WorldWideScience

Sample records for sacramento deep water

  1. Ground-water quality in the southeastern Sacramento Valley aquifer, California, 1996

    Science.gov (United States)

    Milby Dawson, Barbara J.

    2001-01-01

    In 1996, the U.S. Geological Survey sampled 29 domestic wells and 2 monitoring wells in the southeastern Sacramento Valley as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This area, designated as the NAWQA Sacramento subunit study area, was chosen because it had the largest amount of ground-water use in the Sacramento River Basin. The Sacramento subunit study area is about 4,400 square kilometers and includes intense agricultural and urban development. The wells sampled ranged from 14.9 to 79.2 meters deep. Ground-water samples from 31 wells were analyzed for 6 field measurements, 14 inorganic constituents, 6 nutrient constituents, organic carbon, 86 pesticides, 87 volatile organic compounds, tritium (hydrogen-3), radon-222, deuterium (hydrogen-2), and oxygen-18. Nitrate levels were lower than the 2000 drinking-water standards in all but one well, but many detections were in the range that indicated an effect by human activities on ground-water quality. Radon was detected in all wells, and was measured at levels above the proposed Federal 2000 maximum contaminant level in 90 percent of the wells. Five pesticides and one pesticide degradation product were detected in ground-water samples and concentrations were below 2000 drinking-water standards. All pesticides detected during this study have been used in the Sacramento Valley. Thirteen volatile organic compounds were detected in ground water. One detection of trichloroethene was above Federal 2000 drinking-water standards, and another, tetrachloromethane, was above California 1997 drinking-water standards; both occurred in a well that had eight volatile organic compound detections and is near a known source of ground-water contamination. Pesticides and volatile organic compounds were detected in agricultural and urban areas; both pesticides and volatile organic compounds were detected at a higher frequency in urban wells. Ground-water chemistry indicates that natural

  2. 78 FR 75248 - Safety Zone; Sacramento New Years Eve Fireworks Display, Sacramento River, Sacramento, CA

    Science.gov (United States)

    2013-12-11

    ... Zone; Sacramento New Years Eve Fireworks Display, Sacramento River, Sacramento, CA AGENCY: Coast Guard... safety zone in the navigable waters of the Sacramento River in Sacramento, CA on December 31, 2013 during... Sacramento River around the Tower Bridge in Sacramento, CA in approximate position 38[deg]34'49.98'' N, 121...

  3. 78 FR 75898 - Safety Zone; Sacramento New Years Eve Fireworks Display, Sacramento River, Sacramento, CA

    Science.gov (United States)

    2013-12-13

    ... Zone; Sacramento New Years Eve Fireworks Display, Sacramento River, Sacramento, CA AGENCY: Coast Guard... safety zone in the navigable waters of the Sacramento River in Sacramento, CA on December 31, 2013 during... Sacramento River around the Tower Bridge in Sacramento, CA in approximate position 38[deg]34'49.98'' N, 121...

  4. 77 FR 75556 - Safety Zone; Sacramento New Year's Eve Fireworks Display, Sacramento River, Sacramento, CA

    Science.gov (United States)

    2012-12-21

    ... Zone; Sacramento New Year's Eve Fireworks Display, Sacramento River, Sacramento, CA AGENCY: Coast Guard... safety zones during the Sacramento New Year's Eve Fireworks Display in the navigable waters of the Sacramento River on December 31, 2012 and January 1, 2013. The fireworks displays will occur from 9 p.m. to 9...

  5. 76 FR 81827 - Safety Zone; Sacramento New Years Eve Fireworks Display, Sacramento, CA

    Science.gov (United States)

    2011-12-29

    ... Zone; Sacramento New Years Eve Fireworks Display, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION... during the Sacramento New Years Eve Fireworks Display in the navigable waters of the Sacramento River... Sacramento New Years Eve Fireworks Display safety zones in the navigable waters of the Sacramento River near...

  6. 78 FR 42452 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Science.gov (United States)

    2013-07-16

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of deviation... Sacramento, CA. The deviation is necessary to allow the bridge owner to make bridge repairs. This deviation... Sacramento, CA. The drawbridge navigation span provides 109 feet vertical clearance above Mean High Water in...

  7. 77 FR 40800 - Safety Zone: Sacramento River Closure for Aerial Cable Installation, Sacramento, CA

    Science.gov (United States)

    2012-07-11

    ...-AA00 Safety Zone: Sacramento River Closure for Aerial Cable Installation, Sacramento, CA AGENCY: Coast... zone in the navigable waters of the Sacramento River near Sherman Island, CA in support of the...; Sacramento River Closure for Aerial Cable Installation, Sacramento, CA. (a) Location. This temporary safety...

  8. Pesticides in surface water measured at select sites in the Sacramento River basin, California, 1996-1998

    Science.gov (United States)

    Domagalski, Joseph L.

    2000-01-01

    Pesticides were measured in one urban stream, one agricultural stream, one site on the Sacramento River, and one large flood control channel over a period of 18 months during 1996-1998. All sites were located within the Sacramento River Basin of California. Measurements were made on 83 pesticides or pesticide transformation products by either gas chromatography/mass spectrometry or by high performance liquid chromatography with ultraviolet light spectrometry. Some pesticides were detected frequently at the agricultural stream and downstream in the Sacramento River and at the flood control channel of the Sacramento River. These were pesticides related to rice farming (molinate, carbofuran, thiobencarb, and bentazon); herbicides used both agriculturally or for roadside maintenance (diuron, simazine, and metolachlor); or insecticides used on orchards and row corps (diazinon and chlorpyrifos). No pesticide concen-trations above enforceable water quality criteria were measured at either the agricultural site or the Sacramento River sites. In contrast to the agricul-tural site, insecticides used for household, lawn, or garden maintenance were the most frequently detected pesticides at the urban site. Diazinon, an organophosphate insecticide, exceeded recom-mended criteria for the protection of aquatic life, and the diazinon levels were frequently above known toxic levels for certain zooplankton species at the urban site. Because of the low discharge of the urban stream, pesticide concentrations were greatly diluted upon mixing with Sacramento River water.

  9. 76 FR 9709 - Water Quality Challenges in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary

    Science.gov (United States)

    2011-02-22

    ... Water Quality Challenges in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary AGENCY... the San Francisco Bay/ Sacramento-San Joaquin Delta Estuary (Bay Delta Estuary) in California. EPA is... programs to address recent significant declines in multiple aquatic species in the Bay Delta Estuary. EPA...

  10. 78 FR 23489 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Science.gov (United States)

    2013-04-19

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of deviation... operating regulation that governs the Tower Drawbridge across Sacramento River, mile 59.0, at Sacramento, CA... Tower Drawbridge, mile 59.0, over Sacramento River, at Sacramento, CA. The Tower Drawbridge navigation...

  11. 78 FR 15878 - Drawbridge Operation Regulations; Sacramento River, Sacramento, CA

    Science.gov (United States)

    2013-03-13

    ... Operation Regulations; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Tower Drawbridge across Sacramento River, mile 59.0, at Sacramento, CA... temporary change to the operation of the Tower Drawbridge, mile 59.0, over Sacramento River, at Sacramento...

  12. 77 FR 52599 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Science.gov (United States)

    2012-08-30

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... regulation that governs the Tower Drawbridge across Sacramento River, mile 59.0, at Sacramento, CA. The... change to the operation of the Tower Drawbridge, mile 59.0, over Sacramento River, at Sacramento, CA. The...

  13. Adaptive Management Methods to Protect the California Sacramento-San Joaquin Delta Water Resource

    Science.gov (United States)

    Bubenheim, David

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  14. 77 FR 44139 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Science.gov (United States)

    2012-07-27

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... Sacramento, CA. The deviation is necessary to allow the community to participate in the Fleet Feet Event, Run... Tower Drawbridge, mile 59.0, Sacramento River, at Sacramento, CA. The Tower Drawbridge navigation span...

  15. 76 FR 11960 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Science.gov (United States)

    2011-03-04

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary..., mile 59.0, at Sacramento, CA. The deviation is necessary to allow the community to participate in the... Tower Drawbridge, mile 59.0, Sacramento River, at Sacramento, CA. The Tower Drawbridge navigation span...

  16. 77 FR 22216 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Science.gov (United States)

    2012-04-13

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... schedule that governs the Tower Drawbridge across the Sacramento River, mile 59.0, at Sacramento, CA. The... River, at Sacramento, CA. The Tower Drawbridge navigation span provides a vertical clearance of 30 feet...

  17. 76 FR 11679 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Science.gov (United States)

    2011-03-03

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary..., mile 59.0, at Sacramento, CA. The deviation is necessary to allow the community to participate in the... the Tower Drawbridge, mile 59.0, Sacramento River, at Sacramento, CA. The Tower Drawbridge navigation...

  18. 76 FR 23188 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Science.gov (United States)

    2011-04-26

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary..., mile 59.0, at Sacramento, CA. The deviation is necessary to allow the community to participate in the... Tower Drawbridge, mile 59.0, Sacramento River, at Sacramento, CA. The Tower Drawbridge navigation span...

  19. 76 FR 79067 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Science.gov (United States)

    2011-12-21

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary..., mile 59.0, at Sacramento, CA. The deviation is necessary to allow community celebration of New Year's... Tower Drawbridge, mile 59.0, Sacramento River, at Sacramento, CA. The Tower Drawbridge navigation span...

  20. 76 FR 20843 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Science.gov (United States)

    2011-04-14

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary..., mile 59.0, at Sacramento, CA. The deviation is necessary to allow the community to participate in the... the Tower Drawbridge, mile 59.0, Sacramento River, at Sacramento, CA. The Tower Drawbridge navigation...

  1. 77 FR 10372 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Science.gov (United States)

    2012-02-22

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary..., mile 59.0, at Sacramento, CA. The deviation is necessary to allow the community to participate in the... Tower Drawbridge, mile 59.0, Sacramento River, at Sacramento, CA. The Tower Drawbridge navigation span...

  2. 75 FR 16006 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Science.gov (United States)

    2010-03-31

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary..., mile 59.4, at Sacramento, CA. The deviation is necessary to allow the bridge owner to make bridge... Sacramento River, at Sacramento, CA. The I Street Drawbridge navigation span provides 109 feet vertical...

  3. 76 FR 26181 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Science.gov (United States)

    2011-05-06

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... 59.0, at Sacramento, CA. The deviation is necessary to allow the community to participate in the Hope... Drawbridge, mile 59.0, over Sacramento River, at Sacramento, CA. The drawbridge navigation span provides a...

  4. 77 FR 10371 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Science.gov (United States)

    2012-02-22

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary..., mile 59.0, at Sacramento, CA. The deviation is necessary to allow the bridge owner to conduct... change to the operation of the Tower Drawbridge, mile 59.0, Sacramento River, at Sacramento, CA. The...

  5. 78 FR 15879 - Drawbridge Operation Regulations; Sacramento River, Sacramento, CA

    Science.gov (United States)

    2013-03-13

    ... Operation Regulations; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of... operating regulation that governs the Tower Drawbridge across the Sacramento River, mile 59.0, at Sacramento, CA. The deviation is necessary to allow the community to participate in the First Annual ``Biggest...

  6. Radioactive hydrogeochemical processes in the Chihuahua-Sacramento Basin, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Burillo, J. C.; Reyes C, M.; Montero C, M. E.; Renteria V, M.; Herrera P, E. F. [Centro de Investigacion en Materiales Avanzados, S. C., Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, 31109 Chihuahua (Mexico); Reyes, I.; Espino, M. S., E-mail: elena.montero@cimav.edu.mx [Universidad Autonoma de Chihuahua, Facultad de Ingenieria, Nuevo Campus Universitario, Chihuahua (Mexico)

    2012-06-15

    The Chihuahua Basin is divided by its morphology into three main sub basins: Chihuahua-Sacramento sub basin, Chihuahua Dam sub basin and Chuviscar River sub basin. In the aquifers at the Sacramento sub basin, specific concentrations of uranium in groundwater range from 460 to 1260 Bq / m{sup 3}. The presence of strata and sandy clay lenses with radiometric anomalies in the N W of Chihuahua Valley was confirmed by a litostatigraphic study and gamma spectrometry measurements of drill cuttings. High uranium activity values found in the water of some deep wells may correspond to the presence of fine material bodies of carbonaceous material, possible forming pa leo-sediment of flooding or pa leo-soils. It is suggested that these clay horizons are uranyl ion collectors. Uranyl may suffer a reduction process by organic material. Furthermore the groundwater, depending on its ph and Eh, oxidizes and re-dissolves uranium. The hydrogeochemical behavior of San Marcos dam and the N W Valley area is the subject of studies that should help to clarify the origin of the radioactive elements and their relationships with other pollutants in the watershed. (Author)

  7. Radioactive hydrogeochemical processes in the Chihuahua-Sacramento Basin, Mexico

    International Nuclear Information System (INIS)

    Burillo, J. C.; Reyes C, M.; Montero C, M. E.; Renteria V, M.; Herrera P, E. F.; Reyes, I.; Espino, M. S.

    2012-01-01

    The Chihuahua Basin is divided by its morphology into three main sub basins: Chihuahua-Sacramento sub basin, Chihuahua Dam sub basin and Chuviscar River sub basin. In the aquifers at the Sacramento sub basin, specific concentrations of uranium in groundwater range from 460 to 1260 Bq / m 3 . The presence of strata and sandy clay lenses with radiometric anomalies in the N W of Chihuahua Valley was confirmed by a litostatigraphic study and gamma spectrometry measurements of drill cuttings. High uranium activity values found in the water of some deep wells may correspond to the presence of fine material bodies of carbonaceous material, possible forming pa leo-sediment of flooding or pa leo-soils. It is suggested that these clay horizons are uranyl ion collectors. Uranyl may suffer a reduction process by organic material. Furthermore the groundwater, depending on its ph and Eh, oxidizes and re-dissolves uranium. The hydrogeochemical behavior of San Marcos dam and the N W Valley area is the subject of studies that should help to clarify the origin of the radioactive elements and their relationships with other pollutants in the watershed. (Author)

  8. 75 FR 81642 - Long-Term North to South Water Transfer Program, Sacramento County, CA

    Science.gov (United States)

    2010-12-28

    ..., Sacramento County, CA AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of intent to prepare an...., Chico, CA. Wednesday, January 12, 2011, 2-4 p.m., Sacramento, CA. Thursday, January 13, 2011, 6-8 p.m..., MP-410, Sacramento, CA 95825. Scoping meetings will be held at: Chico at the Chico Masonic Family...

  9. Groundwater Pumping and Streamflow in the Yuba Basin, Sacramento Valley, California

    Science.gov (United States)

    Moss, D. R.; Fogg, G. E.; Wallender, W. W.

    2011-12-01

    Water transfers during drought in California's Sacramento Valley can lead to increased groundwater pumping, and as yet unknown effects on stream baseflow. Two existing groundwater models of the greater Sacramento Valley together with localized, monitoring of groundwater level fluctuations adjacent to the Bear, Feather, and Yuba Rivers, indicate cause and effect relations between the pumping and streamflow. The models are the Central Valley Hydrologic Model (CVHM) developed by the U.S. Geological Survey and C2VSIM developed by Department of Water Resources. Using two models which have similar complexity and data but differing approaches to the agricultural water boundary condition illuminates both the water budget and its uncertainty. Water budget and flux data for localized areas can be obtained from the models allowing for parameters such as precipitation, irrigation recharge, and streamflow to be compared to pumping on different temporal scales. Continuous groundwater level measurements at nested, near-stream piezometers show seasonal variations in streamflow and groundwater levels as well as the timing and magnitude of recharge and pumping. Preliminary results indicate that during years with relatively wet conditions 65 - 70% of the surface recharge for the groundwater system comes from irrigation and precipitation and 30 - 35% comes from streamflow losses. The models further indicate that during years with relatively dry conditions, 55 - 60% of the surface recharge for the groundwater system comes from irrigation and precipitation while 40 - 45% comes from streamflow losses. The models irrigation water demand, surface-water and groundwater supply, and deep percolation are integrated producing values for irrigation pumping. Groundwater extractions during the growing season, approximately between April and October, increase by almost 200%. The effects of increased pumping seasonally are not readily evident in stream stage measurements. However, during dry time

  10. RadNet Air Data From Sacramento, CA

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Sacramento, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  11. Dissolved pesticide concentrations entering the Sacramento-San Joaquin Delta from the Sacramento and San Joaquin Rivers, California, 2012-13

    Science.gov (United States)

    Orlando, James L.; McWayne, Megan; Sanders, Corey; Hladik, Michelle

    2014-01-01

    Surface-water samples were collected from the Sacramento and San Joaquin Rivers where they enter the Sacramento–San Joaquin Delta, and analyzed by the U.S. Geological Survey for a suite of 99 current-use pesticides and pesticide degradates. Samples were collected twice per month from May 2012 through July 2013 and from May 2012 through April 2013 at the Sacramento River at Freeport, and the San Joaquin River near Vernalis, respectively. Samples were analyzed by two separate laboratory methods by using gas chromatography with mass spectrometry or liquid chromatography with tandem mass spectrometry. Method detection limits ranged from 0.9 to 10.5 nanograms per liter (ng/L). A total of 37 pesticides and degradates were detected in water samples collected during the study (18 herbicides, 11 fungicides, 7 insecticides, and 1 synergist). The most frequently detected pesticides overall were the herbicide hexazinone (detected in 100 percent of the samples); 3,4-dichloroaniline (97 percent), which is a degradate of the herbicides diuron and propanil; the fungicide azoxystrobin (83 percent); and the herbicides diuron (72 percent), simazine (66 percent), and metolachlor (64 percent). Insecticides were rarely detected during the study. Pesticide concentrations varied from below the method detection limits to 984 ng/L (hexazinone). Twenty seven pesticides and (or) degradates were detected in Sacramento River samples, and the average number of pesticides per sample was six. The most frequently detected compounds in these samples were hexazinone (detected in 100 percent of samples), 3,4-dichloroaniline (97 percent), azoxystrobin (88 percent), diuron (56 percent), and simazine (50 percent). Pesticides with the highest detected maximum concentrations in Sacramento River samples included the herbicide clomazone (670 ng/L), azoxystrobin (368 ng/L), 3,4-dichloroaniline (364 ng/L), hexazinone (130 ng/L), and propanil (110 ng/L), and all but hexazinone are primarily associated with

  12. A New Data Acquisition Portal for the Sacramento River Settlement Contractors

    Science.gov (United States)

    Narlesky, P. E., C. A.; Williams, P. E., A. M.

    2017-12-01

    In 1964, the United States Bureau of Reclamation (Reclamation) executed settlement contracts with the Sacramento River Settlement Contractors (SRSC), entities which hold water rights along the Sacramento River with area of origin protection or that are senior to Reclamation's water rights for Shasta Reservoir. Shasta is the cornerstone of the federal Central Valley Project (CVP), one of the nation's largest multi-purpose water conservation programs. In order to optimize CVP operations for multiple beneficial uses including water supply, fisheries, water quality, and waterfowl habitat, the SRSC voluntarily agreed to adaptively manage diversions throughout the year in close coordination with Reclamation. MBK Engineers assists the SRSC throughout this process by collecting, organizing, compiling, and distributing diversion data to Reclamation and others involved in operational decisions related to Shasta Reservoir and the CVP. To improve and expand participation in diversions reporting, we have developed the SRSC Web Portal, which launches a data-entry dashboard for members of the SRSC to facilitate recording and transmittal of both predicted and observed monthly and daily flow diversion data. This cloud-hosted system leverages a combination of Javascript interactive visualization libraries with a database-backed Python web framework to present streamlined data-entry forms and valuable SRSC program summary illustrations. SRSC program totals, which can now be aggregated through queries to the web-app's database backend, are used by Reclamation, SRSC, fish agencies, and others to inform operational decisions. By submitting diversion schedules and tracking actual diversions through the portal, contractors will also be directly contributing to the development of a richer and more consistently-formatted historical record for demand hydrology in the Sacramento River Watershed; this may be useful in future water supply studies. Adoption of this technology will foster an

  13. 76 FR 14052 - Notice of Inventory Completion: California State University, Sacramento, Sacramento, CA

    Science.gov (United States)

    2011-03-15

    ... Sacramento County, CA, during a test excavation project. The Far Western Anthropological Research Group Inc... from ethnohistoric and ethnographic sources indicate that the site was most likely occupied by Nisenan... the Sacramento River and Miwok-speakers resided south of the American River. Ethnographic data and...

  14. Status of groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units, 2005-08: California GAMA Priority Basin Project

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study units are located in California's Central Valley and include parts of Butte, Colusa, Glenn, Placer, Sacramento, Shasta, Solano, Sutter, Tehama, Yolo, and Yuba Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The three study units were designated to provide spatially-unbiased assessments of the quality of untreated groundwater in three parts of the Central Valley hydrogeologic province, as well as to provide a statistically consistent basis for comparing water quality regionally and statewide. Samples were collected in 2005 (Southern Sacramento Valley), 2006 (Middle Sacramento Valley), and 2007-08 (Northern Sacramento Valley). The GAMA studies in the Southern, Middle, and Northern Sacramento Valley were designed to provide statistically robust assessments of the quality of untreated groundwater in the primary aquifer systems that are used for drinking-water supply. The assessments are based on water-quality data collected by the USGS from 235 wells in the three study units in 2005-08, and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter, referred to as primary aquifers) assessed in this study are defined by the depth intervals of the wells in the CDPH database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. The status of the current quality of the groundwater resource was assessed by using data from samples analyzed for volatile organic

  15. Groundwater budgets for Detrital, Hualapai, and Sacramento Valleys, Mohave County, Arizona, 2007-08

    Science.gov (United States)

    Garner, Bradley D.; Truini, Margot

    2011-01-01

    The United States Geological Survey, in cooperation with the Arizona Department of Water Resources, initiated an investigation of the hydrogeology and water resources of Detrital, Hualapai, and Sacramento Valleys in northwestern Arizona in 2005, and this report is part of that investigation. Water budgets were developed for Detrital, Hualapai, and Sacramento Valleys to provide a generalized understanding of the groundwater systems in this rural area that has shown some evidence of human-induced water-level declines. The valleys are within the Basin and Range physiographic province and consist of thick sequences of permeable alluvial sediment deposited into basins bounded by relatively less permeable igneous and metamorphic rocks. Long-term natural recharge rates (1940-2008) for the alluvial aquifers were estimated to be 1,400 acre-feet per year (acre-ft/yr) for Detrital Valley, 5,700 acre-ft/yr for Hualapai Valley, and 6,000 acre-ft/yr for Sacramento Valley. Natural discharge rates were assumed to be equal to natural recharge rates, on the basis of the assumption that all groundwater withdrawals to date have obtained water from groundwater storage. Groundwater withdrawals (2007-08) for the alluvial aquifers were less than 300 acre-ft/yr for Detrital Valley, about 9,800 acre-ft/yr for Hualapai Valley, and about 4,500 acre-ft/yr for Sacramento Valley. Incidental recharge from leaking water-supply pipes, septic systems, and wastewater-treatment plants accounted for about 35 percent of total recharge (2007-08) across the study area. Natural recharge and discharge values in this study were 24-50 percent higher than values in most previously published studies. Water budgets present a spatially and temporally "lumped" view of water resources and incorporate many sources of uncertainty in this study area where only limited data presently are available.

  16. Distribution and geochemistry of selected trace elements in the Sacramento River near Keswick Reservoir

    Science.gov (United States)

    Antweiler, Ronald C.; Taylor, Howard E.; Alpers, Charles N.

    2012-01-01

    The effect of heavy metals from the Iron Mountain Mines (IMM) Superfund site on the upper Sacramento River is examined using data from water and bed sediment samples collected during 1996-97. Relative to surrounding waters, aluminum, cadmium, cobalt, copper, iron, lead, manganese, thallium, zinc and the rare-earth elements (REE) were all present in high concentrations in effluent from Spring Creek Reservoir (SCR), which enters into the Sacramento River in the Spring Creek Arm of Keswick Reservoir. SCR was constructed in part to regulate the flow of acidic, metal-rich waters draining the IMM Superfund site. Although virtually all of these metals exist in SCR in the dissolved form, upon entering Keswick Reservoir they at least partially converted via precipitation and/or adsorption to the particulate phase. In spite of this, few of the metals settled out; instead the vast majority was transported colloidally down the Sacramento River at least to Bend Bridge, 67. km from Keswick Dam.The geochemical influence of IMM on the upper Sacramento River was variable, chiefly dependent on the flow of Spring Creek. Although the average flow of the Sacramento River at Keswick Dam is 250m 3/s (cubic meters per second), even flows as low as 0.3m 3/s from Spring Creek were sufficient to account for more than 15% of the metals loading at Bend Bridge, and these proportions increased with increasing Spring Creek flow.The dissolved proportion of the total bioavailable load was dependent on the element but steadily decreased for all metals, from near 100% in Spring Creek to values (for some elements) of less than 1% at Bend Bridge; failure to account for the suspended sediment load in assessments of the effect of metals transport in the Sacramento River can result in estimates which are low by as much as a factor of 100. ?? 2012.

  17. Sacramento Metropolitan Area, California

    Science.gov (United States)

    1992-02-01

    addition, several Federal candidate species, the California Hibiscus , California tiger salamander, Sacramento Anthicid Beetle, Sacramento Valley tiger...Board, California Waste Management Board, and Department of Health Services contribute to this list. The Yolo County Health Services Agency maintains and...operation and maintenance of the completed recreational facility. Recreation development is limited to project lands unless health and safety

  18. The contribution of rice agriculture to methylmercury in surface waters: A review of data from the Sacramento Valley, California

    Science.gov (United States)

    Tanner, K. Christy; Windham-Myers, Lisamarie; Fleck, Jacob; Tate, Kenneth W.; McCord, Stephen A.; Linquist, Bruce A.

    2017-01-01

    Methylmercury (MeHg) is a bioaccumulative pollutant produced in and exported from flooded soils, including those used for rice (Oriza sativa L.) production. Using unfiltered aqueous MeHg data from MeHg monitoring programs in the Sacramento River watershed from 1996 to 2007, we assessed the MeHg contribution from rice systems to the Sacramento River. Using a mixed-effects regression analysis, we compared MeHg concentrations in agricultural drainage water from rice-dominated regions (AgDrain) to MeHg concentrations in the Sacramento and Feather Rivers, both upstream and downstream of AgDrain inputs. We also calculated MeHg loads from AgDrains and the Sacramento and Feather Rivers. Seasonally, MeHg concentrations were higher during November through May than during June through October, but the differences varied by location. Relative to upstream, November through May AgDrain least-squares mean MeHg concentration (0.18 ng L−1, range 0.15–0.23 ng L−1) was 2.3-fold higher, while June through October AgDrain mean concentration (0.097 ng L−1, range 0.6–1.6 ng L−1) was not significantly different from upstream. June through October AgDrain MeHg loads contributed 10.7 to 14.8% of the total Sacramento River MeHg load. Missing flow data prevented calculation of the percent contribution of AgDrains in November through May. At sites where calculation was possible, November through May loads made up 70 to 90% of the total annual load. Elevated flow and MeHg concentration in November through May both contribute to the majority of the AgDrain MeHg load occurring during this period. Methylmercury reduction efforts should target elevated November through May MeHg concentrations in AgDrains. However, our findings suggest that the contribution and environmental impact of rice is an order of magnitude lower than previous studies in the California Yolo Bypass.

  19. Adaptive Management Using Remote Sensing and Ecosystem Modeling in Response to Climate Variability and Invasive Aquatic Plants for the California Sacramento-San Joaquin Delta Water Resource

    Science.gov (United States)

    Bubenheim, David; Potter, Christopher; Zhang, Minghua; Madsen, John

    2017-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern to Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant in the Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they are improving decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.

  20. Adaptive Management Using Remote Sensing and Ecosystem Modeling in Response to Climate Variability and Invasive Aquatic Plants for the California Sacramento-San Joaquin Delta Water Resource

    Science.gov (United States)

    Bubenheim, D.; Potter, C. S.; Zhang, M.; Madsen, J.

    2017-12-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern and Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant management in the California Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they improve decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.

  1. Putting the sun to work in Sacramento

    International Nuclear Information System (INIS)

    Osborn, D.E.

    2000-01-01

    At dawn this morning, the sun went to work for customers of the Sacramento Municipal Utility District (SMUD). The largest photovoltaic (PV) power plant in the world, adjacent to the closed nuclear power plant at Rancho Seco, generated enough electricity for over a thousand customers, rooftop solar water heaters lowered thousands of residential electric bills and rooftop PV systems turned hundreds of Sacramento homes into mini power plants. SMUD, in partnership with their customers-owners, is leading the way in putting the sun to work today. SMUD plans to have at least half of its energy come from energy efficiency, existing hydroelectric plants and renewable resources in this decade. SMUD expects investments made in solar power today to provide its customer-owners with substantial long-term energy, environmental and community benefits. This article describes some of SMUD's efforts

  2. Reservoir Operating Rule Optimization for California's Sacramento Valley

    Directory of Open Access Journals (Sweden)

    Timothy Nelson

    2016-03-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss1art6Reservoir operating rules for water resource systems are typically developed by combining intuition, professional discussion, and simulation modeling. This paper describes a joint optimization–simulation approach to develop preliminary economically-based operating rules for major reservoirs in California’s Sacramento Valley, based on optimized results from CALVIN, a hydro-economic optimization model. We infer strategic operating rules from the optimization model results, including storage allocation rules to balance storage among multiple reservoirs, and reservoir release rules to determine monthly release for individual reservoirs. Results show the potential utility of considering previous year type on water availability and various system and sub-system storage conditions, in addition to normal consideration of local reservoir storage, season, and current inflows. We create a simple simulation to further refine and test the derived operating rules. Optimization model results show particular insights for balancing the allocation of water storage among Shasta, Trinity, and Oroville reservoirs over drawdown and refill seasons, as well as some insights for release rules at major reservoirs in the Sacramento Valley. We also discuss the applicability and limitations of developing reservoir operation rules from optimization model results.

  3. Deep Water Acoustics

    Science.gov (United States)

    2016-06-28

    the Deep Water project and participate in the NPAL Workshops, including Art Baggeroer (MIT), J. Beron- Vera (UMiami), M. Brown (UMiami), T...Kathleen E . Wage. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea. J. Acoust. Soc. Am., 134(4...estimate of the angle α during PhilSea09, made from ADCP measurements at the site of the DVLA. Sim. A B1 B2 B3 C D E F Prof. # 0 4 4 4 5 10 16 20 α

  4. Bivariate Drought Analysis Using Streamflow Reconstruction with Tree Ring Indices in the Sacramento Basin, California, USA

    Directory of Open Access Journals (Sweden)

    Jaewon Kwak

    2016-03-01

    Full Text Available Long-term streamflow data are vital for analysis of hydrological droughts. Using an artificial neural network (ANN model and nine tree-ring indices, this study reconstructed the annual streamflow of the Sacramento River for the period from 1560 to 1871. Using the reconstructed streamflow data, the copula method was used for bivariate drought analysis, deriving a hydrological drought return period plot for the Sacramento River basin. Results showed strong correlation among drought characteristics, and the drought with a 20-year return period (17.2 million acre-feet (MAF per year in the Sacramento River basin could be considered a critical level of drought for water shortages.

  5. Groundwater quality in the Southern Sacramento Valley, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Southern Sacramento Valley is one of the study units being evaluated.

  6. Groundwater quality in the Northern Sacramento Valley, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Northern Sacramento Valley is one of the study units being evaluated.

  7. Effects of the proposed California WaterFix North Delta Diversion on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento-San Joaquin River Delta, northern California

    Science.gov (United States)

    Perry, Russell W.; Pope, Adam C.

    2018-05-11

    The California Department of Water Resources and Bureau of Reclamation propose new water intake facilities on the Sacramento River in northern California that would convey some of the water for export to areas south of the Sacramento-San Joaquin River Delta (hereinafter referred to as the Delta) through tunnels rather than through the Delta. The collection of water intakes, tunnels, pumping facilities, associated structures, and proposed operations are collectively referred to as California WaterFix. The water intake facilities, hereinafter referred to as the North Delta Diversion (NDD), are proposed to be located on the Sacramento River downstream of the city of Sacramento and upstream of the first major river junction where Sutter Slough branches from the Sacramento River. The NDD can divert a maximum discharge of 9,000 cubic feet per second (ft3 /s) from the Sacramento River, which reduces the amount of Sacramento River inflow into the Delta. In this report, we conduct four analyses to investigate the effect of the NDD and its proposed operation on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha). All analyses used the results of a Bayesian survival model that allowed us to simulate travel time, migration routing, and survival of juvenile Chinook salmon migrating through the Delta in response to NDD operations, which affected both inflows to the Delta and operation of the Delta Cross Channel (DCC). For the first analysis, we evaluated the effect of the NDD bypass rules on salmon survival. The NDD bypass rules are a set of operational rule curves designed to provide adaptive levels of fish protection by defining allowable diversion rates as a function of (1) Sacramento River discharge as measured at Freeport, and (2) time of year when endangered runs requiring the most protection are present. We determined that all bypass rule curves except constant low-level pumping (maximum diversion of 900 ft3 /s) could cause a sizeable decrease in survival by as

  8. 78 FR 66058 - Habitat Conservation Plan for South Sacramento County, California

    Science.gov (United States)

    2013-11-04

    ... scoping meetings in local news media and on the Internet at http://www.fws.gov/sacramento . ADDRESSES... sphere of influence; and land within Galt's adopted sphere of influence. Almost all ground disturbance... resources, transportation, air quality, land use, recreation, water use, local economy, and environmental...

  9. 77 FR 45575 - Foreign-Trade Zone 143-West Sacramento, CA

    Science.gov (United States)

    2012-08-01

    ... Sacramento, CA Application for Extended Production Authority; Subzone 143D, Grafil Inc. (Carbon Fiber Production); Sacramento, California An application has been submitted to the Foreign-Trade Zones Board (the... its facilities located in Sacramento, California. The application conforming to the requirements of...

  10. OS SACRAMENTAIS, SACRAMENTOS DOS POBRES

    Directory of Open Access Journals (Sweden)

    Victor Codina

    1990-01-01

    Full Text Available Basta ter tido um pouco de experiência pastoral com setores populares, concretamente na América Latina, para constatar a importância dos sacramentais na vida cristã do povo. Além das manifestações de piedade popular que se costuma estudar sob a rubrica de religiosidade popular (peregrinações, festas de padroeiro, procissões..., gostaria de destacar aqui outros elementos mais estreitamente ligados ao mundo dos sacramentos, ainda que não formem parte dos sete sacramentos tridentinos.

  11. Associations between water quality, Pasteurella multocida, and avian cholera at Sacramento National Wildlife Refuge

    Science.gov (United States)

    Lehr, M.A.; Botzler, R.G.; Samuel, M.D.; Shadduck, D.J.

    2005-01-01

    We studied patterns in avian cholera mortality, the presence of Pasteurella multocida in the water or sediment, and water chemistry characteristics in 10 wetlands at the Sacramento National Wildlife Refuge Complex (California, USA), an area of recurrent avian cholera epizootics, during the winters of 1997 and 1998. Avian cholera outbreaks (a?Y50 dead birds) occurred on two wetlands during the winter of 1997, but no P. multocida were recovered from 390 water and 390 sediment samples from any of the 10 wetlands. No mortality events were observed on study wetlands during the winter of 1998; however, P. multocida was recovered from water and sediment samples in six of the 10 study wetlands. The pH levels were higher for wetlands experiencing outbreaks during the winter of 1997 than for nonoutbreak wetlands, and aluminum concentrations were higher in wetlands from which P. multocida were recovered during the winter of 1998. Water chemistry parameters (calcium, magnesium, sodium, and dissolved protein) previously linked with P. multocida and avian cholera mortality were not associated with the occurrence of avian cholera outbreaks or the presence of P. multocida in our study wetlands. Overall, we found no evidence to support the hypothesis that wetland characteristics facilitate the presence of P. multocida and, thereby, allow some wetlands to serve as long-term sources (reservoirs) for P. multocida.

  12. Changes in Rice Pesticide Use and Surface Water Concentrations in the Sacramento River Watershed, California

    Science.gov (United States)

    Orlando, James L.; Kuivila, Kathryn

    2004-01-01

    Pesticides applied to rice fields in California are transported into the Sacramento River watershed by the release of rice field water. Despite monitoring and mitigation programs, concentrations of two rice pesticides, molinate and thiobencarb, continue to exceed the surface-water concentration performance goals established by the Central Valley Regional Water Quality Control Board. There have been major changes in pesticide use over the past decade, and the total amount of pesticides applied remains high. Molinate use has declined by nearly half, while thiobencarb use has more than doubled; carbofuran has been eliminated and partially replaced by the pyrethroid pesticide lambda-cyhalothrin. A study was conducted in 2002 and 2003 by the U.S. Geological Survey to determine if the changes in pesticide use on rice resulted in corresponding changes in pesticide concentrations in surface waters. During the rice growing season (May-July), water samples, collected weekly at three sites in 2002 and two sites in 2003, were analyzed for pesticides using both solid-phase and liquid-liquid extraction in combination with gas chromatography/mass spectrometry. Analytes included lambda-cyhalothrin, molinate, thiobencarb, and two degradation products of molinate: 2-keto-molinate and 4-keto-molinate. Molinate, thiobencarb, and 4-keto-molinate were detected in all samples, 2-keto-molinate was detected in less than half of the samples, and lambda-cyhalothrin was not detected in any samples. At two of the sites sampled in 2002 (Colusa Basin Drain 1 and Sacramento Slough), concentrations of molinate were similar, but thiobencarb concentrations differed by a factor of five. Although concentrations cannot be estimated directly from application amounts in different watersheds, the ratio of molinate to thiobencarb concentrations can be compared with the ratio of molinate to thiobencarb use in the basins. The higher concentration ratio in the Sacramento Slough Basin, compared with the ratio

  13. Losses of Sacramento River Chinook Salmon and Delta Smelt to Entrainment in Water Diversions in the Sacramento–San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    Wim J. Kimmerer

    2008-06-01

    Full Text Available Pumping at the water export facilities in the southern Sacramento-San Joaquin Delta kills fish at and near the associated fish-salvage facilities. Correlative analyses of salvage counts with population indices have failed to provide quantitative estimates of the magnitude of this mortality. I estimated the proportional losses of Sacramento River Chinook salmon (Oncorhynchus tshawytscha and delta smelt (Hypomesus transpacificus to place these losses in a population context. The estimate for salmon was based on recoveries of tagged smolts released in the upper Sacramento River basin, and recovered at the fish-salvage facilities in the south Delta and in a trawling program in the western Delta. The proportion of fish salvaged increased with export flow, with a mean value around 10% at the highest export flows recorded. Mortality was around 10% if pre-salvage losses were about 80%, but this value is nearly unconstrained. Losses of adult delta smelt in winter and young delta smelt in spring were estimated from salvage data (adults corrected for estimated pre-salvage survival, or from trawl data in the southern Delta (young. These losses were divided by population size and accumulated over the respective seasons. Losses of adult delta smelt were 1–50% (median 15% although the highest value may have been biased upward. Daily losses of larvae and juveniles were 0–8%, and seasonal losses accumulated were 0–25% (median 13%. The effect of these losses on population abundance was obscured by subsequent 50-fold variability in survival from summer to fall.

  14. 78 FR 5837 - Cancellation of Environmental Impact Statement/Environmental Impact Report on the Sacramento...

    Science.gov (United States)

    2013-01-28

    ... statewide economy. The SRWRS cost-sharing partners had identified their long-term needs for additional water... Sacramento were the cost-sharing partners. Reclamation published a notice of intent to prepare the EIS/EIR on...

  15. Deep water recycling through time.

    Science.gov (United States)

    Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen

    2014-11-01

    We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity ( v s ), slab age ( a ) and mantle temperature (T m ). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried deep into the mantle, W (×10 5 kg/m 2 ), as a function of v s (cm/yr), a (Myrs), and T m (°C):[Formula: see text]. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×10 5 kg/m 2 of H 2 O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×10 8 Tg/Myr of H 2 O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5-3.7 × 10 8 Tg/Myr of H 2 O could still be recycled in the mantle at 2.8 Ga. Deep water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H 2 O flux deep into the mantle Subduction velocity has a a major control on the crustal dehydration pattern.

  16. Producing deep-water hydrocarbons

    International Nuclear Information System (INIS)

    Pilenko, Thierry

    2011-01-01

    Several studies relate the history and progress made in offshore production from oil and gas fields in relation to reserves and the techniques for producing oil offshore. The intention herein is not to review these studies but rather to argue that the activities of prospecting and producing deep-water oil and gas call for a combination of technology and project management and, above all, of devotion and innovation. Without this sense of commitment motivating men and women in this industry, the human adventure of deep-water production would never have taken place

  17. Sacramento River, Chico Landing to Red Bluff, California Bank Protection Project

    Science.gov (United States)

    1975-01-01

    i onwi de X X X X X X X (Turdus migratorius) Ruby-crowned kinglet Common-Nat i onwide X X X X X (Regulus calendula ) Water pipit Common-Nat i...City. In addition, State Point of Historical Interest, Glenn-011, Swifts Point, is located on the Sacramento River near Hamilton City and Glenn- Oil

  18. 76 FR 3157 - Joint Operations Center Relocation Project, Sacramento County, CA

    Science.gov (United States)

    2011-01-19

    ..., Sacramento County, CA AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of intent to prepare an... Reclamation, 2800 Cottage Way, Sacramento, CA 95825 or e-mail [email protected] . The public scoping meetings... construct a new JOC in the Sacramento area to be occupied by June 2015. The new JOC would provide typical...

  19. Biogeochemical studies of wintering waterfowl in the Imperial and Sacramento Valleys

    Energy Technology Data Exchange (ETDEWEB)

    Koranda, J.J.; Stuart, M.; Thompson, S.; Conrado, C.

    1979-10-01

    Trace and major elemental composition were determined in the organs of wintering waterfowl in the Imperial and Sacramento Valleys of California, and in soils, sediments, and agricultural fertilizer that constitute the various sources of elements in the waterfowl. These data provide a biogeochemical baseline for waterfowl populations wintering in an area being developed for geothermal power. This baseline in the Imperial Valley is affected by soil and sediment composition, agricultural effluents in irrigation and stream water, and spent shot deposited by hunters in waterfowl habitats. The waterfowl acquire a set of trace elements from these sources and concentrations increase in their organs over the wintering period. Nickel, arsenic, selenium, bromine, and lead are the primary elements acquired from soil sources, agricultural effluents, and spent shot in the Imperial Valley. The assessment of effects from geothermal effluents on waterfowl populations in complex because there are large influxes of materials into the Imperial Valley ecosystem that contain trace elements, i.e., irrigation water, phosphatic fertilizers, pesticides, and lead shot. Multiple sources exist for many elements prominent in the expected geothermal effluents. The relationships between the two California valleys, the Imperial and Sacramento, are apparent in the trace element concentrations in the organs of waterfowl obtained in those two valleys. Arsenic is absent in the waterfowl organs obtained in the Sacramento Valley and relatively common in the Imperial Valley waterfowl. The effect of any release of geothermal effluent in the Imperial Valley waterfowl habitats will be difficult to describe because of the complexity of the biogeochemical baseline and the multiple sources of trace and major elements in the ecosystem.

  20. Trends in nutrient concentrations, loads, and yields in streams in the Sacramento, San Joaquin, and Santa Ana Basins, California, 1975-2004

    Science.gov (United States)

    Kratzer, Charles R.; Kent, Robert; Seleh, Dina K.; Knifong, Donna L.; Dileanis, Peter D.; Orlando, James L.

    2011-01-01

    A comprehensive database was assembled for the Sacramento, San Joaquin, and Santa Ana Basins in California on nutrient concentrations, flows, and point and nonpoint sources of nutrients for 1975-2004. Most of the data on nutrient concentrations (nitrate, ammonia, total nitrogen, orthophosphate, and total phosphorus) were from the U.S. Geological Survey's National Water Information System database (35.2 percent), the California Department of Water Resources (21.9 percent), the University of California at Davis (21.6 percent), and the U.S. Environmental Protection Agency's STOrage and RETrieval database (20.0 percent). Point-source discharges accounted for less than 1 percent of river flows in the Sacramento and San Joaquin Rivers, but accounted for close to 80 percent of the nonstorm flow in the Santa Ana River. Point sources accounted for 4 and 7 percent of the total nitrogen and total phosphorus loads, respectively, in the Sacramento River at Freeport for 1985-2004. Point sources accounted for 8 and 17 percent of the total nitrogen and total phosphorus loads, respectively, in the San Joaquin River near Vernalis for 1985-2004. The volume of wastewater discharged into the Santa Ana River increased almost three-fold over the study period. However, due to improvements in wastewater treatment, the total nitrogen load to the Santa Ana River from point sources in 2004 was approximately the same as in 1975 and the total phosphorus load in 2004 was less than in 1975. Nonpoint sources of nutrients estimated in this study included atmospheric deposition, fertilizer application, manure production, and tile drainage. The estimated dry deposition of nitrogen exceeded wet deposition in the Sacramento and San Joaquin Valleys and in the basin area of the Santa Ana Basin, with ratios of dry to wet deposition of 1.7, 2.8, and 9.8, respectively. Fertilizer application increased appreciably from 1987 to 2004 in all three California basins, although manure production increased in the

  1. An overview of latest deep water technologies

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The 8th Deep Offshore Technology Conference (DOT VIII, Rio de Janeiro, October 30 - November 3, 1995) has brought together renowned specialists in deep water development projects, as well as managers from oil companies and engineering/service companies to discuss state-of-the-art technologies and ongoing projects in the deep offshore. This paper is a compilation of the session summaries about sub sea technologies, mooring and dynamic positioning, floaters (Tension Leg Platforms (TLP) and Floating Production Storage and Off loading (FPSO)), pipelines and risers, exploration and drilling, and other deep water techniques. (J.S.)

  2. Sacramento District History (1929-2004)

    National Research Council Canada - National Science Library

    Collins, Willie; Asay, Laura; Davy, Barbara J; Doyle, Brian; Fast, James P; Gonzalez, Jennifer L; Layton, Debra A; Nevins, Michael J; Taylor, James H; Van Dam, Carl

    2004-01-01

    Although the Sacramento District was established in 1929, this document recaptures the legendary history from the mid-1800's and the repercussions the Central Valley endured regarding the navigation...

  3. Metals transport in the Sacramento River, California, 1996-1997; Volume 2: Interpretation of metal loads

    Science.gov (United States)

    Alpers, Charles N.; Antweiler, Ronald C.; Taylor, Howard E.; Dileanis, Peter D.; Domagalski, Joseph L.

    2000-01-01

    Metals transport in the Sacramento River, northern California, from July 1996 to June 1997 was evaluated in terms of metal loads from samples of water and suspended colloids that were collected on up to six occasions at 13 sites in the Sacramento River Basin. Four of the sampling periods (July, September, and November 1996; and May-June 1997) took place during relatively low-flow conditions and two sampling periods (December 1996 and January 1997) took place during high-flow and flooding conditions, respectively. This study focused primarily on loads of cadmium, copper, lead, and zinc, with secondary emphasis on loads of aluminum, iron, and mercury.Trace metals in acid mine drainage from abandoned and inactive base-metal mines, in the East and West Shasta mining districts, enter the Sacramento River system in predominantly dissolved form into both Shasta Lake and Keswick Reservoir. The proportion of trace metals that was dissolved (as opposed to colloidal) in samples collected at Shasta and Keswick dams decreased in the order zinc ≈ cadmium > copper > lead. At four sampling sites on the Sacramento River--71, 256, 360, and 412 kilometers downstream of Keswick Dam--trace-metal loads were predominantly colloidal during both high- and low-flow conditions. The proportion of total cadmium, copper, lead, and zinc loads transported to San Francisco Bay and the Sacramento-San Joaquin Delta estuary (referred to as the Bay-Delta) that is associated with mineralized areas was estimated by dividing loads at Keswick Dam by loads 412 kilometers downstream at Freeport and the Yolo Bypass. During moderately high flows in December 1996, mineralization-related total (dissolved + colloidal) trace-metal loads to the Bay-Delta (as a percentage of total loads measured downstream) were cadmium, 87 percent; copper, 35 percent; lead, 10 percent; and zinc, 51 percent. During flood conditions in January 1997 loads were cadmium, 22 percent; copper, 11 percent; lead, 2 percent; and zinc, 15

  4. 77 FR 24252 - Notice of Release From Federal Grant Assurance Obligations for Sacramento International Airport...

    Science.gov (United States)

    2012-04-23

    ... Assurance Obligations for Sacramento International Airport (SMF), Sacramento, CA AGENCY: Federal Aviation... of land comprising approximately 6.50 acres of airport property at the Sacramento International Airport, California. The County of Sacramento proposes to release the 6.50 acres for sale to the...

  5. 1997 Sacramento Inland Floodplain Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set includes data collected in October 1997 over the Sacramento, CA, floodplain. Laser mapping uses a pulsed laser ranging system mounted onboard an...

  6. Exploring SWOT discharge algorithm accuracy on the Sacramento River

    Science.gov (United States)

    Durand, M. T.; Yoon, Y.; Rodriguez, E.; Minear, J. T.; Andreadis, K.; Pavelsky, T. M.; Alsdorf, D. E.; Smith, L. C.; Bales, J. D.

    2012-12-01

    Scheduled for launch in 2019, the Surface Water and Ocean Topography (SWOT) satellite mission will utilize a Ka-band radar interferometer to measure river heights, widths, and slopes, globally, as well as characterize storage change in lakes and ocean surface dynamics with a spatial resolution ranging from 10 - 70 m, with temporal revisits on the order of a week. A discharge algorithm has been formulated to solve the inverse problem of characterizing river bathymetry and the roughness coefficient from SWOT observations. The algorithm uses a Bayesian Markov Chain estimation approach, treats rivers as sets of interconnected reaches (typically 5 km - 10 km in length), and produces best estimates of river bathymetry, roughness coefficient, and discharge, given SWOT observables. AirSWOT (the airborne version of SWOT) consists of a radar interferometer similar to SWOT, but mounted aboard an aircraft. AirSWOT spatial resolution will range from 1 - 35 m. In early 2013, AirSWOT will perform several flights over the Sacramento River, capturing river height, width, and slope at several different flow conditions. The Sacramento River presents an excellent target given that the river includes some stretches heavily affected by management (diversions, bypasses, etc.). AirSWOT measurements will be used to validate SWOT observation performance, but are also a unique opportunity for testing and demonstrating the capabilities and limitations of the discharge algorithm. This study uses HEC-RAS simulations of the Sacramento River to first, characterize expected discharge algorithm accuracy on the Sacramento River, and second to explore the required AirSWOT measurements needed to perform a successful inverse with the discharge algorithm. We focus on several specific research questions affecting algorithm performance: 1) To what extent do lateral inflows confound algorithm performance? We examine the ~100 km stretch of river from Colusa, CA to the Yolo Bypass, and investigate how the

  7. 78 FR 53270 - Revision of Air Quality Implementation Plan; California; Sacramento Metropolitan Air Quality...

    Science.gov (United States)

    2013-08-29

    ... Quality Implementation Plan; California; Sacramento Metropolitan Air Quality Management District... to the Sacramento Metropolitan Air Quality Management District (SMAQMD or District) portion of the..., Sacramento Metropolitan Air Quality Management District, Rule 214 (Federal New Source Review), Rule 203...

  8. Deep Water Survey Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The deep water biodiversity surveys explore and describe the biodiversity of the bathy- and bentho-pelagic nekton using Midwater and bottom trawls centered in the...

  9. Environmental challenges of deep water activities

    International Nuclear Information System (INIS)

    Sande, Arvid

    1998-01-01

    In this presentation there are discussed the experiences of petroleum industry, and the projects that have been conducted in connection with the planning and drilling of the first deep water wells in Norway. There are also presented views on where to put more effort in the years to come, so as to increase the knowledge of deep water areas. Attention is laid on exploration drilling as this is the only activity with environmental potential that will take place during the next five years or so. The challenges for future field developments in these water depths are briefly discussed. 7 refs

  10. Opportunities and constraints of deep water projects

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    While oil output from deep water areas still is scarce, it however has become a reality in water depths over 300 m. Specific constraints linked to these developments lead to the selection of appropriate concepts for production supports. First deep water developments occurred off Brazil (see other articles in this issue) and the Gulf of Mexico and now expand to other areas worldwide, such as the West of Shetland discoveries, the Northern part of the Norwegian waters and potentially West Africa, the Barents sea and South-East Asia. Fixed platforms and compliant towers have shown their limits (in terms of water depth capacity) and new deep water projects mainly rely on tension leg platforms (TLP) and floaters, either FPSOs or semi-sub based. Research is at work on alternative materials for lighter flexible risers and mooring systems. Operators and manufacturers are eager to develop for the 300 m range systems and equipments that could be used with little modification for oil fields located in deeper waters. (author). 1 fig., 1 tab

  11. Recent changes in the deep-water fish populations of Lake Michigan

    Science.gov (United States)

    Moffett, James W.

    1957-01-01

    The deep-water fish fauna of Lake Michigan consisted of lake trout (Salvelinus namaycush), burbot (Lota lota maculosa), seven species of chubs or deep-water ciscoes (Leucichthys spp.), and the deep-water sculpin (Myoxocephalus quadricornis). Other species occupied the deep-water zone but were not typically part of the fauna.

  12. Deep-water subsea lifting operations

    Energy Technology Data Exchange (ETDEWEB)

    Nestegaard, Arne; Boee, Tormod

    2010-07-01

    Significant costs are related to marine operations in the installation phase of deep water subsea field developments. In order to establish safe operational criteria and procedures for the installation, detailed planning is necessary, including numerical modelling and analysis of the environmental conditions and hydrodynamic loads on the installed object as well as the installation equipment. This paper presents recommendations for modelling and analysis of deep water subsea lifting operations developed for the new DNV RP-H103 [1]. During installation of subsea structures, the highest dynamic forces are most often encountered in the splash zone. Recommendations for estimation of maximum forces will be presented. For small structures and tools, installation through the moon pool of a small installation vessel is often preferred. Calculation methods for loading on structures installed through a moon pool will be presented. During intervention or installation in deep water a significant amplification of amplitude and forces can be experienced when the frequency range of vertical crane tip motion coincides with the natural vertical oscillation of the lift wire and load. Vertical resonance may reduce the operability of the operation. Simplified calculation methods for such operations are presented. (Author)

  13. Occurrence and Transport of Diazinon in the Sacramento River and Selected Tributaries, California, during Two Winter Storms, January?February 2001

    Science.gov (United States)

    Dileanis, Peter D.; Brown, David L.; Knifong, Donna L.; Saleh, Dina

    2003-01-01

    Diazinon, an organophosphate insecticide, is applied as an orchard dormant spray in the Sacramento Valley during the winter months when the area receives most of its annual rainfall. During winter rainstorms that frequently follow dormant spray applications, some of the applied pesticide is transported in storm runoff to the Sacramento River and its tributaries. Diazinon is also used to control insect pests on residential and commercial properties in urban areas and is frequently detected in urban storm runoff draining into the Sacramento River system. Between January 24 and February 14, 2001, diazinon concentrations and loads were measured in the Sacramento River and selected tributaries during two winter storms that occurred after dormant spray applications were made to orchards in the Sacramento Valley. Water samples were collected at 21 sites that represented agricultural and urban inputs on a variety of scales, from small tributaries and drains representing local land use to main-stem river sites representing regional effects. Concentrations of diazinon ranged from below laboratory reporting levels to 1,380 nanograms per liter (ng/L), with a median of 55 ng/L during the first monitored storm and 26 ng/L during the second. The highest concentrations were observed in small channels draining predominantly agricultural land. About 26,000 pounds of diazinon were reported applied to agricultural land in the study area just before and during the monitoring period. About 0.2 percent of the applied insecticide appeared to be transported to the lower Sacramento River during that period. The source of about one third of the total load measured in the lower Sacramento River appears to be in the portion of the drainage basin upstream of the city of Colusa. About 12 percent of the diazinon load in the lower Sacramento River was transported from the Feather River Basin, which drains much of the mountainous eastern portions of the Sacramento River Basin. Diazinon use in the

  14. Timber resource statistics for the Sacramento resource area of California.

    Science.gov (United States)

    Karen L. Waddell; Patricia M. Bassett

    1997-01-01

    This report is a summary of timber resource statistics for the Sacramento Resource Area of California, which includes Butte, Colusa, El Dorado, Glenn, Lake, Napa, Nevada, Placer, Plumas, Sacramento, Sierra, Sutter, Tehama, Yolo, and Yuba Counties. Data were collected as part of a statewide multiresource inventory. The inventory sampled private and public lands except...

  15. Ground-Water Quality Data in the Middle Sacramento Valley Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Schmitt, Stephen J.; Fram, Miranda S.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,340 square mile Middle Sacramento Valley study unit (MSACV) was investigated from June through September, 2006, as part of the California Groundwater Ambient Monitoring and Assessment (GAMA) program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Middle Sacramento Valley study was designed to provide a spatially unbiased assessment of raw ground-water quality within MSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 108 wells in Butte, Colusa, Glenn, Sutter, Tehama, Yolo, and Yuba Counties. Seventy-one wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells), 15 wells were selected to evaluate changes in water chemistry along ground-water flow paths (flow-path wells), and 22 were shallow monitoring wells selected to assess the effects of rice agriculture, a major land use in the study unit, on ground-water chemistry (RICE wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. Quality-control samples (blanks

  16. A Modeling Study of Deep Water Renewal in the Red Sea

    Science.gov (United States)

    Yao, F.; Hoteit, I.

    2016-02-01

    Deep water renewal processes in the Red Sea are examined in this study using a 50-year numerical simulation from 1952-2001. The deep water in the Red Sea below the thermocline ( 200 m) exhibits a near-uniform vertical structure in temperature and salinity, but geochemical tracer distributions, such as 14C and 3He, and dissolved oxygen concentrations indicate that the deep water is renewed on time scales as short as 36 years. The renewal process is accomplished through a deep overturning cell that consists of a southward bottom current and a northward returning current at depths of 400-600 m. Three sources regions are proposed for the formation of the deep water, including two deep outflows from the Gulfs of Aqaba and Suez and winter deep convections in the northern Red Sea. The MITgcm (MIT general circulation model), which has been used to simulate the shallow overturning circulations in the Red Sea, is configured in this study with increased resolutions in the deep water. During the 50 years of simulation, artificial passive tracers added in the model indicate that the deep water in the Red Sea was only episodically renewed during some anomalously cold years; two significant episodes of deep water renewal are reproduced in the winters of 1983 and 1992, in accordance with reported historical hydrographic observations. During these renewal events, deep convections reaching the bottom of the basin occurred, which further facilitated deep sinking of the outflows from the Gulfs of Aqaba and Suez. Ensuing spreading of the newly formed deep water along the bottom caused upward displacements of thermocline, which may have profound effects on the water exchanges in the Strait of Bab el Mandeb between the Red Sea and the Gulf of Aden and the functioning of the ecosystem in the Red Sea by changing the vertical distributions of nutrients.

  17. Exploration in the Deep water Niger Delta: Technical to Business Perspectives

    International Nuclear Information System (INIS)

    Feeley, M.H.

    2002-01-01

    Prolific source rocks, high quality deep water reservoirs and a high technical success rate in finding hydrocarbons make the Nigeria deep water one of the top exploration opportunities in the world. Several major discoveries have resulted from exploration on blocks awarded in 1993. Enthusiastic participation by industry in the 2000 Tender Round clearly indicates the continuing appeal of deep water exploration in Nigeria.Commercially, challenges still exist in the Nigerian deep water. Industry has spent more than $2 Billion USD on exploration and appraisal, yet only a handful of developments are moving forward to development. First oil from the deep water is not expected until 2004, 11 years after acreage award and 8 years after discovery. Tougher economic terms, OPEC quota constraints, an abundance of deep water gas, lengthy approval processes and high up-front bonus and exploration costs challenge the economic returns on deep water gas, lengthy approval processes and high up-front bonus and exploration costs challenge the economic returns on deep water investments. Will deep water exploration, development and production deliver the financial returns industry expected when it signed up for the blocks 10 years ago? What are the indications for the 2000 Tender Round blocks?A good explorer learns form experience. What can be learned technically and commercially by looking back over the results of the last 10 years of exploration in Nigeria's deep water? A perspective is provided on the successes, the failures and the challenges to be overcome in realizing the commercial potential of the basin

  18. New optimized drill pipe size for deep-water, extended reach and ultra-deep drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jellison, Michael J.; Delgado, Ivanni [Grant Prideco, Inc., Hoston, TX (United States); Falcao, Jose Luiz; Sato, Ademar Takashi [PETROBRAS, Rio de Janeiro, RJ (Brazil); Moura, Carlos Amsler [Comercial Perfuradora Delba Baiana Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    A new drill pipe size, 5-7/8 in. OD, represents enabling technology for Extended Reach Drilling (ERD), deep water and other deep well applications. Most world-class ERD and deep water wells have traditionally been drilled with 5-1/2 in. drill pipe or a combination of 6-5/8 in. and 5-1/2 in. drill pipe. The hydraulic performance of 5-1/2 in. drill pipe can be a major limitation in substantial ERD and deep water wells resulting in poor cuttings removal, slower penetration rates, diminished control over well trajectory and more tendency for drill pipe sticking. The 5-7/8 in. drill pipe provides a significant improvement in hydraulic efficiency compared to 5-1/2 in. drill pipe and does not suffer from the disadvantages associated with use of 6-5/8 in. drill pipe. It represents a drill pipe assembly that is optimized dimensionally and on a performance basis for casing and bit programs that are commonly used for ERD, deep water and ultra-deep wells. The paper discusses the engineering philosophy behind 5-7/8 in. drill pipe, the design challenges associated with development of the product and reviews the features and capabilities of the second-generation double-shoulder connection. The paper provides drilling case history information on significant projects where the pipe has been used and details results achieved with the pipe. (author)

  19. Barbabos Deep-Water Sponges

    NARCIS (Netherlands)

    Soest, van R.W.M.; Stentoft, N.

    1988-01-01

    Deep-water sponges dredged up in two locations off the west coast of Barbados are systematically described. A total of 69 species is recorded, among which 16 are new to science, viz. Pachymatisma geodiformis, Asteropus syringiferus, Cinachyra arenosa, Theonella atlantica. Corallistes paratypus,

  20. Sensitivity of SWOT discharge algorithm to measurement errors: Testing on the Sacramento River

    Science.gov (United States)

    Durand, Micheal; Andreadis, Konstantinos; Yoon, Yeosang; Rodriguez, Ernesto

    2013-04-01

    Scheduled for launch in 2019, the Surface Water and Ocean Topography (SWOT) satellite mission will utilize a Ka-band radar interferometer to measure river heights, widths, and slopes, globally, as well as characterize storage change in lakes and ocean surface dynamics with a spatial resolution ranging from 10 - 70 m, with temporal revisits on the order of a week. A discharge algorithm has been formulated to solve the inverse problem of characterizing river bathymetry and the roughness coefficient from SWOT observations. The algorithm uses a Bayesian Markov Chain estimation approach, treats rivers as sets of interconnected reaches (typically 5 km - 10 km in length), and produces best estimates of river bathymetry, roughness coefficient, and discharge, given SWOT observables. AirSWOT (the airborne version of SWOT) consists of a radar interferometer similar to SWOT, but mounted aboard an aircraft. AirSWOT spatial resolution will range from 1 - 35 m. In early 2013, AirSWOT will perform several flights over the Sacramento River, capturing river height, width, and slope at several different flow conditions. The Sacramento River presents an excellent target given that the river includes some stretches heavily affected by management (diversions, bypasses, etc.). AirSWOT measurements will be used to validate SWOT observation performance, but are also a unique opportunity for testing and demonstrating the capabilities and limitations of the discharge algorithm. This study uses HEC-RAS simulations of the Sacramento River to first, characterize expected discharge algorithm accuracy on the Sacramento River, and second to explore the required AirSWOT measurements needed to perform a successful inverse with the discharge algorithm. We focus on the sensitivity of the algorithm accuracy to the uncertainty in AirSWOT measurements of height, width, and slope.

  1. Biology, History, Status and Conservation of Sacramento Perch, Archoplites interruptus

    Directory of Open Access Journals (Sweden)

    Patrick K Crain

    2011-04-01

    Full Text Available This paper is a review of the biology of Sacramento perch (Archoplites interruptus based mainly on recent studies of their distribution, ecology, physiology, and genetics. The Sacramento perch is the only member of the family Centrarchidae that is endemic to California. It is most closely related to the rock basses (Ambloplites spp. and is thought to have split from its eastern cousins during the Middle Miocene Period (15.5 to 5.2 million years ago, MYA. Their native range includes the Central Valley, Pajaro and Salinas rivers, tributaries to the San Francisco Estuary (e.g., Alameda Creek, and Clear Lake (Lake County. Today, they are most likely extirpated from all of their native range. They are known to persist in 28 waters outside their native range: 17 in California, nine in Nevada, and one each in Utah and Colorado. Disappearance from their native range coincided with massive changes to aquatic habitats in the Central Valley and with the introduction of alien species, including other centrarchids. Unfortunately, many populations established outside their native range have also disappeared and are continuing to do so.

  2. Revised Environmental Assessment for the Sacramento Area Office Western Area Power Administration, 1994 Power Marketing Plan

    International Nuclear Information System (INIS)

    1992-08-01

    This document presents information on power marketing; expiring contracts; economic methods and assumptions; detailed power supply cost data; guidelines and acceptance criteria for conservation and renewable energy projects; hourly flow impacts graphs; difference in hydro dispatch; generation data; flow data; fishery resources of the Sacramento River; and water quality

  3. Ground-Water Quality Data in the Southern Sacramento Valley, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Milby Dawson, Barbara J.; Bennett, George L.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 2,100 square-mile Southern Sacramento Valley study unit (SSACV) was investigated from March to June 2005 as part of the Statewide Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. This study was designed to provide a spatially unbiased assessment of raw ground-water quality within SSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 83 wells in Placer, Sacramento, Solano, Sutter, and Yolo Counties. Sixty-seven of the wells were selected using a randomized grid-based method to provide statistical representation of the study area. Sixteen of the wells were sampled to evaluate changes in water chemistry along ground-water flow paths. Four additional samples were collected at one of the wells to evaluate water-quality changes with depth. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator constituents), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, matrix spikes

  4. Revised estimate for the radiocarbon age of North Atlantic deep water

    International Nuclear Information System (INIS)

    Broecker, W.S.

    1979-01-01

    The extent to which the admixture of water of Antarctic origin influences the 14 C/C ratio in North Atlantic deep water (NADW) has been heretofore underestimated. When this correction is properly made, a ventilation time for the deep western Atlantic is reduced to only about 100 years. The production rate of the northern component of NADW entering the western basin must be of the order of 30 Sv. If this northern component water is assumed to be the major supplier of new 14 C to the deep sea, the carbon isotope ventilation time of the world deep ocean must be of the order of 900 years. However, since the new deep waters formed around the perimeter of the Antarctic are thought to enter the deep sea at a rate of about 20 Sv, the water ventilation time for the deep sea is of the order of 550 years

  5. 77 FR 15801 - Notice of Inventory Completion: California Department of Parks and Recreation, Sacramento, CA

    Science.gov (United States)

    2012-03-16

    ...: California Department of Parks and Recreation, Sacramento, CA AGENCY: National Park Service, Interior. ACTION..., 1416 9th Street, Room 902, Sacramento, CA 95814, telephone (916) 653-8893. SUPPLEMENTARY INFORMATION... associated funerary objects were removed from the Morris Mound site (CA-SAC-199) in Sacramento County, CA...

  6. Deep challenges for China's war on water pollution.

    Science.gov (United States)

    Han, Dongmei; Currell, Matthew J; Cao, Guoliang

    2016-11-01

    China's Central government has released an ambitious plan to tackle the nation's water pollution crisis. However, this is inhibited by a lack of data, particularly for groundwater. We compiled and analyzed water quality classification data from publicly available government sources, further revealing the scale and extent of the crisis. We also compiled nitrate data in shallow and deep groundwater from a range of literature sources, covering 52 of China's groundwater systems; the most comprehensive national-scale assessment yet. Nitrate pollution at levels exceeding the US EPA's maximum contaminant level (10 mg/L NO 3 N) occurs at the 90th percentile in 25 of 36 shallow aquifers and 10 out of 37 deep or karst aquifers. Isotopic compositions of groundwater nitrate (δ 15 N and δ 18 O NO3 values ranging from -14.9‰ to 35.5‰ and -8.1‰ to 51.0‰, respectively) indicate many nitrate sources including soil nitrogen, agricultural fertilizers, untreated wastewater and/or manure, and locally show evidence of de-nitrification. From these data, it is clear that contaminated groundwater is ubiquitous in deep aquifers as well as shallow groundwater (and surface water). Deep aquifers contain water recharged tens of thousands of years before present, long before widespread anthropogenic nitrate contamination. This groundwater has therefore likely been contaminated due to rapid bypass flow along wells or other conduits. Addressing the issue of well condition is urgently needed to stop further pollution of China's deep aquifers, which are some of China's most important drinking water sources. China's new 10-point Water Pollution Plan addresses previous shortcomings, however, control and remediation of deep groundwater pollution will take decades of sustained effort. Copyright © 2016. Published by Elsevier Ltd.

  7. Sacramento, California: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of Sacramento, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  8. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways, bottom and...

  9. Biogeochemical malfunctioning in sediments beneath a deep-water fish farm.

    Science.gov (United States)

    Valdemarsen, Thomas; Bannister, Raymond J; Hansen, Pia K; Holmer, Marianne; Ervik, Arne

    2012-11-01

    We investigated the environmental impact of a deep water fish farm (190 m). Despite deep water and low water currents, sediments underneath the farm were heavily enriched with organic matter, resulting in stimulated biogeochemical cycling. During the first 7 months of the production cycle benthic fluxes were stimulated >29 times for CO(2) and O(2) and >2000 times for NH(4)(+), when compared to the reference site. During the final 11 months, however, benthic fluxes decreased despite increasing sedimentation. Investigations of microbial mineralization revealed that the sediment metabolic capacity was exceeded, which resulted in inhibited microbial mineralization due to negative feed-backs from accumulation of various solutes in pore water. Conclusions are that (1) deep water sediments at 8 °C can metabolize fish farm waste corresponding to 407 and 29 mmol m(-2) d(-1) POC and TN, respectively, and (2) siting fish farms at deep water sites is not a universal solution for reducing benthic impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Deep and intermediate mediterranean water in the western Alboran Sea

    Science.gov (United States)

    Parrilla, Gregorio; Kinder, Thomas H.; Preller, Ruth H.

    1986-01-01

    Hydrographic and current meter data, obtained during June to October 1982, and numerical model experiments are used to study the distribution and flow of Mediterranean waters in the western Alboran Sea. The Intermediate Water is more pronounced in the northern three-fourths of the sea, but its distribution is patchy as manifested by variability of the temperature and salinity maxima at scales ≤10 km. Current meters in the lower Intermediate Water showed mean flow toward the Strait at 2 cm s -1. A reversal of this flow lasted about 2 weeks. A rough estimate of the mean westward Intermediate Water transport was 0.4 × 10 6 m 3 s -1, about one-third of the total outflow, so that the best estimates of the contributions of traditionally defined Intermediate Water and Deep Water account for only about one-half of the total outflow. The Deep Water was uplifted against the southern continental slope from Alboran Island (3°W) to the Strait. There was also a similar but much weaker banking against the Spanish slope, but a deep current record showed that the eastward recirculation implied by this banking is probably intermittent. Two-layer numerical model experiments simulated the Intermediate Water flow with a flat bottom and the Deep Water with realistic bottom topography. Both experiments replicated the major circulation features, and the Intermediate Water flow was concentrated in the north because of rotation and the Deep Water flow in the south because of topographic control.

  11. DeepBlow - a Lagrangian plume model for deep water blowouts

    International Nuclear Information System (INIS)

    Johansen, Oeistein

    2000-01-01

    This paper presents a sub-sea blowout model designed with special emphasis on deep-water conditions. The model is an integral plume model based on a Lagrangian concept. This concept is applied to multiphase discharges in the formation of water, oil and gas in a stratified water column with variable currents. The gas may be converted to hydrate in combination with seawater, dissolved into the plume water, or leaking out of the plume due to the slip between rising gas bubbles and the plume trajectory. Non-ideal behaviour of the gas is accounted for by the introduction of pressure- and temperature-dependent compressibility z-factor in the equation of state. A number of case studies are presented in the paper. One of the cases (blowout from 100 m depth) is compared with observations from a field experiment conducted in Norwegian waters in June 1996. The model results are found to compare favourably with the field observations when dissolution of gas into seawater is accounted in the model. For discharges at intermediate to shallow depths (100-250 m), the two major processes limiting plume rise will be: (a) dissolution of gas into ambient water, or (b) bubbles rising out of the inclined plume. These processes tend to be self-enforcing, i.e., when a gas is lost by either of these processes, plume rise tends to slow down and more time will be available for dissolution. For discharges in deep waters (700-1500 m depth), hydrate formation is found to be a dominating process in limiting plume rise. (Author)

  12. North Atlantic deep water formation and AMOC in CMIP5 models

    Directory of Open Access Journals (Sweden)

    C. Heuzé

    2017-07-01

    Full Text Available Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5 models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.

  13. Impressed current cathodic protection of deep water structures

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.

    that the cathodic protection design approaches for shallow water may not be adequate for deeper water. This paper discusses on environmental factors encountered in deep water and their effect on cathodic protection behaviour of steel. Further, current CP design...

  14. 75 FR 40762 - Revisions to the California State Implementation Plan, Sacramento Metropolitan Air Quality...

    Science.gov (United States)

    2010-07-14

    ... the California State Implementation Plan, Sacramento Metropolitan Air Quality Management District and South Coast Air Quality Management District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the Sacramento Metropolitan Air Quality...

  15. Deep water overflow in the Faroe Bank Channel; modelling, processes, and impact

    DEFF Research Database (Denmark)

    Rullyanto, Arief

    , creating new water masses with distinct temperature, salinity and density characteristics. The change of water mass characteristics not only affects the local environment, but also far distant regions. The Faroe Bank Channel, which is located in the southern part of Faroe Islands, is one of the most...... under different circumstances. The focus is on the Faroe Bank Channel, a relatively small region, which has a significant impact on the global ocean circulation and marine organisms that live in its environment....... or tides, but also deep beneath the surface, where deep-water currents circulate waters throughout the world’s oceans. In certain very-localized regions, the flow of the deep-water has to travel over a sill in a narrow submarine channel. This overflow process mixes the deep water with overlying waters...

  16. The Sacramento-San Joaquin Delta Conflict: Strategic Insights for California's Policymakers

    Science.gov (United States)

    Moazezi, M. R.

    2013-12-01

    The Sacramento-San Joaquin Delta - a major water supply source in California and a unique habitat for many native and invasive species--is on the verge of collapse due to a prolonged conflict over how to manage the Delta. There is an urgent need to expedite the resolution of this conflict because the continuation of the status quo would leave irreversible environmental consequences for the entire state. In this paper a systematic technique is proposed for providing strategic insights into the Sacramento-San Joaquin Delta conflict. Game theory framework is chosen to systematically analyze behavioral characteristics of decision makers as well as their options in the conflict with respect to their preferences using a formal mathematical language. The Graph Model for Conflict Resolution (GMCR), a recent game-theoretic technique, is applied to model and analyze the Delta conflict in order to better understand the options, preferences, and behavioral characteristics of the major decision makers. GMCR II as a decision support system tool based on GMCR concept is used to facilitate the analysis of the problem through a range of non-cooperative game theoretic stability definitions. Furthermore, coalition analysis is conducted to analyze the potential for forming partial coalitions among decision makers, and to investigate how forming a coalition can influence the conflict resolution process. This contribution shows that involvement of the State of California is necessary for developing an environmental-friendly resolution for the Delta conflict. It also indicates that this resolution is only achievable through improving the fragile levee systems and constructing a new water export facility.

  17. Colônia do Sacramento: a situação na fronteira platina no século XVIII

    Directory of Open Access Journals (Sweden)

    Fabrício Pereira Prado

    2003-07-01

    Full Text Available A Colônia do Sacramento, no atual Uruguai, na primeira metade do século XVIII, constituiu uma cidade de pródigo comércio na região platina. Inseridos tanto nas rotas comerciais e sociais portuguesas quanto nas castelhanas, os habitantes de Sacramento materializavam uma fronteira múltipla, onde coexistiam espanhóis, portugueses e diferentes grupos indígenas. O presente estudo analisa os vínculos sociais e comerciais existentes entre os habitantes de Sacramento e os de Buenos Aires. No interior do espaço platino as redes sociais estabelecidas através do rio da Prata, ligando Sacramento e Buenos Aires, eram vias de acúmulo de prestígio, poder e riqueza em uma sociedade de antigo regime.The Sacramento Colony, currently Uruguayan territory, in the first half of the XVIII century, was a city with great commerce on the River Plate Region. Placed in both Portuguese and Spanish social and commercial routes, the Sacramento habitants formed a multiple frontier where Spanish, Portuguese and different indigenous groups coexisted. The present study analyses the social and commercial links that existed between the Sacramento and Buenos Aires inhabitants. In the River Plate region, the social networks developed connecting Sacramento and Buenos Ayers were gateways to social status, power and wealth in an old regime society.

  18. 78 FR 10589 - Revision of Air Quality Implementation Plan; California; Sacramento Metropolitan Air Quality...

    Science.gov (United States)

    2013-02-14

    ... Quality Implementation Plan; California; Sacramento Metropolitan Air Quality Management District... Sacramento Metropolitan Air Quality Management District (SMAQMD or District) portion of the California State... sources within the areas covered by the plan as necessary to assure that the National Ambient Air Quality...

  19. Radionuclide Site Survey Report Sacramento, California (RN-70)

    National Research Council Canada - National Science Library

    Walker, Frank

    1999-01-01

    The purpose of this report is to validate that the Sacramento, CA, site will fulfill treaty requirements as set forth by the Preparatory Commission for the Comprehensive Test Ban Treaty Organization...

  20. Copper, cadmium, and zinc concentrations in aquatic food chains from the Upper Sacramento River (California) and selected tributaries

    Science.gov (United States)

    Saiki, M.K.; Castleberry, D. T.; May, T. W.; Martin, B.A.; Bullard, F. N.

    1995-01-01

    Metals enter the Upper Sacramento River above Redding, California, primarily through Spring Creek, a tributary that receives acid-mine drainage from a US EPA Superfund site known locally as Iron Mountain Mine. Waterweed (Elodea canadensis) and aquatic insects (midge larvae, Chironomidae; and mayfly nymphs, Ephemeroptera) from the Sacramento River downstream from Spring Creek contained much higher concentrations of copper (Cu), cadmium (Cd), and zinc (Zn) than did similar taxa from nearby reference tributaries not exposed to acid-mine drainage. Aquatic insects from the Sacramento River contained especially high maximum concentrations of Cu (200 mg/kg dry weight in midge larvae), Cd (23 mg/kg dry weight in mayfly nymphs), and Zn (1,700 mg/kg dry weight in mayfly nymphs). Although not always statistically significant, whole-body concentrations of Cu, Cd, and Zn in fishes (threespine stickleback, Gasterosteus aculeatus; Sacramento sucker, Catostomus occidentalis; Sacramento squawfish, Ptychocheilus grandis; and chinook salmon, Oncorhynchus tshawytasch) from the Sacramento River were generally higher than in fishes from the reference tributaries.

  1. Deep-water fisheries at the Atlantic Frontier

    Science.gov (United States)

    Gordon, J. D. M.

    2001-05-01

    The deep sea is often thought of as a cold, dark and uniform environment with a low-fish biomass, much of which is highly adapted for life in a food-poor environment. While this might be true of the pelagic fish living in the water column, it is certainly not true of the demersal fish which live on or close to the bottom on the continental slopes around the British Isles (the Atlantic Frontier). These fish are currently being commercially exploited. There is growing evidence to support the view that success of the demersal fish assemblages depends on the pelagic or benthopelagic food sources that impinge both vertically and horizontally onto the slope. There are several quite separate and distinct deep-water fisheries on the Atlantic Frontier. It is a physical barrier, the Wyville-Thomson Ridge, which results in the most significant division of the fisheries. The Ridge, which has a minimum depth of about 500 m, separates the warmer deep Atlantic waters from the much colder Norwegian Sea water and as a result, the deep-water fisheries to the west of the Hebrides and around the offshore banks are quite different from those of the Faroe-Shetland Channel (West of Shetland). The fisheries to the West of the Hebrides can be further divided by the fishing method used into bottom trawl, semipelagic trawl and longline. The bottom-trawl fisheries extend from the shelf-slope break down to about 1700 m and the target species varies with depth. The smallest vessels in the fleet fish on the upper slope, where an important target species is the anglerfish or monkfish ( Lophius spp.). On the mid-slope the main target species are blue ling ( Molva dypterygia) and roundnose grenadier ( Coryphaenoides rupestris), with bycatches of black scabbardfish ( Aphanopus carbo) and deep-water sharks. On the lower slope orange roughy ( Hoplostethus atlanticus) is an important target species. The major semipelagic trawl fishery is a seasonal fishery on spawning aggregations of blue whiting

  2. Application of Low cost Spirulina growth medium using Deep sea water

    Science.gov (United States)

    Lim, Dae-hack; Kim, Bong-ju; Lee, Sung-jae; Choi, Nag-chul; Park, Cheon-young

    2017-04-01

    Deep-sea water has a relatively constant temperature, abundant nutrients such as calcium, magnesium, nitrates, and phosphates, etc., and stable water quality, even though there might be some variations of their compositions according to collection places. Thus, deep-sea water would be a good substrate for algal growth and biomass production since it contains various nutrients, including a fluorescent red pigment, and β-carotene, etc. The aim of this study was to investigate the economics of a culture condition through comparative analysis to Spirulina platensis growth characteristic under various medium conditions for cost-effective production of Spirulina sp.. Growth experiments were performed with S. platensis under various culture medium conditions (deep sea water + SP medium). Growth tests for culture medium demonstrated that the deep sea water to SP medium ratio of 50:50(W/W) was effective in S. platensis with the maximum biomass (1.35g/L) and minimum medium making cost per production mass (133.28 KRW/g). Parameter estimation of bio-kinetics (maximum growth rate and yield) for low cost medium results showed that the maximum growth rate and yield of N, P, K were obtained under deep sea water to SP medium ratio of 50:50(W/W) of 0.057 1/day and 0.151, 0.076, 0.123, respectively. Acknowledgment : "This research was a part of the project titled 'Development of microalgae culture technique for cosmetic materials based on ocean deep sea water(20160297)', funded by the Ministry of Oceans and Fisheries, Korea."

  3. Deep and shallow water effects on developing preschoolers' aquatic skills.

    Science.gov (United States)

    Costa, Aldo M; Marinho, Daniel A; Rocha, Helena; Silva, António J; Barbosa, Tiago M; Ferreira, Sandra S; Martins, Marta

    2012-05-01

    The aim of the study was to assess deep and shallow water teaching methods in swimming lessons for preschool children and identify variations in the basic aquatic skills acquired. The study sample included 32 swimming instructors (16 from deep water programs and 16 from shallow water programs) and 98 preschool children (50 from deep water swimming pool and 48 from shallow water swimming pool). The children were also studied regarding their previous experience in swimming (6, 12 and 18 months or practice). Chi-Square test and Fisher's exact test were used to compare the teaching methodology. A discriminant analysis was conducted with Λ wilk's method to predict under what conditions students are better or worse (aquatic competence). Results suggest that regardless of the non-significant variations found in teaching methods, the water depth can affect aquatic skill acquisition - shallow water lessons seem to impose greater water competence particularly after 6 months of practice. The discriminant function revealed a significant association between groups and all predictors for 6 months of swimming practice (pdeep and shallow water programs for preschoolers is not significantly different. However, shallow water lessons could be preferable for the development of basic aquatic skills.

  4. Cardiovascular responses during deep water running versus shallow water running in school children

    Directory of Open Access Journals (Sweden)

    Anerao Urja M, Shinde Nisha K, Khatri SM

    2014-03-01

    Full Text Available Overview: As the school going children especially the adolescents’ need workout routine; it is advisable that the routine is imbibed in the school’s class time table. In India as growing number of schools provide swimming as one of the recreational activities; school staff often fails to notice the boredom that is caused by the same activity. Deep as well as shallow water running can be one of the best alternatives to swimming. Hence the present study was conducted to find out the cardiovascular response in these individuals. Methods: This was a Prospective Cross-Sectional Comparative Study done in 72 healthy school going students (males grouped into 2 according to the interventions (Deep water running and Shallow water running. Cardiovascular parameters such as Heart rate (HR, Saturation of oxygen (SpO2, Maximal oxygen consumption (VO2max and Rate of Perceived Exertion (RPE were assessed. Results: Significant improvements in cardiovascular parameters were seen in both the groups i.e. by both the interventions. Conclusion: Deep water running and Shallow water running can be used to improve cardiac function in terms of various outcome measures used in the study.

  5. Deep water characteristics and circulation in the South China Sea

    Science.gov (United States)

    Wang, Aimei; Du, Yan; Peng, Shiqiu; Liu, Kexiu; Huang, Rui Xin

    2018-04-01

    This study investigates the deep circulation in the South China Sea (SCS) using oceanographic observations combined with results from a bottom layer reduced gravity model. The SCS water, 2000 m below the surface, is quite different from that in the adjacent Pacific Ocean, and it is characterized by its low dissolved oxygen (DO), high temperature and low salinity. The horizontal distribution of deep water properties indicates a basin-scale cyclonic circulation driven by the Luzon overflow. The results of the bottom layer reduced gravity model are consistent with the existence of the cyclonic circulation in the deep SCS. The circulation is stronger at the northern/western boundary. After overflowing the sill of the Luzon Strait, the deep water moves broadly southwestward, constrained by the 3500 m isobath. The broadening of the southward flow is induced by the downwelling velocity in the interior of the deep basin. The main deep circulation bifurcates into two branches after the Zhongsha Islands. The southward branch continues flowing along the 3500 m isobath, and the eastward branch forms the sub-basin scale cyclonic circulation around the seamounts in the central deep SCS. The returning flow along the east boundary is fairly weak. The numerical experiments of the bottom layer reduced gravity model reveal the important roles of topography, bottom friction, and the upwelling/downwelling pattern in controlling the spatial structure, particularly the strong, deep western boundary current.

  6. Deep-water northern Gulf of Mexico hydrocarbon plays

    International Nuclear Information System (INIS)

    Peterson, R.H.; Cooke, D.W.

    1995-01-01

    The geologic setting in the deep-water (depths greater than 1,500 feet) Gulf of Mexico is very favorable for the existence of large, commercial hydrocarbon accumulations. These areas have active salt tectonics that create abundant traps, underlying mature Mesozoic source rocks that can be observed expelling oil and gas to the ocean surface, and good quality reservoirs provided by turbidite sand deposits. Despite the limited amount of drilling in the deep-water Gulf of Mexico, 11 deep-water accumulations have been discovered which, when developed, will rank in the top 100 largest fields in the Gulf of Mexico. Proved field discoveries (those with announced development plans) have added over 1 billion barrels of oil equivalent to Gulf of Mexico reserves, and unproved field discoveries may add to additional billion barrels of oil equivalent. The Minerals Management Service, United States Department of the Interior, has completed a gulf-wide review of over 1,086 oil and gas fields and placed every pay sand in each field into a hydrocarbon play (plays are defined by chronostratigraphy, lithostratigraph, structure, and production). Seven productive hydrocarbon plays were identified in the deep-water northern Gulf of Mexico. Regional maps illustrate the productive limits of each play. In addition, field data, dry holes, and wells with sub-economic pay were added to define the facies and structural limits for each play. Areas for exploration potential are identified for each hydrocarbon play. A type field for each play is chosen to demonstrate the play's characteristics

  7. Deep lake water cooling a renewable technology

    Energy Technology Data Exchange (ETDEWEB)

    Eliadis, C.

    2003-06-01

    In the face of increasing electrical demand for air conditioning, the damage to the ozone layer by CFCs used in conventional chillers, and efforts to reduce the greenhouse gases emitted into the atmosphere by coal-fired power generating stations more and more attention is focused on developing alternative strategies for sustainable energy. This article describes one such strategy, namely deep lake water cooling, of which the Enwave project recently completed on the north shore of Lake Ontario is a prime example. The Enwave Deep Lake Water Cooling (DLWC) project is a joint undertaking by Enwave and the City of Toronto. The $180 million project is unique in design and concept, using the coldness of the lake water from the depths of Lake Ontario (not the water itself) to provide environmentally friendly air conditioning to office towers. Concurrently, the system also provides improved quality raw cold water to the city's potable water supply. The plant has a rated capacity of 52,200 tons of refrigeration. The DLWC project is estimated to save 75-90 per cent of the electricity that would have been generated by a coal-fired power station. Enwave, established over 20 years ago, is North America's largest district energy system, delivering steam, hot water and chilled water to buildings from a central plant via an underground piping distribution network. 2 figs.

  8. Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes

    Science.gov (United States)

    Fink, Gabriel; Wessels, Martin; Wüest, Alfred

    2016-09-01

    Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects climate conditions, the effects of climate variability on the water quality of deep lakes is largely unknown. We quantified the effects of climate variability on the potential shifts in the flood regime of the Alpine Rhine, the main catchment of Lake Constance, and determined the intrusion depths of riverine density-driven underflows and the subsequent effects on water exchange rates in the lake. A simplified hydrodynamic underflow model was developed and validated with observed river inflow and underflow events. The model was implemented to estimate underflow statistics for different river inflow scenarios. Using this approach, we integrated present and possible future flood frequencies to underflow occurrences and intrusion depths in Lake Constance. The results indicate that more floods will increase the number of underflows and the intensity of deep-water renewal - and consequently will cause higher deep-water dissolved oxygen concentrations. Vice versa, fewer floods weaken deep-water renewal and lead to lower deep-water dissolved oxygen concentrations. Meanwhile, a change from glacial nival regime (present) to a nival pluvial regime (future) is expected to decrease deep-water renewal. While flood frequencies are not expected to change noticeably for the next decades, it is most likely that increased winter discharge and decreased summer discharge will reduce the number of deep density-driven underflows by 10% and favour shallower riverine interflows in the upper hypolimnion. The renewal in the deepest layers is expected to be reduced by nearly 27%. This study underlines potential consequences of climate change on the occurrence of deep river underflows and water residence times in deep lakes.

  9. Clean subglacial access: prospects for future deep hot-water drilling

    Science.gov (United States)

    Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John

    2016-01-01

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  10. 77 FR 19687 - Notice of Inventory Completion: California Department of Parks and Recreation, Sacramento, CA

    Science.gov (United States)

    2012-04-02

    ...: California Department of Parks and Recreation, Sacramento, CA AGENCY: National Park Service, Interior. ACTION..., 1416 9th Street, Room 902, Sacramento, CA 95814, telephone (916) 653-8893. SUPPLEMENTARY INFORMATION... associated funerary objects were removed from ten sites located in northeastern San Diego County, CA. This...

  11. 77 FR 76451 - Designation for the West Sacramento, CA; Frankfort, IN; and Richmond, VA Areas.

    Science.gov (United States)

    2012-12-28

    ... DEPARTMENT OF AGRICULTURE Grain Inspection, Packers and Stockyards Administration Designation for the West Sacramento, CA; Frankfort, IN; and Richmond, VA Areas. AGENCY: Grain Inspection, Packers and...-Agri West Sacramento, CA(916) 374-9700.. 1/1/2013 12/31/2015 Frankfort Frankfort, IN(765) 258-3624...

  12. Occurrence and transport of diazinon in the Sacramento River, California, and selected tributaries during three winter storms, January-February 2000

    Science.gov (United States)

    Dileanis, Peter D.; Bennett, Kevin P.; Domagalski, Joseph L.

    2002-01-01

    The organophosphate pesticide diazinon is applied as a dormant orchard spray in the Sacramento Valley, California, during the winter when the area receives a majority of its annual rainfall. Dormant spray pesticides, thus, have the potential to wash off the areas of application and migrate with storm runoff to streams in the Sacramento River Basin. Previous monitoring studies have shown that rain and associated runoff from winter storms plays an important role in the transport of diazinon from point of application to the Sacramento River and tributaries. Between January 30 and February 25, 2000, diazinon concentrations in the Sacramento River and selected tributaries were monitored on 5 consecutive days during each of three winter storms that moved through the Sacramento Valley after diazinon had been applied to orchards in the basin. Water samples were collected at 17 sites chosen to represent the effect of upstream land use at local and regional scales. Most samples were analyzed using an enzyme-linked immunosorbent assay (ELISA). Analysis by gas chromatography with electron capture detector and thermionic specific detector (GC/ECD/TSD) and gas chromatography with mass spectrometry (GC/MS) was done on split replicates from over 30 percent of the samples to confirm ELISA results and to provide lower analytical reporting limits at selected sites [30 ng/L (nanogram per liter) for ELISA, 20 ng/L for GC/ECD/TSD, and 2 ng/L for GC/MS]. Concentrations determined from ELISA analyses were consistently higher than concentrations for split samples analyzed by gas chromatography methods. Because of bias between diazinon concentrations using ELISA and gas chromatography methods, results from ELISA analyses were not compared to water-quality criteria. Load calculations using the ELISA analyses are similarly biased. Because the bias was consistent, however, the ELISA data is useful in site-to-site comparisons used to rank the relative levels and contributions of diazinon from

  13. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Directory of Open Access Journals (Sweden)

    Christian Tamburini

    Full Text Available The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  14. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Science.gov (United States)

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  15. 77 FR 15389 - Notice of Inventory Completion: California Department of Parks and Recreation, Sacramento, CA

    Science.gov (United States)

    2012-03-15

    ...: California Department of Parks and Recreation, Sacramento, CA AGENCY: National Park Service, Interior. ACTION..., 1416 9th Street, Room 902, Sacramento, CA 95814, telephone (916) 653-8893. SUPPLEMENTARY INFORMATION... associated funerary objects were removed from the Cole Creek site (CA-LAK-425), Lake County, CA. This notice...

  16. A new data transmission system for deep water applications

    International Nuclear Information System (INIS)

    Brown, Gerald K.

    2000-01-01

    A novel data transmission system is now available. Conventional data transmission methods include systems that require satellites, hard wires, fiber optics and other methods that do not lend themselves to buried, remote, or deep water applications. The Data Transmission System (DTS) induces a signal into a structure such as the transmission line and retrieving the signal at a distant point. In deep water applications the power required comes from an anode array that generates its own power. In addition to deep water applications, the DTS can be used in onshore, drilling, and downhole applications. With repeater stations, most lengths of gathering and transmission lines can be used. Therefore data from control valves, strain gauges, corrosion monitoring, sand monitoring, valve position and other process variables can all be transmitted. Comparisons are made between the different data transmission systems showing the advantages and disadvantages of each type with comparative costs showing the advantages of the new DTS system. (author)

  17. 77 FR 47789 - Drawbridge Operation Regulation; Sacramento River, CA

    Science.gov (United States)

    2012-08-10

    ...-Club Yacht Association, the Recreational Boaters of California, the Capital City Yacht Club, the Sacramento Yacht Club, River View Yacht Club and Hornblower Cruises. D. Discussion of Proposed Rule Under the...

  18. Determining Water Quality Trends in the Sacramento-San Joaquin Delta Watershed in the Face of Climate Change

    Science.gov (United States)

    Kynett, K.; Azimi-Gaylon, S.; Doidic, C.

    2014-12-01

    The Sacramento-San Joaquin Delta and Suisun Marsh (Delta) is the largest estuary on the West Coast of the Americas and is a resource of local, State, and national significance. The Delta is simultaneously the most critical component of California's water supply, a primary focus of the state's ecological conservation measures, and a vital resource deeply imperiled by degraded water quality. Delta waterbodies are identified as impaired by salinity, excess nutrients, low dissolved oxygen, pathogens, pesticides, heavy metals, and other contaminants. Climate change is expected to exacerbate the impacts of existing stressors in the Delta and magnify the challenges of managing this natural resource. A clear understanding of the current state of the watershed is needed to better inform scientists, decision makers, and the public about potential impacts from climate change. The Delta Watershed Initiative Network (Delta WIN) leverages the ecological benefits of healthy watersheds, and enhances, expands and creates opportunities for greater watershed health by coordinating with agencies, established programs, and local organizations. At this critical junction, Delta WIN is coordinating data integration and analysis to develop better understanding of the existing and emerging water quality concerns. As first steps, Delta WIN is integrating existing water quality data, analyzing trends, and monitoring to fill data gaps and to evaluate indicators of climate change impacts. Available data will be used for trend analysis; Delta WIN will continue to monitor where data is incomplete and new questions arise. Understanding how climate change conditions may affect water quality will be used to inform efforts to build resilience and maintain water quality levels which sustain aquatic life and human needs. Assessments of historical and new data will aid in recognition of potential climate change impacts and in initiating implementation of best management practices in collaboration with

  19. 77 FR 19690 - Notice of Inventory Completion: California Department of Parks and Recreation, Sacramento, CA

    Science.gov (United States)

    2012-04-02

    ...: California Department of Parks and Recreation, Sacramento, CA AGENCY: National Park Service, Interior. ACTION... Department of Parks and Recreation, 1416 9th Street, Room 902, Sacramento, CA 95814, telephone (916) 653-8893... located in San Diego County, CA. This notice is published as part of the National Park Service's...

  20. 77 FR 19689 - Notice of Inventory Completion: California Department of Parks and Recreation, Sacramento, CA

    Science.gov (United States)

    2012-04-02

    ...: California Department of Parks and Recreation, Sacramento, CA AGENCY: National Park Service, Interior. ACTION... Department of Parks and Recreation, 1416 9th Street, Room 902, Sacramento, CA 95814, telephone (916) 653-8893... located in San Diego County, CA. This notice is published as part of the National Park Service's...

  1. Angola. Petroleum discovery by Elf on the block number 17 in deep water

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This article describes the petroleum discovery in deep water in Angola. The drilling was executed by 1365 meters deep and gave a petroleum of good quality. The Elf company emphasizes that it is its third discovery in deep water in the Guinea gulf after Nkossa and Moho in Congo. (N.C.)

  2. Sense Things in the Big Deep Water Bring the Big Deep Water to Computers so People can understand the Deep Water all the Time without getting wet

    Science.gov (United States)

    Pelz, M.; Heesemann, M.; Scherwath, M.; Owens, D.; Hoeberechts, M.; Moran, K.

    2015-12-01

    Senses help us learn stuff about the world. We put sense things in, over, and under the water to help people understand water, ice, rocks, life and changes over time out there in the big water. Sense things are like our eyes and ears. We can use them to look up and down, right and left all of the time. We can also use them on top of or near the water to see wind and waves. As the water gets deep, we can use our sense things to see many a layer of different water that make up the big water. On the big water we watch ice grow and then go away again. We think our sense things will help us know if this is different from normal, because it could be bad for people soon if it is not normal. Our sense things let us hear big water animals talking low (but sometimes high). We can also see animals that live at the bottom of the big water and we take lots of pictures of them. Lots of the animals we see are soft and small or hard and small, but sometimes the really big ones are seen too. We also use our sense things on the bottom and sometimes feel the ground shaking. Sometimes, we get little pockets of bad smelling air going up, too. In other areas of the bottom, we feel hot hot water coming out of the rock making new rocks and we watch some animals even make houses and food out of the hot hot water that turns to rock as it cools. To take care of the sense things we use and control water cars and smaller water cars that can dive deep in the water away from the bigger water car. We like to put new things in the water and take things out of the water that need to be fixed at least once a year. Sense things are very cool because you can use the sense things with your computer too. We share everything for free on our computers, which your computer talks to and gets pictures and sounds for you. Sharing the facts from the sense things is the best part about having the sense things because we can get many new ideas about understanding the big water from anyone with a computer!

  3. Morphological divergence between three Arctic charr morphs - the significance of the deep-water environment.

    Science.gov (United States)

    Skoglund, Sigrid; Siwertsson, Anna; Amundsen, Per-Arne; Knudsen, Rune

    2015-08-01

    Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow-, deep-water resource axis in a subarctic postglacial lake (Norway). The two deep-water (profundal) spawning morphs, a benthivore (PB-morph) and a piscivore (PP-morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep-water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small-sized PB-morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep-water sediments. The PP-morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO-morph) predominantly utilizes the shallow benthic-pelagic habitat and food resources. Compared to the deep-water morphs, the LO-morph had smaller head relative to body size. The LO-morph exhibited traits typical for both shallow-water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep-water habitat for the PB- and PP-morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep-water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep-water piscivore morph has to our knowledge not been described elsewhere.

  4. 75 FR 20598 - Public Buildings Service; Prospect Island, Sacramento Delta, Solano County, CA; Transfer of Property

    Science.gov (United States)

    2010-04-20

    ... GENERAL SERVICES ADMINISTRATION [Wildlife Order 188; 9-I-CA-1674] Public Buildings Service; Prospect Island, Sacramento Delta, Solano County, CA; Transfer of Property Pursuant to section 2 of Public... General Services Administration transferred 1253 acres of land identified as Prospect Island, Sacramento...

  5. Installation of deep water sub-sea equipment

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, Jack; Demian, Nabil [SBM-IMODCO Inc., Houston, TX (UNited States)

    2004-07-01

    Offshore oil developments are being planned in water depths exceeding 2000 m. Lowering and positioning large, heavy sub sea hardware, using conventional methods, presents new technical challenges in these ultra deep waters. In 3000 m a safe lift using conventional steel cables will require more capacity to support the cable self weight than the static payload. Adding dynamic loads caused by the motions of the surface vessel can quickly cause the safe capacity of the wire to be exceeded. Synthetic ropes now exist to greatly reduce the lowering line weight. The lower stiffness of these synthetic ropes aggravate the dynamic line tensions due to vessel motions and relatively little is known about the interaction of these ropes on the winches and sheaves required for pay-out and haul-in of these lines under dynamic load. Usage of conventional winches would damage the synthetic rope and risk the hardware being deployed. Reliable and economic installation systems that can operate from existing installation vessels are considered vital for ultra deep-water oil development. The paper describes a Deep Water Sub-Sea Hardware Deployment system consisting of a buoy with variable, pressure-balanced buoyancy, which is used to offset most of the payload weight as it is lowered. The buoyant capacity is controlled by air pumped into the tank from the surface vessel through a reinforced hose. The buoy and payload motion are isolated from the deployment line surface dynamics using a simple passive heave compensator mounted between the buoy and the bottom of the deployment rope. The system components, functionality and dynamic behavior are presented in the paper. (author)

  6. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand

    Science.gov (United States)

    Radloff, K. A.; Zheng, Y.; Michael, H. A.; Stute, M.; Bostick, B. C.; Mihajlov, I.; Bounds, M.; Huq, M. R.; Choudhury, I.; Rahman, M. W.; Schlosser, P.; Ahmed, K. M.; van Geen, A.

    2011-11-01

    The consumption of shallow groundwater with elevated concentrations of arsenic is causing widespread disease in many parts of South and Southeast Asia. In the Bengal Basin, a growing reliance on groundwater sourced below 150-m depth--where arsenic concentrations tend to be lower--has reduced exposure. Groundwater flow simulations have suggested that these deep waters are at risk of contamination due to replenishment with high-arsenic groundwater from above, even when deep water pumping is restricted to domestic use. However, these simulations have neglected the influence of sediment adsorption on arsenic migration. Here, we inject arsenic-bearing groundwater into a deep aquifer zone in Bangladesh, and monitor the reduction in arsenic levels over time following stepwise withdrawal of the water. Arsenic concentrations in the injected water declined by 70% after 24h in the deep aquifer zone, owing to adsorption on sediments; concentrations of a co-injected inert tracer remain unchanged. We incorporate the experimentally determined adsorption properties of sands in the deep aquifer zone into a groundwater flow and transport model covering the Bengal Basin. Simulations using present and future scenarios of water-use suggest that arsenic adsorption significantly retards transport, thereby extending the area over which deep groundwater can be used with low risk of arsenic contamination. Risks are considerably lower when deep water is pumped for domestic use alone. Some areas remain vulnerable to arsenic intrusion, however, and we suggest that these be prioritized for monitoring.

  7. Persistence profile of polyaromatic hydrocarbons in shallow and deep Gulf waters and sediments: Effect of water temperature and sediment–water partitioning characteristics

    International Nuclear Information System (INIS)

    Tansel, B.; Fuentes, C.; Sanchez, M.; Predoi, K.; Acevedo, M.

    2011-01-01

    Highlights: ► The half-lives of PAHs in the deep waters (over 1000 m) are about twice longer than the shallow areas (100–150 m). ► In the water column, anthracene levels can decrease by 50% within 1–2 days. ► The half-lives of the PAHs in the sediments are significantly longer than those in the water column. ► The half-life of pyrene in the shallow and deep sediments is 9 and 16 years, respectively. - Abstract: Persistence profiles of selected polyaromatic hydrocarbons (PAHs) were analyzed depending on temperature variations in the water column and water–sediment interactions in the Gulf of Mexico. The PAHs studied include anthracene, fluoranthene, pyrene, and chrysene. The half-lives of PAHs in the deep waters (over 1000 m) are about twice as long as those in the shallow areas (100–150 m), and almost 2.5 times as long as those in the top layer (0–10 m) of the water column. The half-lives of the PAHs in the sediments are significantly longer. Among the PAHs studied, chrysene is the most persistent in the water column, and pyrene is the most persistent in the sediments. The half-life of chrysene in the shallow and deep waters is over 2.5 and about 5 years, respectively. For pyrene, the half-life in the shallow and deep sediments is about 9 and 16 years, respectively.

  8. Deep Water Horizon (HB1006, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monitor and measure the biological, chemical, and physical environment in the area of the oil spill from the deep water horizon oil rig in the Gulf of Mexico. A wide...

  9. Pathways of upwelling deep waters to the surface of the Southern Ocean

    Science.gov (United States)

    Tamsitt, Veronica; Drake, Henri; Morrison, Adele; Talley, Lynne; Dufour, Carolina; Gray, Alison; Griffies, Stephen; Mazloff, Matthew; Sarmiento, Jorge; Wang, Jinbo; Weijer, Wilbert

    2017-04-01

    Upwelling of Atlantic, Indian and Pacific deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of anthropogenic carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. Here we go beyond the two-dimensional view of Southern Ocean upwelling, to show detailed Southern Ocean upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution ocean and climate models. The northern deep waters enter the Antarctic Circumpolar Current (ACC) via narrow southward currents along the boundaries of the three ocean basins, before spiraling southeastward and upward through the ACC. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the southern ACC boundary, with a spatially nonuniform distribution, regionalizing warm water supply to Antarctic ice shelves and the delivery of nutrient and carbon-rich water to the sea surface. The timescale for half of the deep water to upwell from 30°S to the mixed layer is on the order of 60-90 years, which has important implications for the timescale for signals to propagate through the deep ocean. In addition, we quantify the diabatic transformation along particle trajectories, to identify where diabatic processes are important along the upwelling pathways.

  10. Erratum dated 2014 June 25: Fate and Transport of Three Pharmaceuticals in the Sacramento-San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    Minta M. Schaefer

    2013-06-01

    Full Text Available Pharmaceuticals and personal care products (PPCPs are found in surface waters worldwide. Wastewater treatment plant effluent is a major source of these contaminants. The Sacramento–San Joaquin Delta (Delta is a unique aquatic ecosystem, a source of drinking water for over 25 million Californians, and a primary source of water for Central Valley agriculture. The sharp decline of four pelagic fish species in the Delta in the last decade is just one of several indicators that the ecosystem is severely impaired. Several wastewater treatment plants (WWTPs discharge into the Delta, directly or through tributaries. The presence of PPCPs in the Delta has received very little attention relative to the immense effort underway to rehabilitate the ecosystem. This study determined concentrations of PPCPs in the Sacramento River in the vicinity of the Sacramento Regional Wastewater Treatment Plant using passive sampler monitoring. These data were used to estimate loads of three of the detected pharmaceuticals (carbamazepine, fluoxetine, and trimethoprim from nine other WWTPs that discharge to the Delta. The 2-D, finite element, Resource Management Associates (RMA Delta Model was then applied to determine the distribution that might result from these discharges. The model was run for the 2006, 2007, and 2009 water years. Results indicate that it is feasible that WWTP discharges could result in chronic presence of these pharmaceuticals at low ng L-1 levels at all 45 model output locations and, therefore, aquatic organisms within the Delta may be continually exposed to these contaminants.

  11. Deep Water Coral (HB1402, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The cruise will survey and collect samples of deep-sea corals and related marine life in the canyons in the northern Gulf of Maine in U.S. and Canadian waters. The...

  12. Economic considerations for deep water Gulf of Mexico development

    International Nuclear Information System (INIS)

    Brown, R.; O'Sullivan, J.; Bayazitoglu, Y.O.

    1994-01-01

    This paper examines the economic drivers behind deep water development in the Gulf of Mexico. Capital costs are also examined versus water depth and required system. Cost categories are compared. The cost analysis was carried out by using the SEAPLAN computer program. The program is an expert system that identifies, conceptually defines, and economically compares technically feasible approaches for developing offshore oil and gas fields. The program's sizing logic and cost data base create physical and cost descriptions of systems representative of developments being planned in the deep water GOM. The examination was done separately for oil and gas developments. The material presented here is for only oil, it serves as a useful framework for viewing development economics and technology trends

  13. Environmental Scan of the Greater Sacramento Area, 1999.

    Science.gov (United States)

    Los Rios Community Coll. District, Sacramento, CA. Office of Planning and Research.

    This report provides a comprehensive look at the external environment impacting Los Rios Community College District (LRCCD) (California). It summarizes the social, economic, and political changes at the state and national levels, in general, and in the Sacramento-Yolo Consolidated Metropolitan Statistical Area (CMSA) served by LRCCD, more…

  14. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water.

    Science.gov (United States)

    Frank, Alexander H; Garcia, Juan A L; Herndl, Gerhard J; Reinthaler, Thomas

    2016-06-01

    To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep-water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Subsea innovative boosting technologies on deep water scenarios -- Impacts and demands

    International Nuclear Information System (INIS)

    Caetano, E.F.; Mendonca, J.E.; Pagot, P.R.; Cotrim, M.L.; Camargo, R.M.T.; Assayag, M.I.

    1995-01-01

    This paper presents the importance of deep water scenario for Brazil, the PETROBRAS Deep and Ultra-Deep Water R and D Program (PROCAP-2000) and the candidate fields for the deployment of subsea innovative boosting technologies (ESPS -- electrical submersible pump in subsea wells, SSS -- subsea separation systems and SBMS -- subsea multiphase flow pumping system) as well as the problems associated with the flow assurance in such conditions. The impact of those innovative systems, their technological stage and remaining demands to make them available for deployment in offshore subsea areas, mainly in giant deepwater fields, are discussed and predicted

  16. Recent research on the hydrodynamics of the Sacramento - San Joaquin River Delta and north San Francisco Bay

    Science.gov (United States)

    Burau, J.R.; Monismith, S.G.; Stacey, M.T.; Oltmann, R.N.; Lacy, J.R.; Schoellhamer, D.H.

    1999-01-01

    This article presents an overview of recent findings from hydrodynamic research on circulation and mixing in the Sacramento-San Joaquin Delta (Delta) (Figure 1) and North San Francisco Bay (North Bay) (Figure 2). For the purposes of this article, North Bay includes San Pablo Bay, Carquinez Strait, and Suisun Bay. The findings presented are those gained from field studies carried out by the U.S. Geological Survey (USGS), as part of the Interagency Ecological Program (IEP), and Stanford University beginning about 1993. The premise behind these studies was that a basic understanding of circulation and mixing patterns in the Bay and Delta is an essential part of understanding how biota and water quality are affected by natural hydrologic variability, water appropriation, and development activities. Data collected for the field studies described in this article have significantly improved our understanding of Bay and Delta hydrodynamics. Measured flows ,in the Delta have provided valuable information on how water moves through the Delta's network of channels and how export pumping affects flows. Studies of the shallows and shallow-channel exchange processes conducted in Honker Bay have shown that the water residence time in Honker Bay is much shorter than previously reported (on the order of hours to several tidal cycles instead ofweeks). Suisun Bay studies have provided data on hydrodynamic transport and accumulation mechanisms that operate primarily in the channels. The Suisun Bay studies have caused us to revise our understanding of residual circulation in the channels of North Bay and of "entrapment" mechanisms in the low salinity zone. Finally, detailed tidal and residual (tidally averaged) time-scale studies of the mechanisms that control gravitational circulation in the estuary show that density-driven transport in the channels is governed by turbulence time-scale (seconds) interactions between the mean flow and stratification. The hydrodynamic research

  17. Water Quality Assessment for Deep-water Channel area of Guangzhou Port based on the Comprehensive Water Quality Identification Index Method

    Science.gov (United States)

    Chen, Yi

    2018-03-01

    The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.

  18. Environmental isotopes as early warning tools to control the abstraction of deep ground waters

    International Nuclear Information System (INIS)

    Seiler, K.P.; Maloszewski, P.; Weise, S.M.; Loosli, H.H.

    1999-01-01

    Early warning system for the exploitation of ground water from the passive zone can not be based on the measurement of pollutant concentrations itself. The environmental tracer data are suggested to be used as indicators for changes in conservative mass transport processes from shallow to deep or very deep to deep ground waters

  19. Selected trace elements in the Sacramento River, California: Occurrence and distribution

    Science.gov (United States)

    Taylor, Howard E.; Antweiler, Ronald C.; Roth, David A.; Dileanis, Peter D.; Alpers, Charles N.

    2012-01-01

    The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements—including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium—were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going

  20. Estimation of reservoir inflow in data scarce region by using Sacramento rainfall runoff model - A case study for Sittaung River Basin, Myanmar

    Science.gov (United States)

    Myo Lin, Nay; Rutten, Martine

    2017-04-01

    The Sittaung River is one of four major rivers in Myanmar. This river basin is developing fast and facing problems with flood, sedimentation, river bank erosion and salt intrusion. At present, more than 20 numbers of reservoirs have already been constructed for multiple purposes such as irrigation, domestic water supply, hydro-power generation, and flood control. The rainfall runoff models are required for the operational management of this reservoir system. In this study, the river basin is divided into (64) sub-catchments and the Sacramento Soil Moisture Accounting (SAC-SMA) models are developed by using satellite rainfall and Geographic Information System (GIS) data. The SAC-SMA model has sixteen calibration parameters, and also uses a unit hydrograph for surface flow routing. The Sobek software package is used for SAC-SMA modelling and simulation of river system. The models are calibrated and tested by using observed discharge and water level data. The statistical results show that the model is applicable to use for data scarce region. Keywords: Sacramento, Sobek, rainfall runoff, reservoir

  1. Cost reduction in deep water production systems

    International Nuclear Information System (INIS)

    Beltrao, R.L.C.

    1995-01-01

    This paper describes a cost reduction program that Petrobras has conceived for its deep water field. Beginning with the Floating Production Unit, a new concept of FPSO was established where a simple system, designed to long term testing, can be upgraded, on the location, to be the definitive production unit. Regarding to the subsea system, the following projects will be considered. (1) Subsea Manifold: There are two 8-well-diverless manifolds designed for 1,000 meters presently under construction and after a value analysis, a new design was achieved for the next generation. Both projects will be discussed and a cost evaluation will also be provided. (2) Subsea Pipelines: Petrobras has just started a large program aiming to reduce cost on this important item. There are several projects such as hybrid (flexible and rigid) pipes for large diameter in deep water, alternatives laying methods, rigid riser on FPS, new material...etc. The authors intend to provide an overview of each project

  2. Deep water challenges for drilling rig design

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M [Transocean Sedco Forex, Houston, TX (United States)

    2001-07-01

    Drilling rigs designed for deep water must meet specific design considerations for harsh environments. The early lessons for rig design came from experiences in the North Sea. Rig efficiency and safety considerations must include structural integrity, isolated/redundant ballast controls, triple redundant DP systems, enclosed heated work spaces, and automated equipment such as bridge cranes, pipe handling gear, offline capabilities, subsea tree handling, and computerized drill floors. All components must be designed to harmonize man and machine. Some challenges which are unique to Eastern Canada include frequent storms and fog, cold temperature, icebergs, rig ice, and difficult logistics. This power point presentation described station keeping and mooring issues in terms of dynamic positioning issues. The environmental influence on riser management during forced disconnects was also described. Design issues for connected deep water risers must insure elastic stability, and control deflected shape. The design must also keep stresses within acceptable limits. Codes and standards for stress limits, flex joints and tension were also presented. tabs., figs.

  3. Application of solar energy to the supply of industrial process hot water: preliminary design and performance report. Volume I. Technical report. Aerotherm report TR-76-219. [For can washing at Campbell Soup Plant in Sacramento

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-10-14

    The design and performance of a solar hot water system for can washing at the Campbell Soup Plant in Sacramento, California, are presented. The collector field is located on the roof of the finished products warehouse of the Campbell Soup Sacramento plant. Water is supplied from a 3.8 cm (1/sup 1///sub 2/ in.) supply line which is located directly below an existing roof access hatch. A supply pipe will be brought up through that hatch. The water flow will then be split into two manifold lines which supply the dual rows of flat plate collectors. The preheated water from the flat plates is then passed into six sets of parallel connected concentrators. Each set consist of eight 1.83 x 3.05 m (6 x 10 foot) modules connected in series. The water from these units is gathered in a 3.8 cm (1/sup 1///sub 2/ in.) insulated pipe which transports it to the storage tank. This pipe will be attached to an existing pipe run until it reaches the can washing building. From there the pipe will follow the can washing building around to the storage tank. The storage tank is a 75,200 1 (20,000 gal) steel tank which is coated internally with a USDA approved phenolic liner. The outside of the tank is insulated. A 2.2 kw (3 hp) motor is used to pump the stored water for the tank into the can washing line. Detail drawings and descriptions of the collector field, installation, piping, controls, data acquisition equipment, and roof structure are included. Furthermore, a program schedule with equipment and manpower costs for successfully completing Phase II of this contract is included. Also included is an organization chart of the Phase II program personnel. (WHK)

  4. 77 FR 3664 - Drawbridge Operation Regulation; Sacramento River, CA

    Science.gov (United States)

    2012-01-25

    ... performed on this proposal to various waterway user organizations including the Pacific Inter-Club Yacht Association, the Recreational Boaters of California, the Capital City Yacht Club, the Sacramento Yacht Club, River View Yacht Club and Hornblower Cruises. The Coast Guard policy regarding the promulgation of...

  5. Diverless pipeline repair system for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Carlo M. [Eni Gas and Power, Milan (Italy); Fabbri, Sergio; Bachetta, Giuseppe [Saipem/SES, Venice (Italy)

    2009-07-01

    SiRCoS (Sistema Riparazione Condotte Sottomarine) is a diverless pipeline repair system composed of a suite of tools to perform a reliable subsea pipeline repair intervention in deep and ultra deep water which has been on the ground of the long lasting experience of Eni and Saipem in designing, laying and operating deep water pipelines. The key element of SiRCoS is a Connection System comprising two end connectors and a repair spool piece to replace a damaged pipeline section. A Repair Clamp with elastomeric seals is also available for pipe local damages. The Connection System is based on pipe cold forging process, consisting in swaging the pipe inside connectors with suitable profile, by using high pressure seawater. Three swaging operations have to be performed to replace the damaged pipe length. This technology has been developed through extensive theoretical work and laboratory testing, ending in a Type Approval by DNV over pipe sizes ranging from 20 inches to 48 inches OD. A complete SiRCoS system has been realised for the Green Stream pipeline, thoroughly tested in workshop as well as in shallow water and is now ready, in the event of an emergency situation.The key functional requirements for the system are: diverless repair intervention and fully piggability after repair. Eni owns this technology and is now available to other operators under Repair Club arrangement providing stand-by repair services carried out by Saipem Energy Services. The paper gives a description of the main features of the Repair System as well as an insight into the technological developments on pipe cold forging reliability and long term duration evaluation. (author)

  6. Potential Osteoporosis Recovery by Deep Sea Water through Bone Regeneration in SAMP8 Mice

    Directory of Open Access Journals (Sweden)

    Hen-Yu Liu

    2013-01-01

    Full Text Available The aim of this study is to examine the therapeutic potential of deep sea water (DSW on osteoporosis. Previously, we have established the ovariectomized senescence-accelerated mice (OVX-SAMP8 and demonstrated strong recovery of osteoporosis by stem cell and platelet-rich plasma (PRP. Deep sea water at hardness (HD 1000 showed significant increase in proliferation of osteoblastic cell (MC3T3 by MTT assay. For in vivo animal study, bone mineral density (BMD was strongly enhanced followed by the significantly increased trabecular numbers through micro-CT examination after a 4-month deep sea water treatment, and biochemistry analysis showed that serum alkaline phosphatase (ALP activity was decreased. For stage-specific osteogenesis, bone marrow-derived stromal cells (BMSCs were harvested and examined. Deep sea water-treated BMSCs showed stronger osteogenic differentiation such as BMP2, RUNX2, OPN, and OCN, and enhanced colony forming abilities, compared to the control group. Interestingly, most untreated OVX-SAMP8 mice died around 10 months; however, approximately 57% of DSW-treated groups lived up to 16.6 months, a life expectancy similar to the previously reported life expectancy for SAMR1 24 months. The results demonstrated the regenerative potentials of deep sea water on osteogenesis, showing that deep sea water could potentially be applied in osteoporosis therapy as a complementary and alternative medicine (CAM.

  7. Spiraling pathways of global deep waters to the surface of the Southern Ocean.

    Science.gov (United States)

    Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert

    2017-08-02

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.

  8. Effects of Bank Revetment on Sacramento River, California

    Science.gov (United States)

    Michael D. Harvey; Chester C. Watson

    1989-01-01

    Twelve low radius of curvature bends, half of which were rivetted, were studied in the Butte Basin reach of Sacramento River, California, to determine whether bank revetment deleteriously affected salmonid habitat. At low discharge (128.6 cubic meters/s) it was demonstrated that revetment does not cause channel narrowing or deepening, nor does it prevent re-entrainment...

  9. Diel and seasonal movements by adult Sacramento pikeminnow (Ptychocheilus grandis) in the Eel River, northwestern California

    Science.gov (United States)

    Bret C. Harvey; Rodney J. Nakamoto

    1999-01-01

    Abstract - In late summer and fall, radio-tagged adult Sacramento pike-minnow (Ptychocheilus grandis) at three sites in the Eel River of northwestern California moved more at night than during the day. Fish moved up to 535 m at night and returned to their original positions the following morning. Adult Sacramento pikeminnow at all sites occupied only pools during the...

  10. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  11. Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: Sacramento-San Joaquin River Basin, California

    Science.gov (United States)

    Sickman, James O.; DiGiorgio, Carol L.; Davisson, M. Lee; Lucero, Delores M.; Bergamaschi, Brian A.

    2010-01-01

    We used radiocarbon measurements of dissolved organic carbon (DOC) to resolve sources of riverine carbon within agriculturally dominated landscapes in California. During 2003 and 2004, average Δ14C for DOC was −254‰ in agricultural drains in the Sacramento–San Joaquin Delta, −218‰ in the San Joaquin River, −175‰ in the California State Water Project and −152‰ in the Sacramento River. The age of bulk DOC transiting the rivers of California’s Central Valley is the oldest reported for large rivers and suggests wide-spread loss of soil organic matter caused by agriculture and urbanization. Using DAX 8 adsorbent, we isolated and measured 14C concentrations in hydrophobic acid fractions (HPOA); river samples showed evidence of bomb-pulse carbon with average Δ14C of 91 and 76‰ for the San Joaquin and Sacramento Rivers, respectively, with older HPOA, −204‰, observed in agricultural drains. An operationally defined non-HPOA fraction of DOC was observed in the San Joaquin River with seasonally computed Δ14C values of between −275 and −687‰; the source of this aged material was hypothesized to be physically protected organic-matter in high clay-content soils and agrochemicals (i.e., radiocarbon-dead material) applied to farmlands. Mixing models suggest that the Sacramento River contributes about 50% of the DOC load in the California State Water Project, and agricultural drains contribute approximately one-third of the load. In contrast to studies showing stabilization of soil carbon pools within one or two decades following land conversion, sustained loss of soil organic matter, occurring many decades after the initial agricultural-land conversion, was observed in California’s Central Valley.

  12. Equal Educational Opportunity in the Sacramento City Unified School District; A Report to the Board of Education, The Sacramento City Unified School District.

    Science.gov (United States)

    Sacramento City Unified School District, CA. Citizens Advisory Committee on Equal Educational Opportunity.

    A 1965 report presents the findings of a citizens committee on racial tension and school segregation in Sacramento, California. Discussed are defacto segregation and its causes and effects, equal educational opportunity, the neighborhood school concept, and intergroup relations. A series of recommendations for improvement are included. (NH)

  13. A New Calculation Method of Dynamic Kill Fluid Density Variation during Deep Water Drilling

    Directory of Open Access Journals (Sweden)

    Honghai Fan

    2017-01-01

    Full Text Available There are plenty of uncertainties and enormous challenges in deep water drilling due to complicated shallow flow and deep strata of high temperature and pressure. This paper investigates density of dynamic kill fluid and optimum density during the kill operation process in which dynamic kill process can be divided into two stages, that is, dynamic stable stage and static stable stage. The dynamic kill fluid consists of a single liquid phase and different solid phases. In addition, liquid phase is a mixture of water and oil. Therefore, a new method in calculating the temperature and pressure field of deep water wellbore is proposed. The paper calculates the changing trend of kill fluid density under different temperature and pressure by means of superposition method, nonlinear regression, and segment processing technique. By employing the improved model of kill fluid density, deep water kill operation in a well is investigated. By comparison, the calculated density results are in line with the field data. The model proposed in this paper proves to be satisfactory in optimizing dynamic kill operations to ensure the safety in deep water.

  14. The circulation of deep water in the Tasman and Coral seas

    International Nuclear Information System (INIS)

    Harries, J.R.

    1976-07-01

    The physical oceanography of the Tasman and Coral Seas is reviewed with an emphasis on the deep currents. There are many uncertainties in the deep circulation pattern. The available data are used to develop an idealised circulation to estimate the likely path taken by water flowing from a depth of 5000 m in the Tasman Sea. The model suggests that the water would finally reach the surface layers south of the Antarctic Convergence with a median delay of 600 years. (author)

  15. Evaluating the Aquatic Habitat Potential of Flooded Polders in the Sacramento-San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    John R. Durand

    2017-12-01

    Full Text Available https://doi.org/10.15447/sfews.2017v15iss4art4Large tracts of land in the Sacramento-San Joaquin Delta are subsided due to agricultural practices, creating polders up to 10 m below sea level that are vulnerable to flooding. As protective dikes breach, these become shallow, open water habitats that will not resemble any historical state. I investigated physical and biotic drivers of novel flooded polder habitat, using a Native Species Benefit Index (NSBI to predict the nature of future Delta ecosystems. Results suggest that flooded polders in the north Delta will have the ecology and fish community composition of a tidal river plain, those in the Cache-Lindsey Complex will have that of a tidal backwater, those in the confluence of the Sacramento and San Joaquin Rivers a brackish estuary, and those in the south Delta a fresh water lake. Flooded east-side Delta polders will likely be a transitional zone between south Delta lake-like ecosystems and north Delta tidal river plains. I compared each regional zone with the limited available literature and data on local fish assemblies to find support for NSBI predictions. Because flood probabilities and repair prioritization analyses suggest that polders in the south Delta are most likely to flood and be abandoned, without extensive intervention, much of the Delta will become a freshwater lake ecosystem, dominated by alien species. Proactive management of flooded tracts will nearly always hedge risks, save money and offer more functional habitats in the future; however, without proper immediate incentives, it will be difficult to encourage strong management practices.

  16. Deep waters : the Ottawa River and Canada's nuclear adventure

    International Nuclear Information System (INIS)

    Krenz, F.H.K.

    2004-01-01

    Deep Waters is an intimate account of the principal events and personalities involved in the successful development of the Canadian nuclear power system (CANDU), an achievement that is arguably one of Canada's greatest scientific and technical successes of the twentieth century. The author tells the stories of the people involved and the problems they faced and overcame and also relates the history of the development of the town of Deep River, built exclusively for the scientists and employees of the Chalk River Project and describes the impact of the Project on the traditional communities of the Ottawa Valley. Public understanding of nuclear power has remained confused, yet decisions about whether and how to use it are of vital importance to Canadians today - and will increase in importance as we seek to maintain our standard of living without doing irreparable damage to the environment around us. Deep Waters examines the issues involved in the use of nuclear power without over-emphasizing its positive aspects or avoiding its negative aspects.

  17. Bermuda Deep Water Caves 2011: Dives of Discovery between 20110607 and 20110627

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the three week NOAA Ocean Exploration project, Bermuda Deep Water Caves 2011: Dives of Discovery, our four member deep team, aided by numerous assistants,...

  18. Isotope analysis of water trapped in fluid inclusions in deep sea corals

    Science.gov (United States)

    Vonhof, Hubert; Reijmer, John; Feenstra, Eline; Mienis, Furu

    2015-04-01

    Extant Lophelia pertusa deep sea coral specimens from the Loachev mound region in the North Atlantic Ocean contain water filled fluid inclusions in their skeleton. This fluid inclusion water was extracted with a crushing device, and its hydrogen and oxygen isotope ratios analysed. The resulting data span a wide range of isotope values which are remarkably different from the seawater isotope composition of the sites studied. Comparison with food source isotope signatures suggests that coral inclusion water contains a high, but variable proportion of metabolic water. The isotope composition of the inclusion water appears to vary with the position on the deep see coral reef, and shows a correlation with the stable isotope composition of the coral aragonite. This correlation seems to suggest that growth rate and other ecological factors play an important role in determining the isotope composition of fluids trapped in the coral skeleton, which can potentially be developed as a proxy for non-equilibrium isotope fractionation observed in the aragonite skeleton of many of the common deep sea coral species.

  19. Control of fjordic deep water renewal by runoff modification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, A; Edelsten, D J

    1976-09-01

    Loch Etive is a Scottish fjord subject to fresh-water run off which renders it markedly brackish. This paper considers the frequency of deep water renewal, developing a model which relates the timing of all such renewals to runoff records. Using the model one can examine the effect of changes caused by interference with the natural runoff pattern.

  20. Deep water dissolution in Marine Isotope Stage 3 from the northern South China Sea

    Science.gov (United States)

    Huang, B.

    2015-12-01

    The production, transport, deposition, and dissolution of carbonate profoundly implicate the global carbon cycle affect the inventory and distribution of dissolved organic carbon (DIC) and alkalinity (ALK), which drive atmospheric CO2 change on glacial-interglacial timescale. the process may provide significant clues for improved understanding of the mechanisms that control the global climate system. In this study, we calculate and analyze the foraminiferal dissolution index (FDX) and the fragmentation ratios of planktonic foraminifera over 60-25 ka based on samples from 17924 and ODP 1144 in the northeastern South China Sea (SCS) to reconstruct the deep water carbonate dissolution during Marine Isotope Stage 3 (MIS 3). Result shows that the dissolution of carbonate increases gradually at 17924 but keeps stable at ODP 1144. The changes of FDX coincidence with that of fragmentation ratios at 17924 and ODP 1144 suggest both indexes can be used as reliable dissolving proxies of planktonic foraminifera. Comparing FDX and fragmentation ratios at both sites, we find the FDX and fragmentation ratios at 17924 are higher than those at 1144, indicating that carbonate dissolution is intenser in 17924 core during MIS 3. The increasing total percentage of both N. dutertrei and G. bulloides during MIS 3 reveals the rising primary productivity that may lead to deep water [CO32-] decrease. The slow down of thermohaline circulation may increase deep water residence time and accelerate carbonate dissolution. In addition, the covering of ice caps, iron supply and increased surface-water stratification also contribute to atmosphere CO2 depletion and [CO32-] decrease in deep water. In the meanwhile, regression result from colder temperature increases the input of ALK and DIC to the deep ocean and deepens the carbonate saturation depth, which makes the deep water [CO32-] rise. In ODP Site 1144, the decrease in [CO32-] caused by more CO2 restored in deep water is equal to the increase in

  1. Real time wave measurements and wave hindcasting in deep waters

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Mandal, S.; SanilKumar, V.; Nayak, B.U.

    Deep water waves off Karwar (lat. 14~'45.1'N, long. 73~'34.8'E) at 75 m water depth pertaining to peak monsoon period have been measured using a Datawell waverider buoy. Measured wave data show that the significant wave height (Hs) predominantly...

  2. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    Science.gov (United States)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  3. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    International Nuclear Information System (INIS)

    Sant, T; Buhagiar, D; Farrugia, R N

    2014-01-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units

  4. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and

  5. Geometrical constraint on the localization of deep water formation

    Science.gov (United States)

    Ferreira, D.; Marshall, J.

    2008-12-01

    That deep water formation occurs in the North Atlantic and not North Pacific is one of the most notable features of the present climate. In an effort to build a system able to mimic such basic aspects of climate using a minimal description, we study here the influence of ocean geometry on the localization of deep water formation. Using the MIT GCM, two idealized configurations of an ocean-atmosphere-sea ice climate system are studied: Drake and Double-Drake. In Drake, one narrow barrier extends from the North Pole to 35°S while, in Double-Drake, two such barriers set 90° apart join at the North Pole to delimit a Small and a Large basin. Despite the different continental configurations, the two climates are strikingly similar in the zonal average (almost identical heat and fresh water transports, and meridional overturning circulation). However, regional circulations in the Small and Large basins exhibit distinctive Atlantic-like and Pacific-like characteristics: the Small basin is warmer and saltier than the Large one, concentrates dense water formation and deep overturning circulation and achieve the largest fraction of the northward ocean heat transport. We show that the warmer temperature and higher evaporation over the Small basin is not its distinguishing factor. Rather, it is the width of the basin in relation to the zonal fetch of the precipitation pattern. This generates a deficit/excess of precipitation over the Small/Large basin: a fraction of the moisture evaporated from the Small basin is transported zonally and rains out over the Large basin. This creates a salt contrast between the 2 basins, leading to the localization of deep convection in the salty Small basin. Finally, given on the broad similarities between the Double-Drake and real World, we suggest that many gross features that define the present climate are a consequence of 2 asymmetries: a meridional asymmetry (a zonally unblocked southern/blocked northern ocean) and a zonal one (a small and

  6. Climate Change and Flood Operations in the Sacramento Basin, California

    Directory of Open Access Journals (Sweden)

    Ann D. Willis

    2011-07-01

    Full Text Available Ann D. Willis, Jay R. Lund, Edwin S. Townsley, and Beth A. Faberdoi: http://dx.doi.org/10.15447/sfews.2014v9iss2art3Climate warming is likely to challenge many current conceptions and regulatory policies, particularly for water management. A warmer climate is likely to hinder flood operations in California’s Sacramento Valley by decreasing snowpack storage and increasing the rain fraction of major storms. This work examines how a warmer climate would change flood peaks and volumes for nine major historical floods entering Shasta, Oroville, and New Bullards Bar reservoirs, using current flood flow forecast models and current flood operating rules. Shasta and Oroville have dynamic flood operation curves that accommodate many climate-warming scenarios. New Bullards Bar’s more static operating rule performs poorly for these conditions. Revisiting flood operating rules is an important adaptation for climate warming.

  7. 234U/238U and δ87Sr in peat as tracers of paleosalinity in the Sacramento-San Joaquin Delta of California, USA

    International Nuclear Information System (INIS)

    Drexler, J.Z.; Paces, J.B.; Alpers, C.N.; Windham-Myers, L.; Neymark, L.A.; Bullen, T.D.; Taylor, H.E.

    2014-01-01

    Highlights: • Concentrations and isotopic values of Sr and U in peat were used to trace paleosalinity. • A three-end-member mixing model was constructed using values from water sources. • Paleosalinity of peat samples was determined relative to that of end members. • δ 87 Sr values were altered during and after the California Gold Rush period. • Oligohaline and freshwater marshes have long existed in the Sacramento-San Joaquin Delta. - Abstract: The purpose of this study was to determine the history of paleosalinity over the past 6000+ years in the Sacramento-San Joaquin Delta (the Delta), which is the innermost part of the San Francisco Estuary. We used a combination of Sr and U concentrations, δ 87 Sr values, and 234 U/ 238 U activity ratios (AR) in peat as proxies for tracking paleosalinity. Peat cores were collected in marshes on Browns Island, Franks Wetland, and Bacon Channel Island in the Delta. Cores were dated using 137 Cs, the onset of Pb and Hg contamination from hydraulic gold mining, and 14 C. A proof of concept study showed that the dominant emergent macrophyte and major component of peat in the Delta, Schoenoplectus spp., incorporates Sr and U and that the isotopic composition of these elements tracks the ambient water salinity across the Estuary. Concentrations and isotopic compositions of Sr and U in the three main water sources contributing to the Delta (seawater, Sacramento River water, and San Joaquin River water) were used to construct a three-end-member mixing model. Delta paleosalinity was determined by examining variations in the distribution of peat samples through time within the area delineated by the mixing model. The Delta has long been considered a tidal freshwater marsh region, but only peat samples from Franks Wetland and Bacon Channel Island have shown a consistently fresh signal (<0.5 ppt) through time. Therefore, the eastern Delta, which occurs upstream from Bacon Channel Island along the San Joaquin River and its

  8. Hydrophobic deep eutectic solvents as water-immiscible extractants

    NARCIS (Netherlands)

    Osch, van D.J.G.P.; Zubeir, L.F.; Bruinhorst, van den A.; Alves da Rocha, M.A.; Kroon, M.C.

    2015-01-01

    Hydrophobic deep eutectic solvents (DESs) are presented for the first time. They consist of decanoic acid and various quaternary ammonium salts. The effect of the alkyl chains on the hydrophobicity and the equilibrium of the two-phase DES–water system were investigated. These new DESs were

  9. Chronobiology of deep-water decapod crustaceans on continental margins.

    Science.gov (United States)

    Aguzzi, Jacopo; Company, Joan B

    2010-01-01

    Species have evolved biological rhythms in behaviour and physiology with a 24-h periodicity in order to increase their fitness, anticipating the onset of unfavourable habitat conditions. In marine organisms inhabiting deep-water continental margins (i.e. the submerged outer edges of continents), day-night activity rhythms are often referred to in three ways: vertical water column migrations (i.e. pelagic), horizontal displacements within benthic boundary layer of the continental margin, along bathymetric gradients (i.e. nektobenthic), and endobenthic movements (i.e. rhythmic emergence from the substrate). Many studies have been conducted on crustacean decapods that migrate vertically in the water column, but much less information is available for other endobenthic and nektobenthic species. Also, the types of displacement and major life habits of most marine species are still largely unknown, especially in deep-water continental margins, where steep clines in habitat factors (i.e. light intensity and its spectral quality, sediment characteristics, and hydrography) take place. This is the result of technical difficulties in performing temporally scheduled sampling and laboratory testing on living specimens. According to this scenario, there are several major issues that still need extensive research in deep-water crustacean decapods. First, the regulation of their behaviour and physiology by a biological clock is almost unknown compared to data for coastal species that are easily accessible to direct observation and sampling. Second, biological rhythms may change at different life stages (i.e. size-related variations) or at different moments of the reproductive cycle (e.g. at egg-bearing) based on different intra- and interspecific interactions. Third, there is still a major lack of knowledge on the links that exist among the observed bathymetric distributions of species and selected autoecological traits that are controlled by their biological clock, such as the

  10. Exploring deep potential aquifer in water scarce crystalline rocks

    Indian Academy of Sciences (India)

    out to explore deep groundwater potential zone in a water scarce granitic area. As existing field condi- ... Decision support tool developed in granitic ter- .... cially in terms of fracture system, the aquifer char- acteristics ... Methodologies used.

  11. Property changes of deep and bottom waters in the Western Tropical Atlantic

    Science.gov (United States)

    Herrford, Josefine; Brandt, Peter; Zenk, Walter

    2017-06-01

    The flow of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) contributes to the Atlantic meridional overturning circulation. Changes in the associated water mass formation might impact the deep ocean's capacity to take up anthropogenic CO2 while a warming of the deep ocean significantly contributes to global sea level rise. Here we compile historic and recent shipboard measurements of hydrography and velocity to provide a comprehensive view of water mass distribution, pathways, along-path transformation and long-term temperature changes of NADW and AABW in the western South and Equatorial Atlantic. We confirm previous results which show that the northwest corner of the Brazil Basin represents a splitting point for the southward/northward flow of NADW/AABW. The available measurements sample water mass transformation along the two major routes for deep and bottom waters in the tropical to South Atlantic - along the deep western boundary and eastward, parallel to the equator - as well as the hot-spots of extensive mixing. We find lower NADW and lighter AABW to form a highly interactive transition layer in the northern Brazil Basin. The AABW north of 5°S is relatively homogeneous with only lighter AABW being able to pass through the Equatorial Channel (EQCH) into the North Atlantic. Spanning a period of 26 years, our data also allow an estimation of long-term temperature trends in abyssal waters. We find a warming of 2.5±0.7•10-3 °C yr-1 of the waters in the northern Brazil Basin at temperatures colder than 0.6 °C throughout the period 1989-2014 and can relate this warming to a thinning of the dense AABW layer. Whereas isopycnal heave is the dominant effect which defines the vertical distribution of temperature trends on isobars, we also find temperature changes on isopycnals in the lower NADW and AABW layers. There temperatures on isopycnals exhibit decadal variations with warming in the 1990s and cooling in the 2000s - the contributions to the

  12. Design of a water-powered DTH hammer for deep drilling application

    Science.gov (United States)

    Cho, Min Jae; Kim, Donguk; Oh, Joo Young; Yook, Se-Jin; Kim, Young Won

    2017-11-01

    A DTH (Down-the-hole) hammer powered by highly pressurized fluid is a drilling tool using the motion of percussion of a drill bit. In retrospect, a DTH by using compressed air as a power source has been widely used in drilling industries such as applications of mining, geothermal etc. On the other hand, another type of a DTH that uses pressurized water, called a water hammer, has recently seen deep drilling applications, while it has been rarely investigated. In this study, we designed a water-powered DTH hammer which mainly consists of several components such as a piston, a poppet valve, a cap and a bit for deep drilling applications. We optimized the components of the hammer on the basis of the results of 1D analysis using commercial software of AMESIM. An experimental study has been also conducted to investigate a performance of the designed water hammer. We measured a pressure distribution inside the hammer system as a function of time, and it thus estimates a frequency of impaction of the bit, which has been also analyzed in frequency domain. In addition, some important parameters have been discussed in conjunction with a limitation of impaction frequency as input pressure. We believe that this study provides design rules of a water-based DTH for deep drilling applications. This work is supported by KITECH of Korean government.

  13. Deep formation waters of Western Europe, Russia and North America characterised by sodium, calcium, magnesium and chloride concentrations

    Science.gov (United States)

    Bozau, Elke; Hemme, Christina; Sattler, Carl-Diedrich; van Berk, Wolfgang

    2015-04-01

    Deep formation water can be classified according to depth, temperature, and salinity (e.g., Graf et al. 1966, Kharaka & Hanor 2007). Most of the deep formation waters contain dissolved solids in excess of sea water. The hydrogeochemical development of formation water has been discussed for a long time. It is widely accepted that deep aquifers are influenced by the meteoric cycle and geochemical processes within the crust (e.g., Hebig et al. 2012). Similar hydrogeochemical signatures are found in deep formation waters of all continents and can be explained by general geochemical processes within the deep reservoirs (e.g., Land 1995). Therefore, data of deep formation waters from Western Europe, Russia, and North America are collected and classified by the major water components. The data are used to identify important hydrogeochemical processes (e.g., halite dissolution and albitisation) leading to different compositions of formation water. Two significant water types are identified: Na-Cl water and Na-Ca-Cl water. Based on the collected hydrogeochemical data, development trends are stated for the formation waters, and albitisation is favoured as the main process for calcium enrichment. Furthermore, differences of formation water according to stratigraphical units are shown for deep reservoirs of the North German Basin and the North Sea. References: Graf, D.L., 1982. Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines. Geochimica Cosmochimica Acta 46, 1431-1448. Hebig, K.H., Ito, N., Scheytt, T., Marui, A., 2012. Review: Deep groundwater research with focus on Germany. Hydrogeology Journal 20, 227-243. Kharaka, Y.K., Hanor, J.S., 2007. Deep fluids in continents: I. Sedimentary Basins. Treatise on Geochemistry 5, 1-48. Land, L.S., 1995. The role of saline formation water in the crustal cycling. Aquatic Geochemistry 1, 137-145. Acknowledgements: The presented data are results of the collaborative research program "gebo" (Geothermal energy

  14. Application of a water balance model for estimating deep infiltration in a karstic watershed

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Calijuri

    2011-12-01

    Full Text Available The current scenario of water scarcity evidences the need for an adequate management of water resources. In karstic regions, the water flow through fractures significantly increases the water infiltration rate, which explains the small number of rivers and the importance of groundwater for urban supply. Therefore, the water balance is necessary since it may aid decision making processes and guide water management projects. The objective of this paper was to perform the water balance of a watershed situated in a karstic region quantifying infiltration, runoff and evapotranspiration. The study area is located near the Tancredo Neves International Airport in Confins, in the state of Minas Gerais, Brazil. Most of the area consists of forest formations (40.9%, and pastures (34.5%. In order to estimate deep infiltration, the BALSEQ model was used. BALSEQ is a numeric model of sequential water balance in which deep infiltration at the end of the day is given by the difference between daily precipitation and the sum of surface runoff, evapotranspiration and the variation of the amount of water stored in the soil. The results show that approximately 60% of total annual precipitation result in deep infiltration, considering the recharge period from September to March. After the dry period, the areas with no vegetal cover present higher deep infiltration. However, over the months, the contribution of the vegetated areas becomes greater, showing the importance of these areas to aquifer recharge.

  15. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, P. Y.

    2013-01-01

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  16. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim

    2013-03-29

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  17. Deep-water oilfield development cost analysis and forecasting —— Take gulf of mexico for example

    Science.gov (United States)

    Shi, Mingyu; Wang, Jianjun; Yi, Chenggao; Bai, Jianhui; Wang, Jing

    2017-11-01

    Gulf of Mexico (GoM) is the earliest offshore oilfield which has ever been developed. It tends to breed increasingly value of efficient, secure and cheap key technology of deep-water development. Thus, the analyze of development expenditure in this area is significantly important the evaluation concept of deep-water oilfield all over the world. This article emphasizes on deep-water development concept and EPC contract value in GoM in recent 10 years in case of comparison and selection to the economic efficiency. Besides, the QUETOR has been put into use in this research processes the largest upstream cost database to simulate and calculate the calculating examples’ expenditure. By analyzing and forecasting the deep-water oilfield development expenditure, this article explores the relevance between expenditure index and oil price.

  18. Weldability prequalification of steels for deep water service

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Michael D. [Acute Technological Services, Inc., Houston, TX (United States); Ibarra, S. Jim [BP America (United States); Fazackerley, W.J. [EWI Microalloying, Houston, TX (United States)

    2004-07-01

    The weldability of steels for deep water applications must be determined long before welding procedures are qualified. The weldments of deep water equipment such as steel Catenary risers (SCRs) are subjected to currents which result in high cyclic stresses. It is imperative that steels selected for such service have high CTOD fracture toughness values after welding to ensure good defect tolerance. Through fracture mechanics analyses, these CTOD values are used to determine the defect acceptance criteria that is used for inspection of such weldments. The base metal and weld metal are more easily obtained, but because the weld joint design changes the position of the HAZs, the CTOD value for the HAZ is usually a combination of the base, weld consumable, and HAZ. The value obtained from such a test is suspect, and may give an optimistic value if the weld metal or base metal have high CTOD values. This paper discusses the various strategies for determining the true weldability long before construction commences, using API RP 2Z (1) Type tests for prequalification of base materials. (author)

  19. Inter-population differences in salinity tolerance and osmoregulation of juvenile wild and hatchery-born Sacramento splittail

    Science.gov (United States)

    Verhille, Christine E.; Dabruzzi, Theresa F.; Cocherell, Dennis E.; Mahardja, Brian; Feyrer, Frederick V.; Foin, Theodore C.; Baerwald, Melinda R.; Fangue, Nann A.

    2016-01-01

    The Sacramento splittail (Pogonichthys macrolepidotus) is a minnow endemic to the highly modified San Francisco Estuary of California, USA and its associated rivers and tributaries. This species is composed of two genetically distinct populations, which, according to field observations and otolith strontium signatures, show largely allopatric distribution patterns as recently hatched juveniles. Juvenile Central Valley splittail are found primarily in the nearly fresh waters of the Sacramento and San Joaquin rivers and their tributaries, whereas San Pablo juveniles are found in the typically higher-salinity waters (i.e. up to 10‰) of the Napa and Petaluma Rivers. As the large salinity differences between young-of-year habitats may indicate population-specific differences in salinity tolerance, we hypothesized that juvenile San Pablo and Central Valley splittail populations differ in their response to salinity. In hatchery-born and wild-caught juvenile San Pablo splittail, we found upper salinity tolerances, where mortalities occurred within 336 h of exposure to 16‰ or higher, which was higher than the upper salinity tolerance of 14‰ for wild-caught juvenile Central Valley splittail. This, in conjunction with slower recovery of plasma osmolality, but not ion levels, muscle moisture or gill Na+,K+-ATPase activity, in Central Valley relative to San Pablo splittail during osmoregulatory disturbance provides some support for our hypothesis of inter-population variation in salinity tolerance and osmoregulation. The modestly improved salinity tolerance of San Pablo splittail is consistent with its use of higher-salinity habitats. Although confirmation of the putative adaptive difference through further studies is recommended, this may highlight the need for population-specific management considerations.

  20. The Search for Eight Glacial Cycles of Deep-Water Temperatures and Global ice Volume From the Southern Hemisphere

    Science.gov (United States)

    Ferretti, P.; Elderfield, H.; Greaves, M.; McCave, N.

    2007-12-01

    It has been recently suggested "a substantial portion of the marine 100-ky cycle that has been object of so much attention over the past quarter of a century is, in reality, a deep-water temperature signal and not an ice volume signal" (Shackleton, 2000). There are currently few records available of deep-water temperature variations during the Pleistocene and most of our understanding is inferred from the oxygen isotopic composition (δ18O) of benthic foraminifera from deep-sea sediments. However, variations in benthic δ18O reflect some combination of local to regional changes in water mass properties (largely deep- water temperature) as well as global changes in seawater δ18O (δ18Osw) resulting from the growth and decay of continental ice. Recent studies suggest that benthic foraminiferal Mg/Ca may be useful in reconstructing deep-water temperature changes, but the application of this method to benthic species has been hampered by a number of unresolved issues, such as uncertainties related to the calibration for benthic Mg at the coldest temperatures. Here we present deep-sea Mg/Ca and δ18O records for the past eight glacial cycles in benthic foraminiferal ( Uvigerina spp.) calcite from a marine sediment core recovered in the mid Southern latitudes. Ocean Drilling Program Site 1123 was retrieved from Chatham Rise, east of New Zealand in the Southwest Pacific Ocean (3290 m water depth). This site lies under the Deep Western Boundary Current (DWBC) that flows into the Pacific Ocean, and is responsible for most of the deep water in that ocean; DWBC strength is directly related to processes occurring around Antarctica. Temperatures derived via pore fluid modeling of the last glacial maximum are available from Site 1123 and represent an important tool to constrain deep-water temperatures estimates using Mg/Ca. In selected time slices, we measured B/Ca ratios in Uvigerina in order to gain information on the deep-water carbonate saturation state and have data of Mg

  1. Co-creating Understanding in Water Use & Agricultural Resilience in a Multi-scale Natural-human System: Sacramento River Valley--California's Water Heartland in Transition

    Science.gov (United States)

    Fairbanks, D. H.; Brimlowe, J.; Chaudry, A.; Gray, K.; Greene, T.; Guzley, R.; Hatfield, C.; Houk, E.; Le Page, C.

    2012-12-01

    The Sacramento River Valley (SRV), valued for its $2.5 billion agricultural production and its biodiversity, is the main supplier of California's water, servicing 25 million people. . Despite rapid changes to the region, little is known about the collective motivations and consequences of land and water use decisions, or the social and environmental vulnerability and resilience of the SRV. The overarching research goal is to examine whether the SRV can continue to supply clean water for California and accommodate agricultural production and biodiversity while coping with climate change and population growth. Without understanding these issues, the resources of the SRV face an uncertain future. The defining goal is to construct a framework that integrates cross-disciplinary and diverse stakeholder perspectives in order to develop a comprehensive understanding of how SRV stakeholders make land and water use decisions. Traditional approaches for modeling have failed to take into consideration multi-scale stakeholder input. Currently there is no effective method to facilitate producers and government agencies in developing a shared representation to address the issues that face the region. To address this gap, researchers and stakeholders are working together to collect and consolidate disconnected knowledge held by stakeholder groups (agencies, irrigation districts, and producers) into a holistic conceptual model of how stakeholders view and make decisions with land and water use under various management systems. Our approach integrates a top-down approach (agency stakeholders) for larger scale management decisions with a conceptual co-creation and data gathering bottom-up approach with local agricultural producer stakeholders for input water and landuse decisions. Land use change models that combine a top-down approach with a bottom-up stakeholder approach are rare and yet essential to understanding how the social process of land use change and ecosystem function are

  2. Modification of deep waters in Marguerite Bay, western Antarctic Peninsula, caused by topographic overflows

    Science.gov (United States)

    Venables, Hugh J.; Meredith, Michael P.; Brearley, J. Alexander

    2017-05-01

    Circumpolar Deep Water (CDW) intrudes from the mid-layers of the Antarctic Circumpolar Current onto the shelf of the western Antarctic Peninsula, providing a source of heat and nutrients to the regional ocean. It is well known that CDW is modified as it flows across the shelf, but the mechanisms responsible for this are not fully known. Here, data from underwater gliders with high spatial resolution are used to demonstrate the importance of detailed bathymetry in inducing multiple local mixing events. Clear evidence for overflows is observed in the glider data as water flows along a deep channel with multiple transverse ridges. The ridges block the densest waters, with overflowing water descending several hundred metres to fill subsequent basins. This vertical flow leads to entrainment of overlying colder and fresher water in localised mixing events. Initially this process leads to an increase in bottom temperatures due to the temperature maximum waters descending to greater depths. After several ridges, however, the mixing is sufficient to remove the temperature maximum completely and the entrainment of colder thermocline waters to depth reduces the bottom temperature, to approximately the same as in the source region of Marguerite Trough. Similarly, it is shown that deep waters of Palmer Deep are warmer than at the same depth at the shelf break. The exact details of the transformations observed are heavily dependent on the local bathymetry and water column structure, but glacially-carved troughs and shallow sills are a common feature of the bathymetry of polar shelves, and these types of processes may be a factor in determining the hydrographic conditions close to the coast across a wider area.

  3. Experimental study on the influence of chemical sensitizer on pressure resistance in deep water of emulsion explosives

    Science.gov (United States)

    Liu, Lei; zhang, Zhihua; Wang, Ya; Qin, hao

    2018-03-01

    The study on the pressure resistance performance of emulsion explosives in deep water can provide theoretical basis for underwater blasting, deep-hole blasting and emulsion explosives development. The sensitizer is an important component of emulsion explosives. By using reusable experimental devices to simulate the charge environment in deep water, the influence of the content of chemical sensitizer on the deep-water pressure resistance performance of emulsion explosives was studied. The experimental results show that with the increasing of the content of chemical sensitizer, the deep-water pressure resistance performance of emulsion explosives gradually improves, and when the pressure is fairly large, the effect is particularly pronounced; in a certain range, with the increase of the content of chemical sensitizer, that emulsion explosives’ explosion performance also gradually improve, but when the content reaches a certain value, the explosion properties declined instead; under the same emulsion matrix condition, when the content of NANO2 is 0.2%, that the emulsion explosives has good resistance to water pressure and good explosion properties. The correctness of the results above was testified in model blasting.

  4. Modeling the dispersal of Levantine Intermediate Water and its role in Mediterranean deep water formation

    Science.gov (United States)

    Wu, Peili; Haines, Keith

    1996-03-01

    This paper demonstrates the importance of Levantine Intermediate Water (LIW) in the deep water formation process in the Mediterranean using the modular ocean general circulation model at 0.25° resolution, 19 vertical levels, over the entire Mediterranean with an open Gibraltar strait. LIW formation is strongly prescribed in the Rhodes Gyre region by Haney [1971] relaxation, while in other regions, surface salinity relaxation is much reduced by applying the `mixed' thermohaline surface boundary conditions. Isopycnal diagnostics are used to trace water mass movements, and volume fluxes are monitored at straits. Low viscosity and diffusion are used to permit baroclinic eddies to play a role in water mass dispersal. The overall water budget is measured by an average flux at Gibraltar of 0.8 Sv, of which 0.7 Sv is exchanged with the eastern basin at Sicily. LIW (density around 28.95) spreads rapidly after formation throughout the entire Levantine due to baroclinic eddies. Toward the west, LIW accumulates in the northern and central Ionian, with some entering the Adriatic through Otranto and some mixing southward in eddies and exiting to the western Mediterranean through Sicily. LIW is converted to deep water in the south Adriatic at an average rate of 0.4 Sv. Water exchange through the Otranto strait appears to be buoyancy driven, with a strong bias to the end of winter (March-April), while at Sicily the exchange has a strong symmetric seasonal cycle, with maximum transport of 1.1 Sv in December indicating the effects of wind driving. LIW pathways in the west are complex and variable. In the Tyrrhenian, intermediate water becomes uniform on isopycnal surfaces due to eddy stirring. West of Sardinia, two LIW boundary currents are formed in the Balearic basin; one flows northward up the west coast of Sardinia and Corsica, and one westward along the northern African coast. The northward current is consistent with observations, while the westward current is intermittent for

  5. Simulation of Deep Water Renewal in Crater Lake, Oregon, USA under Current and Future Climate Conditions

    Science.gov (United States)

    Piccolroaz, S.; Wood, T. M.; Wherry, S.; Girdner, S.

    2015-12-01

    We applied a 1-dimensional lake model developed to simulate deep mixing related to thermobaric instabilities in temperate lakes to Crater Lake, a 590-m deep caldera lake in Oregon's Cascade Range known for its stunning deep blue color and extremely clear water, in order to determine the frequency of deep water renewal in future climate conditions. The lake model was calibrated with 6 years of water temperature profiles, and then simulated 10 years of validation data with an RMSE ranging from 0.81°C at 50 m depth to 0.04°C at 350-460 m depth. The simulated time series of heat content in the deep lake accurately captured extreme years characterized by weak and strong deep water renewal. The lake model uses wind speed and lake surface temperature (LST) as boundary conditions. LST projections under six climate scenarios from the CMIP5 intermodel comparison project (2 representative concentration pathways X 3 general circulation models) were evaluated with air2water, a simple lumped model that only requires daily values of downscaled air temperature. air2water was calibrated with data from 1993-2011, resulting in a RMSE between simulated and observed daily LST values of 0.68°C. All future climate scenarios project increased water temperature throughout the water column and a substantive reduction in the frequency of deepwater renewal events. The least extreme scenario (CNRM-CM5, RCP4.5) projects the frequency of deepwater renewal events to decrease from about 1 in 2 years in the present to about 1 in 3 years by 2100. The most extreme scenario (HadGEM2-ES, RCP8.5) projects the frequency of deepwater renewal events to be less than 1 in 7 years by 2100 and lake surface temperatures never cooling to less than 4°C after 2050. In all RCP4.5 simulations the temperature of the entire water column is greater than 4°C for increasing periods of time. In the RCP8.5 simulations, the temperature of the entire water column is greater than 4°C year round by the year 2060 (HadGEM2

  6. Civilizing the Conversation? Using Surveys to Inform Water Management and Science in the Sacramento-San Joaquin Delta

    Science.gov (United States)

    Hanak, E.; Phillips Chappelle, C.

    2013-12-01

    Improving ecosystem outcomes in California's Sacramento-San Joaquin Delta is a complex, high-stakes water resource management challenge. The Delta is a major hub for water supply conveyance and a valued ecological resource. Yet long-term declines in native fish populations have resulted in severe legal constraints on water exports and fueled growing public debates about the roles and responsibilities of flow modification and other sources of ecosystem stress. Meanwhile, scientific uncertainty, and the inability of the scientific community to effectively communicate what *is* known, has frustrated policymakers and encouraged 'combat science' - the commissioning and use of competing scientific opinions in the courtroom. This paper summarizes results from a study designed to inform the policy process through the use of confidential surveys of scientific researchers (those publishing in peer-reviewed journals, n=122) and engaged stakeholders and policymakers (n=240). The surveys, conducted in mid-2012, sought respondents' views on the sources of ecosystem stress and priority ecosystem management actions. The scientist survey is an example of the growing use of expert elicitation to address gaps in the scientific literature, particularly where there is uncertainty about priorities for decisionmaking (e.g., Cvitanovic et al. 2013, J. of Env. Mgmt; McDaniels et al. 2012, Risk Analysis). The stakeholder survey is a useful complement, enabling the identification of areas of consensus and divergence among stakeholder groups and between these groups and scientific experts. The results suggest such surveys are a promising tool for addressing complex water management problems. We found surprisingly high agreement among scientists on the relative roles of stressors and the most promising management actions; they emphasized restoring more natural processes through habitat and flow actions within the watershed, consistent with 'reconciliation ecology' approaches (Rosenzweig 2003

  7. Exploring the roles of temperature and NOx on ozone production in the Sacramento urban plume

    Science.gov (United States)

    Lafranchi, B. W.; Cohen, R. C.

    2009-12-01

    We investigate the role of temperature and NOx (NOx = NO+NO2) on ozone (O3) production in the Sacramento urban plume over a stretch of seven years (2001-2007) using data collected at UC Blodgett Forest Research Station (a forested site in the Sierra Nevadas about 80 km downwind of Sacramento, CA) and at a series of California Air Resources Board (CARB) sites along the Sacramento-Blodgett transect. The consistent daytime wind patterns between the Central Valley of California and the foothills of the Sierra Nevada mountains permits the assumption of plume transport from downtown Sacramento, over the CARB monitoring sites in the eastern suburbs, and past the Blodgett Forest research site. While NOx emissions are limited primarily to the urban and suburban regions of the transect, biogenic volatile organic compound (VOC) emissions are significant throughout the transect, thus there is a fast transition from VOC-limited to NOx-limited as the plume travels away from the urban center, and we have the opportunity to analyze the differences in ozone production across these two chemical regimes. For this analysis, the Sacramento-Blodgett transect is separated into three segments: urban, suburban, and rural, defined by the locations of selected monitoring sites. Ozone concentrations across each segment are controlled by chemical production (Pchem) and loss (Lchem), deposition to surfaces (Ldep), and mixing with background air (Lmix). At an assumed deposition rate, mixing rate, and background O3 concentration, the net chemical flux of ozone (Pchem - Lchem) can be inferred from differences in ozone concentrations between adjacent monitoring sites. We show that ozone production rates, in general, increase with temperature. We also show that decreases in NOx emissions over the period from 2001-2007 have been effective at reducing ozone production at all points along the transect, but only on days where temperatures are highest. At low temperatures, this decrease is less apparent

  8. Evidence for the bioerosion of deep-water corals by echinoids in the Northeast Atlantic

    Science.gov (United States)

    Stevenson, Angela; Rocha, Carlos

    2013-01-01

    In situ video observations of echinoids interacting with deep-sea coral are common in the deep-sea, but paradoxically the deep-sea literature is devoid of reports of bioerosion by extant echinoids. Here we present evidence of contemporary bioerosion of cold-water coral by four species of deep-sea echinoids, Gracilechinus elegans, Gracilechinus alexandri, Cidaris cidaris, and Araeosoma fenestratum, showing that they actively predate on the living framework of reef building corals, Lophelia pertusa and Madrepora oculata, in the NE Atlantic. Echinoid specimens were collected in six canyons located in the Bay of Biscay, France and two canyons on the north side of the Porcupine Bank and Goban Spur, Ireland. A total of 44 live specimens from the four taxa (9 of G. elegans, 4 of G. alexandri, 21 of C. cidaris and 10 of A. fenestratum) showed recent ingestion of the coral infrastructure. Upon dissection, live coral skeleton was observed encased in a thick mucus layer within the gastrointestinal tract of G. elegans and G. alexandri while both live and dead coral fragments were found in C. cidaris and A. fenestratum. Echinoid bioerosion limits the growth of shallow-water reefs. Our observations suggest that echinoids may also play an important role in the ecology of deep-water coral reefs.

  9. Development and verification of deep-water blowout models

    International Nuclear Information System (INIS)

    Johansen, Oistein

    2003-01-01

    Modeling of deep-water releases of gas and oil involves conventional plume theory in combination with thermodynamics and mass transfer calculations. The discharges can be understood in terms of multiphase plumes, where gas bubbles and oil droplets may separate from the water phase of the plume and rise to the surface independently. The gas may dissolve in the ambient water and/or form gas hydrates--a solid state of water resembling ice. All these processes will tend to deprive the plume as such of buoyancy, and in stratified water the plume rise will soon terminate. Slick formation will be governed by the surfacing of individual oil droplets in a depth and time variable current. This situation differs from the conditions observed during oil-and-gas blowouts in shallow and moderate water depths. In such cases, the bubble plume has been observed to rise to the surface and form a strong radial flow that contributes to a rapid spreading of the surfacing oil. The theories and behaviors involved in deepwater blowout cases are reviewed and compared to those for the shallow water blowout cases

  10. A long history of equatorial deep-water upwelling in the Pacific Ocean

    Science.gov (United States)

    Zhang, Yi Ge; Pagani, Mark; Henderiks, Jorijntje; Ren, Haojia

    2017-06-01

    Cold, nutrient- and CO2-rich waters upwelling in the eastern equatorial Pacific (EEP) give rise to the Pacific cold tongue. Quasi-periodic subsidence of the thermocline and attenuation in wind strength expressed by El Niño conditions decrease upwelling rates, increase surface-water temperatures in the EEP, and lead to changes in regional climates both near and far from the equatorial Pacific. EEP surface waters have elevated CO2 concentrations during neutral (upwelling) or La Niña (strong upwelling) conditions. In contrast, approximate air-sea CO2 equilibrium characterizes El Niño events. One hypothesis proposes that changes in physical oceanography led to the establishment of a deep tropical thermocline and expanded mixed-layer prior to 3 million years ago. These effects are argued to have substantially reduced deep-water upwelling rates in the EEP and promoted a "permanent El Niño-like" climate state. For this study, we test this supposition by reconstructing EEP "excess CO2" and upwelling history for the past 6.5 million years using the alkenone-pCO2 methodology. Contrary to previous assertions, our results indicate that average temporal conditions in the EEP over the past ∼6.5 million years were characterized by substantial CO2 disequilibrium and high nutrient delivery to surface waters - characteristics that imply strong upwelling of deep waters. Upwelling appears most vigorous between ∼6.5 to 4.5 million years ago coinciding with high accumulation rates of biogenic material during the late Miocene - early Pliocene "biogenic bloom".

  11. Succeeding in deep water by combining technology qualification and production forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, A.; Oiungen, B.; Raposo, C. [Det Norske Veritas (DNV), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    All the easy oil and gas is gone, and, as a result the Oil and Gas industry is continuously targeting deeper and more remote fields. The exploration and development of deep water oil and gas fields is associated with enormous costs and multiple uncertainties with regard to equipment reliability and performance. Proper risk management can be used to evaluate the impact of these uncertainties thereby helping to ensure optimal business performance of the future assets, as well as helping the decision maker target investment towards areas where the financial impact will be the greatest. This paper reviews the principles of Technology Qualification and Production Forecasting methodology, both of which are risk management solutions with a proven track record for deep water field developments. (author)

  12. Pressured drilling riser design for drilling in ultra deep water with surface bop

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Morrison, D.; Efthymiou, M.; Lo, K.H. [Shell Global Solutions, 78 - Velizy Villacoublay (France); Magne, E.; Leach, C. [Shell Internationale Exploration and Production (Netherlands)

    2002-12-01

    In conventional drilling with a semi-submersible rig valuable rig time is used to run and retrieve the BOP and its accessories on the seabed, and this time increases with water depth. Furthermore, use of the conventional sub-sea BOP requires a large-diameter riser, which requires substantial rig storage and deck load capacity prior to installation. It also requires high riser-tensioning capacity or additional buoyancy. Thus as the water depth increases, it leads to a need for heavy duty 4. and 5. generation rigs with escalation in costs. The high cost of deep-water drill rigs is leading to the development of Surface BOP technology. In this development, the BOP is placed above sea level and the riser is simply a continuation of the casing (typical diameter 13-3/8''). This eliminates the need for a heavy 21'' riser and for running the BOP to the sea bed and retrieving it. Moreover, the reduced tension requirement for the smaller riser extends the water depth capability of 3. generation drilling semi-submersibles, enabling them to drill in deeper waters. A critical success factor for this development is the ability to design the riser/casing to withstand high internal pressures due to well kicks, in addition to environmental loads, and to restrict vessel offsets within certain limits so as not to overload the riser under the prevailing weather conditions. This paper addresses the design considerations of a pressured drilling riser that can be used with a surface BOP in deep-water. Key design issues that are sensitive to ultra-deep-water applications are discussed. The technical aspects of using (disposable) standard casing with threaded connector for the drilling riser are discussed, with a particular emphasis on the connector fatigue-testing program to quantify the stress concentration factor for fatigue design. Emerging composite material offers some alternatives to the steel riser when drilling in ultra-deep water Design issues related to the

  13. Turbidite Systems in Brazil: From Outcrops to Deep Waters

    Science.gov (United States)

    ´Avila, R. S. F.; Arienti, L. M.; Vesely, F. F.; Santos, S. F.; Voelcker, H. E.

    2012-04-01

    Reliable depositional models depend on careful observation of rocks, to allow the correct description and interpretation of facies and facies associations and their formative processes. They are of paramount importance to characterize deep water depositional systems, which still are the most important siliciclastic reservoirs for the oil industry. Turbidite sandstone reservoirs are responsible for almost 80% of petroleum produced from Brazilian Basins. A comprehensive characterization of these systems, depicting the main differences in terms of their geometries and facies will be presented. In Brazilian basins most of the turbidites were originated from extremely catastrophic flows, essentially linked to fluvio-deltaic influx that generates very dense hyperpycnal flows. Based on outcrop and subsurface data, two main zones with characteristic geometries and facies associations are commonly identified in turbidite systems: the transference zone and the depositional zone. Erosion and bypass dominate in the transference zone, which frequently occur as submarine canyons and channels. Turbidite channels can contain residual conglomeratic facies and coarser sandstone facies. The depositional area comprises lobes that constitute a major exploratory target because of their greater lateral continuity and the concentration of clean reservoirs. Turbidite lobes can be tabular or lenticular deposits associated with channelized bodies. Taking into account outcrop and subsurface data we can distinguish five main turbidite systems: foredeep turbidite systems, prodelta turbidite systems, mixed turbidite systems, meandering channels turbidite systems and channel-levee turbidite systems. In the Brazilian margin, deep water turbidites and other gravity-flow deposits are commonly associated with bottom current deposits, largely in Tertiary strata. Such bottom current deposits, often called contourites, are also important petroleum reservoirs, commonly mistaken as turbidites. Integration

  14. Evidence of Enhanced Respired Carbon in Eastern Equatorial Pacific Deep-Waters over the last 30,000 years

    Science.gov (United States)

    Umling, N. E.; Thunell, R.

    2016-12-01

    Rapid decreases in glacial deep water reservoir ages have been observed in the Eastern Equatorial Pacific (EEP; this study), North Pacific (Rae et al., 2014), Southwest Pacific (Sikes et al., 2016), and North Atlantic (Skinner et al., 2013). It has been hypothesized that release of a deep ocean 14C-depleted, respired-carbon reservoir to the surface ocean and atmosphere is the most likely mechanism for the observed increases in atmospheric CO2 concentrations recorded in ice cores during the last glacial-interglacial transition (Broecker and Barker, 2007). This study examines whether oxygenation, organic carbon flux, and carbonate chemistry in the EEP deep-waters reflect an increase in respired carbon associated with recorded 14C-depletions using isotopic and trace element records from three Panama Basin cores (2,650-3,200 m water-depth). An increase in glacial deep-water respired carbon storage would result in a shift of DIC speciation towards lower carbonate ion concentrations along with deoxygenation of bottom waters. Specifically, we use the boron to calcium (B/Ca) and uranium to calcium (U/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentration (Yu and Elderfield, 2007; Raizsch et al., 2011). Additionally, bottom water oxygenation is estimated from the difference in δ13C of benthic foraminifera living in pore waters at the anoxic boundary and of those living in bottom water (Δ δ13C; Hoogakker et al., 2015, 2016), while carbon flux was assessed from the U/Ca and Cd/Ca of foraminiferal authigenic coatings.

  15. Ventilation of the Baltic Sea deep water: A brief review of present knowledge from observations and models

    Directory of Open Access Journals (Sweden)

    Hans Burchard

    2006-06-01

    Full Text Available The ventilation of the Baltic Sea deep wateris driven by either gale-forced barotropic or baroclinic salt water inflows.During the past two decades, the frequency of large barotropic inflows(mainly in winter has decreased and the frequency of medium-intensity baroclinic inflows(observed in summer has increased. As a result of entrainment of ambient oxygen-rich water,summer inflows are also important for the deep water ventilation.Recent process studies of salt water plumes suggest that the entrainmentrates are generally smaller than those predicted by earlier entrainment models.In addition to the entrance area, the Słupsk Sill andthe Słupsk Furrow are important locations for the transformation of water masses. Passing the Słupsk Furrow, both gravity-driven dense bottom flows and sub-surface cyclonic eddies,which are eroded laterally by thermohaline intrusions,ventilate the deep water of the eastern Gotland Basin.A recent study of the energy transfer from barotropic to baroclinicwave motion using a two-dimensional shallow water model suggests thatabout 30% of the energy needed below the halocline for deep water mixingis explained by the breaking of internal waves.In the deep water decade-long stagnation periods with decreasingoxygen and increasing hydrogen sulphide concentrations might be caused by anomalously largefreshwater inflows and anomalously high mean zonal wind speeds. In differentstudies the typical response time scale of average salinity was estimated tobe between approximately 20 and 30 years.The review summarizes recent research resultsand ends with a list of open questions and recommendations.

  16. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes.

    Science.gov (United States)

    Peyer, Suzanne M; Hermanson, John C; Lee, Carol Eunmi

    2010-08-01

    The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such difference are unknown. We examined whether quagga mussel shell morphology could be induced by three environmental variables through developmental plasticity. We predicted that shallow-water conditions (high temperature, food quantity, water motion) would yield a morphotype typical of wild quagga mussels from shallow habitats, while deep-water conditions (low temperature, food quantity, water motion) would yield a morphotype present in deep habitats. We tested this prediction by examining shell morphology and growth rate of quagga mussels collected from shallow and deep habitats and reared under common-garden treatments that manipulated the three variables. Shell morphology was quantified using the polar moment of inertia. Of the variables tested, temperature had the greatest effect on shell morphology. Higher temperature (approximately 18-20 degrees C) yielded a morphotype typical of wild shallow mussels regardless of the levels of food quantity or water motion. In contrast, lower temperature (approximately 6-8 degrees C) yielded a morphotype approaching that of wild deep mussels. If shell morphology has functional consequences in particular habitats, a plastic response might confer quagga mussels with a greater ability than zebra mussels to colonize a wider range of habitats within the Great Lakes.

  17. Spawning period and first maturity size of deep water rose shrimp ...

    African Journals Online (AJOL)

    Administrator

    2011-11-02

    Nov 2, 2011 ... index (GSI), ranged throughout the year, reaching its peak two times; first peak occurred in autumn ... The deep water rose shrimp, Parapenaeus longirostris .... macroscopic examination of the gonads (development and.

  18. Sources of the deep water masses in the northern Red Sea

    OpenAIRE

    Said, M.A.

    1998-01-01

    The hydrographic structure of the northern Red Sea indicated that, the surface waters of temperature around 22°C, salinity of 40.1OO%o and dt = 28.1 might sink to depths between 400-500 m by convective overturn, contributing to the formation of the mid-deep Red Sea waters. Below the 500 db depth down to the bottom the water column is stable. The geostrophic circulation clearly indicated an inflow of water from the Red Sea towards NNW, along the main axis of the sea. Arriving at the nort...

  19. Determinants of establishment survival for residential trees in Sacramento County, CA

    Science.gov (United States)

    Lara A. Roman; John J. Battles; Joe R. McBride

    2014-01-01

    Urban forests can provide ecosystem services that motivate tree planting campaigns, and tree survival is a key element of program success and projected benefits. We studied survival in a shade tree give-away program in Sacramento, CA, monitoring a cohort of young trees for five years on single-family residential properties. We used conditional inference trees to...

  20. A Dataset of Deep-Sea Fishes Surveyed by Research Vessels in the Waters around Taiwan

    Directory of Open Access Journals (Sweden)

    Kwang-Tsao Shao

    2014-12-01

    Full Text Available The study of deep-sea fish fauna is hampered by a lack of data due to the difficulty and high cost incurred in its surveys and collections. Taiwan is situated along the edge of the Eurasia fig, at the junction of three Large Marine Ecosystems or Ecoregions of the East China Sea, South China Sea and the Philippines. As nearly two-thirds of its surrounding marine ecosystems are deep-sea environments, Taiwan is expected to hold a rich diversity of deep-sea fish. However, in the past, no research vessels were employed to collect fish data on site. Only specimens, caught by bottom trawl fishing in the waters hundreds of meters deep and missing precise locality information, were collected from Dasi and Donggang fishing harbors. Began in 2001, with the support of National Science Council, research vessels were made available to take on the task of systematically collecting deep-sea fish specimens and occurrence records in the waters surrounding Taiwan. By the end of 2006, a total of 3,653 specimens, belonging to 26 orders, 88 families, 198 genera and 366 species, were collected in addition to data such as sampling site geographical coordinates and water depth, and fish body length and weight. The information, all accessible from the “Database of Taiwan’s Deep-Sea Fauna and Its Distribution (http://deepsea.biodiv.tw/” as part of the “Fish Database of Taiwan,” can benefit the study of temporal and spatial changes in distribution and abundance of fish fauna in the context of global deep-sea biodiversity.

  1. Pasteurization of naturally contaminated water with solar energy.

    Science.gov (United States)

    Ciochetti, D A; Metcalf, R H

    1984-02-01

    A solar box cooker (SBC) was constructed with a cooking area deep enough to hold several 3.7-liter jugs of water, and this was used to investigate the potential of using solar energy to pasteurize naturally contaminated water. When river water was heated either in the SBC or on a hot plate, coliform bacteria were inactivated at temperatures of 60 degrees C or greater. Heating water in an SBC to at least 65 degrees C ensures that the water will be above the milk pasteurization temperature of 62.8 degrees C for at least an hour, which appears sufficient to pasteurize contaminated water. On clear or partly cloudy days, with the SBC facing magnetic south in Sacramento, bottom water temperatures of at least 65 degrees C could be obtained in 11.1 liters of water during the 6 weeks on either side of the summer solstice, in 7.4 liters of water from mid-March through mid-September, and in 3.7 liters of water an additional 2 to 3 weeks at the beginning and end of the solar season. Periodic repositioning of the SBC towards the sun, adjusting the back reflective lid, and preheating water in a simple reflective device increased final water temperatures. Simultaneous cooking and heating water to pasteurizing temperatures was possible. Additional uses of the SBC to pasteurize soil and to decontaminate hospital materials before disposal in remote areas are suggested.

  2. Feasibility Study and Environmental Impact Statement, Oakland Inner Harbor, California, Deep-Draft Navigation.

    Science.gov (United States)

    1983-06-01

    water habitat type exists at this location as this area is a corridor for anadromous species migrating to ind from the Sacramento-San Joaquin estuary...the Concord 15-minute, Quadrangle and the Oakland West, Richmond, and part of the San Quentin 7-1/2 rinute Quadrangles, Contra Costa and Alameda

  3. Final environmental assessment: Sacramento Energy Service Center

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Sacramento Area Office (SAO) of the Western Area Power Administration (Western) needs to increase the security of operations, to eliminate overcrowding at the current leased location of the existing facilities, to provide for future growth, to improve efficiency, and to reduce operating costs. The proposed action is to construct an approximate 40,000-square foot building and adjacent parking lot with a Solar Powered Electric Vehicle Charging Station installed to promote use of energy efficient transportation. As funding becomes available and technology develops, additional innovative energy-efficient measures will be incorporated into the building. For example the proposed construction of the Solar Powered Electric Vehicle Charging.

  4. The Role of Communicative Feedback in Successful Water Conservation Programs

    Science.gov (United States)

    Tom, Gail; Tauchus, Gail; Williams, Jared; Tong, Stephanie

    2011-01-01

    The Sacramento County Water Agency has made available 2 water conservation programs to its customers. The Data Logger Program attaches the Meter Master Model 100 EL data logger to the customer's water meter for 1 week and provides a detailed report of water usage from each fixture. The Water Wise House Call Program provides findings and…

  5. Insights into controls on hexavalent chromium in groundwater provided by environmental tracers, Sacramento Valley, California, USA

    Science.gov (United States)

    Manning, Andrew H.; Mills, Christopher T.; Morrison, Jean M.; Ball, Lyndsay B.

    2015-01-01

    Environmental tracers are useful for determining groundwater age and recharge source, yet their application in studies of geogenic Cr(VI) in groundwater has been limited. Environmental tracer data from 166 wells located in the Sacramento Valley, northern California, were interpreted and compared to Cr concentrations to determine the origin and age of groundwater with elevated Cr(VI), and better understand where Cr(VI) becomes mobilized and how it evolves along flowpaths. In addition to major ion and trace element concentrations, the dataset includes δ18O, δ2H, 3H concentration, 14C activity (of dissolved inorganic C), δ13C, 3He/4He ratio, and noble gas concentrations (He, Ne, Ar, Kr, Xe). Noble gas recharge temperatures (NGTs) were computed, and age-related tracers were interpreted in combination to constrain the age distribution in samples and sort them into six different age categories spanning from 10,000 yr old. Nearly all measured Cr is in the form of Cr(IV). Concentrations range from 3 mg L−1), and commonly have δ18O values enriched relative to local precipitation. These samples likely contain irrigation water and are elevated due to accelerated mobilization of Cr(VI) in the unsaturated zone (UZ) in irrigated areas. Group 2 samples are from throughout the valley and typically contain water 1000–10,000 yr old, have δ18O values consistent with local precipitation, and have unexpectedly warm NGTs. Chromium(VI) concentrations in Group 2 samples may be elevated for multiple reasons, but the hypothesis most consistent with all available data (notably, the warm NGTs) is a relatively long UZ residence time due to recharge through a deep UZ near the margin of the basin. A possible explanation for why Cr(VI) may be primarily mobilized in the UZ rather than farther along flowpaths in the oxic portion of the saturated zone is more dynamic cycling of Mn in the UZ due to transient moisture and redox conditions.

  6. Channel Formation in Physical Experiments: Examples from Deep and Shallow Water Clastic Sedimentary Systems

    Science.gov (United States)

    Hoyal, D. C.; Sheets, B. A.

    2005-12-01

    The degree to which experimental sedimentary systems form channels has an important bearing on their applicability as analogs of large-scale natural systems, where channels and their associated landforms are ubiquitous. The internal geometry and properties (e.g., grain size, vertical succession and stacking) of many depositional landforms can be directly linked to the processes of channel initiation and evolution. Unfortunately, strong self-channelization, a prerequisite for certain natural phenomena (e.g. mouth lobe development, meandering, etc.), has been difficult to reproduce at laboratory scales. In shallow-water experiments (sub-aerial), although weak channelization develops relatively easily, as is commonly observed in gutters after a rain storm, strong channelization with well-developed banks has proved difficult to model. In deep water experiments the challenge is even greater. Despite considerable research effort experimental conditions for deep water channel initiation have only recently been identified. Experiments on the requisite conditions for channelization in shallow and deep water have been ongoing at the ExxonMobil Upstream Research Company (EMURC) for several years. By primarily manipulating the cohesiveness of the sediment supply we have developed models of distributive systems with well-defined channels in shallow water, reminiscent of fine grained river-dominated deltas like the Mississippi. In deep water we have developed models that demonstrate strong channelization and associated lobe behavior in a distributive setting, by scaling up an approach developed by another group using salt-water flows and low-density plastic sediment. The experiments highlight a number of important controls on experimental channel formation, including: (1) bed strength or cohesiveness; (2) bedform development; and (3) Reynolds number. Among these controls bed forms disrupt the channel forming instability, reducing the energy available for channelization. The

  7. Near-bottom pelagic bacteria at a deep-water sewage sludge disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, M.; Straube, W.L.; Hill, R.T.; Colwell, R.R.

    1994-01-01

    The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. Mixed cultures and bacterial isolates obtained from water overlying sediment core samples collected at the deep-water (2,500 m) municipal sewage disposal site were tested for the ability to grow under in situ conditions of temperature and pressure. The responses of cultures collected at a DWD-106 station heavily impacted by sewage sludge were compared with those of samples collected from a station at the same depth which was not contaminated by sewage sludge. Significant differences were observed in the ability of mixed bacterial cultures and isolates from the two sites to grow under deep-sea pressure and temperature conditions. The levels of sludge contamination were established by enumerating Clostridium perfringens, a sewage indicator bacterium, in sediment samples from the two sites. (Copyright (c) 1993, American Society for Microbiology.)

  8. Distribution of Quercus agrifolia mycorrhizae deep within weathered bedrock: a potential mechanism for transport of stored water

    Science.gov (United States)

    M. Bornyasz; R. Graham; M. Allen

    2002-01-01

    In southwestern California, Quercus agrifolia distribution closely matches regions of granitic regolith. High annual evapotranspiration demand and inherent shallow soil conditions lead to a dependence on a deep rooting system and an ability to access water from deep within the regolith. Most of the plant available water in weathered granitic rock is...

  9. 75 FR 40726 - Revisions to the California State Implementation Plan, Sacramento Metropolitan Air Quality...

    Science.gov (United States)

    2010-07-14

    ... the California State Implementation Plan, Sacramento Metropolitan Air Quality Management District and South Coast Air Quality Management District AGENCY: Environmental Protection Agency (EPA). ACTION... Metropolitan Air Quality Management District (SMAQMD) and South Coast Air Quality Management District (SCAQMD...

  10. [Effects of deep plowing time during the fallow period on water storage-consumption characteristics and wheat yield in dry-land soil.

    Science.gov (United States)

    Dang, Jian You; Pei, Xue Xia; Zhang, Ding Yi; Wang, Jiao Ai; Zhang, Jing; Wu, Xue Ping

    2016-09-01

    Through a three-year field trail, effects of deep plowing time during the fallow period on water storage of 0-200 cm soil before sowing, water consumption of growth period, and growth and development of wheat were investigated. Results demonstrated that soil water storage (SWS) of the fallow period was influenced by deep plowing time, precipitation, and rainfall distribution. With postponing the time of deep plowing in the fallow period, SWS was increased firstly, and then decreased. SWS with deep plowing in early or middle of August was 23.9-45.8 mm more than that with deep plowing in mid-July. It would benefit SWS when more precipitation occurred in the fallow period or more rainfall was distributed in August and September. Deep plowing at a proper time could facilitate SWS, N and P absorption of wheat, and the number of stems before winter and the spike number. The yield of wheat with deep plowing in early or middle August was 3.67%-18.2% higher than that with deep plowing in mid-July, and it was positively correlated with water storage of 0-200 cm soil during the fallow period and SWS of each soil layer during the wheat growth period. However, this correlation coefficient would be weakened by adequate rainfall in spring, the critical growing period for wheat. The time of deep plowing mainly affected the water consumption at soil layer of 60-140 cm during wheat growth. Under current farming conditions of south Shanxi, the increased grain yield of wheat could be achieved by combining the measures of high wheat stubble and wheat straw covering for holding soil water and deep plowing between the Beginning of Autumn (August 6th) and the Limit of Heat (August 21st) for promoting soil water penetration characteristics to improve the number of stems before winter and spike.

  11. Water transparency measurements in the deep Ionian Sea

    CERN Document Server

    Anassontzis, E G; Belias, A; Fotiou, A; Grammatikakis, G; Kontogiannis, H; Koske, P; Koutsoukos, S; Lykoussis, V; Markopoulos, E; Psallidas, A; Resvanis, L K; Siotis, I; Stavrakakis, S; Stavropoulos, G; Zhukov, V A

    2010-01-01

    A long optical base line spectrophotometer designed to measure light transmission in deep sea waters is described. The variable optical path length allows measurements without the need for absolute or external calibration. The spectrophotometer uses eight groups of uncollimated light sources emitting in the range 370–530 nm and was deployed at various depths at two locations in the Ionian Sea that are candidate sites for a future underwater neutrino telescope. Light transmission spectra at the two locations are presented and compared.

  12. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: A potential source of geogenic Cr(VI) to groundwater

    International Nuclear Information System (INIS)

    Mills, Christopher T.; Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J.

    2011-01-01

    Highlights: → Southern Sacramento Valley soil and sediment has abundant naturally-occurring Cr(III). → Cr(III) resides mainly in chromite but some is associated with clays and Fe oxides. → Cr(VI) is mostly absent in surface soil but ubiquitous in deeper soil and sediment. → Cr(VI) increased linearly with time during lab soil incubations with no additions. → Cation exchange processes resulted in greater Cr(VI) generation rates. - Abstract: Concentrations of geogenic Cr(VI) in groundwater that exceed the World Health Organization's maximum contaminant level for drinking water (50 μg L -1 ) occur in several locations globally. The major mechanism for mobilization of this Cr(VI) at these sites is the weathering of Cr(III) from ultramafic rocks and its subsequent oxidation on Mn oxides. This process may be occurring in the southern Sacramento Valley of California where Cr(VI) concentrations in groundwater can approach or exceed 50 μg L -1 . To characterize Cr geochemistry in the area, samples from several soil auger cores (approximately 4 m deep) and drill cores (approximately 25 m deep) were analyzed for total concentrations of 44 major, minor and trace elements, Cr associated with labile Mn and Fe oxides, and Cr(VI). Total concentrations of Cr in these samples ranged from 140 to 2220 mg per kg soil. Between 9 and 70 mg per kg soil was released by selective extractions that target Fe oxides, but essentially no Cr was associated with the abundant reactive Mn oxides (up to ∼1000 mg hydroxylamine-reducible Mn per kg soil was present). Both borehole magnetic susceptibility surveys performed at some of the drill core sites and relative differences between Cr released in a 4-acid digestion versus total Cr (lithium metaborate fusion digestion) suggest that the majority of total Cr in the samples is present in refractory chromite minerals transported from ultramafic exposures in the Coast Range Mountains. Chromium(VI) in the samples studied ranged from 0 to 42

  13. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: A potential source of geogenic Cr(VI) to groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Christopher T., E-mail: cmills@usgs.gov [United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Denver Federal Center, MS 964D, Denver, CO 80225 (United States); Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J. [United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Denver Federal Center, MS 964D, Denver, CO 80225 (United States)

    2011-08-15

    Highlights: > Southern Sacramento Valley soil and sediment has abundant naturally-occurring Cr(III). > Cr(III) resides mainly in chromite but some is associated with clays and Fe oxides. > Cr(VI) is mostly absent in surface soil but ubiquitous in deeper soil and sediment. > Cr(VI) increased linearly with time during lab soil incubations with no additions. > Cation exchange processes resulted in greater Cr(VI) generation rates. - Abstract: Concentrations of geogenic Cr(VI) in groundwater that exceed the World Health Organization's maximum contaminant level for drinking water (50 {mu}g L{sup -1}) occur in several locations globally. The major mechanism for mobilization of this Cr(VI) at these sites is the weathering of Cr(III) from ultramafic rocks and its subsequent oxidation on Mn oxides. This process may be occurring in the southern Sacramento Valley of California where Cr(VI) concentrations in groundwater can approach or exceed 50 {mu}g L{sup -1}. To characterize Cr geochemistry in the area, samples from several soil auger cores (approximately 4 m deep) and drill cores (approximately 25 m deep) were analyzed for total concentrations of 44 major, minor and trace elements, Cr associated with labile Mn and Fe oxides, and Cr(VI). Total concentrations of Cr in these samples ranged from 140 to 2220 mg per kg soil. Between 9 and 70 mg per kg soil was released by selective extractions that target Fe oxides, but essentially no Cr was associated with the abundant reactive Mn oxides (up to {approx}1000 mg hydroxylamine-reducible Mn per kg soil was present). Both borehole magnetic susceptibility surveys performed at some of the drill core sites and relative differences between Cr released in a 4-acid digestion versus total Cr (lithium metaborate fusion digestion) suggest that the majority of total Cr in the samples is present in refractory chromite minerals transported from ultramafic exposures in the Coast Range Mountains. Chromium(VI) in the samples studied ranged

  14. The deep-water spiny lobster Palinurus gilchristi is one of five ...

    African Journals Online (AJOL)

    spamer

    The deep-water spiny lobster Palinurus gilchristi is one of five ... conditions because all features that can be used to determine the ... growth as a function of CL were calculated for each ..... (>85 mm CL) may bear eggs more than once per year.

  15. Sub-seasonal predictability of water scarcity at global and local scale

    Science.gov (United States)

    Wanders, N.; Wada, Y.; Wood, E. F.

    2016-12-01

    Forecasting the water demand and availability for agriculture and energy production has been neglected in previous research, partly due to the fact that most large-scale hydrological models lack the skill to forecast human water demands at sub-seasonal time scale. We study the potential of a sub-seasonal water scarcity forecasting system for improved water management decision making and improved estimates of water demand and availability. We have generated 32 years of global sub-seasonal multi-model water availability, demand and scarcity forecasts. The quality of the forecasts is compared to a reference forecast derived from resampling historic weather observations. The newly developed system has been evaluated for both the global scale and in a real-time local application in the Sacramento valley for the Trinity, Shasta and Oroville reservoirs, where the water demand for agriculture and hydropower is high. On the global scale we find that the reference forecast shows high initial forecast skill (up to 8 months) for water scarcity in the eastern US, Central Asia and Sub-Saharan Africa. Adding dynamical sub-seasonal forecasts results in a clear improvement for most regions in the world, increasing the forecasts' lead time by 2 or more months on average. The strongest improvements are found in the US, Brazil, Central Asia and Australia. For the Sacramento valley we can accurately predict anomalies in the reservoir inflow, hydropower potential and the downstream irrigation water demand 6 months in advance. This allow us to forecast potential water scarcity in the Sacramento valley and adjust the reservoir management to prevent deficits in energy or irrigation water availability. The newly developed forecast system shows that it is possible to reduce the vulnerability to upcoming water scarcity events and allows optimization of the distribution of the available water between the agricultural and energy sector half a year in advance.

  16. Contrasting trends in North Atlantic deep-water formation in the Labrador Sea and Nordic Seas during the Holocene

    NARCIS (Netherlands)

    Renssen, H.; Goosse, H.; Fichefet, T.

    2005-01-01

    The Holocene North Atlantic deep-water formation is studied in a 9,000-year long simulation with a coupled climate model of intermediate complexity, forced by changes in orbital forcing and atmospheric trace gas concentrations. During the experiment, deep-water formation in the Nordic Seas is

  17. Channel Extension in Deep-Water Distributive Systems

    Science.gov (United States)

    Hoyal, D. C.; Sheets, B. A.

    2007-12-01

    acceleration to Fr'-critical conditions and the formation of a depositional hydraulic jump, which perturbs sediment transport and ends channel extension. Similar morphodynamic length scale controls are observed in shallow water fan-delta experiments (e.g., SAFL DB-03) and in 2-D depositional cyclic steps. The experiments seem to explain two interesting observations from the earlier self-organized fan experiments and from real submarine fans. Firstly, the observation of 'perched' fills at the steep entrances to salt withdrawal minibasins (e.g., in the Gulf of Mexico) suggesting higher sedimentation rates (or inefficient sediment transport) on higher slopes (initially higher than at the slope break downstream). Secondly, strong progradation as the fan evolves and slope decreases in 'perched' fans suggests increasing flow efficiency on lower slopes, at least over a certain window of parameter space. Apparently deep water systems have a tendency to self-regulate even when flows differ significantly in initial density. The observed modulation to Fr'-critical flow appears to be an important control on length scales in deep- water distributive channel systems, potentially explaining strong deepwater progradation or 'delta-like' patterns that have remained paradoxical. Near critical conditions have been inferred from observations of many active submarine fans but the extent to which these results from conservative density currents apply to non-conservative and potentially 'ignitive' turbidity currents is the subject of ongoing investigation.

  18. DOJ News Release: Local Contractor Pleads Guilty To Defrauding City Of Sacramento Of Stimulus Funds

    Science.gov (United States)

    SACRAMENTO, Calif. — US Attorney Benjamin B. Wagner announced today that Peter Scott, President of Advantage Demolition and Engineering (ADE), 47, of Roseville, pleaded guilty today to two counts of submitting false contractor bonds.

  19. Staggering successes amid controversy in California water management

    Science.gov (United States)

    Lund, J. R.

    2012-12-01

    Water in California has always been important and controversial, and it probably always will be. California has a large, growing economy and population in a semi-arid climate. But California's aridity, hydrologic variability, and water controversies have not precluded considerable economic successes. The successes of California's water system have stemmed from the decentralization of water management with historically punctuated periods of more centralized strategic decision-making. Decentralized management has allowed California's water users to efficiently explore incremental solutions to water problems, ranging from early local development of water systems (such as Hetch Hetchy, Owens Valley, and numerous local irrigation projects) to more contemporary efforts at water conservation, water markets, wastewater reuse, and conjunctive use of surface and groundwater. In the cacophony of local and stakeholder interests, strategic decisions have been more difficult, and consequently occur less frequently. California state water projects and Sacramento Valley flood control are examples where decades of effort, crises, floods and droughts were needed to mobilize local interests to agree to major strategic decisions. Currently, the state is faced with making strategic environmental and water management decisions regarding its deteriorating Sacramento-San Joaquin Delta. Not surprisingly, human uncertainties and physical and fiscal non-stationarities dominate this process.

  20. NORTH SOLDIERS IN SOUTHERN WARS: THE MILITARY RECRUITMENT IN BAHIA AND PERNAMBUCO TO THE COLONY OF THE SACRAMENTO

    Directory of Open Access Journals (Sweden)

    Paulo César Possamai

    2011-06-01

    Full Text Available The North of the State of Brazil contributed to the creation and defense of Colonia do Sacramento. This article will address the military conscription in the Northern provinces, especially in Bahia and Pernambuco during the Eighteenth Century. We will give emphasis to the period of the siege from 1735 to 1737, when a large conscription was enforced in Portugal and in many Brazilian provinces in order to avoid the conquest of Sacramento by the Spaniards, as well as to strengthen Rio Grande de São Pedro, from which few men could return home.

  1. Deep Seawater Intrusion Enhanced by Geothermal Through Deep Faults in Xinzhou Geothermal Field in Guangdong, China

    Science.gov (United States)

    Lu, G.; Ou, H.; Hu, B. X.; Wang, X.

    2017-12-01

    This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.

  2. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses.

    Science.gov (United States)

    Brown, Alastair; Wright, Roseanna; Mevenkamp, Lisa; Hauton, Chris

    2017-10-01

    Exploration of deep-sea mineral resources is burgeoning, raising concerns regarding ecotoxicological impacts on deep-sea fauna. Assessing toxicity in deep-sea species is technologically challenging, which promotes interest in establishing shallow-water ecotoxicological proxy species. However, the effects of temperature and hydrostatic pressure on toxicity, and how adaptation to deep-sea environmental conditions might moderate these effects, are unknown. To address these uncertainties we assessed behavioural and physiological (antioxidant enzyme activity) responses to exposure to copper-spiked artificial sediments in a laboratory experiment using a shallow-water holothurian (Holothuria forskali), and in an in situ experiment using a deep-sea holothurian (Amperima sp.). Both species demonstrated sustained avoidance behaviour, evading contact with contaminated artificial sediment. However, A. sp. demonstrated sustained avoidance of 5mgl -1 copper-contaminated artificial sediment whereas H. forskali demonstrated only temporary avoidance of 5mgl -1 copper-contaminated artificial sediment, suggesting that H. forskali may be more tolerant of metal exposure over 96h. Nonetheless, the acute behavioural response appears consistent between the shallow-water species and the deep-sea species, suggesting that H. forskali may be a suitable ecotoxicological proxy for A. sp. in acute (≤24h) exposures, which may be representative of deep-sea mining impacts. No antioxidant response was observed in either species, which was interpreted to be the consequence of avoiding copper exposure. Although these data suggest that shallow-water taxa may be suitable ecotoxicological proxies for deep-sea taxa, differences in methodological and analytical approaches, and in sex and reproductive stage of experimental subjects, require caution in assessing the suitability of H. forskali as an ecotoxicological proxy for A. sp. Nonetheless, avoidance behaviour may have bioenergetic consequences that

  3. Astronomically paced changes in deep-water circulation in the western North Atlantic during the middle Eocene

    Science.gov (United States)

    Vahlenkamp, Maximilian; Niezgodzki, Igor; De Vleeschouwer, David; Bickert, Torsten; Harper, Dustin; Kirtland Turner, Sandra; Lohmann, Gerrit; Sexton, Philip; Zachos, James; Pälike, Heiko

    2018-02-01

    North Atlantic Deep Water (NADW) currently redistributes heat and salt between Earth's ocean basins, and plays a vital role in the ocean-atmosphere CO2 exchange. Despite its crucial role in today's climate system, vigorous debate remains as to when deep-water formation in the North Atlantic started. Here, we present datasets from carbonate-rich middle Eocene sediments from the Newfoundland Ridge, revealing a unique archive of paleoceanographic change from the progressively cooling climate of the middle Eocene. Well-defined lithologic alternations between calcareous ooze and clay-rich intervals occur at the ∼41-kyr beat of axial obliquity. Hence, we identify obliquity as the driver of middle Eocene (43.5-46 Ma) Northern Component Water (NCW, the predecessor of modern NADW) variability. High-resolution benthic foraminiferal δ18O and δ13C suggest that obliquity minima correspond to cold, nutrient-depleted, western North Atlantic deep waters. We thus link stronger NCW formation with obliquity minima. In contrast, during obliquity maxima, Deep Western Boundary Currents were weaker and warmer, while abyssal nutrients were more abundant. These aspects reflect a more sluggish NCW formation. This obliquity-paced paleoceanographic regime is in excellent agreement with results from an Earth system model, in which obliquity minima configurations enhance NCW formation.

  4. A system of automated processing of deep water hydrological information

    Science.gov (United States)

    Romantsov, V. A.; Dyubkin, I. A.; Klyukbin, L. N.

    1974-01-01

    An automated system for primary and scientific analysis of deep water hydrological information is presented. Primary processing of the data in this system is carried out on a drifting station, which also calculates the parameters of vertical stability of the sea layers, as well as their depths and altitudes. Methods of processing the raw data are described.

  5. Assessing Oil Spill Impacts to Cold-Water Corals of the Deep Gulf of Mexico

    Science.gov (United States)

    DeLeo, D. M.; Lengyel, S. D.; Cordes, E. E.

    2016-02-01

    The Deepwater Horizon (DWH) disaster and subsequent cleanup efforts resulted in the release of an unprecedented amount of oil and chemical dispersants in the deep waters of the Gulf of Mexico (GoM). Over the years, numerous detrimental effects have been documented including impacts to cold-water coral ecosystems. Assessing and quantifying these effects is crucial to understanding the long-term consequences to affected coral populations as well as their resilience. We conducted live exposure experiments to investigate the toxicity of oil and dispersants on two deep-sea corals, Callogorgia delta and Paramuricea type B3. For both species, the treatments containing dispersants had a more pronounced effect than oil treatments alone. In addition, RNA from unexposed and DWH spill-impacted Paramuricea biscaya was extracted and sequenced using Illumina technology. A de novo reference transcriptome was produced and used to explore stress-induced variations in gene expression. Current findings show overexpression of genes coding for Cytochrome p450 (CYP1A1), Tumor necrosis factor receptor-associated factors (TRAFs), Peroxidasin and additional genes involved in innate immunity and apoptotic pathways. CYP1A1 is involved in the metabolism of xenobiotics and has been previously used as a diagnostic tool for aquatic pollution. TRAFs are responsible for regulating pathways involved in immune and inflammatory responses and were likewise overexpressed in thermally stressed shallow-water corals. Ribosomal proteins were also significantly underexpressed. These genes among others found in our expression data serve as useful biomarker candidates for assessing and monitoring future spill impacts as resource extraction continues in the deep waters of the GoM. Our results also provide insights into the responses of deep-sea corals to toxin exposure, implications of applying dispersants to oil spills and a novel reference assembly for a relatively under-studied group of cold-water corals.

  6. Calculations of Asteroid Impacts into Deep and Shallow Water

    Science.gov (United States)

    Gisler, Galen; Weaver, Robert; Gittings, Michael

    2011-06-01

    Contrary to received opinion, ocean impacts of small (dangerous features of ocean impacts, just as for land impacts, are the atmospheric effects. We present illustrative hydrodynamic calculations of impacts into both deep and shallow seas, and draw conclusions from a parameter study in which the size of the impactor and the depth of the sea are varied independently. For vertical impacts at 20 km/s, craters in the seafloor are produced when the water depth is less than about 5-7 times the asteroid diameter. Both the depth and the diameter of the transient crater scale with the asteroid diameter, so the volume of water excavated scales with the asteroid volume. About a third of the crater volume is vaporised, because the kinetic energy per unit mass of the asteroid is much larger than the latent heat of vaporisation of water. The vaporised water carries away a considerable fraction of the impact energy in an explosively expanding blast wave which is responsible for devastating local effects and may affect worldwide climate. Of the remaining energy, a substantial portion is used in the crown splash and the rebound jet that forms as the transient crater collapses. The collapse and rebound cycle leads to a propagating wave with a wavelength considerably shorter than classical tsunamis, being only about twice the diameter of the transient crater. Propagation of this wave is hindered somewhat because its amplitude is so large that it breaks in deep water and is strongly affected by the blast wave's perturbation of the atmosphere. Even if propagation were perfect, however, the volume of water delivered per metre of shoreline is less than was delivered by the Boxing Day 2004 tsunami for any impactor smaller than 500 m diameter in an ocean of 5 km depth or less. Near-field effects are dangerous for impactors of diameter 200 m or greater; hurricane-force winds can extend tens of kilometers from the impact point, and fallout from the initial splash can be extremely violent

  7. Geochemical records of salt-water inflows into the deep basins of the Baltic Sea

    DEFF Research Database (Denmark)

    Neumann, T.; Christiansen, C.; Clasen, S.

    1997-01-01

    The estuarine circulation system of the Baltic Sea promotes stable stratification and bottom water anoxia in sedimentary basins of the Baltic proper. Ingressions of saline, oxygen-rich waters from the North Sea replace the oxygen depleted deep water. Timing and extent of the ingressions vary...... on time-scales of years to decades, and are largely determined by wind-strength and storm frequency over the North Atlantic Ocean and Europe. Mn/Fe-ratios in sediments from a dated sediment core of the Gotland Deep (250 m water depth) record variations in redox conditions that can be linked to historical......-pressure areas over the North Atlantic in more recent times. The last three events have also been observed by hydrographic measurements. During the long time stagnation periods, Fe and Mn will be segregated into a particulate phase (iron sulfide) which accumulates at the seafloor and a dissolved phase (Mn2...

  8. Occurrence and biogeography of hydroids (Cnidaria: Hydrozoa) from deep-water coral habitats off the southeastern United States

    Science.gov (United States)

    Henry, Lea-Anne; Nizinski, Martha S.; Ross, Steve W.

    2008-06-01

    Deep-water coral habitats off the southeastern USA (SEUS) support diverse fish and invertebrate assemblages, but are poorly explored. This study is the first to report on the hydroids collected from these habitats in this area. Thirty-five species, including two species that are likely new to science, were identified from samples collected primarily by manned submersible during 2001-2005 from deep-water coral habitats off North Carolina to east-central Florida. Eleven of the species had not been reported since the 19th to mid-20th century. Ten species, and one family, the Rosalindidae, are documented for the first time in the SEUS. Latitudinal ranges of 15 species are extended, and the deepest records in the western North Atlantic for 10 species are reported. A species accumulation curve illustrated that we continue to add to our knowledge of hydroid diversity in these habitats. Sexually mature individuals were collected for 19 species during the summer to early autumn months. Most of the observed species (89%) liberate planula larvae as part of their life cycles, suggesting that these species exhibit a reproductive strategy that reduces the risk of dispersal to sub-optimal habitats. Hydroids occurred across various substrata including coral rubble, live corals, rock and other animal hosts including hydroids themselves. All observed species were regionally widespread with typically deep-neritic to bathyal sub-tropical/tropical distributions. Hydroid assemblages from deep-water SEUS coral habitats were most similar to those from adjacent deep-water habitats off the SEUS (17 shared species), and those in the Straits of Florida/Bahamas and Caribbean/West Indian regions (14 and 8 shared species, respectively). The similarity to sub-tropical and tropical assemblages and the richness of plumularioids in the SEUS deep-water coral habitats support the idea of a Pleistocene intrusion of tropical species northwards following an intensification of the Gulf Stream from the

  9. Effects of a deep-water running program on muscle function and functionality in elderly women community dwelling

    Directory of Open Access Journals (Sweden)

    Daisy Alberti

    2017-12-01

    Full Text Available Abstract AIMS The aim of the study was to determine the effects of deep-water running on muscle function and functionality in community dwelling old women. METHODS Older women (n=19 were randomly assigned to one of the two groups: deep-water running (DWR: n=09, 64.33±4.24 years, 75.15±12.53 kg, 160.45±7.52 cm; or control group CG: n=10, 64.40±4.22 years, 74.46±12.39 kg, 158.88±5.48 cm. The DWR group carried out 18 weeks of deep-water running, twice/week 50 min sessions. Dynamic isokinetic strength for the lower limb and functionality was assessed before and after intervention. RESULTS DWR group increased peak torque, total work and average power of the knee and hip flexors and extensors. Additionally showed better performance on gait speed, timed up and go test, five-times-sit-to-stand-test repetitions from a chair as well as the six-minute walk test. CONCLUSION The deep-water running program was effective to improve muscle function and functionality.

  10. Numerical Simulation and Experimental Study of Deep Bed Corn Drying Based on Water Potential

    Directory of Open Access Journals (Sweden)

    Zhe Liu

    2015-01-01

    Full Text Available The concept and the model of water potential, which were widely used in agricultural field, have been proved to be beneficial in the application of vacuum drying model and have provided a new way to explore the grain drying model since being introduced to grain drying and storage fields. Aiming to overcome the shortcomings of traditional deep bed drying model, for instance, the application range of this method is narrow and such method does not apply to systems of which pressure would be an influential factor such as vacuum drying system in a way combining with water potential drying model. This study established a numerical simulation system of deep bed corn drying process which has been proved to be effective according to the results of numerical simulation and corresponding experimental investigation and has revealed that desorption and adsorption coexist in deep bed drying.

  11. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    Science.gov (United States)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  12. Biogenic Properties of Deep Waters from the Black Sea Reduction (Hydrogen Sulphide) Zone for Marine Algae

    OpenAIRE

    Polikarpov, Gennady G.; Lazorenko, Galina Е.; Тereschenko, Natalya N.

    2015-01-01

    Abstract Generalized data of biogenic properties investigations of the Black Sea deep waters from its reduction zone for marine algae are presented. It is shown on board and in laboratory that after pre-oxidation of hydrogen sulphide by intensive aeration of the deep waters lifted to the surface of the sea, they are ready to be used for cultivation of the Black Sea unicellular, planktonic, and multicellular, benthic, algae instead of artificial medium. Naturally balanced micro- and macroeleme...

  13. Survey and analysis of deep water mineral deposits using nuclear methods

    International Nuclear Information System (INIS)

    Staehle, C.M.; Noakes, J.E.; Spaulding, J.

    1991-01-01

    Present knowledge of the location, quality, quantity and recoverability of sea floor minerals is severely limited, particularly in the abyssal depths and deep water within the 200 mile Exclusion Economic Zone (EEZ) surrounding the U.S. Pacific Islands. To improve this understanding and permit exploitation of these mineral reserves much additional data is needed. This paper will discuss a sponsored program for extending existing proven nuclear survey methods currently used on the shallow continental margins of the Atlantic and Gulf of Mexico into the deeper waters of the Pacific. This nuclear technology can be readily integrated and extended to depths of 2000 m using the existing RCV-150 remotely operated vehicle (ROV) and the PISCESE V manned deep submersible vehicle (DSV) operated by The University of Hawaii's, Hawaii Underseas Research Laboratory (HURL). Previous papers by the authors have also proposed incorporating these nuclear analytical methods for survey of the deep ocean through the use of Autonomous Underwater Vehicle (AUX). Such a vehicle could extend the use of passive nuclear instrument operation, in addition to conventional analytical methods, into the abyssal depths and do so with speed and economy not otherwise possible. The natural radioactivity associated with manganese nodules and crustal deposits is sufficiently above normal background levels to allow discrimination and quantification in near real time

  14. Automated River Reach Definition Strategies: Applications for the Surface Water and Ocean Topography Mission

    Science.gov (United States)

    Frasson, Renato Prata de Moraes; Wei, Rui; Durand, Michael; Minear, J. Toby; Domeneghetti, Alessio; Schumann, Guy; Williams, Brent A.; Rodriguez, Ernesto; Picamilh, Christophe; Lion, Christine; Pavelsky, Tamlin; Garambois, Pierre-André

    2017-10-01

    The upcoming Surface Water and Ocean Topography (SWOT) mission will measure water surface heights and widths for rivers wider than 100 m. At its native resolution, SWOT height errors are expected to be on the order of meters, which prevent the calculation of water surface slopes and the use of slope-dependent discharge equations. To mitigate height and width errors, the high-resolution measurements will be grouped into reaches (˜5 to 15 km), where slope and discharge are estimated. We describe three automated river segmentation strategies for defining optimum reaches for discharge estimation: (1) arbitrary lengths, (2) identification of hydraulic controls, and (3) sinuosity. We test our methodologies on 9 and 14 simulated SWOT overpasses over the Sacramento and the Po Rivers, respectively, which we compare against hydraulic models of each river. Our results show that generally, height, width, and slope errors decrease with increasing reach length. However, the hydraulic controls and the sinuosity methods led to better slopes and often height errors that were either smaller or comparable to those of arbitrary reaches of compatible sizes. Estimated discharge errors caused by the propagation of height, width, and slope errors through the discharge equation were often smaller for sinuosity (on average 8.5% for the Sacramento and 6.9% for the Po) and hydraulic control (Sacramento: 7.3% and Po: 5.9%) reaches than for arbitrary reaches of comparable lengths (Sacramento: 8.6% and Po: 7.8%). This analysis suggests that reach definition methods that preserve the hydraulic properties of the river network may lead to better discharge estimates.

  15. Sustainable development of deep-water seaport: the case of Lithuania.

    Science.gov (United States)

    Burskyte, Vilma; Belous, Olga; Stasiskiene, Zaneta

    2011-06-01

    In 2003, the Japan International Cooperation Agency carried out a development feasibility study of Klaipeda Seaport (Lithuania). The focus in this study was the evaluation of environmental impacts of the port expansion because it is located in an ecologically sensitive area. While the Japanese researchers focused on the environmental impact analysis, they did not provide unambiguous conclusions. The problems remained unresolved and required further, more detailed consideration and deeper analysis. Environmental sustainability in seaports is an issue of timely importance in many countries given the rapid increase in port-to-port traffic and harbor capacity. This paper explores the situation in Klaipeda Seaport (Lithuania) which is the northernmost ice-free port on the Eastern coast of the Baltic Sea and its challenges in terms of environmental aspects and current pollution situation. This port plays an important role in the economic development of the region and in creating a sustainable society, i.e., a society that continues to develop economically without increasing its impact on our living environment and where the possible reduction of its current impact can be huge due to the fact that the seaport is a place where transport and logistics intersect and constitute large-scale industrial estates. Increasingly, they also turn towards sustainability. Society faces the need for radical change because of increasing technological progress and increasing environmental impact. Environmental and public issues must be addressed by a systemic approach to find harmony among all the subsystems. Therefore, the authors of the article performed an assessment of the deep-water port of Klaipeda sustainable development opportunities tackling the following tasks: (1) Assessing Klaipeda port and the projected deep-water port of the current environment state; (2) Assessing the impact of the water quality of Klaipeda port, depending on the intensity of activity; (3) Assessing the

  16. 77 FR 47536 - Revisions to the California State Implementation Plan, Mojave Desert, Northern Sierra, Sacramento...

    Science.gov (United States)

    2012-08-09

    ... San Diego Air Pollution Agencies AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final...), Sacramento Metropolitan Air Quality Management District (SMAQMD) and San Diego County Air Pollution Control...) September 2008, 5. ``Control Techniques Guidelines for Miscellaneous Metal and Plastic Parts Coatings,'' EPA...

  17. Bottom Backscattering Strengths Measured in Shallow and Deep Water

    Science.gov (United States)

    2017-01-18

    Reverberation Experiment 2005 (OREX-05); 0.6−5 kHz • Deep Water o Scotian Continental Rise, August 1993 (19 sites)  Low -Frequency Active 11 (LFA 11...reprocessed cross-CST- experiment results are shown (along with some physics -based model comparisons) in Figs. 9.A-2 and 9.A-3 (Gauss et al., 2008...Backscattering Measured Off the Carolina Coast During Littoral Warfare Advanced Development 98-4 Experiment ,” NRL Memorandum Report 7140- -98-8339

  18. Markov chains and entropy tests in genetic-based lithofacies analysis of deep-water clastic depositional systems

    Directory of Open Access Journals (Sweden)

    Borka Szabolcs

    2016-01-01

    Full Text Available The aim of this study was to examine the relationship between structural elements and the so-called genetic lithofacies in a clastic deep-water depositional system. Process-sedimentology has recently been gaining importance in the characterization of these systems. This way the recognized facies attributes can be associated with the depositional processes establishing the genetic lithofacies. In this paper this approach was presented through a case study of a Tertiary deep-water sequence of the Pannonian-basin.

  19. Predicting drivers and distributions of deep-sea ecosystems: A cold-water coral case study

    DEFF Research Database (Denmark)

    Mohn, Christian; Rengstorf, Anna; Brown, Colin

    2015-01-01

    pertusa as a case study (Rengstorf et al., 2014). The study shows that predictive models incorporating hydrodynamic variables perform significantly better than models based on terrain parameters only. They are a potentially powerful tool to improve our understanding of deep-sea ecosystem functioning......, facilitating species distribution modelling with high spatial detail. In this study, we used high resolution data (250 m grid size) from a newly developed hydrodynamic model to explore linkages between key physical drivers and occurrences of the cold-water coral Lophelia pertusa in selected areas of the NE...... and to provide decision support for marine spatial planning and conservation in the deep sea. Mohn et al., 2014.Linking benthic hydrodynamics and cold water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic. Progress in Oceanography 122, 92-104. Rengstorf et...

  20. Local-scale invasion pathways and small founder numbers in introduced Sacramento pikeminnow (Ptychocheilus grandis)

    Science.gov (United States)

    Andrew P. Kinziger; Rodney J. Nakamoto; Bret C. Harvey

    2014-01-01

    Given the general pattern of invasions with severe ecological consequences commonly resulting from multiple introductions of large numbers of individuals on the intercontinental scale, we explored an example of a highly successful, ecologically significant invader introduced over a short distance, possibly via minimal propagule pressure. The Sacramento pikeminnow (

  1. Meeting the flow assurance challenges of deep water developments - from CAPEX development to field start up

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, M.M.; Feasey, N.D. [National Aluminium Company Ltd. (Nalco), Cheshire (United Kingdom); Afonso, M.; Silva, D. [NALCO Brasil Ltda., Sao Paulo, SP (Brazil)

    2008-07-01

    As oil accumulations in easily accessible locations around the world become less available developments in deeper water become a more common target for field development. Deep water projects, particularly sub sea development, present a host of challenges in terms of flow assurance and integrity. In this paper the focus will be on the chemical control of flow assurance challenges in hydrate control, scale control and wax/asphaltene control within deep water (>750 meter) developments. The opportunities for kinetic hydrate control vs. conventional thermodynamic hydrate control will be outlined with examples of where these technologies have been applied and the limitations that still exist. The development of scale control chemical formulations specifically for sub sea application and the challenges of monitoring such control programs will be highlighted with developments in real time and near real time monitoring. Organic deposit control (wax/asphaltene) will focus on the development of new chemicals that have higher activity but lower viscosity than currently used chemicals hence allowing deployment at colder temperatures and over longer distances. The factors that need to be taken into account when selecting chemicals for deep water application will be highlighted. Fluid viscosity, impact of hydrostatic head on injectivity, product stability at low temperature and interaction with other production chemicals will be reviewed as they pertain to effective flow assurance. This paper brings learning from other deep water basins with examples from the Gulf of Mexico, West Africa and Brazil, which will be used to highlight these challenges and some of the solutions currently available along with the technology gaps that exist. (author)

  2. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  3. Catwell and Sherdaps for deep-water production fields

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, H.P.; Rey, R. [Cameron, 34 - Beziers (France)

    2000-07-01

    The names Catwell and SherDaps are derived from: - Catenary Well - Subsea Horizontal Extended Reach Drilling And Production System. Both systems use the technique of being able to drill a well in deep-water either through a platform catenary carrier pipe or a catenary drilling riser. They also offer, in addition, significant advantages when drilling into shallow reservoirs and the ability to enhance production using platform artificial lift systems or easily serviceable pumps either in the well or at the mud-line. Catwell is a platform system with surface wellheads/trees whereas SherDaps uses a group of subsea wellheads/trees/BOP's that are accessible from one permanent catenary drilling riser. Both systems allow drilling/completing and future well intervention from a central location that otherwise would have required several drilling centres (i.e. platforms or subsea) if the conventional approach was followed. It is envisaged that well targets close to a platform will use well conductors possibly with mud-line wellheads, then Catwell to reach the medium range well targets and SherDaps for long range wells. It is considered that this arrangement would allow a single surface drilling/ production centre to have access to well targets giving a foot print range of up to a 20 km diameter. The total Capex savings on a Deep-water Field Development could be in the region of $200 m on a $1 billion development. Opex will be lower with the ability from the drilling center to quickly access any problem well and rectify any faults, minimising lost production. (authors)

  4. The development of a subsea power transmission system for deep water boosting applications

    Energy Technology Data Exchange (ETDEWEB)

    Godinho, C.A.F. [Pirelli Cabos S.A. (Brazil); Campagnac, L.A. [Siemens S.A. (Brazil); Nicholson, A. [Tronic Electronics Services Ltd. (WEC); Magalhaes, W.M. de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    1996-12-31

    This paper presents the development of a sub sea power transmission in medium voltage and variable frequency, as a key system for application of Boosting technology and for electrical submersible Pumping in deep water wells. This work focuses on the design and manufacture of sub sea power cables and transformers for 1,000 m water depth. 8 refs., 6 figs.

  5. Katrina's Lessons in California: Social and Political Trajectories of Flood Management in the Sacramento River Watershed since 2005

    Science.gov (United States)

    Comby, E.; Le Lay, Y. F.; Piegay, H.

    2017-12-01

    Over the last decade, major changes have occurred in the way that environments are managed. They can be linked with external or internal events which may shape public perception. An external event can reveal a forgotten risk and create a social problem (Hilgartner et Bosk 1988). Following the Advocacy Coalition Framework (Sabatier 1988), we studied the role of Hurricane Katrina in flood management in California from 2005 to 2013. How do policies intend to increase the city's resilience? We compared different flood policies of the Sacramento River from 2005 to 2013, by combining field observations with a principal dataset of 340 regional newspaper items (Sacramento Bee). Media coverage was analyzed using content, quotation, and textometry as well as GIS. We underlined temporal variability in public perceptions towards floods. Some planning choices (such as levees) became controversial, while journalists praised weirs, bypasses, and dams. However, Katrina does not seem to have a real impact on urban sprawl strategies in three Sacramento neighborhoods (Fig.1). We analyzed also the limits of the comparison between New Orleans and Sacramento. Dialog between stakeholders existed in space and time between here (California) and elsewhere (Louisiana), present (post-2005) and past (Katrina catastrophe), and risk and disaster. Katrina was a national scandal with political announcements. However, flood policy was developed first at a regional and then local scales. After Katrina awareness, conflicts appear: some California residents refuse to have a policy linked to Katrina applied to them. We underlined that different stakeholders became prominent: it may be useless to tackle with only one institution. Some institutions had an integrated river management, while others kept a traditional risk management. We assessed the changes in river management while using discourse to understand the (potential) shift in human-river relationships from risk management to integrated river

  6. Deep-water anoxygenic photosythesis in a ferruginous chemocline

    DEFF Research Database (Denmark)

    Crowe, Sean; Maresca, J. A.; Jones, CarriAyne

    2014-01-01

    information suggests that deep-water GSB can be supported by a S-cycle, even under ferruginous conditions. The constraints we place on the metabolic capacity and physiology of GSB have important geobiological implications. Biomarkers diagnostic of GSB would be a good proxy for anoxic conditions but could...... not discriminate between euxinic and ferruginous states, and though GSB biomarkers could indicate a substantial GSB community, such a community may exist with very little metabolic activity. The light requirements of GSB indicate that at light levels comparable to those in the OAB of Lake Matano or the Black Sea...

  7. Chemistry and origin of deep ground water in crystalline rocks; Kemi och genes av djupa grundvatten i kristallint berg

    Energy Technology Data Exchange (ETDEWEB)

    Lagerblad, B [Swedish Cement and Concrete Research Inst., Stockholm (Sweden)

    1995-11-01

    This report discusses the interactions between water and crystalline rocks and its consequences for the chemical composition of the water. It also treats how flows of different types of water are modified by the rock, and the possible consequences for the ground water near a nuclear waste repository. The focus of the work is the changes in composition that ground water gets at deep levels in the rock. Data from Finnsjoen and Aespoe in Sweden show higher salinity in deep rock, which has been interpreted as a result of marine inflow of water during glaciation. Data from other, deeper boreholes in Finland, Canada, Russia, England and Sweden show that the increasing salinity is a rule and very high at great depths, higher than marine water can produce. Therefore, the deep waters from Finnsjoen and Aespoe are probably very old, and the high salinity a result from geological processes. Differing cation and isotopic composition than seawater also indicate geologic water. Differing theories on the origin of the ground water should be regarded in the safety analysis for a repository. 36 refs, 3 figs, 1 tab.

  8. Effects of the proposed California WaterFix North Delta Diversion on flow reversals and entrainment of juvenile Chinook salmon (Oncorhynchus tshawytscha) into Georgiana Slough and the Delta Cross Channel, northern California

    Science.gov (United States)

    Perry, Russell W.; Romine, Jason G.; Pope, Adam C.; Evans, Scott D.

    2018-02-27

    The California Department of Water Resources and Bureau of Reclamation propose new water intake facilities on the Sacramento River in northern California that would convey some of the water for export to areas south of the Sacramento-San Joaquin River Delta (hereinafter referred to as the Delta) through tunnels rather than through the Delta. The collection of water intakes, tunnels, pumping facilities, associated structures, and proposed operations are collectively referred to as California WaterFix. The water intake facilities, hereinafter referred to as the North Delta Diversion (NDD), are proposed to be located on the Sacramento River downstream of the city of Sacramento and upstream of the first major river junction where Sutter Slough branches from the Sacramento River. The NDD can divert a maximum discharge of 9,000 cubic feet per second (ft3/s) from the Sacramento River, which reduces the amount of Sacramento River inflow into the Delta.In this report, we conducted three analyses to investigate the effect of the NDD and its proposed operation on entrainment of juvenile Chinook salmon (Oncorhynchus tshawytscha) into Georgiana Slough and the Delta Cross Channel (DCC). Fish that enter the interior Delta (the network of channels to the south of the Sacramento River) through Georgiana Slough and the DCC survive at lower rates than fish that use other migration routes (Sacramento River, Sutter Slough, and Steamboat Slough). Therefore, fisheries managers were concerned about the extent to which operation of the NDD would increase the proportion of the population entering the interior Delta, which, all else being equal, would lower overall survival through the Delta by increasing the fraction of the population subject to lower survival rates. Operation of the NDD would reduce flow in the Sacramento River, which has the potential to increase the magnitude and duration of reverse flows of the Sacramento River downstream of Georgiana Slough.In the first analysis, we

  9. Modeling SST gradient changes, the hydrological cycle response, and deep water formation in the North Pacific

    Science.gov (United States)

    Burls, N.; Ford, H. L.; Fedorov, A. V.; Jahn, A.; Jacobs, P.

    2017-12-01

    The absence of deep-water formation and a deep meridional overturning cell in the modern North Pacific has been attributed to the relatively fresh surface conditions in the subarctic. These conditions are, in turn, best explained by the local excess of precipitation over evaporation in the northern Pacific due to net moisture transport from the Atlantic to the Pacific and/or moisture transport associated with the Asian monsoon. Some studies link the lack of deep-water formation in the Pacific directly to its occurrence in the Atlantic via the Atlantic-Pacific seesaw effect and idealized experiments indicate that the smaller width of the Atlantic predisposes it to higher salinity and deep-water formation. We have conducted a series of coupled model experiments across which global mean temperatures and large-scale meridional SST gradients are varied. We perturb either atmospheric CO2 concentrations or the meridional gradient in cloud radiative forcing and run each experiment out to 3000 years so that the deep ocean has equilibrated. As the strength of the meridional temperature gradient decreases across our experiments, a Pacific Meridional Overturning Circulation develops. The strength of this Pacific Meridional Overturning Circulation generally increases as the gradient weakens. In one of these experiments where the meridional SST gradient most closely resembles Pliocene reconstructions, a PMOC exists of comparable in strength to the modern AMOC. We will describe how the hydrological cycle response to reduced meridional SST gradients acts to increase the strength of the PMOC across our sensitivity experiments. Additionally, we will discuss our effort to include carbon isotopes in our Pliocene-like simulation for data-model comparisons. Calcium carbonate accumulation data from Subarctic North Pacific Site 882 and new and previously published carbon isotope records from the Pacific appear to support our modelling results suggesting that weaker meridonal SST gradients

  10. Riverine Nutrient Trends in the Sacramento and San Joaquin Basins, California: A Comparison to State and Regional Water Quality Policies

    Directory of Open Access Journals (Sweden)

    Brandon Schlegel

    2015-12-01

    Full Text Available doi: http://dx.doi.org/1015447/sfews.2015v13iss4art2Non-point source (NPS contaminant control strategies were initiated in California in the late 1980s under the authority of the State Porter–Cologne Act and eventually for the development of total maximum daily load (TMDL plans, under the federal Clean Water Act. Most of the NPS TMDLs developed for California’s Central Valley (CV region were related to pesticides, but not nutrients. Efforts to reduce pesticide loads and concentrations began in earnest around 1990. The NPS control strategies either encouraged or mandated the use of management practices (MPs. Although TMDLs were largely developed for pesticides, the resultant MPs might have affected the runoff of other potential contaminants (such as nutrients. This study evaluates the effect of agricultural NPS control strategies implemented in California’s CV before and between 1990 and 2013, on nutrients, by comparing trends in surface-water concentrations and loads. In general, use of MPs was encouraged during a “voluntary” period (1990 to 2004 and mandated during an “enforcement” period (2004 to 2013. Nutrient concentrations, loads, and trends were estimated by using a recently developed Weighted Regressions on Time, Discharge, and Season (WRTDS model. Sufficient total phosphorus (TP, total nitrogen (TN, and nitrate (NO3 data were available to compare the voluntary and enforcement periods for twelve sites within the lower Sacramento and San Joaquin basins. Ammonia concentrations and fluxes were evaluated at a subset of these sites. For six of these sites, flow-normalized mean annual concentrations of TP or NO3 decreased at a faster rate during the enforcement period than during the voluntary period. Concentration changes during similar years and ranges of flow conditions suggest that MPs designed for pesticides may also have reduced nutrient loads. Results show that enforceable NPS policies, and accelerated MP implementation

  11. Extreme diving behaviour in devil rays links surface waters and the deep ocean

    KAUST Repository

    Thorrold, Simon R.; Afonso, Pedro; Fontes, Jorge; Braun, Camrin D.; Santos, Ricardo S.; Skomal, Gregory B.; Berumen, Michael L.

    2014-01-01

    Ecological connections between surface waters and the deep ocean remain poorly studied despite the high biomass of fishes and squids residing at depths beyond the euphotic zone. These animals likely support pelagic food webs containing a suite

  12. [Phylogenetic diversity of microorganisms associated with the deep-water sponge Baikalospongia intermedia].

    Science.gov (United States)

    Kalyzhnaya, O V; Itskovich, V B

    2014-07-01

    The diversity of bacteria associated with deep-water sponge Baikalospongia intermedia was evaluated by sequence analysis of 16S rRNA genes from two sponge samples collected in Lake Baikal from depths of 550 and 1204 m. A total of 64 operational taxonomic units, belonging to nine bacterial phyla, Proteobacteria (classes Alphaproteobacteria,. Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria), Actinobacteria, Planctomycetes, Cloroflexi, Verrucomicrobia, Acidobacteria, Chlorobi, and Nitrospirae, including candidate phylum WS5, were identified. Phylogenetic analysis showed that the examined communities contained phylotypes exhibiting homology to uncultured bacteria from different lake ecosystems, freshwater sediments, soil and geological formations. Moreover, a number of phylotypes were relative to psychrophilic, methane-oxidizing, sulfate-reducing bacteria, and to microorganisms resistant to the influence of heavy metals. It seems likely that the unusual habitation conditions of deep-water sponges contribute to the taxonomic diversity of associated bacteria and have an influence on the presence of functionally important microorganisms in bacterial communities.

  13. Novel techniques and insights into the deployment of pop-up satellite archival tags on a small-bodied deep-water chondrichthyan

    Science.gov (United States)

    Shipley, Oliver N.; Howey, Lucy A.; Tolentino, Emily R.; Jordan, Lance K. B.; Brooks, Edward J.

    2017-01-01

    Acquiring movement data for small-bodied, deep-water chondrichthyans is challenged by extreme effects of capture and handling stress, and post-release predation, however, it is urgently required to examine important fisheries interactions and assess the ecological role of these species within deep-water food webs. Here we suggest a novel release-cage mechanism to deploy pop-up satellite archival tags, as well as present vertical habitat data for a data-deficient, small-bodied, deep-water bycatch species, the Cuban dogfish (Squalus cubensis). Data were gathered from seven of eight High Rate X-Tags deployed on mature Cuban dogfish in the Exuma Sound, The Bahamas. Recovery periods appeared variable between individuals and are likely driven by capture-and-handling stress and tag burden. Application of the cross-correlation function to time-series depth and temperature data indicated three of the seven individuals suffered mortality through predation, which occurred during daytime, and suggests Cuban dogfish may constitute a proportion of deep-water apex predator diet in the Exuma Sound. Two animals were successfully released via a novel release-cage mechanism and displayed either no, or rapid (<15 mins) vertically stationary recovery periods and were not consumed by predators; data for these individuals were recorded for the entire deployment duration (14 days). Vertical habitat data suggests Cuban dogfish are diel-vertical migrators, similar to other deep-water taxa, and exhibit a relatively broad temperature and depth range, which may be driven by preference for specific bathymetric structures. These techniques provide an important first step into acquiring and presenting vertical habitat data for small-bodied, deep-water chondrichthyans, which can be directly applied to fisheries and ecosystem-based management approaches.

  14. Contrasting impacts of light reduction on sediment biogeochemistry in deep- and shallow-water tropical seagrass assemblages (Green Island, Great Barrier Reef).

    Science.gov (United States)

    Schrameyer, Verena; York, Paul H; Chartrand, Kathryn; Ralph, Peter J; Kühl, Michael; Brodersen, Kasper Elgetti; Rasheed, Michael A

    2018-05-01

    Seagrass meadows increasingly face reduced light availability as a consequence of coastal development, eutrophication, and climate-driven increases in rainfall leading to turbidity plumes. We examined the impact of reduced light on above-ground seagrass biomass and sediment biogeochemistry in tropical shallow- (∼2 m) and deep-water (∼17 m) seagrass meadows (Green Island, Australia). Artificial shading (transmitting ∼10-25% of incident solar irradiance) was applied to the shallow- and deep-water sites for up to two weeks. While above-ground biomass was unchanged, higher diffusive O 2 uptake (DOU) rates, lower O 2 penetration depths, and higher volume-specific O 2 consumption (R) rates were found in seagrass-vegetated sediments as compared to adjacent bare sand (control) areas at the shallow-water sites. In contrast, deep-water sediment characteristics did not differ between bare sand and vegetated sites. At the vegetated shallow-water site, shading resulted in significantly lower hydrogen sulphide (H 2 S) levels in the sediment. No shading effects were found on sediment biogeochemistry at the deep-water site. Overall, our results show that the sediment biogeochemistry of shallow-water (Halodule uninervis, Syringodium isoetifolium, Cymodocea rotundata and C. serrulata) and deep-water (Halophila decipiens) seagrass meadows with different species differ in response to reduced light. The light-driven dynamics of the sediment biogeochemistry at the shallow-water site could suggest the presence of a microbial consortium, which might be stimulated by photosynthetically produced exudates from the seagrass, which becomes limited due to lower seagrass photosynthesis under shaded conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. 224Ra distribution in surface and deep water of Long Island Sound: sources and horizontal transport rates

    International Nuclear Information System (INIS)

    Torgersen, T.; O'Donnell, J.; DeAngelo, E.; Turekian, K.K.; Turekian, V.C.; Tanaka, N.

    1997-01-01

    Measurements of surface water and deep water 224 Ra(half-life 3.64 days) distributions in Long Island Sound (LIS) were conducted in July 1991. Because the pycnocline structure of LIS had been in place for about 50 days in July (long compared to the half-life of 224 Ra) in the surface water and the deep water operate as separate systems. In the surface water, the fine-grain sediments of nearshore and saltmarsh environments provide a strong source of 224 Ra, which is horizontally mixed away from the short to central LIS. A one-dimensional model of 224 Ra distribution suggests a cross-LIS horizontal eddy dispersivity of 5-50 m 2 s -1 . In the deep water, the mid-LIS sediment flux of 224 Ra is enhanced by ∼ 2x relative to the periphery, and the horizontal eddy flux is from central LIS to the periphery. A second one-dimensional model suggests a cross-LIS horizontal eddy dispersivity below the thermocline of 5-50 m 2 -1 . 224 Ra fluxes into the deep water of the central LIS are likely enhanced by (1) inhomogeneous sediment or (2) a reduced scavenging of 224 Ra in the sediments of central LIS brought about by low oxygen conditions (hypoxia) and the loss of the MnO 2 scavenging layer in the sediments. These rates of horizontal eddy dispersivity are significantly less than the estimate of 100-650 m 2 s -1 (Riley, 1967) but are consistent with the transport necessary to explain the dynamics of oxygen depletion in summer LIS. These results demonstrate the use of 224 Ra for quantifying the parameters needed to describe estuarine mixing and transport. (Author)

  16. Prevalence and risk factors For vitamin D deficiency among healthy infants in Sacramento, California

    Science.gov (United States)

    Objective: The purpose of this study was to assess the vitamin D status of healthy infants 6-18 months of age in Sacramento, CA. Patients and Methods: This was a one-year, cross-sectional study among a convenience sample of healthy infants seen at routine “well child” or follow-up appointments at t...

  17. Structural setting and evolution of the Mensa and Thunder Horse intraslope basins, northern deep-water Gulf of Mexico: A case study

    NARCIS (Netherlands)

    Weimer, P.; Bouroullec, R.; Berg, A.A. van den; Lapinski, T.G.; Roesink, J.G.; Adson, J.

    2017-01-01

    The Mensa and Thunder Horse intraslope minibasins in southcentralMississippi Canyon, northern deep-water Gulf ofMexico, had a linked structural evolution from the Early Cretaceous through the late Miocene. Analysis of the two minibasins illustrates the complexities of deep-water sedimentation and

  18. Metagenomic Analysis of Genes Encoding Nutrient Cycling Pathways in the Microbiota of Deep-Sea and Shallow-Water Sponges.

    Science.gov (United States)

    Li, Zhiyong; Wang, Yuezhu; Li, Jinlong; Liu, Fang; He, Liming; He, Ying; Wang, Shenyue

    2016-12-01

    Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota's functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.

  19. Assessment of LED Technology in Ornamental Post-Top Luminaires (Host Site: Sacramento, CA)

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason R.

    2011-12-01

    The DOE Municipal Solid-State Street Lighting Consortium has evaluated four different LED replacements for existing ornamental post-top street lights in Sacramento, California. The project team was composed of the City and its consultant, PNNL (representing the Consortium), and the Sacramento Municipal Utility District. Product selection was finalized in March 2011, yielding one complete luminaire replacement and three lamp-ballast retrofit kits. Computer simulations, field measurements, and laboratory testing were performed to compare the performance and cost-effectiveness of the LED products relative to the existing luminaire with 100 W high-pressure sodium lamp. After it was confirmed the LED products were not equivalent to HPS in terms of initial photopic illumination, the following parameters were scaled proportionally to enable equitable (albeit hypothetical) comparisons: light output, input wattage, and pricing. Four replacement scenarios were considered for each LED product, incorporating new IES guidance for mesopic multipliers and lumen maintenance extrapolation, but life cycle analysis indicated cost effectiveness was also unacceptable. Although LED efficacy and pricing continue to improve, this project serves as a timely and objective notice that LED technology may not be quite ready yet for such applications.

  20. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bent, Jimmy

    2014-05-31

    In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

  1. A Broad Spectrum Catalytic System for Removal of Toxic Organics from Water by Deep Oxidation - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ayusman

    2000-12-01

    A most pressing need for the DOE environmental management program is the removal of toxic organic compounds present in groundwater and soil at specific DOE sites. While several remediation procedures have been proposed, they suffer from one or more drawbacks. The objective of the present research was to develop new catalytic procedures for the removal of toxic organic compounds from the environment through their deep oxidation to harmless products. In water, metallic palladium was found to catalyze the deep oxidation of a wide variety of toxic organic compounds by dioxygen at 80-90 C in the presence of carbon monoxide or dihydrogen. Several classes of organic compounds were examined: benzene, phenol and substituted phenols, nitro and halo organics, organophosphorus, and organosulfur compounds. In every case, deep oxidation to carbon monoxide, carbon dioxide, and water occurred in high yields, resulting in up to several hundred turnovers over a 24 hour period. For substrates susceptible to hydrogenation, the conversions were generally high with dihydrogen than with carbon monoxide. It is clear from the results obtained that we have discovered an exceptionally versatile catalytic system for the deep oxidation of toxic organic compounds in water. This system possesses several attractive features not found simultaneously in other reported systems. These are (a) the ability to directly utilize dioxygen as the oxidant, (b) the ability to carry out the deep oxidation of a particularly wide range of functional organics, and (c) the ease of recovery of the catalyst by simple filtration.

  2. Horizontal single-trip gravel pack and selective simulation system for deep water extended reach wells

    Energy Technology Data Exchange (ETDEWEB)

    Pineda, Francisco [BJ Services Company, Houston, TX (United States); Vilela, Alvaro; Montanha, Roberto; Acosta, Marco; Farias, Rodrigo [BJ Services do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Most of the reservoirs located in the deep water and ultra-deep water offshore South America are described as unconsolidated sandstone that require sand control on both producers and water injection wells. Horizontal Open Hole Gravel Pack completions are the preferred method of development. If completing heavy oil reservoirs, there is a necessity of longer horizontal open hole sections. Low fracture gradients may limit the length of gravel pack in the open hole section because of the pressure increase during the Beta wave proppant deposition phase. This system allows the gravel pack assembly to be installed and the gravel pack to be pumped during the alpha and beta wave deposition phases without the limitation of high pressures that could fracture the well. The benefits of the Horizontal Single-Trip Gravel Pack and Selective Stimulation System (HSTSSS) using the differential valve include the ability to complete longer horizontal intervals, valuable rig-time savings and, efficient mechanical diversion of the stimulation fluid. This paper outlines the application of the HSTSSS system using a differential valve to complete a horizontal well in offshore deep waters. The need for a differential valve is primarily in horizontal gravel packing operations when normal circulating rates and pressures around the open hole would exceed formation break down pressure. The valve is intended to be easily spaced out and run in the wash pipe. At a predetermined differential pressure the valve opens and the return flow path distance around the bottom of the tailpipe is shortened, thus reducing back pressure preventing filter cake damage without slowing the pump rate. In addition the said valve has to close to allow the selective stimulation to take place. Economic considerations along with completion efficiencies are especially important on deep water, subsea completions. The utilization of differential valves allows completion of extended-reach open hole wells and/or low fracture

  3. 30 CFR 203.60 - Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or...

    Science.gov (United States)

    2010-07-01

    ...-case basis in deep water in the Gulf of Mexico or offshore of Alaska? 203.60 Section 203.60 Mineral... basis in deep water in the Gulf of Mexico or offshore of Alaska? You may apply for royalty relief under... REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Pre-Act Deep Water Leases and...

  4. Approximate Stokes Drift Profiles in Deep Water

    Science.gov (United States)

    Breivik, Øyvind; Janssen, Peter A. E. M.; Bidlot, Jean-Raymond

    2014-09-01

    A deep-water approximation to the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profile gives a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The alternative profile comes at no added numerical cost compared to the monochromatic profile.

  5. Proceedings of the National Silviculture Workshop: Silviculture for All Resources; Sacramento, CA; May 11-14, 1987

    Science.gov (United States)

    Melanie Malespin Woolever; Mike Smith; Elizabeth McGraw; Mike Lanasa; Arthur C. Zack; Chris Reichert; Robert MacWhorter; Michael R. Lennartz; Richard A. Lancia; Marc G. Rounsaville; James R. Sedell; Fred H. Everest; David R. Gibbons; Stephen R. Shifley; Melinda Moeur; David A. Marquis; Richard O. Fitzgerald; Nelson Loftus; Thomas C. Turpin; William R. Terrill; Glenn L. Crouch; Wayne D. Shepperd; Edith W. Petrick; John J. Petrick; Roger W. Dennington; Allan W. Ashton; Hubertus J. Mittmann; Gary Thompson; Ken Sonksen; David A. Stark; Michael A. Ware; Allan J. West; Patrick D. Jackson; Richard L. Bassett; Jimmie D. Chew; William B. White; Bruce W. Morse; Mike Znerold; Russell T. Graham; Peyton W. Owston; Richard G. Miller; John R. Nesbitt; Gaston Porterie; Ernest Del Rio

    1987-01-01

    The 1987 National Silviculture Workshop was held in Sacramento, California, and the Eldorado National Forest. The purpose of the workshop was to discuss, review, and share information and experiences regarding how silviculture can serve as the tool to help accomplish the objectives of many resources.

  6. Characterizing Flow and Suspended Sediment Trends in the Sacramento River Basin, CA Using Hydrologic Simulation Program - FORTRAN (HSPF)

    Science.gov (United States)

    Stern, M. A.; Flint, L. E.; Flint, A. L.; Wright, S. A.; Minear, J. T.

    2014-12-01

    A watershed model of the Sacramento River Basin, CA was developed to simulate streamflow and suspended sediment transport to the San Francisco Bay Delta (SFBD) for fifty years (1958-2008) using the Hydrological Simulation Program - FORTRAN (HSPF). To compensate for the large model domain and sparse data, rigorous meteorological development and characterization of hydraulic geometry were employed to spatially distribute climate and hydrologic processes in unmeasured locations. Parameterization techniques sought to include known spatial information for tributaries such as soil information and slope, and then parameters were scaled up or down during calibration to retain the spatial characteristics of the land surface in un-gaged areas. Accuracy was assessed by comparing model calibration to measured streamflow. Calibration and validation of the Sacramento River ranged from "good" to "very good" performance based upon a "goodness-of-fit" statistical guideline. Model calibration to measured sediment loads were underestimated on average by 39% for the Sacramento River, and model calibration to suspended sediment concentrations were underestimated on average by 22% for the Sacramento River. Sediment loads showed a slight decreasing trend from 1958-2008 and was significant (p < 0.0025) in the lower 50% of stream flows. Hypothetical climate change scenarios were developed using the Climate Assessment Tool (CAT). Several wet and dry scenarios coupled with temperature increases were imposed on the historical base conditions to evaluate sensitivity of streamflow and sediment on potential changes in climate. Wet scenarios showed an increase of 9.7 - 17.5% in streamflow, a 7.6 - 17.5% increase in runoff, and a 30 - 93% increase in sediment loads. The dry scenarios showed a roughly 5% decrease in flow and runoff, and a 16 - 18% decrease in sediment loads. The base hydrology was most sensitive to a temperature increase of 1.5 degrees Celsius and an increase in storm intensity and

  7. Molecular dynamics simulations of the Nip7 proteins from the marine deep- and shallow-water Pyrococcus species.

    Science.gov (United States)

    Medvedev, Kirill E; Alemasov, Nikolay A; Vorobjev, Yuri N; Boldyreva, Elena V; Kolchanov, Nikolay A; Afonnikov, Dmitry A

    2014-10-15

    The identification of the mechanisms of adaptation of protein structures to extreme environmental conditions is a challenging task of structural biology. We performed molecular dynamics (MD) simulations of the Nip7 protein involved in RNA processing from the shallow-water (P. furiosus) and the deep-water (P. abyssi) marine hyperthermophylic archaea at different temperatures (300 and 373 K) and pressures (0.1, 50 and 100 MPa). The aim was to disclose similarities and differences between the deep- and shallow-sea protein models at different temperatures and pressures. The current results demonstrate that the 3D models of the two proteins at all the examined values of pressures and temperatures are compact, stable and similar to the known crystal structure of the P. abyssi Nip7. The structural deviations and fluctuations in the polypeptide chain during the MD simulations were the most pronounced in the loop regions, their magnitude being larger for the C-terminal domain in both proteins. A number of highly mobile segments the protein globule presumably involved in protein-protein interactions were identified. Regions of the polypeptide chain with significant difference in conformational dynamics between the deep- and shallow-water proteins were identified. The results of our analysis demonstrated that in the examined ranges of temperatures and pressures, increase in temperature has a stronger effect on change in the dynamic properties of the protein globule than the increase in pressure. The conformational changes of both the deep- and shallow-sea protein models under increasing temperature and pressure are non-uniform. Our current results indicate that amino acid substitutions between shallow- and deep-water proteins only slightly affect overall stability of two proteins. Rather, they may affect the interactions of the Nip7 protein with its protein or RNA partners.

  8. Environmental impacts of the deep-water oil and gas industry: a review to guide management strategies

    Directory of Open Access Journals (Sweden)

    Erik E. Cordes

    2016-09-01

    Full Text Available The industrialization of the deep sea is expanding worldwide. Expanding oil and gas exploration activities in the absence of sufficient baseline data in these ecosystems has made environmental management challenging. Here, we review the types of activities that are associated with global offshore oil and gas development in water depths over 200 m, the typical impacts of these activities, some of the more extreme impacts of accidental oil and gas releases, and the current state of management in the major regions of offshore industrial activity including 18 exclusive economic zones. Direct impacts of infrastructure installation, including sediment resuspension and burial by seafloor anchors and pipelines, are typically restricted to a radius of approximately 100 m on from the installation on the seafloor. Discharges of water-based and low-toxicity oil-based drilling muds and produced water can extend over 2 km, while the ecological impacts at the population and community levels on the seafloor are most commonly on the order of 200-300 m from their source. These impacts may persist in the deep sea for many years and likely longer for its more fragile ecosystems, such as cold-water corals. This synthesis of information provides the basis for a series of recommendations for the management of offshore oil and gas development. An effective management strategy, aimed at minimizing risk of significant environmental harm, will typically encompass regulations of the activity itself (e.g. discharge practices, materials used, combined with spatial (e.g. avoidance rules and marine protected areas and temporal measures (e.g. restricted activities during peak reproductive periods. Spatial management measures that encompass representatives of all of the regional deep-sea community types is important in this context. Implementation of these management strategies should consider minimum buffer zones to displace industrial activity beyond the range of typical

  9. Modern Deep-sea Sponges as Recorders of Bottom Water Silicon Isotopes

    Science.gov (United States)

    Hendry, K. R.; Georg, R. B.; Rickaby, R. E.; Robinson, L. F.; Halliday, A. N.

    2008-12-01

    Major zones of opal accumulation in the world oceans have experienced geographical shifts during the Cenozoic coincident with times of transition in oceanic circulation and climate. The global marine silica cycle is likely to respond to various large-scale changes including the distillation of Si and other nutrients in ocean basins; weathering and continental inputs; and biological productivity in surface waters. These processes could potentially be distinguished by their impact on the isotopic composition of dissolved silica in the world oceans. Although diatoms dominate uptake of silica in surface waters, box-modelling (de la Rocha and Bickle, 2005) suggests that sponges spicules have a greater potential to reflect whole ocean changes in the silica cycle, by recording deep-water silicon isotopes. Here, we introduce a new calibration study of modern deep- sea sponges collected on a transect cruise across the Drake Passage, in the Southern Ocean, from a range of depths and seawater silicic acid concentrations. Sponges were collected by benthic trawling, and dried immediately. The spicules were later isolated from cellular material and cleaned for surface contaminants, before dissolution and analysis by NuPlasma HR MC-ICP-MS in medium resolution mode. We discuss our preliminary data, the extent to which inter and intraspecies variations reflect environmental conditions, and the implications for palaeoreconstructions of the marine silicon cycle. de la Rocha, C. and M. Bickle (2005). Sensitivity of silicon isotopes to whole-ocean changes in the silica cycle. Marine Geology 217, 267-282.

  10. Salinity of deep groundwater in California: Water quantity, quality, and protection

    Science.gov (United States)

    Kang, Mary; Jackson, Robert B.

    2016-01-01

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California’s Central Valley, an important agricultural region with growing groundwater demands, fresh [groundwater volume is almost tripled to 2,700 km3, most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km3 of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California’s Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  11. Diversity-based acoustic communication with a glider in deep water.

    Science.gov (United States)

    Song, H C; Howe, Bruce M; Brown, Michael G; Andrew, Rex K

    2014-03-01

    The primary use of underwater gliders is to collect oceanographic data within the water column and periodically relay the data at the surface via a satellite connection. In summer 2006, a Seaglider equipped with an acoustic recording system received transmissions from a broadband acoustic source centered at 75 Hz deployed on the bottom off Kauai, Hawaii, while moving away from the source at ranges up to ∼200 km in deep water and diving up to 1000-m depth. The transmitted signal was an m-sequence that can be treated as a binary-phase shift-keying communication signal. In this letter multiple receptions are exploited (i.e., diversity combining) to demonstrate the feasibility of using the glider as a mobile communication gateway.

  12. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    Science.gov (United States)

    Pitt, William A.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  13. Industrial automation in floating production vessels for deep water oil and gas fields

    International Nuclear Information System (INIS)

    de Garcia, A.L.; Ferrante, A.J.

    1990-01-01

    The process supervision in offshore platforms was performed in the past through the use of local pneumatic instrumentation, based on relays, semi-graphic panels and button operated control panels. Considering the advanced technology used in the new floating production projects for deep water, it became mandatory to develop supervision systems capable of integrating different control panels, increasing the level of monitorization and reducing the number of operators and control rooms. From the point of view of field integration, a standardized architecture makes the communication between different production platforms and the regional headquarters, where all the equipment and support infrastructure for the computerized network is installed, possible. This test paper describes the characteristics of the initial systems, the main problems observed, the studies performed and the results obtained in relation to the design and implementation of computational systems with open architecture for automation of process control in floating production systems for deep water in Brazil

  14. Extreme diving behaviour in devil rays links surface waters and the deep ocean

    KAUST Repository

    Thorrold, Simon R.

    2014-07-01

    Ecological connections between surface waters and the deep ocean remain poorly studied despite the high biomass of fishes and squids residing at depths beyond the euphotic zone. These animals likely support pelagic food webs containing a suite of predators that include commercially important fishes and marine mammals. Here we deploy pop-up satellite archival transmitting tags on 15 Chilean devil rays (Mobula tarapacana) in the central North Atlantic Ocean, which provide movement patterns of individuals for up to 9 months. Devil rays were considered surface dwellers but our data reveal individuals descending at speeds up to 6.0 ms-1 to depths of almost 2,000 m and water temperatures <4 C. The shape of the dive profiles suggests that the rays are foraging at these depths in deep scattering layers. Our results provide evidence of an important link between predators in the surface ocean and forage species occupying pelagic habitats below the euphotic zone in ocean ecosystems. 2014 Macmillan Publishers Limited. All rights reserved.

  15. Development of temporal trends of radioactivity in benthic organisms and in water from the deep sea (Atlantic)

    International Nuclear Information System (INIS)

    Kanisch, G.; Kellermann, H.-J.; Vobach, M.; Krueger, A.

    2003-01-01

    Since 20 years the Federal Research Centre for Fisheries is performing radioecological studies in the deep sea of the Northeast Atlantic, especially in the area north-west of Spain used for dumping of radioactive waste until 1982. Until 1998/2000, in Benthos some decrease was observed for 137 Cs, however, almost not for 238 Pu, 239,240 Pu and 241 Am. In the dumpsite area the ratio 238 Pu/ 239,240 Pu, about 0.072, showed higher values than in comparison sites, about 0,044. Alpha spectrometric measurements of the atom based ratio 240 Pu/ 239 Pu in Benthos, due to slight deviations from the global fallout value of 0.18, indicated a special impact of the ''Nevada Test Site'' fallout. In rat-tailed fish (Macrouridae) from the deep sea 137Cs decreased since 1989 with an effective half-live of 14.5 years, comparable to that of 16.2 years in the surface water. Related to the concentration in the surface water a 137 Cs concentration factor of 83 was obtained. It is concluded that the dominant source for 137 Cs in deep sea fish is the global fallout. For plutonium isotopes measured in sea water samples from the deep the values of 238 Pu/ 239,240 Pu and 238 Pu, being higher for the dumpsite area, were interpreted as impact of leaking radioactive drums. For this leakage acting as a plutonium source a 238 Pu/ 239,240 Pu ratio of 0.17 was estimated. However, the total plutonium inventory in the deep sea thereby increased by only about 20 %. (orig.)

  16. Manned underwater intervention during deep-water operations

    Energy Technology Data Exchange (ETDEWEB)

    Lothe, Mikal Sjur

    2010-07-01

    The focus for deep and remote areas operations are Remote Operated systems. Manned intervention is generally first choice when looking for intervention methods in most areas of the world. As an industry we need to focus on the most cost effective and safe method for construction, Maintenance and Repair. The focus is on advances in diving methods related to surface oriented and saturation diving, such as shallow water tie-ins of risers and umbilicals, inspection and evaluations of FPSOs including thruster change-out and wet docking. Also, the options for efficient repair scenarios utilizing man's ability to work in low visibility areas by feel etc. Finally the presentation will show new technology in Saturation Diving based on the 24 man saturation systems onboard the 3rd generation Divex systems used by Technip and Subsea 7. (Author)

  17. An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column

    KAUST Repository

    Scoma, Alberto; Barbato, Marta; Borin, Sara; Daffonchio, Daniele; Boon, Nico

    2016-01-01

    Alcanivorax borkumensis is an ubiquitous model organism for hydrocarbonoclastic bacteria, which dominates polluted surface waters. Its negligible presence in oil-contaminated deep waters (as observed during the Deepwater Horizon accident) raises

  18. Overflow Water Pathways in the Subpolar North Atlantic Observed with Deep Floats

    Science.gov (United States)

    Bower, Amy; Furey, Heather; Lozier, Susan

    2017-04-01

    As part of the Overturning in the Subpolar North Atlantic Program (OSNAP), a total of 135 acoustically tracked RAFOS floats have been deployed in the deep boundary currents of the Iceland, Irminger and Labrador Basins, and in the Charlie-Gibbs Fracture Zone, to investigate the pathways of Iceland-Scotland Overflow Water (ISOW) and Denmark Strait Overflow Water (DSOW). Floats were released annually in 2014, 2015 and 2016 at depths between 1800 and 2800 m for two-year missions. The array of sound sources used for tracking was expanded from 10 to 13 moorings in 2016 when it was discovered that wintertime surface roughness was negatively impacting acoustic ranges. The floats from the first setting reveal several examples of persistent , deep coherent eddy motion, including a cyclonic eddy spinning off the tip of Eirik Ridge (southwest of Cape Farewell), a cyclonic eddy in the northeastern Labrador Basin near where anticyclonic Irminger Rings are formed, and an anticyclonic eddy under the North Atlantic Current (NAC) in the central Iceland Basin. A consistent region of boundary-interior exchange was observed near Hamilton Bank on the western boundary of the Labrador Sea. Deep cyclonic recirculation gyres are revealed in all three basins. Floats released in the southward-flowing deep boundary current over the eastern flank of the Reykjanes Ridge show that shallower layers of ISOW peel off to the west and cross the Ridge into the Irminger Basin through various gaps south of 60°N, including the Bight Fracture Zone. These floats tend to turn northward and continue along the slope in the Irminger Basin. Interestingly, floats released at the ISOW level in the CGFZ did not turn into the Irminger Basin as often depicted in deep circulation schematics, but rather drifted west-northwestward toward the Labrador Sea, or eddied around west of the CGFZ and (in some cases) turned southward. This result is consistent with some previous hydrographic and high-resolution model results

  19. Isotope paleoclimatology and Atlantic deep water history since 15 million years

    International Nuclear Information System (INIS)

    Blanc, P.L.

    1981-12-01

    18 O/ 16 O and 13 C/ 12 C ratios measurements in foraminiferal calcite are applied to the paleoclimatology of the North Atlantic and to the reconstruction of deep water exchanges between the Atlantic and Pacific Oceans, from middle miocene time (15 m.y. ago) to the present, on samples from 2 DSDP wells. Chapters 1 to 4 describe the structural frame and hydrological setting of these sites, and the stratigraphy of the deposits. A .4 m.y. lag between the initiation of the first boreal ice-caps and their extension to northern Europe is explained by the persistency of the North-Atlantic Drift. In chapters 5 to 8, the 13 C/ 12 C ratio of dissolved mineral carbon is used as a tracer of the residence time of the deep waters, the indications of which are preserved in benthonic foraminiferal calcite. It is shown that present-day type thermo-haline circulation was initiated 13.2 m.y. ago in the northern Atlantic, when the volcanic Scotland-Iceland-Greenland ridge subsided; that the closure of the Mediterranean sea during the Messinian (6.2 to 5 m.y. ago) caused this circulation to stop, and that the present circulation started again when the Mediterranean re-opened, at the beginning of the Pliocene [fr

  20. Identification of temperature-dependent water quality changes during a deep well injection experiment in a pyritic aquifer

    NARCIS (Netherlands)

    Prommer, H.; Stuijfzand, P.J.

    2005-01-01

    Artificial recharge is a technique used increasingly to supplement drinking water supplies. To assess the potential water quality changes that occur during subsurface passage, a comprehensive deep-well injection experiment was carried out for a recharge scheme, where pretreated, aerobic surface

  1. The big squeeze: ecosystem change and contraction of habitat for newly discovered deep-water reefs off the U.S. West Coast

    Science.gov (United States)

    Wickes, L.; Etnoyer, P. J.; Lauermann, A.; Rosen, D.

    2016-02-01

    Cold-water reefs are fragile, complex ecosystems that extend into the bathyal depths of the ocean, creating three dimensional structure and habitat for a diversity of deep-water invertebrates and fishes. The cold waters of the California Current support a diverse assemblage of these corals at relatively shallow depths close to shore. At these depths and locations the communities face a multitude of stressors, including low carbonate saturations, hypoxia, changing temperature, and coastal pollution. The current study employed ROV surveys (n=588, 2003-2015) to document the distribution of deep-sea corals in the Southern California Bight, including the first description of a widespread reef-building coral in the naturally acidified waters off the U.S. West Coast. We provide empirical evidence of species survival in the corrosive waters (Ωarag 0.67-1.86), but find loss of reef integrity. Recent publications have implied acclimation, resistance, and resilience of cold-water reef-building corals to ocean acidification, but results of this study indicate a cost to skeletal framework development with a subsequent loss of coral habitat. While ocean acidification and declines in oxygen are expected to further impinge on Lophelia at depth (𝑥̅=190 m), surface warming and coastal polution may affect shallower populations and mesophotic reef assemblages, resulting in a contraction of available coral habitat. Recent observations of die offs of gorgonians and antipatharians from surveys in shallow (50 m) and deep water (500 m) provide compelling evidence of ongoing ecosystem changes. Concurrent losses in habitat quality in deep and mesophotic waters suggest that corals may be "squeezed" into a more restricted depth range. New monitoring efforts aim to characterize the health and condition of deep corals with respect to gradients in carbonate chemistry, coastal pollution and changing temperatures, to assess vulnerability and both current and future habitat suitability.

  2. Dispersion in North Atlantic Deep Water transfer between the northern source region and the South Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Huhn, Oliver; Roether, Wolfgang [Institut fuer Umweltphysik, Universitaet Bremen (Germany)

    2007-07-01

    North Atlantic Deep Water (NADW) represents the Atlantic part of the deep, southward return arm of the oceanic 'conveyor belt', which moderates Europe's climate and effects most of the water transfer from the ocean surface into the deep waters globally. The transfer starts from the NADW formation regions, which in the case of upper NADW (approx. 1500-2000 m depth) is the Labrador Sea (far NW Atlantic). NADW is found concentrated toward the continental slope of the Americas, but subject to meandering, and to recirculation into, and mixing with, the waters of the interior Atlantic. Individual water parcels thus follow a complex ensemble of trajectories. We have obtained characteristics of that ensemble by fitting the free parameters of a suitable function using extensive observations of the transient tracers CFC-11, CFC-12, CCl{sub 4}, and tritium. A tracer transfer function of ocean-surface concentrations to those in newly formed NADW was derived as a precursory step. In the upper NADW we obtain RMS transfer-time dispersions on the way from the Labrador Sea of 31 years at 6 N rising to 53 years at 20 S, compared to mean transfer times ranging 46 to 79 years ({+-}20 %); furthermore, approximately 10 % to 40 % of the water is old, tracer-free water admixed on the way. Similar results have been obtained for lower NADW (approx. 2500-4000 m). The combination of tritium and CFC observations is particularly suited to constrain the dispersion, since it acts on the concentrations of these tracers in an opposite way. The tracer-adjusted transfer functions allow quantification of the NADW transport of pollutants and other compounds delivered to the NADW formation region. The results can furthermore check mean transfer times and large-scale dispersion of the NADW part of dynamic ocean circulation models.

  3. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr(VI) to groundwater

    Science.gov (United States)

    Mills, Christopher T.; Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J.

    2011-01-01

    Concentrations of geogenic Cr(VI) in groundwater that exceed the World Health Organization’s maximum contaminant level for drinking water (50 μg L−1) occur in several locations globally. The major mechanism for mobilization of this Cr(VI) at these sites is the weathering of Cr(III) from ultramafic rocks and its subsequent oxidation on Mn oxides. This process may be occurring in the southern Sacramento Valley of California where Cr(VI) concentrations in groundwater can approach or exceed 50 μg L−1. To characterize Cr geochemistry in the area, samples from several soil auger cores (approximately 4 m deep) and drill cores (approximately 25 m deep) were analyzed for total concentrations of 44 major, minor and trace elements, Cr associated with labile Mn and Fe oxides, and Cr(VI). Total concentrations of Cr in these samples ranged from 140 to 2220 mg per kg soil. Between 9 and 70 mg per kg soil was released by selective extractions that target Fe oxides, but essentially no Cr was associated with the abundant reactive Mn oxides (up to ~1000 mg hydroxylamine-reducible Mn per kg soil was present). Both borehole magnetic susceptibility surveys performed at some of the drill core sites and relative differences between Cr released in a 4-acid digestion versus total Cr (lithium metaborate fusion digestion) suggest that the majority of total Cr in the samples is present in refractory chromite minerals transported from ultramafic exposures in the Coast Range Mountains. Chromium(VI) in the samples studied ranged from 0 to 42 μg kg−1, representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a

  4. Oxygen Saturation Surrounding Deep Water Formation Events in the Labrador Sea From Argo-O2 Data

    Science.gov (United States)

    Wolf, Mitchell K.; Hamme, Roberta C.; Gilbert, Denis; Yashayaev, Igor; Thierry, Virginie

    2018-04-01

    Deep water formation supplies oxygen-rich water to the deep sea, spreading throughout the ocean by means of the global thermohaline circulation. Models suggest that dissolved gases in newly formed deep water do not come to equilibrium with the atmosphere. However, direct measurements during wintertime convection are scarce, and the controls over the extent of these disequilibria are poorly quantified. Here we show that, when convection reached deeper than 800 m, oxygen in the Labrador Sea was consistently undersaturated at -6.1% to -7.6% at the end of convection. Deeper convection resulted in greater undersaturation, while convection ending later in the year resulted in values closer to equilibrium, from which we produce a predictive relationship. We use dissolved oxygen data from six profiling Argo floats in the Labrador Sea between 2003 and 2016, allowing direct observations of wintertime convection. Three of the six optode oxygen sensors displayed substantial average in situ drift of -3.03 μmol O2 kg-1 yr-1 (-0.94% O2 yr-1), which we corrected to stable deepwater oxygen values from repeat ship surveys. Observations of low oxygen intrusions during restratification and a simple mixing calculation demonstrate that lateral processes act to lower the oxygen inventory of the central Labrador Sea. This suggests that the Labrador Sea is a net sink for atmospheric oxygen, but uncertainties in parameterizing gas exchange limit our ability to quantify the net uptake. Our results constrain the oxygen concentration of newly formed Labrador Sea Water and allow more precise estimates of oxygen utilization and nutrient regeneration in this water mass.

  5. Numerical simulation of solitary waves on deep water with constant vorticity

    Science.gov (United States)

    Dosaev, A. S.; Shishina, M. I.; Troitskaya, Yu I.

    2018-01-01

    Characteristics of solitary deep water waves on a flow with constant vorticity are investigated by numerical simulation within the framework of fully nonlinear equations of motion (Euler equations) using the method of surface-tracking conformal coordinates. To ensure that solutions observed are stable, soliton formation as a result of disintegration of an initial pulse-like disturbance is modeled. Evidence is obtained that solitary waves with height above a certain threshold are unstable.

  6. Subsurface microbial diversity in deep-granitic-fracture water in Colorado

    Science.gov (United States)

    Sahl, J.W.; Schmidt, R.; Swanner, E.D.; Mandernack, K.W.; Templeton, A.S.; Kieft, Thomas L.; Smith, R.L.; Sanford, W.E.; Callaghan, R.L.; Mitton, J.B.; Spear, J.R.

    2008-01-01

    A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This "Henderson candidate division" dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. Copyright ?? 2008, American Society for Microbiology

  7. A New Technique for Deep in situ Measurements of the Soil Water Retention Behaviour

    DEFF Research Database (Denmark)

    Rocchi, Irene; Gragnano, Carmine Gerardo; Govoni, Laura

    2018-01-01

    In situ measurements of soil suction and water content in deep soil layers still represent an experimental challenge. Mostly developed within agriculture related disciplines, field techniques for the identification of soil retention behaviour have been so far employed in the geotechnical context ...

  8. Using Argo-O2 data to examine the impact of deep-water formation events on oxygen uptake in the Labrador Sea

    Science.gov (United States)

    Wolf, M. K.; Hamme, R. C.; Gilbert, D.; Yashayaev, I.

    2016-02-01

    Deep-water formation allows the deep ocean to communicate with the atmosphere, facilitating exchanges of heat as well as important gases such as CO2 and oxygen. The Labrador Sea is the most studied location of deep convection in the North Atlantic Ocean and a strong contributor to the global thermohaline circulation. Since there are no internal sources of oxygen below the euphotic zone, deep-water formation is vital for oxygen transport to the deep ocean. Recent studies document large interannual variability in the strength and depth of convection in the Labrador Sea, from mixed layers of 100m to greater than 1000m. A weakening of this deep convection starves the deep ocean of oxygen, disrupting crucial deep sea biological processes, as well as reducing oceanic CO2 uptake and ocean circulation. We used data from the extensive Argo float network to examine these deep-water formation events in the Labrador Sea. The oxygen optodes onboard many Argo floats suffer from biases whose amplitude must be determined; therefore we investigated and applied various optode calibration methods. Using calibrated vertical profiles of oxygen, temperature, and salinity, we observed the timing, magnitude, and location of deep convection, restratification, and spring phytoplankton blooms. In addition, we used surface oxygen values along with NCEP wind speeds to calculate the air-sea oxygen flux using a range of air-sea gas exchange parameterizations. We then compared this oxygen flux to the rate of change of the measured oxygen inventory. Where the inventory and flux did not agree, we identified other oceanic processes such as biological activity or lateral advection of water masses occurring, or advection of the float itself into a new area. The large role that horizontal advection of water or the float has on oxygen uptake and cycling leads us to conclude that this data cannot be easily interpreted as a 1-D system. Oxygen exchanges with the atmosphere at a faster rate than CO2, is

  9. Dispersal of volcaniclastic material by buoyant water plumes in deep-ocean explosive basaltic eruptions

    Science.gov (United States)

    Barreyre, T.; Soule, S.; Reves-Sohn, R. A.

    2009-12-01

    The ability of mid-ocean ridge (MOR) volcanic systems to generate explosive eruptions is inhibited by the large hydrostatic pressures associated with their deep-sea location, which suppress volatile exsolution from the magma, and which preclude the generation of steam from lava-water interaction. Nevertheless, volcaniclastic material indicative of explosive activity has been found along many parts of the global MOR, raising important questions regarding the volatile systematics within mid-ocean ridge magmatic systems, and the processes by which volcaniclastic material may be dispersed during deep-sea eruptions. In this study we measured the settling velocities of volcaniclastic grains recovered from the Gakkel Ridge, Loihi Seamount, and Axial Volcano, and developed empirical settling velocity models as a function of particle size for three different particle shapes (angular, sheet, and rod). We then used the Morton, Turner, Taylor turbulent plume model to investigate how a plume of buoyant water may distribute this volcaniclastic material during a deep-sea eruption so that the physical characteristics of the deposits may be used to constrain the location and size (i.e., energy) of the eruptions that produced them. We ran the turbulent plume model for conditions ranging from a typical black smoker (~150 MW) to a megaplume (~30000 MW), and for water column density stratifications and currents corresponding to nominal conditions for the Arctic and Pacific Oceans. We found that maximum dispersal distances for the dominant size of volcaniclastic material within buoyant water plumes range from Pele). These distances are insufficient to explain the areal extent of the volcaniclastic deposits observed along the 85°E segment of the Gakkel Ridge and various portions of the Juan de Fuca Ridge, indicating that additional energy in the form of momentum from expanding gases is required to produce the observed deposits.

  10. The global distribution of deep-water Antipatharia habitat

    Science.gov (United States)

    Yesson, Chris; Bedford, Faye; Rogers, Alex D.; Taylor, Michelle L.

    2017-11-01

    Antipatharia are a diverse group of corals with many species found in deep water. Many Antipatharia are habitat for associates, have extreme longevity and some species can occur beyond 8500 m depth. As they are major constituents of'coral gardens', which are Vulnerable Marine Ecosystems (VMEs), knowledge of their distribution and environmental requirements is an important pre-requisite for informed conservation planning particularly where the expense and difficulty of deep-sea sampling prohibits comprehensive surveys. This study uses a global database of Antipatharia distribution data to perform habitat suitability modelling using the Maxent methodology to estimate the global extent of black coral habitat suitability. The model of habitat suitability is driven by temperature but there is notable influence from other variables of topography, surface productivity and oxygen levels. This model can be used to predict areas of suitable habitat, which can be useful for conservation planning. The global distribution of Antipatharia habitat suitability shows a marked contrast with the distribution of specimen observations, indicating that many potentially suitable areas have not been sampled, and that sampling effort has been disproportionate to shallow, accessible areas inside marine protected areas (MPAs). Although 25% of Antipatharia observations are located in MPAs, only 7-8% of predicted suitable habitat is protected, which is short of the Convention on Biological Diversity target to protect 10% of ocean habitats by 2020.

  11. Characterization of major lithologic units underlying the lower American River using water-borne continuous resistivity profiling, Sacramento, California, June 2008

    Science.gov (United States)

    Ball, Lyndsay B.; Teeple, Andrew

    2013-01-01

    The levee system of the lower American River in Sacramento, California, is situated above a mixed lithology of alluvial deposits that range from clay to gravel. In addition, sand deposits related to hydraulic mining activities underlie the floodplain and are preferentially prone to scour during high-flow events. In contrast, sections of the American River channel have been observed to be scour resistant. In this study, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, explores the resistivity structure of the American River channel to characterize the extent and thickness of lithologic units that may impact the scour potential of the area. Likely lithologic structures are interpreted, but these interpretations are non-unique and cannot be directly related to scour potential. Additional geotechnical data would provide insightful data on the scour potential of certain lithologic units. Additional interpretation of the resistivity data with respect to these results may improve interpretations of lithology and scour potential throughout the American River channel and floodplain. Resistivity data were collected in three profiles along the American River using a water-borne continuous resistivity profiling technique. After processing and modeling these data, inverted resistivity profiles were used to make interpretations about the extent and thickness of possible lithologic units. In general, an intermittent high-resistivity layer likely indicative of sand or gravel deposits extends to a depth of around 30 feet (9 meters) and is underlain by a consistent low-resistivity layer that likely indicates a high-clay content unit that extends below the depth of investigation (60 feet or 18 meters). Immediately upstream of the Watt Avenue Bridge, the high-resistivity layer is absent, and the low-resistivity layer extends to the surface where a scour-resistant layer has been previously observed in the river bed.

  12. Spatial trends and impairment assessment of mercury in sport fish in the Sacramento-San Joaquin Delta watershed

    International Nuclear Information System (INIS)

    Melwani, A.R.; Bezalel, S.N.; Hunt, J.A.; Grenier, J.L.; Ichikawa, G.; Heim, W.; Bonnema, A.; Foe, C.; Slotton, D.G.; Davis, J.A.

    2009-01-01

    A three-year study was conducted to examine mercury in sport fish from the Sacramento-San Joaquin Delta. More than 4000 fish from 31 species were collected and analyzed for total mercury in individual muscle filets. Largemouth bass and striped bass were the most contaminated, averaging 0.40 μg/g, while redear sunfish, bluegill and rainbow trout exhibited the lowest (<0.15 μg/g) concentrations. Spatial variation in mercury was evaluated with an analysis of covariance model, which accounted for variability due to fish size and regional hydrology. Significant regional differences in mercury were apparent in size-standardized largemouth bass, with concentrations on the Cosumnes and Mokelumne rivers significantly higher than the central and western Delta. Significant prey-predator mercury correlations were also apparent, which may explain a significant proportion of the spatial variation in the watershed. - Regional differences in sport fish mercury were found in the Sacramento-San Joaquin Delta.

  13. Interactions between deep bedrock aquifers and surface water in function of recharge and topography: a numerical study

    Science.gov (United States)

    Goderniaux, P.; Davy, P.; Le Borgne, T.; Bresciani, E.; Jimenez-Martinez, J.

    2011-12-01

    In crystalline rock regions, such as Brittany (France), important reserves of groundwater into deep fractured aquifers are increasingly used and provide high quality water compared to shallow aquifers which can be subject to agricultural contamination. However, recharge processes of these deep aquifers and interactions with surface water are not yet fully understood. In some areas, intensive pumping is carried out without guarantee of the resource quantity and quality. Understanding these processes is crucial for sustainable management of the resource. In this study, we study how deep groundwater fluxes, pathways, ages, and river-aquifer interactions vary according to recharge. We assume that water flowing from the ground surface is distributed between shallow more permeable layers and deep layers. This repartition mostly depends on recharge rates. With high recharge, groundwater levels are high and subsurface streamlines are relatively short between recharge areas and existing draining rivers, which constitutes a very dense network. Therefore, most of the groundwater fluxes occur through the more permeable shallow layers. With low recharge, groundwater levels are lower, and river and shallow permeable levels are partly disconnected from each other. This induces a general increase of the groundwater streamlines length from the recharge areas to more sporadic discharge areas, and more fluxes occur through the deep layers. Recharge conditions and river-aquifer interactions have changed over the last thousands of years, due to change in precipitation, temperatures, existence of permafrost, etc. They have strongly influenced deep groundwater fluxes and can explain current groundwater age and flux distribution. To study these interactions, a regional-scale finite difference flow model was implemented. The model covers an area of 1400 km 2 , a depth of 1 km, and the topography is characteristic of Brittany. As rivers are mainly fed by groundwater drainage, seepages faces

  14. Levee Seepage Detection in the Sacramento-San Joaquin Delta Using Polarimetric SAR

    Science.gov (United States)

    An, K.; Jones, C. E.; Bekaert, D. P.

    2017-12-01

    The Sacramento-San Joaquin Delta's extensive levee system protects over 2,800 km2 of reclaimed lands and serves as the main irrigation and domestic water supply for the state of California. However, ongoing subsidence and disaster threats from floods and earthquakes make the Delta levee system highly vulnerable, endangering water supplies for 23 million California residents and 2.5 million acres of agricultural land. Levee failure in the Delta can cause saltwater intrusion from San Francisco Bay, reducing water quality and curtailing water exports to residents, commercial users, and farmers. To protect the Delta levee system, it is essential to search for signs of seepage in which water is piping through or beneath levees, which can be associated with deformation of the levees themselves. Until now, in-situ monitoring has largely been applied, however, this is a time-consuming and expensive approach. We use data acquired with NASA's UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) airborne radar instrument to identify and characterize levee seepages and associated land subsidence through advanced remote sensing technologies. The high spatial resolution of UAVSAR can help to direct surveys to areas that are likely to be experiencing damage. UAVSAR is an L-band airborne sensor with high signal-to-noise ratio, repeat flight track accuracy, and spatial resolution of 7x7 m2 (for multi-looked products) that is necessary for detailed levee monitoring. The adaptability of radar instruments in their ability to see through smoke, haze, and clouds during the day or night, is especially relevant during disaster events, when cloud cover or lack of solar illumination inhibits traditional visual surveys of damage. We demonstrate the advantages of combining polarimetric radar imagery with geographic information systems (GIS) datasets in locating seepage features along critical levee infrastructure in the Delta for 2009-2016. The ability to efficiently locate potential

  15. Deep water convection and biogeochemical cycling of carbon in the Northern North Atlantic

    International Nuclear Information System (INIS)

    Buch, E.; Gissel Nielsen, T.; Lundsgaard, C.; Bendtsen, J.

    2001-01-01

    In 1998, the Danish Research Council launched the Global Change project 'Biochemical cycling of carbon and ocean circulation in the Northern North Atlantic'. The overall aim of the project was to describe the effect of high latitude carbon dynamics on the global ocean-atmosphere carbon system, in general, and on the atmospheric pCO 2 in particular. At present, knowledge concerning the seasonal differences in turnover rates of organic material in polar and sub-polar regions is limited. Thus, in order to achieve the aim of the project, it was necessary to obtain biological and chemical rate measurements for production and mineralization of dissolved and particulate organic material at high latitudes and relate these to ocean dynamics at different times of the year. This was investigated in the project by performing three cruises to the Greenland Sea area at different times of the year. The purpose of the present chapter is to give a review of: 1) The physical environment of the Northern North Atlantic (ocean circulation, deep convection, North Atlantic Oscillation) and its variability including the recent trends of importance to climate change. 2) The chemical and biological processes of importance to carbon cycle and the importance of the carbon cycle to our understanding of climate variability. Additionally preliminary results from the Danish global change investigation in the Greenland Sea will be presented. With regard to circulation it is concluded that the deep water in the Greenland Sea continues to warm up, indicating that the deep water formation in this area is reduced. The biological investigations are providing a highly needed basic knowledge of the structure and function of the pelagic food web as well as of the microbial food web of the intermediate and deep water. These studies form a basis for assessing the productivity, export mechanisms, mineralization rates and mineralization depth-scales in these areas. Especially the questions about the

  16. The diet and feeding ecology of Conger conger (L. 1758 in the deep waters of the Eastern Ionian Sea

    Directory of Open Access Journals (Sweden)

    A. ANASTASOPOULOU

    2013-06-01

    Full Text Available The diet of the European conger eel Conger conger was investigated for the first time in the Eastern Mediterranean. Fish dominated the European conger eel diet in the deep waters of E. Ionian Sea. All other prey taxa were identified as accidental preys. However, intestine analysis showed that Natantia, Brachyura and Cephalopoda might have a more important contribution in the diet of the species. C. conger exhibited a benthopelagic feeding behavior as it preyed upon both demersal and mesopelagic taxa. The high vacuity index and the low stomach and intestine fullness indicated that the feeding intensity of the species in the deep waters of Eastern Ionian Sea was quite low. C. conger feeding strategy was characterised by specialisation in various resource items. A between-phenotype contribution to niche width was observed for some prey categories. European Conger eel feeding specialisation seemed to be an adaptation to a food-scarce environment, as typified in deep-water habitats

  17. How Stressful Is "Deep Bubbling"?

    Science.gov (United States)

    Tyrmi, Jaana; Laukkanen, Anne-Maria

    2017-03-01

    Water resistance therapy by phonating through a tube into the water is used to treat dysphonia. Deep submersion (≥10 cm in water, "deep bubbling") is used for hypofunctional voice disorders. Using it with caution is recommended to avoid vocal overloading. This experimental study aimed to investigate how strenuous "deep bubbling" is. Fourteen subjects, half of them with voice training, repeated the syllable [pa:] in comfortable speaking pitch and loudness, loudly, and in strained voice. Thereafter, they phonated a vowel-like sound both in comfortable loudness and loudly into a glass resonance tube immersed 10 cm into the water. Oral pressure, contact quotient (CQ, calculated from electroglottographic signal), and sound pressure level were studied. The peak oral pressure P(oral) during [p] and shuttering of the outer end of the tube was measured to estimate the subglottic pressure P(sub) and the mean P(oral) during vowel portions to enable calculation of transglottic pressure P(trans). Sensations during phonation were reported with an open-ended interview. P(sub) and P(oral) were higher in "deep bubbling" and P(trans) lower than in loud syllable phonation, but the CQ did not differ significantly. Similar results were obtained for the comparison between loud "deep bubbling" and strained phonation, although P(sub) did not differ significantly. Most of the subjects reported "deep bubbling" to be stressful only for respiratory and lip muscles. No big differences were found between trained and untrained subjects. The CQ values suggest that "deep bubbling" may increase vocal fold loading. Further studies should address impact stress during water resistance exercises. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  18. Improving Aquatic Plant Management in the California Sacramento-San Joaquin Delta

    Science.gov (United States)

    Bubenheim, David L.; Potter, Chris

    2018-01-01

    Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass), direct operations, and assess management impacts on plant communities. Archived satellite records going are used to review results from previous climate and management events and aide in developing long-term strategies. Modeling at local and watershed scales provides insight into land-use effects on water quality. Plant growth models informed by remote sensing are being applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments, phenology, environmental regulations, and economics in selection of management practices. Initial utilization of remote sensing tools developed for mapping of aquatic invasive weeds improved operational efficiency by focusing limited chemical use to strategic areas with high plant-control impact and incorporating mechanical harvesting when chemical use is restricted. These assessment methods provide a comprehensive and quantitative view of aquatic invasive plants communities in the California Delta, both spatial and temporal, informed by ecological understanding with the objective of improving management and assessment effectiveness.

  19. Offshore support vessel developments for deep water oil and gas E and P

    Energy Technology Data Exchange (ETDEWEB)

    Dielen, Baldo A.M. [SMIT, Rotterdam (Netherlands)

    2008-07-01

    The worldwide trend to move towards more exposed locations and deeper waters for O and G exploration and production activities resulted in an increased need for larger and more powerful tugs and offshore support vessels. These vessels must meet higher operational requirements under higher wind and sea-state conditions. This market-driven need, together with technological developments, is leading towards a new generation of powerful and sophisticated offshore support vessels (OSV's). This paper will describe the actual and future trends in OSV design for deep water offshore use. (author)

  20. Observations of the temperature dependent response of ozone to NOx reductions in the Sacramento, CA urban plume

    Science.gov (United States)

    Lafranchi, B. W.; Goldstein, A. H.; Cohen, R. C.

    2011-07-01

    Observations of NOx in the Sacramento, CA region show that mixing ratios decreased by 30 % between 2001 and 2008. Here we use an observation-based method to quantify net ozone (O3) production rates in the outflow from the Sacramento metropolitan region and examine the O3 decrease resulting from reductions in NOx emissions. This observational method does not rely on assumptions about detailed chemistry of ozone production, rather it is an independent means to verify and test these assumptions. We use an instantaneous steady-state model as well as a detailed 1-D plume model to aid in interpretation of the ozone production inferred from observations. In agreement with the models, the observations show that early in the plume, the NOx dependence for Ox (Ox = O3 + NO2) production is strongly coupled with temperature, suggesting that temperature-dependent biogenic VOC emissions and other temperature-related effects can drive Ox production between NOx-limited and NOx-suppressed regimes. As a result, NOx reductions were found to be most effective at higher temperatures over the 7 year period. We show that violations of the California 1-h O3 standard (90 ppb) in the region have been decreasing linearly with decreases in NOx (at a given temperature) and predict that reductions of NOx concentrations (and presumably emissions) by an additional 30 % (relative to 2007 levels) will eliminate violations of the state 1 h standard in the region. If current trends continue, a 30 % decrease in NOx is expected by 2012, and an end to violations of the 1 h standard in the Sacramento region appears to be imminent.

  1. Identifying and classifying water hyacinth (Eichhornia crassipes) using the HyMap sensor

    Science.gov (United States)

    Rajapakse, Sepalika S.; Khanna, Shruti; Andrew, Margaret E.; Ustin, Susan L.; Lay, Mui

    2006-08-01

    In recent years, the impact of aquatic invasive species on biodiversity has become a major global concern. In the Sacramento-San Joaquin Delta region in the Central Valley of California, USA, dense infestations of the invasive aquatic emergent weed, water hyacinth (Eichhornia crassipes) interfere with ecosystem functioning. This silent invader constantly encroaches into waterways, eventually making them unusable by people and uninhabitable to aquatic fauna. Quantifying and mapping invasive plant species in aquatic ecosystems is important for efficient management and implementation of mitigation measures. This paper evaluates the ability of hyperspectral imagery, acquired using the HyMap sensor, for mapping water hyacinth in the Sacramento-San Joaquin Delta region. Classification was performed on sixty-four flightlines acquired over the study site using a decision tree which incorporated Spectral Angle Mapper (SAM) algorithm, absorption feature parameters in the spectral region between 0.4 and 2.5μm, and spectral endmembers. The total image dataset was 130GB. Spectral signatures of other emergent aquatic species like pennywort (Hydrocotyle ranunculoides) and water primrose (Ludwigia peploides) showed close similarity with the water hyacinth spectrum, however, the decision tree successfully discriminated water hyacinth from other emergent aquatic vegetation species. The classification algorithm showed high accuracy (κ value = 0.8) in discriminating water hyacinth.

  2. The development of a remote repair system for deep water pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, Ian; Giles, John [Stolt Offshore MS Ltd., Aberdeen (United Kingdom)

    2000-07-01

    The ability to maintain a high level of flexibility within the contingency plans for sub sea pipeline repair is a critical issue normally achieved by basing the repair plans on diver intervention. This allows the pipeline operator flexibility to respond to particular repair situations as they occur, minimize up front planning and optimize the investment in repair equipment and stock. However for deep water pipelines all intervention must be performed by remote methods, which require the development of suitable equipment and more detailed repair procedures. This paper describes the development of a remotely operated pipeline repair system capable of working down to 3000 m and allowing a relatively high level of flexibility with minimum investment in repair stock. The repair system is based upon the Modular Advanced Tie-In System (MATIS) which has been successfully developed for the tie-in of deep water flow lines. The MATIS repair system is based on the use of standard flanges to replace a damaged section of pipe with a spool piece in a similar manner to a hyperbaric welded repair. Various repair scenarios are discussed in the paper together with the equipment and the procedures used to perform the repair. The paper will also discuss the other remote repair options such as hot tapping and friction stitch welding. (author)

  3. Four new species of deep water agglutinated foraminifera from the Oligocene-Miocene of the Congo Fan (offshore Angola)

    OpenAIRE

    Kender, S.; Kaminski, M. A.; Jones, R. W.

    2006-01-01

    Four new species of deep-water agglutinated benthic foraminifera are described from the Oligocene and Miocene of the Congo Fan, offshore Angola. Scherochorella congoensis n.sp., Paratrochamminoides goroyskiformis n.sp., Haplophragmoides nauticus n.sp. and Portatrochammina profunda n.sp. all occur in deep-sea turbiditic shales and sands from the distal section of the Congo Fan.

  4. Fiscal 1999 research result report. Basic research on the evaluation method of deep water by fine algae; 1999 nendo bisai sorui wo mochiita shinsosui hyokaho ni kansuru kisoteki kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Basic research was made on establishment of a bioassay for testing the effect of deep water on surface biota. Mixing of surface water and deep water with high-concentration nutrient salts has effect on fine algae (phytoplankton) immediately. In this research, based on conventional AGP (algae growth potential) method as water quality evaluation method by fine algae, the multiplication potential of 13 strains of algae in Kochi's and Toyama's deep water was evaluated by using the increase rate of the number of cells. The research result showed that (1) deep water has the potential increasing cell concentrations of every fine algae to several times or over ten times as compared with surface water, (2) most of both nitrogen and phosphorus in deep water are consumed during the above process, (3) cell concentrations of both harmful and usable species increase, and (4) although no difference in mean potential is found between Kochi's and Toyama's deep water, the patterns of strains promoting multiplication are different between them. (NEDO)

  5. Tomographic Rayleigh-wave group velocities in the Central Valley, California centered on the Sacramento/San Joaquin Delta

    Science.gov (United States)

    Fletcher, Jon Peter B.; Erdem, Jemile; Seats, Kevin; Lawrence, Jesse

    2016-01-01

    If shaking from a local or regional earthquake in the San Francisco Bay region were to rupture levees in the Sacramento/San Joaquin Delta then brackish water from San Francisco Bay would contaminate the water in the Delta: the source of fresh water for about half of California. As a prelude to a full shear-wave velocity model that can be used in computer simulations and further seismic hazard analysis, we report on the use of ambient noise tomography to build a fundamental-mode, Rayleigh-wave group velocity model for the region around the Sacramento/San Joaquin Delta in the western Central Valley, California. Recordings from the vertical component of about 31 stations were processed to compute the spatial distribution of Rayleigh wave group velocities. Complex coherency between pairs of stations were stacked over 8 months to more than a year. Dispersion curves were determined from 4 to about 18 seconds. We calculated average group velocities for each period and inverted for deviations from the average for a matrix of cells that covered the study area. Smoothing using the first difference is applied. Cells of the model were about 5.6 km in either dimension. Checkerboard tests of resolution, which is dependent on station density, suggest that the resolving ability of the array is reasonably good within the middle of the array with resolution between 0.2 and 0.4 degrees. Overall, low velocities in the middle of each image reflect the deeper sedimentary syncline in the Central Valley. In detail, the model shows several centers of low velocity that may be associated with gross geologic features such as faulting along the western margin of the Central Valley, oil and gas reservoirs, and large cross cutting features like the Stockton arch. At shorter periods around 5.5s, the model’s western boundary between low and high velocities closely follows regional fault geometry and the edge of a residual isostatic gravity low. In the eastern part of the valley, the boundaries

  6. A trans-disciplinary review of deep learning research for water resources scientists

    OpenAIRE

    Shen, Chaopeng

    2017-01-01

    Deep learning (DL), a new-generation artificial neural network research, has made profound strides in recent years. This review paper is intended to provide water resources scientists with a simple technical overview, trans-disciplinary progress update, and potentially inspirations about DL. Effective architectures, more accessible data, advances in regularization, and new computing power enabled the success of DL. A trans-disciplinary review reveals that DL is rapidly transforming myriad sci...

  7. Paraffin dispersant application for cleaning subsea flow lines in the deep water Gulf of Mexico cottonwood development

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, David; White, Jake; Pogoson, Oje [Baker Hughes Inc., Houston, TX (United States); Barros, Dalmo; Ramachandran, Kartik; Bonin, George; Waltrich, Paulo; Shecaira, Farid [PETROBRAS America, Houston, TX (United States); Ziglio, Claudio [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisa e Desenvolvimento

    2012-07-01

    This paper discusses a paraffin dispersant (in seawater) application to clean paraffin deposition from a severely restricted 17.4-mile dual subsea flow line system in the Gulf of Mexico Cottonwood development. In principle, dispersant treatments are simple processes requiring effective dispersant packages and agitation to break-up and disperse deposition. Dispersants have been used onshore for treating wax deposition for decades. Implementation of a treatment in a long deep water production system, however, poses numerous challenges. The Cottonwood application was one of the first ever deep water dispersant applications. The application was designed in four separate phases: pre-treatment displacement for hydrate protection, dispersant treatment for paraffin deposition removal, pigging sequence for final flow line cleaning, and post-treatment displacement for hydrate protection. In addition, considerable job planning was performed to ensure the application was executed in a safe and environmentally responsible manner. Two dynamically positioned marine vessels were used for pumping fluids and capturing returns. The application was extremely successful in restoring the deep water flow lines back to near pre-production state. Final pigging operations confirmed the flow lines were cleaned of all restrictions. Significant paraffin deposition was removed in the application. Approximately 900 bbls of paraffin sludge was recovered from the 4000 bbl internal volume flow line loop. Furthermore, the application was completed with zero discharge of fluids. The application provided significant value for the Cottonwood development. It allowed production from wells to be brought on-line at a higher capacity, thereby generating increased revenue. It also allowed resumption of routine pigging operations. As such, the Cottonwood dispersant application illustrates that with proper planning and execution, paraffin dispersant treatments can be highly effective solutions for cleaning

  8. Successes, Failures and Suggested Future Directions for Ecosystem Restoration of the Middle Sacramento River, California

    OpenAIRE

    Gregory H. Golet; David L. Brown; Melinda Carlson; Thomas Gardali; Adam Henderson; Karen D. Holl; Christine A. Howell; Marcel Holyoak; John W. Hunt; G. Mathias Kondolf; Eric W. Larsen; Ryan A. Luster; Charles McClain; Charles Nelson; Seth Paine

    2013-01-01

    Large-scale ecosystem restoration projects seldom undergo comprehensive evaluation to determine project effectiveness. Consequently, there are missed opportunities for learning and strategy refinement. Before our study, monitoring information from California’s middle Sacramento River had not been synthesized, despite restoration having been ongoing since 1989. Our assessment was based on the development and application of 36 quantitative ecological indicators. These indicators were used to ch...

  9. Applying ultrasonic in-line inspection technology in a deep water environment: exploring the challenges

    Energy Technology Data Exchange (ETDEWEB)

    Thielager, N.; Nadler, M.; Pieske, M.; Beller, M. [NDT Systems and Services AG, Stutensee (Germany)

    2009-12-19

    The demand for higher inspection accuracies of in-line inspection tools (ILI tools) is permanently growing. As integrity assessment procedures are being refined, detection performances, sizing accuracies and confidence levels regarding detection and sizing play an ever increasing role. ILI tools utilizing conventional ultrasound technology are at the forefront of technology and fulfill the market requirements regarding sizing accuracies and the ability to provide quantitative measurements of wall thickness as well as crack inspection capabilities. Data from ultrasonic tools is ideally suited for advanced integrity assessment applications and run comparisons. Making this technology available for a deep-water environment of heavy wall, high pressures and temperatures comes with a wide range of challenges which have to be addressed. This paper will introduce developments recently made in order to adapt and modify ultrasonic in-line inspection tools for the application in a heavy wall, high pressure and high temperature environment as encountered in deep offshore pipelines. The paper will describe necessary design modifications and new conceptual approaches especially regarding tool electronics, cables, connectors and the sensor carrier. A tool capable of deep-water inspection with a pressure bearing capability of 275 bar will be introduced and data from inspection runs will be presented. As an outlook, the paper will also discuss future inspection requirements for offshore pipelines with maximum pressure values of up to 500 bar. (author)

  10. The roles of MCDW and deep water iron supply in sustaining a recurrent phytoplankton bloom on central Pennell Bank (Ross Sea)

    Science.gov (United States)

    Kustka, Adam B.; Kohut, Josh T.; White, Angelicque E.; Lam, Phoebe J.; Milligan, Allen J.; Dinniman, Michael S.; Mack, Stefanie; Hunter, Elias; Hiscock, Michael R.; Smith, Walker O.; Measures, Chris I.

    2015-11-01

    During January-February 2011 standing stocks of phytoplankton (chl a) in the Pennell Bank region of the Ross Sea were variable over 10-100 km spatial scales. One area of elevated chl a on central Pennell Bank (CPB) appeared to be a recurrent mid-summer feature. The western flank (WF) of Pennell Bank had pronounced signatures of Modified Circumpolar Deep Water (MCDW). We evaluated the spatial extent of Fe limitation and net primary production and tested whether MCDW may provide elevated amounts of Fe to the CPB region, through a combination of in situ measurements, shipboard incubations and a horizontally resolved physical model. Regional fluxes of dissolved Fe from deep to surface waters were compared to calculated Fe demands. Low in situ variable to maximum fluorescence (Fv/Fm; 0.24-0.37) and surface water dissolved Fe concentrations (~0.12-0.21 nM) were suggestive of widespread limitation, corroborated by the consistent responses (Fv/Fm, growth, and nutrient removal ratios) of incubation treatments to Fe addition. MCDW from the WF region had lower dissolved Fe concentrations than that measured in CDW (Circumpolar Deep Water), which suggests on-shelf modification with Fe deplete surface waters and is consistent with the lack of stimulation due to incubation amendments with filtered MCDW. Model results and empirical data suggest MCDW from the WF region is further modified and mixed en route to the CPB region, leading to both the erosion of the canonical MCDW signature and an elevated dissolved Fe inventory of CPB region deep water. This suggests the addition of Fe possibly via diagenesis, as suggested by Marsay et al. (2014). Calculated deep water supply rates to the surface waters of CPB were ~0.18-0.43 m d-1, while calculated rates at the WF or northern Pennell Bank (NPB) regions were negative. The CPB populations exhibited ~4.5-fold higher net production rates compared to those in the WF and NPB regions and required 520-3200 nmol Fe m-2 d-1. The modeled vertical

  11. Unusual Deep Water sponge assemblage in South China—Witness of the end-Ordovician mass extinction

    Science.gov (United States)

    Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim

    2015-11-01

    There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.

  12. Unusual Deep Water sponge assemblage in South China-Witness of the end-Ordovician mass extinction.

    Science.gov (United States)

    Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim

    2015-11-05

    There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.

  13. Sesquiterpene-derived metabolites from the deep water marine sponge Poecillastra sollasi.

    Science.gov (United States)

    Killday, K B; Longley, R; McCarthy, P J; Pomponi, S A; Wright, A E; Neale, R F; Sills, M A

    1993-04-01

    Six sesquiterpene-derived compounds, 1-6, which we call sollasins a-f, have been isolated from a deep water specimen of the sponge Poecillastra sollasi. The structures were elucidated by comparison of spectral data to related metabolites and confirmed using spectroscopic methods. The compounds inhibit the growth of the pathogenic fungi Candida albicans and Cryptococcus neoformans and the P-388 and A-549 tumor cell lines. Compounds 3 and 4 show weak inhibition of binding of [125I] angiotensin II to rat aorta smooth muscle cell membranes.

  14. Bermuda: Search for Deep Water Caves 2009 on the R/V Endurance between 20090905 and 20090930

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-water marine caves are one of the Earth's last largely unexplored frontiers of undiscovered fauna (animal life). More than 150 limestone caves are known to...

  15. Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery

    International Nuclear Information System (INIS)

    Li, Yuzhong; Yan, Min; Zhang, Liqiang; Chen, Guifang; Cui, Lin; Song, Zhanlong; Chang, Jingcai; Ma, Chunyuan

    2016-01-01

    Highlights: • A method is developed for deep cooling of flue gas in coal-fired boilers. • The method can recover both latent heat and water from flue gas. • The method utilizes FGD scrubber as a deep cooling exchanger. • The method adopts the direct heat exchange mode to avoid the corrosion problem. - Abstract: Flue gas waste heat recovery and utilization is an efficient means to improve the energy efficiency of coal-fired power plants. At present, the surface corrosion and fouling problems of heat exchanger hinder the development of flue gas deep cooling. In this study, a novel flue gas deep cooling method that can reduce flue gas temperature below the dew point of vapor to recover latent heat and obtain clean water simultaneously is proposed to achieve improved energy efficiency. The heat transfer mode of this method is the direct contact mode, which takes the scrubber, e.g. the flue gas desulfurization (FGD) scrubber, as the deep cooling exchanger. The flash evaporation and condensation (FEC) device and heat pump (HP) are utilized to provide low-temperature medium, such as FGD slurry or water, for washing and deep cooling flue gas, to collect recovered water, and to absorb recovered waste heat. This method is called as the FEC–HP method. This paper elaborated on two optional models of the proposed method. The mechanism for recovering heat and water was also analyzed using the customized flue gas humidity chart, and the method to quantitate recovered heat and water, as well as the results of the case of a 300 MW coal-fired generator set were provided. Net present value calculations showed that this method is profitable in the scenario of burning high-water-content coals. Several potential advantages of this method and suggestions for practical application were also discussed.

  16. Arctic deep-water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean

    Science.gov (United States)

    Hein, James; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah; Till, Claire P.

    2017-01-01

    Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits.The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ∼15 Myr ago.

  17. Tracer element studies on deep water formation and circulation in the European Artic Sea

    International Nuclear Information System (INIS)

    Boenisch, G.

    1991-01-01

    Tracer element investigations (tritium, helium 3, carbon 14, argon 39, krypton 85 and fluorohydrocarbons) were carried out in the European Arctic Sea. The findings are discussed with a view to their validity in the case of deep water formation and circulation. The data cover the period of 1972 through 1989. (BBR) [de

  18. Water extraction of coals - potential for estimating low molecular weight organic acids as carbon feedstock for the deep terrestrial biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vieth, A.; Mangelsdorf, K.; Sykes, R.; Horsfield, B. [Geoforschungszentrum Potsdam, Potsdam (Germany)

    2008-08-15

    With the recent increasing interest in the deep biosphere, the question arises as to where the carbon sources that support deep microbial communities are derived from. Our research was focussed on the water-soluble, low molecular weight (LMW) organic acids that are potentially available from different sedimentary lithologies to serve as a carbon source to feed the deep biosphere. A series of Eocene-Pleistocene coals, mudstones and sandstones of varying rank (maturity) and total organic carbon (TOC) content from the Waikato Basin, New Zealand, has been Soxhlet-extracted using water. The combined concentration of recovered formate, acetate and oxalate range from 366 to 2499 {mu} g/g sediment and appear to be dependent on rank, organofacies and TOC. The yields indicate the potential of carbonaceous sediments to feed the local deep terrestrial biosphere over geological periods of time. The existence of living microbial organisms in the mudstones and sandstones was proved by the identification of intact phospholipids (PLs).

  19. 2012 NOAA Ortho-rectified Color Mosaic of Sacramento Deep Water Ship Channel, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  20. Reproductive traits of tropical deep-water pandalid shrimps ( Heterocarpus ensifer) from the SW Gulf of Mexico

    Science.gov (United States)

    Briones-Fourzán, Patricia; Barradas-Ortíz, Cecilia; Negrete-Soto, Fernando; Lozano-Álvarez, Enrique

    2010-08-01

    Heterocarpus ensifer is a tropical deep-water pandalid shrimp whose reproductive features are poorly known. We examined reproductive traits of a population of H. ensifer inhabiting the continental slope (311-715 m in depth) off the Yucatan Peninsula, Mexico (SW Gulf of Mexico). Size range of the total sample ( n=816) was 10.4-38.9 mm carapace length. Females grow larger than males, but both sexes mature at 57% of their maximum theoretical size and at ˜30% of their total lifespan. Among adult females, the proportion of ovigerous females was high in all seasons, indicating year-round reproduction. Most females carrying embryos in advanced stages of development had ovaries in advanced stages of maturation, indicating production of successive spawns. In the autumn, however, the proportion of ovigerous females and the condition index of these females were lower compared to other seasons. This pattern potentially reflects a reduction in food resources following the summer minimum in particulate organic carbon flux to the deep benthos, as reported in previous studies. Spawns consisting of large numbers (16024±5644, mean±SD) of small eggs (0.045±0.009 mm 3) are consistent with extended planktotrophic larval development, an uncommon feature in deep-water carideans. Egg number increased as a power function of female size but with substantial variability, and egg size varied widely within and between females. There was no apparent trade-off between egg number and egg size and neither of these two variables was influenced by female condition. These results indicate iteroparity and a high and variable reproductive effort, reflecting a reproductive strategy developed to compensate for high larval mortality. The present study provides a baseline to compare reproductive traits between Atlantic populations of this tropical deep-water pandalid.

  1. Southwest Pacific deep water carbonate chemistry linked to high southern latitude climate and atmospheric CO2 during the Last Glacial Termination

    Science.gov (United States)

    Allen, Katherine A.; Sikes, Elisabeth L.; Hönisch, Bärbel; Elmore, Aurora C.; Guilderson, Thomas P.; Rosenthal, Yair; Anderson, Robert F.

    2015-08-01

    A greater amount of CO2 was stored in the deep sea during glacial periods, likely via greater efficiency of the biologic pump and increased uptake by a more alkaline ocean. Reconstructing past variations in seawater carbonate ion concentration (a major component of alkalinity) enables quantification of the relative roles of different oceanic CO2 storage mechanisms and also places constraints on the timing, magnitude, and location of subsequent deep ocean ventilation. Here, we present a record of deep-water inorganic carbon chemistry since the Last Glacial Maximum (LGM; ∼19-23 ka BP), derived from sediment core RR0503-83 raised from 1627 m in New Zealand's Bay of Plenty. The core site lies within the upper limit of southern-sourced Circumpolar Deep Water (CDW), just below the lower boundary of Antarctic Intermediate Water (AAIW). We reconstruct past changes in bottom water inorganic carbon chemistry from the trace element and stable isotopic composition of calcite shells of the epibenthic foraminifer Cibicidoides wuellerstorfi. A record of ΔCO32-(ΔCO32- = [COCO32-] in situ - [CO32-] saturation) derived from the foraminiferal boron to calcium ratio (B/Ca) provides evidence for greater ice-age storage of respired CO2 and reveals abrupt deglacial shifts in [CO32-] in situ of up to 30 μmol/kg (5 times larger than the difference between average LGM and Holocene values). The rapidity of these changes suggests the influence of changing water mass structure and atmospheric circulation in addition to a decrease in CO2 content of interior waters.

  2. Changes in the status of harvested rice fields in the Sacramento Valley, California: Implications for wintering waterfowl.

    Science.gov (United States)

    Miller, Michael R.; Garr, Jay D.; Coates, Peter S.

    2010-01-01

    Harvested rice fields provide critical foraging habitat for wintering waterfowl in North America, but their value depends upon post-harvest treatments. We visited harvested ricefields in the Sacramento Valley, California, during the winters of 2007 and 2008 (recent period) and recorded their observed status as harvested (standing or mechanically modified stubble), burned, plowed, or flooded. We compared these data with those from identical studies conducted during the 1980s (early period). We documented substantial changes in field status between periods. First, the area of flooded rice increased 4-5-fold, from about 15% to >40% of fields, because of a 3-4-fold increase in the percentage of fields flooded coupled with a 37-41% increase in the area of rice produced. Concurrently, the area of plowed fields increased from 35% of fields, burned fields declined from about 40% to 1%, and fields categorized as harvested declined from 22-54% to rice field status survey in the Sacramento Valley and other North American rice growing regions as appropriate to support long-term monitoring programs and wetland habitat conservation planning for wintering waterfowl.

  3. Application of Confined Blasting in Water-Filled Deep Holes to Control Strong Rock Pressure in Hard Rock Mines

    Directory of Open Access Journals (Sweden)

    Jingxuan Yang

    2017-11-01

    Full Text Available In extra-thick coal seams, mining operations can lead to large-scale disturbances, complex overburden structures, and frequent and strong strata behavior in the stope, which are serious threats to mine safety. This study analyzed the overburden structure and strata behavior and proposed the technique of confined blasting in water-filled deep holes as a measure to prevent strong rock pressure. It found that there are two primary reasons for the high effectiveness of the proposed technique in presplitting hard coal and rock. First, the fracture water enables much more efficient transfer of dynamic load due to its incompressibility. Second, the subsequent expansion of water can further split the rock by compression. A mechanical model was used to reveal how the process of confined blasting in water-filled deep holes presplit roof. Moreover, practical implementation of this technique was found to improve the structure of hard, thick roof and prevent strong rock pressure, demonstrating its effectiveness in roof control.

  4. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    Science.gov (United States)

    Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-10-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.

  5. Microbially-mediated fluorescent organic matter transformations in the deep ocean

    DEFF Research Database (Denmark)

    Aparicio, Fran L.; Nieto-Cid, Mar; Borrull, Encarna

    2015-01-01

    The refractory nature of marine dissolved organic matter (DOM) increases while it travels from surface waters to the deep ocean. This resistant fraction is in part composed of fluorescent humic-like material, which is relatively difficult to metabolize by deep water prokaryotes, and it can also b....... These findings contribute to the understanding of FDOM variability in deep waters and provide valuable information for studies where fluorescent compounds are used in order to track water masses and/or microbial processes.......The refractory nature of marine dissolved organic matter (DOM) increases while it travels from surface waters to the deep ocean. This resistant fraction is in part composed of fluorescent humic-like material, which is relatively difficult to metabolize by deep water prokaryotes, and it can also...

  6. Trace elements and stable isotope ratios (δ13C and δ15N) in fish from deep-waters of the Sulu Sea and the Celebes Sea

    International Nuclear Information System (INIS)

    Asante, Kwadwo Ansong; Agusa, Tetsuro; Kubota, Reiji; Mochizuki, Hiroko; Ramu, Karri; Nishida, Shuhei; Ohta, Suguru; Yeh, Hsin-ming; Subramanian, Annamalai; Tanabe, Shinsuke

    2010-01-01

    Trace elements (TEs) and stable isotope ratios (δ 15 N and δ 13 C) were analyzed in fish from deep-water of the Sulu Sea, the Celebes Sea and the Philippine Sea. Concentrations of V and Pb in pelagic fish from the Sulu Sea were higher than those from the Celebes Sea, whereas the opposite trend was observed for δ 13 C. High concentrations of Zn, Cu and Ag were found in non-migrant fish in deep-water, while Rb level was high in fish which migrate up to the epipelagic zone, probably resulting from differences in background levels of these TEs in each water environment or function of adaptation to deep-water by migrant and non-migrant species. Arsenic level in the Sulu Sea fish was positively correlated with δ 15 N, indicating biomagnification of arsenic. To our knowledge, this is the first study on relationship between diel vertical migration and TE accumulation in deep-water fish.

  7. Delivering Economic Development in the Context of Financial Crisis: A Workforce Gap Analysis of the Sacramento Regional Economy

    Science.gov (United States)

    Taghavian, Alexander H.

    2013-01-01

    Workforce development represents a central priority in a comprehensive effort to create wealth, industry thickening, and broad-based prosperity. From the onset of the Great Recession in 2007, the Sacramento Region experienced anemic economic growth and remained behind the nation in job creation. Contextualized in the aftermath of the economic…

  8. Analysis of available wind resources and their suitability for hydrogen production in the Sacramento area

    International Nuclear Information System (INIS)

    Bartholomy, O.J.

    2004-01-01

    This paper looks at the technical, economic, environmental and regulatory barriers to the production of hydrogen from local wind resources in Sacramento, CA. Both central and distributed hydrogen generation are compared. The technical analysis uses 6 years of hourly wind data from Solano County to define the diurnal and seasonal wind resource. The impacts of a fluctuating power source on the electrolyzer are examined as well as the grid or hydrogen distribution and storage infrastructure constraints for implementation. An economic analysis comparing the price of hydrogen produced from the local wind resource is done with sensitivity analyses for capital and operating costs of both wind turbines and electrolyzers. In addition, the economic analysis includes considerations of increased demand for wind electricity by California utilities attempting to meet their Renewable Portfolio Standards. The environmental analysis compares the emissions reductions of CO 2 and criteria pollutants for different energy usage scenarios. These include comparing electricity and transportation emissions rates to optimize the use of wind energy and natural gas, as well as comparison of SULEV hybrid vehicles with FCV's and H 2 ICE's. Finally, an examination of the existing regulatory structure and policies that could prevent or encourage the use of wind to produce hydrogen in Sacramento is also included. (author)

  9. Mapping Evapotranspiration in the Sacramento San Joaquin Delta using simulated ECOSTRESS Thermal Data: Validation and Inter-comparison

    Science.gov (United States)

    Wong, A.; Jin, Y.; He, R.; Hulley, G.; Fisher, J.; Lee, C. M.; Rivera, G.; Hook, S. J.; Medellin-Azuara, J.; Kent, E. R.; Paw U, K. T.; Gao, F.; Lund, J. R.

    2017-12-01

    Irrigation accounts for 80% of human freshwater consumption, and most of it return to the atmosphere through evapotranspiration (ET). In California, where our water resources are limited and heavily utilized, the need for a cost-effective, timely, and consistent spatial estimate of crop ET, from the farm to watershed level, is becoming increasingly important. The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), to be launched in mid-2018, will provide the most detailed and accurate temperature measurements ever acquired from space and thus unique opportunities for estimating ET at the farm scale. We simulated the ECOSTRESS thermal data at a 70 m resolution using VIIRS thermal observations and ASTER emissivity data in the Sacramento-San Joaquin Delta region for the 2016 water year. Three remote sensing based ET methods were then applied to estimate ET using simulated ECOSTRESS data and optical data from Landsat and VIIRS, including Priestley-Taylor approaches developed by the Jet Propulsion Laboratory (PT-JPL) and by UC Davis (PT-UCD), and the Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model. We compared these three sets of ET estimates with field measurements at sixteen sites over five crop types (Alfalfa, Corn, Pasture, Tomato, and Beardless Wheat). Good agreement was found between satellite-based estimates and field measurements. Our results demonstrate that thermal data from the upcoming ECOSTRESS mission will reduce the uncertainty in ET estimates. A continuous monitoring of the dynamics and spatial heterogeneity of consumptive water use at a field scale will help prepare and inform to adaptively manage water, canopy, and planting density to maximize yield with least amount of water.

  10. The discovery of deep-water seagrass meadows in a pristine Indian Ocean wilderness revealed by tracking green turtles.

    Science.gov (United States)

    Esteban, N; Unsworth, R K F; Gourlay, J B Q; Hays, G C

    2018-03-21

    Our understanding of global seagrass ecosystems comes largely from regions characterized by human impacts with limited data from habitats defined as notionally pristine. Seagrass assessments also largely focus on shallow-water coastal habitats with comparatively few studies on offshore deep-water seagrasses. We satellite tracked green turtles (Chelonia mydas), which are known to forage on seagrasses, to a remote, pristine deep-water environment in the Western Indian Ocean, the Great Chagos Bank, which lies in the heart of one of the world's largest marine protected areas (MPAs). Subsequently we used in-situ SCUBA and baited video surveys to survey the day-time sites occupied by turtles and discovered extensive monospecific seagrass meadows of Thalassodendron ciliatum. At three sites that extended over 128 km, mean seagrass cover was 74% (mean range 67-88% across the 3 sites at depths to 29 m. The mean species richness of fish in seagrass meadows was 11 species per site (mean range 8-14 across the 3 sites). High fish abundance (e.g. Siganus sutor: mean MaxN.site -1  = 38.0, SD = 53.7, n = 5) and large predatory shark (Carcharhinus amblyrhynchos) (mean MaxN.site -1  = 1.5, SD = 0.4, n = 5) were recorded at all sites. Such observations of seagrass meadows with large top predators, are limited in the literature. Given that the Great Chagos Bank extends over approximately 12,500 km 2 and many other large deep submerged banks exist across the world's oceans, our results suggest that deep-water seagrass may be far more abundant than previously suspected. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Six new deep-water sternaspid species (Annelida, Sternaspidae from the Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Sergio Salazar-Vallejo

    2013-11-01

    Full Text Available Most sternaspid species have been described from shallow water, and Caulleryaspis Sendall & Salazar-Vallejo, 2013 includes one deep water species: C. gudmundssoni Sendall & Salazar-Vallejo, 2013 from Iceland. In Sternaspis Otto, 1821, the most speciose genus, most species were described from shallow water and only three thrive in deep water: S. maior Chamberlin, 1919 from the Gulf of California, S. princeps Selenka, 1885 from New Zealand, and S. riestchi Caullery, 1944 from Indonesia. The study of some deep sea sternaspids from the Pacific Ocean in the collections of six research institutions resulted in the discovery of six undescribed species, and for three of them there were abundant materials showing ventro-caudal shield development. Caulleryaspis fauchaldi sp. n. is described based on specimens from Oregon and California; it differs from the known species because it has a shield with rounded anterior margins and its peg chaetae form thin, small spines. Caulleryaspis nuda sp. n. was collected off Oregon; it is unique because its shield lacks a layer of sediment particles firmly attached, but has instead a thin layer of small particles loosely attached. Four other species are newly described in Sternaspis: S. annenkovae sp. n. was collected east off the northern Kurile Islands in about 4,000 m depth; it differs from other species bya bicolored body, with the introvert darker than the abdomen, and its ventro-caudal shield plates are divergent resulting in a divided fan. The second species, S. maureri sp.n. was found off Peru in 1296–6489 m water depths and in the Southwestern Pacific in 795–3830 m; it resembles S. williamsae sp. n. but differs because its shield has better-developed ribs, the fan has a shallow or indistinct median notch and has lateral notches well-developed. The third species, S. uschakovi sp. n., was found in the Okhotsk Sea in 592–1366 m, off California in 1585 m, Gulf of California in 1200–1274 m, and Western

  12. Six new deep-water sternaspid species (Annelida, Sternaspidae) from the Pacific Ocean.

    Science.gov (United States)

    Salazar-Vallejo, Sergio I; Buzhinskaja, Galina

    2013-01-01

    Most sternaspid species have been described from shallow water, and Caulleryaspis Sendall & Salazar-Vallejo, 2013 includes one deep water species: C. gudmundssoni Sendall & Salazar-Vallejo, 2013 from Iceland. In Sternaspis Otto, 1821, the most speciose genus, most species were described from shallow water and only three thrive in deep water: S. maior Chamberlin, 1919 from the Gulf of California, S. princeps Selenka, 1885 from New Zealand, and S. riestchi Caullery, 1944 from Indonesia. The study of some deep sea sternaspids from the Pacific Ocean in the collections of six research institutions resulted in the discovery of six undescribed species, and for three of them there were abundant materials showing ventro-caudal shield development. Caulleryaspis fauchaldi sp. n. is described based on specimens from Oregon and California; it differs from the known species because it has a shield with rounded anterior margins and its peg chaetae form thin, small spines. Caulleryaspis nuda sp. n. was collected off Oregon; it is unique because its shield lacks a layer of sediment particles firmly attached, but has instead a thin layer of small particles loosely attached. Four other species are newly described in Sternaspis: S. annenkovae sp. n. was collected east off the northern Kurile Islands in about 4,000 m depth; it differs from other species by having a bicolored body, with the introvert darker than the abdomen, and its ventro-caudal shield plates are divergent resulting in a divided fan. The second species, S. maureri sp. n. was found off Peru in 1296-6489 m water depths and in the Southwestern Pacific in 795-3830 m; it resembles S. williamsae sp. n. but differs because its shield has better-developed ribs, the fan has a shallow or indistinct median notch and has lateral notches well-developed. The third species, S. uschakovi sp. n., was found in the Okhotsk Sea in 592-1366 m, off California in 1585 m, Gulf of California in 1200-1274 m, and Western Mexico in 2548 m; it

  13. Adjusting water resources management to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Riebsame, W E

    1988-01-01

    The nature of climate impacts and adjustment in water supply and flood management is discussed, and a case study of water manager response to climate fluctuation in California's Sacramento Basin is presented. The case illuminates the effect on climate impact and response of traditional management approaches, the dynamic qualities of maturing water systems, socially imposed constraints, and climate extremes. A dual pattern of crisis-response and gradual adjustment emerges, and specific mechanisms for effecting adjustment of water management systems are identified. The case study, and broader trends in US water development, suggest that oversized structural capacity, the traditional adjustment to climate variability in water resources, may prove less feasible in the future as projects become smaller and new facilities are delayed by economic and environmental concerns.

  14. Popular Music: A Selected Bibliography of Materials in the California State University, Sacramento Library. Bibliographic Series No. 22.

    Science.gov (United States)

    Smith, Donna Ridley, Comp.

    The bibliography lists over 400 works in the California State University Library, Sacramento, on pop, rock, country, folk, blues, and soul music from 1950 to the present. Books, periodicals, and non-book materials noted in the bibliography are appropriate for history, communication studies, and popular culture studies as well as for music. Items…

  15. Conflicts in River Management: A Conservationist's Perspective on Sacramento River Riparian Habitats—Impacts, Threats, Remedies, Opportunities, and Consensus

    Science.gov (United States)

    Richard Spotts

    1989-01-01

    The Sacramento River's historic riparian habitats have been reduced by over 98 percent due to cumulative, adverse human activities. These activities continue to jeopardize the remaining riparian habitats. The results of these trends is more endangered species conflicts and listings, coupled with less fish, beautiful scenery, and other resource values. This paper...

  16. Isotopic composition of water in a deep unsaturated zone beside a radioactive-waste disposal area near Beatty, Nevada

    Science.gov (United States)

    Stonestrom, David A.; Prudic, David E.; Striegl, Robert G.; Morganwalp, David W.; Buxton, Herbert T.

    1999-01-01

    The isotopic composition of water in deep unsaturated zones is of interest because it provides information relevant to hydrologic processes and contaminant migration. Profiles of oxygen-18 (18O), deuterium (D), and tritium (3H) from a 110-meter deep unsaturated zone, together with data on the isotopic composition of ground water and modern-day precipitation, are interpreted in the context of water-content, water-potential, and pore-gas profiles. At depths greater than about three meters, water vapor and liquid water are in approximate equilibrium with respect to D and 18O. The vapor-phase concentrations of D and 18O have remained stable through repeated samplings. Vapor-phase 3H concentrations have generally increased with time, requiring synchronous sampling of liquid and vapor to assess equilibrium. Below 30 meters, concentrations of D and 18O in pore water become approximately equal to the composition of ground water, which is isotopically lighter than modern precipitation and has a carbon-14 (14C) concentration of about 26 percent modern carbon. These data indicate that net gradients driving fluxes of water, gas, and heat are directed upwards for undisturbed conditions at the Amargosa Desert Research Site (ADRS). Superimposed on the upward-directed flow field, tritium is migrating away from waste in response to gradients in tritium concentrations.

  17. Potential for hydrogen-oxidizing chemolithoautotrophic and diazotrophic populations to initiate biofilm formation in oligotrophic, deep terrestrial subsurface waters.

    Science.gov (United States)

    Wu, Xiaofen; Pedersen, Karsten; Edlund, Johanna; Eriksson, Lena; Åström, Mats; Andersson, Anders F; Bertilsson, Stefan; Dopson, Mark

    2017-03-23

    Deep terrestrial biosphere waters are separated from the light-driven surface by the time required to percolate to the subsurface. Despite biofilms being the dominant form of microbial life in many natural environments, they have received little attention in the oligotrophic and anaerobic waters found in deep bedrock fractures. This study is the first to use community DNA sequencing to describe biofilm formation under in situ conditions in the deep terrestrial biosphere. In this study, flow cells were attached to boreholes containing either "modern marine" or "old saline" waters of different origin and degree of isolation from the light-driven surface of the earth. Using 16S rRNA gene sequencing, we showed that planktonic and attached populations were dissimilar while gene frequencies in the metagenomes suggested that hydrogen-fed, carbon dioxide- and nitrogen-fixing populations were responsible for biofilm formation across the two aquifers. Metagenome analyses further suggested that only a subset of the populations were able to attach and produce an extracellular polysaccharide matrix. Initial biofilm formation is thus likely to be mediated by a few bacterial populations which were similar to Epsilonproteobacteria, Deltaproteobacteria, Betaproteobacteria, Verrucomicrobia, and unclassified bacteria. Populations potentially capable of attaching to a surface and to produce extracellular polysaccharide matrix for attachment were identified in the terrestrial deep biosphere. Our results suggest that the biofilm populations were taxonomically distinct from the planktonic community and were enriched in populations with a chemolithoautotrophic and diazotrophic metabolism coupling hydrogen oxidation to energy conservation under oligotrophic conditions.

  18. Strategies for restoration of deep-water coral ecosystems based on a global survey of oil and gas regulations

    Science.gov (United States)

    Cordes, E. E.; Jones, D.; Levin, L. A.

    2016-02-01

    The oil and gas industry is one of the most active agents of the global industrialization of the deep sea. The wide array of impacts following the Deepwater Horizon oil spill highlighted the need for a systematic review of existing regulations both in US waters and internationally. Within different exclusive economic zones, there are a wide variety of regulations regarding the survey of deep-water areas prior to leasing and the acceptable set-back distances from vulnerable marine ecosystems once they are discovered. There are also varying mitigation strategies for accidental release of oil and gas, including active monitoring systems, temporary closings of oil and gas production, and marine protected areas. The majority of these regulations are based on previous studies of typical impacts from oil and gas drilling, rather than accidental releases. However, the probability of an accident from standard operations increases significantly with depth. The Oil & Gas working group of the Deep Ocean Stewardship Initiative is an international partnership of scientists, managers, non-governmental organizations, and industry professionals whose goal is to review existing regulations for the oil & gas industry and produce a best practices document to advise both developed and developing nations on their regulatory structure as energy development moves into deeper waters.

  19. Estimating the Effects of Conversion of Agricultural Land to Urban Land on Deep Percolation of Irrigation Water in the Grand Valley, Western Colorado

    Science.gov (United States)

    Mayo, John W.

    2008-01-01

    The conversion of agricultural land to urban residential land is associated with rapid population growth in the Grand Valley of western Colorado. Information regarding the effects of this land-use conversion on deep percolation, irrigation-water application, and associated salt loading to the Colorado River is needed to support water-resource planning and conservation efforts. The Natural Resources Conservation Service (NRCS) assessed deep percolation and estimated salt loading derived from irrigated agricultural lands in the Grand Valley in a 1985 to 2002 monitoring and evaluation study (NRCS M&E). The U.S. Geological Survey (USGS), in cooperation with the Colorado River Salinity Control Forum and the Mesa Conservation District, quantified the current (2005-2006) deep percolation and irrigation-water application characteristics of 1/4-acre residential lots and 5-acre estates, urban parks, and urban orchard grass fields in the Grand Valley, and compared the results to NRCS M&E results from alfalfa-crop sites. In addition, pond seepage from three irrigation-water holding ponds was estimated. Salt loading was estimated for the urban study results and the NRCS M&E results by using standard salt-loading factors. A daily soil-moisture balance calculation technique was used at all urban study irrigated sites. Deep percolation was defined as any water infiltrating below the top 12 inches of soil. Deep percolation occurred when the soil-moisture balance in the first 12 inches of soil exceeded the field capacity for the soil type at each site. Results were reported separately for urban study bluegrass-only sites and for all-vegetation type (bluegrass, native plants, and orchard grass) sites. Deep percolation and irrigation-water application also were estimated for a complete irrigation season at three subdivisions by using mean site data from each subdivision. It was estimated that for the three subdivisions, 37 percent of the developed acreage was irrigated (the balance

  20. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.

    Directory of Open Access Journals (Sweden)

    Christopher R German

    Full Text Available The ChEss project of the Census of Marine Life (2002-2010 helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB, the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i continued exploration of the deep-ocean ridge-crest; (ii increased focus on anthropogenic impacts; (iii concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but

  1. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.

    Science.gov (United States)

    German, Christopher R; Ramirez-Llodra, Eva; Baker, Maria C; Tyler, Paul A

    2011-01-01

    The ChEss project of the Census of Marine Life (2002-2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB), the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N) showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N) are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i) continued exploration of the deep-ocean ridge-crest; (ii) increased focus on anthropogenic impacts; (iii) concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but also the

  2. Extreme Longevity in Proteinaceous Deep-Sea Corals

    Energy Technology Data Exchange (ETDEWEB)

    Roark, E B; Guilderson, T P; Dunbar, R B; Fallon, S J; Mucciarone, D A

    2009-02-09

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelry trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.

  3. 78 FR 39315 - Notice of Availability of the Draft Environmental Impact Statement and Notice of Public Workshops...

    Science.gov (United States)

    2013-07-01

    ...The Bureau of Reclamation has made available for public review and comment the Draft Environmental Impact Statement (DEIS) for the Shasta Lake Water Resources Investigation (SLWRI). The purpose of the proposed action is to improve operational flexibility of the Sacramento-San Joaquin Delta watershed system by modifying the existing Shasta Dam and Reservoir to meet specified objectives. Primary objectives are to increase the survival of anadromous fish populations in the upper Sacramento River and increase water supply and water supply reliability. Secondary planning objectives are to: conserve, restore, and enhance ecosystem resources in the primary study area; reduce flood damage along the Sacramento River; develop additional hydropower generation capabilities; maintain and increase recreation opportunities; and maintain or improve water quality conditions in the Sacramento River downstream from Shasta Dam and in the Sacramento-San Joaquin Delta.

  4. Reliance on deep soil water in the tree species Argania spinosa.

    Science.gov (United States)

    Zunzunegui, M; Boutaleb, S; Díaz Barradas, M C; Esquivias, M P; Valera, J; Jáuregui, J; Tagma, T; Ain-Lhout, F

    2017-12-07

    In South-western Morocco, water scarcity and high temperature are the main factors determining species survival. Argania spinosa (L.) Skeels is a tree species, endemic to Morocco, which is suffering from ongoing habitat shrinkage. Argan trees play essential local ecological and economic roles: protecting soils from erosion, shading different types of crops, helping maintain soil fertility and, even more importantly, its seeds are used by the local population for oil production, with valuable nutritional, medicinal and cosmetic purposes. The main objective of this study was to identify the sources of water used by this species and to assess the effect of water availability on the photosynthetic rate and stem water potential in two populations: one growing on the coast and a second one 10 km inland. Stem water potential, photosynthetic rate and xylem water isotopic composition (δ18O) were seasonally monitored during 2 years. Trees from both populations showed a similar strategy in the use of the available water sources, which was strongly dependent on deep soil water throughout the year. Nevertheless, during the wet season or under low precipitation a more complex water uptake pattern was found with a mixture of water sources, including precipitation and soil at different depths. No evidence was found of the use of either groundwater or atmospheric water in this species. Despite the similar water-use strategy, the results indicate that Argania trees from the inland population explored deeper layers than coastal ones as suggested by more depleted δ18O values recorded in the inland trees and better photosynthetic performance, hence suggesting that the coastal population of A. spinosa could be subjected to higher stress. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Discobahamins A and B, new peptides from the Bahamian deep water marine sponge Discodermia sp.

    Science.gov (United States)

    Gunasekera, S P; Pomponi, S A; McCarthy, P J

    1994-01-01

    Discobahamin A [1] and discobahamin B [2] are two bioactive peptides isolated from a new species of the Bahamian deep water marine sponge Discodermia. The discobahamins are inhibitors of the growth of Candida albicans, and the isolation and structure elucidation of 1 and 2 by nmr and chemical methods is described.

  6. The Structure of Sea Water and Gelatinous Water in the Deep Ocean

    Science.gov (United States)

    Peltzer, E. T.; Walz, P. M.; Wojciechowicz, M.; Brewer, P. G.

    2016-12-01

    Gelatinous life forms are common in the deep sea and are able to maintain a careful combination of body integrity and easy fluidity of motion over a wide range of T and P. They accomplish this in part by modifying the molecular structure of water. Both the transparent body of the organism (the mesoglea) and the structure of the immediate surrounding sea water were investigated by in situ laser Raman spectroscopy at depths from 300m to 2,800m. The structure of water is reasonably well known; the basic unit is a hydrogen bonded pentamer with defined stretching and bending modes. The spectrum of the bending band is separable into two components while the stretching band spectrum is composed of five components representing both intra- and inter-molecular vibrations. The effect of temperature on the various vibrational modes is complex. While the effect of pressure on the bending modes is small, but the effect of temperature and pressure on the stretching modes is significant and can be modeled as a van `t Hoff function. Our in situ experiments were conducted using MBARI's ROV Ventana and ROV Doc Ricketts. We collected cnidarians and ctenophores into a 6 L glass detritus sampler fitted with a metal grid plate. Once the animal was captured, we introduced argon gas through the lid of the sampler displacing the contained sea water and leaving a motionless sea water free specimen for spectroscopy. The laser beam was focused through the glass wall of the container and the focal point adjusted to be inside the gelatinous body. Our results very clearly show that:i) The gelatinous mass effectively excludes salts with zero sulfate ion being detected.ii) The water bending modes are absent from the gelatinous spectra.iii) The water stretching modes are highly modified from the typical 5 band liquid pentamer structure with only 3 vibrational modes observable. These results stand in marked contrast to the familiar household gelatin which is typically derived from bovine sources

  7. Potential Health Benefits of Deep Sea Water: A Review

    Directory of Open Access Journals (Sweden)

    Samihah Zura Mohd Nani

    2016-01-01

    Full Text Available Deep sea water (DSW commonly refers to a body of seawater that is pumped up from a depth of over 200 m. It is usually associated with the following characteristics: low temperature, high purity, and being rich with nutrients, namely, beneficial elements, which include magnesium, calcium, potassium, chromium, selenium, zinc, and vanadium. Less photosynthesis of plant planktons, consumption of nutrients, and organic decomposition have caused lots of nutrients to remain there. Due to this, DSW has potential to become a good source for health. Research has proven that DSW can help overcome health problems especially related to lifestyle-associated diseases such as cardiovascular disease, diabetes, obesity, cancer, and skin problems. This paper reviews the potential health benefits of DSW by referring to the findings from previous researches.

  8. Extraction of Urban Water Bodies from High-Resolution Remote-Sensing Imagery Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2018-05-01

    Full Text Available Accurate information on urban surface water is important for assessing the role it plays in urban ecosystem services in the context of human survival and climate change. The precise extraction of urban water bodies from images is of great significance for urban planning and socioeconomic development. In this paper, a novel deep-learning architecture is proposed for the extraction of urban water bodies from high-resolution remote sensing (HRRS imagery. First, an adaptive simple linear iterative clustering algorithm is applied for segmentation of the remote-sensing image into high-quality superpixels. Then, a new convolutional neural network (CNN architecture is designed that can extract useful high-level features of water bodies from input data in a complex urban background and mark the superpixel as one of two classes: an including water or no-water pixel. Finally, a high-resolution image of water-extracted superpixels is generated. Experimental results show that the proposed method achieved higher accuracy for water extraction from the high-resolution remote-sensing images than traditional approaches, and the average overall accuracy is 99.14%.

  9. Water quality and supply on Cortina Rancheria, Colusa County, California

    Science.gov (United States)

    Yates, E.B.

    1989-01-01

    Cortina Rancheria covers an area of 1 sq mi in Colusa County, California, near the western edge of the Sacramento Valley. Local sources of water for residents of the rancheria are of poor quality or limited availability. Domestic needs are presently met by water from a hand-dug well and from a drilled well with a potential yield of 15 gal/min. Water from both wells fails to meet California State drinking-water standards, primarily because of high concentrations of chloride and dissolved solids. High concentrations of sodium and boron pose additional problems for agricultural use of the water. The dissolved ions originate in Upper Cretaceous marine sediments of the Cortina Formation, which occurs at or near land surface throughout the rancheria. Small quantities of fresh groundwater may occur locally in the Tehama Formation which overlies the Cortina Formation in the eastern part of the rancheria. Canyon Creek, the largest stream on the rancheria, flows only during winter and spring. Water from one of the rancheria 's three springs meet drinking water standards, but it almost stops flowing in summer. The generally poor quality of ground and surface water on the rancheria is typical of areas along the west side of the Sacramento Valley. Additional hydrologic information could indicate more precisely the quantity and quality of surface and groundwater on Cortina Rancheria. Principal features of a possible data-collection program would include monitoring of discharge and water quality in three springs and in Canyon Creek, electromagntic terrain conductivity surveys, and monitoring of water levels and quality in two existing wells and several proposed test wells. (USGS)

  10. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  11. Studies of deep water formation and circulation in the Weddell Sea using natural and anthropogenic tracers

    International Nuclear Information System (INIS)

    Schlosser, Peter; Bayer, Reinhold

    1991-01-01

    The application of natural and anthropogenic trace substances in oceanographic studies of the Weddell Sea is reviewed. The potential of some steady-state and transient tracers (tritium, CFC-11 and CFC-12, 18 O, and helium isotopes) for studies of deep water formation and circulation is discussed on the basis of data sets collected mainly on cruises of R/V 'Polastern' to the Weddell Sea during the 1980s. CFC/ tritium ratio dating of young water masses is applied to estimate mean age and transit times of water involved in Weddell Sea Bottom Water formation. The history of the CFC-11/tritium ratio through time is derived for Weddell Sea shelf waters. (author). 36 refs.; 18 figs

  12. Bacterial biomass and activity in the deep waters of the eastern Atlantic—evidence of a barophilic community

    Science.gov (United States)

    Patching, J. W.; Eardly, D.

    1997-09-01

    Bacterial biomass and activity were investigated in deep waters at two sites in the eastern Atlantic, of similar depth (4560-4800 m), but varying in their nutritional status. The Northern (N) site was eutrophic and subject to a strong seasonal input of surface derived organic matter (phytodetritus) to the sediment. The Southern (S) site was oligotrophic. Deep water at this site does not appear to receive any strong seasonal input. Bacterial numbers in the deep water column at the N site showed no significant seasonal variation but were greater than those at the S site. Deep water bacteria were typically small and free-living. From biovolume determinations, it was estimated that mean concentrations of bacterial organic carbon at depths greater than 500 m were 0.12 (0.03-0.29) μg C 1 -1 and 0.02 (0.01-0.04) μg C 1 -1 at the N and S sites, respectively. Rates of thymidine and leucine incorporation were used as indicators of bacterial activity. Bacterial communities in water in contact with the sediment (SCW; sediment contact water) at both sites (but especially at the S site) were strongly barophilic at in situ temperatures (2.5-4.1°C). The barophilic response of thymidine incorporation was enhanced when SCW samples from the N site were incubated at 11.5°C. It is proposed that this result indicated an elevating effect of pressure on cardinal temperatures and that the SCW community was obligately psychrophilic when unpressurised. Comparison of cell-specific incorporation rates determined under in situ conditions showed bacteria in the SCW to have levels of activity comparable with bacteria from a depth of 150 m. Thymidine incorporation rates were highest in SCW samples taken at the N site in May 1988 and September 1989. Thymidine incorporation by SCW samples taken immediately before (10 April 1994) the main spring-bloom-associated deposition of phytodetritus was significantly lower and comparable with that determined for the oligotrophic S site. The attributes

  13. Audit Report on the Sacramento Army Depot Internal Review and Audit Compliance Office's "Audits of Warranties, Quality Deficiency Reports, and Reports of Discrepancies"

    National Research Council Canada - National Science Library

    1992-01-01

    The Sacramento Army Depot (SAAD) Internal Review and Audit Compliance Office (Internal Review) issued an audit report, "Audit of Warranties, Quality Deficiency Reports, and Reports of Discrepancies," on July 20, 1990...

  14. Origin and biogeography of the deep-water Mediterranean Hydromedusae including the description of two new species collected in submarine canyons of Northwestern Mediterranean

    Directory of Open Access Journals (Sweden)

    J. M. Gili

    1998-06-01

    Full Text Available Two new species of hydromedusae (Foersteria antoniae and Cunina simplex are described from plankton collected in sediment traps placed in the Lacaze-Duthiers Submarine Canyon and along Banyuls-sur-Mer coast (northwestern Mediterranean. The Mediterranean hydromedusan deep-water fauna contains 41 species which represent 45.5 % of the world-wide deep-sea hydromedusae fauna (90 and 20% of the total number of Mediterranean hydromedusae (204. The Mediterranean deep-water hydromedusan fauna is characterised by a large percentage of holoplanktonic species (61%, mainly Trachymedusae. Nevertheless, contrary to the general opinion, the percentage of meroplanktonic species is equally high. The most original features of this fauna lies however in the importance of the number of endemic species (22% and in the fact that the majority of them are meroplanktonic Leptomedusae with a supposed bathybenthic stage. Some of the endemic species could still represent relics of the primitive Tethys fauna having survived to the Messinian crisis. The origin of the Mediterranean deep-water hydromedusan fauna is discussed and a general hypothesis is proposed.

  15. Determination of deep water circulation in the East Atlantic Ocean by means of a box-model based evaluation of C-14 measurements and other tracer data

    International Nuclear Information System (INIS)

    Schlitzer, R.

    1984-01-01

    Radiocarbon (C-14) measurements proved to be an efficient means of determining the average, large-area deep water circulation in the Atlantic Ocean. The thesis under review explains and discusses measurements carried out in the equatorial West Atlantic and North Atlantic Ocean. The samples have been taken during mission 56 of the RS 'meteor' in spring 1981. The gas has been obtained by vacuum extraction and the measurements have been performed in proportional counter tubes, the error to be accounted for amounting to 2per mille. These measured data, together with measurements of the potential temperatures, the silicate and CO 2 concentrations, and measured data from the South-East Atlantic Ocean, have been used to calculate on the basis of a box model of the Atlantic Ocean the deep water flow from the West to the East Atlantic Ocean, the deep water circulation between the various East Atlantic basins, and the turbulent diffusion coefficients required to parameterize the deep water mixing processes. (orig./HP) [de

  16. THE EFFECTS OF GRADIENT VELOCITY AND DETENTION TIME TO COAGULATION – FLOCCULATION OF DYES AND ORGANIC COMPOUND IN DEEP WELL WATER

    Directory of Open Access Journals (Sweden)

    Muhamad Lindu

    2010-06-01

    Full Text Available The treatment of deep well water of Trisakti University by coagulation and flocculation using baffle channel system has been conducted. The detention time of hydrolic were varied. The coagulant dose was varied as 50, 100, 150, 200, 300, 350, 400, 450 and 500 ppm. Water of well sampel was added by coagulant with rotation velocity 200 rpm for 1 minute. The optimal coagulant dose was determined by measuring turbidity, colour, total suspended solids and organic compound. The result showed that the organic compound and colour of deep well water of Trisakti University could be reduced by coagulation and flocculation process by hydrolyc system. The optimal dose of the coagulant was 250 ppm. The removal efficiency of colour and organic compound using optimal dose for continuous flow reactor reached after water flow passed the reactor for 3 - 5 times detention time in the reactor. The optimal gradient velocity (G was 30 - 35 sec-1 and collision energy (GT was 65.000 - 79.000 to get optimal flocculation. With this condition, the removal efficiency of turbidity, colour and organic was more than 90%.   Keywords: coagulation, flocculation, colour, organic compound, deep well

  17. Spiraling pathways of global deep waters to the surface of the Southern Ocean

    OpenAIRE

    Tamsitt, Veronica; Drake, Henri F.; Morrison, Adele K.; Talley, Lynne D.; Dufour, Carolina O.; Gray, Alison R.; Griffies, Stephen M.; Mazloff, Matthew R.; Sarmiento, Jorge L.; Wang, Jinbo; Weijer, Wilbert

    2017-01-01

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle trac...

  18. Radon 222 levels in deep well waters of Toluca municipality (county)

    International Nuclear Information System (INIS)

    Olguin Gutierrez, Maria Teresa.

    1990-01-01

    The levels of Radon 222 were determined in 46 deep (50-180m) wells in the city and county of Toluca, as well as the annual radiation dose that the stomach admits when ingesting such water. The method used for the quantification of Radon 222 was liquid scintillation counting. The result revealed that levels of Radon 222 in the studied area in the range of 0 to 320 pCi l -1 . In the case of the equivalent annual dose that the stomach (empty) admits due to ingestion of water from the wells, values are in an interval between 0 to 95 mrem a -1 . This values are well below the level established by the International Commission of Radiological Protection (ICRP). The wells that had the higher concentration of Radon 222 were found in the regions of Lodo Prieto, Seminario; San Antonio Buenavista and La Trinidad Huichochitlan. (Author)

  19. Mesopelagic Prokaryotes Alter Surface Phytoplankton Production during Simulated Deep Mixing Experiments in Eastern Mediterranean Sea Waters

    Directory of Open Access Journals (Sweden)

    Or Hazan

    2018-01-01

    Full Text Available Mesopelagic prokaryotes (archaea and bacteria, which are transported together with nutrient-rich intermediate-water to the surface layer by deep convection in the oceans (e.g., winter mixing, upwelling systems, can interact with surface microbial populations. This interaction can potentially affect production rates and biomass of surface microbial populations, and thus play an important role in the marine carbon cycle and oceanic carbon sequestration. The Eastern Mediterranean Sea (EMS is one of the most oligotrophic and warm systems in the world's oceans, with usually very shallow winter mixing (<200 m and lack of large-size spring algal blooms. In this study, we collected seawater (0–1,500 m in 9 different cruises at the open EMS during both the stratified and the mixed seasons. We show that the EMS is a highly oligotrophic regime, resulting in low autotrophic biomass and primary productivity and relatively high heterotrophic prokaryotic biomass and production. Further, we simulated deep water mixing in on-board microcosms using Levantine surface (LSW, ~0.5 m and intermediate (LIW, ~400 m waters at a 9:1 ratio, respectively and examined the responses of the microbial populations to such a scenario. We hypothesized that the LIW, being nutrient-rich (e.g., N, P and a “hot-spot” for microbial activity (due to the warm conditions that prevail in these depths, may supply the LSW with not only key-limiting nutrients but also with viable and active heterotrophic prokaryotes that can interact with the ambient surface microbial population. Indeed, we show that LIW heterotrophic prokaryotes negatively affected the surface phytoplankton populations, resulting in lower chlorophyll-a levels and primary production rates. This may be due to out-competition of phytoplankton by LIW populations for resources and/or by a phytoplankton cell lysis via viral infection. Our results suggest that phytoplankton in the EMS may not likely form blooms, even after

  20. Molar enthalpy of mixing and refractive indices of choline chloride-based deep eutectic solvents with water

    International Nuclear Information System (INIS)

    Ma, Chunyan; Guo, Yanhua; Li, Dongxue; Zong, Jianpeng; Ji, Xiaoyan; Liu, Chang

    2017-01-01

    Highlights: • Molar enthalpy of mixing and refractive indices for binary mixtures of different deep eutectic solvents with water. • The Redlich–Kister equation and the NRTL model was used to fit the experimental data. • The NRTL model with fitted parameters were used to predict the vapour pressure and compared with experimental data. - Abstract: The molar enthalpies of mixing were measured for binary systems of choline chloride-based deep eutectic solvents (glycerol, ethylene glycol and malonic acid) with water at 298.15 K and 308.15 K, and atmospheric pressure with an isothermal calorimeter. Refractive indices were also measured at 303.15 K and atmospheric pressure. The binary mixtures of {chcl/glycerol (1:2) + water, chcl/ethylene glycol (1:2) + water} showed exothermic behaviour over the entire range of composition, while the binary mixture of {chcl/malonic acid (1:1) + water} showed endothermic behaviour at first and then changed to be exothermic with the increasing content of chcl/malonic acid (1:1). Experimental refractive indices were fitted with the Redlich–Kister equation, and experimental molar enthalpies of mixing were correlated with the Redlich–Kister equation and the non-random two-liquid (NRTL) model. The NRTL model with the fitted parameters was used to predict the vapour pressures of these three mixtures. For mixtures of {chcl/glycerol (1:2) + water} and {chcl/ethylene glycol (1:2) + water}, the predicted vapour pressures agreed well with the experimental results from the literature. While for mixture of {chcl/malonic acid (1:1) + water}, the predicted vapour pressures showed deviation at the high concentration of chcl/malonic acid (1:1), and this was probably because of the complex molecular interaction between chcl/malonic acid (1:1) and water.

  1. A role for subducted super-hydrated kaolinite in Earth's deep water cycle

    Science.gov (United States)

    Hwang, Huijeong; Seoung, Donghoon; Lee, Yongjae; Liu, Zhenxian; Liermann, Hanns-Peter; Cynn, Hyunchae; Vogt, Thomas; Kao, Chi-Chang; Mao, Ho-Kwang

    2017-12-01

    Water is the most abundant volatile component in the Earth. It continuously enters the mantle through subduction zones, where it reduces the melting temperature of rocks to generate magmas. The dehydration process in subduction zones, which determines whether water is released from the slab or transported into the deeper mantle, is an essential component of the deep water cycle. Here we use in situ and time-resolved high-pressure/high-temperature synchrotron X-ray diffraction and infrared spectra to characterize the structural and chemical changes of the clay mineral kaolinite. At conditions corresponding to a depth of about 75 km in a cold subducting slab (2.7 GPa and 200 °C), and in the presence of water, we observe the pressure-induced insertion of water into kaolinite. This super-hydrated phase has a unit cell volume that is about 31% larger, a density that is about 8.4% lower than the original kaolinite and, with 29 wt% H2O, the highest water content of any known aluminosilicate mineral in the Earth. As pressure and temperature approach 19 GPa and about 800 °C, we observe the sequential breakdown of super-hydrated kaolinite. The formation and subsequent breakdown of super-hydrated kaolinite in cold slabs subducted below 200 km leads to the release of water that may affect seismicity and help fuel arc volcanism at the surface.

  2. The role of deep-water sedimentary processes in shaping a continental margin: The Northwest Atlantic

    Science.gov (United States)

    Mosher, David C.; Campbell, D.C.; Gardner, J.V.; Piper, D.J.W.; Chaytor, Jason; Rebesco, M.

    2017-01-01

    The tectonic history of a margin dictates its general shape; however, its geomorphology is generally transformed by deep-sea sedimentary processes. The objective of this study is to show the influences of turbidity currents, contour currents and sediment mass failures on the geomorphology of the deep-water northwestern Atlantic margin (NWAM) between Blake Ridge and Hudson Trough, spanning about 32° of latitude and the shelf edge to the abyssal plain. This assessment is based on new multibeam echosounder data, global bathymetric models and sub-surface geophysical information.The deep-water NWAM is divided into four broad geomorphologic classifications based on their bathymetric shape: graded, above-grade, stepped and out-of-grade. These shapes were created as a function of the balance between sediment accumulation and removal that in turn were related to sedimentary processes and slope-accommodation. This descriptive method of classifying continental margins, while being non-interpretative, is more informative than the conventional continental shelf, slope and rise classification, and better facilitates interpretation concerning dominant sedimentary processes.Areas of the margin dominated by turbidity currents and slope by-pass developed graded slopes. If sediments did not by-pass the slope due to accommodation then an above grade or stepped slope resulted. Geostrophic currents created sedimentary bodies of a variety of forms and positions along the NWAM. Detached drifts form linear, above-grade slopes along their crests from the shelf edge to the deep basin. Plastered drifts formed stepped slope profiles. Sediment mass failure has had a variety of consequences on the margin morphology; large mass-failures created out-of-grade profiles, whereas smaller mass failures tended to remain on the slope and formed above-grade profiles at trough-mouth fans, or nearly graded profiles, such as offshore Cape Fear.

  3. Dynamics of supercooled confined water measured by deep inelastic neutron scattering

    Science.gov (United States)

    De Michele, Vincenzo; Romanelli, Giovanni; Cupane, Antonio

    2018-02-01

    In this paper, we present the results of deep inelastic neutron scattering (DINS) measurements on supercooled water confined within the pores (average pore diameter 20 Å) of a disordered hydrophilic silica matrix obtained through hydrolysis and polycondensation of the alkoxide precursor Tetra-Methyl-Ortho-Silicate via the sol-gel method. Experiments were performed at two temperatures (250 K and 210 K, i.e., before and after the putative liquid-liquid transition of supercooled confined water) on a "wet" sample with hydration h 40% w/w, which is high enough to have water-filled pores but low enough to avoid water crystallization. A virtually "dry" sample at h 7% was also investigated to measure the contribution of the silica matrix to the neutron scattering signal. As is well known, DINS measurements allow the determination of the mean kinetic energy and the momentum distribution of the hydrogen atoms in the system and therefore, allow researchers to probe the local structure of supercooled confined water. The main result obtained is that at 210 K the hydrogen mean kinetic energy is equal or even slightly higher than at 250 K. This is at odds with the predictions of a semiempirical harmonic model recently proposed to describe the temperature dependence of the kinetic energy of hydrogen in water. This is a new and very interesting result, which suggests that at 210 K, the water hydrogens experience a stiffer intermolecular potential than at 250 K. This is in agreement with the liquid-liquid transition hypothesis.

  4. Preliminary physico-chemical results obtained on water using new data acquisition systems for deep wells

    International Nuclear Information System (INIS)

    Vinson, J.M.; Peyrus, J.C.

    1984-02-01

    Data acquisition systems recently developed in the context of research on deep storage facilities have provided with an initial set of interesting observations for the physico-chemical study of boreholes. It is possible to make correlations between the chemical compositions of water, pH and the nature of the substrate. The sampling done at Auriat with a Gerhardt-Owen probe shows the variability in the composition of water as a function of depth. The variation in calcium content, following that of pH, is particularly notable. Examination of pH measurements is of particular interest. A general gradient correlates exactly with the nature of the substrate. Whereas steel piping has a very alkaline pH, distinct pH values correspond to the two types of granite substrate. In this general gradient, series of disturbances can be seen which correspond perfectly to fracturation zones or large fractures. These most promising preliminary results lead to believe that in situ physico-chemical measurements should be continued and developed with a view to improved evaluation of the safety of deep storage facilities

  5. Seven new deep-water Tetractinellida (Porifera: Demospongiae) from the Galápagos Islands –morphological descriptions and DNA barcodes

    DEFF Research Database (Denmark)

    Schuster, Astrid; Cárdenas, Paco; Pisera, Andrzej

    2018-01-01

    , but little is known about the deep- and shallow-water sponge fau -nas. To date, only 70 sponge species have been described from the Galápagos Islands, 37 of which are endemic. Of these 70 species, only one shallow-water species of desma-bearing Tetractinellida (Demospongiae), Corallistes isabela , has been...

  6. Quantifying Activated Floodplains on a Lowland Regulated River: Its Application to Floodplain Restoration in the Sacramento Valley

    Directory of Open Access Journals (Sweden)

    Philip B. Williams

    2009-09-01

    Full Text Available We describe a process and methodology for quantifying the extent of a type of historically prevalent, but now relatively rare, ecologically-valuable floodplains in the Sacramento lowland river system: frequently-activated floodplains. We define a specific metric the “Floodplain Activation Flow” (FAF, which is the smallest flood pulse event that initiates substantial beneficial ecological processes when associated with floodplain inundation. The “Activated Floodplain” connected to the river is then determined by comparison of FAF stage with floodplain topography. This provides a simple definition of floodplain that can be used as a planning, goal setting, monitoring, and design tool by resource managers since the FAF event is the smallest flood and corresponding floodplain area with ecological functionality—and is necessarily also inundated in larger flood events, providing additional ecological functions. For the Sacramento River we selected a FAF definition to be the river stage that occurs in two out of three years for at least seven days in the mid-March to mid-May period and "Activated Floodplains" to be those lands inundated at that stage. We analyzed Activated Floodplain area for four representative reaches along the lower Sacramento River and the Yolo Bypass using stream gauge data. Three of the most significant conclusions are described: (1 The area of active functional floodplain is likely to be less than commonly assumed based on extent of riparian vegetation; (2 Levee setbacks may not increase the extent of this type of ecologically-productive floodplain without either hydrologic or topographic changes; (3 Within the Yolo Bypass, controlled releases through the Fremont Weir could maximize the benefits associated with Activated Floodplain without major reservoir re-operation or grading. This approach identifies a significant opportunity to integrate floodplain restoration with flood management by establishing a FAF stage

  7. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    Energy Technology Data Exchange (ETDEWEB)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  8. Genetic divergence correlates with morphological and ecological subdivision in the deep-water elk kelp, Pelagophycus porra (phaeophyceae)

    NARCIS (Netherlands)

    Miller, KA; Olsen, JL; Stam, WT

    2000-01-01

    Pelagophycus porra (Leman) Setchell has a narrow distribution confined to deep water from the Channel Islands off the southern California coast to central Baja California, Mexico. Distinct morphotypes are consistently correlated with distinctive habitats, that is, windward exposures characterized by

  9. An investigation of several aspects of LANDSAT-5 data quality. [Palmer County, Shelby, mt; White sands, NM; Great Salt Lake, UT; San Matted Bridge and Sacramento, California

    Science.gov (United States)

    Wrigley, R. C. (Principal Investigator)

    1984-01-01

    Band-to-band registration, geodetic registration, interdector noise, and the modulation transfer function (MTE) are discussed for the Palmer County; TX scene. Band combinations for several LANDSAT 4 and LANDSAT 5 scenes; the geodetic registration test for the Sacramento, CA area; periodic noise components in TM band 5; and grey level measurements by detector for Great Salt Lake (UT) dark water forescans and backscans are considered. Results of MTF analyses of the San Mateo Bridge and of TM high resolution and aerial Daedalus scanner imagery are consistent and appear to be repeatable. An oil-on-sand target was constructed on the White Sands Missile Range in New Mexico. The two-image analysis procedure used is summarized.

  10. Ophirapstanol trisulfate, a new biologically active steroid sulfate from the deep water marine sponge Topsentia ophiraphidites.

    Science.gov (United States)

    Gunasekera, S P; Sennett, S H; Kelly-Borges, M; Bryant, R W

    1994-12-01

    Ophirapstanol trisulfate [1], a new steroid trisulfate related to sokotrasterol trisulfate was isolated from a deep water marine sponge Topsentia ophiraphidites. Compound 1 exhibited significant inhibition in the guanosine diphosphate/G-protein RAS exchange assay. The structure elucidation of 1 and ophirapstanol [2] by nmr spectroscopy is described.

  11. Radioisotope mobility across the sediment/water interface in the deep sea

    International Nuclear Information System (INIS)

    ten Brink, M.R.B.

    1987-01-01

    The removal of radiotracers from water to sediments and their partitioning between phases were used to study the rates and mechanisms of transfer for trace elements across the sediment/water interface in the deep sea. The in situ mobility of 22 Na, 134 Cs, 133 Ba, 65 Zn, 125 Sb, 7 Be, 203 Hg, 54 Mn, 60 Co, 59 Fe, 113 Gd, and 141 Ce was measured using MANOP Lander benthic chambers in the N. equatorial Pacific and in San Clemente Basin. The contributions to mobility of diffusion, bioturbation, advection of pore waters, and transport across the diffusive boundary layer was assessed. The penetration of particle reactive tracers in the upper cm suggested a mixing rate of ≤10 -7 cm 2 /s at Sites C and S and ≤10 -5 cm 2 /s at Sites M and H. Greater penetration could be correlated with worm tubes but no evidence of irrigation was found. The presence of nodules did not prevent transport of soluble tracers to the underlying sediment or concentrate tracers. Diffusion was the predominant mode of transport for radiotracers in the short-term in situ experiments

  12. The acquisition of aquatic skills in preschool children: deep versus shallow water swimming lessons

    Directory of Open Access Journals (Sweden)

    Helena A Rocha

    2018-05-01

    Full Text Available One of the key factors in the swimming teaching-learning process seems to be the variation of water’s depth.However, there are almost no studies about this topic and the existing ones usually follow a basic approach and with no control of the educational program used. It was our purpose to determine the effect of deep versus shallow water differences on developing pre-schoolers’ aquatic skills after 6 months of practice. Twenty-one Portuguese school-aged children of both genders (4.70 ± 0.51 yrs., inexperienced in aquatic programs, participated in this study. The children were divided into two groups performing a similar aquatic program but in a different water depth: shallow water (n=10 and deep water (n=11. Each participant was evaluated twice for their aquatic readiness using an observation check list of 17 aquatic motor skills: during the first session (T0 and after six months of practice (two sessions per week with a total of 48 sessions (T1. The aquatic proficiency on each skill was compared between the groups and a stepwise discriminant analysis was conducted to predict the conditions with higher or lower aquatic competence. Results suggested that swimming practice contributed positively to improvements on several basic aquatic skills, in both groups. The results showed that shallow water group managed to acquire a higher degree of aquatic competence particularly in five basic aquatic skills (p< .05: breath control combined with face immersion and eye opening; horizontal buoyancy; body position at ventral gliding; body position at dorsal gliding; leg kick with breath control at ventral body position, without any flutter device. The discriminant function revealed a significant association between both groups and four included factors (aquatic skills (p< .001, accounting for 88% between group variability. The body position at ventral gliding was the main relevant predictor (r=0.535. Shallow water swimming lessons generated greater

  13. Re-establishing marshes can return carbon sink functions to a current carbon source in the Sacramento-San Joaquin Delta of California, USA

    Science.gov (United States)

    Miller, Robin L.; Fujii, Roger; Schmidt, Paul E.

    2011-01-01

    The Sacramento-San Joaquin Delta in California was an historic, vast inland freshwater wetland, where organic soils almost 20 meters deep formed over the last several millennia as the land surface elevation of marshes kept pace with sea level rise. A system of levees and pumps were installed in the late 1800s and early 1900s to drain the land for agricultural use. Since then, land surface has subsided more than 7 meters below sea level in some areas as organic soils have been lost to aerobic decomposition. As land surface elevations decrease, costs for levee maintenance and repair increase, as do the risks of flooding. Wetland restoration can be a way to mitigate subsidence by re-creating the environment in which the organic soils developed. A preliminary study of the effect of hydrologic regime on carbon cycling conducted on Twitchell Island during the mid-1990s showed that continuous, shallow flooding allowing for the growth of emergent marsh vegetation re-created a wetland environment where carbon preservation occurred. Under these conditions annual plant biomass carbon inputs were high, and microbial decomposition was reduced. Based on this preliminary study, the U.S. Geological Survey re-established permanently flooded wetlands in fall 1997, with shallow water depths of 25 and 55 centimeters, to investigate the potential to reverse subsidence of delta islands by preserving and accumulating organic substrates over time. Ten years after flooding, elevation gains from organic matter accumulation in areas of emergent marsh vegetation ranged from almost 30 to 60 centimeters, with average annual carbon storage rates approximating 1 kg/m2, while areas without emergent vegetation cover showed no significant change in elevation. Differences in accretion rates within areas of emergent marsh vegetation appeared to result from temporal and spatial variability in hydrologic factors and decomposition rates in the wetlands rather than variability in primary production

  14. Seamount egg-laying grounds of the deep-water skate Bathyraja richardsoni.

    Science.gov (United States)

    Henry, L-A; Stehmann, M F W; De Clippele, L; Findlay, H S; Golding, N; Roberts, J M

    2016-08-01

    Highly localized concentrations of elasmobranch egg capsules of the deep-water skate Bathyraja richardsoni were discovered during the first remotely operated vehicle (ROV) survey of the Hebrides Terrace Seamount in the Rockall Trough, north-east Atlantic Ocean. Conductivity-temperature-depth profiling indicated that the eggs were bathed in a specific environmental niche of well-oxygenated waters between 4·20 and 4·55° C, and salinity 34·95-35·06, on a coarse to fine-grained sandy seabed on the seamount's eastern flank, whereas a second type of egg capsule (possibly belonging to the skate Dipturus sp.) was recorded exclusively amongst the reef-building stony coral Solenosmilia variabilis. The depths of both egg-laying habitats (1489-1580 m) provide a de facto refuge from fisheries mortality for younger life stages of these skates. © 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.

  15. Temporal behavior of 222Radon, 226Radium and 238Uranium in deep water wells which provide Valle de Toluca with drinking water

    International Nuclear Information System (INIS)

    Pena, P.; Tamez, E.; Iturbe, J.L.; Acosta, A.; Segovia, N.; Carrillo, J.; Armienta, M.

    1994-01-01

    The presence of radionuclides in underground waters may be an indication of its origin and also the sign of the hydraulic properties of the aquifers layers where circulate. Additionally, the ingestion by human beings of water with radioactive elements (Radon 222, Radium 226, Uranium 238) can give as a result the accumulation of such elements in several organs of the body producing then health damages. In this work, the concentrations of Radon 222, Radium 226 and Uranium 238, in waters coming from deep wells which provide with drinking water the Toluca Valley, were determined. For this purpose, during a year (june 1991 to August 1992) ten wells were sampled with a tracking of the radionuclides concentration as well as the physical-chemical components of water; it was established the relationship presented by the analyzed waters with the local geology and the local and regional systems. (Author)

  16. Tomographic Rayleigh wave group velocities in the Central Valley, California, centered on the Sacramento/San Joaquin Delta

    Science.gov (United States)

    Fletcher, Jon B.; Erdem, Jemile; Seats, Kevin; Lawrence, Jesse

    2016-04-01

    If shaking from a local or regional earthquake in the San Francisco Bay region were to rupture levees in the Sacramento/San Joaquin Delta, then brackish water from San Francisco Bay would contaminate the water in the Delta: the source of freshwater for about half of California. As a prelude to a full shear-wave velocity model that can be used in computer simulations and further seismic hazard analysis, we report on the use of ambient noise tomography to build a fundamental mode, Rayleigh wave group velocity model for the region around the Sacramento/San Joaquin Delta in the western Central Valley, California. Recordings from the vertical component of about 31 stations were processed to compute the spatial distribution of Rayleigh wave group velocities. Complex coherency between pairs of stations was stacked over 8 months to more than a year. Dispersion curves were determined from 4 to about 18 s. We calculated average group velocities for each period and inverted for deviations from the average for a matrix of cells that covered the study area. Smoothing using the first difference is applied. Cells of the model were about 5.6 km in either dimension. Checkerboard tests of resolution, which are dependent on station density, suggest that the resolving ability of the array is reasonably good within the middle of the array with resolution between 0.2 and 0.4°. Overall, low velocities in the middle of each image reflect the deeper sedimentary syncline in the Central Valley. In detail, the model shows several centers of low velocity that may be associated with gross geologic features such as faulting along the western margin of the Central Valley, oil and gas reservoirs, and large crosscutting features like the Stockton arch. At shorter periods around 5.5 s, the model's western boundary between low and high velocities closely follows regional fault geometry and the edge of a residual isostatic gravity low. In the eastern part of the valley, the boundaries of the low

  17. Immunosuppressive compounds from a deep water marine sponge, Agelas flabelliformis.

    Science.gov (United States)

    Gunasekera, S P; Cranick, S; Longley, R E

    1989-01-01

    Two immunosuppressive compounds, 4 alpha-methyl-5 alpha-cholest-8-en-3 beta-ol and 4,5-dibromo-2-pyrrolic acid were isolated from a deep water marine sponge, Agelas flabelliformis. Their structures were determined by comparison of their spectral data with those of samples isolated from other organisms. Both compounds were highly active in suppression of the response of murine splenocytes in the two-way mixed lymphocyte reaction (MLR) with little to no demonstrable cytotoxicity at lower doses. In addition, 4,5-dibromo-2-pyrrolic acid suppressed the proliferative response of splenocytes to suboptimal concentrations of the mitogen, concanavalin A (Con A). These results describe for the first time compounds isolated from the marine sponge A. flabelliformis that possess potent in vitro immunosuppressive activity.

  18. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  19. Millennial-scale variations of late Pleistocene radiolarian assemblages in the Bering Sea related to environments in shallow and deep waters

    Science.gov (United States)

    Itaki, Takuya; Kim, Sunghan; Rella, Stephan F.; Uchida, Masao; Tada, Ryuji; Khim, Boo-Keun

    2012-02-01

    A high-resolution record of the radiolarian assemblage from 60 to 10 ka was investigated using a piston core (PC-23A) obtained from the northern slope of the Bering Sea. Faunal changes based on the 29 major radiolarian taxa demonstrated that the surface and deep water conditions in the Bering Sea were related to the orbital and millennial-scale climatic variations known as glacial-interglacial and Dansgaard-Oeschger (D-O) cycles, respectively. During interstadial periods of the D-O cycles, the assemblage was characterized by increases in the high-latitude coastal species Rhizoplegma boreale and the upper-intermediate water species Cycladophora davisiana, while the sea-ice related species Actinomma boreale and A. leptodermum and many deep-water species such as Dictyophimus crisiae and D. hirundo tended to be reduced. This trend was more apparent in two laminated intervals at 15-13.5 and 11.5-11 ka, which were correlated with well-known ice-sheet collapse events that occurred during the last deglaciation: melt-water pulse (MWP)-1A and MWP-1B, respectively. The radiolarian faunal composition in these periods suggests that oceanic conditions were different from today: (1) surface water was affected by increased melt-water discharge from continental ice-sheet, occurring at the same time as an abrupt increase in atmospheric temperature, (2) upper-intermediate water (ca. 200-500 m) was well-ventilated and organic-rich, and (3) lower-intermediate water (ca. 500-1000 m) was oxygen-poor. Conversely, the sea-ice season might have been longer during stadial periods of the D-O cycles and the last glacial maximum (LGM) compared to the interstadial periods and the earliest Holocene. In these colder periods, deep-water species were very abundant, and this corresponded to increases in the oxygen isotope value of benthic foraminifera. Our findings suggest that the oxygen-rich water was present in the lower-intermediate layer resulting from intensified ventilation.

  20. Temperature impacts on deep-sea biodiversity.

    Science.gov (United States)

    Yasuhara, Moriaki; Danovaro, Roberto

    2016-05-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes. © 2014 Cambridge Philosophical Society.

  1. Theonellapeptolide IIIe, a new cyclic peptolide from the New Zealand deep water sponge, Lamellomorpha strongylata.

    Science.gov (United States)

    Li, S; Dumdei, E J; Blunt, J W; Munro, M H; Robinson, W T; Pannell, L K

    1998-06-26

    The structure, stereochemistry, and conformation of theonellapeptolide IIIe (1), a new 36-membered ring cyclic peptolide from the New Zealand deep-water sponge Lamellomorpha strongylata, is described. The sequence of the cytotoxic peptolide was determined through a combination of NMR and MS-MS techniques and confirmed by X-ray crystal structure analysis, which, with chiral HPLC, established the absolute stereochemistry.

  2. Water use, root activity and deep drainage within a perennial legume-grass pasture: A case study in southern inland Queensland, Australia

    Directory of Open Access Journals (Sweden)

    A. Nahuel A. Pachas

    2016-09-01

    Full Text Available Water use and depth of water extraction of leucaena (Leucaena leucocephala and Rhodes grass (Chloris gayana pasture, irrigated with desalinated coal seam water (a by-product of the coal seam gas industry, were monitored to provide background information on root activity, spatial and temporal water use and deep drainage over a 757-day period from August 2011 to August 2013. Methodology comprised measurement of soil water from surface to 4 m depth using 8 EnviroSCAN probes connected to dataloggers positioned within leucaena twin rows and within the Rhodes grass inter-row. Just over 581,000 individual moisture measurements were collated and are reported here. Water extraction (and by inference root activity of leucaena and Rhodes grass showed marked seasonal fluctuation with deepest and highest water extraction occurring during the first growing season; water extraction was greatly diminished during the following drier and cooler seasons due to the negative influences of lower soil moisture contents, lower temperatures and increased defoliation on pasture growth. The highest values of deep drainage below 4 m depth occurred when high rainfall events corresponded with high soil water storage in the entire profile (0–4 m depth. Given that water usage by both leucaena and Rhodes grass was greatest in the upper layers of soil (<1.5 m, future research should focus on how the level of competitive interaction might be managed by choice of row spacing and frequency of irrigation. Further studies are needed, including: (a physical sampling to determine the depth of active roots; (b how defoliation affects rooting behaviours and water use of leucaena; and (c modelling of the water and salt balances of leucaena and grass inter-row systems using data from this study, with various levels of irrigation, to investigate the risks of deep drainage over an extended climate sequence.Keywords: Active rooting depth, agroforestry, Chloris gayana, Leucaena leucocephala

  3. Fine-scale habitat preference of green sturgeon (Acipenser medirostris) within three spawning locations in the Sacramento River, California

    Science.gov (United States)

    Wyman, Megan T.; Thomas, Michael J.; McDonald, Richard R.; Hearn, Alexander R.; Battleson, Ryan D.; Chapman, Eric D.; Kinzel, Paul J.; Minear, J. Tobey; Mora, Ethan A.; Nelson, Jonathan M.; Pagel, Matthew D.; Klimley, A. Peter

    2018-01-01

    Vast sections of the Sacramento River have been listed as critical habitat by the National Marine Fisheries Service for green sturgeon spawning (Acipenser medirostris), yet spawning is known to occur at only a few specific locations. This study reveals the range of physical habitat variables selected by adult green sturgeon during their spawning period. We integrated fine-scale fish positions, physical habitat characteristics, discharge, bathymetry, and simulated velocity and depth using a 2-dimensional hydraulic model (FaSTMECH). The objective was to create habitat suitability curves for depth, velocity, and substrate type within three known spawning locations over two years. An overall cumulative habitat suitability score was calculated that averaged the depth, velocity, and substrate scores over all fish, sites, and years. A weighted usable area (WUA) index was calculated throughout the sampling periods for each of the three sites. Cumulative results indicate that the microhabitat characteristics most preferred by green sturgeon in these three spawning locations were velocities between 1.0-1.1 m/s, depths of 8-9 m, and gravel and sand substrate. This study provides guidance for those who may in the future want to increase spawning habitat for green sturgeon within the Sacramento River.

  4. Horizontal-Longitudinal Correlations of Acoustic Field in Deep Water

    International Nuclear Information System (INIS)

    Li Jun; Li Zheng-Lin; Ren Yun; Li Wen; Zhang Ren-He

    2015-01-01

    The horizontal-longitudinal correlations of the acoustic field in deep water are investigated based on the experimental data obtained in the South China Sea. It is shown that the horizontal-longitudinal correlation coefficients in the convergence zone are high, and the correlation length is consistent with the convergence zone width, which depends on the receiver depth and range. The horizontal-longitudinal correlation coefficients in the convergence zone also have a division structure for the deeper receiver. The signals from the second part of the convergence zone are still correlated with the reference signal in the first part. The horizontal-longitudinal correlation coefficients in the shadow zone are lower than that in the convergence zone, and the correlation length in the shadow zone is also much shorter than that in the convergence zone. The numerical simulation results by using the normal modes theory are qualitatively consistent with the experimental results. (paper)

  5. Wildlife Response to Riparian Restoration on the Sacramento River

    Directory of Open Access Journals (Sweden)

    Gregory H Golet

    2008-06-01

    Full Text Available Studies that assess the success of riparian restoration projects seldom focus on wildlife. More generally, vegetation characteristics are studied, with the assumption that animal populations will recover once adequate habitats are established. On the Sacramento River, millions of dollars have been spent on habitat restoration, yet few studies of wildlife response have been published. Here we present the major findings of a suite of studies that assessed responses of four taxonomic groups (insects, birds, bats, and rodents. Study designs fell primarily into two broad categories: comparisons of restoration sites of different ages, and comparisons of restoration sites with agricultural and remnant riparian sites. Older restoration sites showed increased abundances of many species of landbirds and bats relative to younger sites, and the same trend was observed for the Valley elderberry longhorn beetle (Desmocerus californicus dimorphus, a federally threatened species. Species richness of landbirds and ground-dwelling beetles appeared to increase as restoration sites matured. Young restoration sites provided benefits to species that utilize early successional riparian habitats, and after about 10 years, the sites appeared to provide many of the complex structural habitat elements that are characteristic of remnant forest patches. Eleven-year old sites were occupied by both cavity-nesting birds and special-status crevice-roosting bats. Restored sites also supported a wide diversity of bee species, and had richness similar to remnant sites. Remnant sites had species compositions of beetles and rodents more similar to older sites than to younger sites. Because study durations were short for all but landbirds, results should be viewed as preliminary. Nonetheless, in aggregate, they provide convincing evidence that restoration along the Sacramento River has been successful in restoring riparian habitats for a broad suite of faunal species. Not only did

  6. Subsidence Reversal in a Re-established Wetland in the Sacramento-San Joaquin Delta, California, USA

    Directory of Open Access Journals (Sweden)

    Robin L. Miller

    2008-10-01

    Full Text Available The stability of levees in the Sacramento-San Joaquin Delta is threatened by continued subsidence of Delta peat islands. Up to 6 meters of land-surface elevation has been lost in the 150 years since Delta marshes were leveed and drained, primarily from oxidation of peat soils. Flooding subsided peat islands halts peat oxidation by creating anoxic soils, but net accumulation of new material in restored wetlands is required to recover land-surface elevations. We investigated the subsidence reversal potential of two 3 hectare, permanently flooded, impounded wetlands re-established on a deeply subsided field on Twitchell Island. The shallower wetland (design water depth 25 cm was almost completely colonized by dense emergent marsh vegetation within two years; whereas, the deeper wetland (design water depth 55 cm which developed spatially variable depths as a result of heterogeneous colonization by emergent vegetation, still had some areas remaining as open water after nine years. Changes in land-surface elevation were quantified using repeated sedimentation-erosion table measurements. New material accumulating in the wetlands was sampled by coring. Land-surface elevations increased by an average of 4 cm/yr in both wetlands from 1997 to 2006; however, the rates at different sites in the wetlands ranged from -0.5 to +9.2 cm/yr. Open water areas of the deeper wetland without emergent vegetation had the lowest rates of land-surface elevation gain. The greatest rates occurred in areas of the deeper wetland most isolated from the river water inlets, with dense stands of emergent marsh vegetation (tules and cattails. Vegetated areas of the deeper wetland in the transition zones between open water and mature emergent stands had intermediate rates of land-surface gain, as did the entire shallower wetland. These results suggest that the dominant component contributing to land-surface elevation gain in these wetlands was accumulation of organic matter, rather

  7. Plant community, primary productivity, and environmental conditions following wetland re-establishment in the Sacramento-San Joaquin Delta, California

    Science.gov (United States)

    Miller, R.L.; Fujii, R.

    2010-01-01

    Wetland restoration can mitigate aerobic decomposition of subsided organic soils, as well as re-establish conditions favorable for carbon storage. Rates of carbon storage result from the balance of inputs and losses, both of which are affected by wetland hydrology. We followed the effect of water depth (25 and 55 cm) on the plant community, primary production, and changes in two re-established wetlands in the Sacramento San-Joaquin River Delta, California for 9 years after flooding to determine how relatively small differences in water depth affect carbon storage rates over time. To estimate annual carbon inputs, plant species cover, standing above- and below-ground plant biomass, and annual biomass turnover rates were measured, and allometric biomass models for Schoenoplectus (Scirpus) acutus and Typha spp., the emergent marsh dominants, were developed. As the wetlands developed, environmental factors, including water temperature, depth, and pH were measured. Emergent marsh vegetation colonized the shallow wetland more rapidly than the deeper wetland. This is important to potential carbon storage because emergent marsh vegetation is more productive, and less labile, than submerged and floating vegetation. Primary production of emergent marsh vegetation ranged from 1.3 to 3.2 kg of carbon per square meter annually; and, mid-season standing live biomass represented about half of the annual primary production. Changes in species composition occurred in both submerged and emergent plant communities as the wetlands matured. Water depth, temperature, and pH were lower in areas with emergent marsh vegetation compared to submerged vegetation, all of which, in turn, can affect carbon cycling and storage rates. ?? Springer Science+Business Media B.V. 2009.

  8. The effect of submerged aquatic vegetation expansion on a declining turbidity trend in the Sacramento-San Joaquin River Delta

    Science.gov (United States)

    Hestir, E.L.; Schoellhamer, David H.; Jonathan Greenberg,; Morgan-King, Tara L.; Ustin, S.L.

    2016-01-01

    Submerged aquatic vegetation (SAV) has well-documented effects on water clarity. SAV beds can slow water movement and reduce bed shear stress, promoting sedimentation and reducing suspension. However, estuaries have multiple controls on turbidity that make it difficult to determine the effect of SAV on water clarity. In this study, we investigated the effect of primarily invasive SAV expansion on a concomitant decline in turbidity in the Sacramento-San Joaquin River Delta. The objective of this study was to separate the effects of decreasing sediment supply from the watershed from increasing SAV cover to determine the effect of SAV on the declining turbidity trend. SAV cover was determined by airborne hyperspectral remote sensing and turbidity data from long-term monitoring records. The turbidity trends were corrected for the declining sediment supply using suspended-sediment concentration data from a station immediately upstream of the Delta. We found a significant negative trend in turbidity from 1975 to 2008, and when we removed the sediment supply signal from the trend it was still significant and negative, indicating that a factor other than sediment supply was responsible for part of the turbidity decline. Turbidity monitoring stations with high rates of SAV expansion had steeper and more significant turbidity trends than those with low SAV cover. Our findings suggest that SAV is an important (but not sole) factor in the turbidity decline, and we estimate that 21–70 % of the total declining turbidity trend is due to SAV expansion.

  9. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species

    Science.gov (United States)

    Zhang, Yanjie; Sun, Jin; Chen, Chong; Watanabe, Hiromi K.; Feng, Dong; Zhang, Yu; Chiu, Jill M.Y.; Qian, Pei-Yuan; Qiu, Jian-Wen

    2017-01-01

    Polynoid scale worms (Polynoidae, Annelida) invaded deep-sea chemosynthesis-based ecosystems approximately 60 million years ago, but little is known about their genetic adaptation to the extreme deep-sea environment. In this study, we reported the first two transcriptomes of deep-sea polynoids (Branchipolynoe pettiboneae, Lepidonotopodium sp.) and compared them with the transcriptome of a shallow-water polynoid (Harmothoe imbricata). We determined codon and amino acid usage, positive selected genes, highly expressed genes and putative duplicated genes. Transcriptome assembly produced 98,806 to 225,709 contigs in the three species. There were more positively charged amino acids (i.e., histidine and arginine) and less negatively charged amino acids (i.e., aspartic acid and glutamic acid) in the deep-sea species. There were 120 genes showing clear evidence of positive selection. Among the 10% most highly expressed genes, there were more hemoglobin genes with high expression levels in both deep-sea species. The duplicated genes related to DNA recombination and metabolism, and gene expression were only enriched in deep-sea species. Deep-sea scale worms adopted two strategies of adaptation to hypoxia in the chemosynthesis-based habitats (i.e., rapid evolution of tetra-domain hemoglobin in Branchipolynoe or high expression of single-domain hemoglobin in Lepidonotopodium sp.). PMID:28397791

  10. Pre-screening tectonic heat flows for basin modelling - Some implications for deep water exploration in the mediterranean

    NARCIS (Netherlands)

    Wees, J.D. van; Bertotti, G.; David, P.; Bergen, F. van; Cloetingh, S.

    2007-01-01

    Basin modelling results can be very sensitive to (paleo-)temperature uncertainties. For frontier basins, in particular for deep water settings, the thermal signature of the basin is poorly constrained, as data from wells are lacking. This may lead to wrong heat flow assumptions if these are

  11. Deep groundwater flow at Palmottu

    International Nuclear Information System (INIS)

    Niini, H.; Vesterinen, M.; Tuokko, T.

    1993-01-01

    Further observations, measurements, and calculations aimed at determining the groundwater flow regimes and periodical variations in flow at deeper levels were carried out in the Lake Palmottu (a natural analogue study site for radioactive waste disposal in southwestern Finland) drainage basin. These water movements affect the migration of radionuclides from the Palmottu U-Th deposit. The deep water flow is essentially restricted to the bedrock fractures which developed under, and are still affected by, the stress state of the bedrock. Determination of the detailed variations was based on fracture-tectonic modelling of the 12 most significant underground water-flow channels that cross the surficial water of the Palmottu area. According to the direction of the hydraulic gradient the deep water flow is mostly outwards from the Palmottu catchment but in the westernmost section it is partly towards the centre. Estimation of the water flow through the U-Th deposit by the water-balance method is still only approximate and needs continued observation series and improved field measurements

  12. Assessing the Performance of a Network of Low Cost Particulate Matter Sensors Deployed in Sacramento, California

    Science.gov (United States)

    Mukherjee, A. D.; Brown, S. G.; McCarthy, M. C.

    2017-12-01

    A new generation of low cost air quality sensors have the potential to provide valuable information on the spatial-temporal variability of air pollution - if the measurements have sufficient quality. This study examined the performance of a particulate matter sensor model, the AirBeam (HabitatMap Inc., Brooklyn, NY), over a three month period in the urban environment of Sacramento, California. Nineteen AirBeam sensors were deployed at a regulatory air monitoring site collocated with meteorology measurements and as a local network over an 80 km2 domain in Sacramento, CA. This study presents the methodology to evaluate the precision, accuracy, and reliability of the sensors over a range of meteorological and aerosol conditions. The sensors demonstrated a robust degree of precision during collocated measurement periods (R2 = 0.98 - 0.99) and a moderate degree of correlation against a Beta Attenuation Monitor PM2.5 monitor (R2 0.6). A normalization correction is applied during the study period so that each AirBeam sensor in the network reports a comparable value. The role of the meteorological environment on the accuracy of the sensor measurements is investigated, along with the possibility of improving the measurements through a meteorology weighted correction. The data quality of the network of sensors is examined, and the spatial variability of particulate matter through the study domain derived from the sensor network is presented.

  13. Simulation of deep ventilation in Crater Lake, Oregon, 1951–2099

    Science.gov (United States)

    Wood, Tamara M.; Wherry, Susan A.; Piccolroaz, Sebastiano; Girdner, Scott F

    2016-05-04

    The frequency of deep ventilation events in Crater Lake, a caldera lake in the Oregon Cascade Mountains, was simulated in six future climate scenarios, using a 1-dimensional deep ventilation model (1DDV) that was developed to simulate the ventilation of deep water initiated by reverse stratification and subsequent thermobaric instability. The model was calibrated and validated with lake temperature data collected from 1994 to 2011. Wind and air temperature data from three general circulation models and two representative concentration pathways were used to simulate the change in lake temperature and the frequency of deep ventilation events in possible future climates. The lumped model air2water was used to project lake surface temperature, a required boundary condition for the lake model, based on air temperature in the future climates.The 1DDV model was used to simulate daily water temperature profiles through 2099. All future climate scenarios projected increased water temperature throughout the water column and a substantive reduction in the frequency of deep ventilation events. The least extreme scenario projected the frequency of deep ventilation events to decrease from about 1 in 2 years in current conditions to about 1 in 3 years by 2100. The most extreme scenario considered projected the frequency of deep ventilation events to be about 1 in 7.7 years by 2100. All scenarios predicted that the temperature of the entire water column will be greater than 4 °C for increasing lengths of time in the future and that the conditions required for thermobaric instability induced mixing will become rare or non-existent.The disruption of deep ventilation by itself does not provide a complete picture of the potential ecological and water quality consequences of warming climate to Crater Lake. Estimating the effect of warming climate on deep water oxygen depletion and water clarity will require careful modeling studies to combine the physical mixing processes affected by

  14. Field development. Concept selection in deep water environment offshore Angola

    Energy Technology Data Exchange (ETDEWEB)

    Guenot, A.; Berger, J.C.; Limet, N. [TotalFinaElf, la Defense 6, Rosa-Lirio Project Group, 92 - Courbevoie (France)

    2002-10-01

    The significant oil discoveries made at the end of the 90's in the deep water environment offshore the coast of Angola, has led to a considerable amount of development activities. The first field in production was the turnkey development of the Kuito field on the Block 14 operated by Chevron. More recently the Girassol field has been put successfully in production on the Block 17, operated by TotalFinaElf. Both developments are making use of sub-sea wells connected to a moored dedicated FPSO. On the western side of the Girassol field, several discoveries have been made. They are known as the Rosa Lirio pole, from the names of two of the main channels. Values for water depth are in the same range than on Girassol (1300- 1400 m). A project group has been established in 1999 to evaluate the development of these discoveries. The purpose of this paper is to present the conceptual work which as been carried out, and in particular to show that even if many different concepts have been evaluated, the final choice has been also to make use of sub-sea trees. (authors)

  15. Polychaete Annelid (segmented worms) Species Composition in the Deep Gulf of Mexico following the Deep Water Horizon (DWH) Oil Spill

    Science.gov (United States)

    QU, F.; Rowe, G.

    2012-12-01

    Sediments 5 to 9 km from the Deep Water Horizon (DWH) Oil Spill site were sampled using a 0.2 m2 box corer 5 months after the event to assess the effects of the oil spill on polychaete annelid (segmented worms) community structure. Numbers of species, abundance, and biodiversity indices were all significantly lower than pre-spill values from similar depths in the eastern Gulf of Mexico (GoM). All of the five dominant species were different. Non-selective deposit feeders and selective deposit feeders were still the most frequent feeding guilds, but their abundances decreased significantly after the event. A large number of carnivorous Sigalionidae may be a response to an accumulation of PAHs on the sediment. Multivariate analyses (CLUSTER and multidimensional scaling (MDS)) illustrate the differences between assemblages near the DWH and those from prior studies in similar deep GoM habitats. In sum, the polychaete populations appeared to be at an early stage of succession in the recovery from the spill or they could be a resident assemblage that is the natural characteristic infauna in or adjacent to natural seeps of fossil hydrocarbons.

  16. Microbial ecology of deep-water mid-Atlantic canyons

    Science.gov (United States)

    Kellogg, Christina A.

    2011-01-01

    The research described in this fact sheet will be conducted from 2012 to 2014 as part of the U.S. Geological Survey's DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) Program. This integrated, multidisciplinary effort will be investigating a variety of topics related to unique and fragile deep-sea ecosystems from the microscopic level to the ecosystem level. One goal is to improve understanding, at the microbiological scale, of the benthic communities (including corals) that reside in and around mid-Atlantic canyon habitats and their associated environments. Specific objectives include identifying and characterizing the microbial associates of deep-sea corals, characterizing the microbial biofilms on hard substrates to better determine their role in engineering the ecosystem, and adding a microbial dimension to benthic community structure and function assessments by characterizing micro-eukaryotes, bacteria, and archaea in deep-sea sediments.

  17. A role for subducted super-hydrated kaolinite in Earth’s deep water cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Huijeong; Seoung, Donghoon; Lee, Yongjae; Liu, Zhenxian; Liermann, Hanns-Peter; Cynn, Hyunchae; Vogt, Thomas; Kao, Chi-Chang; Mao, Ho-Kwang

    2017-11-20

    Water is the most abundant volatile component in the Earth. It continuously enters the mantle through subduction zones, where it reduces the melting temperature of rocks to generate magmas. The dehydration process in subduction zones, which determines whether water is released from the slab or transported into the deeper mantle, is an essential component of the deep water cycle. Here we use in situ and time-resolved high-pressure/high-temperature synchrotron X-ray diffraction and infrared spectra to characterize the structural and chemical changes of the clay mineral kaolinite. At conditions corresponding to a depth of about 75 km in a cold subducting slab (2.7 GPa and 200 °C), and in the presence of water, we observe the pressure-induced insertion of water into kaolinite. This super-hydrated phase has a unit cell volume that is about 31% larger, a density that is about 8.4% lower than the original kaolinite and, with 29 wt% H2O, the highest water content of any known aluminosilicate mineral in the Earth. As pressure and temperature approach 19 GPa and about 800 °C, we observe the sequential breakdown of super-hydrated kaolinite. The formation and subsequent breakdown of super-hydrated kaolinite in cold slabs subducted below 200 km leads to the release of water that may affect seismicity and help fuel arc volcanism at the surface.

  18. Proceedings IEEE Visualization Conference and IEEE Information Visualization Conference (VIS'07 and INFOVIS'07, Sacramento CA, USA, October 28-November 1, 2007)

    NARCIS (Netherlands)

    Chen, M.; Hansen, C.; North, C.; Pang, A.; Wijk, van J.J.

    2007-01-01

    These are the proceedings of the IEEE Visualization Conference 2007 (Vis 2007) and the IEEE Information Visualization Conference 2007 (InfoVis 2007) held during October 28 to November 1, 2007 in Sacramento, California. The power of using computing technology to create useful, effective imagery for

  19. Cathodic protection of mild steel and copper in deep waters of the Arabian Sea and Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Venkat, K.; Wagh, A.B.

    Performance of cathodic protection system to mild steel and copper in deep (> 1000 m) oceanic waters of the Arabian Sea and Bay of Bengal has been assessed using aluminium and mild steel sacrificial anodes. The corrosion rates of unprotected metals...

  20. An urban-forest control measure for ozone in the Sacramento, CA federal non-attainment area (SFNA) Sustainable Cities and Society

    Science.gov (United States)

    Haider Taha; James Wilkinson; Robert Bornstein; Qingfu Xiao; E. Gregory McPherson; Jim Simpson; Charles Anderson; Steven Lau; Janice Lam; Cindy Blain

    2015-01-01

    Urban forest strategies of gradually replacing high emitters of biogenic volatile organic compounds (BVOC) with low-emitting species are being considered as voluntary or emerging control measures for maintenance of the 8-h ozone standard in the Sacramento Federal Non-Attainment Area (SFNA). We describe a regulatory modeling study demonstrating the air-quality impacts...

  1. Dalia integrated production bundle (IPB): an innovative riser solution for deep water fields

    Energy Technology Data Exchange (ETDEWEB)

    Reals, Th Boscals de; Gloaguen, M.; Roche, F. [Total E and P (Angola); Marion, A.; Poincheval, A. [Technip, Paris (France)

    2008-07-01

    The Dalia field is located 210 km north west of Luanda (Angola), about 140 km from shore in 1400 meter water-depth. It was the second major discovery out of 15 made in the block 17 operated by Total. The Dalia Umbilical, Flow lines and Risers EPCI Contract was awarded in 2003. The sea-line network to connect and control the 71 wells and 9 manifolds consist of the following: 40 km of insulated pipe in pipe (12 inches into 17 inches) production flow lines; 45 km of 12 inches water and gas injection lines; 6 off 1.7 km flexible water and gas injection risers; 8 off 1.65 km flexible Integrated Production Bundle (IPB) risers; 75 km of control umbilicals. The flow assurance and associated insulation requirement of the production transport system was one of the main challenges of the project. With a crude temperature of 45 deg C at the wellhead and the required minimum temperature of 35 deg C on arrival at the FPSO, this problem was complex. Understanding that, due to the Joule Thompson effect of the riser gas lift, a 'built in' loss of about 5 deg C is induced and together with further losses through the sub sea pipelines, some up to 6 km long, the agreed solution was 'pipe in pipe' for the production flow lines. The innovative flexible IPB riser, incorporating gas lift and heating to keep the fluid temperature above hydrate formation zone, was the selected riser solution. The IPB is new technology for deep water, developed by Technip for Dalia, and consists of a 12 inches nominal central flexible, surrounded by layers of heat tracing cables, small bore gas lift lines, optical fibres and many insulation layers with an Overall Heat Transfer Coefficient of approximately 3,4 W/m{sup 2}K. After an earlier research and development programme, a further extensive qualification programme was conducted during the course of the project, culminating with the deep water testing phase offshore Brazil. The IPB was then approved for fabrication and installation

  2. [Spatiotemporal succession of algae functional groups and the influence of environment change in a deep-water reservoir].

    Science.gov (United States)

    Lu, Jin-Suo; Hu, Ya-Pan

    2013-07-01

    Algae functional group has become an important theory and method of algae research in recent years. In order to explore the spatiotemporal succession of algae functional groups and the influence of environment change, water samples were collected in August, 2011 from a deep-water reservoir in Northwest China. The research combined the methods of on-line monitoring and laboratory analysis. The results showed that there were 10 functional groups of algae in the reservoir. They were designated as B, D, P, X1, X3, F, G, J, L(M) and MP. Wherein, the groups B, P, F, X1, MP, D and J were comparatively common functional groups, and the groups X3, G and L(M) were less common. The populations of groups B, D, P, X1 and X3 were larger than those of the others. Besides, the analysis of changes in the environment factors suggested that temperature was the most important factor influencing the spatiotemporal succession of algae functional groups. The strategy of algal growth followed the law: R/CR in spring --> CR/C in late spring and early summer C/CR/R/CS/S in late summer and early autumn --> CR/R in late autumn and winter. The purpose of this article is to provide theoretical support for water withdrawal safety in deep-water reservoirs.

  3. Hamacanthins A and B, new antifungal bis indole alkaloids from the deep-water marine sponge, Hamacantha sp.

    Science.gov (United States)

    Gunasekera, S P; McCarthy, P J; Kelly-Borges, M

    1994-10-01

    Hamacanthin A [1] and hamacanthin B [2] are two bioactive dihydropyrazinonediylbis(indole) alkaloids isolated from a new species of deep-water marine sponge, Hamacantha sp. The hamacanthins are growth inhibitors of Candida albicans and Cryptococcus neoformans. Isolation and structure elucidation of 1 and 2 by nmr spectroscopy are described.

  4. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge

    Science.gov (United States)

    Yuan, Jun; Lai, Qiliang; Sun, Fengqin; Zheng, Tianling; Shao, Zongze

    2015-01-01

    The bacteria involved in organic pollutant degradation in pelagic deep-sea environments are largely unknown. In this report, the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was analyzed in deep-sea water on the Southwest Indian Ridge (SWIR). After enrichment with a PAH mixture (phenanthrene, anthracene, fluoranthene, and pyrene), nine bacterial consortia were obtained from depths of 3946–4746 m. While the consortia degraded all four PAHs when supplied in a mixture, when PAHs were tested individually, only phenanthrene supported growth. Thus, degradation of the PAH mixture reflected a cometabolism of anthracene, fluoranthene, and pyrene with phenanthrene. Further, both culture-dependent and independent methods revealed many new bacteria involved in PAH degradation. Specifically, the alpha and gamma subclasses of Proteobacteria were confirmed as the major groups within the communities. Additionally, Actinobacteria, the CFB group and Firmicutes were detected. Denaturing Gradient Gel Electrophoresis (DGGE) analysis showed that bacteria closely affiliated with Alcanivorax, Novosphingobium, and Rhodovulum occurred most frequently in different PAH-degrading consortia. By using general heterotrophic media, 51 bacteria were isolated from the consortia and of these 34 grew with the PAH mixture as a sole carbon source. Of these, isolates most closely related to Alterierythrobacter, Citricella, Erythrobacter, Idiomarina, Lutibacterium, Maricaulis, Marinobacter, Martelella, Pseudidiomarina, Rhodobacter, Roseovarius, Salipiger, Sphingopyxis, and Stappia were found to be PAH degraders. To the best of our knowledge, this is the first time these bacteria have been identified in this context. In summary, this report revealed significant diversity among the PAH-degrading bacteria in the deep-sea water column. These bacteria may play a role in PAH removal in deep-sea environments. PMID:26379634

  5. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge.

    Science.gov (United States)

    Yuan, Jun; Lai, Qiliang; Sun, Fengqin; Zheng, Tianling; Shao, Zongze

    2015-01-01

    The bacteria involved in organic pollutant degradation in pelagic deep-sea environments are largely unknown. In this report, the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was analyzed in deep-sea water on the Southwest Indian Ridge (SWIR). After enrichment with a PAH mixture (phenanthrene, anthracene, fluoranthene, and pyrene), nine bacterial consortia were obtained from depths of 3946-4746 m. While the consortia degraded all four PAHs when supplied in a mixture, when PAHs were tested individually, only phenanthrene supported growth. Thus, degradation of the PAH mixture reflected a cometabolism of anthracene, fluoranthene, and pyrene with phenanthrene. Further, both culture-dependent and independent methods revealed many new bacteria involved in PAH degradation. Specifically, the alpha and gamma subclasses of Proteobacteria were confirmed as the major groups within the communities. Additionally, Actinobacteria, the CFB group and Firmicutes were detected. Denaturing Gradient Gel Electrophoresis (DGGE) analysis showed that bacteria closely affiliated with Alcanivorax, Novosphingobium, and Rhodovulum occurred most frequently in different PAH-degrading consortia. By using general heterotrophic media, 51 bacteria were isolated from the consortia and of these 34 grew with the PAH mixture as a sole carbon source. Of these, isolates most closely related to Alterierythrobacter, Citricella, Erythrobacter, Idiomarina, Lutibacterium, Maricaulis, Marinobacter, Martelella, Pseudidiomarina, Rhodobacter, Roseovarius, Salipiger, Sphingopyxis, and Stappia were found to be PAH degraders. To the best of our knowledge, this is the first time these bacteria have been identified in this context. In summary, this report revealed significant diversity among the PAH-degrading bacteria in the deep-sea water column. These bacteria may play a role in PAH removal in deep-sea environments.

  6. Effect of selective withdrawal on the annual thermal regime of a deep water body

    International Nuclear Information System (INIS)

    Bocharov, O.B.; Zinov'ev, A.T.

    1993-01-01

    The construction of any large hydraulic structure leads to the occurrence of new ecosystems in the upper and lower pools of the hydro development. A study of scenarios of the development of these ecosystems and an investigation of the possibilities of minimizing the negative ecological consequences of waterpower engineering by means of mathematical modeling in many respects determine the quality of developing the scientific and technical project. For high-head hydroelectric stations, an effective tool for controlling the water quality in the upper and lower pools is the withdrawal of water form different horizons of the upper pool reservoir. Temperature stratification of a deep sluggish water body is modeled in a one-dimensional vertical approximation with the use of an improved method of describing fluid outflow. The effect of selective withdrawal on the annual thermal regime and temperature of the outflowing water was studied. The results obtained permit estimating the effect of selective withdrawal on the thermal regime of the upper pool of the planned hydro development and temperature of the water being discharged into the lower pool on the possibility, in principle, of the water temperature in the lower pool approaching the natural both in winter and summer

  7. Breakup of last glacial deep stratification in the South Pacific

    Science.gov (United States)

    Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F.; Molina-Kescher, Mario; Pahnke, Katharina

    2018-02-01

    Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO2 through upwelling.

  8. Stochastic Plume Simulations for the Fukushima Accident and the Deep Water Horizon Oil Spill

    Science.gov (United States)

    Coelho, E.; Peggion, G.; Rowley, C.; Hogan, P.

    2012-04-01

    The Fukushima Dai-ichi power plant suffered damage leading to radioactive contamination of coastal waters. Major issues in characterizing the extent of the affected waters were a poor knowledge of the radiation released to the coastal waters and the rather complex coastal dynamics of the region, not deterministically captured by the available prediction systems. Equivalently, during the Gulf of Mexico Deep Water Horizon oil platform accident in April 2010, significant amounts of oil and gas were released from the ocean floor. For this case, issues in mapping and predicting the extent of the affected waters in real-time were a poor knowledge of the actual amounts of oil reaching the surface and the fact that coastal dynamics over the region were not deterministically captured by the available prediction systems. To assess the ocean regions and times that were most likely affected by these accidents while capturing the above sources of uncertainty, ensembles of the Navy Coastal Ocean Model (NCOM) were configured over the two regions (NE Japan and Northern Gulf of Mexico). For the Fukushima case tracers were released on each ensemble member; their locations at each instant provided reference positions of water volumes where the signature of water released from the plant could be found. For the Deep Water Horizon oil spill case each ensemble member was coupled with a diffusion-advection solution to estimate possible scenarios of oil concentrations using perturbed estimates of the released amounts as the source terms at the surface. Stochastic plumes were then defined using a Risk Assessment Code (RAC) analysis that associates a number from 1 to 5 to each grid point, determined by the likelihood of having tracer particle within short ranges (for the Fukushima case), hence defining the high risk areas and those recommended for monitoring. For the Oil Spill case the RAC codes were determined by the likelihood of reaching oil concentrations as defined in the Bonn Agreement

  9. A Deep Hydrographic Section Across the Tasman Sea.

    Science.gov (United States)

    1985-09-01

    the same cruise, TC1, as that on which the magneto- telluric moorings (plus a RANRL recording current-meter) were deployed. A small number of deep...that of Wyrtki (1961) who described the different water masses of this area and the northward movement of deep waters from Antarctica. Boland and

  10. Climatological Implications of Deep-Rooting in Water-Limited Ecosystems

    Science.gov (United States)

    Amenu, G. G.; Kumar, P.

    2005-12-01

    In vegetated ecosystems, plants are the primary channels that connect the soil with the atmosphere (through water, energy, carbon, and nutrient cycles), with plant roots controlling the below-ground dynamics. Recently, several observational evidences are emerging which suggests the existence of plant roots much deeper in the soil/rock profile than the depth usually perceived in existing hydroclimatological and hydroecological models. In this study, using land surface model, we assess the effects of vegetation deep-rooting on (a) moisture and temperature redistribution in the soil profile, (b) energy flux partitioning at the land surface, and (c) net primary productivity of vegetated ecosystems. Three sites characterized by different vegetation, soil, and climate (all located in arid to sub-humid regions of the United States) were studied. The sites include the Mogollon Rim in Arizona, the Edwards Plateau in Texas, and the Southern Piedmont in Georgia. Soil depths of up to 10 m are investigated. Results of this modeling effort and its implications for climatological modeling will be presented.

  11. New species and new records of deep-water Pectinoidea (Bivalvia: Propeamussiidae, Entoliidae and Pectinidae) from the South Pacific

    NARCIS (Netherlands)

    Dijkstra, H.H.; Maestrati, P.

    2008-01-01

    Fifty-two deep-water species of Pectinoidea (37 Propeamussiidae, 1 Entoliidae, 14 Pectinidae) are listed from Norfolk Ridge (11 species), Loyalty Islands (4 species), Fiji Islands (30 species), Tonga (26 species), Solomon Islands (26 species) and the Marquesas archipelago (8 species). All species

  12. Historic, Recent, and Future Subsidence, Sacramento-San Joaquin Delta, California, USA

    Directory of Open Access Journals (Sweden)

    Steven J Deverel

    2010-08-01

    Full Text Available To estimate and understand recent subsidence, we collected elevation and soils data on Bacon and Sherman islands in 2006 at locations of previous elevation measurements. Measured subsidence rates on Sherman Island from 1988 to 2006 averaged 1.23 cm/year (0.5 in/yr and ranged from 0.7 to 1.7 cm/year (0.3 to 0.7 in/year. Subsidence rates on Bacon Island from 1978 to 2006 averaged 2.2 cm/year (0.9 in/yr and ranged from 1.5 to 3.7 cm/year (0.6 to 1.5 in/yr. Changing land-management practices and decreasing soil organic matter content have resulted in decreasing subsidence rates. On Sherman Island, rates from 1988 to 2006 were about 35% of 1910 to 1988 rates. For Bacon Island, rates from 1978 to 2006 were about 40% less than the 1926-1958 rates. To help understand causes and estimate future subsidence, we developed a subsidence model, SUBCALC, that simulates oxidation and carbon losses, consolidation, wind erosion, and burning and changing soil organic matter content. SUBCALC results agreed well with measured land-surface elevation changes. We predicted elevation decreases from 2007 to 2050 will range from a few centimeters to over 1.3 m (4.3 ft. The largest elevation declines will occur in the central Sacramento-San Joaquin Delta. From 2007 to 2050, the most probable estimated increase in volume below sea level is 349,956,000 million cubic meters (281,300 acre-feet. Consequences of this continuing subsidence include increased drainage loads of water quality constituents of concern, seepage onto islands, and decreased arability.

  13. Levee Vertical Land Motion Changes in the Sacramento-San Joaquin Delta

    Science.gov (United States)

    Telling, J. W.; Brooks, B. A.; Glennie, C. L.; Ericksen, T. L.; Knowles, N.

    2017-12-01

    The Sacramento-San Joaquin Delta is home to numerous islands that provide economically and agriculturally important land. However, the island interiors are sinking and most sit below sea level, making the levee roads that surround the islands vital for their continued health and productivity. Airborne LiDAR (Light Detection and Ranging) data over the islands was collected in 2007 by the California Department of Water Resources and mobile LiDAR data was collected along the levee roads on Bacon, Bouldin, Jersey, and Brannan-Andrus Islands in 2015 and 2016 by the USGS. These datasets provide high resolution topographic models with 8 year separation that can be used to examine topographic change along the levees. A cross-section of each dataset was output along the approximate centerline of the levee road, so that profiles of the 2007 and 2015/2016 LiDAR observations could be compared. Regions of levee road subsidence and of levee road construction and reinforcement on the order of 0-3 centimeters per year were evident in locations around the islands. There is a high degree of spatial variability of these rates even for individual islands. These results were compared to the levee road maps published by the CA Delta Stewardship Council and it was found that the regions of reinforcement and subsidence did not always align between the published maps and the LiDAR data. Additionally, the levee road heights and rates of change, in regions of road subsidence, were compared to sea level rise projections to evaluate the risk that rising sea level may pose to the islands in the future.

  14. First biological measurements of deep-sea corals from the Red Sea.

    Science.gov (United States)

    Roder, C; Berumen, M L; Bouwmeester, J; Papathanassiou, E; Al-Suwailem, A; Voolstra, C R

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with 'deep-sea' and 'cold-water' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  15. First biological measurements of deep-sea corals from the Red Sea.

    KAUST Repository

    Roder, Cornelia

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with \\'deep-sea\\' and \\'cold-water\\' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  16. Short-crested waves in deep water: a numerical investigation of recent laboratory experiments

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.

    2006-01-01

    A numerical study of quasi-steady, doubly-periodic monochromatic short-crested wave patterns in deep water is conducted using a high-order Boussinesq-type model. Simulations using linear wavemaker conditions in the nonlinear model are initially used to approximate conditions from recent laboratory...... experiments. The computed patterns share many features with those observed in wavetanks, including bending (both frontwards and backwards) of the wave crests, dipping at the crest centerlines, and a pronounced long modulation in the direction of propagation. A new and simple explanation for these features...

  17. La historia sacra del Santísimo Sacramento contra las heregias destos tiempos"An iconographic study of the engravings illustrating the work

    Directory of Open Access Journals (Sweden)

    Calvo Portela, Juan Isaac

    2014-01-01

    Full Text Available En este artículo se hace un estudio iconográfico de las dos estampas que ilustran el libro del dominico fray Alonso de Ribera, La Historia Sacra del Santissimo Sacramento contra las heregias destos tiempos, editado por Luis Sánchez en Madrid en 1626. En dichas estampas se plasman dos aspectos que van a ser fundamentales de la religiosidad contrarreformista española del siglo XVII, la defensa a ultranza de la Eucaristía y la lucha contra la herejía. In this article is made an iconographic study of the two prints that illustrate the book of the Dominican Fray Alonso de Ribera, La Historia Sacra del Santissimo Sacramento contra las heregias destos tiempos, edited by Luis Sanchez in Madrid in 1626. In these prints are reflected two aspects that are going to be essential on the religiosity Spanish Counterreform of the seventeenth century, the stubborn defense of the Eucharist and the fight against heresy.

  18. Field-Assisted Splitting of Pure Water Based on Deep-Sub-Debye-Length Nanogap Electrochemical Cells.

    Science.gov (United States)

    Wang, Yifei; Narayanan, S R; Wu, Wei

    2017-08-22

    Owing to the low conductivity of pure water, using an electrolyte is common for achieving efficient water electrolysis. In this paper, we have fundamentally broken through this common sense by using deep-sub-Debye-length nanogap electrochemical cells to achieve efficient electrolysis of pure water (without any added electrolyte) at room temperature. A field-assisted effect resulted from overlapped electrical double layers can greatly enhance water molecules ionization and mass transport, leading to electron-transfer limited reactions. We have named this process "virtual breakdown mechanism" (which is completely different from traditional mechanisms) that couples the two half-reactions together, greatly reducing the energy losses arising from ion transport. This fundamental discovery has been theoretically discussed in this paper and experimentally demonstrated in a group of electrochemical cells with nanogaps between two electrodes down to 37 nm. On the basis of our nanogap electrochemical cells, the electrolysis current density from pure water can be significantly larger than that from 1 mol/L sodium hydroxide solution, indicating the much better performance of pure water splitting as a potential for on-demand clean hydrogen production.

  19. Deep-water gamma-spectrometer based on HP(Ge) detector

    International Nuclear Information System (INIS)

    Sokolov, A.; Danengirsh, S.; Popov, S.; Pchelincev, A; Gostilo, V.; Kravchenko, S.; Shapovalov, V.; Druzhinin, A.

    1995-01-01

    Full text: For radionuclide monitoring of the sea bottom near underwater storage of high active waste of nuclear industries and near places of accidents with nuclear submarines the spectrometers of gamma-radiation, which allow to carry out the measurements on the great depth, are needed. Usually, these problems are solved with devices, which are cast down into the water, using the rope, and transmit the signals on the surface by the cable. However, the depth of immersion is limited by this construction and often the conditions of measurement are complicated. The deep water gamma-spectrometer based on HP(Ge) detector for the measurement on the depth up to 3000 m is developed. The spectrometer is completely autonomic and is put up in the selected place, using the manipulator of a deep-water apparatus. The spectrometer is created in two cylindrical cases with 170 mm diameter and 1100 mm length, bearing the high hydrostatic pressure. The part of the case around the detector is created from titanium and has especial construction with a thin wall for increasing the efficiency of registration in the region of low-energy gamma-radiation. The cooling of the semiconductor detector is provided by a coolant which supports the working temperature of the detector during more than 24 hours. The electronic system of the spectrometer includes high voltage supply f or the detector, preamplifier, analog processor, analog-digital converter and a device for collecting and storing information in flash memory. The power supply of the spectrometer is provided by a battery of accumulators, which can be recharged on the surface. The programming of the processor is carried out before immersion by connecting the spectrometer to personal computer using standard interface RS-232. During 24 hours the spectrometer provides registration of 16 spectrums each in 4096 channels. The reading of the information by the computer is carried out after lifting up the spectrometer on the surface in the same

  20. Machine Learning and Deep Learning Models to Predict Runoff Water Quantity and Quality

    Science.gov (United States)

    Bradford, S. A.; Liang, J.; Li, W.; Murata, T.; Simunek, J.

    2017-12-01

    Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models, which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with physically-based models, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. In this presentation we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport (the HYDRUS-1D overland flow module). A large number of numerical simulations were carried out to develop a database containing information about the impact of various input parameters (weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices) on runoff water quantity and quality outputs. This database was used to train data-driven models. Three different methods (Neural Networks, Support Vector Machines, and Recurrence Neural Networks) were explored to prepare input- output functional relations. Results demonstrate the ability and limitations of machine learning and deep learning models to predict runoff water quantity and quality.

  1. Data for four geologic test holes in the Sacramento Valley, California

    Science.gov (United States)

    Berkstresser, C.F.; French, J.J.; Schaal, M.E.

    1985-01-01

    The report provides geological and geophysical data for four of seven test holes drilled as a part of the Central Valley Aquifer Project, which is part of the Regional Aquifer Systems Analysis. The holes were drilled with a rotary well drilling machine to depths of 900 feet in the southwestern part of the Sacramento Valley in Solano and Yolo Counties. Geologic data for each well include lithology, texture, color, character of the contact, sorting, rounding, and cementation, determined from cuttings, cores, and sidewall covers. Fifty cores, 3 feet long, were obtained from each hole, and from eight to fourteen sidewall cores were collected. Geophysical data include a dual-induction log, spherically focused log (SFL), compensated neutron-formation density log, gamma-ray log, and a caliper log. These data are presented in four tables and on four plates. (USGS)

  2. Development of HMPE fiber for deep water permanent mooring applications

    Energy Technology Data Exchange (ETDEWEB)

    Vlasblom, Martin; Fronzaglia, Bill; Boesten, Jorn [DSM Dyneema, Urmond (Netherlands); Leite, Sergio [Lankhorst Ropes, Sneek (Netherlands); Davies, Peter [Institut Francais de Recherche pour L' Exploration de la Mer (IFREMER) (France)

    2012-07-01

    For a number of years, the creep performance of standard High Modulus Polyethylene (HMPE) fiber types has limited their use in synthetic offshore mooring systems. In 2003, a low creep HMPE fiber was introduced and qualified for semi-permanent MODU moorings. This paper reports on a new High Modulus Polyethylene fiber type with significantly improved creep properties compared to any other HMPE fiber type, which, for the first time, allows its use in permanent offshore mooring systems, for example for deep water FPSO moorings. Results on fiber and rope creep experiments and stiffness measurements are reported. Laboratory testing shows that ropes made with the new fiber type retain the properties characteristic of HMPE such as high static strength, high fatigue resistance and stiffness, and illustrate that stiffness properties determined on HMPE fiber or rope are dependent on the applied load and temperature. (author)

  3. Discorhabdin P, a new enzyme inhibitor from a deep-water Caribbean sponge of the genus Batzella.

    Science.gov (United States)

    Gunasekera, S P; McCarthy, P J; Longley, R E; Pomponi, S A; Wright, A E; Lobkovsky, E; Clardy, J

    1999-01-01

    Discorhabdin P (1), a new discorhabdin analogue, has been isolated from a deep-water marine sponge of the genus Batzella. Discorhabdin P (1) inhibited the phosphatase activity of calcineurin and the peptidase activity of CPP32. It also showed in vitro cytotoxicity against P-388 and A-549 cell lines. The isolation and structure elucidation of discorhabdin P (1) are described.

  4. Influence of the hydrodynamic conditions on the accessibility of the demersal species to the deep water trawl fishery off the Balearic Islands (western Mediterranean)

    Science.gov (United States)

    Amores, A.; Rueda, L.; Monserrat, S.; Guijarro, B.; Pasqual, C.; Massutí, E.

    2013-12-01

    Ocean mean surface vorticity from gridded multi-mission satellite altimetry data was explored in the Western Mediterranean basin for the period 2000-2010, with the aim of comparing its variability with several species of the deep water fishery in the area. Monthly catches per unit of effort (CPUE) of adult red shrimp (Aristeus antennatus), reported in the deep water bottom trawl fishery developed off northern Mallorca Island displayed a good correlation with surface vorticity. This correlation could be explained by assuming that most of the surface vorticity episodes could reach the bottom, increasing the seabed velocities and producing sediment resuspensions, which could affect the near bottom water turbidity. A. antennatus would respond to this increased turbidity by moving downwards to the deeper waters. This massive displacement of red shrimp specimens away from the fishing grounds would consequently decrease their accesibility to fishing exploitation. This relationship between vorticity and catches also holds for other species , considered as by-catch of the deep water fishery in the area. Results appear to support the suggestion that the water turbidity generated by the vorticy episodes is significant enough to affect the dynamics of the demersal species. The way the surface vorticity observed can affect the bottom sediments is also investigated using a year-long moored near-bottom currentmeter and a sediment trap sited in the fishing grounds.

  5. Abrupt stop of deep water turnover with lake warming: Drastic consequences for algal primary producers.

    Science.gov (United States)

    Yankova, Yana; Neuenschwander, Stefan; Köster, Oliver; Posch, Thomas

    2017-10-23

    After strong fertilization in the 20 th century, many deep lakes in Central Europe are again nutrient poor due to long-lasting restoration (re-oligotrophication). In line with reduced phosphorus and nitrogen loadings, total organismic productivity decreased and lakes have now historically low nutrient and biomass concentrations. This caused speculations that restoration was overdone and intended fertilizations are needed to ensure ecological functionality. Here we show that recent re-oligotrophication processes indeed accelerated, however caused by lake warming. Rising air temperatures strengthen thermal stabilization of water columns which prevents thorough turnover (holomixis). Reduced mixis impedes down-welling of oxygen rich epilimnetic (surface) and up-welling of phosphorus and nitrogen rich hypolimnetic (deep) water. However, nutrient inputs are essential for algal spring blooms acting as boost for annual food web successions. We show that repeated lack (since 1977) and complete stop (since 2013) of holomixis caused drastic epilimnetic phosphorus depletions and an absence of phytoplankton spring blooms in Lake Zurich (Switzerland). By simulating holomixis in experiments, we could induce significant vernal algal blooms, confirming that there would be sufficient hypolimnetic phosphorus which presently accumulates due to reduced export. Thus, intended fertilizations are highly questionable, as hypolimnetic nutrients will become available during future natural or artificial turnovers.

  6. THE OPTIMAL RATIO OF NILE TILAPIA (Oreochromis niloticus AND COMMON CARP (Cyprinus carpio FOR IMPROVING PRODUCTIVITY ON DEEP WATER POND

    Directory of Open Access Journals (Sweden)

    Imam Taufik

    2013-06-01

    Full Text Available Pond productivity can be increased by applied polyculture system in the deep pond. The purpose of this experiment is to examine the optimal ratio between nile tilapia and common carp, in order to increase the productivity. Nine concrete tanks (15 m2 with water depth of 2.2 m and were completed by water inlet, water outlet, and aeration. Both of nile tilapia and common carp with size ranging of 5-8 cm in total length were used. Stock density was 150 ind./m2. The difference ratio of both fish tilapia and carp of fish stocked as a treatment. The fish ratio this experiment were as followed: A 100%; B 80%:20%; C 60%:40%. Fish fed by pellet until at ad libitum. The duration of experiment was 100 days. Parameters such as survival, growth, and productivity were observed every ten days during the experiment period. Water quality parameters were also periodically observed. The results showed that survival of nile tilapia among the treatments were not significantly different (P>0.05 where survival of common carp at B treatment was better than C treatment (P<0.05. The highest of growth of absolute weight (94.86±2.85 g and total length (14.71±1 cm of nile tilapia at B treatment was found (P<0.05 where the best of growth of absolute weight (106.52±10.47 g and total length (11.57±1.78 cm of common carp was also found at B treatment (P<0.05. Biomass productivity at B treatment was the highest compared with A treatment (P<0.05. Combination between polyculture and the deep water pond technology could increase productivity. The polyculture system and the deep water pond technology would be able to keep constant water quality within in the threshold accordance with the regulation for fish culture.

  7. Biogeochemical Regeneration of a Nodule Mining Disturbance Site: Trace Metals, DOC and Amino Acids in Deep-Sea Sediments and Pore Waters

    Directory of Open Access Journals (Sweden)

    Sophie A. L. Paul

    2018-04-01

    Full Text Available Increasing interest in deep-sea mineral resources, such as polymetallic nodules, calls for environmental research about possible impacts of mineral exploitation on the deep-sea ecosystem. So far, little geochemical comparisons of deep-sea sediments before and after mining induced disturbances have been made, and thus long-term environmental effects of deep-sea mining are unknown. Here we present geochemical data from sediment cores from an experimental disturbance area at 4,100 m water depth in the Peru Basin. The site was revisited in 2015, 26 years after a disturbance experiment mimicking nodule mining was carried out and compared to sites outside the experimental zone which served as a pre-disturbance reference. We investigated if signs of the disturbance are still visible in the solid phase and the pore water after 26 years or if pre-disturbance conditions have been re-established. Additionally, a new disturbance was created during the cruise and sampled 5 weeks later to compare short- and longer-term impacts. The particulate fraction and pore water were analyzed for major and trace elements to study element distribution and processes in the surface sediment. Pore water and bottom water samples were also analyzed for oxygen, nitrate, dissolved organic carbon, and dissolved amino acids, to examine organic matter degradation processes. The study area of about 11 km2 was found to be naturally more heterogeneous than expected, requiring an analysis of spatial variability before the disturbed and undisturbed sites can be compared. The disturbed sites exhibit various disturbance features: some surface sediments were mixed through, others had the top layer removed and some had additional material deposited on top. Pore water constituents have largely regained pre-disturbance gradients after 26 years. The solid phase, however, shows clear differences between disturbed and undisturbed sites in the top 20 cm so that the impact is still visible in the

  8. The Sinking and Spreading of The Antarctic Deep Ice Shelf Water In The Ross Sea Studied By In Situ Observaions and Numerical Modeling

    Science.gov (United States)

    Rubino, A.; Budillon, G.; Pierini, S.; Spezie, G.

    The sinking and spreading of the Deep Ice Shelf Water (DISW) in the Ross Sea are analyzed using in situ observations and the results of a nonlinear, reduced-gravity, frontal layered numerical "plume" model which is able to simulate the motion of a bottom-arrested current over realistic topography. The model is forced by prescribing the thickness of the DISW vein as well as its density structure at the southern model boundary. The ambient temperature and salinity are imposed using hydrographic data acquired by the Italian PNRA-CLIMA project. In the model water of the quiescent ambient ocean is allowed to entrain in the active deep layer due to a simple param- eterization of turbulent mixing. The importance of forcing the model with a realistic ambient density is demonstrated by carrying out a numerical simulation in which the bottom active layer is forced using an idealized ambient density. In a more realis- tic simulation the path and the density structure of the DISW vein flowing over the Challenger Basin are obtained and are found to be in good agreement with data. The evolution of the deep current beyond the continental shelf is also simulated. It provides useful information on the water flow and mixing in a region of the Ross Sea where the paucity of experimental data does not allow for a detailed description of the deep ocean dynamics.

  9. Suspended sediment dynamics in a large-scale turbidity current: Direct measurements from the deep-water Congo Canyon

    Science.gov (United States)

    Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.

    2016-12-01

    Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.

  10. Relationship between water quality of deep-groundwater and geology in non-volcanic areas in Japan

    International Nuclear Information System (INIS)

    Oyama, Yoichi; Takahashi, Masaaki; Tsukamoto, Hitoshi; Kazahaya, Kohei; Yasuhara, Masaya; Takahashi, Hiroshi; Morikawa, Noritoshi; Ohwada, Michiko; Shibahara, Akihiko; Inamura, Akihiko

    2011-01-01

    Geochemical characteristics in groundwater such as groundwater chemistry and physicochemical parameters are affected by their source and the interaction with rocks and minerals. We observed the relationships between groundwater chemistry of the deep-groundwater and the geology in non-volcanic areas in Japan using about 9300 of deep-groundwater data. A Geographical Information System (GIS) was used to extract data in non-volcanic areas and numbers of water data are about 5200. The data were further classified into four types of geology (sedimentary rock, accretionary complex, volcanic rock and plutonic rock). The pH, temperature and major ion concentrations among deep-groundwaters in each geology have been statistically analysed. Result shows that the total cation concentration of deep-groundwaters are significantly different between geology, and the average values are decreased in the order of the sedimentary rock (66.7 meq l -1 ), volcanic rock (43.0 meq l -1 ), accretionary complex (24.6 meq l -1 ), and plutonic rock (11.0 meq l -1 ). The average pH does not show the major difference between geology whereas the highest average temperature is found in volcanic rock. In addition, the all four major cations (Na, K, Mg, and Ca) show the highest average concentrations in sedimentary rock, within the highest average concentrations of major anions for Cl, SO 4 , and HCO 3 are found in sedimentary rock, volcanic rock and accretionary complex, respectively, indicating the difference of the influence on the anions varied with geology. The distribution of deep-groundwater that are dominated by each major anions implied that SO 4 -type groundwater in volcanic rocks are formed by the influence of Neogene volcanic rock (Green tuff). In addition, HCO 3 -type groundwater in accretionary complex found from Kinki to Shikoku regions are formed by the addition of CO 2 gases supplying not only from surface soil and carbonate minerals but from deep underground. (author)

  11. First biological measurements of deep-sea corals from the Red Sea

    OpenAIRE

    C. Roder; M. L. Berumen; J. Bouwmeester; E. Papathanassiou; A. Al-Suwailem; C. R. Voolstra

    2013-01-01

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with ?deep-sea? and ?cold-water? corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20?C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the ...

  12. How well Can We Classify SWOT-derived Water Surface Profiles?

    Science.gov (United States)

    Frasson, R. P. M.; Wei, R.; Picamilh, C.; Durand, M. T.

    2015-12-01

    The upcoming Surface Water Ocean Topography (SWOT) mission will detect water bodies and measure water surface elevation throughout the globe. Within its continental high resolution mask, SWOT is expected to deliver measurements of river width, water elevation and slope of rivers wider than ~50 m. The definition of river reaches is an integral step of the computation of discharge based on SWOT's observables. As poorly defined reaches can negatively affect the accuracy of discharge estimations, we seek strategies to break up rivers into physically meaningful sections. In the present work, we investigate how accurately we can classify water surface profiles based on simulated SWOT observations. We assume that most river sections can be classified as either M1 (mild slope, with depth larger than the normal depth), or A1 (adverse slope with depth larger than the critical depth). This assumption allows the classification to be based solely on the second derivative of water surface profiles, with convex profiles being classified as A1 and concave profiles as M1. We consider a HEC-RAS model of the Sacramento River as a representation of the true state of the river. We employ the SWOT instrument simulator to generate a synthetic pass of the river, which includes our best estimates of height measurement noise and geolocation errors. We process the resulting point cloud of water surface heights with the RiverObs package, which delineates the river center line and draws the water surface profile. Next, we identify inflection points in the water surface profile and classify the sections between the inflection points. Finally, we compare our limited classification of simulated SWOT-derived water surface profile to the "exact" classification of the modeled Sacramento River. With this exercise, we expect to determine if SWOT observations can be used to find inflection points in water surface profiles, which would bring knowledge of flow regimes into the definition of river reaches.

  13. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    NARCIS (Netherlands)

    Soetaert, K.; Mohn, C.; Rengstorf, A.; Grehan, A.; Van Oevelen, D.

    2016-01-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces

  14. A new cytotoxic sterol methoxymethyl ether from a deep water marine sponge Scleritoderma sp. cf. paccardi.

    Science.gov (United States)

    Gunasekera, S P; Kelly-Borges, M; Longley, R E

    1996-02-01

    24(R)-Methyl-5 alpha-cholest-7-enyl 3 beta-methoxymethyl ether (1), a new sterol ether, has been isolated from a deep-water marine sponge Scleritoderma sp. cf. paccardi. Compound 1 exhibited in vitro cytotoxicity against the cultured murine P-388 tumor cell line with an IC50 of 2.3 micrograms/mL. The isolation and structure elucidation of 1 by NMR spectroscopy is described.

  15. Isometachromin, a new cytotoxic sesquiterpenoid from a deep water sponge of the family Spongiidae.

    Science.gov (United States)

    McConnell, O J; Longley, R; Gunasekera, M

    1992-09-15

    Isometachromin (1), a new sesquiterpene-quinone that is related structurally to metachromin C (2), and the known compounds ilimaquinone (3) and 5-epi-ilimaquinone (4), were isolated from a deep water sponge in the family Spongiidae; the structure of isometachromin was elucidated by spectral methods. Isometachromin exhibits in vitro cytotoxicity against the human lung cancer cell line A549 (IC50 = 2.6 micrograms/ml), but not against P388 murine leukemia (IC 50 > or equal to 10 micrograms/ml) and also exhibits antimicrobial activity.

  16. California's Central Valley Groundwater Study: A Powerful New Tool to Assess Water Resources in California's Central Valley

    Science.gov (United States)

    Faunt, Claudia C.; Hanson, Randall T.; Belitz, Kenneth; Rogers, Laurel

    2009-01-01

    Competition for water resources is growing throughout California, particularly in the Central Valley. Since 1980, the Central Valley's population has nearly doubled to 3.8 million people. It is expected to increase to 6 million by 2020. Statewide population growth, anticipated reductions in Colorado River water deliveries, drought, and the ecological crisis in the Sacramento-San Joaquin Delta have created an intense demand for water. Tools and information can be used to help manage the Central Valley aquifer system, an important State and national resource.

  17. Deep freezers with heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, J.

    1981-09-02

    Together with space and water heating systems, deep freezers are the biggest energy consumers in households. The article investigates the possibility of using the waste heat for water heating. The design principle of such a system is presented in a wiring diagram.

  18. Tuning the light in senior care: Evaluating a trial LED lighting system at the ACC Care Center in Sacramento, CA

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Robert G.; Wilkerson, Andrea M.; Samla, Connie; Bisbee, Dave

    2016-08-31

    This report summarizes the results from a trial installation of light-emitting diode (LED) lighting systems in several spaces within the ACC Care Center in Sacramento, CA. The Sacramento Municipal Utility District (SMUD) coordinated the project and invited the U.S. Department of Energy (DOE) to document the performance of the LED lighting systems as part of a GATEWAY evaluation. DOE tasked the Pacific Northwest National Laboratory (PNNL) to conduct the investigation. SMUD and ACC staff coordinated and completed the design and installation of the LED systems, while PNNL and SMUD staff evaluated the photometric performance of the systems. ACC staff also track behavioral and health measures of the residents; some of those results are reported here, although PNNL staff were not directly involved in collecting or interpreting those data. The trial installation took place in a double resident room and a single resident room, and the corridor that connects those (and other) rooms to the central nurse station. Other spaces in the trial included the nurse station, a common room called the family room located near the nurse station, and the ACC administrator’s private office.

  19. Cold-water coral reefs and adjacent sponge grounds: Hotspots of benthic respiration and organic carbon cycling in the deep sea

    Directory of Open Access Journals (Sweden)

    Cecile eCathalot

    2015-06-01

    Full Text Available Cold-water coral reefs and adjacent sponge grounds are distributed widely in the deep ocean, where only a small fraction of the surface productivity reaches the seafloor as detritus. It remains elusive how these hotspots of biodiversity can thrive in such a food-limited environment, as data on energy flow and organic carbon utilization are critically lacking. Here we report in situ community respiration rates for cold-water coral and sponge ecosystems obtained by the non-invasive aquatic Eddy Correlation technique. Oxygen uptake rates over coral reefs and adjacent sponge grounds in the Træna Coral Field (Norway were 9-20 times higher than those of the surrounding soft sediments. These high respiration rates indicate strong organic matter consumption, and hence suggest a local focusing onto these ecosystems of the downward flux of organic matter that is exported from the surface ocean. Overall, our results show that coral reefs and adjacent sponge grounds are hotspots of carbon processing in the food-limited deep ocean, and that these deep-sea ecosystems play a more prominent role in marine biogeochemical cycles than previously recognized.

  20. EMG activity of hip and trunk muscles during deep-water running.

    Science.gov (United States)

    Kaneda, Koichi; Sato, Daisuke; Wakabayashi, Hitoshi; Nomura, Takeo

    2009-12-01

    The present study used synchronized motion analysis to investigate the activity of hip and trunk muscles during deep-water running (DWR) relative to land walking (LW) and water walking (WW). Nine healthy men performed each exercise at self-determined slow, moderate, and fast paces, and surface electromyography was used to investigate activity of the adductor longus, gluteus maxima, gluteus medius, rectus abdominis, oblique externus abdominis, and erector spinae. The following kinematic parameters were calculated: the duration of one cycle, range of motion (ROM) of the hip joint, and absolute angles of the pelvis and trunk with respect to the vertical axis in the sagittal plane. The percentages of maximal voluntary contraction (%MVC) of each muscle were higher during DWR than during LW and WW. The %MVC of the erector spinae during WW increased concomitant with the pace increment. The hip joint ROMs were larger in DWR than in LW and WW. Forward inclinations of the trunk were apparent for DWR and fast-paced WW. The pelvis was inclined forward in DWR and WW. In conclusion, the higher-level activities during DWR are affected by greater hip joint motion and body inclinations with an unstable floating situation.

  1. Effects of Deep Water Source-Sink Terms in 3rd generation Wave Model SWAN using different wind data in Black Sea

    Science.gov (United States)

    Kirezci, Cagil; Ozyurt Tarakcioglu, Gulizar

    2016-04-01

    Coastal development in Black Sea has increased in recent years. Therefore, careful monitoring of the storms and verification of numerical tools with reliable data has become important. Previous studies by Kirezci and Ozyurt (2015) investigated extreme events in Black Sea using different wind datasets (NCEP's CFSR and ECMWF's operational datasets) and different numerical tools (SWAN and Wavewatch III). These studies showed that significant effect to results is caused by the deep water source-sink terms (wave growth by wind, deep water dissipation of wave energy (whitecapping) and deep water non-linear wave-wave interactions). According to Timmermans(2015), uncertainty about wind forcing and the process of nonlinear wave-wave interactions are found to be dominant in numerical wave modelling. Therefore, in this study deep water source and sink term solution approaches of 3rd generation numerical tool (SWAN model) are tested, validated and compared using the selected extreme storms in Black Sea. 45 different storms and storm like events observed in Black Sea between years 1994-1999 are selected to use in the models. The storm selection depends on the instrumental wave data (significant wave heights, mean wave period and mean wave direction) obtained in NATO-TU Waves project by the deep water buoy measurements at Hopa, Sinop, Gelendzhik, and wind data (mean and peak wind speeds, storm durations) of the regarding events. 2 different wave growth by wind with the corresponding deep water dissipation terms and 3 different wave -wave interaction terms of SWAN model are used in this study. Wave growth by wind consist of two parts, linear growth which is explained by Cavaleri and Malanotte-Rizzoli(1981),and dominant exponential growth. There are two methods in SWAN model for exponential growth of wave, first one by Snyder et al. (1981), rescaled in terms of friction velocity by Komen et. al (1984) which is derived using driving wind speed at 10m elevation with related drag

  2. Long-Term Monitoring of Dolphin Biosonar Activity in Deep Pelagic Waters of the Mediterranean Sea.

    Science.gov (United States)

    Caruso, Francesco; Alonge, Giuseppe; Bellia, Giorgio; De Domenico, Emilio; Grammauta, Rosario; Larosa, Giuseppina; Mazzola, Salvatore; Riccobene, Giorgio; Pavan, Gianni; Papale, Elena; Pellegrino, Carmelo; Pulvirenti, Sara; Sciacca, Virginia; Simeone, Francesco; Speziale, Fabrizio; Viola, Salvatore; Buscaino, Giuseppa

    2017-06-28

    Dolphins emit short ultrasonic pulses (clicks) to acquire information about the surrounding environment, prey and habitat features. We investigated Delphinidae activity over multiple temporal scales through the detection of their echolocation clicks, using long-term Passive Acoustic Monitoring (PAM). The Istituto Nazionale di Fisica Nucleare operates multidisciplinary seafloor observatories in a deep area of the Central Mediterranean Sea. The Ocean noise Detection Experiment collected data offshore the Gulf of Catania from January 2005 to November 2006, allowing the study of temporal patterns of dolphin activity in this deep pelagic zone for the first time. Nearly 5,500 five-minute recordings acquired over two years were examined using spectrogram analysis and through development and testing of an automatic detection algorithm. Echolocation activity of dolphins was mostly confined to nighttime and crepuscular hours, in contrast with communicative signals (whistles). Seasonal variation, with a peak number of clicks in August, was also evident, but no effect of lunar cycle was observed. Temporal trends in echolocation corresponded to environmental and trophic variability known in the deep pelagic waters of the Ionian Sea. Long-term PAM and the continued development of automatic analysis techniques are essential to advancing the study of pelagic marine mammal distribution and behaviour patterns.

  3. Elephant overflows: Multi-annual variability in Weddell Sea Deep Water driven by surface forcing

    Science.gov (United States)

    Meijers, Andrew; Meredith, Michael; Abrahamsen, Povl; Naviera-Garabato, Alberto; Ángel Morales Maqueda, Miguel; Polzin, Kurt

    2015-04-01

    The volume of the deepest and densest water mass in Drake Passage, Lower Weddell Sea Deep Water (LWSDW), is shown to have been decreasing over the last 20 years of observations, with an associated reduction in density driven by freshening. Superimposed on this long term trend is a multi-annual oscillation with a period of 3-5 years. This variability only appears in Drake Passage; observations in the east of the Scotia Sea show a similar long term trend, but with no apparent multi-annual variability. Clues as to the source of this variability may be found on the continental slope at approximately 1000 m immediately north of Elephant Island on the northern tip of the Antarctic Peninsula. Here there is an intermittent westward flowing cold/fresh slope current whose volume and properties are strongly correlated with the LWSDW multi-annual variability, although leading the LWSDW by around one year. As the slope current and LWSDW are separated from each other both geographically and in water mass characteristics, their co-variability implies that they are responding to a common forcing, while the lag between deep LWSDW and shallow slope current provides information on the timescale of this response. A newly available high resolution temperature and salinity multi-year time series from the Elephant Island slope at 1000 m is compared with reanalysis and model derived surface fluxes, sea ice extent and wind stress. We find that there are strong positive relationships between the surface wind stress and heat flux over the shelf at the tip of the Antarctic Peninsula and the properties of the slope current at 1000 m on seasonal to annual timescales. We use tracer release experiments in the Southern Ocean State Estimate (SOSE) model to investigate the lag between the slope current and LWSDW timeseries and hypothesise that the observed multi-annual variability in both water masses is driven by surface forcing over the shelf and the overflow of modified water from the slope in

  4. Original deep convection in the atmosphere of Mars driven by the radiative impact of dust and water-ice particles

    Science.gov (United States)

    Spiga, A.; Madeleine, J. B.; Hinson, D.; Millour, E.; Forget, F.; Navarro, T.; Määttänen, A.; Montmessin, F.

    2017-09-01

    We unveil two examples of deep convection on Mars - in dust storms and water-ice clouds - to demonstrate that the radiative effect of aerosols and clouds can lead to powerful convective motions just as much as the release of latent heat in moist convection

  5. Pre-cementation of deep shaft

    Science.gov (United States)

    Heinz, W. F.

    1988-12-01

    Pre-cementation or pre-grouting of deep shafts in South Africa is an established technique to improve safety and reduce water ingress during shaft sinking. The recent completion of several pre-cementation projects for shafts deeper than 1000m has once again highlighted the effectiveness of pre-grouting of shafts utilizing deep slimline boreholes and incorporating wireline technique for drilling and conventional deep borehole grouting techniques for pre-cementation. Pre-cementation of deep shaft will: (i) Increase the safety of shaft sinking operation (ii) Minimize water and gas inflow during shaft sinking (iii) Minimize the time lost due to additional grouting operations during sinking of the shaft and hence minimize costly delays and standing time of shaft sinking crews and equipment. (iv) Provide detailed information of the geology of the proposed shaft site. Informations on anomalies, dykes, faults as well as reef (gold bearing conglomerates) intersections can be obtained from the evaluation of cores of the pre-cementation boreholes. (v) Provide improved rock strength for excavations in the immediate vicinity of the shaft area. The paper describes pre-cementation techniques recently applied successfully from surface and some conclusions drawn for further considerations.

  6. Draft genome of bagasse-degrading bacteria Bacillus aryabhattai GZ03 from deep sea water.

    Science.gov (United States)

    Wen, Jian; Ren, Chong; Huang, Nan; Liu, Yang; Zeng, Runying

    2015-02-01

    Bacillus aryabhattai GZ03 was isolated from deep sea water of the South China Sea, which can produce glucose and fructose by degrading bagasse at 25 °C. Here we report the draft genome sequence of Bacillus aryabhattai GZ03. The data obtained revealed 37 contigs with genome size of 5,105,129 bp and G+C content of 38.09%. The draft genome of B. aryabhattai GZ03 may provide insights into the mechanism of microbial carbohydrate and lignocellulosic material degradation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Water Impingement Erosion of Deep-Rolled Ti64

    Directory of Open Access Journals (Sweden)

    Dina Ma

    2015-08-01

    Full Text Available In this work, the Liquid Impingement Erosion (LIE performances of deep-rolling (DR treated and non-treated Ti64 were investigated. Various erosion stages, from the incubation to the terminal erosion stages, could be observed. A full factorial design of experiments was used to study the effect of DR process parameters (Feed Rate, Spindle Velocity, Number of Passes, Pressure on the residual stress distribution, microhardness and surface roughness of the treated Ti64 specimens. The DR-treated Ti64 specimens exhibited improved surface microhardness, surface roughness, and large magnitude of compressive residual stresses, which were attributed to the amount of cold work induced by the DR process. Although DR improved the mechanical properties of the Ti64, the results showed that the treatment has little or no effect on the LIE performance of Ti64 but different damage modes were observed in these two cases. Evolution of the erosion stages was described based on water-hammer pressure, stress waves, radial wall jetting, and hydraulic penetration modes. The initial erosion stages were mainly influenced by water-hammer pressure and stress waves, whereas the intermediate erosion stages were influenced by the combination of the four modes together. The final erosion stages contain the four modes, however the erosion was greatly driven by the radial jetting and hydraulic penetration modes, where more material was removed. The failure mechanism of the final stages of the LIE test of both DR-treated and non-treated Ti64 was characterized as fatigue fracture. However, a brittle fracture behavior was observed in the initial and intermediate erosion stages of the DR-treated Ti64, whereas a ductile fracture behavior was observed in the non-treated Ti64. This was concluded from the micrographs of the LIE damage through different erosion stages.

  8. Chronicles of the deep : ageing deep-sea corals in New Zealand waters

    International Nuclear Information System (INIS)

    Tracey, D.; Neil, H.; Gordon, D.; O'Shea, S.

    2003-01-01

    How old is a coral? Finding the answer requires some rather complex steps. We need to understand: the source of carbonate; the effects of climatic events; how to interpret growth zones; the effect of 14 C and biological processes such as feeding and reproduction; and how to overcome the lack of deep-sea environmental data records. We also need to find out where on the coral we should be sampling to get the best estimates of age. At the moment we know little about how deep-sea corals deposit their calcite, but we will be exploring this further so that we can have greater confidence in our age estimates. To confirm and validate age and growth, it will be necessary to use a combination of some of the the possible methods for ageing coral. In addition to ageing the corals, this work should yield a high-resolution record of ocean temperature during the past 100 years by using stable-isotope signatures preserved in the corals' carbonate skeletons. (author). 4 figs

  9. Ontogenetic behavior and dispersal of Sacramento River white sturgeon, Acipenser transmontanus, with a note on body color

    Science.gov (United States)

    Kynard, B.; Parker, E.

    2005-01-01

    We studied Sacramento River white sturgeon, Acipenser transmontanus, in the laboratory to develop a conceptual model of ontogenetic behavior and provide insight into probable behavior of wild sturgeon. After hatching, free embryos initiated a low intensity, brief downstream dispersal during which fish swam near the bottom and were photonegative. The weak, short dispersal style and behavior of white sturgeon free embryos contrasts greatly with the intense, long dispersal style and behavior (photopositive and swimming far above the bottom) of dispersing free embryos of other sturgeon species. If spawned eggs are concentrated within a few kilometers downstream of a spawning site, the adaptive significance of the free embryo dispersal is likely to move fish away from the egg deposition site to avoid predation and reduce fish density prior to feeding. Larvae foraged on the open bottom, swam innate fish dispersal and post-dispersal rearing habitat, which is now highly altered by damming and reservoirs. Sacramento River white sturgeon has a two-step downstream dispersal by the free embryo and juvenile life intervals. Diel activity of all life intervals peaked at night, whether fish were dispersing or foraging. Nocturnal behavior is likely a response to predation, which occurs during both activities. An intense black-tail body color was present on foraging larvae, but was weak or absent on the two life intervals that disperse. Black-tail color may be an adaptation for avoiding predation, signaling among aggregated larvae, or both, but not for dispersal. ?? Springer 2005.

  10. GATEWAY Demonstrations: Tuning the Light in Senior Care: Evaluating a Trial LED Lighting System at the ACC Care Center in Sacramento, CA

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilkerson, Andrea M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Samla, Connie [Sacramento Municipal Utility District, Sacramento, CA (United States); Bisbee, Dave [Sacramento Municipal Utility District, Sacramento, CA (United States)

    2016-08-31

    The GATEWAY program documented the performance of tunable-white LED lighting systems installed in several spaces within the ACC Care Center, a senior-care facility in Sacramento, CA. The project results included energy savings and improved lighting quality, as well as other possible health-related benefits that may have been attributable, at least in part, to the lighting changes.

  11. Climate, carbon cycling, and deep-ocean ecosystems.

    Science.gov (United States)

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S

    2009-11-17

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  12. Discorhabdins S, T, and U, new cytotoxic pyrroloiminoquinones from a deep-water Caribbean sponge of the genus Batzella.

    Science.gov (United States)

    Gunasekera, Sarath P; Zuleta, Ignacio A; Longley, Ross E; Wright, Amy E; Pomponi, Shirley A

    2003-12-01

    Discorhabdins S, T, and U (1-3), three new discorhabdin analogues, have been isolated from a deep-water marine sponge of the genus Batzella. These discorhabdin analogues showed in vitro cytotoxicity against PANC-1, P-388, and A-549 cell lines. The isolation and structure elucidation of discorhabdins S, T, and U are described.

  13. Prokaryotic degradation of high molecular weight dissolved organic matter in the deep-sea waters of NW Mediterranean Sea under in situ temperature and pressure conditions during contrasted hydrological conditions

    Science.gov (United States)

    Tamburini, C.; Boutrif, M.; Garel, M.; Sempéré, R.; Repeta, D.; Charriere, B.; Nerini, D.; Panagiotopoulos, C.

    2016-02-01

    The contribution of the semi-labile dissolved organic carbon (DOC) to the global prokaryotic production has been assessed in very few previous studies. Some experiments show rapid utilization of semi-reactive DOC by prokaryotes, while other experiments show almost no utilization at all. However, all these studies did not take into account the role of hydrostatic pressure for the degradation of organic matter. In this study, we investigate (1) the degradation of "natural" high molecular weight DOM HMW-DOM (obtained after ultrafiltration) and (2) the uptake of labeled extracellular polymeric substances (3H-EPS) incubated with deep-sea water samples (2000 m-depth, NW Mediterranean Sea) under in situ pressure conditions (HP) and under atmospheric compression after decompression of the deep samples (ATM) during stratified and mixed water conditions (deep sea convection). Our results indicated that during HP incubations DOC exhibited the highest degradation rates (kHP DOC = 0.82 d-1) compared to the ATM conditions were no or few degradation was observed (kATM DOC= 0.007 d-1). An opposite trend was observed for the HP incubations from mixed deep water masses. HP incubation measurements displayed the lowest DOC degradation (kHP DOC=0.031 d-1) compared to the ATM conditions (kATM DOC=0.62 d-1). These results imply the presence of allochthonous prokaryotic cells in deep-sea samples after a winter water mass convection. Same trends were found using 3H-EPS uptake rates which were higher at HP than at ATM conditions during stratified period conditions whereas the opposite patterns were observed during deep-sea convection event. Moreover, we found than Euryarchaea were the main contributors to 3H-EPS assimilation at 2000m-depth, representing 58% of the total cells actively assimilating 3H-EPS. This study demonstrates that remineralization rates of semi-labile DOC in deep NW Med. Sea are controlled by the prokaryotic communities, which are influenced by the hydrological

  14. High School Graduate Participation Rates: Proportions of Sacramento Area High School Graduates Enrolled in Los Rios Community College District, Fall 1998-Fall 1994.

    Science.gov (United States)

    Los Rios Community Coll. District, Sacramento, CA. Office of Planning and Research.

    This report profiles the enrollment patterns of recent high school graduates of the Greater Sacramento Metropolitan Area who attend Los Rios colleges (California). This summary and the full data report provide the District and its colleges with research information on rates of participation by students who graduated from Los Rios Community College…

  15. Anti-infective Discorhabdins from a Deep-Water Alaskan Sponge of the Genus Latrunculia†

    Science.gov (United States)

    Na, MinKyun; Ding, Yuanqing; Wang, Bin; Tekwani, Babu L.; Schinazi, Raymond F.; Franzblau, Scott; Kelly, Michelle; Stone, Robert; Li, Xing-Cong; Ferreira, Daneel; Hamann, Mark T.

    2016-01-01

    Bioassay- and LC-MS-guided fractionation of a methanol extract from a new deep-water Alaskan sponge species of the genus Latrunculia resulted in the isolation of two new brominated pyrroloiminoquinones, dihydrodiscorhabdin B (1) and discorhabdin Y (2), along with six known pyrroloiminoquinone alkaloids, discorhabdins A (3), C (4), E (5), and L (6), dihydrodiscorhabdin C (7), and the benzene derivative 8. Compounds 3, 4, and 7 exhibited anti-HCV activity, antimalarial activity, and selective antimicrobial activity. Although compounds 3 and 7 displayed potent and selective in vitro antiprotozoal activity, Plasmodium berghei-infected mice did not respond to these metabolites due to their toxicity in vivo. PMID:20337497

  16. Anti-infective discorhabdins from a deep-water alaskan sponge of the genus Latrunculia.

    Science.gov (United States)

    Na, Minkyun; Ding, Yuanqing; Wang, Bin; Tekwani, Babu L; Schinazi, Raymond F; Franzblau, Scott; Kelly, Michelle; Stone, Robert; Li, Xing-Cong; Ferreira, Daneel; Hamann, Mark T

    2010-03-26

    Bioassay- and LC-MS-guided fractionation of a methanol extract from a new deep-water Alaskan sponge species of the genus Latrunculia resulted in the isolation of two new brominated pyrroloiminoquinones, dihydrodiscorhabdin B and discorhabdin Y (2), along with six known pyrroloiminoquinone alkaloids, discorhabdins A (3), C (4), E (5), and L (6), dihydrodiscorhabdin C (7), and the benzene derivative 8. Compounds 3, 4, and 7 exhibited anti-HCV activity, antimalarial activity, and selective antimicrobial activity. Although compounds 3 and 7 displayed potent and selective in vitro antiprotozoal activity, Plasmodium berghei-infected mice did not respond to these metabolites due to their toxicity in vivo.

  17. Differential changes in production measures for an estuarine-resident sparid in deep and shallow waters following increases in hypoxia

    Science.gov (United States)

    Cottingham, Alan; Hall, Norman G.; Hesp, S. Alex; Potter, Ian C.

    2018-03-01

    This study determined how productivity measures for a fish species in different water depths of an estuary changed in response to the increase in hypoxia in deep waters, which had previously been shown to occur between 1993-95 and 2007-11. Annual data on length and age compositions, body mass, growth, abundance, biomass, production and production to biomass ratio (P/B) were thus determined for the estuarine-resident Acanthopagrus butcheri in nearshore shallow (compositions imply that the increase in hypoxia was accompanied by the distribution of the majority of the older and larger A. butcheri changing from deep to shallow waters, where the small fish typically reside. Annual densities, biomass and production in shallow waters of fish m-2, 2-4 g m-2 and ∼2 g m-2 y-1 in the earlier period were far lower than the 0.1-0.2 fish m-2, 8-15 g m-2 and 5-10 g m-2 y-1 in the later period, whereas the reverse trend occurred in deep waters, with values of 6-9 fish net-1, 2000-3900 g net-1, 900-1700 g net-1 y-1 in the earlier period vs fish net-1, ∼110 g net-1 and 27-45 g net-1 y-1 in the later period. Within the later period, and in contrast to the trends with annual abundance and biomass, the production in shallow waters was least during 2008/09, rather than greatest, reflecting the slow growth in that particularly cool year. The presence of substantial aggregations of both small and large fish in shallow waters accounts for the abundance, biomass and production in those waters increasing between those periods and thus, through a density-dependent effect, provide a basis for the overall reduction in growth. In marked contrast to the trends with the other three production measures, annual production to biomass ratios (P/B) in shallow waters in the two years in the earlier period, and in three of the four years of the later period, fell within the same range, i.e. 0.6-0.9 y-1, but was only 0.2 y-1 in 2008/09, reflecting the poor growth in that year. This emphasises the need

  18. Priapulus from the deep sea (Vermes, Priapulida)

    NARCIS (Netherlands)

    Land, van der J.

    1972-01-01

    INTRODUCTION The species of the genus Priapulus occur in rather cold water. Hence, their shallow-water distribution is restricted to northern and southern waters (fig. 1); there are only a few isolated records from sub-tropical localities. However, in deep water the genus apparently has a world-wide

  19. Nitrate Contamination of Deep Aquifers in the Salinas Valley, California

    Science.gov (United States)

    Moran, J. E.; Esser, B. K.; Hillegonds, D. J.; Holtz, M.; Roberts, S. K.; Singleton, M. J.; Visser, A.; Kulongoski, J. T.; Belitz, K.

    2011-12-01

    The Salinas Valley, known as 'the salad bowl of the world', has been an agricultural center for more than 100 years. Irrigated row crops such as lettuce and strawberries dominate both land use and water use. Groundwater is the exclusive supply for both irrigation and drinking water. Some irrigation wells and most public water supply wells in the Salinas Valley are constructed to draw water from deep portions of the aquifer system, where contamination by nitrate is less likely than in the shallow portions of the aquifer system. However, a number of wells with top perforations greater than 75 m deep, screened below confining or semi-confining units, have nitrate concentrations greater than the Maximum Contaminant Limit (MCL) of 45 mg/L as NO3-. This study uses nitrate concentrations from several hundred irrigation, drinking water, and monitoring wells (Monterey County Water Resources Agency, 1997), along with tritium-helium groundwater ages acquired at Lawrence Livermore National Laboratory through the State of California Groundwater Monitoring and Assessment (GAMA) program (reported in Kulongoski et al., 2007 and in Moran et al., in press), to identify nitrate 'hot spots' in the deep aquifer and to examine possible modes of nitrate transport to the deep aquifer. In addition, observed apparent groundwater ages are compared with the results of transport simulations that use particle tracking and a stochastic-geostatistical framework to incorporate aquifer heterogeneity to determine the distribution of travel times from the water table to each well (Fogg et al., 1999). The combined evidence from nitrate, tritium, tritiogenic 3He, and radiogenic 4He concentrations, reveals complex recharge and flow to the capture zone of the deep drinking water wells. Widespread groundwater pumping for irrigation accelerates vertical groundwater flow such that high nitrate groundwater reaches some deep drinking water wells. Deeper portions of the wells often draw in water that recharged

  20. Spitzer Observations of Comet 9P/Tempel 1 During Deep Impact : Water and Dust Production and Spatial Distribution

    Science.gov (United States)

    Gicquel, Adeline; Bockelée-Morvan, D.; Kelley, M. S.; Woodward, C. E.

    2009-09-01

    The Deep Impact (DI) spacecraft encountered comet 9P/Tempel 1 on July 4th, 2005 (rh = 1.506 AU). Spectral maps covering 20'' x 67'' (1.85''/pixel) were acquired with the IRS instrument on the Spitzer Space Telescope (ΔSpitzer = 0.72 AU) at different times around the Deep Impact event: twice before impact (TI-41.3hrs and TI-22.9hrs) and twelve times after impact (between TI+0.67hrs and TI+1027hrs). These IRS observations (Lisse et al 2006, Sciences 313, 635) were taken from the Spitzer data archive. We present the interpretation of 5.2-7.6 µm spectra obtained in the second order of the short-wavelength module (SL2). To reduce the contribution of artifacts in the spectra, 5x5 pixel extraction apertures (9.25''x9.25'') were used. On the first stage we studied the water ν2 vibrational band emission at 6.4µm, which is present in most spectra. The water production rate before impact is deduced ( 4.25e27 molecules/sec). In order to study both the amount and origin of the water molecules released after impact, we used extractions centered on the nucleus and along the length of the slit. We analyzed the spatial distribution of water and its time evolution with a time-dependent model which describes the evolution of the water cloud after impact. The underlying continuum in the spectra provides information on the evolution and color temperature of the dust ejecta. The dust mass and dust/gas ratio in the ejecta cloud are derived and compared with other values published in the literature.

  1. Deep-sea ciliates: Recorded diversity and experimental studies on pressure tolerance

    Science.gov (United States)

    Schoenle, Alexandra; Nitsche, Frank; Werner, Jennifer; Arndt, Hartmut

    2017-10-01

    Microbial eukaryotes play an important role in biogeochemical cycles not only in productive surface waters but also in the deep sea. Recent studies based on metagenomics report deep-sea protistan assemblages totally different from continental slopes and shelf waters. To give an overview about the ciliate fauna recorded from the deep sea we summarized the available information on ciliate occurrence in the deep sea. Our literature review revealed that representatives of the major phylogenetic groups of ciliates were recorded from the deep sea (> 1000 m depth): Karyorelictea, Heterotrichea, Spirotrichea (Protohypotrichia, Euplotia, Oligotrichia, Choreotrichia, Hypotrichia), Armophorea (Armophorida), Litostomatea (Haptoria), Conthreep (Phyllopharyngea incl. Cyrtophoria, Chonotrichia, Suctoria; Nassophorea incl. Microthoracida, Synhymeniida, Nassulida; Colpodea incl. Bursariomorphida, Cyrtolophosidida; Prostomatea; Plagiopylea incl. Plagiopylida, Odontostomatida; Oligohymenophorea incl. Peniculia, Scuticociliatia, Hymenostomatia, Apostomatia, Peritrichia, Astomatia). Species occurring in both habitats, deep sea and shallow water, are rarely found to our knowledge to date. This indicates a high deep-sea specific ciliate fauna. Our own studies of similar genotypes (SSU rDNA and cox1 gene) revealed that two small scuticociliate species (Pseudocohnilembus persalinus and Uronema sp.) could be isolated from surface as well as deep waters (2687 m, 5276 m, 5719 m) of the Pacific. The adaptation to deep-sea conditions was investigated by exposing the ciliate isolates directly or stepwise to different hydrostatic pressures ranging from 1 to 550 atm at temperatures of 2 °C and 13 °C. Although the results indicated no general barophilic behavior, all four isolated strains survived the highest established pressure. A better survival at 550 atm could be observed for the lower temperature. Among microbial eukaryotes, ciliates should be considered as a diverse and potentially

  2. Puupehenol, a potent antioxidant antimicrobial meroterpenoid from a Hawaiian deep-water Dactylospongia sp. sponge.

    Science.gov (United States)

    Hagiwara, Kehau; Garcia Hernandez, Jaaziel E; Harper, Mary Kay; Carroll, Anthony; Motti, Cherie A; Awaya, Jonathan; Nguyen, Hoang-Yen; Wright, Anthony D

    2015-02-27

    From the organic extract of a deep-water Hawaiian sponge Dactylospongia sp., a new potent antioxidant and antimicrobial meroterpenoid, puupehenol (1), was isolated. The structure of 1 was determined using spectroscopic techniques ((1)H and (13)C NMR, MS, IR, UV, [α]D). The known compound puupehenone (2) was also isolated and suggested as a probable artifact of the isolation procedures. Complete unambiguous (1)H and (13)C NMR data are provided for compounds 1 and 2. Bioassays performed with 1 and 2 showed them both to be very effective antioxidants and to have antimicrobial properties.

  3. On the interaction of deep water waves and exponential shear currents

    Science.gov (United States)

    Cheng, Jun; Cang, Jie; Liao, Shi-Jun

    2009-05-01

    A train of periodic deep-water waves propagating on a steady shear current with a vertical distribution of vorticity is investigated by an analytic method, namely the homotopy analysis method (HAM). The magnitude of the vorticity varies exponentially with the magnitude of the stream function, while remaining constant on a particular streamline. The so-called Dubreil-Jacotin transformation is used to transfer the original exponentially nonlinear boundary-value problem in an unknown domain into an algebraically nonlinear boundary-value problem in a known domain. Convergent series solutions are obtained not only for small amplitude water waves on a weak current but also for large amplitude waves on a strong current. The nonlinear wave-current interaction is studied in detail. It is found that an aiding shear current tends to enlarge the wave phase speed, sharpen the wave crest, but shorten the maximum wave height, while an opposing shear current has the opposite effect. Besides, the amplitude of waves and fluid velocity decay over the depth more quickly on an aiding shear current but more slowly on an opposing shear current than that of waves on still water. Furthermore, it is found that Stokes criteria of wave breaking is still valid for waves on a shear current: a train of propagating waves on a shear current breaks as the fiuid velocity at crest equals the wave phase speed. Especially, it is found that the highest waves on an opposing shear current are even higher and steeper than that of waves on still water. Mathematically, this analytic method is rather general in principle and can be employed to solve many types of nonlinear partial differential equations with variable coefficients in science, finance and engineering.

  4. An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column

    KAUST Repository

    Scoma, Alberto

    2016-08-12

    Alcanivorax borkumensis is an ubiquitous model organism for hydrocarbonoclastic bacteria, which dominates polluted surface waters. Its negligible presence in oil-contaminated deep waters (as observed during the Deepwater Horizon accident) raises the hypothesis that it may lack adaptive mechanisms to hydrostatic pressure (HP). The type strain SK2 was tested under 0.1, 5 and 10 MPa (corresponding to surface water, 500 and 1000 m depth, respectively). While 5 MPa essentially inactivated SK2, further increase to 10 MPa triggered some resistance mechanism, as indicated by higher total and intact cell numbers. Under 10 MPa, SK2 upregulated the synthetic pathway of the osmolyte ectoine, whose concentration increased from 0.45 to 4.71 fmoles cell-1. Central biosynthetic pathways such as cell replication, glyoxylate and Krebs cycles, amino acids metabolism and fatty acids biosynthesis, but not β-oxidation, were upregulated or unaffected at 10 MPa, although total cell number was remarkably lower with respect to 0.1 MPa. Concomitantly, expression of more than 50% of SK2 genes was downregulated, including genes related to ATP generation, respiration and protein translation. Thus, A. borkumensis lacks proper adaptation to HP but activates resistance mechanisms. These consist in poorly efficient biosynthetic rather than energy-yielding degradation-related pathways, and suggest that HP does represent a major driver for its distribution at deep-sea.

  5. Challenge to the model of lake charr evolution: Shallow- and deep-water morphs exist within a small postglacial lake

    Science.gov (United States)

    Chavarie, Louise; Muir, Andrew M.; Zimmerman, Mara S.; Baillie, Shauna M.; Hansen, Michael J.; Nate, Nancy A.; Yule, Daniel L.; Middel, Trevor; Bentzen, Paul; Krueger, Charles C.

    2016-01-01

    All examples of lake charr (Salvelinus namaycush) diversity occur within the largest, deepest lakes of North America (i.e. > 2000 km2). We report here Rush Lake (1.3 km2) as the first example of a small lake with two lake charr morphs (lean and huronicus). Morphology, diet, life history, and genetics were examined to demonstrate the existence of morphs and determine the potential influence of evolutionary processes that led to their formation or maintenance. Results showed that the huronicus morph, caught in deep-water, had a deeper body, smaller head and jaws, higher eye position, greater buoyancy, and deeper peduncle than the shallow-water lean morph. Huronicus grew slower to a smaller adult size, and had an older mean age than the lean morph. Genetic comparisons showed low genetic divergence between morphs, indicating incomplete reproductive isolation. Phenotypic plasticity and differences in habitat use between deep and shallow waters associated with variation in foraging opportunities seems to have been sufficient to maintain the two morphs, demonstrating their important roles in resource polymorphism. Rush Lake expands previous explanations for lake charr intraspecific diversity, from large to small lakes and from reproductive isolation to the presence of gene flow associated with strong ecological drivers.

  6. Decline of deep and bottom water ventilation and slowing down of anthropogenic carbon storage in the Weddell Sea, 1984-2011

    NARCIS (Netherlands)

    Huhn, Oliver; Rhein, Monika; Hoppema, Mario; van Heuven, Steven

    We use a 27 year long time series of repeated transient tracer observations to investigate the evolution of the ventilation time scales and the related content of anthropogenic carbon (C-ant) in deep and bottom water in the Weddell Sea. This time series consists of chlorofluorocarbon (CFC)

  7. Impact of backwashing procedures on deep bed filtration productivity in drinking water treatment.

    Science.gov (United States)

    Slavik, Irene; Jehmlich, Alexander; Uhl, Wolfgang

    2013-10-15

    Backwash procedures for deep bed filters were evaluated and compared by means of a new integrated approach based on productivity. For this, different backwash procedures were experimentally evaluated by using a pilot plant for direct filtration. A standard backwash mode as applied in practice served as a reference and effluent turbidity was used as the criterion for filter run termination. The backwash water volumes needed, duration of the filter-to-waste period, time out of operation, total volume discharged and filter run-time were determined and used to calculate average filtration velocity and average productivity. Results for filter run-times, filter backwash volumes, and filter-to-waste volumes showed considerable differences between the backwash procedures. Thus, backwash procedures with additional clear flushing phases were characterised by an increased need for backwash water. However, this additional water consumption could not be compensated by savings during filter ripening. Compared to the reference backwash procedure, filter run-times were longer for both single-media and dual-media filters when air scour and air/water flush were optimised with respect to flow rates and the proportion of air and water. This means that drinking water production time is longer and less water is needed for filter bed cleaning. Also, backwashing with additional clear flushing phases resulted in longer filter run-times before turbidity breakthrough. However, regarding the productivity of the filtration process, it was shown that it was almost the same for all of the backwash procedures investigated in this study. Due to this unexpected finding, the relationships between filter bed cleaning, filter ripening and filtration performance were considered and important conclusions and new approaches for process optimisation and resource savings were derived. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Testing the Role of Microbial Ecology, Redox-Mediated Deep Water Production and Hypersalinity on TEX86: Lipids and 16s Sequences from Archaea and Bacteria in the Water Column and Sediments of Orca Basin

    Science.gov (United States)

    Warren, C.; Romero, I.; Ellis, G.; Goddard, E.; Krishnan, S.; Nigro, L. M.; Super, J. R.; Zhang, Y.; Zhuang, G.; Hollander, D. J.; Pagani, M.

    2014-12-01

    Mesophilic marine archaea and bacteria are known to substantially contribute to the oceanic microbial biomass and play critical roles in global carbon, nitrogen and nutrient cycles. The Orca Basin, a 2400 meter deep bathymetric depression on the continental slope of the north-central Gulf of Mexico, is an ideal environment to examine how redox-dependent biochemical processes control the input and cycling of bacterial and archaea-derived lipid compounds from formation in near-surface water, through secondary recycling processes operating at the redox-transition in the water column, to sedimentary diagenetic processes operating in oxic to anoxic zones within the basin. The lowermost 180 meters of the Orca Basin is characterized by an anoxic, hypersaline brine that is separated from the overlying oxic seawater by a well-defined redox sequence associated with a systematic increasing in salinity from 35 - 250‰. While surface water conditions are viewed as normal marine with a seasonally productive water column, the sub-oxic to anoxic transition zones within the deep-water column and the sediment spans over 200 m allowing the unique opportunity for discrete sampling of resident organisms and lipids. Here we present 16s rRNA sequence data of Bacteria and Archaea collected parallel to GDGT lipid profiles and in situ environmental measurements from the sediment and overlying water column in the intermediate zone of the basin, where movements of chemical transition zones are preserved. We evaluated GDGTs and corresponding taxa across the surface water, chlorophyll maximum, thermocline, and the deep redox boundary, including oxygenation, denitrification, manganese, iron and sulfate reduction zones, to determine if GDGTs are being produced under these conditions and how surface-derived GDGT lipids and the TEX86 signal may be altered. The results have implications for the application of the TEX86 paleotemperature proxy.

  9. Natural deep eutectic solvents as new potential media for green technology

    International Nuclear Information System (INIS)

    Dai, Yuntao; Spronsen, Jaap van; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2013-01-01

    Highlights: ► Natural products were used as a source for deep eutectic solvents and ionic liquids. ► We define own chemical and physical properties of natural deep eutectic solvents. ► Interaction between natural deep eutectic solvents and solutes was confirmed by NMR. ► The developed natural deep eutectic solvents were applied as green media. - Abstract: Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the

  10. Natural deep eutectic solvents as new potential media for green technology

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yuntao [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands); Spronsen, Jaap van; Witkamp, Geert-Jan [Laboratory for Process Equipment, Delft University of Technology, Delft (Netherlands); Verpoorte, Robert [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands); Choi, Young Hae, E-mail: y.choi@chem.leidenuniv.nl [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands)

    2013-03-05

    Highlights: ► Natural products were used as a source for deep eutectic solvents and ionic liquids. ► We define own chemical and physical properties of natural deep eutectic solvents. ► Interaction between natural deep eutectic solvents and solutes was confirmed by NMR. ► The developed natural deep eutectic solvents were applied as green media. - Abstract: Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the

  11. Tulongicin, an Antibacterial Tri-Indole Alkaloid from a Deep-Water Topsentia sp. Sponge.

    Science.gov (United States)

    Liu, Hong-Bing; Lauro, Gianluigi; O'Connor, Robert D; Lohith, Katheryn; Kelly, Michelle; Colin, Patrick; Bifulco, Giuseppe; Bewley, Carole A

    2017-09-22

    Antibacterial-guided fractionation of an extract of a deep-water Topsentia sp. marine sponge led to the isolation of two new indole alkaloids, tulongicin A (1) and dihydrospongotine C (2), along with two known analogues, spongotine C (3) and dibromodeoxytopsentin (4). Their planar structures were determined by NMR spectroscopy. Their absolute configurations were determined through a combination of experimental and computational analyses. Tulongicin (1) is the first natural product to contain a di(6-Br-1H-indol-3-yl)methyl group linked to an imidazole core. The coexistence of tri-indole 1 and bis-indole alcohol 2 suggests a possible route to 1. All of the compounds showed strong antimicrobial activity against Staphylococcus aureus.

  12. Technology strategy for deepwater and subsea production systems 2008 update; Technology Target Areas; TTA7 - Deep water and subsea prodution technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    Executive summary 'Deepwater and Subsea Production Systems' has been identified as one of the eight new Technology Target Areas (TTAs) in Norway's technology strategy for the Oil and Gas sector. This TTA covers deepwater floating production systems, subsea systems (except subsea processing technologies which are addressed by TTA6) and arctic development systems (in both shallow and deepwater). The total hydrocarbon reserves worldwide, which are enabled by the technologies under this TTA exceed 400 billion boe which, itself exceeds the proven reserves of Saudi Arabia. For deepwater developments the long term technical challenge is to develop flexible and adaptive systems which are better able to cope with subsurface uncertainties e.g. compartmentalisation and provide required access to the reservoir to enable successful recovery. More specific medium term challenges relate to developing solutions for harsh environmental conditions such as those offshore Norway and to develop cost effective methods of installing subsea hardware in deep and ultra deep water without requiring expensive crane vessels. For subsea systems the challenge is to develop solutions for ultra deepwater without increasing costs, so that Norway's leading export position in this area can be maintained and strengthened. Considering developments in the arctic, Norwegian industry is already well placed through its familiarity with arctic climate, close relationship with Russia and involvement in Sakhalin II. As we move to water depth beyond about 150m use of Gravity Base Structures (GBS) becomes very expensive or non-feasible and we need to consider other solutions. Subsea-to-beach could be an attractive solution but we need to resolve challenges related to long distance tie backs, flow assurance, uneven terrain, etc. There is also a specific need to develop floating systems capable of drilling and production in an arctic environment. To address the above technical challenges the

  13. Ventilation of the deep Greenland and Norwegian seas: evidence from krypton-85, tritium, carbon-14 and argon-39

    International Nuclear Information System (INIS)

    Smethie, W.M. Jr.; Ostlund, H.G.; Loosli, H.H.

    1986-01-01

    On leg 5 of the TTO expedition, the distributions of 85 Kr, tritium, 14 C, 39 Ar, temperature, salinity, oxygen, carbon dioxide and nutrients were measured in the Greenland and Norwegian seas. These observations support previous observations that Greenland Sea Deep Water is formed by a deep convective process within the Greenland gyre. They also support AAGAARD et al.'s (1985, Journal of Geophysical Research, 90, 4833-4846) new hypothesis that Norwegian Sea Deep Water forms from a mixture of Greenland Sea Deep Water and Eurasian Basin Deep Water. Volume transports estimated from the distributions of 85 Kr, tritium, 14 C and 39 Ar range from 0.53 to 0.74 Sv for exchange between the surface and deep Greenland Sea and from 0.9 to 1.47 Sv for exchange between the deep Greenland and deep Norwegian Seas. The residence time of water and the deep Greenland Sea with respect to exchange with surface water ranges from 24 to 34 years reported by PETERSON and ROOTH (1976, Deep-Sea Research, 23, 273-283) and 35-42 years reported by BULLISTER and WEISS (1983, Science, 221, 265-268). The residence time of water in the deep Norwegian Sea with respect to exchange with the deep Greenland Sea ranges from 19 to 30 years compared to 97-107 years reported by PETERSON and ROOTH (1976) and 10-28 years reported by BULLISTER and WEISS (1983). The oxygen consumption rate was estimated to be at most 1.04 μM kg -1 y -1 for the deep Greenland Sea and to be between 0.47 and 0.79 μM kg -1 y -1 for the deep Norwegian Sea. (author)

  14. Circumpolar Deep Water transport and current structure at the Amundsen Sea shelf break

    Science.gov (United States)

    Assmann, Karen M.; Wåhlin, Anna K.; Heywood, Karen J.; Jenkins, Adrian; Kim, Tae Wan; Lee, Sang Hoon

    2017-04-01

    The West Antarctic Ice Sheet has been losing mass at an increasing rate over the past decades. Ocean heat transport to the ice-ocean interface has been identified as an important contributor to this mass loss and the role it plays in ice sheet stability makes it crucial to understand its drivers in order to make accurate future projections of global sea level. While processes closer to the ice-ocean interface modulate this heat transport, its ultimate source is located in the deep basin off the continental shelf as a core of relatively warm, salty water underlying a colder, fresher shallow surface layer. To reach the marine terminating glaciers and the base of floating ice shelves, this warm, salty water mass must cross the bathymetric obstacle of the shelf break. Glacial troughs that intersect the Amundsen shelf break and deepen southwards towards the ice shelf fronts have been shown to play an important role in transporting warm, salty Circumpolar Deep Water (CDW) towards the ice shelves. North of the shelf break, circulation in the Amundsen Sea occupies an intermediate regime between the eastward Antarctic Circumpolar Current that impinges on the shelf break in the Bellingshausen Sea and the westward southern limb of the Ross Gyre that follows the shelf break in the Ross Sea. Hydrographic and mooring observations and numerical model results at the mouth of the central shelf break trough leading to Pine Island and Thwaites Glaciers show a westward wind-driven shelf break current overlying an eastward undercurrent that turns onto the shelf in the trough. It is thought that the existence of the latter feature facilitates the on-shelf transport of CDW. A less clearly defined shelf break depression further west acts as the main pathway for CDW to Dotson and eastern Getz Ice shelves. Model results indicate that a similar eastward undercurrent exists here driving the on-shelf transport of CDW. Two moorings on the upper slope east of the trough entrance show a

  15. Seawater Carbonate Chemistry of Deep-sea Coral Beds off the Northwestern Hawaiian Islands

    Science.gov (United States)

    Brooks, J.; Shamberger, K.; Roark, E. B.; Miller, K.; Baco-Taylor, A.

    2016-02-01

    Many species of deep-sea octocorals produce calcium carbonate (CaCO3) skeletons and form coral beds that support diverse ecosystems crucial to fisheries. The geochemistry of deep-sea coral skeletons can provide valuable paleoceanographic information on ocean circulation and nutrient cycling. Deep-sea corals in the older bottom waters of the Pacific are naturally exposed to higher carbon dioxide (CO2) concentrations and lower pH than in the Atlantic where much of the previous deep-sea coral work has occurred. Therefore, some Pacific deep-sea corals may live and calcify in waters that are corrosive to their skeletons, but there have been few current seawater carbonate chemistry measurements of the waters surrounding deep-sea coral beds to assess this. The input of anthropogenic atmospheric CO2 known as ocean acidification (OA) lowers ocean pH and causes an expansion of these corrosive waters. Seawater carbonate chemistry must be characterized before accurate predictions can be made for the effects of OA on these important ecosystems. Total Alkalinity (TA) and Dissolved Inorganic Carbon (DIC) samples were collected in the fall of 2014 and 2015 from the surface to 1450 m depth off the Northwestern Hawaiian Island chain where deep-sea octocorals are found. The partial pressure of CO2 increased and pH, calcite saturation state (Ωca) and aragonite saturation state (Ωar) decreased with increasing latitude and depth. Notably, waters were undersaturated with respect to calcite and aragonite (Ωca and Ωar less than 1) below 800 m and 500 m, respectively. Therefore, deep-sea corals below these depths must calcify in waters that are thermodynamically favorable for CaCO3 dissolution. How deep-sea octocorals cope with such adverse seawater chemistry is critical to understanding future effects of OA. It is not known whether OA is currently negatively impacting deep-sea octocorals, but their naturally acidified environments could make them particularly susceptible to OA.

  16. 3D edge detection seismic attributes used to map potential conduits for water and methane in deep gold mines in the Witwatersrand basin, South Africa

    CSIR Research Space (South Africa)

    Manzi, MSD

    2012-09-01

    Full Text Available Inrushes of ground water and the ignition of flammable gases pose risks to workers in deep South African gold mines. Large volumes of water may be stored in solution cavities in dolomitic rocks that overlie the Black Reef (BLR) Formation, while...

  17. Seismic patterns and migration history of submarine fan channels in deep-water area, Niger Delta, West Africa

    Science.gov (United States)

    Zhang, Guotao; Zhang, Shangfeng; Li, Yuan

    2015-04-01

    The channels of deep-water submarine fan under Niger delta slope are characterized by large dimensions special deposition positions and complex formation processes, its geographical location and sedimentary environment also hinder the research and exploration development. According to the strata slicing, RMS amplitude attribute and other techniques, we exhibit the platforms patterns of channels at different period, and based on the analysis of internal architecture and deformation history of channel-leveed systems, migration and evolution process of channel systems could be understood accurately. A great quantity of isolated channels develop in middle Miocene and aggrading streams in late Miocene, which generating because of large scale of turbidity caused by the drop of second order sea-level, which characterized by vertical accretion at smooth channel, while vertical accretion and lateral migration at bend. Evolution of channel systems can be divided into three stages: the initial erosion, erosion and filling alternately, and abandoned stage. With these three stages, the sinuosity of channel change from moderate to high, then decrease. Incision and filling of channels, being during the three development phases, is the driving force of meander-loops migration, which promote three kinds of migration patterns: lateral, down-system and combination migration. The research provides theoretical basis for high-precision prediction and evaluation of deep-water reservoir.

  18. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea

    NARCIS (Netherlands)

    Cathalot, C.; Van Oevelen, D.; Cox, T.; Kutti, T.; Lavaleye, M.S.S.; Duineveld, G.C.A.; Meysman, F.J.R.

    2015-01-01

    Cold-water coral reefs and adjacent sponge grounds are distributed widely in the deep ocean, where only a small fraction of the surface productivity reaches the seafloor as detritus. It remains elusive how these hotspots of biodiversity can thrive in such a food-limited environment, as data on

  19. Modeling pesticide loadings from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT

    Science.gov (United States)

    Chen, H.; Zhang, M.

    2016-12-01

    The Sacramento-San Joaquin Delta is an ecologically rich, hydrologically complex area that serves as the hub of California's water supply. However, pesticides have been routinely detected in the Delta waterways, with concentrations exceeding the benchmark for the protection of aquatic life. Pesticide loadings into the Delta are partially attributed to the San Joaquin watershed, a highly productive agricultural watershed located upstream. Therefore, this study aims to simulate pesticide loadings to the Delta by applying the Soil and Water Assessment Tool (SWAT) model to the San Joaquin watershed, under the support of the USDA-ARS Delta Area-Wide Pest Management Program. Pesticide use patterns in the San Joaquin watershed were characterized by combining the California Pesticide Use Reporting (PUR) database and GIS analysis. Sensitivity/uncertainty analyses and multi-site calibration were performed in the simulation of stream flow, sediment, and pesticide loads along the San Joaquin River. Model performance was evaluated using a combination of graphic and quantitative measures. Preliminary results indicated that stream flow was satisfactorily simulated along the San Joaquin River and the major eastern tributaries, whereas stream flow was less accurately simulated in the western tributaries, which are ephemeral small streams that peak during winter storm events and are mainly fed by irrigation return flow during the growing season. The most sensitive parameters to stream flow were CN2, SOL_AWC, HRU_SLP, SLSUBBSN, SLSOIL, GWQMN and GW_REVAP. Regionalization of parameters is important as the sensitivity of parameters vary significantly spatially. In terms of evaluation metric, NSE tended to overrate model performance when compared to PBIAS. Anticipated results will include (1) pesticide use pattern analysis, (2) calibration and validation of stream flow, sediment, and pesticide loads, and (3) characterization of spatial patterns and temporal trends of pesticide yield.

  20. Bacterial diversity and biogeography in deep-sea sediments of the South Atlantic Ocean

    DEFF Research Database (Denmark)

    Schauer, Regina; Bienhold, Christina; Ramette, Alban

    2010-01-01

    in 1051 sequences. Phylotypes affiliated with Gammaproteobacteria, Deltaproteobacteria and Acidobacteria were present in all three basins. The distribution of these shared phylotypes seemed to be influenced neither by the Walvis Ridge nor by different deep water masses, suggesting a high dispersal......Microbial biogeographic patterns in the deep sea depend on the ability of microorganisms to disperse. One possible limitation to microbial dispersal may be the Walvis Ridge that separates the Antarctic Lower Circumpolar Deep Water from the North Atlantic Deep Water. We examined bacterial...... communities in three basins of the eastern South Atlantic Ocean to determine diversity and biogeography of bacterial communities in deep-sea surface sediments. The analysis of 16S ribosomal RNA (rRNA) gene clone libraries in each basin revealed a high diversity, representing 521 phylotypes with 98% identity...

  1. New records of rhodolith-forming species (Corallinales, Rhodophyta) from deep water in Espírito Santo State, Brazil

    Science.gov (United States)

    Henriques, Maria Carolina; Villas-Boas, Alexandre; Rodriguez, Rafael Riosmena; Figueiredo, Marcia A. O.

    2012-06-01

    Little is known about the diversity of non-geniculate coralline red algae (Rhodophyta, Corallinophycidae) from deep waters in Brazil. Most surveys undertaken in this country have been carried out in shallow waters. In 1994, however, the REVIZEE program surveyed the sustainable living resources potential of the Brazilian exclusive economic zone to depths of 500 m. In the present study, the rhodolith-forming coralline algae from the continental shelf of Espírito Santo State were identified. Samples were taken from 54 to 60 m depth by dredging during ship cruises in 1997. Three rhodolith-forming species were found: Spongites yendoi (Foslie) Chamberlain , Lithothamnion muelleri Lenormand ex Rosanoff and Lithothamnion glaciale Kjellman. These records extend the distribution ranges of these species into Brazilian waters and extend the depth distribution of non-geniculate coralline red algae into Brazilian water to 58 m.

  2. A new species of deep-water Holothuroidea (Echinodermata of the genus Synallactes from off western Mexico

    Directory of Open Access Journals (Sweden)

    Claude Massin

    2010-08-01

    Full Text Available An undescribed species of Synallactes was collected during a deep-water benthic fauna survey off the Pacific coast of Mexico in the East Pacific, with the R/V El Puma. This new species differs from all the other known Synallactes by the presence of huge massive rods in the tube feet, some of them club-shaped. The later ossicle shape is unique among Holothuroidea. This is the first record of a Synallactes in the Gulf of California.

  3. Vertical water mass structure in the North Atlantic influences the bathymetric distribution of species in the deep-sea coral genus Paramuricea

    Science.gov (United States)

    Radice, Veronica Z.; Quattrini, Andrea M.; Wareham, Vonda E.; Edinger, Evan N.; Cordes, Erik E.

    2016-10-01

    Deep-sea corals are the structural foundation of their ecosystems along continental margins worldwide, yet the factors driving their broad distribution are poorly understood. Environmental factors, especially depth-related variables including water mass properties, are thought to considerably affect the realized distribution of deep-sea corals. These factors are governed by local and regional oceanographic conditions that directly influence the dispersal of larvae, and therefore affect the ultimate distribution of adult corals. We used molecular barcoding of mitochondrial and nuclear sequences to identify species of octocorals in the genus Paramuricea collected from the Labrador Sea to the Grand Banks of Newfoundland, Canada at depths of 150-1500 m. The results of this study revealed overlapping bathymetric distributions of the Paramuricea species present off the eastern Canadian coast, including the presence of a few cryptic species previously designated as Paramuricea placomus. The distribution of Paramuricea species in the western North Atlantic differs from the Gulf of Mexico, where five Paramuricea species exhibit strong segregation by depth. The different patterns of Paramuricea species in these contrasting biogeographic regions provide insight into how water mass structure may shape species distribution. Investigating Paramuricea prevalence and distribution in conjunction with oceanographic conditions can help demonstrate the factors that generate and maintain deep-sea biodiversity.

  4. Challenging oil bioremediation at deep-sea hydrostatic pressure

    Directory of Open Access Journals (Sweden)

    Alberto Scoma

    2016-08-01

    Full Text Available The Deepwater Horizon (DWH accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (biotechnology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons at deep-sea remain unanswered, as much as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil take up are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled-oil. The fate of solid alkanes (tar and that of hydrocarbons degradation rates was largely overlooked, as the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea, despite being present at hydrocarbon seeps at the Gulf of Mexico. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation.

  5. Use of dissolved inorganic carbon isotopes to track photosynthesis, respiration, and nitrification along a 56 mile transect in the Sacramento River and San Francisco Bay

    Science.gov (United States)

    Silva, S. R.; Kendall, C.; Peek, S.; Young, M. B.

    2013-12-01

    A decline in phytoplankton stocks in the San Francisco Bay and Delta is thought to contribute to the pelagic organism decline observed over the past two decades. One factor controlling phytoplankton growth rate is the availability of nutrients. Although there is an excess of nutrients in the Bay and Delta, the type and relative abundance of nutrients is critical to phytoplankton growth. To evaluate the response of phytoplankton to nutrient sources and to better understand phytoplankton dynamics downstream, we tested the hypothesis that the δ13C values of dissolved inorganic carbon (DIC) along with conventional water chemistry analyses will record events such as increased nitrification (related to the Sacramento River Wastewater Treatment Plant ammonium input) and algal blooms, and reflect the balance between photosynthesis and bacterial respiration. Multiple parameters affect [DIC] and its δ13C, including DIC sources, pH, and biological processes. Consumption of CO2 by phytoplankton during photosynthesis and by autotrophic bacteria during nitrification both result in increases in δ13C-DIC. However, photosynthesis and nitrification have very different relationships to chlorophyll and nutrient concentrations. The balance between heterotrophic bacterial respiration and photosynthesis should be reflected in trends in DIC, nutrient, and chlorophyll concentration, and δ13C-DIC. The δ13C of DIC should also be reflected in the δ13C of phytoplankton with approximately a 20 per mil fractionation. Significant deviation in the fractionation factor may indicate local variations in growth rate, nutrient availability, or speciation. Combined, these parameters should provide a gauge of the relative importance of the above mentioned processes. To test this hypothesis, we collected 19 water samples per cruise between July 2012 and July 2013 along a 56 mile transect between Rio Vista on the Sacramento River and San Francisco Bay near Angel Island during 8 cruises on the USGS RV

  6. Deep Corals, Deep Learning: Moving the Deep Net Towards Real-Time Image Annotation

    OpenAIRE

    Lea-Anne Henry; Sankha S. Mukherjee; Neil M. Roberston; Laurence De Clippele; J. Murray Roberts

    2016-01-01

    The mismatch between human capacity and the acquisition of Big Data such as Earth imagery undermines commitments to Convention on Biological Diversity (CBD) and Aichi targets. Artificial intelligence (AI) solutions to Big Data issues are urgently needed as these could prove to be faster, more accurate, and cheaper. Reducing costs of managing protected areas in remote deep waters and in the High Seas is of great importance, and this is a realm where autonomous technology will be transformative.

  7. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water

    Directory of Open Access Journals (Sweden)

    Guoo-Shyng Wang Hsu

    2017-10-01

    Full Text Available Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrolysis time and electric potential on the chlorine generation efficiency of electrolyzed deep ocean water (DOW. DOW was electrolyzed in a glass electrolyzing cell equipped with platinum–plated titanium anode and cathode. The results showed that chlorine concentration reached maximal level in the batch process. Prolonged electrolysis reduced chlorine concentration in the electrolyte and was detrimental to electrolysis efficiency, especially under high electric potential conditions. Therefore, the optimal choice of electrolysis time depends on the electrolyzable chloride in DOW and cell potential adopted for electrolysis. The higher the electric potential, the faster the chlorine level reaches its maximum, but the lower the electric efficiency will be.

  8. How to study deep roots - and why it matters

    OpenAIRE

    Maeght, Jean-Luc; Rewald, B.; Pierret, Alain

    2013-01-01

    The drivers underlying the development of deep root systems, whether genetic or environmental, are poorly understood but evidence has accumulated that deep rooting could be a more widespread and important trait among plants than commonly anticipated from their share of root biomass. Even though a distinct classification of "deep roots" is missing to date, deep roots provide important functions for individual plants such as nutrient and water uptake but can also shape plant communities by hydr...

  9. Indolo[3,2-a]carbazoles from a deep-water sponge of the genus Asteropus.

    Science.gov (United States)

    Russell, Floyd; Harmody, Dedra; McCarthy, Peter J; Pomponi, Shirley A; Wright, Amy E

    2013-10-25

    Two new indolo[3,2-a]carbazoles (1, 2) were isolated from a deep-water collection of a sponge of the genus Asteropus. The structures of 1 and 2 were determined through the analysis of spectroscopic data including mass spectrometry and 2D-NMR. Compound 1 showed minimum inhibitory concentrations of 25 μg/mL against the fungal pathogen Candida albicans and 50 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA). Compounds 1 and 2 showed no cytotoxicity against the PANC1 human pancreatic carcinoma and NCI/ADR-RES ovarian adenocarcinoma cell lines at our standard test concentration of 5 μg/mL.

  10. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests

    Science.gov (United States)

    Nepstad, Daniel C.; Stone, Thomas A.; Davidson, Eric A.

    1994-01-01

    Deforestation and logging degrade more forest in eastern and southern Amazonia than in any other region of the world. This forest alteration affects regional hydrology and the global carbon cycle, but our current understanding of these effects is limited by incomplete knowledge of tropical forest ecosystems. It is widely agreed that roots are concentrated near the soil surface in moist tropical forests, but this generalization incorrectly implies that deep roots are unimportant in water and C budgets. Our results indicate that half of the closed-canopy forests of Brazilian Amazonic occur where rainfall is highly seasonal, and these forests rely on deeply penetrating roots to extract soil water. Pasture vegetation extracts less water from deep soil than the forest it replaces, thus increasing rates of drainage and decreasing rates of evapotranspiration. Deep roots are also a source of modern carbon deep in the soil. The soils of the eastern Amazon contain more carbon below 1 m depth than is present in above-ground biomass. As much as 25 percent of this deep soil C could have annual to decadal turnover times and may be lost to the atmosphere following deforestation. We compared the importance of deep roots in a mature, evergreen forest with an adjacent man-made pasture, the most common type of vegetation on deforested land in Amazonia. The study site is near the town of Paragominas, in the Brazilian state of Para, with a seasonal rainfall pattern and deeply-weathered, kaolinitic soils that are typical for large portions of Amazonia. Root distribution, soil water extraction, and soil carbon dynamics were studied using deep auger holes and shafts in each ecosystem, and the phenology and water status of the leaf canopies were measured. We estimated the geographical distribution of deeply-rooting forests using satellite imagery, rainfall data, and field measurements.