated that by multilayer deposition including TiN, TiCN and (Ti,Al)N with single layers of 100-300 nm thickness the layer stress decreases by about 50%, which results in an increase in layer adhesion. PACVD (Ti,Al)N and TiC/C layers yielded comparable or even better results than PVD layers in drilling 41Cr4 steel and the Al-alloy AlSi9Cu3. (orig.) 11 refs.

  7. Characterization of material properties of soft solid thin layers with acoustic radiation force and wave propagation.

    Science.gov (United States)

    Urban, Matthew W; Nenadic, Ivan Z; Qiang, Bo; Bernal, Miguel; Chen, Shigao; Greenleaf, James F

    2015-10-01

    Evaluation of tissue engineering constructs is performed by a series of different tests. In many cases it is important to match the mechanical properties of these constructs to those of native tissues. However, many mechanical testing methods are destructive in nature which increases cost for evaluation because of the need for additional samples reserved for these assessments. A wave propagation method is proposed for characterizing the shear elasticity of thin layers bounded by a rigid substrate and fluid-loading, similar to the configuration for many tissue engineering applications. An analytic wave propagation model was derived for this configuration and compared against finite element model simulations and numerical solutions from the software package Disperse. The results from the different models found very good agreement. Experiments were performed in tissue-mimicking gelatin phantoms with thicknesses of 1 and 4 mm and found that the wave propagation method could resolve the shear modulus with very good accuracy, no more than 4.10% error. This method could be used in tissue engineering applications to monitor tissue engineering construct maturation with a nondestructive wave propagation method to evaluate the shear modulus of a material.

  8. Few-layer Phosphorene: An Ideal 2D Material For Tunnel Transistors

    Science.gov (United States)

    Ameen, Tarek A.; Ilatikhameneh, Hesameddin; Klimeck, Gerhard; Rahman, Rajib

    2016-06-01

    2D transition metal dichalcogenides (TMDs) have attracted a lot of attention recently for energy-efficient tunneling-field-effect transistor (TFET) applications due to their excellent gate control resulting from their atomically thin dimensions. However, most TMDs have bandgaps (Eg) and effective masses (m*) outside the optimum range needed for high performance. It is shown here that the newly discovered 2D material, few-layer phosphorene, has several properties ideally suited for TFET applications: 1) direct Eg in the optimum range ~1.0–0.4 eV, 2) light transport m* (0.15 m0), 3) anisotropic m* which increases the density of states near the band edges, and 4) a high mobility. These properties combine to provide phosphorene TFET outstanding ION ~ 1 mA/um, ON/OFF ratio ~ 106 for a 15 nm channel and 0.5 V supply voltage, thereby significantly outperforming the best TMD-TFETs and CMOS in many aspects such as ON/OFF current ratio and energy-delay products. Furthermore, phosphorene TFETS can scale down to 6 nm channel length and 0.2 V supply voltage within acceptable range in deterioration of the performance metrics. Full-band atomistic quantum transport simulations establish phosphorene TFETs as serious candidates for energy-efficient and scalable replacements of MOSFETs.

  9. Leaching of iodide (I(-)) and iodate (IO3(-)) anions from synthetic layered double hydroxide materials.

    Science.gov (United States)

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2016-09-15

    Several studies have previously demonstrated that layered double hydroxides (LDHs) show considerable potential for the adsorption of radioiodine from aqueous solution; however, few studies have demonstrated that these materials are able to store radioactive (131)I for an acceptable period. The leaching of iodide (I(-)) and iodate (IO3(-)) form Mg/Al LDHs has been carried out. Contact time appeared to be a more significant variable for the leaching of iodate (IO3(-)) compared to that of iodide (I(-)). Experimental results are fitted to the pseudo second order model, suggesting that diffusion is likely to be the rate-limiting step. The presence of carbonate in the leaching solution appeared to significantly increase the leaching of iodide (I(-)) as did the presence of chloride to a lesser extent. The maximum amount of iodate (IO3(-)) leached using ultrapure water as the leaching solution was 21% of the iodate (IO3(-)) originally present. The corresponding result for iodide (I(-)) was even lower at 3%. PMID:27309951

  10. Few-layer Phosphorene: An Ideal 2D Material For Tunnel Transistors

    Science.gov (United States)

    Ameen, Tarek A.; Ilatikhameneh, Hesameddin; Klimeck, Gerhard; Rahman, Rajib

    2016-01-01

    2D transition metal dichalcogenides (TMDs) have attracted a lot of attention recently for energy-efficient tunneling-field-effect transistor (TFET) applications due to their excellent gate control resulting from their atomically thin dimensions. However, most TMDs have bandgaps (Eg) and effective masses (m*) outside the optimum range needed for high performance. It is shown here that the newly discovered 2D material, few-layer phosphorene, has several properties ideally suited for TFET applications: 1) direct Eg in the optimum range ~1.0–0.4 eV, 2) light transport m* (0.15 m0), 3) anisotropic m* which increases the density of states near the band edges, and 4) a high mobility. These properties combine to provide phosphorene TFET outstanding ION ~ 1 mA/um, ON/OFF ratio ~ 106 for a 15 nm channel and 0.5 V supply voltage, thereby significantly outperforming the best TMD-TFETs and CMOS in many aspects such as ON/OFF current ratio and energy-delay products. Furthermore, phosphorene TFETS can scale down to 6 nm channel length and 0.2 V supply voltage within acceptable range in deterioration of the performance metrics. Full-band atomistic quantum transport simulations establish phosphorene TFETs as serious candidates for energy-efficient and scalable replacements of MOSFETs. PMID:27345020

  11. Development of electrodeposited ZnTe layers as window materials in ZnTe/CdTe/CdHgTe multi-layer solar cells

    International Nuclear Information System (INIS)

    Zinc telluride (ZnTe) thin films have been deposited on glass/conducting glass substrates using a low-cost electrodeposition method. The resulting films have been characterized using various techniques in order to optimize growth parameters. X-ray diffraction (XRD) has been used to identify the phases present in the films. Photoelectrochemical (PEC) cell and optical absorption measurements have been performed to determine the electrical conductivity type, and the bandgap of the layers, respectively. It has been confirmed by XRD measurement that the deposited layers mainly consist of ZnTe phases. The PEC measurements indicate that the ZnTe layers are p-type in electrical conduction and optical absorption measurements show that their bandgap is in the range 2.10-2.20 eV. p-Type ZnTe window materials have been used in CdTe based solar cell structures, following new designs of graded bandgap multi-layer solar cells. The structures of FTO/ZnTe/CdTe/metal and FTO/ZnTe/CdTe/CdHgTe/metal have been investigated. The results are presented in this paper using observed experimental data

  12. Stabilization of green bodies via sacrificial gelling agent during electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Kuntz, Joshua D.; Rose, Klint A.

    2016-03-22

    In one embodiment, a method for electrophoretic deposition of a three-dimensionally patterned green body includes suspending a first material in a gelling agent above a patterned electrode of an electrophoretic deposition (EPD) chamber, and gelling the suspension while applying a first electric field to the suspension to cause desired patterning of the first material in a resulting gelation. In another embodiment, a ceramic, metal, or cermet includes a plurality of layers, wherein each layer includes a gradient in composition, microstructure, and/or density in an x-y plane oriented parallel to a plane of deposition of the plurality of layers along a predetermined distance in a z-direction perpendicular to the plane of deposition.

  13. Characterization of the Minimum Effective Layer of Thermal Insulation Material Tow-plaster from the Method of Thermal Impedance

    OpenAIRE

    M.S. Ould Brahim; I. Diagne, S. Tamba, F. Niang and G. Sissoko

    2011-01-01

    Our objective in this study is to determine the effective thermal insulating layer of a composite towplaster. The characterization of thermal insulating material is proposed from the study of the thermal impedance in dynamic two-dimensional frequency. Thermo physical properties of the material tow-plaster are determined from the study of the thermal impedance. Nyquist representations have introduced an interpretation of certain phenomena of heat transfer from the series and shunt resistors. T...

  14. Electrochemical atomic layer deposition of copper nanofilms on ruthenium

    Science.gov (United States)

    Gebregziabiher, Daniel K.; Kim, Youn-Geun; Thambidurai, Chandru; Ivanova, Valentina; Haumesser, Paul-Henri; Stickney, John L.

    2010-04-01

    As ULSI scales to smaller and smaller dimensions, it has become necessary to form layers of materials only a few nm thick. In addition, trenches are now being incorporated in ULSI formation which require conformal coating and will not be amenable to CMP. Atomic layer deposition (ALD) is being developed to address such issues. ALD is the formation of materials layer by layer using self-limiting reactions. This article describes the formation of Cu seed layers (for the Cu damascene process) on a Ru barrier layer. The deposit was formed by the electrochemical analog of ALD, using electrochemical self-limiting reactions which are referred to as underpotential deposition (UPD). Monolayer restricted galvanic displacement was used to form atomic layers of Cu. First Pb UPD was deposited, forming a sacrificial layer, and then a Cu +2 solution was flushed into the cell and Pb was exchanged for Cu. A linear dependence was shown for Cu growth over 8 ALD cycles, and STM showed a conformal deposition, as expected for an ALD process. Relative Cu coverages were determined using Auger electron spectroscopy, while absolute Cu coverages were obtained from coulometry during oxidative stripping of the deposits. Use of a Cl - containing electrolyte results in Cu deposits covered with an atomic layer of Cl atoms, which have been shown to protect the surfaced from oxidation during various stages of the deposition process. The 10 nm thick Ru substrates were formed on Si(1 0 0) wafers, and were partially oxidized upon receipt. Electrochemical reduction, prior to Cu deposition, removed the oxygen and some traces of carbon, the result of transport. Ion bombardment proved to clean all oxygen and carbon traces from the surface.

  15. Thermal stress in a bi-material assembly with a 'piecewise-continuous' bonding layer: theorem of three axial forces

    Science.gov (United States)

    Suhir, E.

    2009-02-01

    We consider a bi-material assembly with a 'piecewise-continuous' bonding layer. The layer is characterized by different elastic constants of its 'pieces' (segments) and is assumed to be thin. Young's moduli of all the 'pieces' of the bonding layer are significantly lower than the moduli of the adherend materials. In such a situation the coefficient of thermal expansion (CTE) of the bonding material need not be accounted for. Only the interfacial compliance of the bonding layer is important. This is indeed the case for the majority of electronic, opto-electronic or photonic assemblies. We consider the situation when the assembly is manufactured at an elevated temperature and is subsequently cooled down to a low (say, room) temperature. The objective of the analysis is to develop a simple, easy-to-use and physically meaningful analytical ('mathematical') predictive model for the evaluation of the interfacial shearing stresses that arise at the boundaries of the 'pieces' (segments) of the bonding layer and at the assembly edge. The basic equation is obtained for the thermally induced forces acting in the adherends' cross-sections that correspond to the boundaries between the dissimilar portions of the bonding layer. This equation has the form of the theorem of three (bending) moments in the theory of multi-span beams lying on separate simple supports and could therefore be called the 'theorem of three axial forces'. We show, as an illustration, how this equation could be employed to design a bi-material assembly with an inhomogeneous bonding layer and with low interfacial shearing stresses. Low shearing stresses will certainly result in lower peeling stresses as well. The numerical example is carried out for an assembly with a relatively high-modulus bonding material in its mid-portion (aimed primarily at providing good adhesion and, if necessary, good heat transfer as well) and a low-modulus material in its peripheral portions (aimed primarily at bringing down the

  16. Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor.

    Directory of Open Access Journals (Sweden)

    Rusi

    Full Text Available The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm(-2. The structure and elements of the composite was investigated using X-ray diffraction (XRD and energy dispersive X-ray (EDX. The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV and galvanostatic charge-discharge (CD. As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg(-1 at current density of 1.85 Ag(-1 in 0.5 M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5 M KOH and 0.5 M KOH/0.04 M K3Fe(CN 6 electrolytes. The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 10(3 Fg(-1 and an energy density of 309 Whkg(-1 in a 0.5 M KOH/0.04 M K3Fe(CN 6 electrolyte at a current density of 10 Ag(-1. The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications.

  17. 海南汉族地区“做斋”民俗文化的阐释--以文昌市为例%The Interpretation of The Sacrificial Activities In Folk Culture in Wenchang, Hainan

    Institute of Scientific and Technical Information of China (English)

    裴锦花; 符江南; 王亮

    2015-01-01

    随着现代化进程加剧,海南汉族地区“做斋”仪式开始失传,“做斋”民俗文化逐渐淡化,在文献和史料上详细记载海南汉族地区“做斋”民俗文化的资料不断减少。如今,民众对“做斋”民俗文化知之甚少。通过阐述文昌“做斋”民俗文化概貌、生存背景及兴衰,力图还原一个较为全面的海南汉族地区“做斋”民俗文化全貌,进而阐释“做斋”民俗文化功能和传承意义,积极推进海南汉族地区“做斋”民俗文化持续健康发展。%The sacrificial activities are disappearing in Han nationality in Hainan.With the promotion of modern revolution, this folk culture is gradually fading from the record of literature and historical materials. Nowadays, the public know little about the ceremony of sacrificial activities in Hainan.This article tries to draw the general picture of sacrificial activities in Han nationality in Hainan by interpreting the background, the sketch, the rise and decline of this folk culture, and illustrates the function of sacrificial activities and its significance of inheritance for booming such folk culture for Han nationality in Hainan.

  18. Layer-by-Layer Assembled Films of Perylene Diimide- and Squaraine-Containing Metal-Organic Framework-like Materials: Solar Energy Capture and Directional Energy Transfer.

    Science.gov (United States)

    Park, Hea Jung; So, Monica C; Gosztola, David; Wiederrecht, Gary P; Emery, Jonathan D; Martinson, Alex B F; Er, Süleyman; Wilmer, Christopher E; Vermeulen, Nicolaas A; Aspuru-Guzik, Alán; Stoddart, J Fraser; Farha, Omar K; Hupp, Joseph T

    2016-09-28

    We demonstrate that thin films of metal-organic framework (MOF)-like materials, containing two perylenediimides (PDICl4, PDIOPh2) and a squaraine dye (S1), can be fabricated by layer-by-layer assembly (LbL). Interestingly, these LbL films absorb across the visible light region (400-750 nm) and facilitate directional energy transfer. Due to the high spectral overlap and oriented transition dipole moments of the donor (PDICl4 and PDIOPh2) and acceptor (S1) components, directional long-range energy transfer from the bluest to reddest absorber was successfully demonstrated in the multicomponent MOF-like films. These findings have significant implications for the development of solar energy conversion devices based on MOFs.

  19. Hydrogen Storage Materials Based on Single-Layer Aluminum Nitride Nanostructures

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-Sheng; YUAN Peng-Fei; LI Meng; SUN Qiang; JIA Yu

    2011-01-01

    Using the first-principles method based on density functional theory, we study the hydrogen storage properties of Li-doped single-layer aluminum nitride nanostructures (A1N). For the pristine A1N sheet, each Al atom adsorbs one H2 with an average binding energy of 0.14eV/H2. The hydrogen binding energies and storage capacities can be markedly increased by doping Li atoms onto the A1N sheet. The charge analysis shows that there are charges transferring from the Li atoms to the A1N sheet, thus the charged Li atoms can polarize hydrogen molecules and enhance the interaction between hydrogen molecules and the A1N sheet. In the fully loaded cases, the Li-doped A1N sheet can contain up to 8.25wt% of molecular hydrogen with an average binding energy of 0.20eV/H2.%Using the first-principles method based on density functional theory,we study the hydrogen storage properties of Li-doped single-layer aluminum nitride nanostructures (AlN).For the pristine AlN sheet,each Al atom adsorbs one H2 with an average binding energy of 0.14 eV/H2.The hydrogen binding energies and storage capacities can be markedly increased by doping Li atoms onto the AlN sheet.The charge analysis shows that there are charges transferring from the Li atoms to the AlN sheet,thus the charged Li atoms can polarize hydrogen molecules and enhance the interaction between hydrogen molecules and the AlN sheet.In the fully loaded cases,the Li-doped AlN sheet can contain up to 8.25wt% of molecular hydrogen with an average binding energy of 0.20eV/H2.Hydrogen has long been considered as a carbondioxide-free energy carrier of the future.[1-3] One of the primary barriers preventing the large-scale use of hydrogen is the lack of an economic,effective and safe hydrogen storage medium.To achieve eventual economic feasibility,the materials should store hydrogen with large gravimetric and volumetric densities and operate under ambient thermodynamic conditions.[4]To meet these criteria,hydrogen storage media should only

  20. Method Logical Study on Surface Loss Process of Fe- and Ti- Based Materials by Thin Layer Activation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Taking the advantages of high sensitivity, non-destruction, and the capability of on-line measurementat favorable conditions, thin layer activation (TLA) is recognized as a method of choice in the study onsurface loss processes of various materials. In present work, the radioactivity of product nuclides as

  1. Multi-particle modelling for the prediction of delamination in multi-layered materials

    OpenAIRE

    CARON, JF; DIAZ DIAZ, A; CARREIRA, RP; CHABOT, A; EHRLACHER, A

    2005-01-01

    To approach the three-dimensional stress state in multi-layered composites, a laminate theory which considers a kinematic field per layer (particle) is used. Thus, interlaminar stresses are naturally introduced to carry out the equilibrium conditions of the plies. These stresses have a physical meaning and represent the exact out-of-plane 3D stresses calculated at the interface between two layers. These simplified models are able to provide finite interfacial stresses, even at the free edge o...

  2. Formation of upper rim acylated calix[4]arenes using a sacrifici al zinc anode

    OpenAIRE

    Louati, Alain; Vataj, Rame; Gabelica, Valérie; Lejeune, Manuel; MATT, DOMINIQUE

    2005-01-01

    A straightforward electrosynthetic method is described, which allows upper rim acylation of non-p-halogenated calix[4]-arenes. For example, a solution of tetrapropoxycalix[4]arene 4 was electrolysed in the presence of ZnBr2, in an undivided cell fitted with a sacrificial zinc anode using pure acetonitrile as solvent, yielding an organozinc species, which was then treated with acetyl chloride in the presence of a palladium catalyst to afford 5,11-diacety1-25,26,27,28-tetrapropoxycalix[4]arene ...

  3. Tube Formation in Nanoscale Materials

    Directory of Open Access Journals (Sweden)

    Yan Chenglin

    2008-01-01

    Full Text Available Abstract The formation of tubular nanostructures normally requires layered, anisotropic, or pseudo-layered crystal structures, while inorganic compounds typically do not possess such structures, inorganic nanotubes thus have been a hot topic in the past decade. In this article, we review recent research activities on nanotubes fabrication and focus on three novel synthetic strategies for generating nanotubes from inorganic materials that do not have a layered structure. Specifically, thermal oxidation method based on gas–solid reaction to porous CuO nanotubes has been successfully established, semiconductor ZnS and Nb2O5nanotubes have been prepared by employing sacrificial template strategy based on liquid–solid reaction, and an in situ template method has been developed for the preparation of ZnO taper tubes through a chemical etching reaction. We have described the nanotube formation processes and illustrated the detailed key factors during their growth. The proposed mechanisms are presented for nanotube fabrication and the important pioneering studies are discussed on the rational design and fabrication of functional materials with tubular structures. It is the intention of this contribution to provide a brief account of these research activities.

  4. Biofabrication of multi-material anatomically shaped tissue constructs

    International Nuclear Information System (INIS)

    Additive manufacturing in the field of regenerative medicine aims to fabricate organized tissue-equivalents. However, the control over shape and composition of biofabricated constructs is still a challenge and needs to be improved. The current research aims to improve shape, by converging a number of biocompatible, quality construction materials into a single three-dimensional fiber deposition process. To demonstrate this, several models of complex anatomically shaped constructs were fabricated by combined deposition of poly(vinyl alcohol), poly(ε-caprolactone), gelatin methacrylamide/gellan gum and alginate hydrogel. Sacrificial components were co-deposited as temporary support for overhang geometries and were removed after fabrication by immersion in aqueous solutions. Embedding of chondrocytes in the gelatin methacrylamide/gellan component demonstrated that the fabrication and the sacrificing procedure did not affect cell viability. Further, it was shown that anatomically shaped constructs can be successfully fabricated, yielding advanced porous thermoplastic polymer scaffolds, layered porous hydrogel constructs, as well as reinforced cell-laden hydrogel structures. In conclusion, anatomically shaped tissue constructs of clinically relevant sizes can be generated when employing multiple building and sacrificial materials in a single biofabrication session. The current techniques offer improved control over both internal and external construct architecture underscoring its potential to generate customized implants for human tissue regeneration. (paper)

  5. Tribological Investigations of Hard-Faced Layers and Base Materials of Forging Dies with Different Kinds of Lubricants Applied

    Directory of Open Access Journals (Sweden)

    V. Lazić

    2010-12-01

    Full Text Available This paper gives a procedure for choosing the right technology for reparative hard facing of damaged forging dies. Since they are subject to impact loads and cyclic temperature elevations, forging dies should be made of steel that is able to withstand great impact loads, maintain good mechanical properties at elevated temperatures and that is resistant to wear and thermal fatigue. For these reasons, forging dies are made of conditionally weldable alloy tool steels; however it makes hard facing of damaged tools even more difficult. In this paper, wear resistance of base materials, hard-faced layers and heat-affected zones are tribologically investigated when two different lubricants - pure synthetical oil LM 76 and LM 76 with 6% molybdenum disulfide (MoS2 are applied. Tribological investigations have shown that the wear resistance of the hard faced layers is considerably greater than the wear resistance of the base material. However, the base material has better properties concerning friction.

  6. Intercalation assembly of optical hybrid materials based on layered terbium hydroxide hosts and organic sensitizer anions guests

    Institute of Scientific and Technical Information of China (English)

    Liang-Liang Liu; Qin Wang; Dan Xia; Ting-Ting Shen; Ming-Hui Yu; Wei-Sheng Liu; Yu Tang

    2013-01-01

    Optical hybrid materials based on inorganic hosts and organic sensitizer guests hold promise for a virtually unlimited number of applications.In particular,the interaction and the combination of the properties of a defined inorganic matrix and a specific sensitizer could lead to synergistic effects in luminescence enhancing and tuning.The current article focuses on the intercalation assembly of optical hybrid materials based on the layered terbium hydroxide (LTbH) hosts and organic divalent carboxylic sensitizer anion guests by a hydrothermal process.The studies on the interactions between hosts and guests indicate that the type and arrangement of organic guests in the layer spacing of the LTbH hosts can make a difference in the luminescence of the hybrid inorganic-organic materials.

  7. Fabrication of functionally graded materials between P21 tool steel and Cu by using laser aided layered manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Seol; Shin, Ki Hoon [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2013-01-15

    With the development of layered manufacturing, thermally conductive molds or molds embedding conformal cooling channels can be directly fabricated. Although P21 tool steel is widely used as a mold material because of its dimensional stability, it is not efficient for cooling molds owing to its low thermal conductivity. Hence, the use of functionally graded materials (FGMs) between P21 and Cu may circumvent a tradeoff between the strength and the heat transfer rate. As a preliminary study for the layered manufacturing of thermally conductive molds having FGM structures, one dimensional P21 Cu FGMs were fabricated by using laser aided direct metal tooling (DMT), and then, material properties such as the thermal conductivity and specific heat that are related to the heat transfer were measured and analyzed.

  8. Cyclododecane as support material for clean and facile transfer of large-area few-layer graphene

    International Nuclear Information System (INIS)

    The transfer of chemical vapor deposited graphene is a crucial process, which can affect the quality of the transferred films and compromise their application in devices. Finding a robust and intrinsically clean material capable of easing the transfer of graphene without interfering with its properties remains a challenge. We here propose the use of an organic compound, cyclododecane, as a transfer material. This material can be easily spin coated on graphene and assist the transfer, leaving no residues and requiring no further removal processes. The effectiveness of this transfer method for few-layer graphene on a large area was evaluated and confirmed by microscopy, Raman spectroscopy, x-ray photoemission spectroscopy, and four-point probe measurements. Schottky-barrier solar cells with few-layer graphene were fabricated on silicon wafers by using the cyclododecane transfer method and outperformed reference cells made by standard methods.

  9. Effects of bituminous layer as backfill material on mechanical behavior in tunnel model

    OpenAIRE

    Moriyoshi, Akihiro; Takano, Shin-ei; Urata, Hiroyuki; Suzuki, Tetsuya; Yoshida, Takaki

    2001-01-01

    This paper describes the effects of bituminous material as a backfill material on mechanical behavior in model tunnel in laboratory. It is known that load spreading and relaxation of bituminous material are good properties. Then if we use bituminous material as a backfill material of tunnel, the tunnel will have waterproof, good load spreading property. We used new bituminous material (Aquaphalt) which can solidify in water. We conducted relaxation test in tension for new bituminous mat...

  10. Spectroscopic investigations on thin adhesive layers in multi-material laminates.

    Science.gov (United States)

    Voronko, Yuliya; Chernev, Boril S; Eder, Gabriele C

    2014-01-01

    Three different spectroscopic approaches, Raman linescans, Raman imaging, and attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) imaging were evaluated for the visualization of the thin adhesive layers (3-6 μm) present in polymeric photovoltaic backsheets. The cross-sections of the multilayer laminates in the original, weathered, and artificially aged samples were investigated spectroscopically in order to describe the impact of the environmental factors on the evenness and thickness of the adhesive layers. All three methods were found to be suitable tools to detect and visualize these thin layers within the original and aged polymeric laminates. However, as the adhesive layer is not very uniform in thickness and partly disintegrates upon weathering and/or artificial aging, Raman linescans yield only qualitative information and do not allow for an estimation of the layer thickness. Upon increasing the measuring area by moving from one-dimensional linescans to two-dimensional Raman images, a much better result could be achieved. Even though a longer measuring time has to be taken into account, the information on the uniformity and evenness of the adhesive layer obtainable using the imaging technique is much more comprehensive. Although Raman spectroscopy is known to have the superior lateral resolution as compared with ATR FT-IR spectroscopy, the adhesive layers of the samples used within this study (layer thickness 3-6 μm) could also be detected and visualized by applying the ATR FT-IR spectroscopic imaging method. However, the analysis of the images was quite a demanding task, as the thickness of the adhesive layer was in the region of the resolution limit of this method. The information obtained for the impact of artificial aging and weathering on the adhesive layer obtained using Raman imaging and ATR FT-IR imaging was in good accordance.

  11. In-plane and through-plane local and average Nusselt numbers in fibrous porous materials with different fiber layer temperatures: Gas diffusion layers for fuel cells

    Science.gov (United States)

    Sadeghifar, Hamidreza

    2016-09-01

    Convective heat transfer inside fibrous gas diffusion layers (GDLs) noticeably impacts the heat and water management of air-cooled polymer electrolyte membrane fuel cells (PEMFCs). Cutting-edge experiments have recently proved that convective heat transfer inside fibrous GDLs increases their thermal resistances considerably. However, heat transfer coefficients are difficult to measure experimentally or compute numerically for the millions of the tiny pores inside microstructural GDLs. The present study provides robust analytic models for predicting the heat transfer coefficient for both through-plane and in-plane flows inside fibrous media such as GDLs. The model is based on the unit cell approach and the integral method. Closed-form formulas are developed for local and average heat transfer coefficients. The model considers the temperature variations of the fiber layers along the medium thickness while assuming the same temperature for all the fibers in each layer. The model is well verified by COMSOL numerical data for a few pores inside a GDL. The simple, closed-form easy-to-use formulas developed in this study can be readily employed for predicting Nusselt number inside multilayer fibrous porous materials.

  12. Slab Waveguide Sensor with Left-handed Material Core Layer for Detection an Adlayer Thickness and Index

    Directory of Open Access Journals (Sweden)

    Hani M. Kullab

    2015-06-01

    Full Text Available A four-layer slab waveguide structure with a lossy left-handed material (LHM core layer is investigated as a surface sensor for detection any change in an adlayer thickness and refractive index. The sensitivities of the effective refractive index to any change in the refractive index/thickness of the adlayer are derived and studied with the parameters of the LHM. It is found that a slight change in the real parts of the permittivity and permeability of the LHM can significantly improve the sensitivity of the proposed sensor.

  13. Recent Advances in Stimuli-Responsive Photo functional Materials Based on Accommodation of Chromophore into Layered Double Hydroxide Nano gallery

    International Nuclear Information System (INIS)

    The assembly of photo functional molecules into host matrices has become an important strategy to achieve tunable fluorescence and to develop intelligent materials. The stimuli-responsive photo functional materials based on chromophores-assembled layered double hydroxides (LDHs) have received much attention from both academic and industry fields as a result of their advantages, such as high photo/thermal stability, easy processing, and well reversibility, which can construct new types of smart luminescent nano materials (e.g., ultrathin film and nano composite) for sensor and switch applications. In this paper, external environmental stimuli have mainly involved physical (such as temperature, pressure, light, and electricity) and chemical factors (such as ph and metal ion); recent progress on the LDH-based organic-inorganic stimuli-responsive materials has been summarized. Moreover, perspectives on further development of these materials are also discussed

  14. Magnesium-Based Sacrificial Anode Cathodic Protection Coatings (Mg-Rich Primers for Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Michael D. Blanton

    2012-09-01

    Full Text Available Magnesium is electrochemically the most active metal employed in common structural alloys of iron and aluminum. Mg is widely used as a sacrificial anode to provide cathodic protection of underground and undersea metallic structures, ships, submarines, bridges, decks, aircraft and ground transportation systems. Following the same principle of utilizing Mg characteristics in engineering advantages in a decade-long successful R&D effort, Mg powder is now employed in organic coatings (termed as Mg-rich primers as a sacrificial anode pigment to protect aerospace grade aluminum alloys against corrosion. Mg-rich primers have performed very well on aluminum alloys when compared against the current chromate standard, but the carcinogenic chromate-based coatings/pretreatments are being widely used by the Department of Defense (DoD to protect its infrastructure and fleets against corrosion damage. Factors such as reactivity of Mg particles in the coating matrix during exposure to aggressive corrosion environments, interaction of atmospheric gases with Mg particles and the impact of Mg dissolution, increases in pH and hydrogen gas liberation at coating-metal interface, and primer adhesion need to be considered for further development of Mg-rich primer technology.

  15. Effect of Oxide Inclusions on Electrochemical Properties of Aluminium Sacrificial Anodes

    Institute of Scientific and Technical Information of China (English)

    M. Emamy; A. Keyvani; M. Mahta; J. Campbell

    2009-01-01

    Oxide films are incorporated into melts by an entrainment process, and are expected to be present in most metals, but particularly cast Al alloys. The oxides are necessarily present as folded-over double films (bifilms) that are effectively cracks. Their effect on the electrochemical behaviour of cast Al-5Zn-0.02ln sacrificial anodes was studied in 3 wt pct sodium chloride solution using the NACE efficiency evaluation. Three methods were employed to entrain progressive amounts of oxide in the alloy, including the addition of Al-Zn-ln maching chips to the charge, increasing the pouring height, and agitating the melt. The introduction of oxide bifilms in the cast alloy resulted in the deterioration of the electrochemical properties of the sacrificial anodes, such as current capacity and anode efficiency, and introduced increasing variability in these properties. The results suggest that corrosion behaviour is strongly related to the presence of bifilms suspended in the liquid alloy because bifilms provide crack paths allowing the corrodant to penetrate deeply into the metal matrix, and simultaneously provide localized galvanic cells because of the precipitation of Fe rich intermetallic compounds on their outer surfaces.

  16. Band engineering in a van der Waals heterostructure using a 2D polar material and a capping layer

    Science.gov (United States)

    Cho, Sung Beom; Chung, Yong-Chae

    2016-06-01

    Van der Waals (vdW) heterostructures are expected to play a key role in next-generation electronic and optoelectronic devices. In this study, the band alignment of a vdW heterostructure with 2D polar materials was studied using first-principles calculations. As a model case study, single-sided fluorographene (a 2D polar material) on insulating (h-BN) and metallic (graphite) substrates was investigated to understand the band alignment behavior of polar materials. Single-sided fluorographene was found to have a potential difference along the out-of-plane direction. This potential difference provided as built-in potential at the interface, which shift the band alignment between h-BN and graphite. The interface characteristics were highly dependent on the interface terminations because of this built-in potential. Interestingly, this band alignment can be modified with a capping layer of graphene or BN because the capping layer triggered electronic reconstruction near the interface. This is because the bonding nature is not covalent, but van der Waals, which made it possible to avoid Fermi-level pinning at the interface. The results of this study showed that diverse types of band alignment can be achieved using polar materials and an appropriate capping layer.

  17. Ciprofloxacin-intercalated Zinc Layered Hydroxides Hybrid Material: Synthesis and in Vitro Release Profiles of an Antibiotic Compound

    International Nuclear Information System (INIS)

    The intriguing anion exchange properties of layered hydroxides salts, combined with its high layer charge density have provided strong motivations for the potential use of the inorganic layered host material in drug delivery applications. Ciprofloxacin (CFX), a wide spectrum antibiotic has been anion exchanged with nitrate of zinc hydroxide nitrate (ZHN), which belongs to the LHS family, resulted in the expansion of the basal spacing from 9.92 Amstrom of ZHN to 21.5 Angstrom of ZCFX, the obtained hybrid material. Other characterizations, such as Fourier transform infra red spectroscopy (FTIR), CHNS analysis and TGA/ DTG have further corroborated this finding. Electron microscopy study reveals the plate-like structure of the nano hybrid material. The in vitro release of CFX was performed in phosphate saline buffer at pH 7.4 and it behaves in a slow and sustained release profile over a period of 72 hours. This study suggests that ZHN, which demonstrates a controlled release behavior, could be a potential host material in the drug delivery applications. (author)

  18. Effects of open joints and weak layers on wave propagation in geologic materials

    Science.gov (United States)

    Dick, Richard D.; Fourney, William L.; Weaver, Thomas A.

    1994-07-01

    Computations involving stress wave propagation in rocks containing a weak layer in a strong rock and in rocks with open joints are presented. These computations were based on laboratory experiments using specimens fabricated from Indiana limestone and grout. The results indicate that the weak layer significantly attenuated the amplitude of the stress wave as it propagated through the layer, but the pulse width remained nearly constant. For the open joint case the amplitude remained constant as the width increased until at a sufficiently large separation the amplitude was attenuated. The pulse width, however, decreased with an increasing joint separation. The wave structure may lead to a determination of the quality of the rock through which a stress wave has traveled, i.e., open joints, weak layers, or intact rock.

  19. Numerical simulation of the throwing power of cathodic prevention applied to marine reinforced concrete piles by means of sacrificial anodes

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Luca; Redaelli, Elena [Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica ' G. Natta' , Via Mancinelli, 7, 20131 Milan (Italy)

    2004-07-01

    The paper deals with the determination of current and potential distribution in reinforced concrete elements partially submerged in seawater aimed at predicting the throwing power of cathodic prevention applied by means of sacrificial anodes. Previous laboratory studies carried out on reinforced concrete columns 15 cm x 15 cm x 120 cm showed that the use of sacrificial anodes placed in the solution at the bottom of the column could provide protection of corroding steel bars in the emerged part of the pile up to about 60 cm from the water level. However, if sacrificial anodes were applied when the concrete was chloride free and steel bars were still passive, even the highest bar, placed at 1 m from the level of water, was protected. This is due to the higher polarizability of passive steel, that makes the throwing power of cathodic prevention higher compared to that of cathodic protection. In order to extend the results obtained on small-scale specimens to elements of higher dimensions, numerical simulations of current and potential distribution were carried out. Two-dimensional models were set up of reinforced concrete piles containing steel bars at different heights protected with sacrificial anodes placed in the water in which they were partially submerged. Boundary conditions describing the electrochemical behaviour of bars were obtained from polarisation curves measured on the previously mentioned columns. Values of concrete conductivity at different heights from the water level were also obtained from those tests. Several cases were considered, representative of conditions differing in electrochemical behaviour of steel bars, dimensions of element, position of sacrificial anodes. The paper discusses the results obtained from the models and compares them in terms of the throwing power that can be reached by using sacrificial anodes immersed in the seawater to protect reinforcing steel bars in the emerged part of a pile. (authors)

  20. Numerical modelling of crack shielding and deflection in a multi-layered material system

    OpenAIRE

    Joyce, M R; Reed, P.A.S.; Syngellakis, S.

    2003-01-01

    Finite element analysis has been used to investigate the fatigue behaviour observed in testing a layered structure (representative of an automotive journal bearing). The aim of the analysis was to explain the deflection or bifurcation observed as a fatigue crack propagates through the multi-layered structure of a bearing. A fracture mechanics approach was adopted using detailed evaluations of the J-integral to assess and monitor both crack tip driving force and directional propensity with cra...

  1. MODELLING OF ACOUSTIC EMISSION SOURCE AND WAVE RESPONSE IN LAYERED MATERIALS

    Directory of Open Access Journals (Sweden)

    Alamin A.

    2014-03-01

    Full Text Available This study proposes a model of wave propagation in layered media for the use in acoustic emission (AE studies. This model aims to find an AE response at a free surface to the propagating waves originating at a dislocation source either in one layer medium or a layer-to-layer interface. Each of the layered media is assumed to be homogenous, linear elastic and isotropic. An integral transformation method has been applied to determine the wave response in frequency-wave number domain, which is then converted to time-space domain. In the numerical examples, we first select truncated values with the finite integral transformation, so that no wave interference happens in the responses from wave reflection at truncated boundaries. Next, we simulate wave propagation in an elastic half space, and compare results obtained with that from other kind bottom boundary. Next, we introduce a dis- location source in interface and compare a simulated AE wave response obtained with that computed in the layered medium to demonstrate the performance of the model. In each simulation, the results show good agreement with the reference solutions.

  2. A New Kind of Buffer Layer of TiO2 Self-Assembled Material in Organic Electroluminescent Devices

    Institute of Scientific and Technical Information of China (English)

    白峰; 邓振波; 张梦欣; 邹伟燕; 蔡强

    2003-01-01

    A new kind of TiO2 self-assembled nanometre material has been fabricated and is used as a hole-injecting buffer layer in organic electroluminescent devices. The luminance and the efficiency of a device individually rises from l500cd/m2 to 5000cd/m2 and from 2.0cd/A to 3.92cd/A at the current density of 100mA/cm2. The enhancements in brightness and efficiency are attributed to an improved balance of hole and electron injections due to blocking of the injected holes by the buffer layer and a more homogeneous adhesion of the hole transporting layer to the anode.

  3. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials

    Directory of Open Access Journals (Sweden)

    Chia-Chun Ho

    2015-03-01

    Full Text Available The multi-soil-layering (MSL system primarily comprises two parts, specifically, the soil mixture layer (SML and the permeable layer (PL. In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3−-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%.

  4. Employment of encapsulated Si with mesoporous TiO2 layer asanode material for lithium secondary batteries

    Institute of Scientific and Technical Information of China (English)

    Sang-Eun PARK; Bo-Eun KIM; Sang-Wha LEE; Joong-Kee LEE

    2009-01-01

    Silicon composite of nano-capsule type is newly applied as an active anode material for lithium ion batteries. TiO2-encapsulated silicon powders were synthesized by a sol-gel reaction with titanium ethoxide. Silicon nanoparticles were successfully embedded into porous titanium oxide capsules that played as a buffer layer against drastic volume changes of silicon during the charge-discharge cycling, consequently leading to the retardation of the capacity fading of intrinsic silicon materials. The electrochemical and structural properties of silicon nanocomposites with different surface areas of encapsulating TiO2 layer were characterized by X-ray diffraction(XRD), nitrogen gas adsorption analysis by the Brunauer-Emmett-Teller(BET) equation, transmission electron microscopy(TEM), and galvanostatic charge-discharge experiments.

  5. Recent Advances in Layered Metal Chalcogenides as Superconductors and Thermoelectric Materials: Fe-Based and Bi-Based Chalcogenides.

    Science.gov (United States)

    Mizuguchi, Yoshikazu

    2016-04-01

    Recent advances in layered (Fe-based and Bi-based) chalcogenides as superconductors or functional materials are reviewed. The Fe-chalcogenide (FeCh) family are the simplest Fe-based high-Tc superconductors. The superconductivity in the FeCh family is sensitive to external or chemical pressure, and high Tc is attained when the local structure (anion height) is optimized. The Bi-chalcogenide (BiCh2 ) family are a new group of layered superconductors with a wide variety of stacking structures. Their physical properties are also sensitive to external or chemical pressure. Recently, we revealed that the emergence of superconductivity and the Tc in this family correlate with the in-plane chemical pressure. Since the flexibility of crystal structure and electronic states are an advantage of the BiCh2 family for designing functionalities, I briefly review recent developments in this family as not only superconductors but also other functional materials. PMID:26821763

  6. Adhesive and Stress-Strain Properties of the Polymeric Layered Materials Reinforced by the Knitted Net

    Directory of Open Access Journals (Sweden)

    Rakhimov Farhod Hushbakovich

    2012-10-01

    Full Text Available It is known that the textile materials (woven fabric and mesh used for reinforcing of various polymer films and coatings. This paper discusses reinforcement of thermoplastic polymers based on PE (Polyethylene and PVC (Polyvinyl Chloride with a knitted mesh weave loin. According by the research identified adhesion, strength and deformation properties of new polymer laminates. The production of such materials has been discussed in detail and performance of resultant composites material is analyzed and compared with other materials.

  7. Embedding dynamical mean-field theory for superconductivity in layered materials and heterostructures

    Science.gov (United States)

    Petocchi, Francesco; Capone, Massimo

    2016-06-01

    We study layered systems and heterostructures of s -wave superconductors by means of a suitable generalization of dynamical mean-field theory. In order to reduce the computational effort, we consider an embedding scheme in which a relatively small number of active layers is embedded in an effective potential accounting for the effect of the rest of the system. We introduce a feedback of the active layers on the embedding potential that improves on previous approaches and essentially eliminates the effects of the finiteness of the active slab allowing for cheap computation of very large systems. We extend the method to the superconducting state, and we benchmark the approach by means of simple paradigmatic examples showing some examples on how an interface affects the superconducting properties. As examples, we show that superconductivity can penetrate from an intermediate coupling superconductor into a weaker coupling one for around ten layers, and that the first two layers of a system with repulsive interaction can turn superconducting by proximity effects even when charge redistribution is inhibited.

  8. Study of multi-layer active magnetic regenerators using magnetocaloric materials with first and second order phase transition

    DEFF Research Database (Denmark)

    Lei, Tian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein;

    2016-01-01

    magnetocaloric refrigerators (MCR) demonstrated the great potential for these materials, but a thorough study on the impact of the moderate adiabatic temperature change and strong temperature dependence of the magnetocaloric effect (MCE) is lacking. Besides, comparing active magnetic regenerators (AMR) using...... MCE are quantified and analyzed by using artificially built magnetocaloric properties. Then, based on measured magnetocaloric properties of La(Fe,Mn,Si)13H y and Gd, an investigation on how to layer typical FOPT and SOPT materials with different temperature spans is carried out. Moreover, the...

  9. Characterization of the Minimum Effective Layer of Thermal Insulation Material Tow-plaster from the Method of Thermal Impedance

    Directory of Open Access Journals (Sweden)

    M.S. Ould Brahim

    2011-04-01

    Full Text Available Our objective in this study is to determine the effective thermal insulating layer of a composite towplaster. The characterization of thermal insulating material is proposed from the study of the thermal impedance in dynamic two-dimensional frequency. Thermo physical properties of the material tow-plaster are determined from the study of the thermal impedance. Nyquist representations have introduced an interpretation of certain phenomena of heat transfer from the series and shunt resistors. The overall coefficient of heat exchange is determined from the Bode plots. A method for determining the thermal conductivity is proposed.

  10. Recent Advances in Stimuli-Responsive Photofunctional Materials Based on Accommodation of Chromophore into Layered Double Hydroxide Nanogallery

    Directory of Open Access Journals (Sweden)

    Wu Li

    2013-01-01

    Full Text Available The assembly of photofunctional molecules into host matrices has become an important strategy to achieve tunable fluorescence and to develop intelligent materials. The stimuli-responsive photofunctional materials based on chromophores-assembled layered double hydroxides (LDHs have received much attention from both academic and industry fields as a result of their advantages, such as high photo/thermal stability, easy processing, and well reversibility, which can construct new types of smart luminescent nanomaterials (e.g., ultrathin film and nanocomposite for sensor and switch applications. In this paper, external environmental stimuli have mainly involved physical (such as temperature, pressure, light, and electricity and chemical factors (such as pH and metal ion; recent progress on the LDH-based organic-inorganic stimuli-responsive materials has been summarized. Moreover, perspectives on further development of these materials are also discussed.

  11. A WOOD REPLACEMENT MATERIAL OF SANDWICH STRUCTURE USING COIR FIBER MATS AND FIBERGLASS FABRICS AS CORE LAYER

    Directory of Open Access Journals (Sweden)

    Jia Yao,

    2011-12-01

    Full Text Available The tensile strength and bending strength of natural coir fiber are lower than many other natural fibers. Therefore, coir fiber is unsuitable for many fiber reinforcement applications. This study exploits the better shock resistance and toughness of coir fiber, which suggest that coir fiber can be used as a type of replacement material in plywood. Fast-growing poplar was chosen as the surface material, and coir fiber was selected as the core layer material for their buffering ability and toughness, and fiberglass fabrics were added in the core layer as strengthening components. The optimization of this plywood structure was carried out with an orthogonal experiment and the intuitive analysis method. The mechanical performance of some samples even exceeded that of natural wood. Through analysis of test results and scanning electron microscope (SEM observations, the buffering and toughening mechanisms of the coir fiber mats were revealed. This new material can be used to replace wood in plywood and in the transportation industry as a packaging material and as platform floors for freight vehicles.

  12. Heat transfer and material flow during laser assisted multi-layer additive manufacturing

    International Nuclear Information System (INIS)

    A three-dimensional, transient, heat transfer, and fluid flow model is developed for the laser assisted multilayer additive manufacturing process with coaxially fed austenitic stainless steel powder. Heat transfer between the laser beam and the powder particles is considered both during their flight between the nozzle and the growth surface and after they deposit on the surface. The geometry of the build layer obtained from independent experiments is compared with that obtained from the model. The spatial variation of melt geometry, cooling rate, and peak temperatures is examined in various layers. The computed cooling rates and solidification parameters are used to estimate the cell spacings and hardness in various layers of the structure. Good agreement is achieved between the computed geometry, cell spacings, and hardness with the corresponding independent experimental results.

  13. Strengthening of polymer ordered porous materials based on a layered nanocomposite internal structure.

    Science.gov (United States)

    Heng, Liping; Guo, Xieyou; Guo, Tianqi; Wang, Bin; Jiang, Lei

    2016-07-21

    Ordered porous polymeric films attract more and more attention because they have many advantages and broad application prospects in many fields. But because of their large flexibility and poor mechanical properties, some of the scope for application is greatly limited. Inspired by the ordered pore structure of the honeycomb and the layered structure of natural nacre, we prepared an ordered porous polymer film with a layered structure in the pore wall by the solvent-evaporation-restriction assisted hard template method. Compared with other samples, this kind of film with the layered structure showed both excellent mechanical properties and good stability. This kind of film with high mechanical strength, is considered to have wide applications in the areas of separation, biomedicine, precision instruments, aerospace, environmental protection and so on. PMID:27355160

  14. Surface Wave Propagation in a Microstretch Thermoelastic Diffusion Material under an Inviscid Liquid Layer

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar

    2014-01-01

    Full Text Available The present investigation deals with the propagation of Rayleigh type surface waves in an isotropic microstretch thermoelastic diffusion solid half space under a layer of inviscid liquid. The secular equation for surface waves in compact form is derived after developing the mathematical model. The dispersion curves giving the phase velocity and attenuation coefficients with wave number are plotted graphically to depict the effect of an imperfect boundary alongwith the relaxation times in a microstretch thermoelastic diffusion solid half space under a homogeneous inviscid liquid layer for thermally insulated, impermeable boundaries and isothermal, isoconcentrated boundaries, respectively. In addition, normal velocity component is also plotted in the liquid layer. Several cases of interest under different conditions are also deduced and discussed.

  15. Production of Quasicomposite Surface Layer of a Metal Material by Shock Wave Strain Hardening

    Directory of Open Access Journals (Sweden)

    A.V. Kirichek

    2014-07-01

    Full Text Available Quite often in order to improve the performance of a product it is necessary to form a strengthened structure that will be extremely hard and have good plasticity at the same time. One way to meet this challenge is to apply shock wave mechanical hardening to produce micro- or nanocrystalline heterogeneous structures in homogeneous metals or alloys. A peculiar feature of such structure is its layer-by-layer formation with smooth transition between hard and plastic areas, which improves the performance of the strengthened item significantly

  16. Melt-layer ejection and material changes of three different tungsten materials under high heat-flux conditions in the tokamak edge plasma of TEXTOR

    Science.gov (United States)

    Coenen, J. W.; Philipps, V.; Brezinsek, S.; Pintsuk, G.; Uytdenhouwen, I.; Wirtz, M.; Kreter, A.; Sugiyama, K.; Kurishita, H.; Torikai, Y.; Ueda, Y.; Samm, U.; TEXTOR-Team

    2011-11-01

    The behaviour of tungsten (W) plasma-facing components (PFCs) has been investigated in the plasma edge of the TEXTOR tokamak to study melt-layer ejection, macroscopic tungsten erosion from the melt layer as well as the changes of material properties such as grain-size and abundance of voids or bubbles. The parallel heat flux at the radial position of the exposed tungsten tile in the plasma ranges around q|| ~ 45 MW m-2 causing samples to be exposed at an impact angle of 35° to 20-30 MW m-2. Locally the temperature reached up to 6000 K, high levels of evaporation and boiling are causing significant erosion in the form of continuous fine spray or droplet ejection. The amount of fine-spray tungsten emission depends strongly on the material properties: in the case of the tungsten-tantalum alloy the effect of spraying and droplet emission is significantly higher at even low temperatures when compared with regular tungsten or even ultra-high purity tungsten which shows almost no spraying at all. Differences in the material composition, grain structure and size may be related to the different evolution of macroscopic erosion. In addition the re-solidified material is studied and strong differences in terms of re-crystallized grain size and evolution of the grain structure and grain orientation are observed. The build up of large voids has been observed.

  17. Novel layered pesticide slow/controlled release materials--supramolecular structure and slow release property of glyphosate intercalated layered double hydroxides

    Institute of Scientific and Technical Information of China (English)

    MENG Jinhong; ZHANG Hui; David G. Evans; DUAN Xue

    2005-01-01

    Two different interlayer structured glyphosate (GLY) intercalated MgAl layered double hydroxides, as novel pesticide slow/controlled release materials, have been synthesized by co-precipitation method under various reaction pH values. The slow/controlled release properties have been tested in Na2CO3 aqueous solution. The release mechanism has been interpreted on the basis of the ion-exchange between the guest GLY anions in the lamellar host and in the release media, and the diffusion process of GLY anions in the interstice and interlayer of GLY intercalates, i.e. diffusion through the particles, is the rate-limiting step of GLY release process. The GLY intercalate assembled at lower pH, possessing higher interlayer gallery height and vertical monolayered arrangement of guest anions in the interlayer with larger packing density, exhibits better slow release property than that assembled at higher pH. The results reveal that the layered double hydroxides have potential application in the pesticide slow/controlled release area.

  18. Trapping and depth profile of tritium in surface layers of metallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, M., E-mail: masao@ctg.u-toyama.ac.jp [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Chen, Z. [The Southwestern Institute of Physics, Chengdu 610041, Sichuan (China); Nisimura, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Akamaru, S.; Torikai, Y.; Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Ashikawa, N. [National Institute for Fusion Science, Toki 509-5292 (Japan); Oya, Y.; Okuno, K. [Radiochemistry Research Laboratory, Shizuoka University, Shizuoka 422-8529 (Japan); Hino, T. [Laboratory of Plasma Physics and Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2011-10-01

    Tritium amount retained in surface layers and release behavior from surface layers were examined using SS316L samples exposed to plasmas in the Large Helical Device and a commercial Cu-Be alloy plate. BIXS analyses and observation by SEM indicate that carbon and titanium deposited on the plasma-facing surface of the SS316L samples. Larger amount of tritium was trapped in the plasma-facing surface in comparison with the polished surface. Higher enrichment of tritium in surface layers was similarly found in the polished surface of both samples. The amount of surface tritium in both samples was almost same, while the bulk concentration of tritium in Cu-Be was much lower than that in SS316L. Tritium release from the SS316L and Cu-Be samples into water was examined by immersion experiments. Tritium elution was observed for both samples, but changes in the residual tritium amount in surface layers were different from each other.

  19. Results of Tests with Large Sacrificial and Self-Cleaning Strainers and the installation at Ringhals 2

    International Nuclear Information System (INIS)

    The paper describes briefly activities performed by Vattenfall Utveckling AB at Alvkarleby Laboratory as part of the qualification programme for the new ECCS strainers at PWR plant Ringhals 2 based on the 'robust solution' with large sacrificial strainers and a self-cleaning 'wing-strainer' of same type as used for the five modified Swedish BWR plants. With the new knowledge gained from several BWR strainer projects following the BarseNick strainer incident in 1992, the functioning of ECCS strainers for PWR was re-evaluated. The upgrading at Ringhals 2, a 3-loop Westinghouse plant having fiberglass and mineral wool as insulation, was the result of a design study including a lot of experimental work mainly in 1993 and 1994. The new ECC system was installed in 5 days in the summer outage 1995. In a first study in year 1993 in the large test tank at Alvkarleby Laboratory it was discovered that the earlier design basis for debris settlement was not fulfilled. Recirculating water falling from a large break will not only prevent settling of the fibrous insulation debris but also disintegrate wads and larger pieces to fibres and fines. It could no longer be assumed that the insulation would settle in front of the strainers. This discovery affected the further work within the project group and the work at Alvkarleby Laboratory. It is presented some test data that have not been published before, e.g. combinations of fibres and particulate material. The test programme included also chemical treated fibrous insulation as well as combinations with carbon powder or oil. Also experiences from combinations of fibres and RMI debris were gained. Some information from projects later performed for the US market are included. Also it is included some experience on deviations in results when tests are performed in different ways. At the end the modified strainer system for Ringhals 2 is presented. (author)

  20. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Description of recent in operando and in situ analysis methodology. • Surface science approach using photoemission for analysis of cathode surfaces and interfaces. • Ageing and fatigue of layered oxide Li-ion battery cathode materials from the atomistic point of view. • Defect formation and electronic structure evolution as causes for cathode degradation. • Significance of interfacial energy alignment and contact potential for side reactions. - Abstract: This overview addresses the atomistic aspects of degradation of layered LiMO2 (M = Ni, Co, Mn) oxide Li-ion battery cathode materials, aiming to shed light on the fundamental degradation mechanisms especially inside active cathode materials and at their interfaces. It includes recent results obtained by novel in situ/in operando diffraction methods, modelling, and quasi in situ surface science analysis. Degradation of the active cathode material occurs upon overcharge, resulting from a positive potential shift of the anode. Oxygen loss and eventual phase transformation resulting in dead regions are ascribed to changes in electronic structure and defect formation. The anode potential shift results from loss of free lithium due to side reactions occurring at electrode/electrolyte interfaces. Such side reactions are caused by electron transfer, and depend on the electron energy level alignment at the interface. Side reactions at electrode/electrolyte interfaces and capacity fade may be overcome by the use of suitable solid-state electrolytes and Li-containing anodes

  1. Influences from the Huns on Scandinavian Sacrificial Customs during 300-500 AD

    Directory of Open Access Journals (Sweden)

    Marianne Görman

    2016-01-01

    Full Text Available Votive offerings may be our main source of knowledge concerning the religion of the Iron Age before the Vikings. An important question is the connection between two kinds of sacrificial finds, i.e. horse sacrifices and burial offerings. They are contemporary and they share the same background. They can both be traced back to the Huns. This means that in all probability religious ideas occurred in southern Scandinavia during the fourth to the sixth century which were strongly influenced by the Huns, who were powerful in Central Europe at that time. The explanation of this is probably that some Scandinavians, for instance by serving as mercenaries, had come in contact with the Huns and, at least to some extent, assimilated their ways of thinking and their religious ideas.

  2. Use of sacrificial anode technology to mitigate non-enzymic Maillard browning.

    Science.gov (United States)

    Rizzi, George P

    2017-02-15

    Experiments were performed to examine the effects of Maillard browning induced in the presence of metallic elements. The rate of brown pigment formation was shown to be reduced in model Maillard reactions performed in the presence of electropositive metals. Experiments involved reactions of d-xylose, d-arabinose and d-ribose with glycine, α-l- or β-alanine and l-valine in pH 7.0 phosphate buffer at ca. 100°C. "Browning" measured spectrophotometrically at 420nm was significantly lower (compared with controls) in selected reactions containing elemental Mg, Al, Mn and Sn particles. It was hypothesized that the metals acted in sacrificial anode redox fashion to reduce or eliminate dehydroreductones believed to be key Maillard intermediates ultimately leading to less browning. PMID:27664627

  3. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    Science.gov (United States)

    Johnson, Jr., James S.; Westmoreland, Clyde G.

    1982-01-01

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  4. De un sendero sacrificial surcado de goce // from a sacrificed path plow through of pleasure

    Directory of Open Access Journals (Sweden)

    Mario Orozco Guzmán

    2011-06-01

    Full Text Available El presente trabajo discierne un semblante maldito del sacrificio. En nombre del amor se ha idealizado el sacrificio como paradigma de su audacia y heroísmo, mientras la cultura se ha encargado de enaltecer la proeza sacrificial como puesta en acto del amor. El destinatario de esta inmolación suprema inscribe la producción del goce divino en calidad de objeto “a”, tal como lo revelan sacrificios paradigmáticos presentes en la historia y la literatura. // The current work discerns a cursed countenance from the sacrifice. The sacrifice has been idealized in love's name, as paradigm of its courage and heroism, meanwhile the culture has taken charge of dignifying the sacrificed feat as event in the love act. The addressee of this supreme immolation registers the production of the divine enjoyment as “a” object, just as it is revealed by paradigmatic sacrifices present on history and literature.

  5. Synthesis of Hollow Silica Nanospheres by Sacrificial Polystyrene Templates for Thermal Insulation Applications

    Directory of Open Access Journals (Sweden)

    Linn Ingunn C. Sandberg

    2013-01-01

    Full Text Available Monodisperse polystyrene (PS spheres with controllable size have been synthesized by a straight forward and simple procedure. The as-synthesized PS spheres have a typical diameter ranging from ~180 nm to ~900 nm, where a reduced sphere size is obtained by increasing the polyvinylpyrrolidone (PVP/styrene weight ratio. The PS spheres function as sacrificial templates for the fabrication of hollow silica nanospheres (HSNSs for thermal insulation applications. By modifying the silica coating process, HSNSs with different surface roughness are obtained. All resulting HSNSs show typically a thermal conductivity of about 20 mW/(mK, indicating that the surface phonon scattering is probably not significant in these HSNS samples.

  6. Exciton Dynamics and Many Body Interactions in Layered Semiconducting Materials Revealed with Non-linear Coherent Spectroscopy

    Science.gov (United States)

    Dey, Prasenjit

    Atomically thin, semiconducting transition metal dichalogenides (TMDs), a special class of layered semiconductors, that can be shaped as a perfect two dimensional material, have garnered a lot of attention owing to their fascinating electronic properties which are achievable at the extreme nanoscale. In contrast to graphene, the most celebrated two-dimensional (2D) material thus far; TMDs exhibit a direct band gap in the monolayer regime. The presence of a non-zero bandgap along with the broken inversion symmetry in the monolayer limit brands semiconducting TMDs as the perfect candidate for future optoelectronic and valleytronics-based device application. These remarkable discoveries demand exploration of different materials that possess similar properties alike TMDs. Recently, III-VI layered semiconducting materials (example: InSe, GaSe etc.) have also emerged as potential materials for optical device based applications as, similar to TMDs, they can be shaped into a perfect two-dimensional form as well as possess a sizable band gap in their nano-regime. The perfect 2D character in layered materials cause enhancement of strong Coulomb interaction. As a result, excitons, a coulomb bound quasiparticle made of electron-hole pair, dominate the optical properties near the bandgap. The basis of development for future optoelectronic-based devices requires accurate characterization of the essential properties of excitons. Two fundamental parameters that characterize the quantum dynamics of excitons are: a) the dephasing rate, gamma, which represents the coherence loss due to the interaction of the excitons with their environment (for example- phonons, impurities, other excitons, etc.) and b) excited state population decay rate arising from radiative and non-radiative relaxation processes. The dephasing rate is representative of the time scale over which excitons can be coherently manipulated, therefore accurately probing the source of exciton decoherence is crucial for

  7. A sparse digital signal model for ultrasonic nondestructive evaluation of layered materials.

    Science.gov (United States)

    Bochud, N; Gomez, A M; Rus, G; Peinado, A M

    2015-09-01

    Signal modeling has been proven to be an useful tool to characterize damaged materials under ultrasonic nondestructive evaluation (NDE). In this paper, we introduce a novel digital signal model for ultrasonic NDE of multilayered materials. This model borrows concepts from lattice filter theory, and bridges them to the physics involved in the wave-material interactions. In particular, the proposed theoretical framework shows that any multilayered material can be characterized by a transfer function with sparse coefficients. The filter coefficients are linked to the physical properties of the material and are analytically obtained from them, whereas a sparse distribution naturally arises and does not rely on heuristic approaches. The developed model is first validated with experimental measurements obtained from multilayered media consisting of homogeneous solids. Then, the sparse structure of the obtained digital filter is exploited through a model-based inverse problem for damage identification in a carbon fiber-reinforced polymer (CFRP) plate. PMID:26092090

  8. Effect of Nickel Alloying Layer on Hydrogen Absorption Ability of Zr-Al Getter Material

    Institute of Scientific and Technical Information of China (English)

    LIU Chao-Zhuo; SHI Li-Qun

    2004-01-01

    @@ By using ion beam sputtering, an 85-A thick nickel layer was deposited on the Zr-Al alloy (non-evaporable getter) to improve the characteristic of the hydrogen absorption. The presputtering for 15 min to clean the surface passivation layer and the vacuum heating treatment of the sample at 750 ℃ for 1 h for surface alloying can improve the ability of the gas absorption. The gas absorption experiments show fast absorption kinetics of the hydrogen pumping and good durability against contaminable gases. The Rutherford-back-scattering spectra and the secondaryion mass spectroscopy demonstrate the formation of an alloy of Zr, Al, and Ni in the near-surface area after the thermal process. The elastic recoil detection analysis indicates that the sample holds the original high capacity of hydrogen.

  9. Bulk and surface acoustic waves in solid-fluid Fibonacci layered materials.

    Science.gov (United States)

    Quotane, I; El Boudouti, E H; Djafari-Rouhani, B; El Hassouani, Y; Velasco, V R

    2015-08-01

    We study theoretically the propagation and localization of acoustic waves in quasi-periodic structures made of solid and fluid layers arranged according to a Fibonacci sequence. We consider two types of structures: either a given Fibonacci sequence or a periodic repetition of a given sequence called Fibonacci superlattice. Various properties of these systems such as: the scaling law and the self-similarity of the transmission spectra or the power law behavior of the measure of the energy spectrum have been highlighted for waves of sagittal polarization in normal and oblique incidence. In addition to the allowed modes which propagate along the system, we study surface modes induced by the surface of the Fibonacci superlattice. In comparison with solid-solid layered structures, the solid-fluid systems exhibit transmission zeros which can break the self-similarity behavior in the transmission spectra for a given sequence or induce additional gaps other than Bragg gaps in a periodic structure. PMID:25819878

  10. Design strategy of two-dimensional material field-effect transistors: Engineering the number of layers in phosphorene FETs

    Science.gov (United States)

    Yin, Demin; Yoon, Youngki

    2016-06-01

    Thickness or the number of layers in 2D semiconductors is a key parameter to determine the material's electronic properties and the overall device performance of 2D material electronics. Here, we discuss the engineering practice of optimizing material and device parameters of phosphorene field-effect transistors (FETs) by means of self-consistent atomistic quantum transport simulations, where the impacts of different numbers of phosphorene layers on various device characteristics are explored in particular, considering two specific target applications of high-performance and low-power devices. Our results suggest that, for high-performance applications, monolayer phosphorene should be utilized in a conventional FET structure since it can provide the equally large on current as other multilayer phosphorenes (Ion > 1 mA/μm) without showing a penalty of relatively lower density of states, along with favorableness for steep switching and large immunity to gate-induced drain leakage. On the other hand, more comprehensive approach is required for low-power applications, where operating voltage, doping concentration, and channel length should be carefully engineered along with the thickness of phosphorene in tunnel FET (TFET) structure to achieve ultra-low leakage current without sacrificing on current significantly. Our extensive simulation results revealed that either bilayer or trilayer phosphorene can provide the best performance in TFET with the maximum Ion/Ioff of ˜2 × 1011 and the subthreshold swing as low as 13 mV/dec. In addition, our comparative study of phosphorene-based conventional FET and TFET clearly shows the feasibility and the limitation of each device for different target applications, providing irreplaceable insights into the design strategy of phosphorene FETs that can be also extended to other similar layered material electronic devices.

  11. Experiments on passive hypersonic boundary layer control using ultrasonically absorptive carbon-carbon material with random microstructure

    Science.gov (United States)

    Wagner, Alexander; Kuhn, Markus; Martinez Schramm, Jan; Hannemann, Klaus

    2013-10-01

    For the first time, the influence of ultrasonically absorptive carbon-carbon material on hypersonic laminar to turbulent boundary layer transition was investigated experimentally. A 7° half-angle blunted cone with a nose radius of 2.5 mm and a total length of 1,077 mm was tested at zero angle of attack in the High Enthalpy Shock Tunnel Göttingen of the German Aerospace Center (DLR) at Mach 7.5. One-third of the metallic model surface in circumferential direction was replaced by DLR in-house manufactured ultrasonically absorptive carbon-carbon material with random microstructure for passive transition control. The remaining model surface consisted of polished steel and served as reference surface. The model was equipped with coaxial thermocouples to determine the transition location by means of surface heat flux distribution. Flush-mounted piezoelectric fast-response pressure transducers were used to measure the pressure fluctuations in the boundary layer associated with second-mode instabilities. The free-stream unit Reynolds number was varied over a range of Re m = 1.5 × 106 m-1 to Re m = 6.4 × 106 m-1 at a stagnation enthalpy of h 0 ≈ 3.2 MJ/kg and a wall temperature ratio of T w/ T 0 ≈ 0.1. The present study revealed a clear damping of the second-mode instabilities and a delay of boundary layer transition along the ultrasonically absorptive carbon-carbon insert.

  12. Preparation and Characterization of TiO2/CdS Layers as Potential Photoelectrocatalytic Materials

    Directory of Open Access Journals (Sweden)

    Teofil-Danut Silipas

    2011-01-01

    Full Text Available The TiO2/CdS semiconductor composites were prepared on
    indium tin oxide (ITO substrates in di®erent mass proportions via wet-chemical techniques using bi-distilled water, acetyl-acetone, poly-propylene-glycol and Triton X-100 as additives. The composite layers were annealed in normal conditions at the temperature of 450±C, 120 min. with a rate of temperature increasing of 5±C/min. The structural and optical properties of all the TiO2/CdS ayers were characterized by X-ray di®raction, UV-VIS spectroscopy, spectrofluorimetry and FT/IR microscopy. The microstructural properties of the deposited TiO2/CdS layers can be modi¯ed by varying the mass proportions of TiO2:CdS. The good crystallinity level and the high optical adsorption of
    the TiO2/CdS layers make them attractive for photoelectrochemical cell applications.

  13. Sugar-anionic clay composite materials: intercalation of pentoses in layered double hydroxide

    Science.gov (United States)

    Aisawa, Sumio; Hirahara, Hidetoshi; Ishiyama, Kayoko; Ogasawara, Wataru; Umetsu, Yoshio; Narita, Eiichi

    2003-09-01

    The intercalation of non-ionized guest pentoses (ribose and 2-deoxyribose) into the Mg-Al and Zn-Al layered double hydroxides (LDHs) was carried out at 298 K by the calcination-rehydration reaction using the Mg-Al and Zn-Al oxide precursors calcined at 773 K. The resulting solid products reconstructed the LDH structure with incorporating pentoses, and the maximum amount of ribose intercalated by the Mg-Al oxide precursor was approximately 20 times that by the Zn-Al oxide precursor. The ribose/Mg-Al LDH was observed to have the expanded LDH structure with a broad (003) spacing of 0.85 nm. As the thickness of the LDH hydroxide basal layer is 0.48 nm, the interlayer distance of the ribose/Mg-Al LDH is 0.37 nm. This value corresponds to molecular size of ribose in thickness (0.36 nm), supporting that ribose is horizontally oriented in the interlayer space of LDH. The maximum amount of ribose intercalated by the Mg-Al oxide precursor was approximately 5 times that of 2-deoxyribose. Ribose is substituted only by the hydroxyl group at C-2 position for 2-deoxyribose. Therefore, the number of hydroxyl group of sugar is essentially important for the intercalation of sugar molecule into the LDH, suggesting that the intercalation behavior of sugar for the LDH was greatly influenced by hydrogen bond between hydroxyl group of the intercalated pentose and the LDH hydroxide basal layers.

  14. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries.

    Science.gov (United States)

    Wu, Feng; Li, Ning; Su, Yuefeng; Zhang, Linjing; Bao, Liying; Wang, Jing; Chen, Lai; Zheng, Yu; Dai, Liqin; Peng, Jingyuan; Chen, Shi

    2014-06-11

    Lack of high-performance cathode materials has become a technological bottleneck for the commercial development of advanced Li-ion batteries. We have proposed a biomimetic design and versatile synthesis of ultrathin spinel membrane-encapsulated layered lithium-rich cathode, a modification by nanocoating. The ultrathin spinel membrane is attributed to the superior high reversible capacity (over 290 mAh g(-1)), outstanding rate capability, and excellent cycling ability of this cathode, and even the stubborn illnesses of the layered lithium-rich cathode, such as voltage decay and thermal instability, are found to be relieved as well. This cathode is feasible to construct high-energy and high-power Li-ion batteries. PMID:24844948

  15. Highly condensed fluorinated methacrylate hybrid material for transparent low-kappa passivation layer in LCD-TFT.

    Science.gov (United States)

    Oh, Ji-Hoon; Kwak, Seung-Yeon; Yang, Seung-Cheol; Bae, Byeong-Soo

    2010-03-01

    Photocurable and highly condensed fluorinated methacrylate oligosiloxane, with a low dielectric constant (kappa = 2.54), was prepared by a nonhydrolytic sol-gel condensation reaction. The oligosiloxane resin was then spin-coated, photocured, and thermally baked in order to fabricate a fluorinated methacrylate hybrid material (FM hybrimer) thin film. This study investigated the application of this FM hybrimer film as a low-kappa passivation layer in LCD-based thin film transistors (TFT). It was found that a dielectric constant as low as kappa = 2.54 could be obtained, without introducing pores in the dense FM hybrimer films. This study compares FM hybrimer film characteristics with those required for passivation layers in LCD-TFTs, including thermal stability, optical transmittance, hydrophobicity, gap fill, and planarization effects as well as electrical insulation.

  16. Air-coupled ultrasonic investigation of multi-layered composite materials.

    Science.gov (United States)

    Kazys, R; Demcenko, A; Zukauskas, E; Mazeika, L

    2006-12-22

    Air-coupled ultrasonics is fine alternative for the immersion testing technique. Usually a through transmission and a pitch-catch arrangement of ultrasonic transducers are used. The pitch-catch arrangement is very attractive for non-destructive testing and evaluation of materials, because it allows one-side access to the object. However, this technique has several disadvantages. It is sensitive to specularly reflected and edge waves. A spatial resolution depends on a distance between the transducers. A new method for detection and visualisation of inhomogeneities in composite materials using one-side access air-coupled ultrasonic measurement technique is described. Numerical predictions of Lamb wave interaction with a defect in a composite material are carried out and the interaction mechanism is explained. Experimental measurements are carried out with different arrangements of the transducers. The proposed method enables detect delamination and impact type defects in honeycomb materials. PMID:16797664

  17. Solution-processed cathode interfacial layer materials for high-efficiency polymer solar cells

    OpenAIRE

    Biao Xiao; Hongbin Wu; Yong Cao

    2015-01-01

    Polymer solar cells (PSCs) are a new type of renewable energy source currently being extensively investigated due to perceived advantages; such as being lightweight, low-cost and because of the unlimited materials resource. The power conversion efficiency of state-of-the-art PSCs has increased dramatically in the past few years, obtained mainly through the development of new electron donor polymers, acceptors, and novel device structures through the use of various electrode interfacial materi...

  18. Material identification in x-ray microscopy and micro CT using multi-layer, multi-color scintillation detectors

    International Nuclear Information System (INIS)

    We demonstrate that a dual-layer, dual-color scintillator construct for microscopic CT, originally proposed to increase sensitivity in synchrotron imaging, can also be used to perform material quantification and classification when coupled with polychromatic illumination. We consider two different approaches to data handling: (1) a data-domain material decomposition whose estimation performance can be characterized by the Cramer–Rao lower bound formalism but which requires careful calibration and (2) an image-domain material classification approach that is more robust to calibration errors. The data-domain analysis indicates that useful levels of SNR (>5) could be achieved in one second or less at typical bending magnet fluxes for relatively large amounts of contrast (several mm path length, such as in a fluid flow experiment) and at typical undulator fluxes for small amount of contrast (tens of microns path length, such as an angiography experiment). The tools introduced could of course be used to study and optimize parameters for a wider range of potential applications. The image domain approach was analyzed in terms of its ability to distinguish different elemental stains by characterizing the angle between the lines traced out in a two-dimensional space of effective attenuation coefficient in the front and back layer images. This approach was implemented at a synchrotron and the results were consistent with simulation predictions. (paper)

  19. Gamma-ray double-layered transmission exposure buildup factors of some engineering materials, a comparative study

    Science.gov (United States)

    Mann, Kulwinder Singh; Heer, Manmohan Singh; Rani, Asha

    2016-08-01

    Comparative study on various deterministic methods and formulae of double layered transmission exposure buildup factors (DLEBF) for point isotropic gamma-ray sources has been performed and the results are provided here. This investigation has been performed on some commonly available engineering materials for the purpose of gamma-ray shielding. In reality, the presence of air around the gamma-ray shield motivated to focus this study on exposure buildup factor (EBF). DLEBF have been computed at four energies viz. 0.5, 1.0, 2.0 and 3.0 MeV for various combinations of the chosen five samples taken two at a time with combined optical thickness up to 8 mean free path (mfp). For the necessary computations for DLEBF, a computer program (BUF-toolkit) has been designed. Comparison of Monte Carlo (EGS4-code) and Geometric Progression (G.P.) fitting point kernel methods were done for DLEBF computation. It is concluded that empirical formula given by Lin and Jiang using EBF computed by G.P. fitting formula is the most accurate and easiest method for DLEBF computations. It was observed that DLEBF values at selected energies for two layered slabs with an orientation (low-Z material followed by high-Z material) were lower than the opposite orientation. For optical thickness up to 8 mfp and chosen energy range (0.5-3.0 MeV), Aluminum-Lime Stone shield, appears to provide the best protection against the gamma-rays.

  20. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.

    Science.gov (United States)

    Sarker, Ashis K; Hong, Jong-Dal

    2012-08-28

    Multilayer assemblies of uniform ultrathin film electrodes with good electrical conductivity and very large surface areas were prepared for use as electrochemical capacitors. A layer-by-layer self-assembly approach was employed in an effort to improve the processability of highly conducting polyaniline (PANi) and chemically modified graphene. The electrochemical properties of the multilayer film (MF-) electrodes, including the sheet resistance, volumetric capacitance, and charge/discharge ratio, were determined by the morphological modification and the method used to reduce the graphene oxide (GO) to reduced graphene oxide (RGO) in the multilayer films. The PANi and GO concentrations could be modulated to control the morphology of the GO monolayer film in the multilayer assemblies. Optical ellipsometry was used to determine the thickness of the GO film in a single layer (1.32 nm), which agreed well with the literature value (~1.3 nm). Hydroiodic acid (HI), hydrazine, or pyrolysis were tested for the reduction of GO to RGO. HI was found to be the most efficient technique for reducing the GO to RGO in the multilayer assemblies while minimizing damage to the virgin state of the acid-doped PANi. Ultimately, the MF-electrode, which could be optimized by fine-tuning the nanostructure and selecting a suitable reduction method, exhibited an excellent volumetric capacitance, good cycling stability, and a rapid charge/discharge rate, which are required for supercapacitors. A MF-electrode composed of 15 PANi/RGO bilayers yielded a volumetric capacitance of 584 F/cm(3) at a current density of 3.0 A/cm(3). Although this value decreased exponentially as the current density increased, approaching a value of 170 F/cm(3) at 100 A/cm(3), this volumetric capacitance is one of the best yet reported for the other carbon-based materials. The intriguing features of the MF-electrodes composed of PANi/RGO multilayer films offer a new microdimensional design for high energy storage devices

  1. Thermal shock problem of a generalized thermoelastic layered composite material with variable thermal conductivity

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The dynamic treatment of one-dimensional generalized thermoelastic problem of heat conduction is made for a layered thin plate which is exposed to a uniform thermal shock taking into account variable thermal conductivity. The basic equations are transformed by Laplace transform and solved by a direct method. The solution was applied for a plate of sandwich structure, which is thermally shocked, and is traction-free in the outer sides. The inverses of Laplace transforms are obtained numerically. The temperature, the stress, and the displacement distributions are represented graphically.

  2. Preparation and Characterization of TiO2/CdS Layers as Potential Photoelectrocatalytic Materials

    OpenAIRE

    Teofil-Danut Silipas; Ioan Bratu; Simina-Virginia Dreve; Ramona-Crina Suciu; Marcela-Corina Rosu; Emil Indrea

    2011-01-01

    The TiO2/CdS semiconductor composites were prepared on
    indium tin oxide (ITO) substrates in di®erent mass proportions via wet-chemical techniques using bi-distilled water, acetyl-acetone, poly-propylene-glycol and Triton X-100 as additives. The composite layers were annealed in normal conditions at the temperature of 450±C, 120 min. with a rate of temperature increasing of 5±C/min. The structural and optical properties of all the TiO2/CdS ayers were ch...

  3. Theory of the axi-symmetric extrusion process of multi-layer materials with a strong plastic nonhomogeneity

    OpenAIRE

    J. Piwnik; A. Patejuk

    2008-01-01

    A novel simplified r hcorctical solution is found lor thc strcss starcs accompanying thc proccss of cxt ri~siono f ma![ i-laycr matcrialsunder rhc conditions af axial symmetry. Thc solution i~ bawd nn ~ h mc n dcl of pcrfcct plastic material satisfying thc Trcsca yicld condition.thc Haar-Karman conditions bcing sntisficd in each layer. Thc laycrs arc chnnctcrizcd by difrercnt yicld limits and stmng plasticnonhomogeneity. In thc ncighhoi~rhoorol f thc interfaces conrinuous variation of rhc yic...

  4. Preliminary study on piezoresistive and piezoelectric properties of a double-layer soft material for tactile sensing

    Directory of Open Access Journals (Sweden)

    Dan He

    2015-06-01

    Full Text Available This paper describes a double-layer simplified sensor unit based on the interesting electromechanical properties of MWNT mixed by polymer composite and PVDF films, which is envisaged to imitate the distributed tactile receptors of human hands so as to help the disabled to recover the basic tactile perception. This paper shows the fabrication and performance research of such a new piezoelectric-piezoresistive composite material which indicates a promising .application in prosthtic hand.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6454

  5. Enhanced Photoactivity of Layered Nanocomposite Materials Containing Rare Earths, Titanium Dioxide and Clay

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The nanocomposite materials containing rare earths, titanium dioxide and clay (RE/TiO2/Clay) were characterized and tested for the photocatalytic decomposition of formaldehyde. The results show that nanocomposite materials prepared by doping appropriate rare earth elements have better photocatalytic properties than that prepared by doping excessive rare earth elements. The photocatalytic mechanism of composite materials was studied by integrating the theory of photocatalysis with experiment results. Because the site of photocatalytic reaction was limited in the interspace of clay, photocatalytic reaction occurred by two steps: firstly, organic molecules dispersed into the interlayers of clay; secondly, organic molecules and photocatalyst of RE/TiO2 occurred photocatalytic reaction, resulting in forming carbon dioxide.

  6. Study of surfaces and surface layers on high temperature materials after short-time thermal loads

    International Nuclear Information System (INIS)

    Being part of the plasma-wall interaction during TOKAMAK operation, erosion- and redeposition processes of First Wall materials substantially influence plasma parameters as well as the properties of the First Wall. An important redeposition process of eroded material is the formation of thin films by atomic condensation. Examinations of First Wall components after TOKAMAK operation lead to the assumption that these thin metallic films tend to agglomerate to small particles under subsequent heat load. In laboratory experiments it is shown that thin metallic films on various substrates can agglomerate under short time high heat fluxes and also under longer lasting lower thermal loads, thus verifying the ''agglomeration hypothesis''. (orig.)

  7. Application of mesoporous SiO2 layer as an insulating layer in high performance hole transport material free CH3NH3PbI3 perovskite solar cells

    Science.gov (United States)

    Cheng, Nian; Liu, Pei; Bai, Sihang; Yu, Zhenhua; Liu, Wei; Guo, Shi-Shang; Zhao, Xing-Zhong

    2016-07-01

    A mesoporous SiO2 layer is successfully introduced into the hole transport material free perovskite solar cells by spin-coating a SiO2 paste onto the TiO2 scaffold layer. This SiO2 layer can act as an insulating layer and effectively inhibit the charge recombination between the TiO2 layer and carbon electrode. The variation of power conversion efficiencies with the thickness of SiO2 layer is studied here. Under optimized SiO2 thickness, perovskite solar cell fabricated on the TiO2/SiO2 film shows a superior power conversion efficiency of ∼12% and exhibits excellent long time stability for 30 days.

  8. Features in Energy Accumulation in Double Layer on the surface of Graphene Material

    CERN Document Server

    Kompan, Mikhail Evgenievich; Maslov, Alexander Yurievich; Kuznetsov, Viktor Petrovich; Krivchenko, Viktor Aleksandrovich

    2015-01-01

    An application of quantum size carbon structures--graphenes as electrodes of supercapacitors is studied. A fundamental limit of energy and power density arising from quantum nature of objects due to singularity in graphene density of states near Dirac point is determined and technical solutions to partially offset the negative factors are considered. The maximum possible specific capacitance of nanostructured electrode materials is determined.

  9. Polycrystalline SiC as source material for the growth of fluorescent SiC layers

    DEFF Research Database (Denmark)

    Kaiser, M.; Hupfer, T.; Jokubavicus, V.;

    2013-01-01

    Polycrystalline doped SiC act as source for fluorescent SiC. We have studied the growth of individual grains with different polytypes in the source material. We show an evolution and orientation of grains of different polytypes in polycrystalline SiC ingots grown by the Physical Vapor Transport...

  10. Automatic identification of single- and/or few-layer thin-film material

    DEFF Research Database (Denmark)

    2014-01-01

    component of the digital image (100) for each colour component, and - determining or estimating (306) a colour component of thin-film material to be identified in the digital image (100) for each colour component by obtaining a pre-determined contrast value (C R; C G; C B) for each colour component and...

  11. Multifunctional-layered materials for creating membrane-restricted nanodomains and nanoscale imaging

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, P., E-mail: prasri@ece.ucsb.edu, E-mail: srinivasan@lifesci.ucsb.edu [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA and Neuroscience Research Institute, University of California, Santa Barbara, California 93106 (United States)

    2016-01-18

    Experimental platform that allows precise spatial positioning of biomolecules with an exquisite control at nanometer length scales is a valuable tool to study the molecular mechanisms of membrane bound signaling. Using micromachined thin film gold (Au) in layered architecture, it is possible to add both optical and biochemical functionalities in in vitro. Towards this goal, here, I show that docking of complementary DNA tethered giant phospholiposomes on Au surface can create membrane-restricted nanodomains. These nanodomains are critical features to dissect molecular choreography of membrane signaling complexes. The excited surface plasmon resonance modes of Au allow label-free imaging at diffraction-limited resolution of stably docked DNA tethered phospholiposomes, and lipid-detergent bicelle structures. Such multifunctional building block enables realizing rigorously controlled in vitro set-up to model membrane anchored biological signaling, besides serving as an optical tool for nanoscale imaging.

  12. Granular and layered ferroelectric–ferromagnetic thin-film nanocomposites as promising materials with high magnetotransmission effect

    Energy Technology Data Exchange (ETDEWEB)

    Akbashev, A.R. [Department of Materials Science, Moscow State University, 119992 Moscow (Russian Federation); Telegin, A.V., E-mail: telegin@imp.uran.ru [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620990 Ekaterinburg (Russian Federation); Kaul, A.R. [Department of Chemistry, Moscow State University, 119992 Moscow (Russian Federation); Sukhorukov, Yu.P. [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620990 Ekaterinburg (Russian Federation)

    2015-06-15

    Epitaxial thin films of granular and layered nanocomposites consisting of ferromagnetic perovskite Pr{sub 1–x}Sr{sub x}MnO{sub 3} and ferroelectric hexagonal LuMnO{sub 3} were grown on ZrO{sub 2}(Y{sub 2}O{sub 3}) substrates using metal-organic chemical vapor deposition (MOCVD). A self-organized growth of the granular composite took place in situ as a result of phase separation of the Pr–Sr–Lu–Mn–O system into the perovskite and hexagonal phases. Optical transmission measurements revealed a large negative magnetotransmission effect in the layered nanocomposite over a wide spectral and temperature range. The granular nanocomposite unexpectedly showed an even larger, but positive, magnetotransmission effect at room temperature. - Highlights: • Thin-film ferromagnetic–ferroelectric nanocomposites have been prepared by MOCVD. • Giant change of optical transparency of nanocomposites in magnetic field was detected. • Positive magnetotransmission in the granular nanocomposite was discovered in the IR. • Negative magnetotransmission in the layered nanocomposite was revealed in the IR. • Ferroelectric–ferromangetic nanocomposite is a promising material for optoelectronics.

  13. The effect of fibre layering pattern in resisting bending loads of natural fibre-based hybrid composite materials

    Directory of Open Access Journals (Sweden)

    Jusoh Muhamad Shahirul Mat

    2016-01-01

    Full Text Available The effect of fibre layering pattern and hybridization on the flexural properties of composite hybrid laminates between natural fibres of basalt, jute and flax with synthetic fibre of E-glass reinforced epoxy have been investigated experimentally. Results showed that the effect fibre layering pattern was highly significant on the flexural strength and modulus, which were strongly dependent on the hybrid configuration between sandwich-like (SL and intercalation (IC sequence of fibre layers. In addition, specific modulus based on the variation densities of the hybrid laminates was used to discover the best combination either basalt, jute or flax with E-glass exhibits superior properties concerning on the strength to weight-ratio. Generally, SL sequence of glass/basalt exhibited superior strength and stiffness compared with glass/jute and glass/flax in resisting bending loads. In terms of hybridization effect, glass/jute was found to be the best combination with E-glass compared to the rest of natural fibres investigated in the present study. Hence, the proper stacking sequences and material selection are among predominant factors that influence on mechanical properties and very crucial in designing composite hybrid system to meet the desired requirements.

  14. Few layered vanadyl phosphate nano sheets-MWCNT hybrid as an electrode material for supercapacitor application

    Science.gov (United States)

    Dutta, Shibsankar; De, Sukanta

    2016-05-01

    It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (- COOH group) and α-Vanadyl phosphates (VOPO42H2O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na2SO4 aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236 F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.

  15. Influence of compliance of the substrate materials on polymerization contraction stress in thin resin composite layers.

    Science.gov (United States)

    Alster, D; Venhoven, B A; Feilzer, A J; Davidson, C L

    1997-02-01

    The present study determined in a laboratory set-up the influence of compliance of the substrate material on polymerisation contraction stress for various thicknesses of bonded dental resin composite films. When the compliance of the tensilometer set-up was increased from 0.029 micron MPa-1 to 0.150 micron MPa-1, the contraction stress in films with a thickness of 100 microns and a diameter of 5.35 mm decreased from 22 to 7 MPa. For the 700 microns samples the stress decreased from 12 to 11 MPa. It was concluded that if compliance from the substrate materials is possible, a thinner resin composite film may effect a more reliable bond.

  16. Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries

    Science.gov (United States)

    Kang, Sun-Ho; Amine, Khalil

    2008-01-01

    A positive electrode active material for lithium-ion rechargeable batteries of general formula Li.sub.1+xNi.sub..alpha.Mn.sub..beta.A.sub..gamma.O.sub.2 and further wherein A is Mg, Zn, Al, Co, Ga, B, Zr, or Ti and 0material is manufactured by employing either a solid state reaction method or an aqueous solution method or a sol-gel method which is followed by a rapid quenching from high temperatures into liquid nitrogen or liquid helium.

  17. Using multi-shell phase change materials layers for cooling a lithium-ion battery

    Directory of Open Access Journals (Sweden)

    Nasehi Ramin

    2016-01-01

    Full Text Available One of the cooling methods in engineering systems is usage of phase change materials. Phase change materials or PCMs, which have high latent heats, are usually used where high energy absorption in a constant temperature is required. This work presents a numerical analysis of PCMs effects on cooling Li-ion batteries and their decrease in temperature levels during intense discharge. In this study, three PCM shells with different thermo-physical specifications located around a battery pack is examined. The results of each possible arrangement are compared together and the best arrangement leading to the lowest battery temperature during discharge is identified. In addition, the recovery time for the system which is the time required for the PCMs to refreeze is investigated.

  18. Critical factors in manufacturing multi-layer tablets--assessing material attributes, in-process controls, manufacturing process and product performance.

    Science.gov (United States)

    Vaithiyalingam, Sivakumar R; Sayeed, Vilayat A

    2010-10-15

    Advancement in the fields of material science, analytical methodologies, instrumentation, automation, continuous monitoring, feed forward/feed back control and comprehensive data collection have led to continual improvement of pharmaceutical tablet manufacturing technology, notably the multi-layer tablets. This review highlights the material attributes, formulation design, process parameters that impact the performance, and manufacturability of the multi-layer tablets. It also highlights on critical-to-quality elements that needs to be addressed in the regulatory submission.

  19. Atomic layer deposition of amorphous iron phosphates on carbon nanotubes as cathode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    A non-aqueous approach was developed to synthesize iron phosphate cathode materials by the atomic layer deposition (ALD) technique. Deposition of iron phosphate thin films was achieved on nitrogen-doped carbon nanotubes (NCNTs) by combining ALD subcycles of Fe2O3 (ferrocene-ozone) and POx (trimethyl phosphate-water) at 200 – 350 °C. The thickness of iron phosphate thin films depends linearly on the ALD cycle, indicating their self-limiting growth behavior. The growth per cycle of iron phosphate thin films was determined to be ∼ 0.2, 0.4, 0.6, and 0.5 Å, at 200, 250, 300, and 350 °C, respectively. Characterization by SEM, TEM, and HRTEM techniques revealed uniform and conformal coating of amorphous iron phosphates on the surface of NCNTs. XANES analysis confirmed Fe−O−P bonding in the iron phosphates prepared by ALD. Furthermore, electrochemical measurement verified the high electrochemical activity of the amorphous iron phosphate as a cathode material in lithium-ion batteries. It is expected that the amorphous iron phosphate prepared by this facile and cost-effective ALD approach will find applications in the next generation of lithium-ion batteries and thin film batteries as either cathode materials or surface coating materials

  20. Positron annihilation lifetime spectroscopy (PALS) application in metal barrier layer integrity for porous low- k materials

    CERN Document Server

    Simon, Lin; Gidley, D W; Wetzel, J T; Monnig, K A; Ryan, E T; Simon, Jang; Douglas, Yu; Liang, M S; En, W G; Jones, E C; Sturm, J C; Chan, M J; Tiwari, S C; Hirose, M

    2002-01-01

    Positron Annihilation Lifetime Spectroscopy (PALS) is a useful tool to pre-screen metal barrier integrity for Si-based porous low-k dielectrics. Pore size of low-k, thickness of metal barrier Ta, positronium (Ps) leakage from PALS, trench sidewall morphology, electrical test from one level metal (1LM) pattern wafer and Cu diffusion analysis were all correlated. Macro-porous low-k (pore size >=200 AA) and large scale meso-porous low-k (>50~200 AA) encounter both Ps leakage and Cu diffusion into low-k dielectric in the 0.25 mu mL/0.3 mu mS structures when using SEMATECH in-house PVD Ta 250 AA as barrier layer. For small scale meso-porous (>20~50 AA) and micro- porous (<=20 AA) low-k, no Ps leakage and no Cu diffusion into low-k were observed even with PVD Ta 50 AA, which is proved also owing to sidewall densification to seal all sidewall pores due to plasma etch and ash. For future technology, smaller pore size of porous Si-based low-k (=<50 AA) will be preferential for dense low-k like trench sidewall to...

  1. Carbon materials with quasi-graphene layers: The dielectric, percolation properties and the electronic transport mechanism

    Institute of Scientific and Technical Information of China (English)

    Lu Ming-Ming; Yuan Jie; Wen Bo; Liu Jia; Cao Wen-Qiang; Cao Mao-Sheng

    2013-01-01

    We investigate the dielectric properties of muhi-walled carbon nanotubes (MWCNTs) and graphite filling in SiO2 with the filling concentration of 2-20 wt.% in the frequency range of 102-107 Hz.M WCNTs and graphite have general electrical properties and percolation phenomena owing to their quasi-structure made up of graphene layers.Both permittivity ε and conductivity σ exhibit jumps around the percolation threshold.Variations of dielectric properties of the composites are in agreement with the percolation theory.All the percolation phenomena are determined by hopping and migrating electrons,which are attributed to the special electronic transport mechanism of the fillers in the composites.However,the twin-percolation phenomenon exists when the concentration of MWCNTs is between 5-10 wt.% and 15-20 wt.% in the MWCNTs/SiO2 composites,while in the graphite/SiO2 composites,there is only one percolation phenomenon in the graphite concentration of 10-15 wt.%.The unique twin-percolation phenomenon of MWCNTs/SiO2 is described and attributed to the electronic transfer mechanism,especially the network effect of MWCNTs in the composites.The network formation plays an essential role in determining the second percolation threshold of MWCNTs/SiO2.

  2. A sacrificial millipede altruistically protects its swarm using a drone blood enzyme, mandelonitrile oxidase.

    Science.gov (United States)

    Ishida, Yuko; Kuwahara, Yasumasa; Dadashipour, Mohammad; Ina, Atsutoshi; Yamaguchi, Takuya; Morita, Masashi; Ichiki, Yayoi; Asano, Yasuhisa

    2016-01-01

    Soldiers of some eusocial insects exhibit an altruistic self-destructive defense behavior in emergency situations when attacked by large enemies. The swarm-forming invasive millipede, Chamberlinius hualienensis, which is not classified as eusocial animal, exudes irritant chemicals such as benzoyl cyanide as a defensive secretion. Although it has been thought that this defensive chemical was converted from mandelonitrile, identification of the biocatalyst has remained unidentified for 40 years. Here, we identify the novel blood enzyme, mandelonitrile oxidase (ChuaMOX), which stoichiometrically catalyzes oxygen consumption and synthesis of benzoyl cyanide and hydrogen peroxide from mandelonitrile. Interestingly the enzymatic activity is suppressed at a blood pH of 7, and the enzyme is segregated by membranes of defensive sacs from mandelonitrile which has a pH of 4.6, the optimum pH for ChuaMOX activity. In addition, strong body muscle contractions are necessary for de novo synthesis of benzoyl cyanide. We propose that, to protect its swarm, the sacrificial millipede also applies a self-destructive defense strategy-the endogenous rupturing of the defensive sacs to mix ChuaMOX and mandelonitrile at an optimum pH. Further study of defensive systems in primitive arthropods will pave the way to elucidate the evolution of altruistic defenses in the animal kingdom. PMID:27265180

  3. Hydrogel Composites Containing Sacrificial Collapsed Hollow Particles as Dual Action pH-Responsive Biomaterials.

    Science.gov (United States)

    Pafiti, Kyriaki; Cui, Zhengxing; Adlam, Daman; Hoyland, Judith; Freemont, Anthony J; Saunders, Brian R

    2016-07-11

    In this study hydrogel composites are investigated that contain sacrificial pH-responsive collapsed hollow particles (CHPs) entrapped within a poly(acrylamide) (PAAm) network. The CHPs were prepared using a scalable (mainly) water-based method and had a bowl-like morphology that was comparable to that of red blood cells. The CHPs were constructed from poly(methyl methacrylate-co-methacrylic acid), which is a pH-responsive copolymer. The PAAm/CHP composite morphology was probed with optical microscopy, CLSM and SEM. These data showed the CHPs were dispersed throughout the PAAm network. Inclusion of the CHPs within the gel composites increased the modulus in a tunable manner. The CHPs fragmented at pH values greater than the pKa of the particles, and this process decreased the gel modulus to values similar to that of the parent PAAm hydrogel. CHPs containing a model drug were used to demonstrate pH-triggered release from PAAm/CHP and the release kinetics obeyed Fickian diffusion. The composite gels had low cytotoxicity as evidenced by Live/Dead and MTT assays. The hydrogel composites showed dual action pH-triggered softening with simultaneous drug release which occurred without a volume increase. The hydrogel composites may have potential application as enteric gels or for intra-articular drug delivery. PMID:27267971

  4. Electrochemical treatment of Orange II dye solution-Use of aluminum sacrificial electrodes and floc characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mollah, M. Yousuf A. [Department of Chemistry, University of Dhaka, Dhaka-1000 (Bangladesh); Gomes, Jewel A.G., E-mail: jewel.gomes@lamar.edu [Dan F. Smith Department of Chemical Engineering, Lamar University, P.O. Box 10053, Beaumont, TX 77710 (United States); Das, Kamol K.; Cocke, David L. [Gill Chair of Chemical Engineering, Lamar University, P.O. Box 10053, Beaumont, TX 77710 (United States)

    2010-02-15

    Electrocoagulation (EC) of Orange II dye in a flow through cell with aluminum as sacrificial electrodes was carried out under varying conditions of dye concentration, current density, flow rate, conductivity, and the initial pH of the solution in order to optimize the operating parameters for maximum benefits. Maximum removal efficiency of 94.5% was obtained at the following conditions: dye concentration = 10 ppm, current density = 160 A/m{sup 2}, initial pH 6.5, conductance = 7.1 mS/cm, flow rate = 350 mL/min, and concentration of added NaCl = 4.0 g/L of dye solution. The EC-floc was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy, and powder X-ray diffraction techniques. The removal mechanism has been proposed that is in compliance with the Pourbaix diagram, solubility curve of aluminum oxides/hydroxides, and physico-chemical properties of the EC-floc.

  5. Wafer-scale epitaxial lift-off of optoelectronic grade GaN from a GaN substrate using a sacrificial ZnO interlayer

    Science.gov (United States)

    Rajan, Akhil; Rogers, David J.; Ton-That, Cuong; Zhu, Liangchen; Phillips, Matthew R.; Sundaram, Suresh; Gautier, Simon; Moudakir, Tarik; El-Gmili, Youssef; Ougazzaden, Abdallah; Sandana, Vinod E.; Teherani, Ferechteh H.; Bove, Philippe; Prior, Kevin A.; Djebbour, Zakaria; McClintock, Ryan; Razeghi, Manijeh

    2016-08-01

    Full 2 inch GaN epilayers were lifted off GaN and c-sapphire substrates by preferential chemical dissolution of sacrificial ZnO underlayers. Modification of the standard epitaxial lift-off (ELO) process by supporting the wax host with a glass substrate proved key in enabling full wafer scale-up. Scanning electron microscopy and x-ray diffraction confirmed that intact epitaxial GaN had been transferred to the glass host. Depth-resolved cathodoluminescence (CL) analysis of the bottom surface of the lifted-off GaN layer revealed strong near-band-edge (3.33 eV) emission indicating a superior optical quality for the GaN which was lifted off the GaN substrate. This modified ELO approach demonstrates that previous theories proposing that wax host curling was necessary to keep the ELO etch channel open do not apply to the GaN/ZnO system. The unprecedented full wafer transfer of epitaxial GaN to an alternative support by ELO offers the perspective of accelerating industrial adoption of the expensive GaN substrate through cost-reducing recycling.

  6. Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.

    Science.gov (United States)

    Ling, Xi; Fang, Wenjing; Lee, Yi-Hsien; Araujo, Paulo T; Zhang, Xu; Rodriguez-Nieva, Joaquin F; Lin, Yuxuan; Zhang, Jin; Kong, Jing; Dresselhaus, Mildred S

    2014-06-11

    Realizing Raman enhancement on a flat surface has become increasingly attractive after the discovery of graphene-enhanced Raman scattering (GERS). Two-dimensional (2D) layered materials, exhibiting a flat surface without dangling bonds, were thought to be strong candidates for both fundamental studies of this Raman enhancement effect and its extension to meet practical applications requirements. Here, we study the Raman enhancement effect on graphene, hexagonal boron nitride (h-BN), and molybdenum disulfide (MoS2), by using the copper phthalocyanine (CuPc) molecule as a probe. This molecule can sit on these layered materials in a face-on configuration. However, it is found that the Raman enhancement effect, which is observable on graphene, hBN, and MoS2, has different enhancement factors for the different vibrational modes of CuPc, depending strongly on the surfaces. Higher-frequency phonon modes of CuPc (such as those at 1342, 1452, 1531 cm(-1)) are enhanced more strongly on graphene than that on h-BN, while the lower frequency phonon modes of CuPc (such as those at 682, 749, 1142, 1185 cm(-1)) are enhanced more strongly on h-BN than that on graphene. MoS2 demonstrated the weakest Raman enhancement effect as a substrate among these three 2D materials. These differences are attributed to the different enhancement mechanisms related to the different electronic properties and chemical bonds exhibited by the three substrates: (1) graphene is zero-gap semiconductor and has a nonpolar C-C bond, which induces charge transfer (2) h-BN is insulating and has a strong B-N bond, while (3) MoS2 is semiconducting with the sulfur atoms on the surface and has a polar covalent bond (Mo-S) with the polarity in the vertical direction to the surface. Therefore, the different Raman enhancement mechanisms differ for each material: (1) charge transfer may occur for graphene; (2) strong dipole-dipole coupling may occur for h-BN, and (3) both charge transfer and dipole-dipole coupling may

  7. Characterization of dielectric materials in thin layers for the development of S.O.I. (Silicon on Insulator) substrates

    International Nuclear Information System (INIS)

    This thesis deals with the characterization of oxide layer placed inside S.O.I. substrates and submitted to irradiation. This type of material is used for the development of hardened electronic components, that is to say components able to be used in a radiative environment. The irradiation induces charges (electrons or holes) in the recovered oxide. A part of these charges is trapped which leads to changes of the characteristics of the electronic components made on these substrates. The main topic of this study is the characterization of trapping properties of recovered oxides and more particularly of 'Unibond' material carried out with a new fabrication process: the 'smart-cut' process. This work is divided into three parts: - study with one carrier: this case is limited to low radiation doses where is only observed holes trapping. The evolution of the physical and chemical properties of the 'Unibond' material recovered oxide has been revealed, this evolution being due to the fabrication process. - Study with two carriers: in this case, there is trapping of holes and electrons. This type of trapping is observed in the case of strong radiation doses. A new type of electrons traps has been identified with the 'Unibond' material oxide. The transport and the trapping of holes and electrons have been studied in the case of transient phenomena created by short radiative pulses. This study has been carried out using a new measurement method. - Study with three carriers: here are added to holes and electrons the protons introduced in the recovered oxide by the annealing under hydrogen. These protons are movable when they are submitted to the effect of an electric field and they induce a memory effect according to their position in the oxide. These different works show that the 'Unibond' material is a very good solution for the future development of S.O.I. (author)

  8. Gate-tunable diode and photovoltaic effect in an organic-2D layered material p-n junction.

    Science.gov (United States)

    Vélez, Saül; Ciudad, David; Island, Joshua; Buscema, Michele; Txoperena, Oihana; Parui, Subir; Steele, Gary A; Casanova, Fèlix; van der Zant, Herre S J; Castellanos-Gomez, Andres; Hueso, Luis E

    2015-10-01

    The semiconducting p-n junction is a simple device structure with great relevance for electronic and optoelectronic applications. The successful integration of low-dimensional materials in electronic circuits has opened the way forward for producing gate-tunable p-n junctions. In that context, we present here an organic (Cu-phthalocyanine)-2D layered material (MoS2) hybrid p-n junction with both gate-tunable diode characteristics and photovoltaic effect. Our proof-of-principle devices show multifunctional properties with diode rectifying factors of up to 10(4), while under light exposure they exhibit photoresponse with a measured external quantum efficiency of ∼11%. As for their photovoltaic properties, we found open circuit voltages of up to 0.6 V and optical-to-electrical power conversion efficiency of 0.7%. The extended catalogue of known organic semiconductors and two-dimensional materials offer the prospect for tailoring the properties and the performance of the resulting devices, making organic-2D p-n junctions promising candidates for future technological applications.

  9. Analysis of tenth-value-layers for common shielding materials for a robotically mounted stereotactic radiosurgery machine.

    Science.gov (United States)

    Rodgers, James E

    2007-04-01

    Tenth-value-layers (TVLs) for a 6 MV stereotactic radiosurgery (SRS) x-ray beam have been computed using Monte Carlo methods for radiation transport simulation. The first and equilibrium TVLs were determined in the three most common building materials used in radiation therapy vault construction: ordinary concrete, lead, and steel (iron). In contrast to broad-beam 6 MV TVL data found in the literature, the SRS TVLs can change rapidly with the size of the radiation field incident on the barrier. This research has investigated characteristics of TVLs as a function of field size (diameter) at the barrier for all materials, with special attention given to the TVL properties in iron. The x-ray spectrum used to perform these simulations was generated for the CyberKnife accelerator with the BEAMnrc Monte Carlo code. Using this spectrum as input to the MCNP5 Monte Carlo code, predicted tissue-maximum-ratio (TMR) values for a 6-cm-diameter field (at 80 cm from the target) were benchmarked against measured TMR data. The MCNP5 code was used to simulate all barrier transmissions, keeping the standard error of each data point below 1% of the mean. Results compare very well with previous measured concrete TVLs and also with published broad-beam 6 MV TVL data for all three barrier materials.

  10. High-performance lithium-rich layered oxide materials: Effects of chelating agents on microstructure and electrochemical properties

    International Nuclear Information System (INIS)

    The mechanisms and effects of three typical chelating agents, namely glucose, citric acid and sucrose on the sol-gel synthesis process, electrochemical degradation and structural evolution of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 (LLMO) materials are systematically compared for the first time. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis indicate that the sample synthesized from sucrose owns well structure, homogenous distribution, low Ni3+ concentration and good surface structural stability during cycling, respectively. Electrochemical tests further prove that the LLMO material obtained from sucrose maintains 258.4 mAh g−1 with 94.8% capacity retention after 100 cycles at 0.2 C. The superior electrochemical performance can be ascribed to the exceptional complexing mechanism of sucrose, compared to those of the glucose and citric acid. Namely, one mole sucrose can be hydrolyzed into two different monosaccharides and further chelates three M (Li, Ni, Co and Mn) ions to form a more uniform ion-chelated matrix during sol-gel process. This discovery is an important step towards understanding the selection criterion of chelating agents for sol-gel method, that chelating agent with excellent complexing capability is beneficial to the distribution, structural stability and electrochemical properties of advanced lithium-rich layered materials

  11. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    Science.gov (United States)

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0materials and their use in electrochemical devices are also described.

  12. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor

    Science.gov (United States)

    Bhattacharjya, Dhrubajyoti; Yu, Jong-Sung

    2014-09-01

    Cow dung is one of the most abundant wastes generated on earth and has been traditionally used as fertilizer and fuel in most of the developing countries. In this study activated carbon is synthesized from cow dung by a modified chemical activation method, where partially carbonized cow dung is treated with KOH in different ratio. The synthesized activated carbon possesses irregular surface morphology with high surface area in the range of 1500-2000 m2 g-1 with proper amount of micropore and mesopore volume. In particular, we demonstrate that the surface morphology and porosity parameters change with increase in KOH ratio. These activated carbons are tested as electrode material in two-electrode symmetric supercapacitor system in non-aqueous electrolyte and found to exhibit high specific capacitance with excellent retention of it at high current density and for long term operation. In particular, the activated carbon synthesized at 2:1 ratio of KOH and the pre-carbonized char shows the best performance with specific capacitance of 124 F g-1 at 0.1 A g-1 and retains up to 117 F g-1 at 1.0 A g-1 current density. The performance is attributed to high surface area along with optimum amount of micropore and mesopore volume.

  13. Honeycomb core material for sandwich construction - with common hexagonal walls bonded by thermoplastic resin and free walls carrying layer of resin and masking agent

    NARCIS (Netherlands)

    unknown

    1991-01-01

    Abstract of NL 8902116 (A) In a honeycomb core material for a sandwich construction, the common hexagonal walls are bonded together by a thermoplastic resin, and the free hexagonal walls carry a layer of the same resin and also a masking agent. - A number of plates of raw material are given strips

  14. Si-C linked oligo(ethylene glycol) layers in silicon-based photonic crystals: optimization for implantable optical materials.

    Science.gov (United States)

    Kilian, Kristopher A; Böcking, Till; Gaus, Katharina; Gal, Michael; Gooding, J Justin

    2007-07-01

    Porous silicon has shown potential for various applications in biology and medicine, which require that the material (1) remain stable for the length of the intended application and (2) resist non-specific adsorption of proteins. Here we explore the efficacy of short oligo(ethylene glycol) moieties incorporated into organic layers via two separate strategies in achieving these aims. In the first strategy the porous silicon structure was modified in a single step via hydrosilylation of alpha-oligo(ethylene glycol)-omega-alkenes containing three or six ethylene glycol units. The second strategy employs two steps: (1) hydrosilylation of succinimidyl-10-undecenoate and (2) coupling of an amino hexa(ethylene glycol) species. The porous silicon photonic crystals modified by the two-step strategy displayed greater stability relative to the single step procedure when exposed to conditions of physiological temperature and pH. Both strategies produced layers that resist non-specific adsorption of proteins as determined with fluorescently labelled bovine serum albumin. The antifouling behaviour and greater stability to physiological conditions provided by this chemistry enhances the suitability of porous silicon for biomaterials applications. PMID:17428533

  15. Enhancement of electrochemical performance with Zn-Al-Bi layered hydrotalcites as anode material for Zn/Ni secondary battery

    International Nuclear Information System (INIS)

    Bi-doped Zn-Al layered double hydroxides (Zn-Al-Bi LDH) are prepared by the constant pH hydrothermal method and proposed as a novel anodic material in Zn/Ni secondary cells. The Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) images reveal that the as-prepared samples are well-crystallized and hexagon layer structure. The electrochemical performances of the Zn-Al-Bi LDH were analyzed by cyclic voltammetry, tafel plot, electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge tests. Compared with Zn-Al LDH, Zn-Al-Bi LDH with different Zn/Al/Bi molar rations, especially the sample of Zn/Al/Bi = 3:0.8:0.2 (molar ration) have higher discharge capacity and more stable cycling performances. Cyclic voltammograms clearly illuminated that the Zn-Al-Bi LDHs could decrease polarization, maintain the electrochemical activity, and enhance the discharge capacity of Zn-Al LDH. This battery can undergo at least 800 charge-discharge cycles at constant current of 1C without dendrite and short circuits. The discharge capacity of Zn-Al-Bi LDH after the 800th cycle remains about 380 mAh g−1 and the hexagonal crystal structure have no much changed after cycles

  16. Atomic layer deposition of environmentally benign SnTiO{sub x} as a potential ferroelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Siliang; Selvaraj, Sathees Kannan [Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Choi, Yoon-Young; Hong, Seungbum [Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Nakhmanson, Serge M. [Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Takoudis, Christos G., E-mail: takoudis@uic.edu [Department of Bioengineering and Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States)

    2016-01-15

    Inspired by the need to discover environmentally friendly, lead-free ferroelectric materials, here the authors report the atomic layer deposition of tin titanate (SnTiO{sub x}) aiming to obtain the theoretically predicted perovskite structure that possesses ferroelectricity. In order to establish the growth conditions and probe the film structure and ferroelectric behavior, the authors grew SnTiO{sub x} films on the commonly used Si(100) substrate. Thin films of SnTiO{sub x} have been successfully grown at a deposition temperature of 200 °C, with a Sn/Ti atomic layer deposition (ALD) cycle ratio of 2:3 and postdeposition heat treatments under different conditions. X-ray photoelectron spectroscopy revealed excellent composition tunability of ALD. X-ray diffraction spectra suggested anatase phase for all films annealed at 650 and 350 °C, with peak positions shifted toward lower 2-theta angles indicating enlarged unit cell volume. The film annealed in O{sub 2} at 350 °C exhibited piezoresponse amplitude and phase hysteresis loops, indicative of the existence of switchable polarization.

  17. Understanding Voltage Decay in Lithium-Rich Manganese-Based Layered Cathode Materials by Limiting Cutoff Voltage.

    Science.gov (United States)

    Yang, Jingsong; Xiao, Lifen; He, Wei; Fan, Jiangwei; Chen, Zhongxue; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2016-07-27

    The effect of the cutoff voltages on the working voltage decay and cyclability of the lithium-rich manganese-based layered cathode (LRMO) was investigated by electrochemical measurements, electrochemical impedance spectroscopy, ex situ X-ray diffraction, transmission electron microscopy, and energy dispersive spectroscopy line scan technologies. It was found that both lower (2.0 V) and upper (4.8 V) cutoff voltages cause severe voltage decay with cycling due to formation of the spinel phase and migration of the transition metals inside the particles. Appropriate cutoff voltage between 2.8 and 4.4 V can effectively inhibit structural variation as the electrode demonstrates 92% capacity retention and indiscernible working voltage decay over 430 cycles. The results also show that phase transformation not only on high charge voltage but also on low discharge voltage should be addressed to obtain highly stable LRMO materials. PMID:27383918

  18. Ballistic impact properties of mixed multi-layered amorphous surface alloyed materials fabricated by high-energy electron-beam irradiation

    International Nuclear Information System (INIS)

    The objective of this study is to investigate ballistic impact properties of multi-layered amorphous surface alloyed materials fabricated by high-energy electron-beam irradiation. The mixture of Zr-based amorphous alloy powders and LiF+MgF2 flux powders was deposited on a Ti alloy substrate, and then electron beam was irradiated on this powder mixture to fabricate an one-layered surface alloyed material. On top of this layer, the powder mixture was deposited again and then irradiated with electron beam whose beam current was decreased to fabricate the multi-layered surface alloyed material. In the mixed multi-layered surface alloyed materials fabricated with LM1 alloy powders and LM2 or LM10 alloy powders, the surface region consisted of amorphous phases, together with a small amount of crystalline particles, whereas the center region was complicatedly composed of amorphous phases, crystallized phases, and dendritic β phases. Since the surface region mostly composed of amorphous matrix was quite hard, the alloyed materials sufficiently blocked the travel of a projectile. When cracks formed at the surface region propagated into the center region, the formation of many cracks or debris was accelerated, which could beneficially work for absorbing the ballistic impact energy, thereby leading to the higher ballistic impact properties than the surface alloyed materials fabricated with LM1 or LM2 alloy powders

  19. A functionalized phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild process for heavy metal uptake

    Energy Technology Data Exchange (ETDEWEB)

    Daikopoulos, Chris [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Bourlinos, Athanasios B. [Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, Athens 15310 (Greece); Georgiou, Yiannis [Laboratory of Physical Chemistry, Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, Agrinio 30100 (Greece); Deligiannakis, Yiannis, E-mail: ideligia@cc.uoi.gr [Laboratory of Physical Chemistry, Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, Agrinio 30100 (Greece); Zboril, Radek [Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University, Olomouc 77146 (Czech Republic); Karakassides, Michael A. [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece)

    2014-04-01

    Highlights: • Novel phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild xerogel process. • Surface Complexation Modeling reveals that PSLM bears 2 types of functional groups able to bind heavy metal. • Maximum metal uptake capacities were found 2.72 mmol g{sup −1} for Cu{sup 2+}, 1.67 mmol g{sup −1} for Pb{sup 2+} and 1.00 mmol g{sup −1} for Cd{sup 2+} at pH 7. • EPR spectroscopy reveals local coordination environment for Cu{sup 2+} ions. - Abstract: A phosphonate-rich organosilica layered hybrid material (PSLM) made of 3-(trihydroxysilyl)propyl methylphosphonate, monosodium salt, as the single silica source, has been obtained from its aqueous solution through a xerogel process and mild thermal aging. The method is simple, affording bulk quantities of powdered PSLM in a single-step. The hybrid is stable in water and possesses a high content of phosphonate groups fixed on the solid matrix. In addition, PSLM shows good thermal stability, which exceeds 300 °C in air. The material was characterized using SEM, TEM, XRD, FT-IR and TGA techniques. Potentiometric titrations show that PSLM bears high-surface density of phosphonate groups (3 mmol g{sup −1}). As a result, the material displays high metal uptake capacity for heavy metal ions such as Cu{sup 2+} (2.72 mmol g{sup −1}), Pb{sup 2+} (1.67 mmol g{sup −1}) and Cd{sup 2+} (1.00 mmol g{sup −1}) at neutral pH values e.g. the pH of natural waters. Detailed theoretical modeling using a Surface Complexation Model combined with Electron Paramagnetic Resonance (EPR) spectroscopy shows that the surface distribution of surface bound Cu{sup 2+} ions is rather homogeneous e.g. copper-binding phosphonate sites are arranged in average distances 5–8 Å.

  20. The properties of thickness-twist (TT) wave modes in a rotated Y-cut quartz plate with a functionally graded material top layer.

    Science.gov (United States)

    Wang, Bin; Qian, Zhenghua; Li, Nian; Sarraf, Hamid

    2016-01-01

    We propose the use of thickness-twist (TT) wave modes of an AT-cut quartz crystal plate resonator for measurement of material parameters, such as stiffness, density and material gradient, of a functionally graded material (FGM) layer on its surface, whose material property varies exponentially in thickness direction. A theoretical analysis of dispersion relations for TT waves is presented using Mindlin's plate theory, with displacement mode shapes plotted, and the existence of face-shear (FS) wave modes discussed. Through numerical examples, the effects of material parameters (stiffness, density and material gradient) on dispersion curves, cutoff frequencies and mode shapes are thoroughly examined, which can act as a theoretical reference for measurements of unknown properties of FGM layer. PMID:26254981

  1. A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues.

    Science.gov (United States)

    Hibbert, Sarah A; Watson, Rachel E B; Gibbs, Neil K; Costello, Patrick; Baldock, Clair; Weiss, Anthony S; Griffiths, Christopher E M; Sherratt, Michael J

    2015-08-01

    as a consequence of an evolutionary pressure to express sacrificial protein sunscreens which reduce UVR penetration and hence mitigate tissue damage.

  2. Long-term performance of different aluminum alloy designs as sacrificial anodes for rebars

    Directory of Open Access Journals (Sweden)

    de Rincón, O.

    2003-12-01

    Full Text Available This paper presents the performance of various cathodic-protection designs using Aluminum alloys to protect prestressed piles. The results obtained with different system designs (bracelete type-Al/Zn/In alloy, thermosprayed aluminum (3-year evaluation and conventional Al/Zn/In anocies in an epoxy-painted steel bracelet (12-year evaluation, indicated that all of these systems may be used as sacrificial anodes for pile protection. However, the thermosprayed aluminum type can not be used in prestressed concrete piles because the very negative potentials ( < -1100 mV vs. Cu/CuSO4 they supply to the reinforcement could lead to hydrogen embrittlement.

    Este trabajo presenta la realización de varios diseños de protección catódica utilizando aleaciones de aluminio para la protección de pilotes pretensados. Los resultados obtenidos con diferentes diseños (aleación de Al/Zn/In, tipo brazalete y aluminio termorociado (3 años de evaluación y ánodos convencionales de Al/Zn/In colocados en un brazalete de acero pintado con epoxy (12 años de evaluación, indicaron que todos estos sistemas pueden ser utilizados como ánodos de sacrificio para la protección de los pilotes. Sin embargo, el sistema con aluminio termorociado no puede ser utilizado en pilotes de acero pretensado debido al potencial muy negativo alcanzado por la armadura (<-1100 mV vs Cu/CuSO4, lo cual podría inducir a daños por hidrógeno.

  3. XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO2 thin films to produce a new hybrid material coating

    Science.gov (United States)

    Drevet, R.; Dragoé, D.; Barthés-Labrousse, M. G.; Chaussé, A.; Andrieux, M.

    2016-10-01

    This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO2) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO2 layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.

  4. Microwave Absorption Properties of Double-Layer RADAR Absorbing Materials Based on Doped Barium Hexaferrite/TiO2/Conducting Carbon Black

    Directory of Open Access Journals (Sweden)

    Sukanta Das

    2014-01-01

    Full Text Available In this report, we demonstrate microwave absorption properties of barium hexaferrite, doped barium hexaferrite, titanium dioxide and conducting carbon black based RADAR absorbing material for stealth application. Double-layer absorbers are prepared with a top layer consisting of 30% hexaferrite and 10% titanium dioxide while the bottom layer composed of 30% hexaferrite and 10% conducting carbon black, embedded in chloroprene matrix. The top and bottom layers are prepared as impedance matching layer and conducting layer, respectively, with a total thickness of 2 mm. Microwave absorption properties of all the composites were analyzed in X-band region. Maximum reflection loss of −32 dB at 10.64 GHz was observed for barium hexaferrite based double-layer absorber whereas for doped barium hexaferrite based absorber the reflection loss was found to be −29.56 dB at 11.7 GHz. A consistence reflection loss value (>−24 dB was observed for doped barium hexaferrite based RADAR absorbing materials within the entire bandwidth.

  5. Materials based on carbon-filled porous layers of PVC cyclam derivatives cross-linked with the surfaces of asbestos fabric fibers

    Science.gov (United States)

    Tzivadze, A. Yu.; Fridman, A. Ya.; Morozova, E. M.; Sokolova, N. P.; Voloshchuk, A. M.; Petukhova, G. A.; Bardishev, I. I.; Gorbunov, A. M.; Novikov, A. K.; Polyakova, I. Ya.; Titova, V. N.; Yavich, A. A.; Petrova, N. V.

    2016-08-01

    The synthesis of bilayer materials with porous upper layers composed of PVC hydroxyethylcyclam derivatives filled with carbon and a layer consisting of hydroxyethylcyclam, cross-linked via Si-O-C groups with the silica chains of a developed surface of asbestos fabric, is described. The aza-crown groups in these materials are bound with aqua complexes of H2SO4 or NaOH. The structure of the materials is examined, their adsorption characteristics are determined, and the rate of motion of H+ or OH- ions in electrochemical bridges is measured, while the formation of H2 and O2 in their cathodic and anodic polarization is determined as a function of voltage. It is shown that the upper layer of these materials is adsorption-active and electronand H+- or OH-- conductive, while the bottom layer is only H+- or OH-- conductive; through it, the upper layer is supplied with the H+ or OH- ions needed for the regeneration of the aqua complexes broken down to H2 and O2 on carbon particles.

  6. Hollow microneedles for intradermal injection fabricated by sacrificial micromolding and selective electrodeposition.

    Science.gov (United States)

    Norman, James J; Choi, Seong-O; Tong, Nhien T; Aiyar, Avishek R; Patel, Samirkumar R; Prausnitz, Mark R; Allen, Mark G

    2013-04-01

    Limitations with standard intradermal injections have created a clinical need for an alternative, low-cost injection device. In this study, we designed a hollow metal microneedle for reliable intradermal injection and developed a high-throughput micromolding process to produce metal microneedles with complex geometries. To fabricate the microneedles, we laser-ablated a 70 μm × 70 μm square cavity near the tip of poly(lactic acid) (PLA) microneedles. The master structure was a template for multiple micromolded poly(lactic acid-co-glycolic acid) (PLGA) replicas. Each replica was sputtered with a gold seed layer with minimal gold deposited in the cavity due to masking effects. In this way, nickel was electrodeposited selectively outside of the cavity, after which the polymer replica was dissolved to produce a hollow metal microneedle. Force-displacement tests showed the microneedles, with 12 μm thick electrodeposition, could penetrate skin with an insertion force 9 times less than their axial failure force. We injected fluid with the microneedles into pig skin in vitro and hairless guinea pig skin in vivo. The injections targeted 90 % of the material within the skin with minimal leakage onto the skin surface. We conclude that hollow microneedles made by this simple microfabrication method can achieve targeted intradermal injection.

  7. A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors.

    Science.gov (United States)

    Lim, Eunho; Jo, Changshin; Lee, Jinwoo

    2016-04-21

    In recent years, porous materials have attracted significant attention in various research fields because of their structural merits. In particular, well-designed mesoporous structures with two- or three-dimensionally interconnected pores have been recognized as electrode materials of particular interest for achieving high-performance electrochemical capacitors (ECs). In this mini review, recent progress in the design of mesoporous electrode materials for ECs, from electric double-layer capacitors (EDLCs) and pseudocapacitors (PCs) to hybrid supercapacitors (HSCs), and research challenges for the development of new mesoporous electrode materials has been discussed. PMID:27020465

  8. Sodium montmorillonite/amine-containing drugs complexes: new insights on intercalated drugs arrangement into layered carrier material.

    Directory of Open Access Journals (Sweden)

    Murilo L Bello

    Full Text Available Layered drug delivery carriers are current targets of nanotechnology studies since they are able to accommodate pharmacologically active substances and are effective at modulating drug release. Sodium montmorillonite (Na-MMT is a clay that has suitable properties for developing new pharmaceutical materials due to its high degree of surface area and high capacity for cation exchange. Therefore Na-MMT is a versatile material for the preparation of new drug delivery systems, especially for slow release of protonable drugs. Herein, we describe the intercalation of several amine-containing drugs with Na-MMT so we can derive a better understanding of how these drugs molecules interact with and distribute throughout the Na-MMT interlayer space. Therefore, for this purpose nine sodium montmorillonite/amine-containing drugs complexes (Na-MMT/drug were prepared and characterized. In addition, the physicochemical properties of the drugs molecules in combination with different experimental conditions were assessed to determine how these factors influenced experimental outcomes (e.g. increase of the interlayer spacing versus drugs arrangement and orientation. We also performed a molecular modeling study of these amine-containing drugs associated with different Na-MMT/drug complex models to analyze the orientation and arrangement of the drugs molecules in the complexes studied. Six amine-containing drugs (rivastigmine, doxazosin, 5-fluorouracil, chlorhexidine, dapsone, nystatin were found to successfully intercalate Na-MMT. These findings provide important insights on the interlayer aspect of the molecular systems formed and may contribute to produce more efficient drug delivery nanosystems.

  9. 33 CFR 183.512 - Fuel tanks: Prohibited materials.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks: Prohibited materials... tanks: Prohibited materials. (a) A fuel tank must not be constructed from terneplate. (b) Unless it has an inorganic sacrificial galvanic coating on the inside and outside of the tank, a fuel tank must...

  10. Photomultiplication photodetectors with P3HT:fullerene-free material as the active layers exhibiting a broad response

    Science.gov (United States)

    Wang, Wenbin; Zhang, Fujun; Bai, Huitao; Li, Lingliang; Gao, Mile; Zhang, Miao; Zhan, Xiaowei

    2016-03-01

    A series of polymer photodetectors (PPDs) are fabricated based on P3HT as an electron donor and fullerene-free material DC-IDT2T as an electron acceptor. The only difference among these PPDs is the P3HT:DC-IDT2T doping weight ratios from 2 : 1 to 150 : 1. The PPDs with P3HT:DC-IDT2T (100 : 1, w/w) as the active layers exhibit champion external quantum efficiency (EQE) of 28 000% and 4000% corresponding to 390 nm and 750 nm light illumination at -20 V bias, respectively. The photomultiplication (PM) phenomenon should be attributed to the enhanced hole tunneling injection due to the interfacial band bending, which is induced by the trapped electrons in DC-IDT2T near the Al cathode. The high EQE value in the long wavelength range is due to the effect of DC-IDT2T photon harvesting and exciton dissociation on the interfacial trap-assisted hole tunneling injection. Meanwhile, the PPDs with DC-IDT2T as the electron acceptor exhibit superior stability compared with the PPDs with PC71BM as the electron acceptor.A series of polymer photodetectors (PPDs) are fabricated based on P3HT as an electron donor and fullerene-free material DC-IDT2T as an electron acceptor. The only difference among these PPDs is the P3HT:DC-IDT2T doping weight ratios from 2 : 1 to 150 : 1. The PPDs with P3HT:DC-IDT2T (100 : 1, w/w) as the active layers exhibit champion external quantum efficiency (EQE) of 28 000% and 4000% corresponding to 390 nm and 750 nm light illumination at -20 V bias, respectively. The photomultiplication (PM) phenomenon should be attributed to the enhanced hole tunneling injection due to the interfacial band bending, which is induced by the trapped electrons in DC-IDT2T near the Al cathode. The high EQE value in the long wavelength range is due to the effect of DC-IDT2T photon harvesting and exciton dissociation on the interfacial trap-assisted hole tunneling injection. Meanwhile, the PPDs with DC-IDT2T as the electron acceptor exhibit superior stability compared with the PPDs

  11. Magnesium-containing layered double hydroxides as orthopaedic implant coating materials--An in vitro and in vivo study.

    Science.gov (United States)

    Weizbauer, Andreas; Kieke, Marc; Rahim, Muhammad Imran; Angrisani, Gian Luigi; Willbold, Elmar; Diekmann, Julia; Flörkemeier, Thilo; Windhagen, Henning; Müller, Peter Paul; Behrens, Peter; Budde, Stefan

    2016-04-01

    The total hip arthroplasty is one of the most common artificial joint replacement procedures. Several different surface coatings have been shown to improve implant fixation by facilitating bone ingrowth and consequently enhancing the longevity of uncemented orthopaedic hip prostheses. In the present study, two different layered double hydroxides (LDHs), Mg-Fe- and Mg-Al-LDH, were investigated as potential magnesium (Mg)-containing coating materials for orthopaedic applications in comparison to Mg hydroxide (Mg(OH)2). In vitro direct cell compatibility tests were carried out using the murine fibroblast cell line NIH 3T3 and the mouse osteosarcoma cell line MG 63. The host response of bone tissue was evaluated in in vivo experiments with nine rabbits. Two cylindrical pellets (3 × 3 mm) were implanted into each femoral condyle of the left hind leg. The samples were analyzed histologically and with μ-computed tomography (μ-CT) 6 weeks after surgery. An in vitro cytotoxicity test determined that more cells grew on the LDH pellets than on the Mg(OH)2-pellets. The pH value and the Mg(2+) content of the cell culture media were increased after incubation of the cells on the degradable samples. The in vivo tests demonstrated the formation of fibrous capsules around Mg(OH)2 and Mg-Fe-LDH. In contrast, the host response of the Mg-Al-LDH samples indicated that this Mg-containing biomaterial is a potential candidate for implant coating. PMID:25939995

  12. A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues

    Directory of Open Access Journals (Sweden)

    Sarah A. Hibbert

    2015-08-01

    exposure as a consequence of an evolutionary pressure to express sacrificial protein sunscreens which reduce UVR penetration and hence mitigate tissue damage.

  13. A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues.

    Science.gov (United States)

    Hibbert, Sarah A; Watson, Rachel E B; Gibbs, Neil K; Costello, Patrick; Baldock, Clair; Weiss, Anthony S; Griffiths, Christopher E M; Sherratt, Michael J

    2015-08-01

    as a consequence of an evolutionary pressure to express sacrificial protein sunscreens which reduce UVR penetration and hence mitigate tissue damage. PMID:25911998

  14. Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co and Mn with Li in Layered Lithium Transition-Metal Oxide Cathode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zheng, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lv, Dongping [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wei, Yi [Peking Univ., Beijing (China); Zheng, Jiaxin [Peking Univ., Beijing (China); Wang, Zhiguo [Univ. of Electronic Science and Technology of China, Chengdu (China); Kuppan, Saravanan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, Jianguo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Luo, Langli [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Danny J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olszta, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amine, Khalil [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, Jun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xiao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pan, Feng [Peking Univ., Beijing (China); Chen, Guoying [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Jiguang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Chong M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-06

    Capacity and voltage fading of layer structured cathode based on lithium transition metal oxide is closely related to the lattice position and migration behavior of the transition metal ions. However, it is scarcely clear about the behavior of each of these transition metal ions. We report direct atomic resolution visualization of interatomic layer mixing of transition metal (Ni, Co, Mn) and lithium ions in layer structured oxide cathodes for lithium ion batteries. Using chemical imaging with aberration corrected scanning transmission electron microscope (STEM) and DFT calculations, we discovered that in the layered cathodes, Mn and Co tend to reside almost exclusively at the lattice site of transition metal (TM) layer in the structure or little interlayer mixing with Li. In contrast, Ni shows high degree of interlayer mixing with Li. The fraction of Ni ions reside in the Li layer followed a near linear dependence on total Ni concentration before reaching saturation. The observed distinctively different behavior of Ni with respect to Co and Mn provides new insights on both capacity and voltage fade in this class of cathode materials based on lithium and TM oxides, therefore providing scientific basis for selective tailoring of oxide cathode materials for enhanced performance.

  15. Initial evaluation and comparison of plasma damage to atomic layer carbon materials using conventional and low T{sub e} plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Jagtiani, Ashish V.; Miyazoe, Hiroyuki; Chang, Josephine; Farmer, Damon B.; Engel, Michael; Neumayer, Deborah; Han, Shu-Jen; Engelmann, Sebastian U., E-mail: suengelm@us.ibm.com; Joseph, Eric A. [IBM, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Boris, David R.; Hernández, Sandra C.; Walton, Scott G. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Lock, Evgeniya H. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-01-15

    The ability to achieve atomic layer precision is the utmost goal in the implementation of atomic layer etch technology. Carbon-based materials such as carbon nanotubes (CNTs) and graphene are single atomic layers of carbon with unique properties and, as such, represent the ultimate candidates to study the ability to process with atomic layer precision and assess impact of plasma damage to atomic layer materials. In this work, the authors use these materials to evaluate the atomic layer processing capabilities of electron beam generated plasmas. First, the authors evaluate damage to semiconducting CNTs when exposed to beam-generated plasmas and compare these results against the results using typical plasma used in semiconductor processing. The authors find that the beam generated plasma resulted in significantly lower current degradation in comparison to typical plasmas. Next, the authors evaluated the use of electron beam generated plasmas to process graphene-based devices by functionalizing graphene with fluorine, nitrogen, or oxygen to facilitate atomic layer deposition (ALD). The authors found that all adsorbed species resulted in successful ALD with varying impact on the transconductance of the graphene. Furthermore, the authors compare the ability of both beam generated plasma as well as a conventional low ion energy inductively coupled plasma (ICP) to remove silicon nitride (SiN) deposited on top of the graphene films. Our results indicate that, while both systems can remove SiN, an increase in the D/G ratio from 0.08 for unprocessed graphene to 0.22 to 0.26 for the beam generated plasma, while the ICP yielded values from 0.52 to 1.78. Generally, while some plasma-induced damage was seen for both plasma sources, a much wider process window as well as far less damage to CNTs and graphene was observed when using electron beam generated plasmas.

  16. Early Shang Sacrificial Site in the Shang City at Yanshi,Henan%河南偃师商城商代早期王室祭祀遗址

    Institute of Scientific and Technical Information of China (English)

    中国社会科学院考古研究所

    2002-01-01

    The Shang city in Yanshi was the capital of the early Shang Dynasty. In the north of its palace city, a group of remains were found to be vestiges of Shang royal aristocrats' sacrificial activities. The main part consists roughly of three zones with a little difference from each other. The victims commonest seen in the sacrificial area are pigs, which are buried together with or without other species of animals. The rest of offerings include human victims and plants. The sacrificial area was used at many stages of the Shang cultural remains in the Shang city of Yanshi, from the first phase of the first period through the sixth phase of the third period. Its discovery clarified the layout and area division of the palace city and enriched the knowledge of it. Large quantities of serial charcoal samples and pigs' remains provided comparable "dual" serial data for dating the function of the Shang city in Yanshi.

  17. The optimizing designing of bi-material micro cantilever with adhesive layer in between and its application in an uncooled MEMS IR FPA

    Science.gov (United States)

    Zhang, Xia; Jiao, Bin-bin; Chen, Da-peng; Ye, Tian-chun

    2009-07-01

    Bi-material cantilever is an important basic structure in MEMS device. Most of the materials with thermal property fit for bi-material are not adhering together steadily. An adhesive layer in between is needed. In this paper, based on the thermal stress and combined deformation in Mechanics of Materials, a model related to the physics properties, structure dimension, and the tilt angle caused by thermal stress is set up. A research of how to select the materials and how to determinate the thickness and other size of a bi-material cantilever is carry out by this model, further more, an optic read out IR image chip pixel is designed that shows this model is simple and practical.

  18. The effect of doping (Mn,B)3O4 materials as protective layers in different metallic interconnects for Solid Oxide Fuel Cells

    Science.gov (United States)

    Miguel-Pérez, Verónica; Martínez-Amesti, Ana; Nó, María Luisa; Larrañaga, Aitor; Arriortua, María Isabel

    2013-12-01

    Spinel oxides with the general formula of (Mn,B)3O4 (B = Co, Fe) were used as barrier materials between the cathode and the metallic interconnect to reduce the rate of cathode degradation by Cr poisoning. The effect of doping at the B position was investigated terms of microstructure and electrical conductivity to determine its behaviour and effectiveness as a protective layer in contact with three metallic materials (Crofer 22 APU, SS430 and Conicro 4023 W 188). The analysis showed that the use of these materials considerably decreased the reactivity and diffusion of Cr between the cathode and the metallic interconnects. The protective layer doped with Fe at the B position exhibited the least amount of reactivity with the interconnector and cathode materials. The worst results were observed for SS430 cells coated with a protective layer perhaps due to their low Cr content. The Crofer 22 APU and Conicro 4023 W 188 samples exhibited very similar conductivity results in the presence of the MnCo1.9Fe0.1O4 protective coating. As a result, these two material combinations are a promising option for use as bipolar plates in SOFC.

  19. Constitution of surface layer in Nd-Fe-B sintered magnets and its effect on the material properties

    International Nuclear Information System (INIS)

    Surface layer sintered Nd-FeB magnets consists of two zones; first zone is formed of small grains of Nd2Fe14B with oxide inclusion inside grains, and the second zone containing great inclusions of Nd3O3. The latter zone is rich in oxygen and neodymium and poor in iron. The surface layer has strong influence on corrosion resistance of magnets. It has been found that corrosion rate is reduced at order of magnitude when the surface layer is removed by grinding. The magnetic properties do not differ when measured for as-sintered and grinded magnets

  20. Copper(ii) tungstate nanoflake array films: sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting

    Science.gov (United States)

    Hu, Dianyi; Diao, Peng; Xu, Di; Xia, Mengyang; Gu, Yue; Wu, Qingyong; Li, Chao; Yang, Shubin

    2016-03-01

    We report the preparation of CuWO4 nanoflake (NF) array films by using a solid phase reaction method in which WO3 NFs were employed as sacrificial templates. The SEM, TEM and XRD results demonstrated that the obtained CuWO4 films possessed a network structure that was composed of single crystalline NFs intersected with each other. The CuWO4 NF films showed superior photoelectrochemical (PEC) activity to other CuWO4 photoanodes reported recently for the oxygen evolution reaction (OER). We attributed the high activity to the unique morphological and crystalline structure of the CuWO4 film, which enhanced the photoactivity by providing a large specific area, a short hole transport distance from the inside of CuWO4 to the CuWO4/solution interface, and a low grain boundary density. Hydrogen treatment by annealing the CuWO4 NF film in mixed gases of H2 and Ar could further enhance the photoactivity, as hydrogen treatment significantly increased the electron density of CuWO4 by generating oxygen vacancy in the lattice. The photocurrent density for OER obtained on the hydrogen-treated (H-treated) CuWO4 NF film is the largest ever reported on CuWO4 photoanodes in the literature. Moreover, the CuWO4 photoanodes exhibit good stability in weak alkaline solution, while the H-treated CuWO4 photoanodes exhibit acceptable stability. This work not only reveals the potential of CuWO4 as a photoanode material for solar water splitting but also shows that the construction of nanostructured CuWO4 photoanodes is a promising method to achieve high PEC activity toward OER.We report the preparation of CuWO4 nanoflake (NF) array films by using a solid phase reaction method in which WO3 NFs were employed as sacrificial templates. The SEM, TEM and XRD results demonstrated that the obtained CuWO4 films possessed a network structure that was composed of single crystalline NFs intersected with each other. The CuWO4 NF films showed superior photoelectrochemical (PEC) activity to other CuWO4

  1. Depth profiling of SBS/PET layered materials using step-scan phase modulation Fourier transform infrared photoacoustic spectroscopy and two-dimensional correlation analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper demonstrates the application of step-scan phase modulation Fourier transform infrared photoacoustic spectroscopy(FTIR-PAS) in non-destructively depth profiling of styrene-butadiene-styrene block copolymer/polyethylene terephthalate(SBS/PET) layered materials.The surface thicknesses of three layered samples were determined to be 1.2,4.3 and 9.4μm by using phase difference analysis,overcoming the spatial detection limits of FTIR.Combined with generalized two-dimensional(G2D) FTIR correlation analysis,the spatial origins of peaks in the SBS/PET spectrum are identified with those having overlapping peaks between different layers are resolved.

  2. Sacrificial anode stability and polarization potential variation in a ternary Al-xZn-xMg alloy in a seawater-marine environment

    Science.gov (United States)

    Muazu, Abubakar; Aliyu, Yaro Shehu; Abdulwahab, Malik; Idowu Popoola, Abimbola Patricia

    2016-06-01

    In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarized potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the Al-6%Zn-1%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic Al2Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.

  3. Fabrication of Three Dimensional Tissue Engineering Polydimethylsiloxane ( PDMS) Microporous Scaffolds Integrated in a Bioreactor Using a 3D Printed Water Dissolvable Sacrificial Mould

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan; Mantis, Ioannis; Chetan, Aradhya Mallikarjunaiah;

    2015-01-01

    We present a new scalable and general approach for manufacturing structured pores/channels in 3D polymer based scaffolds. The method involves 3D printing of a sacrificial polyvinyl alcohol (PVA) mould whose geometrical features are designed according to the required vascular channel network...

  4. Highly brilliant synchrotron radiation operando spectromicroscopy to bridge a gap between material electronic properties and device performances of 2D atomic layers

    International Nuclear Information System (INIS)

    Si-based electronics has reached an ultimate fabrication level (22 nm design rule), which makes further progress hardly achieved. Therefore, 2D atomic layers including graphene have been extensively studied as next-generation device materials to supplement device functions which Si-based electronics cannot serve. Unfortunately, however, there is a gap between material electronic properties and device performances in the researches on 2D atomic layers. We demonstrate soft x-ray operando spectromicroscopies, photoemission electron microscopy (PEEM) and 3D scanning photoelectron microscopy (3D nano-ESCA), in SPring-8 to bridge the gap in graphene research. The complementary use of these operando spectromicroscopies enables us to probe both valence band and conduction bands of graphene channels under operation, resulting in revealing the effects of the interfaces with contact metal and oxide. The significance of the operando spectromicroscopy is now recognized, resulting in the adoption as a major research target in NEDO academic-industrial alliance project. (author)

  5. Animals and ritual. Faunal remains from sacrificial altars of El Alto de Garajonay (La Gomera, Canary Islands, Spain

    Directory of Open Access Journals (Sweden)

    Verónica ALBERTO BARROSO

    2015-11-01

    Full Text Available This paper addresses the meaning of animals in the sanctuary of Garajonay, in La Gomera. It is a main sacred place for the Prehispanic population, in which they systematically used to perform ritual celebrations within the time period between ss. vii-xii ad cal. These activities took place in the sacrificial altars where various products, essential for the survival of the ancient inhabitants, were burned. For this purpose faunal repertoires have been studied, establishing their composition and processing patterns. It is concluded a standardized behavior defined by the sacrifice of domestic animals, with a rigid selection of skeletal parts actives in the ritual. In that process the fire plays a key role, contributing to the consecration of certain social practices. It has also been analyzed the meaning of such practices in the ideological framework of those populations.

  6. Influence of pulsed d. c. -glow-discharge on the phase constitution of nitride layers during plasma nitrocarburizing of sintered materials

    Energy Technology Data Exchange (ETDEWEB)

    Rie, K.T.; Schnatbaum, F. (Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung, Technische Univ. Braunschweig (Germany))

    1991-07-07

    In the past it was shown that plasma diffusion treatment of sintered materials has several advantages over conventional processes such as gas or salt bath nitriding and nitrocarburizing. The large number of parameters in plasma diffusion treatment allows close control of the process so that surface layers with defined microstructures and properties can be obtained. Durig plasma diffusion treatment the phase constitution of the nitride compound layer can be influenced by varying the gas mixture. By using a pulsed d.c. glow discharge the phase constitution and the microstructure of the compound layer can be influenced by varying the pulse duration and pulse repetition time. The number of micropores in the compound layer can be reduced in a pulsed d.c. glow discharge by pulsing the plasma, i.e. by reducing the plasma power. The phase constitution can be influenced by the pulse duration and pulse repetition time. With short pulse duration and long pulse repetition time the formation of Fe{sub 3}C in the compound layer can be suppressed. The amount of {gamma}' and {epsilon} phase present can be influenced. (orig.).

  7. 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    is presented as a 3D hexagon-shape-tube with multilayered walls. The layers in the softwood cell are considered as considered as composite reinforced by microfibrils (celluloses). The elastic properties of the layers are determined with Halpin–Tsai equations, and introduced into mesoscale finite element......A 3D hierarchical computational model of deformation and stiffness of wood, which takes into account the structures of wood at several scale levels (cellularity, multilayered nature of cell walls, composite-like structures of the wall layers) is developed. At the mesoscale, the softwood cell...... cellular model. With the use of the developed hierarchical model, the influence of the microstructure, including microfibril angles (MFAs, which characterizes the orientation of the cellulose fibrils with respect to the cell axis), the thickness of the cell wall, the shape of the cell cross...

  8. Oil-material fractionation in Gulf deep water horizontal intrusion layer: Field data analysis with chemodynamic fate model for Macondo 252 oil spill.

    Science.gov (United States)

    Melvin, A T; Thibodeaux, L J; Parsons, A R; Overton, E; Valsaraj, K T; Nandakumar, K

    2016-04-15

    Among the discoveries of the Deepwater Horizon blowout was the so-called "sub-surface plume"; herein termed the "oil-trapping layer". Hydrocarbons were found positioned at ~1100-1300m with thickness ~100-150m and moving horizontally to the SW in a vertically stratified layer at the junction of the cold abyssal water and the permanent thermocline. This study focuses on its formation process and fate of the hydrocarbons within. The originality of this work to the field is two-fold, first it provides a conceptual framework which places layer origin in the context of a horizontal "intrusion" from the near-field, vertical, blow-out plume and second, it offers a theoretical model for the hydrocarbon chemicals within the horizontal layer as it moves far-afield. The model quantifies the oil-material fractionation process for the soluble and fine particle. The classical Box model, retrofitted with an internal gradient, the "G-Box", allows an approach that includes turbulent eddy diffusion coupled with droplet rise velocity and reactive decay to produce a simple, explicit, transparent, algebraic model with few parameters for the fate of the individual fractions. Computations show the soluble and smallest liquid droplets moving very slowly vertically through the layer appearing within the trapping layer at low concentration with high persistence. The larger droplets move-through this trapping zone quickly, attain high concentrations, and eventually form the sea surface slick. It impacts the field of oil spill engineering science by providing the conceptual idea and the algorithms for projecting the quantities and fractions of oil-material in a deep water, horizontal marine current being dispersed and moving far afield. In the field of oil spill modeling this work extends the current generation near-field plume source models to the far-field. The theory portrays the layer as an efficient oil-material trap. The model-forecasted concentration profiles for alkanes and aromatics

  9. Templated synthesis of nitrogen-enriched nanoporous carbon materials from porogenic organic precursors prepared by ATRP.

    Science.gov (United States)

    Wu, Dingcai; Li, Zhenghui; Zhong, Mingjiang; Kowalewski, Tomasz; Matyjaszewski, Krzysztof

    2014-04-01

    A facile templated synthesis of functional nanocarbon materials with well-defined spherical mesopores is developed using all-organic porogenic precursors comprised of hairy nanoparticles with nitrogen-rich polyacrylonitrile shells grafted from sacrificial cross-linked poly(methyl methacrylate) cores (xPMMA-g-PAN). Such shape-persistent all-organic nanostructured precursors, prepared using atom transfer radical polymerization (ATRP), assure robust formation of template nanostructures with continuous PAN precursor matrix over wide range of compositions, and allow for removal of the sacrificial template through simple thermal decomposition. Carbon materials prepared using this method combine nitrogen enrichment with hierarchical nanostructure comprised of microporous carbon matrix interspersed with mesopores originating from sacrificial xPMMA cores, and thus perform well as CO2 adsorbents and as supercapacitor electrodes. PMID:24596246

  10. Proteins dominate in the surface layers formed on materials exposed to extracellular polymeric substances from bacterial cultures.

    Science.gov (United States)

    Yang, Yi; Wikieł, Agata J; Dall'Agnol, Leonardo T; Eloy, Pierre; Genet, Michel J; Moura, José J G; Sand, Wolfgang; Dupont-Gillain, Christine C; Rouxhet, Paul G

    2016-01-01

    The chemical compositions of the surface conditioning layers formed by different types of solutions (from isolated EPS to whole culture media), involving different bacterial strains relevant for biocorrosion were compared, as they may influence the initial step in biofilm formation. Different substrata (polystyrene, glass, steel) were conditioned and analyzed by X-ray photoelectron spectroscopy. Peak decomposition and assignment were validated by correlations between independent spectral data and the ubiquitous presence of organic contaminants on inorganic substrata was taken into account. Proteins or peptides were found to be a major constituent of all conditioning layers and polysaccharides were not present in appreciable concentrations; the proportion of nitrogen which may be due to DNA was lower than 15%. There was no significant difference between the compositions of the adlayers formed from different conditioning solutions, except for the adlayers produced with tightly bound EPS extracted from D. alaskensis.

  11. 锂离子电池层状正极材料的研究进展%Research Process on Layer Cathode Material for Li-ion Batteries

    Institute of Scientific and Technical Information of China (English)

    杨世霞

    2012-01-01

    The paper mainly introduced the research process on layer cathode materials- LiCoO2, LiNiO2, Li MnO2 at present. The advantages and disadvantages of the three layer cathode materials were displayed, and also ways of the modification of LiCoO2 and LiNiO2: doping and coating. The structure and the properties of the layer cathode materials are prompted severely through modification which pointed out a way for the more widely apply of Li-ion batteries. What was more, I showed a prospect of apply of the cathode materials on Li-ion batteries.%文絮主要综述当前锂离子电池层状正极材料-LiCoO2、LiNiO2、LiMnO2的研究进展。阐述了三种层状盐结构正极材料的优缺点,对LiCoO2和LiNiO2正极材料的改性方法:掺杂和包覆处理。通过改性,层状正极材料豹结构和性能均有较大改善,为锂离子电池更为广泛的工业应用指明道路。对锂离子电池正极材料未来的应用前景做了一些展槊。

  12. Improving cycling performance of Li-rich layered cathode materials through combination of Al2O3-based surface modification and stepwise precycling

    Science.gov (United States)

    Kobayashi, Genki; Irii, Yuta; Matsumoto, Futoshi; Ito, Atsushi; Ohsawa, Yasuhiko; Yamamoto, Shinji; Cui, Yitao; Son, Jin-Young; Sato, Yuichi

    2016-01-01

    Controlling a cathode/electrolyte interface by modifying the surface of a cathode material with metal oxides or phosphates is a concept being explored as a possible strategy for improving the electrochemical performance of such materials. This study therefore looks at the crystal structure and chemical bonding state from bulk to surface of Al2O3-coated Li[Li0.2Ni0.18Co0.03Mn0.58]O2 and explores the influence that surface modification has on the electrochemical performance. Investigation by X-ray diffraction, hard X-ray photoelectron spectroscopy (HAXPES) and galvanostatic charge/discharge reaction reveals that the surface-modification layer is composed of Li-Al oxides and Al oxides, with a LiM1-xAlxO2 (M = transition metal) interlayer formed between the modification layer and Li[Li0.2Ni0.18Co0.03Mn0.58]O2 particles. The cycling performance of the Li-rich layered oxide is enhanced by its surface modification with Al2O3, achieving a discharge capacity of more than 310 mA h-1 and excellent cycling stability at 50 °C when combined with a more gradual Li-insertion/de-insertion process (i.e., stepwise precycling treatment).

  13. Properties of SiC and problems of the material for use as the coating layer of fuel particles

    International Nuclear Information System (INIS)

    The properties of silicon carbide (SiC) reported in the literatures and obtained in the authors' experiments, are reviewed with a view to improving the SiC coating layer of fuel particles for HTGR. Described are the deposition, physical and chemical properties, mechanical strength, diffusion and irradiation behaviors. The experimental results obtained in the authors' laboratory in in-pile irradiation and out-of-pile annealing of the SiC-coated particles are also presented. (auth.)

  14. Nondestructive quality control of multi-layer spot welds of great thickness made of austenitic basic material

    International Nuclear Information System (INIS)

    The ultrasonic testing of three layer spot welds of great thickness made of Austenitic sheets permits the classification of quality from the aspect of strength. Division into nonbinding - glueing - welding is possible without problems. The formation of cracks in the centre of the joint is a sure indication for a weld of higher strength. In a test of 4 components with a total of 196 spot welds, 11 glued positions could be determined with certainty. (orig.)

  15. Detrimental influence of catalyst seeding on the device properties of CVD-grown 2D layered materials: A case study on MoSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Utama, M. Iqbal Bakti; Lu, Xin; Yuan, Yanwen [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Xiong, Qihua, E-mail: Qihua@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2014-12-22

    Seed catalyst such as perylene-3,4,9,10-tetracarboxylic acid tetrapotassium (PTAS) salt has been used for promoting the growth of atomically thin layered materials in chemical vapor deposition (CVD) synthesis. However, the ramifications from the usage of such catalyst are not known comprehensively. Here, we report the influence of PTAS seeding on the transistor device performance from few-layered CVD-grown molybdenum diselenide (MoSe{sub 2}) flakes. While better repeatability and higher yield can be obtained with the use of PTAS seeds in synthesis, we observed that PTAS-seeded flakes contain particle impurities. Moreover, devices from PTAS-seeded MoSe{sub 2} flakes consistently displayed poorer field-effect mobility, current on-off ratio, and subthreshold swing as compared to unseeded flakes.

  16. Roles of silicon-layer in Ti3SiC2 materials response to helium irradiation: New insights from first-principles calculation

    International Nuclear Information System (INIS)

    Using the first-principles method based on density functional theory, the effect of helium irradiation on Ti3SiC2 has been investigated. It was observed that helium atoms prefer to accumulate within the layers where Si atoms have been dislodged creating 2-dimensional channels and bubbles which strongly promotes cleavage fractures between adjacent Ti–Si layers. At high temperature the He atoms diffuse out of these bubbles enabling the diffusion of the mobile Si back to their original sites and the annealing of the material back to the original structure. This behavior may play a positive role in the resistance of Ti3SiC2 to helium irradiation making it a potential candidate for future nuclear reactor applications in the future

  17. Single-layer model to predict the source/sink behavior of diffusion-controlled building materials.

    Science.gov (United States)

    Kumar, Deept; Little, John C

    2003-09-01

    Building materials may act as both sources of and sinks forvolatile organic compounds (VOCs) in indoor air. A strategy to characterize the rate of absorption and desorption of VOCs by diffusion-controlled building materials is validated. A previously developed model that predicts mass transfer between a flat slab of material and the well-mixed air within a chamber or room is extended. The generalized model allows a nonuniform initial material-phase concentration and a transient influent gas-phase concentration to be simultaneously considered. An analytical solution to the more general model is developed. Experimental data are obtained by placing samples of vinyl flooring inside a small stainless steel chamber and exposing them to absorption/desorption cycles of n-dodecane and phenol. Measured values for the material-air partition coefficient and the material-phase diffusion coefficient were obtained previously in a series of completely independent experiments. The a priori model predictions are in close agreement with the observed experimental data. PMID:12967101

  18. Synthesis optimisation and characterisation of the organic-inorganic layered materials ZnS(m-xylylenediamine)1/2 and ZnS(p-xylylenediamine)1/2

    Science.gov (United States)

    Luberda-Durnaś, K.; Guillén, A. González; Łasocha, W.

    2016-06-01

    Hybrid organic-inorganic layered materials of the type ZnS(amine)1/2, where amine=m-xylylenediamine (MXDA) or p-xylylenediamine (PXDA), were synthesised using a simple solvothermal method. Since the samples crystallised in the form of very fine powder, X-ray powder diffraction techniques were used for structural characterisation. The crystal structure studies, involving direct methods, show that both compounds crystallised in the orthorhombic crystal system, but in different space groups: ZnS(MXDA)1/2 in non-centrosymmetric Ccm21, ZnS(PXDA)1/2 in centrosymmetric Pcab. The obtained materials are built according to similar orders: semiconducting monolayers with the formula ZnS, parallel to the (010) plane, are separated by diamines. The organic and inorganic fragments are connected by covalent bonds between metal atoms of the layers and nitrogen atoms of the amino groups. The optical properties of the hybrid materials differ from those of their bulk counterpart. In both compounds a blue-shift of about 0.8 or 0.9 eV was observed with reference to the bulk phase of ZnS.

  19. Ultrathin Epitaxial Ferromagneticγ-Fe2O3Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors

    KAUST Repository

    Li, Peng

    2016-06-01

    In spintronics, identifying an effective technique for generating spin-polarized current has fundamental importance. The spin-filtering effect across a ferromagnetic insulating layer originates from unequal tunneling barrier heights for spin-up and spin-down electrons, which has shown great promise for use in different ferromagnetic materials. However, the low spin-filtering efficiency in some materials can be ascribed partially to the difficulty in fabricating high-quality thin film with high Curie temperature and/or partially to the improper model used to extract the spin-filtering efficiency. In this work, a new technique is successfully developed to fabricate high quality, ferrimagnetic insulating γ-Fe2O3 films as spin filter. To extract the spin-filtering effect of γ-Fe2O3 films more accurately, a new model is proposed based on Fowler–Nordheim tunneling and Zeeman effect to obtain the spin polarization of the tunneling currents. Spin polarization of the tunneled current can be as high as −94.3% at 2 K in γ-Fe2O3 layer with 6.5 nm thick, and the spin polarization decays monotonically with temperature. Although the spin-filter effect is not very high at room temperature, this work demonstrates that spinel ferrites are very promising materials for spin injection into semiconductors at low temperature, which is important for development of novel spintronics devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  20. Charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process.

    Science.gov (United States)

    Villeneuve-Faure, C; Makasheva, K; Boudou, L; Teyssedre, G

    2016-06-17

    Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms.

  1. Charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process

    Science.gov (United States)

    Villeneuve-Faure, C.; Makasheva, K.; Boudou, L.; Teyssedre, G.

    2016-06-01

    Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms.

  2. Well-defined hollow nanochanneled-silica nanospheres prepared with the aid of sacrificial copolymer nanospheres and surfactant nanocylinders

    Science.gov (United States)

    Kim, Young Yong; Hwang, Bora; Song, Sungjin; Ree, Brian J.; Kim, Yongjin; Cho, Seo Yeon; Heo, Kyuyoung; Kwon, Yong Ku; Ree, Moonhor

    2015-08-01

    A new approach for synthesizing well-defined hollow nanochanneled-silica nanosphere particles is demonstrated, and the structural details of these particles are described for the first time. Positively charged styrene copolymer nanospheres with a clean, smooth surface and a very narrow size distribution are synthesized by surfactant-free emulsion copolymerization and used as a thermal sacrificial core template for the production of core-shell nanoparticles. A surfactant/silica composite shell with a uniform thickness is successfully produced and deposited onto the polymeric core template by charge density matching between the polymer nanosphere template surface and the negatively charged silica precursors and then followed by selective thermal decomposition of the polymeric core and the surfactant cylinder domains in the shell, producing the hollow nanochanneled-silica nanospheres. Comprehensive, quantitative structural analyses collectively confirm that the obtained nanoparticles are structurally well defined with a hollow core and a shell composed of cylindrical nanochannels that provide facile accessibility to the hollow interior space. Overall, the hollow nanochanneled-silica nanoparticles have great potential for applications in various fields.A new approach for synthesizing well-defined hollow nanochanneled-silica nanosphere particles is demonstrated, and the structural details of these particles are described for the first time. Positively charged styrene copolymer nanospheres with a clean, smooth surface and a very narrow size distribution are synthesized by surfactant-free emulsion copolymerization and used as a thermal sacrificial core template for the production of core-shell nanoparticles. A surfactant/silica composite shell with a uniform thickness is successfully produced and deposited onto the polymeric core template by charge density matching between the polymer nanosphere template surface and the negatively charged silica precursors and then

  3. Are there generic mechanisms governing interactions between nanoparticles and cells? Epitope mapping the outer layer of the protein material interface

    Science.gov (United States)

    Lynch, Iseult

    2007-01-01

    In this paper we discuss the possibility of a general paradigm for cell-biomaterial and cell-nanoparticle interactions. The basis of the paradigm is that the nature of the biomaterial or nanoparticle surface is not the important parameter, but rather the nature of the outermost layer of adsorbed proteins as well as long-lived misfolded proteins shed from the surfaces. If the adsorbed protein is irreversibly adsorbed onto the surface it may be sufficiently disrupted so that a variety of peptide units (here termed “cryptic epitopes”) not usually expressed in nature at the surface of the protein become exposed. Similarly, where there is a slow exchange time with the surface, surface-induced perturbations may lead to long-lived misfolded proteins being shed from the surface and continuing to express altered surface peptide sequences. In cases where the proteins have lost most of their tertiary structure, anomalous peptide sequences and geometries that are not displayed at the surface by the native protein may in fact be presented after surface adsorption of a protein. Such anomalous surface expressions could contain novel epitopes that trigger various signalling pathways or even diseases. Thus, future approaches to understanding cell-biomaterial and cell-nanoparticle interactions should focus on characterising the outer layer of the adsorbed proteins, or “epitope mapping” as well as examining the possibility of formation of essentially “new” proteins as a result of desorption of conformationally or geometrically altered proteins.

  4. Towards the dynamics of the temperature field gradient in a layer of an inorganic material under radiation heating according to the data of experiments and numerical modeling

    Science.gov (United States)

    Sobol, V. R.; Goman, P. N.; Mazurenko, O. N.

    2012-05-01

    We have investigated the process of temperature field formation in a layer of a weakly conducting medium with the example of wood and green moss under irradiation of one side with an energy flux and contact heat removal through the opposite back surface of the material onto an asbestos-cement support. The experimental results were compared with the data calculated on the basis of the relations of nonstationary heat transfer in the approximations of closeness and openness of the system. The conditions for heat removal suppression have been concretized and the role of the energy exchange under the prolonged action of radiant energy for estimating the thermal stability parameters of related materials has been elucidated. The obtained data can be used to control radiant fluxes in treating wood, for effective heating of living and industrial premises, improving the methods for opposing high energy fluxes, and preventing the propagation of fire in inhabited localities and in park and forest zones.

  5. Catalytic Graphitization for Preparation of Porous Carbon Material Derived from Bamboo Precursor and Performance as Electrode of Electrical Double-Layer Capacitor

    Science.gov (United States)

    Tsubota, Toshiki; Maguchi, Yuta; Kamimura, Sunao; Ohno, Teruhisa; Yasuoka, Takehiro; Nishida, Haruo

    2015-12-01

    The combination of addition of Fe (as a catalyst for graphitization) and CO2 activation (a kind of gaseous activation) was applied to prepare a porous carbon material from bamboo powder (a waste product of superheated steam treatment). Regardless of the heat treatment temperature, many macropores were successfully formed after the heating process by removal of Fe compounds. A turbostratic carbon structure was generated in the Fe-added sample heated at 850°C. It was confirmed that the added Fe acted as a template for pore formation. Moreover, it was confirmed that the added Fe acted as a catalyst for graphitization. The resulting electrochemical performance as the electrode of an electrical double-layer capacitor, as demonstrated by cyclic voltammetry, electrochemical impedance spectroscopy, and charge-discharge testing, could be explained based on the graphitization and activation effects. Addition of Fe could affect the electrical properties of carbon material derived from bamboo.

  6. Solvent effects of a dimethyldicyanoquinonediimine buffer layer as N-type material on the performance of organic photovoltaic cells.

    Science.gov (United States)

    Yang, Eui Yeol; Oh, Se Young

    2014-08-01

    In the present work, we have fabricated organic photovoltaic cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/DMDCNQI/Al using a dip-coating method with various solvent systems. We have investigated solvent effects (such as solubility, viscosity and vapor pressure) in deposition of a thin DMDCNQI buffer layer on the performance of organic photovoltaic cells. The solvent system which had low viscosity and good solubility properties, made a dense and uniform DMDCNQI ultra thin film, resulting in a high performance device. In particular, a prepared organic photovoltaic cell was fabricated using a cosolvent system (methanol:methylenechloride = 3:1) and showed a maximum power conversion efficiency of 4.53%.

  7. Optimization of Manganese and Magnesium Contents in As-cast Aluminum-Zinc-Indium Alloy as Sacrificial Anode

    Institute of Scientific and Technical Information of China (English)

    Mohammed R. Saeri; Ahmad Keywni

    2011-01-01

    In this study, effects of manganese and magnesium content on the electrochemical properties of Al-Zn-ln sacrificial anode were studied in 0.5 mol/L NaCl solution (pH=5). The aluminum base alloy with different amounts of Mn and Mg were melted at 750℃, then casted at molds at 25℃. Corrosion experiments were mounted to determine the optimal effect of Mn and Mg on the efficiencies of the aluminum alloy anodes. The corroded and unexposed sample surfaces were subjected to microstructure characterization by optical and scanning electron microscopy. AI-Zn-ln alloy doped with 0%, 0.01%, 0.05%.0.2% and 0.3% by weights of Mn and 0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0% by weights of Mg were prepared to determine the effect of Mn and Mg on anode efficiency in the environment. The different microstructures of the evolved AI- Zn-ln-Mg-Mn alloy were correlated with the anode efficiencies. The Al-5.0%Zn-2.0%Mg-0.15%Mn-0.02%ln gave the best anode efficiency (about 83%). The microstructures of the corroded surface of the optimized alloy revealed decreased distribution of the pockets of localized attacks which are characteristics of pitting (or crevice) corrosion.

  8. Analisa Teknis dan Ekonomis Penggunaan ICCP (Impressed Current Cathodic Protection Dibandingkan dengan Sacrificial Anode dalam Proses Pencegahan Korosi

    Directory of Open Access Journals (Sweden)

    Afif Wiludin

    2013-03-01

    Full Text Available Perlindungan badan kapal  terhadap korosi dengan  menggunakan  metode perlindungan katodik pada prinsipnya adalah sel elektrokimia untuk mengendalikan korosi dengan mengkonsentrasikan reaksi oksigen pada sel galvanik dan menekan korosi pada katoda dalam sel yang sama. Pada proteksi katodik, logam yang akan dilindungi dijadikan katoda dan reaksi oksidasi terjadi di anoda. Ada dua macam cathodic protection yaitu Sacrificial Anode Cathodic Protection (SACP dan Impressed Current Cathodic Protection (ICCP. Dilakukan penelitian tentang analisa teknis dan ekonomis penggunaan ICCP dibandingkan dengan SACP dalam proses pencegahan korosi, kedua sistem dibandingkan dalam jangka 20 tahun, dari segi teknis dengan menggunakan perbandingan perhitungan sesuai standar DnV, yang dibandingkan dari tahap design, tahap instalasi, dan maintenance, dari segi ekonomis perbandingan dibedakan dari tahap pengadaan komponen-komponen sistem, tahap instalasi, dan tahap maintenance. Data perbandingan diperoleh dengan perhitungan sesuai standar, study literature, diskusi dan interview. Hasil perhitungan perbandingan yang diperkirakan selama 20 tahun, dari segi teknis kedua sistem memenuhi standar yang berdasar pada sistem perhitungan standar DnV B-401, sedangkan dari segi ekonomis, biaya untuk sistem ICCP sebesar Rp. 205.405.000,00 dan sistem SACP sebesar Rp. 562.590.000,00, sehingga lebih ekonomis menggunakan sistem ICCP sebesar Rp 357.185.000, 00 atau 63,49% dari biaya untuk sistem SACP

  9. Preparation of ZnO Nanoparticles and Photocatalytic H2 Production Activity from Different Sacrificial Reagent Solutions

    Institute of Scientific and Technical Information of China (English)

    Tian-you Peng; Hong-jin Lv; Peng Zeng; Xiao-hu Zhang

    2011-01-01

    ZnO nanoparticles were synthesized via a direct precipitation method followed by a heterogeneous azeotropic distillation and calcination processes,and then characterized by X-ray power diffraction,scanning electron microscopy,transmission electron microscopy,and nitrogen adsorption-desorption measurement.The effects of Pt-loading amount,calcination temperature,and sacrificial reagents on the photocatalytic H2 evolution efficiency from the present ZnO suspension were investigated.The experimental results indicate that ZnO nanoparticles calcined at 400 ℃ exhibit the best photoactivity for the H2 production in comparison with the samples calcined at 300 and 500 ℃,and the photocatalytic H2 production efficiency from a methanol solution is much higher than that from a triethanolamine solution.It can be ascribed to the oxidization of methanol also contributes to the H2 production during the photochemical reaction process.Moreover,the photocatalytic mechanism for the H2 production from the present ZnO suspension system containing methanol solution is also discussed in detail.

  10. Sacrificial hydrogen generation from aqueous triethanolamine with Eosin Y-sensitized Pt/TiO2 photocatalyst in UV, visible and solar light irradiation.

    Science.gov (United States)

    Chowdhury, Pankaj; Gomaa, Hassan; Ray, Ajay K

    2015-02-01

    In this paper, we have studied Eosin Y-sensitized sacrificial hydrogen generation with triethanolamine as electron donor in UV, visible, and solar light irradiation. Aeroxide TiO2 was loaded with platinum metal via solar photo-deposition method to reduce the electron hole recombination process. Photocatalytic sacrificial hydrogen generation was influenced by several factors such as platinum loading (wt%) on TiO2, solution pH, Eosin Y to Pt/TiO2 mass ratio, triethanolamine concentration, and light (UV, visible and solar) intensities. Detailed reaction mechanisms in visible and solar light irradiation were established. Oxidation of triethanolamine and formaldehyde formation was correlated with hydrogen generation in both visible and solar lights. Hydrogen generation kinetics followed a Langmuir-type isotherm with reaction rate constant and adsorption constant of 6.77×10(-6) mol min(-1) and 14.45 M(-1), respectively. Sacrificial hydrogen generation and charge recombination processes were studied as a function of light intensities. Apparent quantum yields (QYs) were compared for UV, visible, and solar light at four different light intensities. Highest QYs were attained at lower light intensity because of trivial charge recombination. At 30 mW cm(-2) we achieved QYs of 10.82%, 12.23% and 11.33% in UV, visible and solar light respectively.

  11. Interfacial effect on the electrochemical properties of the layered graphene/metal sulfide composites as anode materials for Li-ion batteries

    Science.gov (United States)

    Lv, Yagang; Chen, Biao; Zhao, Naiqin; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Liu, Enzuo

    2016-09-01

    The layered graphene/metal sulfide composites exhibit excellent electrochemical properties as anode materials for lithium ion battery, due to the synergistic effect between metal sulfide and graphene which still needs to be further understood. In this study, Li adsorption and diffusion on MoS2 and SnS2 monolayers and Li2S surface, as well as at their interfaces with graphene, are systematically investigated through first-principles calculations. The analysis of charge density difference, Bader charge, and density of states indicates that the adsorbed Li atoms interact with both the S atoms at metal sulfide surfaces and C atoms in graphene, resulting in larger Li adsorption energies at the interfaces compared with that on the corresponding surfaces, but with almost no enhancement of the energy barriers for Li atom diffusion. The enhanced Li adsorption capability at Li2S/G interface contributes to the extra storage capacity of graphene/metal sulfide composites. Furthermore, the synergistic mechanism between metal sulfide and graphene is revealed. Moreover, band structure analysis shows the electronic conductivity is enhanced with the incorporation of graphene. The results corroborate the interfacial pseudocapacity-like Li atom storage mechanism, and are helpful for the design of layered graphene/metal sulfide composites as anode materials for lithium ion batteries.

  12. Preparation and Characterization of Hybrid Organic-Inorganic Composite Material: Polymerization of m-Aminobenzoic Acid-Intercalated Into Zn/Al-Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Rasheed M.A.Q. Jamhour

    2005-01-01

    Full Text Available Layered double hydroxides of aluminum and zinc (Zn/Al-LDH’s were synthesized directly by hydrolysis at room temperature as reported elsewhere. After characterization, the material was reacted with m-aminobenzoat anion (m-NH2C6H4COO- which undergoes polymerization in the interlayer space; resulting in the formation of a matrix with polymeric organic macromolecule. The resulting material along with the host LDH’s compound of Zn/Al-Cl was characterized by X-Ray Powder Diffraction (PXRD, Thermal Analysis (TG, Differential Thermal Analysis (DTA, and Fourier Transform Infrared Spectroscopy (FTIR. The study confirms the intercalation of m-aminobenzoat anion. Diffusion of oxygen molecules between the contact region of two anions in the interlayer space and oxidation of the anion lead to the formation of a polymer macromolecule. This intercalation compound result in a gallery height of 15.8 A, indicating that the guest anion stack to form a monolayer with the benzene rings perpendicular to the host layers, giving a suitable orientation for polymerization.

  13. Anisotropic thermoelectric properties of layered compounds in SnX2 (X = S, Se): a promising thermoelectric material.

    Science.gov (United States)

    Sun, Bao-Zhen; Ma, Zuju; He, Chao; Wu, Kechen

    2015-11-28

    Thermoelectrics interconvert heat to electricity and are of great interest in waste heat recovery, solid-state cooling and so on. Here we assessed the potential of SnS2 and SnSe2 as thermoelectric materials at the temperature gradient from 300 to 800 K. Reflecting the crystal structure, the transport coefficients are highly anisotropic between a and c directions, in particular for the electrical conductivity. The preferred direction for both materials is the a direction in TE application. Most strikingly, when 800 K is reached, SnS2 can show a peak power factor (PF) of 15.50 μW cm(-1) K(-2) along the a direction, while a relatively low value (11.72 μW cm(-1) K(-2)) is obtained in the same direction of SnSe2. These values are comparable to those observed in thermoelectrics such as SnSe and SnS. At 300 K, the minimum lattice thermal conductivity (κmin) along the a direction is estimated to be about 0.67 and 0.55 W m(-1) K(-1) for SnS2 and SnSe2, respectively, even lower than the measured lattice thermal conductivity of Bi2Te3 (1.28 W m(-1) K(-1) at 300 K). The reasonable PF and κmin suggest that both SnS2 and SnSe2 are potential thermoelectric materials. Indeed, the estimated peak ZT can approach 0.88 for SnSe2 and a higher value of 0.96 for SnS2 along the a direction at a carrier concentration of 1.94 × 10(19) (SnSe2) vs. 2.87 × 10(19) cm(-3) (SnS2). The best ZT values in SnX2 (X = S, Se) are comparable to that in Bi2Te3 (0.8), a typical thermoelectric material. We hope that this theoretical investigation will provide useful information for further experimental and theoretical studies on optimizing the thermoelectric properties of SnX2 materials.

  14. Removal of TcO4- from Representative Nuclear Waste Streams with Layered Potassium Metal Sulfide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Asmussen, Robert M.; Lawter, Amanda R.; Bowden, Mark E.; Lukens, Wayne W.; Sarma, Debajit; Riley, Brian J.; Kanatzidis, Mercouri G.; Qafoku, Nikolla

    2016-06-01

    Many efforts have focused on the sequestration and immobilization of 99Tc because the radionuclide is highly mobile in oxidizing environments and presents serious health risks due to its radiotoxicity and long half-life (t1/2 = 213 000 a). One of the more common methods for Tc removal from solution and immobilization in solids is based on reducing Tc from highly soluble Tc(VII) to sparingly soluble Tc(IV). In order to remove solution Tc through this reduction process, the Tc-sequestering solid must contain a reducing agent and, ideally, the Tc-sequestering material would function in a large range of chemical environments. For long-term stability, the reduced Tc would preferentially be incorporated into the resulting mineral structure instead of simply being sorbed onto the mineral surface. Here, we report results obtained from batch sorption experiments performed in anoxic and oxic conditions with two sulfide-containing potassium metal sulfide (KMS) materials, known as KMS-2 and KMS-2-SS. In deionized water in anoxic conditions after 15 d of contact, KMS-2 is capable of removing ~45% of Tc and KMS-2-SS is capable of removing ~90% of Tc. The improved performance of KMS-2-SS compared to KMS-2 in deionized water in anoxic conditions appears to be linked both to a higher pH resulting from the batch sorption experiments performed with KMS-2-SS and a higher overall purity of KMS-2-SS. Both materials perform even better in highly caustic (pH~13.5), high ionic strength (8.0 M) simulated Hanford low-activity waste solutions, removing more than 90% Tc after 15 d of contact in anoxic conditions. Post-reaction solids analysis indicate that Tc(VII) is reduced to Tc(IV) and that Tc(IV) is bonded to S atoms in the resulting KMS-2 structure in a Tc2S7 form. In contrast to previous ion exchange experiments with other KMS materials, the batch sorption experiments examining Tc removal cause the initially crystalline KMS materials to lose much of their initial long-range order.

  15. Electrochemical Kinetics and Performance of Layered Composite Cathode Material Li[Li0.2Ni0.2Mn0.6]O2

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Shi, Wei; Gu, Meng; Xiao, Jie; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang

    2013-10-10

    Lithium-rich, manganese-rich (LMR) layered composite cathode material Li[Li0.2Ni0.2Mn0.6]O2 has been successfully prepared by a co-precipitation method and its structure is confirmed by XRD characterization. The material delivers a high discharge capacity of 281 mAh g-1, when charged and discharged at a low current density of 10 mA g-1. However, significant increase of cell polarization and decrease of discharge capacity are observed at voltages below 3.5 V with increasing current densities. Galvanostatic intermittent titration technique (GITT) analysis demonstrates that lithium ion intercalation/de-intercalation reactions in this material are kinetically controlled by Li2MnO3 and its activated MnO2 component. The relationship between the electrochemical kinetics and rate performance as well as cycling stability has been systematically investigated. High discharge capacity of 149 mAh g-1 can be achieved at 10 C charge rate and C/10 discharge rate. The result demonstrates that the Li2MnO3 based material could withstand high charge rate (except initial activation process), which is very promising for practical applications. A lower discharge current density is preferred to overcome the kinetic barrier of lithium ion intercalation into MnO2 component, in order to achieve higher discharge capacity even at high charge rates.

  16. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design.

    Science.gov (United States)

    Singh, Sagar; Lo, Meng-Chen; Damodaran, Vinod B; Kaplan, Hilton M; Kohn, Joachim; Zahn, Jeffrey D; Shreiber, David I

    2016-01-01

    Single-unit recording neural probes have significant advantages towards improving signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface devices. Long-term effectiveness is unfortunately limited by the chronic injury response, which has been linked to the mechanical mismatch between rigid probes and compliant brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion of these probes without buckling requires supporting elements such as a stiff coating with a biodegradable polymer. For these coated probes, there is a design trade-off between the potential for successful insertion into brain tissue and the degree of trauma generated by the insertion. The objective of this study was to develop and validate a finite element model (FEM) to simulate insertion of coated neural probes of varying dimensions and material properties into brain tissue. Simulations were performed to predict the buckling and insertion forces during insertion of coated probes into a tissue phantom with material properties of brain. The simulations were validated with parallel experimental studies where probes were inserted into agarose tissue phantom, ex vivo chick embryonic brain tissue, and ex vivo rat brain tissue. Experiments were performed with uncoated copper wire and both uncoated and coated SU-8 photoresist and Parylene C probes. Model predictions were found to strongly agree with experimental results (model also revealed the effects of manufacturing flaws on insertion potential. PMID:26959021

  17. Controllable preparation of multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Graphical Abstract: Multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets grown on electrospun carbon nanofiber membranes were prepared via electrospinning combined with solution co-deposition for high-performance supercapacitor electrodes. - Highlights: • Ni-Co LDH@CNFhybridswerepreparedbyelectrospinningandsolutionco-deposition. • Ni-Co LDH@CNF hybrids show high electrochemical performance for supercapacitors. • This method can be extended to other bimetallic@CNF hybrids for electrode materials. - Abstract: Hybrid nanomaterials with hierarchical structures have been considered as one kind of the most promising electrode materials for high-performance supercapacitors with high capacity and long cycle lifetime. In this work, multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide (Ni-Co LDH) nanorods/nanosheets on carbon nanofibers (CNFs) were prepared by electrospinning technique combined with one-step solution co-deposition method. Carbon nanofiber membranes were obtained by electrospinning of polyacrylonitrile (PAN) followed by pre-oxidation and carbonization. The successful growth of Ni-Co LDH with different morphologies on CNF membrane by using two kinds of auxiliary agents reveals the simplicity and universality of this method. The uniform and immense growth of Ni-Co LDH on CNFs significantly improves its dispersion and distribution. Meanwhile the hierarchical structure of carbon nanofiber@nickel-cobalt layered double hydroxide nanorods/nanosheets (CNF@Ni-Co LDH NR/NS) hybrid membranes provide not only more active sites for electrochemical reaction but also more efficient pathways for electron transport. Galvanostatic charge-discharge measurements reveal high specific capacitances of 1378.2 F g−1 and 1195.4 F g−1 (based on Ni-Co LDH mass) at 1 A g−1 for CNF@Ni-Co LDH NR and CNF@Ni-Co LDH NS hybrid membranes, respectively. Moreover, cycling stabilities for both hybrid membranes are

  18. Improvement of the Cycling Performance and Thermal Stability of Lithium-Ion Cells by Double-Layer Coating of Cathode Materials with Al₂O₃ Nanoparticles and Conductive Polymer.

    Science.gov (United States)

    Lee, Yoon-Sung; Shin, Won-Kyung; Kannan, Aravindaraj G; Koo, Sang Man; Kim, Dong-Won

    2015-07-01

    We demonstrate the effectiveness of dual-layer coating of cathode active materials for improving the cycling performance and thermal stability of lithium-ion cells. Layered nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material was synthesized and double-layer coated with alumina nanoparticles and poly(3,4-ethylenedioxythiophene)-co-poly(ethylene glycol). The lithium-ion cells assembled with a graphite negative electrode and a double-layer-coated LiNi0.6Co0.2Mn0.2O2 positive electrode exhibited high discharge capacity, good cycling stability, and improved rate capability. The protective double layer formed on the surface of LiNi0.6Co0.2Mn0.2O2 materials effectively inhibited the dissolution of Ni, Co, and Mn metals from cathode active materials and improved thermal stability by suppressing direct contact between electrolyte solution and delithiated Li(1-x)Ni0.6Co0.2Mn0.2O2 materials. This effective design strategy can be adopted to enhance the cycling performance and thermal stability of other layered nickel-rich cathode materials used in lithium-ion batteries. PMID:26083766

  19. Atomic layer deposition of NiS and its application as cathode material in dye sensitized solar cell

    International Nuclear Information System (INIS)

    Nickel sulfide (NiS) is grown by atomic layer deposition (ALD) using sequential exposures of bis(2,2,6,6-tetramethylheptane-3,5-dionate)nickel(II) [Ni(thd)2] and hydrogen sulfide (H2S) at 175 °C. Complementary combinations of in situ and ex situ characterization techniques are used to understand the deposition chemistry and the nature of film growth. The saturated growth rate of ca. 0.21 Å per ALD cycle is obtained, which is constant within the ALD temperature window (175–250 °C). As deposited films on glass substrates are found polycrystalline without any preferred orientation. Electrical transport measurement reveals degenerative/semimetallic characteristics with a carrier concentration of ca. 9 × 1022 cm−3 at room temperature. The ALD grown NiS thin film demonstrates high catalytic activity for the reduction of I−/I3− electrolyte that opens its usage as cost-effective counter electrode in dye sensitized solar cells, replacing Pt

  20. Double layer approach to create durable superhydrophobicity on cotton fabric using nano silica and auxiliary non fluorinated materials

    Science.gov (United States)

    Manatunga, Danushika Charyangi; de Silva, Rohini M.; de Silva, K. M. Nalin

    2016-01-01

    Creation of differential superhydrophobicity by applying different non-fluorinated hydrophobization agents on a cotton fabric roughened with silica nanoparticles was studied. Cotton fabric surface has been functionalized with silica nanoparticles and further hydrophobized with different hydrophobic agents such as hexadecyltrimethoxy silane (HDTMS), stearic acid (SA), triethoxyoctyl silane (OTES) and hybrid mixtures of HDTMS/SA and HDTMS/OTES. The cotton fabrics before and after the treatment were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM) and thermogravimetric analysis (TGA). The wetting behavior of cotton samples was investigated by water contact angle (WCA) measurement, water uptake, water repellency and soil repellency testing. The treated fabrics exhibited excellent water repellency and high water contact angles (WCA). When the mixture of two hydrophobization agents such as HDTMS/OTES and HDTMS/SA is used, the water contact angle has increased (145°-160°) compared to systems containing HDTMS, OTES, SA alone (130°-140°). It was also noted that this fabricated double layer (silica + hydrophobization agent) was robust even after applying harsh washing conditions and there is an excellent anti-soiling effect observed over different stains. Therefore superhydrophobic cotton surfaces with high WCA and soil repellency could be obtained with silica and mixture of hydrophobization agents which are cost effective and environmentally friendly when compared with the fluorosilane treatment.

  1. SEMICONDUCTOR MATERIALS: AlGaSb/GaSb quantum wells grown on an optimized AlSb nucleation layer

    Science.gov (United States)

    Hanchao, Gao; Cai, Wen; Wenxin, Wang; Zhongwei, Jiang; Haitao, Tian; Tao, He; Hui, Li; Hong, Chen

    2010-05-01

    Five-period AlGaSb/GaSb multiple quantum wells (MQW) are grown on a GaSb buffer. Through optimizing the AlSb nucleation layer, the low threading dislocation density of the MQW is found to be (2.50 ± 0.91) × 108 cm-2 in 1-μm GaSb buffer, as determined by plan-view transmission election microscopy (TEM) images. High resolution TEM clearly shows the presence of 90° misfit dislocations with an average spacing of 5.4 nm at the AlSb/GaAs interface, which effectively relieve most of the strain energy. In the temperature range from T = 26 K to 300 K, photoluminescence of the MQW is dominated by the ground state electron to ground state heavy hole (e1-hh1) transition, while a high energy shoulder clearly seen at T > 76 K can be attributed to the ground state electron to ground state light hole (e1-lh1) transition.

  2. Atomic layer deposition of NiS and its application as cathode material in dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mahuli, Neha [Center for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Sarkar, Shaibal K., E-mail: shaibal.sarkar@iitb.ac.in [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-01-15

    Nickel sulfide (NiS) is grown by atomic layer deposition (ALD) using sequential exposures of bis(2,2,6,6-tetramethylheptane-3,5-dionate)nickel(II) [Ni(thd){sub 2}] and hydrogen sulfide (H{sub 2}S) at 175 °C. Complementary combinations of in situ and ex situ characterization techniques are used to understand the deposition chemistry and the nature of film growth. The saturated growth rate of ca. 0.21 Å per ALD cycle is obtained, which is constant within the ALD temperature window (175–250 °C). As deposited films on glass substrates are found polycrystalline without any preferred orientation. Electrical transport measurement reveals degenerative/semimetallic characteristics with a carrier concentration of ca. 9 × 10{sup 22} cm{sup −3} at room temperature. The ALD grown NiS thin film demonstrates high catalytic activity for the reduction of I{sup −}/I{sub 3}{sup −} electrolyte that opens its usage as cost-effective counter electrode in dye sensitized solar cells, replacing Pt.

  3. Microgel-based engineered nanostructures and their applicability with template-directed layer-by-layer polyelectrolyte assembly in protein encapsulation.

    Science.gov (United States)

    Shenoy, Dinesh B; Sukhorukov, Gleb B

    2005-05-23

    A novel strategy for the fabrication of microcapsules is elaborated by employing biomacromolecules and a dissolvable template. Calcium carbonate (CaCO(3)) microparticles were used as sacrificial templates for the two-step deposition of polyelectrolyte coatings by surface controlled precipitation (SCP) followed by the layer-by-layer (LbL) adsorption technique to form capsule shells. When sodium alginate was used for inner shell assembly, template decomposition with an acid resulted in simultaneous formation of microgel-like structures due to calcium ion-induced gelation. An extraction of the calcium after further LbL treatment resulted in microcapsules filled with the biopolymer. The hollow as well as the polymer-filled polyelectrolyte capsules were characterized using confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and scanning force microscopy (SFM). The results demonstrated multiple functionalities of the CaCO(3) core - as supporting template, porous core for increased polymer accommodation/immobilization, and as a source of shell-hardening material. The LbL treatment of the core-inner shell assembly resulted in further surface stabilization of the capsule wall and supplementation of a nanostructured diffusion barrier for encapsulated material. The polymer forming the inner shell governs the chemistry of the capsule interior and could be engineered to obtain a matrix for protein/drug encapsulation or immobilization. The outer shell could be used to precisely tune the properties of the capsule wall and exterior. [Diagram: see text] Confocal laser scanning microscopy (CLSM) image of microcapsules (insert is after treating with rhodamine 6G to stain the capsule wall).

  4. Supracolloidal Assemblies as Sacrificial Templates for Porous Silk-Based Biomaterials

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2015-08-01

    Full Text Available Tissues in the body are hierarchically structured composite materials with tissue-specific properties. Urea self-assembles via hydrogen bonding interactions into crystalline supracolloidal assemblies that can be used to impart macroscopic pores to polymer-based tissue scaffolds. In this communication, we explain the solvent interactions governing the solubility of urea and thereby the scope of compatible polymers. We also highlight the role of solvent interactions on the morphology of the resulting supracolloidal crystals. We elucidate the role of polymer-urea interactions on the morphology of the pores in the resulting biomaterials. Finally, we demonstrate that it is possible to use our urea templating methodology to prepare Bombyx mori silk protein-based biomaterials with pores that human dermal fibroblasts respond to by aligning with the long axis of the pores. This methodology has potential for application in a variety of different tissue engineering niches in which cell alignment is observed, including skin, bone, muscle and nerve.

  5. Directing Hybrid Structures by Combining Self-Assembly of Functional Block Copolymers and Atomic Layer Deposition: A Demonstration on Hybrid Photovoltaics.

    Science.gov (United States)

    Moshonov, Moshe; Frey, Gitti L

    2015-11-24

    The simplicity and versatility of block copolymer self-assembly offers their use as templates for nano- and meso-structured materials. However, in most cases, the material processing requires multiple steps, and the block copolymer is a sacrificial building block. Here, we combine a self-assembled block copolymer template and atomic layer deposition (ALD) of a metal oxide to generate functional hybrid films in a simple process with no etching or burning steps. This approach is demonstrated by using the crystallization-induced self-assembly of a rod-coil block copolymer, P3HT-b-PEO, and the ALD of ZnO. The block copolymer self-assembles into fibrils, ∼ 20 nm in diameter and microns long, with crystalline P3HT cores and amorphous PEO corona. The affinity of the ALD precursors to the PEO corona directs the exclusive deposition of crystalline ZnO within the PEO domains. The obtained hybrid structure possesses the properties desired for photovoltaic films: donor-acceptor continuous nanoscale interpenetrated networks. Therefore, we integrated the films into single-layer hybrid photovoltaics devices, thus demonstrating that combining self-assembly of functional block copolymers and ALD is a simple approach to direct desired complex hybrid morphologies.

  6. Efficient blue-green and green electroluminescent devices obtained by doping iridium complexes into hole-block material as supplementary light-emitting layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zheng, Youxuan, E-mail: yxzheng@mail.nju.edu.cn [State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Deng, Ruiping; Feng, Jing; Song, Mingxing; Hao, Zhaomin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zhang, Hongjie, E-mail: hongjie@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zuo, Jinglin; You, Xiaozeng [State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2014-04-15

    In this work, organic electroluminescent (EL) devices with dominant and supplementary light-emitting layers (EMLs) were designed to further improve the EL performances of two iridium{sup III}-based phosphorescent complexes, which have been reported to provide EL devices with slow EL efficiency roll-off. The widely used hole-block material 2,2′,2''-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) was selected as host material to construct the supplementary EML. Compared with single-EML devices, double-EMLs devices showed higher EL efficiencies, higher brightness, and lower operation voltage attributed to wider recombination zone and better balance of carriers. In addition, the insertion of supplementary EML is instrumental in facilitating carriers trapping, thus improving the color purity. Finally, high performance blue-green and green EL devices with maximum current efficiencies of 35.22 and 90.68 cd/A, maximum power efficiencies of 26.36 and 98.18 lm/W, and maximum brightness of 56,678 and 112,352 cd/m{sup 2}, respectively, were obtained by optimizing the doping concentrations. Such a device design strategy extends the application of a double EML device structure and provides a chance to simplify device fabrication processes. -- Highlights: • Electroluminescent devices with supplementary light-emitting layer were fabricated. • Doping concentrations and thicknesses were optimized. • Better balance of holes and electrons causes the enhanced efficiency. • Improved carrier trapping suppresses the emission of host material.

  7. Study on the Gamma Passive Analysis for the Thickness of Two Layer Shield Materials%双层屏蔽厚度γ反解技术研究

    Institute of Scientific and Technical Information of China (English)

    张连平; 吴伦强; 韦孟伏

    2015-01-01

    分析高分辨(能谱获取测量对象特定信息在军控核查领域有重要应用,根据多组不同能峰强度比等信息反解给出源外屏蔽材料几何信息有望有效消除未知包装容器对容器内部材料特性认识的影响。分析建立了反解源外双层屏蔽厚度的方法,实验测量反解了钚源和152 Eu点源外双层屏蔽材料的厚度,152 Eu点源的解析结果明显优于钚源,分析了实验解析结果与实际厚度值之间存在一定偏差的原因。%Acquiring the special information about measured object by gamma spectrum has important application in the field of arms control verification.The geometry information of the shield material out of source has been obtained by several group of intensity ratio of different energy gamma rays, which would reduce the affect for the evaluation of the inner assembly characteristic when the packaging is unknown.In this paper, the method of an-alyzing the thickness of several layers shield materials has been established, and the thickness of several layer shield materials out of plutonium source and 152 Eu source has been analyzed based on the experiment, the result of the 152 Eu source is better than the plutonium source obviously, the reason of the disagreement between the ex-periment result and the actual value has been analyzed.

  8. Li-Rich Layered Cathode Material Li[Li0.157Ni0.138Co0.134Mn0.571]O2 Synthesized with Solid-State Coordination Method

    Science.gov (United States)

    Liao, Da-qian; Xia, Chao-yang; Xi, Xiao-ming; Zhou, Chun-xian; Xiao, Ke-song; Chen, Xiao-qing; Qin, Shi-biao

    2016-06-01

    Lithium-rich layered material Li[Li0.157Ni0.138Co0.134Mn0.571]O2 was prepared with the solid-state coordination method. Lithium nitrate, nickel acetate, cobalt acetate, and manganese acetate were used as raw materials, and citric acid as solid complexing agent. The lithium-rich layered material was prepared by heat-treating the precursors of the solid-phase complex compound. The prepared materials exhibited typical layer structure, nanosize distribution, and excellent electrochemical performance, and the preparation process has the advantages of low cost and simplicity. The initial discharge capacity of the prepared material reached as high as 270 mAh/g, and the charge-transfer resistance of the electrode was about 165 Ω at 4.0 V.

  9. Using multi-layered roll bonding and reaction annealing to process gamma-titanium aluminide sheet material

    Science.gov (United States)

    Chaudhari, Gajanan Prabhakar

    The process of roll bonding and reaction annealing was used to process gamma-titanium aluminide sheets with a nearly fully lamellar microstructure. Cold roll bonding was employed to bond elemental Al and Ti foils. The bonded sheets were annealed at 600 °C to convert all of the Al into TiAl3. The effect of rolling strain on the reaction kinetics was studied. Accumulative roll bonding was also employed to study the effect of increased rolling strain on the microstructures resulting after annealing. After the first annealing stage, a cold rolling step resulted in a denser microstructure. A second annealing treatment at 1300 °C for 6 h resulted in a microstructure consisting of two phases, gamma and alpha2, along with Kirkendall porosity. Further densification of the sheets was carried out using hot rolling. A final heat treatment at 1400 °C for 0.3 h resulted in nearly fully lamellar microstructure. The porosity evolution was evaluated at different stages of processing. The mechanical properties of the processed sheet were determined and compared with the data available in the literature. The process of bi-metal multi-layer roll bonding was modeled using the equilibrium force balance method (slab method). The effect of anisotropy and strain hardening was included in the model. The effect of different variables such as total reduction, coefficient of friction, roll radius and initial foil thickness ratio, on the thickness fraction of metals in the bonded composite was investigated. The model enables the estimation of the final composition of the roll bonded composite. The results of the model were compared with the experimental results, and good agreement was observed.

  10. Few-layer MoS2-anchored graphene aerogel paper for free-standing electrode materials.

    Science.gov (United States)

    Lee, Wee Siang Vincent; Peng, Erwin; Loh, Tamie Ai Jia; Huang, Xiaolei; Xue, Jun Min

    2016-04-21

    To reduce the reliance on polymeric binders, conductive additives, and metallic current collectors during the electrode preparation process, as well as to assess the true performance of lithium ion battery (LIB) anodes, a free-standing electrode has to be meticulously designed. Graphene aerogel is a popular scaffolding material that has been widely used with embedded nanoparticles for application in LIB anodes. However, the current graphene aerogel/nanoparticle composite systems still involve decomposition into powder and the addition of additives during electrode preparation because of the thick aerogel structure. To further enhance the capacity of the system, MoS2 was anchored onto a graphene aerogel paper and the composite was used directly as an LIB anode. The resultant additive-free MoS2/graphene aerogel paper composite exhibited long cyclic performance with 101.1% retention after 700 cycles, which demonstrates the importance of free-standing electrodes in enhancing cyclic stability.

  11. Few-layer MoS2-anchored graphene aerogel paper for free-standing electrode materials.

    Science.gov (United States)

    Lee, Wee Siang Vincent; Peng, Erwin; Loh, Tamie Ai Jia; Huang, Xiaolei; Xue, Jun Min

    2016-04-21

    To reduce the reliance on polymeric binders, conductive additives, and metallic current collectors during the electrode preparation process, as well as to assess the true performance of lithium ion battery (LIB) anodes, a free-standing electrode has to be meticulously designed. Graphene aerogel is a popular scaffolding material that has been widely used with embedded nanoparticles for application in LIB anodes. However, the current graphene aerogel/nanoparticle composite systems still involve decomposition into powder and the addition of additives during electrode preparation because of the thick aerogel structure. To further enhance the capacity of the system, MoS2 was anchored onto a graphene aerogel paper and the composite was used directly as an LIB anode. The resultant additive-free MoS2/graphene aerogel paper composite exhibited long cyclic performance with 101.1% retention after 700 cycles, which demonstrates the importance of free-standing electrodes in enhancing cyclic stability. PMID:27020143

  12. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design

    Directory of Open Access Journals (Sweden)

    Sagar Singh

    2016-03-01

    Full Text Available Single-unit recording neural probes have significant advantages towards improving signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface devices. Long-term effectiveness is unfortunately limited by the chronic injury response, which has been linked to the mechanical mismatch between rigid probes and compliant brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion of these probes without buckling requires supporting elements such as a stiff coating with a biodegradable polymer. For these coated probes, there is a design trade-off between the potential for successful insertion into brain tissue and the degree of trauma generated by the insertion. The objective of this study was to develop and validate a finite element model (FEM to simulate insertion of coated neural probes of varying dimensions and material properties into brain tissue. Simulations were performed to predict the buckling and insertion forces during insertion of coated probes into a tissue phantom with material properties of brain. The simulations were validated with parallel experimental studies where probes were inserted into agarose tissue phantom, ex vivo chick embryonic brain tissue, and ex vivo rat brain tissue. Experiments were performed with uncoated copper wire and both uncoated and coated SU-8 photoresist and Parylene C probes. Model predictions were found to strongly agree with experimental results (<10% error. The ratio of the predicted buckling force-to-predicted insertion force, where a value greater than one would ideally be expected to result in successful insertion, was plotted against the actual success rate from experiments. A sigmoidal relationship was observed, with a ratio of 1.35 corresponding to equal probability of insertion and failure, and a ratio of 3.5 corresponding to a 100% success rate. This ratio was dubbed the “safety factor”, as it indicated the degree to which the coating

  13. Few-layer MoS2-anchored graphene aerogel paper for free-standing electrode materials

    Science.gov (United States)

    Lee, Wee Siang Vincent; Peng, Erwin; Loh, Tamie Ai Jia; Huang, Xiaolei; Xue, Jun Min

    2016-04-01

    To reduce the reliance on polymeric binders, conductive additives, and metallic current collectors during the electrode preparation process, as well as to assess the true performance of lithium ion battery (LIB) anodes, a free-standing electrode has to be meticulously designed. Graphene aerogel is a popular scaffolding material that has been widely used with embedded nanoparticles for application in LIB anodes. However, the current graphene aerogel/nanoparticle composite systems still involve decomposition into powder and the addition of additives during electrode preparation because of the thick aerogel structure. To further enhance the capacity of the system, MoS2 was anchored onto a graphene aerogel paper and the composite was used directly as an LIB anode. The resultant additive-free MoS2/graphene aerogel paper composite exhibited long cyclic performance with 101.1% retention after 700 cycles, which demonstrates the importance of free-standing electrodes in enhancing cyclic stability.To reduce the reliance on polymeric binders, conductive additives, and metallic current collectors during the electrode preparation process, as well as to assess the true performance of lithium ion battery (LIB) anodes, a free-standing electrode has to be meticulously designed. Graphene aerogel is a popular scaffolding material that has been widely used with embedded nanoparticles for application in LIB anodes. However, the current graphene aerogel/nanoparticle composite systems still involve decomposition into powder and the addition of additives during electrode preparation because of the thick aerogel structure. To further enhance the capacity of the system, MoS2 was anchored onto a graphene aerogel paper and the composite was used directly as an LIB anode. The resultant additive-free MoS2/graphene aerogel paper composite exhibited long cyclic performance with 101.1% retention after 700 cycles, which demonstrates the importance of free-standing electrodes in enhancing cyclic

  14. SIMS Analysis on Ion Implantation of Fluorine at Interface between Top Silicon and Insulator Layers in SOI Materials%SOI材料中绝缘层界面处离子注入氟的SIMS剖析

    Institute of Scientific and Technical Information of China (English)

    方培源; 曹永明

    2005-01-01

    Silicon-on-insulator (SOI) is well known as "new technology of Si semiconductor IC process in 21 Contrary". Recently, SOI materials have been identified as the first choice of the semiconductor materials for fabricating low voltage and low power circuits. In order to improve the working performance of the SOI circuit under the radiating circumstance, ion implantation of fluorine impurity into the insulator layers in SOI materials is used for hardening the thermal gate oxide layer. Proper implantation depth of fluorine would further improve radiate resistance performance of the SOI circuit. This paper describes the SIMS analysis results of fluorine impurity implantation profile at the interface between top silicon layer and oxide insulator layer.

  15. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition.

    Science.gov (United States)

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-01-01

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption. PMID:27312225

  16. A general analytical model for formaldehyde and VOC emission/sorption in single-layer building materials and its application in determining the characteristic parameters

    Science.gov (United States)

    Xiong, Jianyin; Liu, Cong; Zhang, Yinping

    2012-02-01

    A general analytical model for characterizing emission and sorption of formaldehyde and volatile organic compounds (VOCs) in single-layer building materials is developed. Compared with traditional models, the present model can be applicable for four kinds of typical physical processes, i.e., emission in ventilated and airtight chambers, and sorption in these two types of chambers. Based on the general analytical model, a novel method is proposed to determine the characteristic parameters (the diffusion coefficient, Dm, and the material/air partition coefficient, K) of formaldehyde and VOC sorption in ventilated and airtight chambers. It establishes a linear relationship between the logarithm of dimensionless excess concentration and sorption time, and the Dm and K can be conveniently obtained from the slope and intercept of the regression line. The results of applying the present model are compared with the experimental data in the literature. The good agreement between them not only validates the model but also demonstrates that the measured characteristic parameters are accurate and reliable. The general analytical model should prove useful for unified characterization and prediction of emission/sorption in building materials as well as for parameter measurement.

  17. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition

    Science.gov (United States)

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-01-01

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption. PMID:27312225

  18. Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review

    Science.gov (United States)

    Pelosato, Renato; Cordaro, Giulio; Stucchi, Davide; Cristiani, Cinzia; Dotelli, Giovanni

    2015-12-01

    Nowadays, the cathode is the most studied component in Intermediate Temperature-Solid Oxide Fuel Cells (IT-SOFCs). Decreasing SOFCs operating temperature implies slow oxygen reduction kinetics and large polarization losses. Double perovskites with general formula REBaCo2O5+δ are promising mixed ionic-electronic conductors, offering a remarkable enhancement of the oxygen diffusivity and surface exchange respect to disordered perovskites. In this review, more than 250 compositions investigated in the literature were analyzed. The evaluation was performed in terms of electrical conductivity, Area Specific Resistance (ASR), chemical compatibility with electrolytes and Thermal Expansion Coefficient (TEC). The most promising materials have been identified as those bearing the mid-sized rare earths (Pr, Nd, Sm, Gd). Doping strategies have been analyzed: Sr doping on A site promotes higher electrical conductivity, but worsen ASR and TECs; B-site doping (Fe, Ni, Mn) helps lowering TECs, but is detrimental for the electrochemical properties. A promising boost of the electrochemical activity is obtained by simply introducing a slight Ba under-stoichiometry. Still, the high sensitivity of the electrochemical properties against slight changes in the stoichiometry hamper a conclusive comparison of all the investigated compounds. Opportunities for an improvement of double perovskite cathodes performance is tentatively foreseen in combining together the diverse effective doping strategies.

  19. Synthesis and structural characterization of zirconium phosphate adipate dimethyl sulphoxide: A new lambda-type organic-inorganic layered material

    Indian Academy of Sciences (India)

    Hussein Alhendawi

    2014-07-01

    −Zirconium phosphate adipate dimethyl sulphoxide, -ZrPO4(OOC-(CH2)4-COOH)(CH3)2SO, is prepared by means of topotactic anion exchange of the chloride ligand of -Zirconium phosphate, -ZrPO4Cl(CH3)2SO, with adipate. The samples are characterized by thermal analyses, X-ray diffractometry and FT-IR spectrophotometry. The used analysis approaches provide strong evidence that the chloride monovalent anions of -Zirconium phosphate are completely exchanged with the carboxylate groups of the adipate monoanionic ligands. Moreover, the adipate ligands replace the chloride anions in a 1:1 stoichiometry. In this case the formula of the derivative should contain the monoanionic adipate fragment: (OOC-(CH2)4-COOH). This formula is in agreement with TGA and elemental analysis. With respect to intercalation properties, the synthesized adipate-solid phase has a higher acidic character and a larger gallery height in comparison to the pristine -Zirconium phosphate (1.47, 1.02 nm, respectively). Therefore, this material is expected to be a suitable host for intercalation of huge basic guests.

  20. Morphological and Structural Studies of Titanate and Titania Nanostructured Materials Obtained after Heat Treatments of Hydrothermally Produced Layered Titanate

    Directory of Open Access Journals (Sweden)

    Mohd Hasmizam Razali

    2012-01-01

    Full Text Available Different types of titanate and titania nanostructured materials have been successfully synthesised and characterized using field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, X-ray diffraction (XRD and raman spectroscopy. Elemental analysis was determined by energy dispersive X-ray spectroscopy (EDX analyzer while thermogravimetric-differential scanning calorimetry (TG-DSC was used to determine thermal stability. In this study, we found that nanotubes were formed during the washing treatment stage with HCl and distilled water. When the pH of the washing solution was 12, sodium titanate nanotubes were obtained, while when the pH of the washing solution was 7, hydrogen titanate nanotubes were obtained. Sodium titanate nanotubes were thermally stable up to 500°C; however, at 700°C, the nanotubes structure transform to solid nanorods. Meanwhile, hydrogen titanate nanotubes decomposed to produce titania nanotubes after heat treatment at 300°C for 2 hours. At 500°C, the tubular structure broke to small segments due to destruction of the nanotube. Further heat treatment at 700°C, led to the destruction and collapse of the nanotubes structure produce titania nanoparticles.

  1. Preparation of hydroxyapatite coating by using a sacrificial anode method%单室牺牲阳极-水热合成法制备羟基磷灰石涂层

    Institute of Scientific and Technical Information of China (English)

    梁成浩; 陈邦义; 黄乃宝

    2012-01-01

    采用单室牺牲阳极-水热合成法在TAMZ钛合金表面制备生物活性羟基磷灰石涂层,通过X-射线衍射分析、傅立叶变换红外光谱和扫描电子显微镜技术对涂层进行检测,探讨涂层制备过程的反应机理.结果表明,金属基体表面首先形成与羟基磷灰石同晶型的缺钙磷灰石层,经水热处理后转化为羟基磷灰石涂层.钙磷灰石涂层在制备过程中存在取向生长,主要由针状和片状晶体组成,水热处理后晶体排布更为致密.制备的涂层上不存在镁元素.%A sacrificial anode method was applied to prepare a bioactive hydroxyapatite(HAP) coating on TAMZ Ti alloy.The coatings were characterized by X-ray diffraction(XRD),Fourier infrared spectra(FTIR) and scanning electron microscopy(SEM).Results show that a calcium deficient hydroxyapatite(CDHA) layer,which has the same crystals as HAP,formed on TAMZ surface during the electrochemical process.By a steam treatment,this layer transforms into HAP coating.The coatings are mainly composed of plate-like and needle-like crystals existing preferential orientation,and after steam treatment the pores between crystals decrease.In addition,magnesium element does not deposit on the coatings.

  2. 层状钴基正极材料的改性研究%Modification of layered Co-based cathode material

    Institute of Scientific and Technical Information of China (English)

    杨占旭; 乔庆东; 任铁强; 李琪

    2012-01-01

    Layered LiCoO2 has been the dominant cathode material for commercial Li-ion batteries because of its ease of production, good rate capability and stable discharge voltage platform. However, layered LiCoO2 shows poor overcharge tolerance and thermal stability, which restrict its commercialization. In this article, the progress in ion substitution and surface treatment of layered LiCoO2 to improve the structural and thermal stability at home and abroad has been described in detail. The mechanism has been discussed as well.%层状LiCoO2是目前商品化的主要正极材料,具有易于制备、较好的倍率性能以及放电电压平稳等优点,但其抗过充电性能和热稳定性差限制了其应用.详细阐述了国内外关于层状LiCoO2正极材料的改性研究进展,包括体相掺杂和表面包覆改性两种方法提高材料的抗过充电性能和热稳定性,并对体相掺杂和表面包覆层状LiCoO2正极材料电化学性能提高的机理进行了讨论.

  3. Synthesis and characterization of multi-layer core-shell structural LiFeBO3/C as a novel Li-battery cathode material

    Science.gov (United States)

    Zhang, Bao; Ming, Lei; Zheng, Jun-chao; Zhang, Jia-feng; Shen, Chao; Han, Ya-dong; Wang, Jian-long; Qin, Shan-e.

    2014-09-01

    A multi-layer core-shell structural LiFeBO3/C has been successfully synthesized via spray-drying and carbothermal method using LiBO2·8H2O, Fe(NO3)3·9H2O, and citric acid as starting materials. The Rietveld refinement results indicate the sample consists of two phases: LiFeBO3 [94(6)% w/w], and LiFeO2 [6(4)% w/w]. SEM images show that the LiFeBO3 powders consist of rough similar-spherical particles with a size distribution ranging from 1 μm to 5 μm. TEM results present that the LiFeBO3 spherical particles are well coated by nano-carbon webs and form a multi-layer core-shell structure. The amount of carbon was determined to be 6.50% by C/S analysis. The prepared LiFeBO3-LiFeO2/C presents an initial discharge capacity of 196.5 mAh g-1 at the current density of 10 mA g-1 between 1.5 and 4.5 V, and it can deliver a discharge capacity of 136.1 mAh g-1 after 30 cycles, presents excellent electrochemical properties, indicating the surface sensitivity in the air was restrained.

  4. Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries

    Science.gov (United States)

    Qin, Wei; Chen, Taiqiang; Lu, Ting; Chua, Daniel H. C.; Pan, Likun

    2016-01-01

    Layered nickel sulfide (NS)-reduced graphene oxide (RGO) composites are prepared via a simple microwave-assisted method and subsequent annealing in N2/H2 atmosphere. A detailed array of characterization tools are used to study their morphology, structure and electrochemical performance. It was found that these composites exhibit significantly improved sodium-ion storage ability as compared with pure NS under galvanostatic cycling at a specific current of 100 mA g-1 in a potential limitation of 0.005-3.0 V. Furthermore, the composite with the RGO content of 35 wt.% achieves a high maximum reversible specific capacity of about 391.6 mAh g-1 at a specific current of 100 mA g-1 after 50 cycles. These results prove that NS-RGO composites are highly promising when applied directly as anode materials in sodium-ion batteries.

  5. Overview of recent tritium target filling, layering, and material testing at Los Alamos national laboratory in support of inertial fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ebey, P. S.; Dole, J. M.; Geller, D. A.; Hoffer, J. K.; Morris, J.; Nobile, A.; Schoonover, J. R.; Wilson, D. [MS-C927, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Bonino, M.; Harding, D.; Sangster, C.; Shmayda, W. [Laboratory for Laser Energetics LLE, Univ. of Rochester, 250 East River Road, Rochester, NY 14623 (United States); Nikroo, A.; Sheliak, J. D. [General Atomics GA (United States); Burmann, J.; Cook, B.; Letts, S.; Sanchez, J. [Lawrence Livermore National Laboratory LLNL (United States)

    2008-07-15

    The Tritium Science and Engineering (AET-3) Group at Los Alamos National Laboratory (LANL) performs a variety of activities to support Inertial Fusion (IF) research - both to further fundamental fusion science and to develop technologies in support of Inertial Fusion Energy (IFE) power generation. Inertial fusion ignition target designs have a smooth spherical shell of cryogenic Deuterium-Tritium (DT) solid contained within a metal or plastic shell that is a few mm in diameter. Fusion is attained by imploding these shells under the symmetric application of energy beams. For IFE targets the DT solid must also survive the process of injecting it into the power plant reactor. Non-ignition IF targets often require a non-cryogenic DT gas fill of a glass or polymeric shell. In this paper an overview will be given of recent LANL activities to study cryogenic DT layering, observe tritium exposure effects on IF relevant materials, and fill targets in support of IF implosion experiments. (authors)

  6. Artificial layered perovskite oxides A(B0.5B′0.5)O3 as potential solar energy conversion materials

    International Nuclear Information System (INIS)

    Perovskite oxides with a d0 electronic configuration are promising photocatalysts and exhibit high electron mobilities. However, their band gaps are too large for efficient solar energy conversion. On the other hand, transition metal cations with partially filled dn electronic configurations give rise to visible light absorption. In this study, by using hybrid density functional theory calculations, it is demonstrated that the virtues of the two categories of materials can be combined in perovskite oxide A(B0.5B′0.5)O3 with a layered B-site ordering along the [001] direction. The electronic structures of the four selected perovskite oxide compounds, La(Ti0.5Ni0.5)O3, La(Ti0.5Zn0.5)O3, Sr(Nb0.5Cr0.5)O3, and Sr(Nb0.5Fe0.5)O3 are calculated and discussed

  7. Analytical extraction of residual stresses and gradients in MEMS structures with application to CMOS-layered materials

    Science.gov (United States)

    Fachin, F.; Nikles, S. A.; Dugundji, J.; Wardle, B. L.

    2011-09-01

    Accurate thin-film characterization is a key requirement in the MEMS industry. Residual stresses determine both the final shape and the functionality of released micromachined structures, and should therefore be accurately assessed. To date, a number of techniques to characterize thin-film materials have been developed, from substrate curvature measurement to methods that exploit the post-release deformation of test structures. These techniques have some major drawbacks, from high implementation costs to accuracy limitations due to improper boundary condition modeling. Here, we present a new technique for the characterization of multilayered, composite MEMS structures that uses easily accessible experimental information on the post-release deformation of microbridges only, with no need for multiple beam lengths. The method is based on an analytical solution of the (post-)buckling problem of microbridges, including the effect of residual stresses (both mean and gradient) and non-ideal clamping (boundary flexibility). The method allows simultaneous characterization of both the mean and the gradient residual stress components, as well as the effective boundary condition associated with the fabrication process, yielding approximately one order of magnitude improvement in resolution compared to extant methods using the same type and number of test structures. The higher resolution is largely attributable to proper accounting for boundary flexibility by our method, with the boundary condition for the structures in this work being ~90% as stiff in bending relative to the commonly assumed perfectly clamped condition. Additional enhancement can be achieved with post-release deformation measurements of simple cantilevers in addition to the microbridges. The method is useful as it ensures very low stress extraction uncertainty using a limited number of microbridge test structures, and it is transferrable to package-stress characterization. The analytical approach can also be

  8. Analytical extraction of residual stresses and gradients in MEMS structures with application to CMOS-layered materials

    International Nuclear Information System (INIS)

    Accurate thin-film characterization is a key requirement in the MEMS industry. Residual stresses determine both the final shape and the functionality of released micromachined structures, and should therefore be accurately assessed. To date, a number of techniques to characterize thin-film materials have been developed, from substrate curvature measurement to methods that exploit the post-release deformation of test structures. These techniques have some major drawbacks, from high implementation costs to accuracy limitations due to improper boundary condition modeling. Here, we present a new technique for the characterization of multilayered, composite MEMS structures that uses easily accessible experimental information on the post-release deformation of microbridges only, with no need for multiple beam lengths. The method is based on an analytical solution of the (post-)buckling problem of microbridges, including the effect of residual stresses (both mean and gradient) and non-ideal clamping (boundary flexibility). The method allows simultaneous characterization of both the mean and the gradient residual stress components, as well as the effective boundary condition associated with the fabrication process, yielding approximately one order of magnitude improvement in resolution compared to extant methods using the same type and number of test structures. The higher resolution is largely attributable to proper accounting for boundary flexibility by our method, with the boundary condition for the structures in this work being ∼90% as stiff in bending relative to the commonly assumed perfectly clamped condition. Additional enhancement can be achieved with post-release deformation measurements of simple cantilevers in addition to the microbridges. The method is useful as it ensures very low stress extraction uncertainty using a limited number of microbridge test structures, and it is transferrable to package-stress characterization. The analytical approach can also

  9. Electronic structure of layered quaternary chalcogenide materials for band-gap engineering: The example of Cs2MIIM3IVQ8

    Science.gov (United States)

    Besse, Rafael; Sabino, Fernando P.; Da Silva, Juarez L. F.

    2016-04-01

    Quaternary chalcogenide materials offer a wide variety of chemical and physical properties, and hence, those compounds have been widely studied for several technological applications. Recently, experimental studies have found that the chalcogenide Cs2MIIM3IVQ8 family (MII = Mg , Zn , Cd , Hg , MIV = Ge , Sn and Q = S , Se , Te ), which includes 24 compounds, yields a wide range of band gaps, namely, from 1.07 to 3.4 eV, and hence, they have attracted great interest. To obtain an improved atomistic understanding of the role of the cations and anions on the physical properties, we performed a first-principles investigation of the 24 Cs2MIIM3IVQ8 compounds employing density functional theory within semilocal and hybrid exchange-correlation energy functionals and the addition of van der Waals corrections to improve the description of the weakly interacting layers. Our lattice parameters are in good agreement with the available experimental data (i.e., 11 compounds), and the equilibrium volume increases linearly by increasing the atomic number of the chalcogen, which can be explained by the increased atomic radius of the chalcogen atoms from S to Te . We found that van der Waals corrections play a crucial role in the lattice parameter in the stacking direction of the Cs2MIIM3IVQ8 layers, while the binding energy per unit area has similar magnitude as obtained for different layered materials. We obtained that the band gaps follow a linear relation as a function of the unit cell volume, which can be explained by the atomic size of the chalcogen atom and the relative position of the Q p states within the band structure. The fundamental and optical band gaps differ by less than 0.1 eV. The band gaps obtained with the hybrid functional are in good agreement with the available experimental data. Furthermore, we found from the Bader analysis, that the Coulomb interations among the cations and anions play a crucial role on the energetic properties.

  10. Development of Plasma-Sprayed Molybdenum Carbide-Based Anode Layers with Various Metal Oxides for SOFC

    Science.gov (United States)

    Faisal, N. H.; Ahmed, R.; Katikaneni, S. P.; Souentie, S.; Goosen, M. F. A.

    2015-12-01

    Air plasma-sprayed (APS) coatings provide an ability to deposit a range of novel fuel cell materials at competitive costs. This work develops three separate types of composite anodes (Mo-Mo2C/Al2O3, Mo-Mo2C/ZrO2, Mo-Mo2C/TiO2) using a combination of APS process parameters on Hastelloy®X for application in intermediate temperature proton-conducting solid oxide fuel cells. Commercially available carbide of molybdenum powder catalyst (Mo-Mo2C) and three metal oxides (Al2O3, ZrO2, TiO2) was used to prepare three separate composite feedstock powders to fabricate three different anodes. Each of the modified composition anode feedstock powders included a stoichiometric weight ratio of 0.8:0.2. The coatings were characterized by scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction, nanoindentation, and conductivity. We report herein that three optimized anode layers of thicknesses between 200 and 300 µm and porosity as high as 20% for Mo-Mo2C/Al2O3 (250-µm thick) and Mo-Mo2C/TiO2 (300 µm thick) and 17% for Mo-Mo2C/ZrO2 (220-µm thick), controllable by a selection of the APS process parameters with no addition of sacrificial pore-forming material. The nanohardness results indicate the upper layers of the coatings have higher values than the subsurface layers in coatings with some effect of the deposition on the substrate. Mo-Mo2C/ZrO2 shows high electrical conductivity.

  11. Method of manufacturing a fully integrated and encapsulated micro-fabricated vacuum diode

    Science.gov (United States)

    Resnick, Paul J.; Langlois, Eric

    2014-08-26

    Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.

  12. Fully integrated and encapsulated micro-fabricated vacuum diode and method of manufacturing same

    Energy Technology Data Exchange (ETDEWEB)

    Resnick, Paul J.; Langlois, Eric

    2015-12-01

    Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.

  13. The Sacrificial Crisis

    DEFF Research Database (Denmark)

    Östman, Lars

    2007-01-01

    Med udgangspunkt i Jesus´ lidelseshistorie forsøger artiklen via den franske religionsfilosof René Girards tanker om den hellige krise at knytte an til en generel teori om en tilstand, hvor lov og ret er suspenderede. Gennem en kritisk og perspektiverende læsning af Carl Schmitt forståes denne kr...

  14. In Situ X‐Ray Diffraction Studies on Structural Changes of a P2 Layered Material during Electrochemical Desodiation/Sodiation

    DEFF Research Database (Denmark)

    Jung, Young Hwa; Christiansen, Ane Sælland; Johnsen, Rune E.;

    2015-01-01

    Sodium layered oxides with mixed transition metals have received significant attention as positive electrode candidates for sodium‐ion batteries because of their high reversible capacity. The phase transformations of layered compounds during electrochemical reactions are a pivotal feature...

  15. 双牺牲层微测辐射热计最新研究进展%Recent Developments of Micro-Bolometer Using Double Sacrificial Layers

    Institute of Scientific and Technical Information of China (English)

    彭自求; 王军; 袁凯; 蒋亚东

    2010-01-01

    通过改善结构,来研制更小尺寸、更高分辨率的器件,成为微测辐射热计研制的新趋势,而其中最普遍的做法就是使用双牺牲层.本文介绍了双牺牲层微测辐射热计研究的最新成果,即以Raytheon和DRS等为代表的两种做法,并从器件结构和工艺上比较了两种思路的优劣.

  16. A Discussion on the Sacrificial Culture of Dokeduoer Mountain%多克多尔山祭祀文化浅论

    Institute of Scientific and Technical Information of China (English)

    原昊

    2016-01-01

    多克多尔山祭祀文化是蒙古族传统民俗文化的重要遗存。努图克人奉多克多尔山为神山,其神话传说及山神祭祀习俗源远流长。随着现代社会的发展,多克多尔山祭祀文化面临消亡的危险。为了避免这种情况,我们应该加强对该山祭祀文化的保护、研究及传承工作。%The sacrificial culture of Dokeduoer Mountain is the important historical remains of Mongolian traditional custom culture .Nu-tuke peoples worship Dokeduoer Mountain as a holy mountain , and the myth, legend as well as the custom of god sacrifice about the mountain has a long history .With the development of modern society , the sacrificial culture of Dokeduoer Mountain is facing the danger of elimination .In order to avoid this kind of circumstance , we should strengthen the perfecting , studying and inheriting work .

  17. A novel radial anode layer ion source for inner wall pipe coating and materials modification--hydrogenated diamond-like carbon coatings from butane gas.

    Science.gov (United States)

    Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time. PMID:25173323

  18. 环境温度对Zn合金牺牲阳极性能的影响%Influence of Environmental Temperature on Electrochemical Properties of Zn Alloy Sacrificial Anode

    Institute of Scientific and Technical Information of China (English)

    华建社; 韩巍; 刘长瑞

    2011-01-01

    研究了Zn系合金阳极材料在不同环境介质中其电化学性能的变化,通过分析Zn系合金在3.5%NaCl溶液中的不同温度极化曲线,获得了环境温度对牺牲阳极材料性能影响的基本规律.结果表明,Zn-Al-Cd系合金在常温、50℃时,工作情况基本稳定,但当温度高于70℃时,Zn-Al-Cd电位比钢铁还高,钢铁腐蚀速率加快,即电位发生逆转,Zn-Al-Cd无法对钢铁再起到保护作用.%The changes of electrochemical properties of Zn alloy anode materials in different environmental media were studied. By analyzing the different temperature polarization curves of Zn department alloy in 3.5%NaCl solution, the basic law of the influence of environmental temperature on Zn alloy sacrificial anode materials was obtained. The results show that Zn-Al-Cd alloy performance at room temperature and 50 ℃ is stable basically. However, when temperature is above 70 ℃, the potential of Zn-Al-Cd is higher than that of the steel. The corrosion rate of the steel is accelerated, so Zn-Al-Cd can't play a protective effect on the steel.

  19. Analysis of the Deformability of Two-Layer Materials AZ31/Eutectic / Analiza Możliwości Odkształcania Plastycznego Materiału Dwuwarstwowego AZ31/Eutektyka

    Directory of Open Access Journals (Sweden)

    Mola R.

    2015-12-01

    Full Text Available The paper present the results of physical simulation of the deformation of the two-layered AZ31/eutectic material using the Gleeble 3800 metallurgical processes simulator. The eutectic layer was produced on the AZ31 substrate using thermochemical treatment. The specimens of AZ31 alloy were heat treated in contact with aluminium powder at 445°C in a vacuum furnace. Depending on the heating time, Al-enriched surface layers with a thickness of 400, 700 and 1100 μm were fabricated on a substrate which was characterized by an eutectic structure composed of the Mg17Al12 phase and a solid solution of aluminium in magnesium. In the study, physical simulation of the fabricated two-layered specimens with a varying thickness of the eutectic layer were deformed using the plane strain compression test at various values of strain rates. The testing results have revealed that it is possible to deform the two-layered AZ31/eutectic material at low strain rates and small deformation values.

  20. Deformation and fracture of a composite material based on a high-strength maraging steel covered with a melt-quenched Co69Fe4Cr4Si12B11 alloy layer

    Science.gov (United States)

    Sevost'yanov, M. A.; Kolmakov, A. G.; Molokanov, V. V.; Zabolotnyi, V. T.; Umnov, P. P.; Umnova, N. V.

    2011-04-01

    Multifractal analysis is used to study the deformation and fracture of a promising composite material consisting of a wire base made of K17N9M14 maraging steel covered with a surface layer made from a Co69Fe4Cr4Si12B11 amorphous alloy. As compared to its components, this material has a substantially better set of the mechanical properties.

  1. Scanning electron microscopy (SEM) evaluation of sealing ability of MTA and EndoSequence as root-end filling materials with chitosan and carboxymethyl chitosan (CMC) as retrograde smear layer removing agents

    OpenAIRE

    Bolla Nagesh; Eppala Jeevani; Varri Sujana; Bharagavi Damaraju; Kaluvakolanu Sreeha; Penumaka Ramesh

    2016-01-01

    Aim: The purpose of this study was to evaluate the sealing ability of mineral trioxide aggregate (MTA) and EndoSequence with chitosan and carboxymethyl chitosan (CMC) as retrograde smear layer removing agents using scanning electron microscopy (SEM). Materials and Methods: Forty human single rooted teeth were taken. Crowns were decoronated and canals were obturated. Apically roots were resected and retrograde cavities were done. Based on the type of retrograde material placed and the typ...

  2. Progress in the Research on Materials of Fire Proof Layer of Fire Resistant Cable%耐火电缆耐火绝缘层材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    邵海彬; 张其土; 魏方明; 王庭慰

    2011-01-01

    Insulating material composition, material selection, performance and research progress of the three types of fire-resistant insulating layer materials are described. There are obvious disadvantages in production, installation and price of fire-resistant cables using mica tape and magnesium hydroxide (MgO) as fire-resistant insulating layer. While there are obvious advantages in production, installation and price of fire-resistant cables using fast ceramilying fire-resistant layer as fire-resistant insulating layer. Further more, research work in material selection and new product development should be reinforced.%介绍了不同类型耐火绝缘层材料的组成、材料选择、性能特点及研究概况.分析认为以云母带和氧化镁为耐火绝层缘材料制备耐火电缆在生产、安装施工、成本等方面存在明显不足,而快速陶瓷化耐火绝缘层材料在生产、安装施工、成本等方面优点突出.进一步指出,应在材料选择、新产品开发等方面加强对快速陶瓷化耐火绝缘层的研究.

  3. Progress in the Research on Materials of Fire Proof Layer of Fire Resistant Cable%耐火电缆耐火绝缘层材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    邵海彬; 张其土; 魏方明; 王庭慰

    2012-01-01

    介绍了不同类型耐火绝缘层材料的组成、材料选择、性能特点及研究概况.分析认为以云母带和氧化镁为耐火绝层缘材料制备耐火电缆在生产、安装施工、成本等方面存在明显不足,而快速陶瓷化耐火绝缘层材料在生产、安装施工、成本等方面优点突出.进一步指出,应在材料选择、新产品开发等方面加强对快速陶瓷化耐火绝缘层的研究.%Insulating material composition, material selection, performance and research progress of the three types of fire-resistant insulating layer materials are described. There are obvious disadvantages in production, installation and price of fire-resistant cables using mica tape and magnesium hydroxide (MgO) as fire-resistant insulating layer. While there are obvious advantages in production, installation and price of fire-resistant cabtes using fast cerami-fying fire-resistant layer as fire-resistant insulating layer. Further more, research work in material selection and new product development should be reinforced.

  4. Designed Single-Step Synthesis, Structure, and Derivative Textural Properties of Well-Ordered Layered Penta-coordinate Silicon Alcoholate Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Li, XS; Michaelis, VK; Ong, TC; Smith, SJ; Griffin, RG; Wang, EN

    2014-04-15

    The controllable synthesis of well-ordered layered materials with specific nanoarchitecture poses a grand challenge in materials chemistry. Here the solvothermal synthesis of two structurally analogous 5-coordinate organosilicate complexes through a novel transesterification mechanism is reported. Since the polycrystalline nature of the intrinsic hypervalent Si complex thwarts the endeavor in determining its structure, a novel strategy concerning the elegant addition of a small fraction of B species as an effective crystal growth mediator and a sacrificial agent is proposed to directly prepare diffraction-quality single crystals without disrupting the intrinsic elemental type. In the determined crystal structure, two monomeric primary building units (PBUs) self-assemble into a dimeric asymmetric secondary BU via strong Na+O2- ionic bonds. The designed one-pot synthesis is straightforward, robust, and efficient, leading to a well-ordered (10)-parallel layered Si complex with its principal interlayers intercalated with extensive van der Waals gaps in spite of the presence of substantial Na+ counter-ions as a result of unique atomic arrangement in its structure. However, upon fast pyrolysis, followed by acid leaching, both complexes are converted into two SiO2 composites bearing BET surface areas of 163.3 and 254.7m(2)g(-1) for the pyrolyzed intrinsic and B-assisted Si complexes, respectively. The transesterification methodology merely involving alcoholysis but without any hydrolysis side reaction is designed to have generalized applicability for use in synthesizing new layered metal-organic compounds with tailored PBUs and corresponding metal oxide particles with hierarchical porosity.

  5. The correlation between materials, processes and final properties in the pipeline coating system with polyethylene in triple layer; A correlacao entre materiais, processos e propriedades finais no sistema de revestimento de tubos com polietileno em tripla camada

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luiz C.; Campos, Paulo H. [Confab Industrial S.A., Pindamonhangaba, SP (Brazil); Silva, Christian E.; Santos, Paulo T. [Soco-Ril do Brasil S.A., Pindamonhangaba, SP (Brazil)

    2003-07-01

    The use of anticorrosion coating is a common practice in industrial pipeline applications. Among the several coatings types to buried and submerged pipelines, over all, the Fusion Bonded Epoxy and Three Layer Polyethylene coating systems have been large employed. They have showed an excellent performance protecting the pipe metal from external corrosive environment, considerably decreasing the designed cathodic protection requirements, basically in the first years of pipeline operation. Coating system success depends on not only of a suitable design or of the materials technology, but also depends on the process parameters and the raw material characteristics exhibited during the application. In this paper will be presented in a theoretical approach how the process parameters and the raw materials characteristics may affect the three layer polyethylene anticorrosion coating final properties. (author)

  6. Effects of Al2O3 Particulates on the Thickness of Reaction Layer of Al2O3 Joints Brazed with Al2O3-Particulate-Contained Composite Filler Materials

    Institute of Scientific and Technical Information of China (English)

    Jianguo YANG; Jingwei WU; Hongyuan FANG

    2003-01-01

    In order to understand the rate-controlling process for the interfacial layer growth of brazing joints brazed with activecomposite filler materials, the thickness of brazing joints brazed with conventional active filler metal and activecomposite filler materials with different volume fraction of Al2O3 particulate was studied. The experimental resultsindicate although there are Al2O3 particulates added into active filler metals, the time dependence of interfacial layergrowth is t2 as described by Fickian law for the joints brazed with conventional active filler metal. It also shows thatthe key factor affecting the interfacial layer growth is the volume fraction of alumina in the composite filler materialcompared with the titanium weight fraction in the filler material.

  7. Cocinando el “vivir juntos”. Comida sacrificial indígena, procesos de autoctonización y alteridad en el suroeste de México

    OpenAIRE

    Hémond, Aline

    2014-01-01

    ¿De qué manera la elaboración de la comida sacrificial constituye hoy en día un marcador socioétnico entre grupos rituales indígenas y cofradías mestizas en el suroeste de México? ¿Cómo se articulan procesos de autoctonía y alteridad en un contexto regional social y económicamente desigual? ¿Cuáles son los medios semánticos y figurativos en juego en las ofrendas rituales alimenticias, que permiten a la vez establecer una comunicación persuasiva con las entidades de lo sobrenatural y legitimar...

  8. Cobalt nanoparticles as sacrificial templates for the electrodeposition of palladium nanomaterials in an ionic liquid, and its application to electrochemical sensing of hydrazine

    International Nuclear Information System (INIS)

    We report on the electrodeposition of palladium nanomaterials in choline chloride-based ionic liquid ethaline. A glassy carbon electrode (GCE) was modified with cobalt nanoparticles (acting as sacrificial templates) and a GCE modified with palladium nanoparticles (PdNPs) were fabricated and used to study the electrocatalytic oxidation of hydrazine (N2H4). Scanning electron microscopy revealed that the PdNP modified GCE has a uniform morphology. Zero current potentiometry was used for in-situ probing the changes in interfacial potential of the oxidation of hydrazine. An amperometric study showed that the PdNP modified GCE possesses excellent electrocatalytic activity towards N2H4. The modified electrode displays a fast response (-1)-1 cm-2) and broad linearity in the range from 0.1 to 800 μmol L-1 with a detection limit of 0.03 μmol L-1 (S/N = 3). (author)

  9. Research Progress on Buffer Layer Materials of CIGS Thin Film Solar Cell%CIGS薄膜太阳能电池缓冲层材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    王卫兵; 刘平; 李伟; 马凤仓; 刘新宽; 陈小红

    2012-01-01

    CIGS薄膜太阳能电池的缓冲层为低带隙CIGS吸收层与高带隙ZnO窗口层之间形成过渡,减少两者带隙的晶格失配和带隙失调,并可防止溅射ZnO窗口层时给CIGS吸收层带来损害等,对提高CIGS薄膜太阳能电池效率起了重要作用.介绍了CIGS薄膜太阳能电池缓冲层材料的分类和制备工艺,主要阐述了CdS、ZnS及In2S3薄膜缓冲层材料及化学水浴法、原子层化学气相沉积法、金属化合物化学气相沉积法等制备工艺的研究现状,最后指出CIGS太阳能电池缓冲层在制备工艺、环境保护及大规模工业化生产中遇到的问题,并展望了其发展方向.%The buffer layers of CTGS thin film solar cells can form transition layers between low band gap CIGS absorber layers and high band gap of ZnO window layers, which reduces the lattice matching and band gap difference, and prevents damage of CIGS absorber layer from sputtering ZnO window layer, and therefore plays an important role in improving efficiency of CIGS thin film solar cells. Classification and preparation technology of CIGS thim film solar cells material are discussed, including the research progress of CdS,ZnS and In2S3 thin film buffer layer materials, and chemical bath deposition (CBD), atomic layer chemical vapor deposition (ALCVD), metal organic chemical vapor deposition (MOCVD) and other preparation technologies. The problems and development directions of buffer layer materials of CIGS thin film solar cells in preparation process, environment protection and large-scale industrial production are finally prospected.

  10. Crystal Growth and Characterization of Epitaxial Layers of Laser and Nonlinear Optical Materials for Thin-Disk and Waveguide laser applications

    Energy Technology Data Exchange (ETDEWEB)

    W Bolanos; M Segura; J Cugat; J Carvajal; X Mateos; M Pujol; R Solé; F Díaz; M Aguiló; et. al.

    2011-12-31

    This paper summarizes the main results we obtained in our laboratories in relation with crystalline layers obtained by liquid phase epitaxial growth of lanthanide doped KLu(WO{sub 4}){sub 2} and Nb:RbTiOPO{sub 4} grown on KLu(WO{sub 4}){sub 2} and RbTiOPO{sub 4} substrates, respectively. Macroscopic defect free epitaxial layers were grown and characterized in terms of their compositional homogeneity, structural stress in the layer/substrate interface and laser and waveguiding performances.

  11. Metal deposition using seed layers

    Science.gov (United States)

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  12. Thin catalyst layers based on carbon nanotubes for PEM-fuel cell applications

    Science.gov (United States)

    Bohnenberger, T.; Matovic, J.; Schmid, U.

    2011-06-01

    In this study, two approaches are compared to develop thin, multifunctional films of carbon nanotubes (CNT) which are targeted to serve as a catalyst layer in fuel cells. The first is based on the direct deposition of mixed multi- and single-wall CNTs on metalized silicon wafers, using the metallization as a sacrificial layer to subsequently detach the CNT film from the substrate. It is a less time consuming and a straight forward method compared to the alternative under investigation, the layer-by-layer technique (LbL). The LbL uses bilayers of charged nanotubes to slowly build up a film with an exactly defined thickness. The process is well controlled, but the time constants for deposition of each bilayer are rather high (i.e. about 1 h). With additional annealing steps implemented during film generation this method, however, is regarded advantageous as membranes results with improved mechanical stability and a good homogeneity.

  13. Optimization Selection of Overlaying Transition Layer Material of Low-alloy Casting Steel%某低合金铸钢堆焊过渡层材料的优化选择

    Institute of Scientific and Technical Information of China (English)

    毕欢; 周杰; 黄亮; 刘阳; 卢顺; 丁永峰

    2012-01-01

    选用3种过渡层材料RMD136、RMD535和RMD142进行过渡层组织和性能的对比和优化.结果表明,在低合金铸钢表面堆焊前两种材料,能有效避免脱碳层和增碳层出现以及熔合线附近大量碳化物的形成,减弱其开裂倾向,有利于保证组织和性能均匀过渡.过渡层RMD136和RMD535为低碳马氏体钢,低碳马氏体抗裂性好,硬度适中,延性好,能承受中度冲击;线胀系数较小,开裂和变形倾向较小,可作为高强度堆焊材料的过渡层材料;其中采用RMD136过渡层堆焊的力学性能最佳,实现了低合金铸钢、过渡层和覆层之间的高强度连接.%Using RMD136, RMD535 and RMD142 material as overlaying transition layer, the microstructure and properties of the layer was compared and optimized. The results show that overlaying RMD136 and RMD535 on low alloy cast steel surface can effectively avoid the formation of decarburized layer and carburized carbon layer and the fusion of a large number of carbides near the line, weaken its cracking tendency, ensuring the uniform microstructure and properties transition; transition layer RMD136 and RMD535 is low-carbon martensitic steel, which has better crack resistance, moderate hardness, ductility, can withstand moderate impact; the coefficient of linear expansion of the above two layers is small, and the tendency of crack and deformation is small, which can be used as the transition layer of the surfacing materials with high strength; the mechanical property of low alloy cast steel overlaying RMD136 transition layer is best, which can confirm the high strength connection among the low alloy cast alloy, the transition layer and cladding.

  14. Interference layer metallography

    International Nuclear Information System (INIS)

    Refractory metallic materials for application in Gas Cooled High Temperature Reactors are age-hardened nickel or iron base alloys. To control their behaviour and to adapt it to realistic load conditions, these materials have to be subjected to suitable informing tests and characterized. In the past few years, interference layer metallography has proved to be a highly flexible characterization procedure, suitable as an independent investigation method as well as an outstanding way of sample preparation for application of automatic quantitative image analysis to refractory alloys. This paper reports the problems of characterization of the Ni and Fe base alloys to be solved by interference layer metallography and the physical background of this method. The procedure of chromatic contrasting is discussed. From these considerations arises the result that for technical applications the optimum layer material for each special sample should be selected a priori. For that purpose it is necessary to measure the optical constants of the respective structural elements of the alloys as well as those of the candidate layer materials. The measuring procedures are discussed in detail. A routine procedure is deduced which allows to determine a priori the layer material and thickness fitting best to a given problem. (orig.)

  15. Oxygen-reducing catalyst layer

    Science.gov (United States)

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; Yang, Ruizhi; Easton, E. Bradley; Dahn, Jeffrey R.; O'Neill, David G.

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  16. Progress in the Research on Materials of Fire Proof Layer of Fire Resistant Cable%耐火电缆耐火绝缘层材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    邵海彬; 张其土; 魏方明; 王庭慰

    2011-01-01

    介绍了不同类型耐火绝缘层材料的组成、材料选择、性能特点及研究概况.分析认为以云母带和氧化镁为耐火绝层缘材料制备耐火电缆在生产,安装施工、成本等方面存在明显不足,而快速陶瓷化耐火绝缘层材料在生产、安装施工、成本等方面优点突出.进一步指出,应在材料选择、新产品开发等方面加强对快速陶瓷化耐火绝缘层的研究.%Insulating material nxnpoaitioni material sclciian. Performannce and research progress of the three types of frre-resistant insulating layer materrials are described. There are obvious disadvantages in production,installa-tion and price of fire-resistant cables using mice tape and magnesium hydroxide(MgO)as fire-resistant insulating la-yer.While there are obvious advantages in production,installation and price of fire-resistant cables using fast cerami-lying fire-resistant layer as fire-resistant insulating layer.Further more,rescarch work in material selection and newproduct development should be reinforced.

  17. Multi-layer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze' ev R.; Gonsalves, Peter R.

    2016-06-28

    Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.

  18. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    Science.gov (United States)

    Rand, Barry P.; Forrest, Stephen R.

    2011-05-24

    A photosensitive device includes a series of organic photoactive layers disposed between two electrodes. Each layer in the series is in direct contact with a next layer in the series. The series is arranged to form at least one donor-acceptor heterojunction, and includes a first organic photoactive layer comprising a first host material serving as a donor, a thin second organic photoactive layer comprising a second host material disposed between the first and a third organic photoactive layer, and the third organic photoactive layer comprising a third host material serving as an acceptor. The first, second, and third host materials are different. The thin second layer serves as an acceptor relative to the first layer or as a donor relative to the third layer.

  19. Superconductive articles including cerium oxide layer

    Science.gov (United States)

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  20. Processes for multi-layer devices utilizing layer transfer

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Sanchez, Carlos Anthony; Tauke-Pedretti, Anna; Kim, Bongsang; Cederberg, Jeffrey; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2015-02-03

    A method includes forming a release layer over a donor substrate. A plurality of devices made of a first semiconductor material are formed over the release layer. A first dielectric layer is formed over the plurality of devices such that all exposed surfaces of the plurality of devices are covered by the first dielectric layer. The plurality of devices are chemically attached to a receiving device made of a second semiconductor material different than the first semiconductor material, the receiving device having a receiving substrate attached to a surface of the receiving device opposite the plurality of devices. The release layer is etched to release the donor substrate from the plurality of devices. A second dielectric layer is applied over the plurality of devices and the receiving device to mechanically attach the plurality of devices to the receiving device.

  1. Three-dimensional Finite Element Analysis on the Layer Steel Fiber Reinforced Concrete Pavement:A New Type of Pavement Material

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An investigation was conducted on the design of layer steel fiber reinforced concrete (LSFRC) pavement.Finite element method was applied to the analysis on the stress distribution in order to determine the thickness and segregation distance of LSFRC pavement slabs.

  2. Evolution Of Lattice Structure And Chemical Composition Of The Surface Reconstruction Layer In Li1.2Ni0.2Mn0.6O2 Cathode Material For Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei; Nie, Anmin; Zheng, Jianming; Zhou, Yungang; Lu, Dongping; Zhang, Xiaofeng; Xu, Rui; Belharouak, Ilias; Zu, Xiaotao; Xiao, Jie; Amine, Khalil; Liu, Jun; Gao, Fei; Shahbazian-Yassar, Reza; Zhang, Jiguang; Wang, Chong M.

    2015-01-14

    Voltage and capacity fading of layer structured lithium and manganese rich (LMR) transition metal oxide is directly related to the structural and composition evolution of the material during the cycling of the battery. However, understanding such evolution at atomic level remains elusive. Based on atomic level structural imaging, elemental mapping of the pristine and cycled samples and density functional theory calculations, it is found that accompanying the hoping of Li ions is the simultaneous migration of Ni ions towards the surface from the bulk lattice, leading to the gradual depletion of Ni in the bulk lattice and thickening of a Ni enriched surface reconstruction layer (SRL). Furthermore, Ni and Mn also exhibit concentration partitions within the thin layer of SRL in the cycled samples where Ni is almost depleted at the very surface of the SRL, indicating the preferential dissolution of Ni ions in the electrolyte. Accompanying the elemental composition evolution, significant structural evolution is also observed and identified as a sequential phase transition of C2/m →I41→Spinel. For the first time, it is found that the surface facet terminated with pure cation is more stable than that with a mixture of cation and anion. These findings firmly established how the elemental species in the lattice of LMR cathode transfer from the bulk lattice to surface layer and further into the electrolyte, clarifying the long standing confusion and debate on the structure and chemistry of the surface layer and their correlation with the voltage fading and capacity decaying of LMR cathode. Therefore, this work provides critical insights for designing of cathode materials with both high capacity and voltage stability during cycling.

  3. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  4. Structural integrity--Searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yahong; Hu, Enyuan; Yang, Feifei; Corbett, Jeff; Sun, Zhihong; Lyu, Yingchun; Yu, Xiqian; Liu, Yijin; Yang, Xiao-Qing; Li, Hong (BNL); (SLAC); (UCSF); (Donghua); (Chinese Aca. Sci.)

    2016-10-24

    Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. Here, our study employs novel transmission X-ray microscopy to investigate the electrochemical reaction induced morphological and chemical changes in the Li-rich Li2Ru0.5Mn0.5O3 cathode particles at the meso to nano scale. We performed combined X-ray spectroscopy, diffraction and microscopy experiments to systematically study this cathode material's evolution upon cycling as well as to establish a comprehensive understanding of the structural origin of capacity fade through 2D and 3D fine length scale morphology and heterogeneity change of this material. This work suggests that atomic manipulation (e.g. doping, substitution etc.) or nano engineering (e.g. nano-sizing, heterogeneous structure) are important strategies to mitigate the internal strain and defects induced by extensive lithium insertion/extraction. It also shows that maintaining the structural integrity is the key in designing and synthesizing lithium-rich layered materials with better cycle stability.

  5. Modelling the effect of the physical and chemical characteristics of the materials used as casing layers on the production parameters of Agaricus bisporus.

    Science.gov (United States)

    Pardo, Arturo; Emilio Pardo, J; de Juan, J Arturo; Zied, Diego Cunha

    2010-12-01

    The aim of this research was to show the mathematical data obtained through the correlations found between the physical and chemical characteristics of casing layers and the final mushrooms' properties. For this purpose, 8 casing layers were used: soil, soil + peat moss, soil + black peat, soil + composted pine bark, soil + coconut fibre pith, soil + wood fibre, soil + composted vine shoots and, finally, the casing of La Rioja subjected to the ruffling practice. The conclusion that interplays in the fructification process with only the physical and chemical characteristics of casing are complicated was drawn. The mathematical data obtained in earliness could be explained in non-ruffled cultivation. The variability observed for the mushroom weight and the mushroom diameter variables could be explained in both ruffled and non-ruffled cultivations. Finally, the properties of the final quality of mushrooms were established by regression analysis. PMID:20878147

  6. Hole transporting material 5, 10, 15-tribenzyl-5H-diindolo[3, 2-a:3′, 2′-c]-carbazole for efficient optoelectronic applications as an active layer

    Institute of Scientific and Technical Information of China (English)

    郑燕琼; William J.Potscavage Jr; 张建华; 魏斌; 黄荣娟

    2015-01-01

    In order to explore the novel application of the transparent hole-transporting material 5,10,15-tribenzyl-5H-diindolo[3,2-a:3′,2′-c]-carbazole (TBDI), in this article TBDI is used as an active layer but not a buffer layer in a pho-todetector (PD), organic light-emitting diode (OLED), and organic photovoltaic cell (OPV) for the first time. Firstly, the absorption and emission spectra of a blend layer comprised of TBDI and electron-transporting material bis-(2-methyl-8-quinolinate) 4-phenylphenolate (BAlq) are investigated. Based on the absorption properties, an organic PD with a peak absorption at 320 nm is fabricated, and a relatively-high detectivity of 2.44×1011 cm·Hz1/2/W under 320-nm illumination is obtained. The TBDI/tris (8-hydroxyquinoline) aluminum (Alq3) OLED device exhibits a comparable external quantum efficiency and current efficiency to a traditional 4, 4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl (α-NPD)/Alq3 OLED. A C70-based Schottky junction with 5 wt%-TBDI yields a power conversion efficiency of 5.0%, which is much higher than 1.7%for anα-NPD-based junction in the same configuration. These results suggest that TBDI has some promising properties which are in favor of the hole-transporting in Schottky junctions with low-concentration donor.

  7. Study of the influence of semiconductor material parameters on acoustic wave propagation modes in GaSb/AlSb bi-layered structures by Legendre polynomial method

    Science.gov (United States)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2016-09-01

    The propagation of Rayleigh-Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh-Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.

  8. Localized removal of the Au-Si eutectic bonding layer for the selective release of microstructures

    Science.gov (United States)

    Gradin, Henrik; Braun, Stefan; Stemme, Göran; van der Wijngaart, Wouter

    2009-10-01

    This paper presents and investigates a novel technique for the footprint and thickness-independent selective release of Au-Si eutectically bonded microstructures through the localized removal of their eutectic bond interface. The technique is based on the electrochemical removal of the gold in the eutectic layer and the selectivity is provided by patterning the eutectic layer and by proper electrical connection or isolation of the areas to be etched or removed, respectively. The gold removal results in a porous silicon layer, acting similar to standard etch holes in a subsequent sacrificial release etching. The paper presents the principle and the design requirements of the technique. First test devices were fabricated and the method successfully demonstrated. Furthermore, the paper investigates the release mechanism and the effects of different gold layouts on both the eutectic bonding and the release procedure.

  9. Localized removal of the Au–Si eutectic bonding layer for the selective release of microstructures

    International Nuclear Information System (INIS)

    This paper presents and investigates a novel technique for the footprint and thickness-independent selective release of Au–Si eutectically bonded microstructures through the localized removal of their eutectic bond interface. The technique is based on the electrochemical removal of the gold in the eutectic layer and the selectivity is provided by patterning the eutectic layer and by proper electrical connection or isolation of the areas to be etched or removed, respectively. The gold removal results in a porous silicon layer, acting similar to standard etch holes in a subsequent sacrificial release etching. The paper presents the principle and the design requirements of the technique. First test devices were fabricated and the method successfully demonstrated. Furthermore, the paper investigates the release mechanism and the effects of different gold layouts on both the eutectic bonding and the release procedure

  10. Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation.

    Science.gov (United States)

    Yang, Jiao; Cho, Misuk; Lee, Youngkwan

    2016-01-15

    Hierarchical NiCo2O4 hollow nanorods (HR) were directly grown on stainless steel via a sacrificial template accelerated hydrolysis and post calcination using ZnO nanorod as a template. The composition of the NiCo2O4 HR electrode was determined using X-ray diffraction and X-ray photoelectron spectroscopy. The morphology of the NiCo2O4 HR is comprised of nanoflakes that were characterized with scanning electron microscopy and transmission electron microscopy. The mixed-valence metal oxide and hollow structure provided high chemical reactivity and a large surface area for glucose oxidation in an alkaline solution. Under an optimal applied potential of +0.6 V, the developed NiCo2O4 HR electrode showed a broad detection range of 0.0003–1.0 mM, a sensitivity of 1685.1 μA mM−1 cm−2, and a low detection limit of 0.16 μM. These results represent a significant improvement over both NiO and Co3O4 HR. The developed NiCo2O4 HR electrode not only demonstrated excellent selectivity in the presence of several electro-active species, but also exhibited high stability following a 200 cycles voltammetry test. PMID:26281005

  11. One-step generation of cell-laden microgels using double emulsion drops with a sacrificial ultra-thin oil shell.

    Science.gov (United States)

    Choi, Chang-Hyung; Wang, Huanan; Lee, Hyomin; Kim, June Hwan; Zhang, Liyuan; Mao, Angelo; Mooney, David J; Weitz, David A

    2016-04-26

    Cell-laden microgels with highly uniform sizes have significant potential in tissue engineering and cell therapy due to their capability to provide a physiologically relevant three-dimensional (3D) microenvironment for living cells. In this work, we present a simple and efficient microfluidic approach to produce monodisperse cell-laden microgels through the use of double emulsion drops with an ultra-thin oil shell as the sacrificial template. Specifically, the thin oil shell in double emulsion spontaneously dewets upon polymerization of the innermost precursor drop and subsequent transfer into an aqueous solution, resulting in direct dispersion of microgels in the aqueous phase. Compared to conventional single emulsion-based techniques for cell encapsulation, this one-step approach prevents prolonged exposure of cells to the oil phase, leading to high-throughput cell encapsulation in microgels without compromising the cell viability. Moreover, this approach allows us to culture cells within a 3D microgel which mimics the extracellular matrix, thus enabling long-term cell functionality. This microfluidic technique represents a significant step forward in high-throughput cell microencapsulation technology and offers a potentially viable option to produce cell-laden microgels for widespread applications in tissue engineering and cell therapies. PMID:27070224

  12. Sacrifice as action and actions as sacrifices: the role of breath in the internalisation of sacrificial action in the Vedic Brahmanas

    Directory of Open Access Journals (Sweden)

    Clemens Cavallin

    2003-01-01

    Full Text Available Over the last hundred years different attempts have been made to explain why sacrifices have had such a prominent place within many religious traditions. Such theories of sacrifice are sometimes part of a more general theory of (religious rituals, or a theory of religion in general. In most cases, actual sacrifices are thus explained through recourse to their position within a more general category. The opposite is, however, sometimes the case, i.e. a theory of one sacrificial tradition is extended to cover all sacrifices, or even ritual in general. The aim of the following discussion is to delineate some central issues that are important for the analysis of the references to breath in the Vedic correspondences. First of all, a working definition of ritual correspondence will be given and then a short discussion of the nature of the correspondences will follow. Thereafter, a general presentation of the different notions of breath and three different sorts of ritual internalisation will be made. The last section of the paper will concentrate on the relation between the breaths and the self (ātman, as this is expressed in a few tex-tual passages. These discussions will provide a basis for a more comprehensive study of the role of the breaths in the internalisation of sacrifice in Vedic ritual theology.

  13. Quantum size effects in layered VX{sub 2} (X = S, Se) materials: Manifestation of metal to semimetal or semiconductor transition

    Energy Technology Data Exchange (ETDEWEB)

    Wasey, A. H. M. Abdul; Chakrabarty, Soubhik; Das, G. P., E-mail: msgpd@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India)

    2015-02-14

    Most of the two dimensional (2D) transition metal dichalcogenides (TMDC) are nonmagnetic in pristine form. However, 2D pristine VX{sub 2} (X = S, Se, Te) materials are found to be ferromagnetic. Using spin polarized density functional theory (DFT) calculations, we have studied the electronic, magnetic, and surface properties of this class of materials in both trigonal prismatic H- and octahedral T-phase. Our calculations reveal that they exhibit materially different properties in those two polymorphs. Most importantly, detailed investigation of electronic structure explored the quantum size effect in H-phase of these materials thereby leading to metal to semimetal (H-VS{sub 2}) or semiconductor (H-VSe{sub 2}) transition when downsizing from bilayer to corresponding monolayer.

  14. Interactive data visualization of the Norwegian phosphorus cycle, coupling phosphorus with dry matter and energy in a multi-layered material flow analysis model

    OpenAIRE

    Rud, Richard Olav

    2015-01-01

    The utilization of data visualization to explore complex systems is arguably an indispensable method for increasing understanding of a specific problem domain. It is argued that visualization techniques for presenting material flow analysis results should be further developed. This thesis explores the effectiveness of combining material flow analysis with data visualization techniques to communicate the impacts of targeted policies for managing food waste for the Norwegian food production, co...

  15. Preparation, structure study and electrochemistry of layered H2V3O8 materials

    DEFF Research Database (Denmark)

    Sarkar, Sudeep; Bhowmik, Arghya; Pan, Jaysree;

    2016-01-01

    The present study explores H2V3O8 as high capacity cathode material for lithium-ion batteries (LIB's). Despite having high discharge capacity, H2V3O8 material suffers from poor electrochemical stability for prolonged cycle life. Ultra-long H2V3O8 nanobelts with ordered crystallographic patterns...... processes and evaluating various potential steps involved in lithium insertion....

  16. Ca3Co4O9+δ, a growing potential SOFC cathode material: impact of the layer composition and thickness on the electrochemical properties

    NARCIS (Netherlands)

    Rolle, A.; Abbas, H.A.A.; Huo, D.; Capoen, E.; Mentré, O.; Vannier, R.N.; Daviero-Minaud, S.; Boukamp, B.A.

    2016-01-01

    The thermoelectric material Ca3Co4O9 + δ (CCO), with an electronic conductivity of σe = 240 S·cm− 1 at 650 °C and a good chemical and mechanical compatibility with the standard Ce0.9Gd0.1O1.95 electrolyte (CGO, TEC: 9–10 · 10− 6 K− 1), was recently identified as a potential cathode material for soli

  17. Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale

    International Nuclear Information System (INIS)

    Novel nickel-based microlattice materials with structural hierarchy spanning three different length scales (nm, μm, mm) are characterized microstructurally and mechanically. These materials are produced by plating a sacrificial template obtained by self-propagating photopolymer waveguide prototyping. Ni–P films with a thickness of 120 nm to 3 μm are deposited by electroless plating, whereas thicker films (5–26 μm) are obtained by subsequent electrodeposition of a pure Ni layer. This results in cellular materials spanning three orders of magnitude in relative density, from 0.01% to 8.5%. The thin electroless Ni–P films have ultra-fine grain size (7 nm) and a yield strength of ∼2.5 GPa, whereas the thicker electrodeposited Ni films exhibit a much broader distribution with average grain size of 116 nm and strong (1 0 0) texture in the plating direction, resulting in a yield strength of ∼1 GPa. Uniaxial compression experiments reveal two distinct mechanical responses. At ultra-low densities (<0.1%), these lattices exhibit nearly full recovery after strains up to more than 50%, and damping coefficients an order of magnitude larger than for conventional Ni foams. At higher densities (0.1–10%), the compression behavior is fully plastic, similar to traditional cellular metals. A simple mechanical analysis reveals that the transition occurs when the thickness-to-diameter ratio of the truss elements is of the order of the yield strain of the material, in agreement with experimental observations. Optical and electron imaging of deformed lattices show that the deformation largely localizes around the nodes. In the ultra-light regime, the microlattice materials are stiffer and stronger than any existing alternative.

  18. Scanning electron microscopy (SEM evaluation of sealing ability of MTA and EndoSequence as root-end filling materials with chitosan and carboxymethyl chitosan (CMC as retrograde smear layer removing agents

    Directory of Open Access Journals (Sweden)

    Bolla Nagesh

    2016-01-01

    Full Text Available Aim: The purpose of this study was to evaluate the sealing ability of mineral trioxide aggregate (MTA and EndoSequence with chitosan and carboxymethyl chitosan (CMC as retrograde smear layer removing agents using scanning electron microscopy (SEM. Materials and Methods: Forty human single rooted teeth were taken. Crowns were decoronated and canals were obturated. Apically roots were resected and retrograde cavities were done. Based on the type of retrograde material placed and the type of smear layer removal agent used for retrograde cavities, they were divided into four groups (N = 10: Group I chitosan with EndoSequence, group II chitosan with MTA, group III CMC with EndoSequence, and Group IV CMC with MTA. All the samples were longitudinally sectioned, and the SEM analysis was done for marginal adaptation. Statistical Analysis: Kruskal-Wallis and Mann-Witney analysis tests. Results: SEM images showed the presence of less gaps in group III, i.e., CMC with EndoSequence when compared to other groups with statistically significant difference. Conclusion: Within the limited scope of this study, it was concluded that EndoSequence as retrograde material showed better marginal sealing ability.

  19. Presentation of a reference material for the spatially resolved hydrogen analytics in near-surface layers by means of nuclear-reaction analysis; Darstellung eines Referenzmaterials fuer die ortsaufgeloeste Wasserstoffanalytik in oberflaechennahen Schichten mittels Kernreaktionsanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Reinholz, U.

    2005-10-03

    The object of the thesis is the presentation of the theory of the {sup 15}N-reaction analysis (NRA), the experiemental construction of the corresponding beam pipe at the ion accelerator of the BAM and the evaluation of the measurement results. The aim is the first characterization of a reference material for the H analytics on the base of amorphous silicon (aSi) on a Si[100] substrate. The homogeneity of the aSi:H layers deposited by means of CVD was studied. For this pro substrate for about 30 samples the hydrogen depth profiles were measures, folded by means of a program created within the thesis and subjected to a statistical evaluation. The result were mean value ans standard deviation of the hydrogen concentration as well as an estimator for the contribution of the inhomogeneity to the measurement uncertainty. The stability of the potential reference material was proved by the constancy of result of repeated measurements of the hydrogen concentration during the application of a large dose of {sup 15}N ions. In an international ring experiment the reproducibility of the measurement results was proved. For the characterization of the aSi:H layers beside the NRA the white-light interferometry, ellipsometry, profilometry, and X-ray reflectometry, as well as the IR and Raman spectroscopy were used. The stoichiometry of the applied standard material kapton was checked by means of NMR spectroscopy and CHN analysis.

  20. Magnetic nanocomposites with drug-intercalated layered double hydroxide shell supported on commercial magnetite and laboratory-made magnesium ferrite core materials

    International Nuclear Information System (INIS)

    Mg-Al-layered double hydroxide intercalated with a model drug, salicylate, was deposited on laboratory-made magnesium ferrite and commercial magnetite nanoparticles. The obtained core-shell nanocomposites have been characterized by a variety of methods. The combined information from X-ray diffraction patterns, electron diffraction patterns, FTIR spectra, X-ray photoelectron spectra, electron microscopy images, thermogravimetric analysis and microchemical analysis has indicated a similar nature and composition for the two samples. Magnetic measurements have revealed that although the inherent magnetization of magnetite was significantly higher, the nanocomposites displayed nearly similar magnetic properties.