WorldWideScience

Sample records for saccharomyces kluyveri transamination

  1. Degradation of pyrimidines in Saccharomyces kluyveri: transamination of beta-alanine

    DEFF Research Database (Denmark)

    Schnackerz, K D; Andersen, G; Dobritzsch, D

    2008-01-01

    Beta-alanine is an intermediate in the reductive degradation of uracil. Recently we have identified and characterized the Saccharomyces kluyveri PYD4 gene and the corresponding enzyme beta -alanine aminotransferase ((Sk)Pyd4p), highly homologous to eukaryotic gamma-aminobutyrate aminotransferase ...

  2. Production of a heterologous proteinase A by Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Tidemand, L.D.; Winther, J.R.

    2001-01-01

    In order to evaluate the potential of Saccharomyces kluyveri for heterologous protein production, S. kluyveri Y159 was transformed with a S. cerevisiae-based multi-copy plasmid containing the S. cerevisiae PEP4 gene, which encodes proteinase A, under the control of its native promoter. As a refer......In order to evaluate the potential of Saccharomyces kluyveri for heterologous protein production, S. kluyveri Y159 was transformed with a S. cerevisiae-based multi-copy plasmid containing the S. cerevisiae PEP4 gene, which encodes proteinase A, under the control of its native promoter...

  3. Ability for anaerobic growth is not sufficient for development of the petite phenotype in Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Olsson, Lisbeth; Piskur, Jure

    2001-01-01

    Saccharomyces cerevisiae is a petite-phenotype-positive ("petite-positive") yeast, which can successfully grow in the absence of oxygen. On the other hand, Kluyveromyces lactis as well as many other yeasts are petite negative and cannot grow anaerobically. In this paper, we show that Saccharomyces...... kluyveri can grow under anaerobic conditions, but while it can generate respiration-deficient mutants, it cannot generate true petite mutants. From a phylogenetic point of view, S. kluyveri is apparently more closely related to S. cerevisiae than to K. lactis. These observations suggest that the progenitor...... of the modern Saccharomyces and Kluyveromyces yeasts, as well as other related genera, was a petite-negative and aerobic yeast. Upon separation of the K. lactis and S. kluyveri-S. cerevisiae lineages, the latter developed the ability to grow anaerobically. However, while the S. kluyveri lineage has remained...

  4. Production of fungal alpha-amylase by Saccharomyces kluyveri in glucose-limited cultivations

    DEFF Research Database (Denmark)

    Møller, Kasper; Sharif, M.Z.; Olsson, Lisbeth

    2004-01-01

    Heterologous protein production by the yeast Saccharomyces kluyveri was investigated under aerobic glucose-limited conditions. alpha-Amylase from Aspergillus oryzae was used as model protein and the gene was expressed from a S. cerevisiae 2 mu plasmid. For comparison, strains of both S. kluyveri ...

  5. Steady-state and transient-state analyses of aerobic fermentation in Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Bro, Christoffer; Piskur, Jure

    2002-01-01

    Some yeasts, such as Saccharomyces cerevisiae, produce ethanol at fully aerobic conditions, whereas other yeasts, such as Kluyveromyces lactis, do not. In this study we investigated the occurrence of aerobic alcoholic fermentation in the petite-negative yeast Saccharomyces kluyveri that is only...... distantly related to S. cerevisiae. In aerobic glucose-limited continuous cultures of S. kluyveri, two growth regimens were observed: at dilution rates below 0.5 h(-1) the metabolism was purely respiratory, and at dilution rates above 0.5 h-1 the metabolism was respiro-fermentative. The dilution rate...... a delay of 20-50 min (depending on culture conditions prior to the pulse), which is in contrast to S. cerevisiae that ferments immediately after glucose addition....

  6. Uracil and beta-alanine degradation in Saccharomyces Kluyveri - discovery of a novel catabolic pathway

    DEFF Research Database (Denmark)

    Andersen, Gorm

    2006-01-01

    ’en i gær og de genetiske forudsætninger for uracil og beta-alanine (BAL) katabolisme i S. kluyveri undersøgt. Evnen til at bruge uracil, dihydrouracil (DHU), beta-ureidopropionate (BUP) og BAL som nitrogenkilde blev studeret i 38 gær arter. Disse var udvalgt, så de dækkede “Saccharomyces komplekset...

  7. Crystallization and X-ray diffraction analysis of dihydropyrimidinase from Saccharomyces kluyveri

    International Nuclear Information System (INIS)

    Dobritzsch, Doreen; Andersen, Birgit; Piškur, Jure

    2005-01-01

    Dihydropyrimidinase from the yeast S. kluyveri was crystallized by vapour diffusion. The crystals belong to space group P2 1 (unit-cell parameters a = 91.0, b = 73.0, c = 161.4 Å, β = 91.4°) and diffracted to 2.6 Å resolution. Dihydropyrimidinase (EC 3.5.2.2) catalyzes the second step in the reductive pathway of pyrimidine degradation, the hydrolysis of 5,6-dihydrouracil and 5,6-dihydrothymine to the corresponding N-carbamylated β-amino acids. Crystals of the recombinant enzyme from the yeast Saccharomyces kluyveri diffracting to 2.6 Å at a synchrotron-radiation source have been obtained by the hanging-drop vapour-diffusion method. They belong to space group P2 1 (unit-cell parameters a = 91.0, b = 73.0, c = 161.4 Å, β = 91.4°), with one homotetramer per asymmetric unit

  8. Performance evaluation of Pichia kluyveri, Kluyveromyces marxianus and Saccharomyces cerevisiae in industrial tequila fermentation.

    Science.gov (United States)

    Amaya-Delgado, L; Herrera-López, E J; Arrizon, Javier; Arellano-Plaza, M; Gschaedler, A

    2013-05-01

    Traditionally, industrial tequila production has used spontaneous fermentation or Saccharomyces cerevisiae yeast strains. Despite the potential of non-Saccharomyces strains for alcoholic fermentation, few studies have been performed at industrial level with these yeasts. Therefore, in this work, Agave tequilana juice was fermented at an industrial level using two non-Saccharomyces yeasts (Pichia kluyveri and Kluyveromyces marxianus) with fermentation efficiency higher than 85 %. Pichia kluyveri (GRO3) was more efficient for alcohol and ethyl lactate production than S. cerevisiae (AR5), while Kluyveromyces marxianus (GRO6) produced more isobutanol and ethyl-acetate than S. cerevisiae (AR5). The level of volatile compounds at the end of fermentation was compared with the tequila standard regulation. All volatile compounds were within the allowed range except for methanol, which was higher for S. cerevisiae (AR5) and K. marxianus (GRO6). The variations in methanol may have been caused by the Agave tequilana used for the tests, since this compound is not synthesized by these yeasts.

  9. Pyruvate decarboxylases from the petite-negative yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Langkjær, Rikke Breinhold; Nielsen, Jens

    2004-01-01

    was controlled by variations in the amount of mRNA. The mRNA level and the pyruvate decarboxylase activity responded to anaerobiosis and growth on different carbon sources in essentially the same fashion as in S. cerevisiae. This indicates that the difference in ethanol formation between these two yeasts...... is not due to differences in the regulation of pyruvate decarboxylase(s), but rather to differences in the regulation of the TCA cycle and the respiratory machinery. However, the PDC genes of Saccharomyces/Kluyveromyces yeasts differ in their genetic organization and phylogenetic origin. While S. cerevisiae...

  10. Crystallization and preliminary X-ray analysis of beta-alanine synthase from the yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Dobritzsch, D.; Gojkovic, Zoran; Andersen, Birgit

    2003-01-01

    In eukaryotes and some bacteria, the third step of reductive pyrimidine catabolism is catalyzed by beta-alanine synthase (EC 3.5.1.6). Crystals of the recombinant enzyme from the yeast Saccharomyces kluyveri were obtained using sodium citrate as a precipitant. The crystals belong to space group P2...

  11. Coevolution with bacteria drives the evolution of aerobic fermentation in Lachancea kluyveri.

    Directory of Open Access Journals (Sweden)

    Nerve Zhou

    Full Text Available The Crabtree positive yeasts, such as Saccharomyces cerevisiae, prefer fermentation to respiration, even under fully aerobic conditions. The selective pressures that drove the evolution of this trait remain controversial because of the low ATP yield of fermentation compared to respiration. Here we propagate experimental populations of the weak-Crabtree yeast Lachancea kluyveri, in competitive co-culture with bacteria. We find that L. kluyveri adapts by producing quantities of ethanol lethal to bacteria and evolves several of the defining characteristics of Crabtree positive yeasts. We use precise quantitative analysis to show that the rate advantage of fermentation over aerobic respiration is insufficient to provide an overall growth advantage. Thus, the rapid consumption of glucose and the utilization of ethanol are essential for the success of the aerobic fermentation strategy. These results corroborate that selection derived from competition with bacteria could have provided the impetus for the evolution of the Crabtree positive trait.

  12. Impact of transamination reactions and protein turnover on labeling dynamics in C-13-labeling experiments

    DEFF Research Database (Denmark)

    Grotkjær, Thomas; Åkesson, M.; Christensen, Bjarke

    2004-01-01

    A dynamic model describing carbon atom transitions in the central metabolism of Saccharomyces cerevisiae is used to investigate the influence of transamination reactions and protein turnover on the transient behavior of C-13-labeling chemostat experiments. The simulations performed suggest...... that carbon exchange due to transamination and protein turnover can significantly increase the required time needed for metabolites in the TCA cycle to reach isotopic steady state, which is in agreement with published experimental observations. On the other hand, transamination and protein turnover will speed...... behavior until after three residence times. These observations suggest that greater caution should be used while also pointing to new opportunities in the design and interpretation of C-13-labeling experiments....

  13. Experimental determination of thermodynamic equilibrium in biocatalytic transamination

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Jensen, Jacob Skibsted; Kroutil, Wolfgang

    2012-01-01

    The equilibrium constant is a critical parameter for making rational design choices in biocatalytic transamination for the synthesis of chiral amines. However, very few reports are available in the scientific literature determining the equilibrium constant (K) for the transamination of ketones....... Various methods for determining (or estimating) equilibrium have previously been suggested, both experimental as well as computational (based on group contribution methods). However, none of these were found suitable for determining the equilibrium constant for the transamination of ketones. Therefore...

  14. Karyotypes of Saccharomyces sensu lato species

    DEFF Research Database (Denmark)

    Petersen, Randi Føns; Nilsson-Tilgren, Torsten; Piskur, Jure

    1999-01-01

    An improved pulsed-field electrophoresis program was developed to study differently sized chromosomes within the genus Saccharomyces. The number of chromosomes in the type strains was shown to be nine in Saccharomyces castellii and Saccharomyces dairenensis, 12 in Saccharomyces servazzii...... and Saccharomyces unisporus, 16 in Saccharomyces exiguus and seven in Saccharomyces kluyveri. The sizes of individual chromosomes were resolved and the approximate genome sizes were determined by the addition of individual chromosomes of the karyotypes. Apparently. the genome of S. exiguus, which is the only...... Saccharomyces sensu late yeast to contain small chromosomes, is larger than that of Saccharomyces cerevisiae. On the other hand, other species exhibited genome sizes that were 10-25% smaller than that of S. cerevisiae. Well-defined karyotypes represent the basis for future genome mapping and sequencing projects...

  15. Experimental determination of thermodynamic equilibrium in biocatalytic transamination.

    Science.gov (United States)

    Tufvesson, Pär; Jensen, Jacob S; Kroutil, Wolfgang; Woodley, John M

    2012-08-01

    The equilibrium constant is a critical parameter for making rational design choices in biocatalytic transamination for the synthesis of chiral amines. However, very few reports are available in the scientific literature determining the equilibrium constant (K) for the transamination of ketones. Various methods for determining (or estimating) equilibrium have previously been suggested, both experimental as well as computational (based on group contribution methods). However, none of these were found suitable for determining the equilibrium constant for the transamination of ketones. Therefore, in this communication we suggest a simple experimental methodology which we hope will stimulate more accurate determination of thermodynamic equilibria when reporting the results of transaminase-catalyzed reactions in order to increase understanding of the relationship between substrate and product molecular structure on reaction thermodynamics. Copyright © 2012 Wiley Periodicals, Inc.

  16. Evaluation of MALDI-TOF mass spectrometry for differentiation of Pichia kluyveri strains isolated from traditional fermentation processes.

    Science.gov (United States)

    De la Torre González, Francisco Javier; Gutiérrez Avendaño, Daniel Oswaldo; Gschaedler Mathis, Anne Christine; Kirchmayr, Manuel Reinhart

    2018-06-06

    Non- Saccharomyces yeasts are widespread microorganisms and some time ago were considered contaminants in the beverage industry. However, nowadays they have gained importance for their ability to produce aromatic compounds, which in alcoholic beverages improves aromatic complexity and therefore the overall quality. Thus, identification and differentiation of the species involved in fermentation processes is vital and can be classified in traditional methods and techniques based on molecular biology. Traditional methods, however, can be expensive, laborious and/or unable to accurately discriminate on strain level. In the present study, a total of 19 strains of Pichia kluyveri isolated from mezcal, tejuino and cacao fermentations were analyzed with rep-PCR fingerprinting and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The comparative analysis between MS spectra and rep-PCR patterns obtained from these strains showed a high similarity between both methods. However, minimal differences between the obtained rep-PCR and MALDI-TOF MS clusters could be observed. The data shown suggests that MALDI-TOF MS is a promising alternative technique for rapid, reliable and cost-effective differentiation of natives yeast strains isolated from different traditional fermented foods and beverages. This article is protected by copyright. All rights reserved.

  17. Kinetic fractionation of stable nitrogen isotopes during amino acid transamination

    International Nuclear Information System (INIS)

    Macko, S.A.; Fogel Estep, M.L.; Engel, M.H.; Hare, P.E.

    1986-01-01

    This study evaluates a kinetic isotope effect involving 15 N, during the transamination reactions catalyzed by glutamic oxalacetic transaminase. During the transfer of amino nitrogen from glutamic acid to oxaloacetate to form aspartic acid, 14 NH 2 reacted 1.0083 times faster than 15 NH 2 . In the reverse reaction transferring NH 2 from aspartic acid to α-ketoglutarate, 14 NH 2 was incorporated 1.0017 times faster than 15 NH 2 . Knowledge of the magnitude and sign of these isotope effects will be useful in the interpretation of the distribution of 15 N in biological and geochemical systems. (author)

  18. Two different dihydroorotate dehydrogenases from yeast Saccharomyees kluyveri

    DEFF Research Database (Denmark)

    Zameitat, E.; Knecht, Wolfgang; Piskur, Jure

    2004-01-01

    Genes for two structurally and functionally different dihydroorotate dehydrogenases (DHODHs, EC 1.3.99.11), catalyzing the fourth step of pyrimidine biosynthesis, have been previously found in yeast Saccharomyces klujveri. One is closely related to the Schizosaccharomyces pombe mitochondrial family...... for their biochemical properties and interaction with inhibitors. Benzoates as pyrimidine ring analogs were shown to he selective inhibitors of cytosolic DHODs. This unique property of Saccharomyces DHODHs could appoint DHODH as a species-specific target for novel anti-fungal therapeutics....

  19. Saccharomyces Boulardii

    Science.gov (United States)

    Saccharomyces boulardii is a yeast, which is a type of fungus. Saccharomyces boulardii was previously identified as a unique species of ... be a strain of Saccharomyces cerevisiae (baker's yeast). Saccharomyces boulardii is used as medicine. Saccharomyces boulardii is most ...

  20. Transamination of branched chain amino acids (BCAA) in rat adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Frick, G.P.; Goodman, H.M.

    1986-03-05

    Like most extrahepatic tissues, adipose tissue can transaminate the BCAA faster than they are oxidized. Catabolism of the BCAA by adipose tissue appears to be limited by the activity of branched chain ..cap alpha..-keto acid dehydrogenase (BCDH). Conditions which stimulate the activity of this intramitochondrial enzyme in tissue extracts also increase the rate at which (1-/sup 14/C)leucine (L) and (1-/sup 14/C)valine (V) are oxidized by tissue segments. However, when maximum rates of oxidation were measured, 10 mM L was oxidized to /sup 14/CO/sub 2/ 5 times faster than 10 mM V (30 +/- 2 vs. 6 +/- 1 nmol min/sup -1/ g tis/sup -1/). In contrast, the ..cap alpha..-keto analogs of L and V were oxidized by tissue segments at nearly equal rates which slightly exceeded the rate of L oxidation. These results suggested that transamination might limit the catabolism of V, perhaps due to its inaccessibility to transaminase. The distribution of transaminase activity in tissue extracts was determined after centrifugation to obtain mitochondrial and cytosolic fractions. L and V were transaminated at similar rates by enzymes in both fractions. Transaminase activity in the mitochondrial fraction was greater than that of the cytosol and exceeded the capacity of the tissue to oxidize L. Catabolism of BCAA may depend upon intramitochondrial transamination and oxidation of V may be slower than that of L because uptake of V by mitochondria may be slower than that of L.

  1. Transamination of branched chain amino acids (BCAA) in rat adipose tissue

    International Nuclear Information System (INIS)

    Frick, G.P.; Goodman, H.M.

    1986-01-01

    Like most extrahepatic tissues, adipose tissue can transaminate the BCAA faster than they are oxidized. Catabolism of the BCAA by adipose tissue appears to be limited by the activity of branched chain α-keto acid dehydrogenase (BCDH). Conditions which stimulate the activity of this intramitochondrial enzyme in tissue extracts also increase the rate at which [1- 14 C]leucine (L) and [1- 14 C]valine (V) are oxidized by tissue segments. However, when maximum rates of oxidation were measured, 10 mM L was oxidized to 14 CO 2 5 times faster than 10 mM V (30 +/- 2 vs. 6 +/- 1 nmol min -1 g tis -1 ). In contrast, the α-keto analogs of L and V were oxidized by tissue segments at nearly equal rates which slightly exceeded the rate of L oxidation. These results suggested that transamination might limit the catabolism of V, perhaps due to its inaccessibility to transaminase. The distribution of transaminase activity in tissue extracts was determined after centrifugation to obtain mitochondrial and cytosolic fractions. L and V were transaminated at similar rates by enzymes in both fractions. Transaminase activity in the mitochondrial fraction was greater than that of the cytosol and exceeded the capacity of the tissue to oxidize L. Catabolism of BCAA may depend upon intramitochondrial transamination and oxidation of V may be slower than that of L because uptake of V by mitochondria may be slower than that of L

  2. Methotrexate-Associated Nonalcoholic Fatty Liver Disease with Transaminitis in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Rajalingham Sakthiswary

    2014-01-01

    Full Text Available Background. The aim of this study was to determine the risk factors of MTX-associated nonalcoholic fatty liver disease (NAFLD with transaminitis in a cohort of rheumatoid arthritis (RA patients from Singapore. Methods. Patients who developed ultrasound proven NAFLD with transaminitis while on MTX therapy were identified. The demographic and clinical characteristics of the above patients (cases were compiled and compared with age- and gender-matched controls who were RA patients on long standing MTX therapy without any episode of transaminitis. Results. Among the 978 patients who had received MTX, the prevalence of MTX-associated NAFLD was 4.7% (46 patients. Compared to the controls, the cases had significantly higher mean cumulative dose of MTX (4.03 ± 2.25 g versus 10.04 ± 9.94 g, P≤0.05, weekly dose of MTX (11.3 ± 4.8 mg versus 13.1 ± 4.4 mg weekly, P=0.033, and fasting blood glucose (P=0.029. Following multivariate regression analysis, only cumulative dose of MTX remained significant (P=0.015. Among the cases, the cumulative dose of MTX was found to have a significant positive correlation with the alanine transaminase (ALT level (P<0.05, standardised beta coefficient 0.512. Conclusion. The cumulative dose of MTX was the only independent predictor of MTX-associated NAFLD with transaminitis.

  3. S-methylmethionine conversion to dimethylsulfoniopropionate: evidence for an unusual transamination reaction

    International Nuclear Information System (INIS)

    Rhodes, D.; Gage, D.A.; Cooper, A.J.L.; Hanson, A.D.

    1997-01-01

    Leaves of Wollastonia biflora (L.) DC. synthesize the osmoprotectant 3-dimethylsulfoniopropionate (DMSP) from methionine via S-methylmethionine (SMM) and 3-dimethylsulfoniopropionaldehyde (DMSP-ald); no other intermediates have been detected. To test whether the amino group of SMM is lost by transamination or deamination, [methyl-2H3, 15N]SMM was supplied to leaf discs, and 15N-labeling of amino acids was monitored, along with synthesis of [2H3]DMSP. After short incubations more 15N was incorporated into glutamate than into other amino acids, and the 15N abundance in glutamate exceeded that in the amide group of glutamine (Gln). This is more consistent with transamination than deamination, because deamination would be predicted to give greater labeling of Gln amide N due to reassimilation, via Gln synthetase, of the 15NH4+ released. This prediction was borne out by control experiments with 15NH4Cl. The transamination product of SMM, 4-dimethylsulfonio-2-oxobutyrate (DMSOB), is expected to be extremely unstable. This was confirmed by attempting to synthesize it enzymatically from SMM using L-amino acid oxidase or Gln transaminase K and from 4-methylthio-2-oxobutyrate using methionine S-methyltransferase. In each case, the reaction product decomposed rapidly, releasing dimethylsulfide. The conversion of SMM to DMSP-ald is therefore unlikely to involve a simple transamination that generates free DMSOB. Plausible alternatives are that DMSOB is channeled within a specialized transaminase-decarboxylase complex or that it exists only as the bound intermediate of a single enzyme catalyzing an unusual transamination-decarboxylation reaction

  4. New oenological practice to promote non-Saccharomyces species of interest: saturating grape juice with carbon dioxide.

    Science.gov (United States)

    Chasseriaud, Laura; Coulon, Joana; Marullo, Philippe; Albertin, Warren; Bely, Marina

    2018-04-01

    Non-Saccharomyces yeast species, naturally found in grape must, may impact wine quality positively or negatively. In this study, a mixture of five non-Saccharomyces species (Torulaspora delbrueckii, Metschnikowia spp., Starmerella bacillaris (formerly called Candida zemplinina), Hanseniaspora uvarum, Pichia kluyveri), mimicking the composition of the natural non-Saccharomyces community found in grape must, was used for alcoholic fermentation. The impact of CO 2 saturation of the grape juice was studied first on this mixture alone, and then in the presence of Saccharomyces cerevisiae. Two isogenic strains of this species were used: the first with a short and the second a long fermentation lag phase. This study demonstrated that saturating grape juice with CO 2 had interesting potential as an oenological technique, inhibiting undesirable species (S. bacillaris and H. uvarum) and stimulating non-Saccharomyces of interest (T. delbrueckii and P. kluyveri). This stimulating effect was particularly marked when CO 2 saturation was associated with the presence of S. cerevisiae with long fermentation lag phase. The direct consequence of this association was an enhancement of 3-SH levels in the resulting wine.

  5. Transamination of cysteine-sulfinic acid by extracts of oat leaves

    International Nuclear Information System (INIS)

    Perez-Milan, H.; Schuack, J.; Fromageot, P.

    1960-01-01

    An aqueous extract of oat leaves catalyses a transamination between cysteine-sulfinic acid and α-ketoglutaric acid. Under the conditions utilized pyruvic acid is not an acceptor of the amino group. Neither cysteic nor aspartic acid are a substrate for the transaminase of cysteine-sulfinic acid. Reprint of a paper published in Biochimica et Biophysica Acta, Vol. 36, 1959, p. 73-83 [fr

  6. The Great Impostor: Transaminitis Masking the Coinfection of Syphilis and Human Immunodeficiency Virus

    Directory of Open Access Journals (Sweden)

    Sunit Tolia

    2017-01-01

    Full Text Available Introduction. The incidence of syphilis continues to rise in the United States over the past 15 years. This disease process is classified into stages and may present with a coinfection of Human Immunodeficiency Virus (HIV. Case Report. We present a case of a 32-year-old African American male who presented with cutaneous manifestations of secondary syphilis and transaminitis. A workup revealed that the transaminitis was secondary to underlying syphilitic hepatitis in the presence of HIV coinfection. The patient had a reactive rapid plasma reagin (RPR of 1 : 64 TU and reactive Treponema pallidum particle agglutination assay (TPPA. Lab findings showed alkaline phosphate (ALP of 648 unit/L, aspartate aminotransferase (AST of 251 unit/L, and alanine aminotransferase (ALT of 409 unit/L. Conclusion. Syphilitic hepatitis is a recognized entity in the medical literature. It is a manifestation of secondary syphilis and it is more commonly seen in coinfected patients with both syphilis and HIV. Therefore, primary care physicians should keep infectious etiologies (e.g., syphilis and HIV in the differential diagnosis of patients who present with unexplained liver dysfunction in a cholestatic pattern.

  7. Production of butyrate and caproate from a coculture of Sporomusa ovata and Clostridium kluyveri during MES

    DEFF Research Database (Denmark)

    Ammam, Fariza; Tremblay, Pier-Luc; Faraghi Parapari, Neda

    2014-01-01

    the lack of genetic tools. S. ovata is able to produceethanol and acetate while C. kluyveri uses these two compounds as carbon source and producesbutyrate and caproate.The first step was to optimize the growth medium for S. ovata to increase ethanol production. Theeffect of trace metal ions such as SeO4...

  8. Clinical effects of an antiplasmin agent (transamin) on stomatitis appearing during the treatment by chemotherapy and radiotherapy for malignant tumors of the head and the neck

    International Nuclear Information System (INIS)

    Kimura, Hiroshi; Suzuki, Hachiro; Aoyanagi, Masaru; Kato, Isao; Koike, Yoshiro

    1979-01-01

    The effects of transamin and pantocin to prevent and inhibit stomatitis were observed on 46 patients with malignant tumors of the head and the neck who underwent only radiotherapy (in which more than 4,000 rad of linear x-ray was irradiated) or both radiotherapy and chemotherapy. Transamin was administered singly to 21 patients and was administered together with pantocin to 25 patients. As a result, transamin administered singly was effective in 13 of 21 patients (62%) and that administered together with pantocin was effective in 18 of 25 (72%) although in controls treated with other drugs, the effective rate was 45% (9 of 20 controls). Transamin administered singly was ineffective in 3 patients (14%) and that administered together with pantocin was ineffective in 3 (12%), but in controls treated with other drugs, the ineffective rate was 20% (4 of 20 controls). Both radiotherapy and chemotherapy were completed without interruption on 18 patients administered only transamin (86%) and 22 patients administered transamin and pantocin (88%). It was suggested from the above-mentioned results that transamin administered singly or together with pantocin was effective in inhibiting stomatitis as compared to other drugs. (Tsunoda, M.)

  9. Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bojsen, Rasmus K; Andersen, Kaj Scherz; Regenberg, Birgitte

    2012-01-01

    Microbial biofilms can be defined as multi-cellular aggregates adhering to a surface and embedded in an extracellular matrix (ECM). The nonpathogenic yeast, Saccharomyces cerevisiae, follows the common traits of microbial biofilms with cell-cell and cell-surface adhesion. S. cerevisiae is shown t...

  10. Studies of 15N transamination following application of various tracer substances. 1

    International Nuclear Information System (INIS)

    Schadereit, R.; Krawielitzki, K.; Herrmann, U.

    1986-01-01

    4 groups of 3 growing Wistar rats each were orally given 15 N-labelled methionine, lysine, glycine and ammonia sulphate, resp., over 10 days. Measuring the 15 N accumulation in the amino acids (AA) of the body protein, the transamination of the individual 15 N substances and thus their suitability as tracer substances for studies of N metabolism was determined. None of the tested 15 N-AA achieved a proportionate labelling of all AA of the body protein. The AA used as tracer in each case showed the highest 15 N labelling. Of the amino- 15 N detected in the animal body, about 19% were found in Met after 15 N Met application, 88% in Lys after 15 N Lys application and 50% in Gly after 15 N Gly application. After the application of 15 N-ammonia sulphate about 42% of the body amino- 15 N are apportioned to the essential and 58% to the non-essential AA. Thus, this substance produces a more proportional labelling of the essential and non-essential AA of the body protein than 15 N-Gly. The following quotas of the 15 N amounts applied were found in the AA of the animal bodies: tracer substance lysine 52%, glycine 32%, ammonia sulphate 24%, methionine 21%. After summing up the amino acid 15 N amounts in the animal body, eliminating in each case the tracer AA and taking into account the molecular weight of the AA, there was a good agreement of the intensity of the accumulation of 15 N in the individual AA, irrespective of the applied tracer substance. (author)

  11. Tuning Chocolate Flavor through Development of Thermotolerant Saccharomyces cerevisiae Starter Cultures with Increased Acetate Ester Production

    Science.gov (United States)

    Meersman, Esther; Steensels, Jan; Struyf, Nore; Paulus, Tinneke; Saels, Veerle; Mathawan, Melissa; Allegaert, Leen; Vrancken, Gino

    2015-01-01

    Microbial starter cultures have extensively been used to enhance the consistency and efficiency of industrial fermentations. Despite the advantages of such controlled fermentations, the fermentation involved in the production of chocolate is still a spontaneous process that relies on the natural microbiota at cocoa farms. However, recent studies indicate that certain thermotolerant Saccharomyces cerevisiae cultures can be used as starter cultures for cocoa pulp fermentation. In this study, we investigate the potential of specifically developed starter cultures to modulate chocolate aroma. Specifically, we developed several new S. cerevisiae hybrids that combine thermotolerance and efficient cocoa pulp fermentation with a high production of volatile flavor-active esters. In addition, we investigated the potential of two strains of two non-Saccharomyces species that produce very large amounts of fruity esters (Pichia kluyveri and Cyberlindnera fabianii) to modulate chocolate aroma. Gas chromatography-mass spectrometry (GC-MS) analysis of the cocoa liquor revealed an increased concentration of various flavor-active esters and a decrease in spoilage-related off-flavors in batches inoculated with S. cerevisiae starter cultures and, to a lesser extent, in batches inoculated with P. kluyveri and Cyb. fabianii. Additionally, GC-MS analysis of chocolate samples revealed that while most short-chain esters evaporated during conching, longer and more-fat-soluble ethyl and acetate esters, such as ethyl octanoate, phenylethyl acetate, ethyl phenylacetate, ethyl decanoate, and ethyl dodecanoate, remained almost unaffected. Sensory analysis by an expert panel confirmed significant differences in the aromas of chocolates produced with different starter cultures. Together, these results show that the selection of different yeast cultures opens novel avenues for modulating chocolate flavor. PMID:26590272

  12. Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by β‐alanine transamination

    Science.gov (United States)

    Blancquaert, Laura; Baba, Shahid P.; Kwiatkowski, Sebastian; Stautemas, Jan; Stegen, Sanne; Barbaresi, Silvia; Chung, Weiliang; Boakye, Adjoa A.; Hoetker, J. David; Bhatnagar, Aruni; Delanghe, Joris; Vanheel, Bert; Veiga‐da‐Cunha, Maria; Derave, Wim

    2016-01-01

    Key points Using recombinant DNA technology, the present study provides the first strong and direct evidence indicating that β‐alanine is an efficient substrate for the mammalian transaminating enzymes 4‐aminobutyrate‐2‐oxoglutarate transaminase and alanine‐glyoxylate transaminase.The concentration of carnosine and anserine in murine skeletal and heart muscle depends on circulating availability of β‐alanine, which is in turn controlled by degradation of β‐alanine in liver and kidney.Chronic oral β‐alanine supplementation is a popular ergogenic strategy in sports because it can increase the intracellular carnosine concentration and subsequently improve the performance of high‐intensity exercises. The present study can partly explain why the β‐alanine supplementation protocol is so inefficient, by demonstrating that exogenous β‐alanine can be effectively routed toward oxidation. Abstract The metabolic fate of orally ingested β‐alanine is largely unknown. Chronic β‐alanine supplementation is becoming increasingly popular for improving high‐intensity exercise performance because it is the rate‐limiting precursor of the dipeptide carnosine (β‐alanyl‐l‐histidine) in muscle. However, only a small fraction (3–6%) of the ingested β‐alanine is used for carnosine synthesis. Thus, the present study aimed to investigate the putative contribution of two β‐alanine transamination enzymes, namely 4‐aminobutyrate‐2‐oxoglutarate transaminase (GABA‐T) and alanine‐glyoxylate transaminase (AGXT2), to the homeostasis of carnosine and its methylated analogue anserine. We found that, when transfected into HEK293T cells, recombinant mouse and human GABA‐T and AGXT2 are able to transaminate β‐alanine efficiently. The reaction catalysed by GABA‐T is inhibited by vigabatrin, whereas both GABA‐T and AGXT2 activity is inhibited by aminooxyacetic acid (AOA). Both GABA‐T and AGXT2 are highly expressed in the mouse liver and

  13. Molecular genetic diversity of the Saccharomyces yeasts in Taiwan: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii.

    Science.gov (United States)

    Naumov, Gennadi I; Lee, Ching-Fu; Naumova, Elena S

    2013-01-01

    Genetic hybridization, sequence and karyotypic analyses of natural Saccharomyces yeasts isolated in different regions of Taiwan revealed three biological species: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Intraspecies variability of the D1/D2 and ITS1 rDNA sequences was detected among S. cerevisiae and S. kudriavzevii isolates. According to molecular and genetic analyses, the cosmopolitan species S. cerevisiae and S. kudriavzevii contain local divergent populations in Taiwan, Malaysia and Japan. Six of the seven known Saccharomyces species are documented in East Asia: S. arboricola, S. bayanus, S. cerevisiae, S. kudriavzevii, S. mikatae, and S. paradoxus.

  14. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered.

    Science.gov (United States)

    Jolly, Neil P; Varela, Cristian; Pretorius, Isak S

    2014-03-01

    Saccharomyces cerevisiae and grape juice are 'natural companions' and make a happy wine marriage. However, this relationship can be enriched by allowing 'wild' non-Saccharomyces yeast to participate in a sequential manner in the early phases of grape must fermentation. However, such a triangular relationship is complex and can only be taken to 'the next level' if there are no spoilage yeast present and if the 'wine yeast' - S. cerevisiae - is able to exert its dominance in time to successfully complete the alcoholic fermentation. Winemakers apply various 'matchmaking' strategies (e.g. cellar hygiene, pH, SO2 , temperature and nutrient management) to keep 'spoilers' (e.g. Dekkera bruxellensis) at bay, and allow 'compatible' wild yeast (e.g. Torulaspora delbrueckii, Pichia kluyveri, Lachancea thermotolerans and Candida/Metschnikowia pulcherrima) to harmonize with potent S. cerevisiae wine yeast and bring the best out in wine. Mismatching can lead to a 'two is company, three is a crowd' scenario. More than 40 of the 1500 known yeast species have been isolated from grape must. In this article, we review the specific flavour-active characteristics of those non-Saccharomyces species that might play a positive role in both spontaneous and inoculated wine ferments. We seek to present 'single-species' and 'multi-species' ferments in a new light and a new context, and we raise important questions about the direction of mixed-fermentation research to address market trends regarding so-called 'natural' wines. This review also highlights that, despite the fact that most frontier research and technological developments are often focussed primarily on S. cerevisiae, non-Saccharomyces research can benefit from the techniques and knowledge developed by research on the former. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Amino acid transamination is crucial for ischaemic cardioprotection in normal and preconditioned isolated rat hearts--focus on L-glutamate

    DEFF Research Database (Denmark)

    Løfgren, Bo; Povlsen, Jonas Agerlund; Rasmussen, Lars Ege

    2010-01-01

    We have found that cardioprotection by l-glutamate mimics protection by classical ischaemic preconditioning (IPC). We investigated whether the effect of IPC involves amino acid transamination and whether IPC modulates myocardial glutamate metabolism. In a glucose-perfused, isolated rat heart model...... subjected to 40 min global no-flow ischaemia and 120 min reperfusion, the effects of IPC (2 cycles of 5 min ischaemia and 5 min reperfusion) and continuous glutamate (20 mm) administration during reperfusion on infarct size and haemodynamic recovery were studied. The effect of inhibiting amino acid...... transamination was evaluated by adding the amino acid transaminase inhibitor amino-oxyacetate (AOA; 0.025 mm) during reperfusion. Changes in coronary effluent, interstitial (microdialysis) and intracellular glutamate ([GLUT](i)) concentrations were measured. Ischaemic preconditioning and postischaemic glutamate...

  16. The Methionine Transamination Pathway Controls Hepatic Glucose Metabolism through Regulation of the GCN5 Acetyltransferase and the PGC-1α Transcriptional Coactivator*

    OpenAIRE

    Tavares, Clint D. J.; Sharabi, Kfir; Dominy, John E.; Lee, Yoonjin; Isasa, Marta; Orozco, Jose M.; Jedrychowski, Mark P.; Kamenecka, Theodore M.; Griffin, Patrick R.; Gygi, Steven P.; Puigserver, Pere

    2016-01-01

    Methionine is an essential sulfur amino acid that is engaged in key cellular functions such as protein synthesis and is a precursor for critical metabolites involved in maintaining cellular homeostasis. In mammals, in response to nutrient conditions, the liver plays a significant role in regulating methionine concentrations by altering its flux through the transmethylation, transsulfuration, and transamination metabolic pathways. A comprehensive understanding of how hepatic methionine metabol...

  17. Red blood cells in hemorrhagic shock: a critical role for glutaminolysis in fueling alanine transamination in rats.

    Science.gov (United States)

    Reisz, Julie A; Slaughter, Anne L; Culp-Hill, Rachel; Moore, Ernest E; Silliman, Christopher C; Fragoso, Miguel; Peltz, Erik D; Hansen, Kirk C; Banerjee, Anirban; D'Alessandro, Angelo

    2017-07-25

    Red blood cells (RBCs) are the most abundant host cell in the human body and play a critical role in oxygen transport and systemic metabolic homeostasis. Hypoxic metabolic reprogramming of RBCs in response to high-altitude hypoxia or anaerobic storage in the blood bank has been extensively described. However, little is known about the RBC metabolism following hemorrhagic shock (HS), the most common preventable cause of death in trauma, the global leading cause of total life-years lost. Metabolomics analyses were performed through ultra-high pressure liquid chromatography-mass spectrometry on RBCs from Sprague-Dawley rats undergoing HS (mean arterial pressure [MAP], 80 mm Hg). Steady-state measurements were accompanied by metabolic flux analysis upon tracing of in vivo-injected 13 C 15 N-glutamine or inhibition of glutaminolysis using the anticancer drug CB-839. RBC metabolic phenotypes recapitulated the systemic metabolic reprogramming observed in plasma from the same rodent model. Results indicate that shock RBCs rely on glutamine to fuel glutathione (GSH) synthesis and pyruvate transamination, whereas abrogation of glutaminolysis conferred early mortality and exacerbated lactic acidosis and systemic accumulation of succinate, a predictor of mortality in the military and civilian critically ill populations. Glutamine is here identified as an essential amine group donor in HS RBCs, plasma, liver, and lungs, providing additional rationale for the central role glutaminolysis plays in metabolic reprogramming and survival following severe hemorrhage.

  18. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri.

    Science.gov (United States)

    Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K

    2008-02-01

    Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0' = -410 mV) with NADH (E0' = -320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0' = -10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper.

  19. Yeast population dynamics reveal a potential 'collaboration' between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation.

    Science.gov (United States)

    Contreras, A; Curtin, C; Varela, C

    2015-02-01

    The wine sector is actively seeking strategies and technologies that facilitate the production of wines with lower alcohol content. One of the simplest approaches to achieve this aim would be the use of wine yeast strains which are less efficient at transforming grape sugars into ethanol; however, commercial wine yeasts have very similar ethanol yields. We recently demonstrated that Metschnikowia pulcherrima AWRI1149 was able to produce wine with reduced alcohol concentration when used in sequential inoculation with a wine strain of Saccharomyces cerevisiae. Here, different inoculation regimes were explored to study the effect of yeast population dynamics and potential yeast interactions on the metabolism of M. pulcherrima AWRI1149 during fermentation of non-sterile Shiraz must. Of all inoculation regimes tested, only ferments inoculated with M. pulcherrima AWRI1149 showed reduced ethanol concentration. Population dynamics revealed the presence of several indigenous yeast species and one of these, Saccharomyces uvarum (AWRI 2846), was able to produce wine with reduced ethanol concentration in sterile conditions. Both strains however, were inhibited when a combination of three non-Saccharomyces strains, Hanseniaspora uvarum AWRI863, Pichia kluyveri AWRI1896 and Torulaspora delbrueckii AWRI2845 were inoculated into must, indicating that the microbial community composition might impact on the growth of M. pulcherrima AWRI1149 and S. uvarum AWRI 2846. Our results indicate that mixed cultures of M. pulcherrima AWRI1149 and S. uvarum AWRI2846 enable an additional reduction of wine ethanol concentration compared to the same must fermented with either strain alone. This work thus provides a foundation to develop inoculation regimes for the successful application of non-cerevisiae yeast to the production of wines with reduced alcohol.

  20. Fungal genomics beyond Saccharomyces cerevisiae?

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Mcintyre, Mhairi; Nielsen, Jens

    2003-01-01

    Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious...

  1. A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction

    Directory of Open Access Journals (Sweden)

    Hanno Richter

    2016-11-01

    Full Text Available Carboxydotrophic bacteria (CTB have received attention due to their ability to synthesize commodity chemicals from producer gas and synthesis gas (syngas. CTB have an important advantage of a high product selectivity compared to chemical catalysts. However, the product spectrum of wild-type CTB is narrow. Our objective was to investigate whether a strategy of combining two wild-type bacterial strains into a single, continuously fed bioprocessing step would be promising to broaden the product spectrum. Here, we have operated a syngas-fermentation process with Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction through gas stripping and product condensing within the syngas recirculation line. The main products from C. ljungdahlii fermentation at a pH of 6.0 were ethanol and acetate at net volumetric production rates of 65.5 and 431 mmol C•L-1•d-1, respectively. An estimated 2/3 of total ethanol produced was utilized by C. kluyveri to chain elongate with the reverse β-oxidation pathway, resulting in n-butyrate and n-caproate at net rates of 129 and 70 mmol C•L-1•d-1, respectively. C. ljungdahlii likely reduced the produced carboxylates to their corresponding alcohols with the reductive power from syngas. This resulted in the longer-chain alcohols n-butanol, n-hexanol, and n-octanol at net volumetric production rates of 39.2, 31.7, and 0.045 mmol C•L-1•d-1, respectively. The continuous production of the longer-chain alcohols occurred only within a narrow pH spectrum of 5.7-6.4 due to the pH discrepancy between the two strains. Regardless whether other wild-type strains could overcome this pH discrepancy, the specificity (mol carbon in product per mol carbon in all other liquid products for each longer-chain alcohol may never be high in a single bioprocessing step. This, because two bioprocesses compete for intermediates (i.e., carboxylates: 1 chain elongation; and 2 biological reduction. This innate

  2. Kynurenine aminotransferase III and glutamine transaminase L are identical enzymes that have cysteine S-conjugate β-lyase activity and can transaminate L-selenomethionine.

    Science.gov (United States)

    Pinto, John T; Krasnikov, Boris F; Alcutt, Steven; Jones, Melanie E; Dorai, Thambi; Villar, Maria T; Artigues, Antonio; Li, Jianyong; Cooper, Arthur J L

    2014-11-07

    Three of the four kynurenine aminotransferases (KAT I, II, and IV) that synthesize kynurenic acid, a neuromodulator, are identical to glutamine transaminase K (GTK), α-aminoadipate aminotransferase, and mitochondrial aspartate aminotransferase, respectively. GTK/KAT I and aspartate aminotransferase/KAT IV possess cysteine S-conjugate β-lyase activity. The gene for the former enzyme, GTK/KAT I, is listed in mammalian genome data banks as CCBL1 (cysteine conjugate beta-lyase 1). Also listed, despite the fact that no β-lyase activity has been assigned to the encoded protein in the genome data bank, is a CCBL2 (synonym KAT III). We show that human KAT III/CCBL2 possesses cysteine S-conjugate β-lyase activity, as does mouse KAT II. Thus, depending on the nature of the substrate, all four KATs possess cysteine S-conjugate β-lyase activity. These present studies show that KAT III and glutamine transaminase L are identical enzymes. This report also shows that KAT I, II, and III differ in their ability to transaminate methyl-L-selenocysteine (MSC) and L-selenomethionine (SM) to β-methylselenopyruvate (MSP) and α-ketomethylselenobutyrate, respectively. Previous studies have identified these seleno-α-keto acids as potent histone deacetylase inhibitors. Methylselenol (CH3SeH), also purported to have chemopreventive properties, is the γ-elimination product of SM and the β-elimination product of MSC catalyzed by cystathionine γ-lyase (γ-cystathionase). KAT I, II, and III, in part, can catalyze β-elimination reactions with MSC generating CH3SeH. Thus, the anticancer efficacy of MSC and SM will depend, in part, on the endogenous expression of various KAT enzymes and cystathionine γ-lyase present in target tissue coupled with the ability of cells to synthesize in situ either CH3SeH and/or seleno-keto acid metabolites. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. A gene duplication led to specialized gamma-aminobutyrate and beta-alanine aminotransferase in yeast

    DEFF Research Database (Denmark)

    Andersen, Gorm; Andersen, Birgit; Dobritzsch, D.

    2007-01-01

    and related yeasts have two different genes/enzymes to apparently 'distinguish' between the two reactions in a single cell. It is likely that upon duplication similar to 200 million years ago, a specialized Uga1p evolved into a 'novel' transaminase enzyme with broader substrate specificity.......In humans, beta-alanine (BAL) and the neurotransmitter gamma-aminobutyrate (GABA) are transaminated by a single aminotransferase enzyme. Apparently, yeast originally also had a single enzyme, but the corresponding gene was duplicated in the Saccharomyces kluyveri lineage. SkUGA1 encodes a homologue...... to characterize the substrate specificity and kinetic parameters of the four enzymes. It was found that the cofactor pyridoxal 5'-phosphate is needed for enzymatic activity and alpha-ketoglutarate, and not pyruvate, as the amino group acceptor. SkPyd4p preferentially uses BAL as the amino group donor (V...

  4. Effects of fermentation by Saccharomyces cerevisiae and ...

    African Journals Online (AJOL)

    yassine

    2013-02-13

    Feb 13, 2013 ... Effect of Saccharomyces cerevisiae fermentation on the ... beetroot, fermentation, Saccharomyces cerevisiae, betalain compounds. ... by Saccharomyces cerevisiae strains (González et al., .... Both red and yellow pigments were influenced during S. .... in beverages such as white wine, grape fruit, and green.

  5. [Saccharomyces cerevisiae infections].

    Science.gov (United States)

    Souza Goebel, Cristine; de Mattos Oliveira, Flávio; Severo, Luiz Carlos

    2013-01-01

    Saccharomyces cerevisiae is an ubiquitous yeast widely used in industry and it is also a common colonizer of the human mucosae. However, the incidence of invasive infection by these fungi has significantly increased in the last decades. To evaluate the infection by S. cerevisiae in a hospital in southern Brazil during a period of 10 years (2000-2010). Review of medical records of patients infected by this fungus. In this period, 6 patients were found to be infected by S. cerevisiae. The age range of the patients was from 10 years to 84. Urine, blood, ascitic fluid, peritoneal dialysis fluid, and esophageal biopsy samples were analyzed. The predisposing factors were cancer, transplant, surgical procedures, renal failure, use of venous catheters, mechanical ventilation, hospitalization in Intensive Care Unit, diabetes mellitus, chemotherapy, corticosteroid use, and parenteral nutrition. Amphotericin B and fluconazole were the treatments of choice. Three of the patients died and the other 3 were discharged from hospital. We must take special precautions in emerging infections, especially when there are predisposing conditions such as immunosuppression or patients with serious illnesses. The rapid and specific diagnosis of S. cerevisiae infections is important for therapeutic decision. Furthermore, epidemiological and efficacy studies of antifungal agents are necessary for a better therapeutic approach. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  6. Glucose repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kayikci, Omur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluc......Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration...

  7. levadura Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    B. Aguilar Uscanga

    2005-01-01

    Full Text Available La pared celular de levaduras representa entre 20 a 30 % de la célula en peso seco. Está compuesta de polisacáridos complejos de β-glucanos, manoproteínas y quitina. Se estudió la composición de los polisacáridos contenidos en la pared celular de la Saccharomyces cerevisiae CEN.PK 113 y se observó el efecto de la variación de la fuente carbono (glucosa, sacarosa, galactosa, maltosa, manosa, etanol y pH (3, 4, 5, 6 en un medio mineral “cell factory”. Las células fueron recolectadas en fase exponencial y se extrajo la pared celular. Los extractos de pared se hidrolizaron con H2SO4 al 72% y las muestras fueron analizadas por cromatografía HPLC. Se realizó una prueba de resistencia al rompimiento celular con una β(1,3-glucanasa, y las células cultivadas a diferentes fuentes carbono y pH. Los resultados del análisis por HPLC, mostraron que la composición de los polisacáridos en la pared celular, varía considerablemente con las modificaciones del medio de cultivo. Se observó que las levaduras cultivadas en sacarosa tienen mayor porcentaje de pared celular (25% y mayor cantidad de glucanos (115µg/mg peso seco y mananos (131µg/mg peso seco, que aquellas levaduras cultivadas en etanol (13% en peso seco. Las levaduras cultivadas a pH 5 presentaron 19% de pared celular en peso seco, mientras que a pH 6 el porcentaje fue menor (14%. El análisis de resistencia al rompimiento celular, mostró que las células cultivadas en etanol y galactosa fueron resistentes al rompimiento enzimático. Se comparó este resultado con el contenido de polisacáridos en la pared celular y concluimos que la resistencia de la célula al rompimiento, no está ligada con la cantidad de β-glucanos contenidos en la pared celular, sino que va a depender del número de enlaces β(1,3 y β(1,6-glucanos, los cuales juegan un rol importante durante el ensamblaje de la pared

  8. Ethanol production from Jerusalem artichoke by strains of Saccharomyces cheresiensis and Saccharomyces beticus

    Energy Technology Data Exchange (ETDEWEB)

    Pourrat, H.; Barthomeuf, C.; Regerat, F.; Carnat, A.P.; Carnat, A.

    1983-03-01

    Ethanol production from Jerusalem artichoke which is the most interesting autochtonous material has been studied. Two selected and acclimatised strains of Saccharomyces: Saccharomyces cheresiensis and Saccharomyces beticus were retained. The fermentation conditions, exactly definited, makes it possible to obtain in 4 days a theoric yield.

  9. Physiological and biochemical effects of morphactin IT 3233 on callus and tumour tissues of Nicotiana tabacum L. cultured in vitro III. Transamination processes catalysed by aminotransferase L-alanine: 2-oxoglutarate

    Directory of Open Access Journals (Sweden)

    Z. Chirek

    2015-01-01

    Full Text Available An active alanine transaminase was found both in callus and tumour tissues of tobacco. The enzyme is more active in the latter tissue, and the reaction balance is strongly shifted towards alanine production, while in callus tissue towards glutamic acid formation. Morphactin applied to the tissue cultures stimulates markedly the enzyme activity only in callus. A negative correlation was observed between the intensity of transamination processes and enhanced synthesis of proteins in the tissues studied. Morphactin disturbs nitrogen metabolism in the callus tissue. Tumour tissue is more resistant to the action of this substance. The different hormonal activities in these tissues may be the cause of the different effects of morphactin.

  10. Effects of fermentation by Saccharomyces cerevisiae and ...

    African Journals Online (AJOL)

    yassine

    2013-02-13

    Feb 13, 2013 ... Full Length Research Paper. Effect of Saccharomyces cerevisiae fermentation on the ... 2003). Besides, several alcoholic beverages such as wine or liqueurs are obtained from fruit juices fermented by Saccharomyces ..... (2003). Kinetics of pigment release from hairy root cultures of Beta vulgaris under the ...

  11. Saccharomyces species in the Production of Beer

    Directory of Open Access Journals (Sweden)

    Graham G. Stewart

    2016-12-01

    Full Text Available The characteristic flavour and aroma of any beer is, in large part, determined by the yeast strain employed and the wort composition. In addition, properties such as flocculation, wort fermentation ability (including the uptake of wort sugars, amino acids, and peptides, ethanol and osmotic pressure tolerance together with oxygen requirements have a critical impact on fermentation performance. Yeast management between fermentations is also a critical brewing parameter. Brewer’s yeasts are mostly part of the genus Saccharomyces. Ale yeasts belong to the species Saccharomyces cerevisiae and lager yeasts to the species Saccharomyces pastorianus. The latter is an interspecies hybrid between S. cerevisiae and Saccharomyces eubayanus. Brewer’s yeast strains are facultative anaerobes—they are able to grow in the presence or absence of oxygen and this ability supports their property as an important industrial microorganism. This article covers important aspects of Saccharomyces molecular biology, physiology, and metabolism that is involved in wort fermentation and beer production.

  12. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Weinert, Brian Tate; Iesmantavicius, Vytautas; Moustafa, Tarek

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation...

  13. Glucose repression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kayikci, Ömur; Nielsen, Jens

    2015-09-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. © FEMS 2015.

  14. Metabolic Engineering of Probiotic Saccharomyces boulardii

    OpenAIRE

    Liu, Jing-Jing; Kong, In Iok; Zhang, Guo-Chang; Jayakody, Lahiru N.; Kim, Heejin; Xia, Peng-Fei; Kwak, Suryang; Sung, Bong Hyun; Sohn, Jung-Hoon; Walukiewicz, Hanna E.; Rao, Christopher V.; Jin, Yong-Su

    2016-01-01

    Saccharomyces boulardii is a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae. Therefore, S. boulardii is an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for...

  15. Saccharomyces genome database informs human biology

    OpenAIRE

    Skrzypek, Marek S; Nash, Robert S; Wong, Edith D; MacPherson, Kevin A; Hellerstedt, Sage T; Engel, Stacia R; Karra, Kalpana; Weng, Shuai; Sheppard, Travis K; Binkley, Gail; Simison, Matt; Miyasato, Stuart R; Cherry, J Michael

    2017-01-01

    Abstract The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is an expertly curated database of literature-derived functional information for the model organism budding yeast, Saccharomyces cerevisiae. SGD constantly strives to synergize new types of experimental data and bioinformatics predictions with existing data, and to organize them into a comprehensive and up-to-date information resource. The primary mission of SGD is to facilitate research into the biology of yeast and...

  16. Reconstruction of metabolic module with improved promoter strength increases the productivity of 2-phenylethanol in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wang, Zhaoyue; Jiang, Mingyue; Guo, Xuena; Liu, Zhaozheng; He, Xiuping

    2018-04-11

    2-phenylethanol (2-PE) is an important aromatic compound with a lovely rose-like scent. Saccharomyces cerevisiae is a desirable microbe for 2-PE production but its natural yield is not high, and one or two crucial genes' over-expression in S. cerevisiae did not improve 2-PE greatly. A new metabolic module was established here, in which, permease Gap1p for L-phenylalanine transportation, catalytic enzymes Aro8p, Aro10p and Adh2p in Ehrlich pathway respectively responsible for transamination, decarboxylation and reduction were assembled, besides, glutamate dehydrogenase Gdh2p was harbored for re-supplying another substrate 2-oxoglutarate, relieving product glutamate repression and regenerating cofactor NADH. Due to different promoter strengths, GAP1, ARO8, ARO9, ARO10, ADH2 and GDH2 in the new modularized YS58(G1-A8-A10-A2)-GDH strain enhanced 11.6-, 15.4-, 3.6-, 17.7-, 12.4- and 7.5-folds respectively, and crucial enzyme activities of aromatic aminotransferases and phenylpyruvate decarboxylase were 4.8- and 7-folds respectively higher than that of the control. Under the optimum medium and cell density, YS58(G1-A8-A10-A2)-GDH presented efficient 2-PE synthesis ability with ~ 6.3 g L -1 of 2-PE titer in 5-L fermenter reaching 95% of conversation ratio. Under fed-batch fermentation, 2-PE productivity at 24 h increased 29% than that of single-batch fermentation. Metabolic modularization with promoter strategy provides a new prospective for efficient 2-PE production.

  17. 2μ plasmid in Saccharomyces species and in Saccharomyces cerevisiae.

    Science.gov (United States)

    Strope, Pooja K; Kozmin, Stanislav G; Skelly, Daniel A; Magwene, Paul M; Dietrich, Fred S; McCusker, John H

    2015-12-01

    We determined that extrachromosomal 2μ plasmid was present in 67 of the Saccharomyces cerevisiae 100-genome strains; in addition to variation in the size and copy number of 2μ, we identified three distinct classes of 2μ. We identified 2μ presence/absence and class associations with populations, clinical origin and nuclear genotypes. We also screened genome sequences of S. paradoxus, S. kudriavzevii, S. uvarum, S. eubayanus, S. mikatae, S. arboricolus and S. bayanus strains for both integrated and extrachromosomal 2μ. Similar to S. cerevisiae, we found no integrated 2μ sequences in any S. paradoxus strains. However, we identified part of 2μ integrated into the genomes of some S. uvarum, S. kudriavzevii, S. mikatae and S. bayanus strains, which were distinct from each other and from all extrachromosomal 2μ. We identified extrachromosomal 2μ in one S. paradoxus, one S. eubayanus, two S. bayanus and 13 S. uvarum strains. The extrachromosomal 2μ in S. paradoxus, S. eubayanus and S. cerevisiae were distinct from each other. In contrast, the extrachromosomal 2μ in S. bayanus and S. uvarum strains were identical with each other and with one of the three classes of S. cerevisiae 2μ, consistent with interspecific transfer. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Enzymatic activities produced by mixed Saccharomyces and non-Saccharomyces cultures: relationship with wine volatile composition.

    Science.gov (United States)

    Maturano, Yolanda Paola; Assof, Mariela; Fabani, María Paula; Nally, María Cristina; Jofré, Viviana; Rodríguez Assaf, Leticia Anahí; Toro, María Eugenia; Castellanos de Figueroa, Lucía Inés; Vazquez, Fabio

    2015-11-01

    During certain wine fermentation processes, yeasts, and mainly non-Saccharomyces strains, produce and secrete enzymes such as β-glucosidases, proteases, pectinases, xylanases and amylases. The effects of enzyme activity on the aromatic quality of wines during grape juice fermentation, using different co-inoculation strategies of non-Saccharomyces and Saccharomyces cerevisiae yeasts, were assessed in the current study. Three strains with appropriate enological performance and high enzymatic activities, BSc562 (S. cerevisiae), BDv566 (Debaryomyces vanrijiae) and BCs403 (Candida sake), were assayed in pure and mixed Saccharomyces/non-Saccharomyces cultures. β-Glucosidase, pectinase, protease, xylanase and amylase activities were quantified during fermentations. The aromatic profile of pure and mixed cultures was determined at the end of each fermentation. In mixed cultures, non-Saccharomyces species were detected until day 4-5 of the fermentation process, and highest populations were observed in MSD2 (10% S. cerevisiae/90% D. vanrijiae) and MSC1 (1% S. cerevisiae/99% C. sake). According to correlation and multivariate analysis, MSD2 presented the highest concentrations of terpenes and higher alcohols which were associated with pectinase, amylase and xylanase activities. On the other hand, MSC1 high levels of β-glucosidase, proteolytic and xylanolytic activities were correlated to esters and fatty acids. Our study contributes to a better understanding of the effect of enzymatic activities by yeasts on compound transformations that occur during wine fermentation.

  19. Fatty acid metabolism in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    van Roermund, C. W. T.; Waterham, H. R.; IJlst, L.; Wanders, R. J. A.

    2003-01-01

    Peroxisomes are essential subcellular organelles involved in a variety of metabolic processes. Their importance is underlined by the identification of a large group of inherited diseases in humans in which one or more of the peroxisomal functions are impaired. The yeast Saccharomyces cerevisiae has

  20. Ferrofluid modified Saccharomyces cerevisiae cells for biocatalysis

    Czech Academy of Sciences Publication Activity Database

    Šafaříková, Miroslava; Maděrová, Zdeňka; Šafařík, Ivo

    2009-01-01

    Roč. 42, - (2009), s. 521-524 ISSN 0963-9969 R&D Projects: GA MPO 2A-1TP1/094; GA MŠk(CZ) OC 157 Institutional research plan: CEZ:AV0Z60870520 Keywords : Saccharomyces cerevisiae * magnetic fluid * hydrogen peroxide Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.414, year: 2009

  1. Excision repair and mutagenesis in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kilbey, Brian

    1987-01-01

    This and succeeding letters discuss the James and Kilbey (1977 and 1978) model for the initiation of u.v. mutagenesis in Saccharomyces cerevisiae and its application to include a number of chemical mutagens. The Baranowska et al (1987) results indicating the role of DNA replication, the differing mechanisms in Escherichia coli, are all discussed. (UK)

  2. Nitrogen Catabolite Repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hofman-Bang, H Jacob Peider

    1999-01-01

    In Saccharomyces cerevisiae the expression of all known nitrogen catabolite pathways are regulated by four regulators known as Gln3, Gat1, Da180, and Deh1. This is known as nitrogen catabolite repression (NCR). They bind to motifs in the promoter region to the consensus sequence S' GATAA 3'. Gln3...

  3. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  4. Fatal Saccharomyces Cerevisiae Aortic Graft Infection

    Science.gov (United States)

    Meyer, Michael (Technical Monitor); Smith, Davey; Metzgar, David; Wills, Christopher; Fierer, Joshua

    2002-01-01

    Saccharomyces cerevisiae is a yeast commonly used in baking and a frequent colonizer of human mucosal surfaces. It is considered relatively nonpathogenic in immunocompetent adults. We present a case of S. cerevisiae fungemia and aortic graft infection in an immunocompetent adult. This is the first reported case of S. cerevisiue fungemia where the identity of the pathogen was confirmed by rRNA sequencing.

  5. Regulation of trehalose metabolism in Saccharomyces

    International Nuclear Information System (INIS)

    Panek, A.D.; Costa-Carvalho, V.L.A.; Ortiz, C.H.D.; Dellamora-Ortiz, G.M.; Paschoalin, V.M.F.; Panek, A.C.

    1984-01-01

    The regulation of trehalose metabolism in Saccharomyces is studied by construction of mutants with specific lesions, cloning of genes involved in the regulation of trehalose synthase and of trehalase, as well as, isolation and purification of enzymes from the various mutants constructed. (M.A.C.) [pt

  6. Characterisation of Saccharomyces cerevisiae hybrids selected for ...

    African Journals Online (AJOL)

    Wine yeasts (Saccharomyces cerevisiae) vary in their ability to develop the full aroma potential of Sauvignon blanc wine due to an inability to release volatile thiols. Subsequently, the use of 'thiolreleasing' wine yeasts (TRWY) has increased in popularity. However, anecdotal evidence suggests that some commercially ...

  7. Hybridization of Palm Wine Yeasts ( Saccharomyces Cerevisiae ...

    African Journals Online (AJOL)

    Haploid auxotrophic strains of Saccharomyces cerevisiae were selected from palm wine and propagated by protoplast fusion with Brewers yeast. Fusion resulted in an increase in both ethanol production and tolerance against exogenous ethanol. Mean fusion frequencies obtained for a mating types ranged between 8 x ...

  8. Substrate Channelling and Energetics of Saccharomyces cerevisiae ...

    African Journals Online (AJOL)

    Data collected during the high-cell-density cultivation of Saccharomyces cerevisiae DSM 2155 on glucose in a simulated five-phase feeding strategy of fed-batch process, executed on the Universal BIoprocess CONtrol (UBICON) system using 150L bioreactor over a period of 24h have been analysed. The consistency of the ...

  9. The Industrial Age of Biocatalytic Transamination.

    Science.gov (United States)

    Fuchs, Michael; Farnberger, Judith E; Kroutil, Wolfgang

    2015-11-01

    During the last decade the use of ω-transaminases has been identified as a very powerful method for the preparation of optically pure amines from the corresponding ketones. Their immense potential for the preparation of chiral amines, together with their ease of use in combination with existing biocatalytic methods, have made these biocatalysts a competitor to any chemical methodology for (asymmetric) amination. An increasing number of examples, especially from industry, shows that this biocatalytic technology outmaneuvers existing chemical processes by its simple and flexible nature. In the last few years numerous publications and patents on synthetic routes, mainly to pharmaceuticals, involving ω-transaminases have been published. The review gives an overview of the application of ω-transaminases in organic synthesis with a focus on active pharmaceutical ingredients (APIs) and the developments during the last few years.

  10. The Saccharomyces Genome Database Variant Viewer.

    Science.gov (United States)

    Sheppard, Travis K; Hitz, Benjamin C; Engel, Stacia R; Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C; Dalusag, Kyla S; Demeter, Janos; Hellerstedt, Sage T; Karra, Kalpana; Nash, Robert S; Paskov, Kelley M; Skrzypek, Marek S; Weng, Shuai; Wong, Edith D; Cherry, J Michael

    2016-01-04

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source web application for the visualization of genomic and proteomic differences. Multiple sequence alignments have been constructed across high quality genome sequences from 11 different S. cerevisiae strains and stored in the SGD. The alignments and summaries are encoded in JSON and used to create a two-tiered dynamic view of the budding yeast pan-genome, available at http://www.yeastgenome.org/variant-viewer. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Beneficial properties of probiotic yeast Saccharomyces boulardii

    OpenAIRE

    Tomičić Zorica M.; Čolović Radmilo R.; Čabarkapa Ivana S.; Vukmirović Đuro M.; Đuragić Olivera M.; Tomičić Ružica M.

    2016-01-01

    Saccharomyces boulardii is unique probiotic and biotherapeutic yeast, known to survive in gastric acidity and it is not adversely affected or inhibited by antibiotics or does not alter or adversely affect the normal microbiota. S. boulardii has been utilized worldwide as a probiotic supplement to support gastrointestinal health. The multiple mechanisms of action of S. boulardii and its properties may explain its efficacy and beneficial effects in acute and chronic gastrointestinal diseases th...

  12. Saccharomyces cerevisiae metabolism in ecological context

    OpenAIRE

    Jouhten, Paula; Ponomarova, Olga; González García, Ramón; Patil, Kiran R.

    2016-01-01

    The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype?metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype?phenotype relations may originate in the evolutionarily shaped cellular operating principles ...

  13. Studies of Saccharomyces cerevisiae and Non-Saccharomyces Yeasts during Alcoholic Fermentation

    DEFF Research Database (Denmark)

    Kemsawasd, Varongsiri

    The early death of non-Saccharomyces yeasts during mixed culture spontaneous wine fermentation has traditionally been attributed to the lower capacity of these yeast species to withstand high levels of ethanol, low pH, and other media properties that are a part of progressing fermentation. However......, other yeast-yeast interactions, such as cell-cell contact mediated growth arrest and/or toxininduced death may also be a significant factor in the relative fragility of these non-Saccharomyces yeasts in mixed culture fermentation. In the present work we evaluate the combined roles of cell-cell contact...... and/or antimicrobial peptides on the early death of Lachancea thermotolerans during mixed culture fermentations with Saccharomyces cerevisiae. Using a specially designed double compartment fermentation system, we established that both cell-to-cell contact and antimicrobial peptides contribute...

  14. Functional expression of rat VPAC1 receptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, M.K.; Tams, J.W.; Fahrenkrug, Jan

    1999-01-01

    G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide......G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide...

  15. Investigation of autonomous cell cycle oscillation in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, Morten Skov

    2007-01-01

    Autonome Oscillationer i kontinuert kultivering af Saccharomyces cerevisiae Udgangspunktet for dette Ph.d. projekt var at søge at forstå, hvad der gør det muligt at opnå multiple statiske tilstande ved kontinuert kultivering af Saccharomyces cerevisiae med glukose som begrænsende substrat...

  16. The ecology and evolution of non-domesticated Saccharomyces species.

    Science.gov (United States)

    Boynton, Primrose J; Greig, Duncan

    2014-12-01

    Yeast researchers need model systems for ecology and evolution, but the model yeast Saccharomyces cerevisiae is not ideal because its evolution has been affected by domestication. Instead, ecologists and evolutionary biologists are focusing on close relatives of S. cerevisiae, the seven species in the genus Saccharomyces. The best-studied Saccharomyces yeast, after S. cerevisiae, is S. paradoxus, an oak tree resident throughout the northern hemisphere. In addition, several more members of the genus Saccharomyces have recently been discovered. Some Saccharomyces species are only found in nature, while others include both wild and domesticated strains. Comparisons between domesticated and wild yeasts have pinpointed hybridization, introgression and high phenotypic diversity as signatures of domestication. But studies of wild Saccharomyces natural history, biogeography and ecology are only beginning. Much remains to be understood about wild yeasts' ecological interactions and life cycles in nature. We encourage researchers to continue to investigate Saccharomyces yeasts in nature, both to place S. cerevisiae biology into its ecological context and to develop the genus Saccharomyces as a model clade for ecology and evolution. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  17. Saccharomyces eubayanus and Saccharomyces arboricola reside in North Island native New Zealand forests.

    Science.gov (United States)

    Gayevskiy, Velimir; Goddard, Matthew R

    2016-04-01

    Saccharomyces is one of the best-studied microbial genera, but our understanding of the global distributions and evolutionary histories of its members is relatively poor. Recent studies have altered our view of Saccharomyces' origin, but a lack of sampling from the vast majority of the world precludes a holistic perspective. We evaluate alternate Gondwanan and Far East Asian hypotheses concerning the origin of these yeasts. Being part of Gondwana, and only colonized by humans in the last ∼1000 years, New Zealand represents a unique environment for testing these ideas. Genotyping and ribosomal sequencing of samples from North Island native forest parks identified a widespread population of Saccharomyces. Whole genome sequencing identified the presence of S. arboricola and S. eubayanus in New Zealand, which is the first report of S. arboricola outside Far East Asia, and also expands S. eubayanus' known distribution to include the Oceanic region. Phylogenomic approaches place the S. arboricola population as significantly diverged from the only other sequenced Chinese isolate but indicate that S. eubayanus might be a recent migrant from South America. These data tend to support the Far East Asian origin of the Saccharomyces, but the history of this group is still far from clear. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Saccharomyces eubayanus and Saccharomyces uvarum associated with the fermentation of Araucaria araucana seeds in Patagonia.

    Science.gov (United States)

    Rodríguez, M Eugenia; Pérez-Través, Laura; Sangorrín, Marcela P; Barrio, Eladio; Lopes, Christian A

    2014-09-01

    Mudai is a traditional fermented beverage, made from the seeds of the Araucaria araucana tree by Mapuche communities. The main goal of the present study was to identify and characterize the yeast microbiota responsible of Mudai fermentation as well as from A. araucana seeds and bark from different locations in Northern Patagonia. Only Hanseniaspora uvarum and a commercial bakery strain of Saccharomyces cerevisiae were isolated from Mudai and all Saccharomyces isolates recovered from A. araucana seed and bark samples belonged to the cryotolerant species Saccharomyces eubayanus and Saccharomyces uvarum. These two species were already reported in Nothofagus trees from Patagonia; however, this is the first time that they were isolated from A. araucana, which extends their ecological distribution. The presence of these species in A. araucana seeds and bark samples, led us to postulate a potential role for them as the original yeasts responsible for the elaboration of Mudai before the introduction of commercial S. cerevisiae cultures. The molecular and genetic characterization of the S. uvarum and S. eubayanus isolates and their comparison with European S. uvarum strains and S. eubayanus hybrids (S. bayanus and S. pastorianus), allowed their ecology and evolution us to be examined. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Apoptosis - Triggering Effects: UVB-irradiation and Saccharomyces cerevisiae.

    Science.gov (United States)

    Behzadi, Payam; Behzadi, Elham

    2012-12-01

    The pathogenic disturbance of Saccharomyces cerevisiae is known as a rare but invasive nosocomial fungal infection. This survey is focused on the evaluation of apoptosis-triggering effects of UVB-irradiation in Saccharomyces cerevisiae. The well-growth colonies of Saccharomyces cerevisiae on Sabouraud Dextrose Agar (SDA) were irradiated within an interval of 10 minutes by UVB-light (302 nm). Subsequently, the harvested DNA molecules of control and UV-exposed yeast colonies were run through the 1% agarose gel electrophoresis comprising the luminescent dye of ethidium bromide. No unusual patterns including DNA laddering bands or smears were detected. The applied procedure for UV exposure was not effective for inducing apoptosis in Saccharomyces cerevisiae. So, it needs another UV-radiation protocol for inducing apoptosis phenomenon in Saccharomyces cerevisiae.

  20. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors.

    Science.gov (United States)

    Stribny, Jiri; Gamero, Amparo; Pérez-Torrado, Roberto; Querol, Amparo

    2015-07-16

    Higher alcohols and acetate esters are important flavour and aroma components in the food industry. In alcoholic beverages these compounds are produced by yeast during fermentation. Although Saccharomyces cerevisiae is one of the most extensively used species, other species of the Saccharomyces genus have become common in fermentation processes. This study analyses and compares the production of higher alcohols and acetate esters from their amino acidic precursors in three Saccharomyces species: Saccharomyces kudriavzevii, Saccharomyces uvarum and S. cerevisiae. The global volatile compound analysis revealed that S. kudriavzevii produced large amounts of higher alcohols, whereas S. uvarum excelled in the production of acetate esters. Particularly from phenylalanine, S. uvarum produced the largest amounts of 2-phenylethyl acetate, while S. kudriavzevii obtained the greatest 2-phenylethanol formation from this precursor. The present data indicate differences in the amino acid metabolism and subsequent production of flavour-active higher alcohols and acetate esters among the closely related Saccharomyces species. This knowledge will prove useful for developing new enhanced processes in fragrance, flavour, and food industries. Copyright © 2015. Published by Elsevier B.V.

  1. Biocuration at the Saccharomyces genome database.

    Science.gov (United States)

    Skrzypek, Marek S; Nash, Robert S

    2015-08-01

    Saccharomyces Genome Database is an online resource dedicated to managing information about the biology and genetics of the model organism, yeast (Saccharomyces cerevisiae). This information is derived primarily from scientific publications through a process of human curation that involves manual extraction of data and their organization into a comprehensive system of knowledge. This system provides a foundation for further analysis of experimental data coming from research on yeast as well as other organisms. In this review we will demonstrate how biocuration and biocurators add a key component, the biological context, to our understanding of how genes, proteins, genomes and cells function and interact. We will explain the role biocurators play in sifting through the wealth of biological data to incorporate and connect key information. We will also discuss the many ways we assist researchers with their various research needs. We hope to convince the reader that manual curation is vital in converting the flood of data into organized and interconnected knowledge, and that biocurators play an essential role in the integration of scientific information into a coherent model of the cell. © 2015 Wiley Periodicals, Inc.

  2. Metabolic Engineering of Probiotic Saccharomyces boulardii.

    Science.gov (United States)

    Liu, Jing-Jing; Kong, In Iok; Zhang, Guo-Chang; Jayakody, Lahiru N; Kim, Heejin; Xia, Peng-Fei; Kwak, Suryang; Sung, Bong Hyun; Sohn, Jung-Hoon; Walukiewicz, Hanna E; Rao, Christopher V; Jin, Yong-Su

    2016-04-01

    Saccharomyces boulardiiis a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae Therefore, S. boulardiiis an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for metabolic engineering. Here, we report the development of well-defined auxotrophic mutants (leu2,ura3,his3, and trp1) through clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-based genome editing. The resulting auxotrophic mutants can be used as a host for introducing various genetic perturbations, such as overexpression or deletion of a target gene, using existing genetic tools forS. cerevisiae We demonstrated the overexpression of a heterologous gene (lacZ), the correct localization of a target protein (red fluorescent protein) into mitochondria by using a protein localization signal, and the introduction of a heterologous metabolic pathway (xylose-assimilating pathway) in the genome ofS. boulardii We further demonstrated that human lysozyme, which is beneficial for human gut health, could be secreted by S. boulardii Our results suggest that more sophisticated genetic perturbations to improveS. boulardii can be performed without using a drug resistance marker, which is a prerequisite for in vivo applications using engineeredS. boulardii. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Genomic insights into the Saccharomyces sensu stricto complex.

    Science.gov (United States)

    Borneman, Anthony R; Pretorius, Isak S

    2015-02-01

    The Saccharomyces sensu stricto group encompasses species ranging from the industrially ubiquitous yeast Saccharomyces cerevisiae to those that are confined to geographically limited environmental niches. The wealth of genomic data that are now available for the Saccharomyces genus is providing unprecedented insights into the genomic processes that can drive speciation and evolution, both in the natural environment and in response to human-driven selective forces during the historical "domestication" of these yeasts for baking, brewing, and winemaking. Copyright © 2015 by the Genetics Society of America.

  4. Saccharomyces cerevisiae var. boulardii fungemia following probiotic treatment

    Directory of Open Access Journals (Sweden)

    Marcelo C. Appel-da-Silva

    2017-12-01

    Full Text Available Probiotics are commonly prescribed as an adjuvant in the treatment of antibiotic-associated diarrhea caused by Clostridium difficile. We report the case of an immunocompromised 73-year-old patient on chemotherapy who developed Saccharomyces cerevisiae var. boulardii fungemia in a central venous catheter during treatment of antibiotic-associated pseudomembranous colitis with the probiotic Saccharomyces cerevisiae var. boulardii. Fungemia was resolved after interruption of probiotic administration without the need to replace the central venous line. Keywords: Saccharomyces, Probiotics, Fungemia, Critical illness, Clostridium difficile

  5. Evaluation of different co-inoculation time of non-Saccharomyces/Saccharomyces yeasts in order to obtain reduced ethanol wines

    Directory of Open Access Journals (Sweden)

    Mestre María Victoria

    2016-01-01

    Full Text Available Decreasing ethanol content in wines has become one of the main objectives of winemakers in different areas of the world. The use of selected wine yeasts can be considered one of the most effective and simple tools. The aim of this study was to evaluate the effect of co-inoculation times of selected non-Saccharomyces/Saccharomyces yeasts on the reduction of ethanol levels in wines. Hanseniaspora uvarum BHu9, Starmerella bacillaris BSb55 and Candida membranaefasciens BCm71 were co-inoculate with Saccharomyces cerevisiae under fermentative conditions. Treatments assayed were: pure fermentations of S. cerevisiae BSc203 and non-Saccharomyces yeasts BHu9, BSb55 and BCm71; -co-fermentations: A-BHu9/BSc203; B-BSb55/BSc203 and C-BCm71/BSc203. These co-inoculations were carried out under mixed (simultaneous inoculation, and sequential conditions (non-Saccharomyces yeasts inoculated at initial time and S. cerevisiae at 48, 96 and 144 h. Lower fermentative efficiencies were registered when BHu9 and BSb55 remained pure more time. Conversely, the conversion efficiency was reduced in co-inocula of BCm71/BSc203, when both yeasts interact more time. Metabolites produced during all vinification processes were within acceptable concentration ranges according to the current legislations. Conclusion Time interaction during fermentation processes of non-Saccharomyces and Saccharomyces yeasts showed influence on ethanol production, and this effect would be dependent on the co-inoculated species.

  6. Content of endogenous thiols and radioresistance of gemmating cells of Saccharomyces ellipsoideus and Saccharomyces cerevisiale yeasts

    International Nuclear Information System (INIS)

    Simonyan, N.V.; Avakyan, Ts.M.; Dzhanpoladyan, N.L.; Stepanyan, L.G.

    1983-01-01

    It has been shown that gemmating cells of ''wild type'' yeasts are more radioresistant and contain more endogenous thiols, than resting cells. Gemmating cells of Saccharomyces cerevisial yeasts, carrying the mutation rad 51, as to radioresistance and content of SH groups do not differ from resting cells. The results obtained testify to a connec-- tion between increased radioresistance of the yeast gemmating cells and increased content of endogenous thiols in them

  7. Gains and Losses of Transcription Factor Binding Sites in Saccharomyces cerevisiae and Saccharomyces paradoxus.

    Science.gov (United States)

    Schaefke, Bernhard; Wang, Tzi-Yuan; Wang, Chuen-Yi; Li, Wen-Hsiung

    2015-07-27

    Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains). © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Tolerance to winemaking stress conditions of Patagonian strains of Saccharomyces eubayanus and Saccharomyces uvarum.

    Science.gov (United States)

    Origone, A C; Del Mónaco, S M; Ávila, J R; González Flores, M; Rodríguez, M E; Lopes, C A

    2017-08-01

    Evaluating the winemaking stress tolerance of a set of both Saccharomyces eubayanus and Saccharomyces uvarum strains from diverse Patagonian habitats. Yeast strains growth was analysed under increasing ethanol concentrations; all of them were able to grow until 8% v/v ethanol. The effect of different temperature and pH conditions as well as at SO 2 and hexose concentrations was evaluated by means of a central composite experimental design. Only two S. uvarum strains (NPCC 1289 and 1321) were able to grow in most stress conditions. Kinetic parameters analysed (μ max and λ) were statistically affected by temperature, pH and SO 2 , but not influenced by sugar concentration. The obtained growth model was used for predicting optimal growth conditions for both strains: 20°C, 0% w/v SO 2 and pH 4·5. Strains from human-associated environments (chichas) presented the highest diversity in the response to different stress factors. Two S. uvarum strains from chichas demonstrated to be the most tolerant to winemaking conditions. This work evidenced the potential use of two S. uvarum yeast strains as starter cultures in wines fermented at low temperatures. Saccharomyces eubayanus was significantly affected by winemaking stress conditions, limiting its use in this industry. © 2017 The Society for Applied Microbiology.

  9. Gains and Losses of Transcription Factor Binding Sites in Saccharomyces cerevisiae and Saccharomyces paradoxus

    Science.gov (United States)

    Schaefke, Bernhard; Wang, Tzi-Yuan; Wang, Chuen-Yi; Li, Wen-Hsiung

    2015-01-01

    Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains). PMID:26220934

  10. Review of Saccharomyces boulardii as a treatment option in IBD

    DEFF Research Database (Denmark)

    Sivananthan, Kavitha; Petersen, Andreas Munk

    2018-01-01

    CONTEXT: Review of the yeast Saccharomyces boulardii as a treatment option for the inflammatory bowel diseases (IBD) ulcerative colitis and Crohn's disease. OBJECTIVE: IBD is caused by an inappropriate immune response to gut microbiota. Treatment options could therefore be prebiotics, probiotics......, antibiotics and/or fecal transplant. In this review, we have looked at the evidence for the yeast S. boulardii as a treatment option. MATERIAL AND METHODS: Searches in PubMed and the Cochrane Library with the MeSH words 'Saccharomyces boulardii AND IBD', 'Saccharomyces boulardii AND Inflammatory Bowel Disease....... Saccharomyces boulardii is, however, a plausible treatment option in the future, but more placebo-controlled clinical studies on both patients with ulcerative colitis and Crohn's disease are needed....

  11. Organization of Replication of Ribosomal DNA in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Linskens, Maarten H.K.; Huberman, Joel A.

    1988-01-01

    Using recently developed replicon mapping techniques, we have analyzed the replication of the ribosomal DNA in Saccharomyces cerevisiae. The results show that (i) the functional origin of replication colocalizes with an autonomously replicating sequence element previously mapped to the

  12. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network

    DEFF Research Database (Denmark)

    Förster, Jochen; Famili, I.; Fu, P.

    2003-01-01

    The metabolic network in the yeast Saccharomyces cerevisiae was reconstructed using currently available genomic, biochemical, and physiological information. The metabolic reactions were compartmentalized between the cytosol and the mitochondria, and transport steps between the compartments...

  13. Adaption of Saccharomyces cerevisiae expressing a heterologous protein

    DEFF Research Database (Denmark)

    Krogh, Astrid Mørkeberg; Beck, Vibe; Højlund Christensen, Lars

    2008-01-01

    Production of the heterologous protein, bovine aprotinin, in Saccharomyces cerevisiae was shown to affect the metabolism of the host cell to various extent depending on the strain genotype. Strains with different genotypes, industrial and laboroatory, respectively, were investigated. The maximal...

  14. Effect of Saccharomyces cerevisiae fermentation on the colorants of ...

    African Journals Online (AJOL)

    Effect of Saccharomyces cerevisiae fermentation on the colorants of heated red beetroot extracts. Hayet Ben Haj Koubaier, Ismahen Essaidi, Ahmed Snoussi, Slim Zgoulli, Mohamed Moncef Chaabouni, Phillipe Thonart, Nabiha Bouzouita ...

  15. Sporulation in the Budding Yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Neiman, Aaron M.

    2011-01-01

    In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae. PMID:22084423

  16. Molecular Basis for Saccharomyces cerevisiae Biofilm Development

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz

    In this study, I sought to identify genes regulating the global molecular program for development of sessile multicellular communities, also known as biofilm, of the eukaryotic microorganism, Saccharomyces cerevisiae (yeast). Yeast biofilm has a clinical interest, as biofilms can cause chronic...... infections in humans. Biofilm is also interesting from an evolutionary standpoint, as an example of primitive multicellularity. By using a genome-wide screen of yeast deletion mutants, I show that 71 genes are essential for biofilm formation. Two-thirds of these genes are required for transcription of FLO11......, but only a small subset is previously described as regulators of FLO11. These results reveal that the regulation of biofilm formation and FLO11 is even more complex than what has previously been described. I find that the molecular program for biofilm formation shares many essential components with two...

  17. [Urinary infection by Saccharomyces cerevisiae: Emerging yeast?].

    Science.gov (United States)

    Elkhihal, B; Elhalimi, M; Ghfir, B; Mostachi, A; Lyagoubi, M; Aoufi, S

    2015-12-01

    Saccharomyces cerevisiae is a commensal yeast of the digestive, respiratory and genito-urinary tract. It is widely used as a probiotic for the treatment of post-antibiotic diarrhea. It most often occurs in immunocompromised patients frequently causing fungemia. We report the case of an adult diabetic patient who had a urinary tract infection due to S. cerevisiae. The disease started with urination associated with urinary frequency burns without fever. The diagnosis was established by the presence of yeasts on direct examination and positivity of culture on Sabouraud-chloramphenicol three times. The auxanogramme gallery (Auxacolor BioRad(®)) allowed the identification of S. cerevisiae. The patient was put on fluconazole with good outcome. This observation points out that this is an opportunistic yeast in immunocompromised patients. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Social wasps are a Saccharomyces mating nest.

    Science.gov (United States)

    Stefanini, Irene; Dapporto, Leonardo; Berná, Luisa; Polsinelli, Mario; Turillazzi, Stefano; Cavalieri, Duccio

    2016-02-23

    The reproductive ecology of Saccharomyces cerevisiae is still largely unknown. Recent evidence of interspecific hybridization, high levels of strain heterozygosity, and prion transmission suggest that outbreeding occurs frequently in yeasts. Nevertheless, the place where yeasts mate and recombine in the wild has not been identified. We found that the intestine of social wasps hosts highly outbred S. cerevisiae strains as well as a rare S. cerevisiae×S. paradoxus hybrid. We show that the intestine of Polistes dominula social wasps favors the mating of S. cerevisiae strains among themselves and with S. paradoxus cells by providing a succession of environmental conditions prompting cell sporulation and spores germination. In addition, we prove that heterospecific mating is the only option for European S. paradoxus strains to survive in the gut. Taken together, these findings unveil the best hidden secret of yeast ecology, introducing the insect gut as an environmental alcove in which crosses occur, maintaining and generating the diversity of the ascomycetes.

  19. Modification of mutation frequency in Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Vashishat, R.K.; Kakar, S.N.

    1976-01-01

    In a reverse mutation system, using haploid, histidine-requirinq strain of Saccharomyces cerevisiae, the frequency of uv-induced prototrophs increased if the post-irradiation minimal medium was supplemented with limited amounts of histidine. Addition of natural amino acids or RNA bases in the post-irradiation minimal medium, with or without histidine, also increased the uv-induced mutation frequency. Thus, post-irradiation conditions favouring protein and RNA synthesis, are effective in increasing uv-induced mutations in yeast. As compared to uv light, nitrous acid was more effective in inducing reversions in this strain and the frequency increased if the treated cells were plated on minimal medium supplemented with limited amounts of histidine. However, the addition of amino acids or RNA bases decreased the number of revertants. An additional inclusion of histidine reversed the suppressive effect of these metabolites. The mutation induction processes are thus different or differently modifiable in uv and nitrous acid. (author)

  20. Probiotic Properties of Non-Saccharomyces Yeasts

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech

    to harmless luminal substances is a key feature of the intestinal immune system. In this context, dendritic cells (DCs) present in the tissues lining the human gut are central players involved in microbial sensing and shaping of appropriate adaptive immune responses. Probiotics are live microorganisms which...... when administered in adequate amounts confer a health benefit on the host. While the majority of probiotic microorganisms studied to date are lactic acid bacteria, research in yeasts with potentially beneficial influences on human health has mainly revolved around Saccharomyces boulardii. This yeast...... has shown a positive impact on disease outcome in clinical studies of inflammatory bowel disease, indicating an ability of S. boulardii to influence human immune responses underlying intestinal inflammation. Consequent to this focus on S. boulardii as the fundamental probiotic yeast, very little...

  1. Beneficial properties of probiotic yeast Saccharomyces boulardii

    Directory of Open Access Journals (Sweden)

    Tomičić Zorica M.

    2016-01-01

    Full Text Available Saccharomyces boulardii is unique probiotic and biotherapeutic yeast, known to survive in gastric acidity and it is not adversely affected or inhibited by antibiotics or does not alter or adversely affect the normal microbiota. S. boulardii has been utilized worldwide as a probiotic supplement to support gastrointestinal health. The multiple mechanisms of action of S. boulardii and its properties may explain its efficacy and beneficial effects in acute and chronic gastrointestinal diseases that have been confirmed by clinical trials. Caution should be taken in patients with risk factors for adverse events. Its potential application in various dairy foods could offer an alternative probiotic product to people suffering from antibiotic-associated diarrhea. This review discusses the evidence for efficacy and safety of S. boulardii as a probiotic for the prevention and therapy of gastrointestinal disorders in humans.

  2. Study on biosorption of uranium by alginate immobilized saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Wang Baoe; Xu Weichang; Xie Shuibo; Guo Yangbin

    2005-01-01

    Saccharomyces cerevisiae has great capability of biosorption of uranium. The maxium uptake is 172.4 mg/g according to this study. To adapt to the application of the biomass in the field, the biosorption of uranium by cross-linked and alginate calcium immobilized Saccharomyces cerevisiae is studied. Results indicate the maxium uptake is 185.2 mg/g by formaldehyde cross-linked biomass, and it is 769.2 mg/g by alginate calcium immobilized biomass. (authors)

  3. Saccharomyces cerevisiae var. boulardii fungemia following probiotic treatment

    OpenAIRE

    Appel-da-Silva, Marcelo C.; Narvaez, Gabriel A.; Perez, Leandro R.R.; Drehmer, Laura; Lewgoy, Jairo

    2017-01-01

    Probiotics are commonly prescribed as an adjuvant in the treatment of antibiotic-associated diarrhea caused by Clostridium difficile. We report the case of an immunocompromised 73-year-old patient on chemotherapy who developed Saccharomyces cerevisiae var. boulardii fungemia in a central venous catheter during treatment of antibiotic-associated pseudomembranous colitis with the probiotic Saccharomyces cerevisiae var. boulardii. Fungemia was resolved after interruption of probiotic administrat...

  4. Experience with Saccharomyces boulardii Probiotic in Oncohaematological Patients.

    Science.gov (United States)

    Sulik-Tyszka, Beata; Snarski, Emilian; Niedźwiedzka, Magda; Augustyniak, Małgorzata; Myhre, Thorvald Nilsen; Kacprzyk, Anna; Swoboda-Kopeć, Ewa; Roszkowska, Marta; Dwilewicz-Trojaczek, Jadwiga; Jędrzejczak, Wiesław Wiktor; Wróblewska, Marta

    2018-06-01

    Very few reports have been published to date on the bloodstream infections caused by Saccharomyces spp. in oncohaematological patients, and there are no guidelines on the use of this probiotic microorganism in this population. We describe the use of probiotic preparation containing Saccharomyces boulardii in a large group of oncohaematological patients. We retrospectively analysed the data from 32,000 patient hospitalisations at the haematological centre during 2011-2013 (including 196 haematopoietic stem cell transplant recipients) in a tertiary care university-affiliated hospital. During the study period, 2270 doses of Saccharomyces boulardii probiotic were administered to the oncohaematological patients. In total, 2816 mycological cultures were performed, out of which 772 (27.4%) were positive, with 52 indicating digestive tract colonisation by Saccharomyces spp., mainly in patients with acute myeloid leukaemia (AML), myelodysplastic syndrome (MDS) or multiple myeloma (MM). While colonised, they were hospitalised for 1683 days and 416 microbiological cultures of their clinical samples were performed. In the studied group of patients, there were six blood cultures positive for fungi; however, they comprised Candida species: two C. glabrata, one C. albicans, one C. krusei, one C. tropicalis and one C. parapsilosis. There was no blood culture positive for Saccharomyces spp. Our study indicates that despite colonisation of many oncohaematological patients with Saccharomyces spp., there were no cases of fungal sepsis caused by this species.

  5. Review of Saccharomyces boulardii as a treatment option in IBD.

    Science.gov (United States)

    Sivananthan, Kavitha; Petersen, Andreas Munk

    2018-05-17

    Review of the yeast Saccharomyces boulardii as a treatment option for the inflammatory bowel diseases (IBD) ulcerative colitis and Crohn's disease. IBD is caused by an inappropriate immune response to gut microbiota. Treatment options could therefore be prebiotics, probiotics, antibiotics and/or fecal transplant. In this review, we have looked at the evidence for the yeast S. boulardii as a treatment option. Searches in PubMed and the Cochrane Library with the MeSH words 'Saccharomyces boulardii AND IBD', 'Saccharomyces boulardii AND Inflammatory Bowel Disease', 'Saccharomyces boulardii AND ulcerative colitis' and 'Saccharomyces boulardii AND Crohn's disease' gave total a total of 80 articles. After exclusions because of irrelevance, articles in other languages and some articles that were not available, 16 articles were included in this review. Three of the clinical trials showed a positive effect of S. boulardii in IBD patients (two Crohn's disease, one ulcerative colitis), while there was one trial that didn't prove any effect (Crohn's disease). Included Animal trials and cell assays describes different anti-inflammatory mechanisms of S. boulardii supporting a possible effect when treating IBD patients. The number of studies of S. boulardii as treatment for IBD is limited. Furthermore, the existing trials have small populations and short duration. We do not have enough evidence to prove the effect of S. boulardii in IBD. Saccharomyces boulardii is, however, a plausible treatment option in the future, but more placebo-controlled clinical studies on both patients with ulcerative colitis and Crohn's disease are needed.

  6. iTRAQ-based proteome profiling of Saccharomyces cerevisiae and cryotolerant species Saccharomyces uvarum and Saccharomyces kudriavzevii during low-temperature wine fermentation.

    Science.gov (United States)

    García-Ríos, Estéfani; Querol, Amparo; Guillamón, José Manuel

    2016-09-02

    Temperature is one of the most important parameters to affect the duration and rate of alcoholic fermentation and final wine quality. Some species of the Saccharomyces genus have shown better adaptation at low temperature than Saccharomyces cerevisiae, which was the case of cryotolerant yeasts Saccharomyces uvarum and Saccharomyces kudriavzevii. In an attempt to detect inter-specific metabolic differences, we characterized the proteomic landscape of these cryotolerant species grown at 12°C and 28°C, which we compared with the proteome of S. cerevisiae (poorly adapted at low temperature). Our results showed that the main differences among the proteomic profiling of the three Saccharomyces strains grown at 12°C and 28°C lay in translation, glycolysis and amino acid metabolism. Our data corroborate previous transcriptomic results, which suggest that S. kudriavzevii is better adapted to grow at low temperature as a result of enhanced more efficient translation. Fitter amino acid biosynthetic pathways can also be mechanisms that better explain biomass yield in cryotolerant strains. Yet even at low temperature, S. cerevisiae is the most fermentative competitive species. A higher concentration of glycolytic and alcoholic fermentation enzymes in the S. cerevisiae strain might explain such greater fermentation activity. Temperature is one of the main relevant environmental variables that microorganisms have to cope with and it is also a key factor in some industrial processes that involve microorganisms. However, we are still far from understanding the molecular and physiological mechanisms of adaptation at low temperatures. The results obtained in this study provided a global atlas of the proteome changes triggered by temperature in three different species of the genus Saccharomyces with different degree of cryotolerance. These results would facilitate a better understanding of mechanisms for how yeast could adapt at the low temperature of growth. Copyright © 2016

  7. Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae.

    Science.gov (United States)

    Shekhawat, Kirti; Bauer, Florian F; Setati, Mathabatha E

    2017-03-01

    The sequential or co-inoculation of grape must with non-Saccharomyces yeast species and Saccharomyces cerevisiae wine yeast strains has recently become a common practice in winemaking. The procedure intends to enhance unique aroma and flavor profiles of wine. The extent of the impact of non-Saccharomyces strains depends on their ability to produce biomass and to remain metabolically active for a sufficiently long period. However, mixed-culture wine fermentations tend to become rapidly dominated by S. cerevisiae, reducing or eliminating the non-Saccharomyces yeast contribution. For an efficient application of these yeasts, it is therefore essential to understand the environmental factors that modulate the population dynamics of such ecosystems. Several environmental parameters have been shown to influence population dynamics, but their specific effect remains largely uncharacterized. In this study, the population dynamics in co-fermentations of S. cerevisiae and three non-Saccharomyces yeast species: Torulaspora delbrueckii, Lachancea thermotolerans, and Metschnikowia pulcherrima, was investigated as a function of oxygen availability. In all cases, oxygen availability strongly influenced population dynamics, but clear species-dependent differences were observed. Our data show that L. thermotolerans required the least oxygen, followed by T. delbrueckii and M. pulcherrima. Distinct species-specific chemical volatile profiles correlated in all cases with increased persistence of non-Saccharomyces yeasts, in particular increases in some higher alcohols and medium chain fatty acids. The results highlight the role of oxygen in regulating the succession of yeasts during wine fermentations and suggests that more stringent aeration strategies would be necessary to support the persistence of non-Saccharomyces yeasts in real must fermentations.

  8. Distribution patterns of Saccharomyces species in cultural landscapes of Germany.

    Science.gov (United States)

    Brysch-Herzberg, Michael; Seidel, Martin

    2017-08-01

    The distribution patterns of the three Saccharomyces species, Saccharomyces paradoxus, S. uvarum and S. cerevisiae, were investigated by a culture-dependent approach in order to understand better how these species propagate in the cultural landscape of Germany. Saccharomyces paradoxus, the closest relative of S. cerevisiae, is shown to be a true woodland species. It was frequently found in the soil under conifers indicating that S. paradoxus is an autochthonous member of the microbial community in this habitat. Physiological characteristics of the species like the Crabtree effect and high tolerance against ethanol suggest that the species is adapted to regular supply with considerable amounts of sugars. Additionally, a high proportion of the S. paradoxus strains isolated in this study are shown to have the rare ability to ferment melezitose. For these reasons, it is hypothesized that S. paradoxus may be closely associated with the honeydew system in forests. Saccharomyces cerevisiae was rare in most habitats and only exceeded the frequency of S. paradoxus in habitats characterized by modern agricultural mass production of fruit. Both the landscape structure and the agricultural system heavily influence the frequencies of Saccharomyces species. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.

  10. Pathways of ultraviolet mutability in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Lemontt, J.F.

    1977-01-01

    Non-allelic mutants of Saccharomyces cerevisiae with reduced capacity for ultraviolet light (UV)-induced forward mutation from CAN1 to can1 were assigned to seven distinct genetic loci, each with allele designations umr1-1, umr2-1, ..., umr7-1 to indicate UV mutation resistance. None conferred a great deal of UV sensitivity. When assayed on yeast extract-peptone-dextrose complex growth agar, umr1, umr3, and umr7 were the most UV-sensitive. When assayed on synthetic agar lacking arginine, however, umr3 was the most UV-sensitive. All strains carrying each of the seven umr genes exhibited varying degrees of defective UV mutability, compact with wild types. Normal UV revertibility of three different alleles was observed in strains carrying either umr4, umr5, umr6, or umr7. Five a/α homozygous umr diploids failed to sporulate. One of these, umr7, blocked normal secretion of alpha hormone in α segregants and could not conjugate with a strains. The phenotypes of umr mutants are consistent with the existence of branched UV mutation pathways of different specificity

  11. Microsatellite analysis of Saccharomyces uvarum diversity.

    Science.gov (United States)

    Masneuf-Pomarede, Isabelle; Salin, Franck; Börlin, Marine; Coton, Emmanuel; Coton, Monika; Jeune, Christine Le; Legras, Jean-Luc

    2016-03-01

    Considered as a sister species of Saccharomyces cerevisiae, S. uvarum is, to a lesser extent, an interesting species for fundamental and applied research studies. Despite its potential interest as a new gene pool for fermenting agents, the intraspecific molecular genetic diversity of this species is still poorly investigated. In this study, we report the use of nine microsatellite markers to describe S. uvarum genetic diversity and population structure among 108 isolates from various geographical and substrate origins (wine, cider and natural sources). Our combined microsatellite markers set allowed differentiating 89 genotypes. In contrast to S. cerevisiae genetic diversity, wild and human origin isolates were intertwined. A total of 75% of strains were proven to be homozygotes and estimated heterozygosity suggests a selfing rate above 0.95 for the different population tested here. From this point of view, the S. uvarum life cycle appears to be more closely related to S. paradoxus or S. cerevisiae of natural resources than S. cerevisiae wine isolates. Population structure could not be correlated to distinct geographic or technological origins, suggesting lower differentiation that may result from a large exchange between human and natural populations mediated by insects or human activities. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Sugar and Glycerol Transport in Saccharomyces cerevisiae.

    Science.gov (United States)

    Bisson, Linda F; Fan, Qingwen; Walker, Gordon A

    2016-01-01

    In Saccharomyces cerevisiae the process of transport of sugar substrates into the cell comprises a complex network of transporters and interacting regulatory mechanisms. Members of the large family of hexose (HXT) transporters display uptake efficiencies consistent with their environmental expression and play physiological roles in addition to feeding the glycolytic pathway. Multiple glucose-inducing and glucose-independent mechanisms serve to regulate expression of the sugar transporters in yeast assuring that expression levels and transporter activity are coordinated with cellular metabolism and energy needs. The expression of sugar transport activity is modulated by other nutritional and environmental factors that may override glucose-generated signals. Transporter expression and activity is regulated transcriptionally, post-transcriptionally and post-translationally. Recent studies have expanded upon this suite of regulatory mechanisms to include transcriptional expression fine tuning mediated by antisense RNA and prion-based regulation of transcription. Much remains to be learned about cell biology from the continued analysis of this dynamic process of substrate acquisition.

  13. Induction of homologous recombination in Saccharomyces cerevisiae.

    Science.gov (United States)

    Simon, J R; Moore, P D

    1988-09-01

    We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.

  14. [Recent advances in Saccharomyces boulardii research].

    Science.gov (United States)

    Im, E; Pothoulakis, C

    2010-09-01

    This review summarizes the probiotic mechanisms of action of Saccharomyces boulardii (S. boulardii) against inflammatory and non-inflammatory diarrheal conditions. S. boulardii is distributed in lyophilized form in many countries and used for the prevention of diarrhea in children and adults, including Clostridium difficile (C. difficile) associated infection. The main mechanisms of action of S. boulardii include inhibition of activities of bacterial pathogenic products, trophic effects on the intestinal mucosa, as well as modification of host signaling pathways involved in inflammatory and non-inflammatory intestinal diseases. S. boulardii inhibits production of pro-inflammatory cytokines by inhibiting main regulators of inflammation, including nuclear factor κB (NF-κB), and mitogen-activated protein kinases (MAP kinases), ERK1/2 and p38, but stimulates production of anti-inflammatory molecules such as peroxisome proliferator-activated receptor-gamma (PPAR-γ). Moreover, S. boulardii suppresses bacterial infection by inhibiting adhesion and/or overgrowth of bacteria, produces a serine protease that cleaves C. difficile toxin A, and stimulates antibody production against this toxin. Furthermore, S. boulardii may interfere with pathogenesis of Inflammatory Bowel Disease (IBD) by acting on T cells and acts in diarrheal conditions by improving the fecal biostructure in patients with diarrhea. These diverse mechanisms exerted by S. boulardii provide molecular clues for its effectiveness in diarrheal diseases and intestinal inflammatory conditions with an inflammatory component. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  15. Response of Saccharomyces cerevisiae to cadmium stress

    International Nuclear Information System (INIS)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C.; Rosa, Carlos Augusto

    2009-01-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K + and Na + ) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  16. Response of Saccharomyces cerevisiae to cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: luamatu@uol.com.br; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Ativacao Neutronica], e-mail: menezes@cdtn.br; Rosa, Carlos Augusto [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: carlrosa@icb.ufmg

    2009-07-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K{sup +} and Na{sup +}) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  17. Intracellular Signal Triggered by Cholera Toxin in Saccharomyces boulardii and Saccharomyces cerevisiae

    Science.gov (United States)

    Brandão, Rogelio L.; Castro, Ieso M.; Bambirra, Eduardo A.; Amaral, Sheila C.; Fietto, Luciano G.; Tropia, Maria José M.; Neves, Maria José; Dos Santos, Raquel G.; Gomes, Newton C. M.; Nicoli, Jacques R.

    1998-01-01

    As is the case for Saccharomyces boulardii, Saccharomyces cerevisiae W303 protects Fisher rats against cholera toxin (CT). The addition of glucose or dinitrophenol to cells of S. boulardii grown on a nonfermentable carbon source activated trehalase in a manner similar to that observed for S. cerevisiae. The addition of CT to the same cells also resulted in trehalase activation. Experiments performed separately on the A and B subunits of CT showed that both are necessary for activation. Similarly, the addition of CT but not of its separate subunits led to a cyclic AMP (cAMP) signal in both S. boulardii and S. cerevisiae. These data suggest that trehalase stimulation by CT probably occurred through the cAMP-mediated protein phosphorylation cascade. The requirement of CT subunit B for both the cAMP signal and trehalase activation indicates the presence of a specific receptor on the yeasts able to bind to the toxin, a situation similar to that observed for mammalian cells. This hypothesis was reinforced by experiments with 125I-labeled CT showing specific binding of the toxin to yeast cells. The adhesion of CT to a receptor on the yeast surface through the B subunit and internalization of the A subunit (necessary for the cAMP signal and trehalase activation) could be one more mechanism explaining protection against the toxin observed for rats treated with yeasts. PMID:9464394

  18. Exploring the northern limit of the distribution of Saccharomyces cerevisiae and Saccharomyces paradoxus in North America.

    Science.gov (United States)

    Charron, Guillaume; Leducq, Jean-Baptiste; Bertin, Chloé; Dubé, Alexandre K; Landry, Christian R

    2014-03-01

    We examined the northern limit of Saccharomyces cerevisiae and Saccharomyces paradoxus in northeast America. We collected 876 natural samples at 29 sites and applied enrichment methods for the isolation of mesophilic yeasts. We uncovered a large diversity of yeasts, in some cases, associated with specific substrates. Sequencing of the ITS1, 5.8S and ITS2 loci allowed to assign 226 yeast strains at the species level, including 41 S. paradoxus strains. Our intensive sampling suggests that if present, S. cerevisiae is rare at these northern latitudes. Our sampling efforts spread across several months of the year revealed that successful sampling increases throughout the summer and diminishes significantly at the beginning of the fall. The data obtained on the ecological context of yeasts corroborate what was previously reported on Pichiaceae, Saccharomycodaceae, Debaryomycetaceae and Phaffomycetaceae yeast families. We identified 24 yeast isolates that could not be assigned to any known species and that may be of taxonomic, medical, or biotechnological importance. Our study reports new data on the taxonomic diversity of yeasts and new resources for studying the evolution and ecology of S. paradoxus. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Effect of Saccharomyces, Non-Saccharomyces Yeasts and Malolactic Fermentation Strategies on Fermentation Kinetics and Flavor of Shiraz Wines

    Directory of Open Access Journals (Sweden)

    Heinrich du Plessis

    2017-12-01

    Full Text Available The use of non-Saccharomyces yeasts to improve complexity and diversify wine style is increasing; however, the interactions between non-Saccharomyces yeasts and lactic acid bacteria (LAB have not received much attention. This study investigated the interactions of seven non-Saccharomyces yeast strains of the genera Candida, Hanseniaspora, Lachancea, Metschnikowia and Torulaspora in combination with S. cerevisiae and three malolactic fermentation (MLF strategies in a Shiraz winemaking trial. Standard oenological parameters, volatile composition and sensory profiles of wines were investigated. Wines produced with non-Saccharomyces yeasts had lower alcohol and glycerol levels than wines produced with S. cerevisiae only. Malolactic fermentation also completed faster in these wines. Wines produced with non-Saccharomyces yeasts differed chemically and sensorially from wines produced with S. cerevisiae only. The Candida zemplinina and the one L. thermotolerans isolate slightly inhibited LAB growth in wines that underwent simultaneous MLF. Malolactic fermentation strategy had a greater impact on sensory profiles than yeast treatment. Both yeast selection and MLF strategy had a significant effect on berry aroma, but MLF strategy also had a significant effect on acid balance and astringency of wines. Winemakers should apply the optimal yeast combination and MLF strategy to ensure fast completion of MLF and improve wine complexity.

  20. An apoptotic cell cycle mutant in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Villadsen, Ingrid

    1996-01-01

    The simple eukaryote Saccharomyces cerevisiae has proved to be a useful organism for elucidating the mechanisms that govern cell cycle progression in eukaryotic cells. The excellent in vivo system permits a cell cycle study using temperature sensitive mutants. In addition, it is possible to study...... many genes and gene products from higher eukaryotes in Saccharomyces cerevisiae because many genes and biological processes are homologous or similar in lower and in higher eukaryotes. The highly developed methods of genetics and molecular biology greatly facilitates studies of higher eukaryotic...... processes.Programmmed cell death with apoptosis plays a major role in development and homeostatis in most, if not all, animal cells. Apoptosis is a morphologically distinct form of death, that requires the activation of a highly regulated suicide program. Saccharomyces cerevisiae provides a new system...

  1. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts

    Science.gov (United States)

    Gorter de Vries, Arthur R.; Pronk, Jack T.

    2017-01-01

    ABSTRACT Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyces strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. PMID:28341679

  2. Saccharomyces boulardii CNCM I-745 in different clinical conditions.

    Science.gov (United States)

    Dinleyici, Ener Cagri; Kara, Ates; Ozen, Metehan; Vandenplas, Yvan

    2014-11-01

    Saccharomyces boulardii is a well-known probiotic worldwide, and there are numerous studies including experimental and clinical trials in children and adults by the use of S. boulardii. The objective of the present report is to provide an update on the evidence for the efficacy of S. boulardii CNCM I-745 in different clinical conditions. Saccharomyces boulardii is one of the best-studied probiotics in acute gastroenteritis (AGE) and is shown to be safe and to reduce the duration of diarrhea and hospitalization by about 1 day. Saccharomyces boulardii is one of the recommended probiotics for AGE in children by European Society of Paediatric Infectious Diseases and European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN). Saccharomyces boulardii is also a recommended probiotic for the prevention of antibiotic-associated diarrhea (AAD), and a recent study showed promising results for the treatment of AAD in children. There is insufficient evidence to recommend the long-term use of S. boulardii in patients with irritable bowel syndrome. Although some clinical studies showed positive effects of S. boulardii on inflammation, there is no clinical evidence that S. boulardii is useful in inflammatory bowel disease. Saccharomyces boulardii could be used in patients needing Helicobacter pylori eradication because the S. boulardii improves compliance, decreases the side effects and moderately increases the eradication rate. There are new promising results (improving feeding tolerance, shorten the course of hyperbilirubinemia), but we do still not recommend the routine use of S. boulardii in newborns. Saccharomyces boulardii CNCM I-745 is a good example for the statement that each probiotic needs to be taxonomically characterized and its efficacy and safety should be documented individually in different clinical settings.

  3. How did Saccharomyces evolve to become a good brewer?

    Science.gov (United States)

    Piskur, Jure; Rozpedowska, Elzbieta; Polakova, Silvia; Merico, Annamaria; Compagno, Concetta

    2006-04-01

    Brewing and wine production are among the oldest technologies and their products are almost indispensable in our lives. The central biological agents of beer and wine fermentation are yeasts belonging to the genus Saccharomyces, which can accumulate ethanol. Recent advances in comparative genomics and bioinformatics have made it possible to elucidate when and why yeasts produce ethanol in high concentrations, and how this remarkable trait originated and developed during their evolutionary history. Two research groups have shed light on the origin of the genes encoding alcohol dehydrogenase and the process of ethanol accumulation in Saccharomyces cerevisiae.

  4. Accumulation of gold using Baker's yeast, Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Roy, Kamalika; Lahiri, Susanta; Sinha, P.

    2006-01-01

    Authors have reported preconcentration of 152 Eu, a long-lived fission product, by yeast cells, Saccharomyces cerevisiae. Gold being a precious metal is used in electroplating, hydrogenation catalyst, etc. Heterogeneous composition of samples and low concentration offers renewed interest in its selective extraction of gold using various extractants. Gold can be recovered from different solutions using various chemical reagents like amines, organophosphorus compounds, and extractants containing sulphur as donor atom, etc. In the present work, two different strains of baker's yeast, Saccharomyces cerevisiae have been used to study the preconcentration of gold at various experimental conditions

  5. Regulation of Cation Balance in Saccharomyces cerevisiae

    Science.gov (United States)

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  6. Combinatorial Cis-regulation in Saccharomyces Species

    Directory of Open Access Journals (Sweden)

    Aaron T. Spivak

    2016-03-01

    Full Text Available Transcriptional control of gene expression requires interactions between the cis-regulatory elements (CREs controlling gene promoters. We developed a sensitive computational method to identify CRE combinations with conserved spacing that does not require genome alignments. When applied to seven sensu stricto and sensu lato Saccharomyces species, 80% of the predicted interactions displayed some evidence of combinatorial transcriptional behavior in several existing datasets including: (1 chromatin immunoprecipitation data for colocalization of transcription factors, (2 gene expression data for coexpression of predicted regulatory targets, and (3 gene ontology databases for common pathway membership of predicted regulatory targets. We tested several predicted CRE interactions with chromatin immunoprecipitation experiments in a wild-type strain and strains in which a predicted cofactor was deleted. Our experiments confirmed that transcription factor (TF occupancy at the promoters of the CRE combination target genes depends on the predicted cofactor while occupancy of other promoters is independent of the predicted cofactor. Our method has the additional advantage of identifying regulatory differences between species. By analyzing the S. cerevisiae and S. bayanus genomes, we identified differences in combinatorial cis-regulation between the species and showed that the predicted changes in gene regulation explain several of the species-specific differences seen in gene expression datasets. In some instances, the same CRE combinations appear to regulate genes involved in distinct biological processes in the two different species. The results of this research demonstrate that (1 combinatorial cis-regulation can be inferred by multi-genome analysis and (2 combinatorial cis-regulation can explain differences in gene expression between species.

  7. Kinetics of phosphomevalonate kinase from Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    David E Garcia

    Full Text Available The mevalonate-based isoprenoid biosynthetic pathway is responsible for producing cholesterol in humans and is used commercially to produce drugs, chemicals, and fuels. Heterologous expression of this pathway in Escherichia coli has enabled high-level production of the antimalarial drug artemisinin and the proposed biofuel bisabolane. Understanding the kinetics of the enzymes in the biosynthetic pathway is critical to optimize the pathway for high flux. We have characterized the kinetic parameters of phosphomevalonate kinase (PMK, EC 2.7.4.2 from Saccharomyces cerevisiae, a previously unstudied enzyme. An E. coli codon-optimized version of the S. cerevisiae gene was cloned into pET-52b+, then the C-terminal 6X His-tagged protein was expressed in E. coli BL21(DE3 and purified on a Ni²⁺ column. The KM of the ATP binding site was determined to be 98.3 µM at 30°C, the optimal growth temperature for S. cerevisiae, and 74.3 µM at 37°C, the optimal growth temperature for E. coli. The K(M of the mevalonate-5-phosphate binding site was determined to be 885 µM at 30°C and 880 µM at 37°C. The V(max was determined to be 4.51 µmol/min/mg enzyme at 30°C and 5.33 µmol/min/mg enzyme at 37°C. PMK is Mg²⁺ dependent, with maximal activity achieved at concentrations of 10 mM or greater. Maximum activity was observed at pH = 7.2. PMK was not found to be substrate inhibited, nor feedback inhibited by FPP at concentrations up to 10 µM FPP.

  8. [Effects of non-saccharomyces albicans metabolic products on the proliferation of human umbilical vein endothelial cell ECV304].

    Science.gov (United States)

    Chen, Bin; Che, Tuanjie; Bai, Decheng; He, Xiangyi

    2013-04-01

    To evaluate the effects of non-Saccharomyces albicans metabolic products on the cell cycle distribution and proliferation of human umbilical vein endothelial cell ECV304 cells in vitro. The parallel dilution supernatant of Saccharomyces tropicalis, Saccharomyces krusei and Saccharomyces glabrata were prepared, and 1, 4, 16-fold(s) diluted concentration and control group were set up. The line of human umbilical vein endothelial cell ECV304 was cultured in vitro and treated by non-Saccharomyces albicans supernatant. The proliferous effect of ECV304 induced by non-Saccharomyces albicans supernatant after 24, 48, 72 h was detected by the methods of MTT, and the changes of cell density and cycle after 48 h were investigated by inverted microscope and flow cytometry. At the 24th hour, all of the higher concentration (1-fold) of non-Saccharomyces albicans supernatant and the 4-folds diluted Saccharomyces krusei could promote ECV304 proliferation(P Saccharomyces albicans supernatant at 48h and 72th hour, Saccharomyces krusei supernatant and Saccharomyces glabrata supernatant significantly increased proliferation rate of ECV304, while Saccharomyces tropicalis supernatant group showed no significant change no matter which concentration was tested. At 48th hour after adding the non-Saccharomyces albicans supernatant, the ECV304 cells density treated by Saccharomyces krusei supernatant and Saccharomyces glabrata supernatant were significantly higher under the inverted microscope. The G0/G1 population of ECV304 cells decreased while cell proliferation index (PI) increased after incubated with Saccharomyces krusei supernatant and Saccharomyces glabrata supernatant for 48 hours (P Saccharomyces tropicalis group showed no significant change (P > 0.05). The metabolic products of Sacharoymces krusei and Saccharomyces glabrata could induce proliferation of ECV304 cell, which suggests non-Saccharomyces albicans should be undergone more attention clinically in detection and treatment.

  9. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.

    Science.gov (United States)

    Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-07-02

    Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Further development of the cassette-based pYC plasmid system by incorporation of the dominant hph, nat and AUR1-C gene markers and the lacZ reporter system

    DEFF Research Database (Denmark)

    Hansen, J.; Felding, T.; Johannesen, P.F.

    2003-01-01

    to the use of G418 resistance. We found the markers to be of use not only in standard laboratory strains of Saccharomyces cerevisiae but also in an industrial strain of S. carlsbergensis (syn. of S. pastorianus) brewing yeast as well as in Saccharomyces kluyveri. As the pYC system contains means of counter...

  11. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Jongedijk, E.J.; Cankar, K.; Ranzijn, J.; Krol, van der A.R.; Bouwmeester, H.J.; Beekwilder, M.J.

    2015-01-01

    Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a

  12. Reducing the genetic complexity of glycolysis in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Solis Escalante, D.

    2015-01-01

    Glycolysis, a biochemical pathway that oxidizes glucose to pyruvate, is at the core of sugar metabolism in Saccharomyces cerevisiae (bakers’ yeast). Glycolysis is not only a catabolic route involved in energy conservation, but also provides building blocks for anabolism. From an applied perspective,

  13. Silver Uptake and Reuse of Biomass by Saccharomyces cerevisiae ...

    African Journals Online (AJOL)

    Studies were carried out on the recovery of bound silver and reuse of Chlorella emersonii and Saccharomyces cerevisiae biomass for further silver uptake after they were placed in contact with 20mg/l silver for 30 minutes to allow for maximum binding. It was found that 0.16M nitric acid gave the best recovery rates of silver.

  14. Production of Saccharomyces cerevisiae biomass in papaya extract ...

    African Journals Online (AJOL)

    Extracts of papaya fruit were used as substrate for single cell protein (SCP) production using Saccharomyces cerevisiae. A 500 g of papaya fruit was extracted with different volumes of sterile distilled water. Extraction with 200 mL of sterile distilled water sustained highest cell growth. Biochemical analysis of dry biomass ...

  15. Engineering of aromatic amino acid metabolism in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Vuralhan, Z.

    2006-01-01

    Saccharomyces cerevisiae is a popular industrial microorganism. It has since long been used in bread, beer and wine making. More recently it is also being applied for heterologous protein production and as a target organism for metabolic engineering. The work presented in this thesis describes how

  16. Anti-Oxidant effects of pomegranate juice on Saccharomyces ...

    African Journals Online (AJOL)

    Conclusion: Pomegranate juice has a positive effect on fatty acid, vitamin and protein synthesis by Saccharomyces cerevisiae. Accordingly, we believe that it has significantly decreased oxidative damage thereby making a positive impact on yeast development. Key words: Pomegranate juice, SDS-PAGE, fatty acid, vitamin.

  17. Novel feeding strategies for Saccharomyces cerevisiae DS2155 ...

    African Journals Online (AJOL)

    The dual behavior of Saccharomyces cerevisiae on glucose feed as function of the dilution rate near the critical specific growth rate (ì=0.25) is a bottleneck in industrial production, hence the need for more efficient feeding strategies. In this work novel feeding strategies have been generated and evaluated. For each feeding ...

  18. Thermal resistance of Saccharomyces yeast ascospores in beers.

    Science.gov (United States)

    Milani, Elham A; Gardner, Richard C; Silva, Filipa V M

    2015-08-03

    The industrial production of beer ends with a process of thermal pasteurization. Saccharomyces cerevisiae and Saccharomyces pastorianus are yeasts used to produce top and bottom fermenting beers, respectively. In this research, first the sporulation rate of 12 Saccharomyces strains was studied. Then, the thermal resistance of ascospores of three S. cerevisiae strains (DSMZ 1848, DSMZ 70487, Ethanol Red(®)) and one strain of S. pastorianus (ATCC 9080) was determined in 4% (v/v) ethanol lager beer. D60 °C-values of 11.2, 7.5, 4.6, and 6.0 min and z-values of 11.7, 14.3, 12.4, and 12.7 °C were determined for DSMZ 1848, DSMZ 70487, ATCC 9080, and Ethanol Red(®), respectively. Lastly, experiments with 0 and 7% (v/v) beers were carried out to investigate the effect of ethanol content on the thermal resistance of S. cerevisiae (DSMZ 1848). D55 °C-values of 34.2 and 15.3 min were obtained for 0 and 7% beers, respectively, indicating lower thermal resistance in the more alcoholic beer. These results demonstrate similar spore thermal resistance for different Saccharomyces strains and will assist in the design of appropriate thermal pasteurization conditions for preserving beers with different alcohol contents. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Adsorption and Interfacial Electron Transfer of Saccharomyces Cerevisiae

    DEFF Research Database (Denmark)

    Hansen, Allan Glargaard; Boisen, Anja; Nielsen, Jens Ulrik

    2003-01-01

    We have studied the adsorption and electron-transfer dynamics of Saccharomyces cerevisiae (yeast) iso-l-cytochrome c adsorbed on Au(lll) electrodes in aqueous phosphate buffer media. This cytochrome possesses a thiol group dos e to the protein surface (Cysl02) suitable for linking the protein...

  20. Genetic Basis for Saccharomyces cerevisiae Biofilm in Liquid Medium

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz; Bojsen, Rasmus Kenneth; Gro Rejkjær Sørensen, Laura

    2014-01-01

    than free-living cells. We investigated the genetic basis for yeast, Saccharomyces cerevisiae, biofilm on solid surfaces in liquid medium by screening a comprehensive deletion mutant collection in the S1278b background and found 71 genes that were essential for biofilm development. Quantitative...

  1. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae

    Science.gov (United States)

    Yong-Su Jin; Thomas W. Jeffries

    2004-01-01

    Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast raditionally...

  2. Evidence against a photoprotective component of photoreactivation in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    MacQuillan, A.M.; Green, G.; Perry, W.G.

    1981-01-01

    Photoreactivation-deficient (phr - ) mutants of Saccharomyces cerevisiae were shown to lack in vitro DNA-photolyase activity. A phr - mutant was then compared with a phr + strain for near-UV induced photoprotection from far-UV irradiation. Neither strain exhibited a photoprotective effect. (author)

  3. High-rate evolution of Saccharomyces sensu lato chromosomes

    DEFF Research Database (Denmark)

    Spirek, M.; Yang, J.; Groth, C.

    2003-01-01

    Forty isolates belonging to the Saccharomyces sensu lato complex were analyzed for one nuclear and two mitochondrial sequences, and for their karyotypes. These data are useful for description and definition of yeast species based on the phylogenetic species concept. The deduced phylogenetic...

  4. Kinetics of formation of induced mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Chepurnoj, A.I.; Levkovich, N.V.; Mikhova-Tsenova, N.; Mel'nikova, L.A.

    1990-01-01

    UV and γ-radiation mutagenic effect an various strains of Saccharomyces cerevisiae was studied by analyzing formation kinetics of induced mutants at the period of postirradiation incubation. Mechanisms of induced reverse formation was suggested. The presented analysis is considered to be differential taking account of more subtle aspects of induced mutagenesis. 8 refs.; 10 figs.; 3 tabs

  5. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response

    Science.gov (United States)

    Yong-Su Jin; Jose M. Laplaza; Thomas W. Jeffries

    2004-01-01

    Native strains of Saccharomyces cerevisiae do not assimilate xylose. S. cerevisiae engineered for D-xylose utilization through the heterologous expression of genes for aldose reductase ( XYL1), xylitol dehydrogenase (XYL2), and D-xylulokinase ( XYL3 or XKS1) produce only limited amounts of ethanol in xylose medium. In recombinant S. cerevisiae expressing XYL1, XYL2,...

  6. Reconstitution of an efficient thymidine salvage pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Vernis, L.; Piskur, Jure; Diffley, J.F.X.

    2003-01-01

    The budding yeast Saccharomyces cerevisiae is unable to incorporate exogenous nucleosides into DNA. We have made a number of improvements to existing strategies to reconstitute an efficient thymidine salvage pathway in yeast. We have constructed strains that express both a nucleoside kinase as well...

  7. Social wasps promote social behavior in Saccharomyces spp.

    Science.gov (United States)

    This commentary provides background and an evaluation of a paper to be published in the Proceedings of the National Academy of Sciences in which social wasps were found to harbor significant populations of two species of the yeast genus Saccharomyces. Apparently, the yeasts were acquired during feed...

  8. Analysis of the RNA Content of the Yeast "Saccharomyces Cerevisiae"

    Science.gov (United States)

    Deutch, Charles E.; Marshall, Pamela A.

    2008-01-01

    In this article, the authors describe an interconnected set of relatively simple laboratory experiments in which students determine the RNA content of yeast cells and use agarose gel electrophoresis to separate and analyze the major species of cellular RNA. This set of experiments focuses on RNAs from the yeast "Saccharomyces cerevisiae", a…

  9. Mead features fermented by Saccharomyces cerevisiae (lalvin k1 ...

    African Journals Online (AJOL)

    Eduardo Morales

    Full Length Research Paper. Mead features fermented by Saccharomyces cerevisiae. (lalvin k1-1116). Eduardo Marin MORALES1*, Valmir Eduardo ALCARDE2 and Dejanira de Franceschi de. ANGELIS1. 1Department of Biochemistry and Microbiology, Institute of Biosciences, UNESP - Univ Estadual Paulista, Av. 24-A,.

  10. Potential application of Saccharomyces cerevisiae strains for the ...

    African Journals Online (AJOL)

    This paper aimed at evaluating the fermentation behavior of selected Saccharomyces cerevisiae strains in banana pulp and they were compared with commercial yeast (baker's yeast) for subsequent production of distilled spirits. Five types of microorganisms were used: Four yeast strains obtained from accredited ...

  11. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption

    DEFF Research Database (Denmark)

    Scalcinati, Gionata; Otero, José Manuel; Van Vleet, Jennifer R. H.

    2012-01-01

    Industrial biotechnology aims to develop robust microbial cell factories, such as Saccharomyces cerevisiae, to produce an array of added value chemicals presently dominated by petrochemical processes. Xylose is the second most abundant monosaccharide after glucose and the most prevalent pentose s...

  12. Study on extract dates syrup fermentation using Saccharomyces ...

    African Journals Online (AJOL)

    Customer

    2012-04-24

    Apr 24, 2012 ... conversion. A high fructose yield above 91% of the original fructose was obtained with ATCC 36858. In addition, the ethanol yield was found to be 63% of the theoretical. Key words: Saccharomyces cerevisiae, fructose, glucose, bioethanol, fermentation. INTRODUCTION. Sugars are carbohydrate materials ...

  13. Effects of dietary L-threonine and Saccharomyces cerevisiae on ...

    African Journals Online (AJOL)

    threonine (0, 2.5, 5 and 7.5 g/kg) with or without Saccharomyces cerevisiae (SC) on performance, carcass characteristics, intestinal morphology and immune system of broiler chickens. A total of 360 1-d-old male broiler chicks were randomly ...

  14. Industrial relevance of chromosomal copy number variation in Saccharomyces yeasts

    NARCIS (Netherlands)

    Gorter de Vries, A.R.; Pronk, J.T.; Daran, J.G.

    2017-01-01

    Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have

  15. Influence of Two Inocula Levels of Saccharomyces bayanus on ...

    African Journals Online (AJOL)

    pc

    2012-04-02

    Apr 2, 2012 ... The influence of two inocula levels of the yeast Saccharomyces bayanus, ... Wine is usually made through fermentation of grape juice. ... strain of the yeast and the level of yeast inoculated are .... culture of S. cerevisiae and Williopsis saturnus and ... have acid taste index values of two to three and dry white.

  16. Novel feeding strategies for Saccharomyces cerevisiae DS2155 ...

    African Journals Online (AJOL)

    Administrator

    2007-05-02

    May 2, 2007 ... processes. The software also ensured the updating of the feed flow rate every 5 min for 24 h. The ... But, the exact location and amplitude ..... glucose effect in the Yeast Saccharomyces uvarum: involvement of short, and long ...

  17. Saccharomyces cerevisiae boulardii transient fungemia after intravenous self-inoculation

    OpenAIRE

    Cohen, Lola; Ranque, Stéphane; Raoult, Didier

    2013-01-01

    We report the case of a young psychotic intravenous drug user injecting herself with Saccharomyces cervisiae (boulardii). She experienced a 24 h fever, resolving spontaneously confirming, quasi experimentally, the inocuity of this yeast in a non-immunocompromised host.

  18. Switching the mode of sucrose utilization by Saccharomyces cerevisiae

    OpenAIRE

    Badotti, Fernanda; Dário, Marcelo G; Alves, Sergio L; Cordioli, Maria Luiza A; Miletti, Luiz C; de Araujo, Pedro S; Stambuk, Boris U

    2008-01-01

    Abstract Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucro...

  19. The effects of different concentrations of probiotic Saccharomyces ...

    African Journals Online (AJOL)

    In the present study, a yeast strain Saccharomyces cerevisia var. elipsoidous, acting as probiotic, was administered to rainbow trout (Oncorhynchus mykiss Walbaum, 1792) fry during a period of 21 days and the effects of the yeast on improvement of growth and resistance against environmental stress were evaluated with ...

  20. The Plasma Membrane of Saccharomyces cerevisiae : Structure, Function, and Biogenesis

    NARCIS (Netherlands)

    VANDERREST, ME; KAMMINGA, AH; NAKANO, A; ANRAKU, Y; POOLMAN, B; KONINGS, WN

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an

  1. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Science.gov (United States)

    Bellon, Jennifer R; Schmid, Frank; Capone, Dimitra L; Dunn, Barbara L; Chambers, Paul J

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  2. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Directory of Open Access Journals (Sweden)

    Jennifer R Bellon

    Full Text Available Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade, has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  3. Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae

    Science.gov (United States)

    Bellon, Jennifer R.; Schmid, Frank; Capone, Dimitra L.; Dunn, Barbara L.; Chambers, Paul J.

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment. PMID:23614011

  4. Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation.

    Science.gov (United States)

    Domizio, Paola; Romani, Cristina; Lencioni, Livio; Comitini, Francesca; Gobbi, Mirko; Mannazzu, Ilaria; Ciani, Maurizio

    2011-06-30

    The use of non-Saccharomyces yeasts that are generally considered as spoilage yeasts, in association with Saccharomyces cerevisiae for grape must fermentation was here evaluated. Analysis of the main oenological characteristics of pure cultures of 55 yeasts belonging to the genera Hanseniaspora, Pichia, Saccharomycodes and Zygosaccharomyces revealed wide biodiversity within each genus. Moreover, many of these non-Saccharomyces strains had interesting oenological properties in terms of fermentation purity, and ethanol and secondary metabolite production. The use of four non-Saccharomyces yeasts (one per genus) in mixed cultures with a commercial S. cerevisiae strain at different S. cerevisiae/non-Saccharomyces inoculum ratios was investigated. This revealed that most of the compounds normally produced at high concentrations by pure cultures of non-Saccharomyces, and which are considered detrimental to wine quality, do not reach threshold taste levels in these mixed fermentations. On the other hand, the analytical profiles of the wines produced by these mixed cultures indicated that depending on the yeast species and the S. cerevisiae/non-Saccharomyces inoculum ratio, these non-Saccharomyces yeasts can be used to increase production of polysaccharides and to modulate the final concentrations of acetic acid and volatile compounds, such as ethyl acetate, phenyl-ethyl acetate, 2-phenyl ethanol, and 2-methyl 1-butanol. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Clinical Efficacy Comparison of Saccharomyces Boulardii and Lactic Acid as Probiotics in Acute Pediatric Diarrhea.

    Science.gov (United States)

    Asmat, Shakila; Shaukat, Fouzia; Asmat, Raheela; Bakhat, Hafiz Faiq Siddique Gul; Asmat, Tauseef M

    2018-03-01

    To compare the efficacy of Saccharomyces boulardii and lactic acid producing probiotics in addition to usual treatment regimen to cure diarrhea among children (6 months to 5 years of age). Randomized controlled trial. Department of Pediatrics, Sheikh Zayed Hospital, Lahore, from February to July 2015. Children suffering from acute diarrhea were orally administered Saccharomyces boulardii and lactic acid producing probiotics for 5 days. The efficacy of administered probiotics was monitored. Patients were given Saccharomyces boulardii and lactic acid producing probiotics randomly to remove the bias. Two hundred patients randomly selected for trials; out of which, 100 were treated with Saccharomyces boulardii while the other 100 were supplemented with lactic acid concomitantly along with conventional diarrhea treatment. Results indicated that Saccharomyces boulardii treatment group has significantly higher efficacy rate (45%) compared to lactic acid producing probiotics (26%). This study concluded that Saccharomyces boulardii has a better efficacy compared to lactic acid and may be adopted as a probiotic of choice.

  6. On the origins and industrial applications of Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids.

    Science.gov (United States)

    Peris, David; Pérez-Torrado, Roberto; Hittinger, Chris Todd; Barrio, Eladio; Querol, Amparo

    2018-01-01

    Companies based on alcoholic fermentation products, such as wine, beer and biofuels, use yeasts to make their products. Each industrial process utilizes different media conditions, which differ in sugar content, the presence of inhibitors and fermentation temperature. Saccharomyces cerevisiae has traditionally been the main yeast responsible for most fermentation processes. However, the market is changing due to consumer demand and external factors such as climate change. Some processes, such as biofuel production or winemaking, require new yeasts to solve specific challenges, especially those associated with sustainability, novel flavours and altered alcohol content. One of the proposed solutions is the application of yeast hybrids. The lager beer market has been dominated by S. cerevisiae × S. eubayanus hybrids. However, several less thoroughly studied hybrids have been isolated from other diverse industrial processes. Here we focus on S. cerevisiae × S. kudriavzevii hybrids, which have been isolated from diverse industrial conditions that include wine, ale beer, cider and dietary supplements. Emerging data suggest an extended and complex story of adaptation of these hybrids to traditional industrial conditions. S. cerevisiae × S. kudriavzevii hybrids are also being explored for new industrial applications, such as biofuels. This review describes the past, present and future of S. cerevisiae × S. kudriavzevii hybrids. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Influence of organic acids and organochlorinated insecticides on metabolism of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2005-01-01

    Full Text Available Saccharomyces cerevisiae is exposed to different stress factors during the production: osmotic, temperature, oxidative. The response to these stresses is the adaptive mechanism of cells. The raw materials Saccharomyces cerevisiae is produced from, contain metabolism products of present microorganisms and protective agents used during the growth of sugar beet for example the influence of acetic and butyric acid and organochlorinated insecticides, lindan and heptachlor, on the metabolism of Saccharomyces cerevisiae was investigated and presented in this work. The mentioned compounds affect negatively the specific growth rate, yield, content of proteins, phosphorus, total ribonucleic acids. These compounds influence the increase of trechalose and glycogen content in the Saccharomyces cerevisiae cells.

  8. Efficient engineering of marker-free synthetic allotetraploids of Saccharomyces.

    Science.gov (United States)

    Alexander, William G; Peris, David; Pfannenstiel, Brandon T; Opulente, Dana A; Kuang, Meihua; Hittinger, Chris Todd

    2016-04-01

    Saccharomyces interspecies hybrids are critical biocatalysts in the fermented beverage industry, including in the production of lager beers, Belgian ales, ciders, and cold-fermented wines. Current methods for making synthetic interspecies hybrids are cumbersome and/or require genome modifications. We have developed a simple, robust, and efficient method for generating allotetraploid strains of prototrophic Saccharomyces without sporulation or nuclear genome manipulation. S. cerevisiae×S. eubayanus, S. cerevisiae×S. kudriavzevii, and S. cerevisiae×S. uvarum designer hybrid strains were created as synthetic lager, Belgian, and cider strains, respectively. The ploidy and hybrid nature of the strains were confirmed using flow cytometry and PCR-RFLP analysis, respectively. This method provides an efficient means for producing novel synthetic hybrids for beverage and biofuel production, as well as for constructing tetraploids to be used for basic research in evolutionary genetics and genome stability. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Purification of Arp2/3 complex from Saccharomyces cerevisiae

    Science.gov (United States)

    Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.

    2014-01-01

    Summary Much of cellular control over actin dynamics comes through regulation of actin filament initiation. At the molecular level, this is accomplished through a collection of cellular protein machines, called actin nucleation factors, which position actin monomers to initiate a new actin filament. The Arp2/3 complex is a principal actin nucleation factor used throughout the eukaryotic family tree. The budding yeast Saccharomyces cerevisiae has proven to be not only an excellent genetic platform for the study of the Arp2/3 complex, but also an excellent source for the purification of endogenous Arp2/3 complex. Here we describe a protocol for the preparation of endogenous Arp2/3 complex from wild type Saccharomyces cerevisiae. This protocol produces material suitable for biochemical study, and yields milligram quantities of purified Arp2/3 complex. PMID:23868593

  10. Exploring Protein Function Using the Saccharomyces Genome Database.

    Science.gov (United States)

    Wong, Edith D

    2017-01-01

    Elucidating the function of individual proteins will help to create a comprehensive picture of cell biology, as well as shed light on human disease mechanisms, possible treatments, and cures. Due to its compact genome, and extensive history of experimentation and annotation, the budding yeast Saccharomyces cerevisiae is an ideal model organism in which to determine protein function. This information can then be leveraged to infer functions of human homologs. Despite the large amount of research and biological data about S. cerevisiae, many proteins' functions remain unknown. Here, we explore ways to use the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org ) to predict the function of proteins and gain insight into their roles in various cellular processes.

  11. Saccharomyces cerevisiae: a sexy yeast with a prion problem.

    Science.gov (United States)

    Kelly, Amy C; Wickner, Reed B

    2013-01-01

    Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23-46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae.

  12. Applied systems biology - vanillin production in Saccharomyces cerevisiae

    OpenAIRE

    Strucko, Tomas; Eriksen, Jens Christian; Nielsen, J.; Mortensen, Uffe Hasbro

    2012-01-01

    Vanillin is the most important aroma compound based on market value, and natural vanillin is extracted from the cured seed pods of the Vanilla orchid. Most of the world’s vanillin, however, is obtained by chemical synthesis from petrochemicals or wood pulp lignins. As an alternative, de novo biosynthesis of vanillin in baker’s yeast Saccharomyces cerevisiae was recently demonstrated by successfully introducing the metabolic pathway for vanillin production in yeast. Nevertheless, the amount of...

  13. Hydrogen peroxide removal with magnetically responsive Saccharomyces cerevisiae cells

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Maděrová, Zdeňka; Šafaříková, Miroslava

    2008-01-01

    Roč. 56, - (2008), s. 7925-7928 ISSN 0021-8561 R&D Projects: GA MPO 2A-1TP1/094; GA MŠk OC 157 Institutional research plan: CEZ:AV0Z60870520 Keywords : magnetic alginate beads * catalase * magnetic separation * Saccharomyces cerevisiae cells * hydrogen peroxide Subject RIV: GM - Food Processing Impact factor: 2.562, year: 2008

  14. Microbially induced separation of quartz from calcite using Saccharomyces cerevisiae.

    Science.gov (United States)

    Padukone, S Usha; Natarajan, K A

    2011-11-01

    Cells of Saccharomyces cerevisiae and their metabolites were successfully utilized to achieve selective separation of quartz and calcite through microbially induced flotation and flocculation. S. cerevisiae was adapted to calcite and quartz minerals. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of yeast cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural

    OpenAIRE

    Jung, Young Hoon; Kim, Sooah; Yang, Jungwoo; Seo, Jin?Ho; Kim, Kyoung Heon

    2016-01-01

    Summary Furfural, one of the most common inhibitors in pre?treatment hydrolysates, reduces the cell growth and ethanol production of yeast. Evolutionary engineering has been used as a selection scheme to obtain yeast strains that exhibit furfural tolerance. However, the response of Saccharomyces cerevisiae to furfural at the metabolite level during evolution remains unknown. In this study, evolutionary engineering and metabolomic analyses were applied to determine the effects of furfural on y...

  16. Oligoadenylate is present in the mitochondrial RNA of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Yuckenberg, P.D.; Phillips, S.L.

    1982-01-01

    The authors examined Saccharomyces cerevisiae mitochondrial RNA for polyadenylate. Using hybridization to [/sup 3/H]polyuridylate as the assay for adenylate sequences, they found adenylate-rich oligonucleotides approximately 8 residues long. Longer polyadenylate was not detected. Most of the adenylate-rich sequence is associated with the large mitochondrial rRNA. The remainder is associated with the 10-12S group of transcripts

  17. Dynamics of Storage Carbohydrates Metabolism in Saccharomyces cerevisiae

    OpenAIRE

    Suarez-Mendez, C.A.

    2015-01-01

    Production of chemicals via biotechnological routes are becoming rapidly an alternative to oil-based processes. Several microorganisms including yeast, bacteria, fungi and algae can transform feedstocks into high-value molecules at industrial scale. Improvement of the bioprocess performance is a key factor for making this technology economically feasible. Despite the vast knowledge on microbial metabolism, some gaps still remain open. In Saccharomyces cerevisiae, metabolism of storage carbohy...

  18. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae

    OpenAIRE

    Duan, Lijin; Ding, Wentao; Liu, Xiaonan; Cheng, Xiaozhi; Cai, Jing; Hua, Erbing; Jiang, Huifeng

    2017-01-01

    Background Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. Methods In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. Results First...

  19. Species Identification and Virulence Attributes of Saccharomyces boulardii (nom. inval.)

    Science.gov (United States)

    McCullough, Michael J.; Clemons, Karl V.; McCusker, John H.; Stevens, David A.

    1998-01-01

    Saccharomyces boulardii (nom. inval.) has been used for the treatment of several types of diarrhea. Recent studies have confirmed that S. boulardii is effective in the treatment of diarrhea, in particular chronic or recurrent diarrhea, and furthermore that it is a safe and well-tolerated treatment. The aim of the present study was to identify strains of S. boulardii to the species level and assess their virulence in established murine models. Three strains of S. boulardii were obtained from commercially available products in France and Italy. The three S. boulardii strains did not form spores upon repeated testing. Therefore, classical methods used for the identification of Saccharomyces spp. could not be undertaken. Typing by using the restriction fragment length polymorphisms (RFLPs) of the PCR-amplified intergenic transcribed spacer regions (including the 5.8S ribosomal DNA) showed that the three isolates of S. boulardii were not separable from authentic isolates of Saccharomyces cerevisiae with any of the 10 restriction endonucleases assessed, whereas 9 of the 10 recognized species of Saccharomyces could be differentiated. RFLP analysis of cellular DNA with EcoRI showed that all three strains of S. boulardii had identical patterns and were similar to other authentic S. cerevisiae isolates tested. Therefore, the commercial strains of S. boulardii available to us cannot be genotypically distinguished from S. cerevisiae. Two S. boulardii strains were tested in CD-1 and DBA/2N mouse models of systemic disease and showed intermediate virulence compared with virulent and avirulent strains of S. cerevisiae. The results of the present study show that these S. boulardii strains are asporogenous strains of the species S. cerevisiae, not representatives of a distinct and separate species, and possess moderate virulence in murine models of systemic infection. Therefore, caution should be advised in the clinical use of these strains in immunocompromised patients until

  20. Antibiotic effective against Saccharomyces produced by Aspergillus oryzae

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, H.; Sakai, T.; Takeda, M.; Tsukahara, T.

    1980-01-01

    Production of an antibiotic effective against Saccharomyces cerevisiae was investigated in 85 strains of Aspergillus oryzae, isolated from commercial koji molds. The antibiotic was produced by 50 strains. A. oryzae was cultivated at 30 degrees for 15-20 days in koji extract. The crude preparation was obtained by precipitation from the culture filtrate with EtOH, MeOH, or Me/sub 2/CO.

  1. Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains.

    Science.gov (United States)

    Eldarov, M A; Kishkovskaia, S A; Tanaschuk, T N; Mardanov, A V

    2016-12-01

    Saccharomyces yeasts have been used for millennia for the production of beer, wine, bread, and other fermented products. Long-term "unconscious" selection and domestication led to the selection of hundreds of strains with desired production traits having significant phenotypic and genetic differences from their wild ancestors. This review summarizes the results of recent research in deciphering the genomes of wine Saccharomyces strains, the use of comparative genomics methods to study the mechanisms of yeast genome evolution under conditions of artificial selection, and the use of genomic and postgenomic approaches to identify the molecular nature of the important characteristics of commercial wine strains of Saccharomyces. Succinctly, data concerning metagenomics of microbial communities of grapes and wine and the dynamics of yeast and bacterial flora in the course of winemaking is provided. A separate section is devoted to an overview of the physiological, genetic, and biochemical features of sherry yeast strains used to produce biologically aged wines. The goal of the review is to convince the reader of the efficacy of new genomic and postgenomic technologies as tools for developing strategies for targeted selection and creation of new strains using "classical" and modern techniques for improving winemaking technology.

  2. Mitochondrial genome evolution in the Saccharomyces sensu stricto complex.

    Science.gov (United States)

    Ruan, Jiangxing; Cheng, Jian; Zhang, Tongcun; Jiang, Huifeng

    2017-01-01

    Exploring the evolutionary patterns of mitochondrial genomes is important for our understanding of the Saccharomyces sensu stricto (SSS) group, which is a model system for genomic evolution and ecological analysis. In this study, we first obtained the complete mitochondrial sequences of two important species, Saccharomyces mikatae and Saccharomyces kudriavzevii. We then compared the mitochondrial genomes in the SSS group with those of close relatives, and found that the non-coding regions evolved rapidly, including dramatic expansion of intergenic regions, fast evolution of introns and almost 20-fold higher rearrangement rates than those of the nuclear genomes. However, the coding regions, and especially the protein-coding genes, are more conserved than those in the nuclear genomes of the SSS group. The different evolutionary patterns of coding and non-coding regions in the mitochondrial and nuclear genomes may be related to the origin of the aerobic fermentation lifestyle in this group. Our analysis thus provides novel insights into the evolution of mitochondrial genomes.

  3. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts.

    Science.gov (United States)

    Gorter de Vries, Arthur R; Pronk, Jack T; Daran, Jean-Marc G

    2017-06-01

    Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyce s strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. Copyright © 2017 Gorter de Vries et al.

  4. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    van der Aa Kuhle, Alis; Skovgaard, Kerstin; Jespersen, Lene

    2005-01-01

    .6-16.8%) recorded for two isolates from blue veined cheeses. Merely 25% of the S. cerevisiae var. boulardii strains displayed good adhesive properties (16.2-28.0%). The expression of the proinflammatory cytokine IL-1α decreased strikingly in IPEC-J2 cells exposed to a Shiga-like toxin 2e producing Escherichia coli...... strain when the cells were pre- and coincubated with S. cerevisiae var. boulardii even though this yeast strain was low adhesive (5.4%), suggesting that adhesion is not a mandatory prerequisite for such a probiotic effect. A strain of S. cerevisiae isolated from West African sorghum beer exerted similar......The probiotic potential of IS Saccharomyces cerevisiae strains used for production of foods or bevel-ages or isolated from such, and eight strains of Saccharomyces cerevisiae var. boulardii, was investigated. All strains included were able to withstand pH 2.5 and 0.3% Ox-all. Adhesion...

  5. Transcriptome-Based Characterization of Interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in Lactose-Grown Chemostat Cocultures

    NARCIS (Netherlands)

    Mendes, F.; Sieuwerts, S.; De Hulster, E.; Almering, M.J.; Luttik, M.A.; Pronk, J.T.; Smid, E.J.; Bron, P.A.; Daran-Lapujade, P.

    2013-01-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp.

  6. Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures

    NARCIS (Netherlands)

    Mendes, F.; Sieuwerts, S.; Hulster, de E.; Almering, M.J.; Luttik, M.A.H.; Pronk, J.T.; Smid, E.J.; Baron, P.A.; Daran-Lapujade, P.

    2013-01-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp.

  7. Non-introgressive genome chimerisation by malsegregation in autodiploidised allotetraploids during meiosis of Saccharomyces kudriavzevii x Saccharomyces uvarum hybrids.

    Science.gov (United States)

    Karanyicz, Edina; Antunovics, Zsuzsa; Kallai, Z; Sipiczki, M

    2017-06-01

    Saccharomyces strains with chimerical genomes consisting of mosaics of the genomes of different species ("natural hybrids") occur quite frequently among industrial and wine strains. The most widely endorsed hypothesis is that the mosaics are introgressions acquired via hybridisation and repeated backcrosses of the hybrids with one of the parental species. However, the interspecies hybrids are sterile, unable to mate with their parents. Here, we show by analysing synthetic Saccharomyces kudriavzevii x Saccharomyces uvarum hybrids that mosaic (chimeric) genomes can arise without introgressive backcrosses. These species are biologically separated by a double sterility barrier (sterility of allodiploids and F1 sterility of allotetraploids). F1 sterility is due to the diploidisation of the tetraploid meiosis resulting in MAT a /MAT α heterozygosity which suppresses mating in the spores. This barrier can occasionally be broken down by malsegregation of autosyndetically paired chromosomes carrying the MAT loci (loss of MAT heterozygosity). Subsequent malsegregation of additional autosyndetically paired chromosomes and occasional allosyndetic interactions chimerise the hybrid genome. Chromosomes are preferentially lost from the S. kudriavzevii subgenome. The uniparental transmission of the mitochondrial DNA to the hybrids indicates that nucleo-mitochondrial interactions might affect the direction of the genomic changes. We propose the name GARMe (Genome AutoReduction in Meiosis) for this process of genome reduction and chimerisation which involves no introgressive backcrossings. It opens a way to transfer genetic information between species and thus to get one step ahead after hybridisation in the production of yeast strains with beneficial combinations of properties of different species.

  8. Saccharomyces cerevisiae and non-Saccharomyces yeasts in grape varieties of the São Francisco Valley

    Directory of Open Access Journals (Sweden)

    Camila M.P.B.S. de Ponzzes-Gomes

    2014-06-01

    Full Text Available The aims of this work was to characterise indigenous Saccharomyces cerevisiae strains in the naturally fermented juice of grape varieties Cabernet Sauvignon, Grenache, Tempranillo, Sauvignon Blanc and Verdejo used in the São Francisco River Valley, northeastern Brazil. In this study, 155 S. cerevisiae and 60 non-Saccharomyces yeasts were isolated and identified using physiological tests and sequencing of the D1/D2 domains of the large subunit of the rRNA gene. Among the non-Saccharomyces species, Rhodotorula mucilaginosa was the most common species, followed by Pichia kudriavzevii, Candida parapsilosis, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Kloeckera apis, P. manshurica, C. orthopsilosis and C. zemplinina. The population counts of these yeasts ranged among 1.0 to 19 x 10(5 cfu/mL. A total of 155 isolates of S. cerevisiae were compared by mitochondrial DNA restriction analysis, and five molecular mitochondrial DNA restriction profiles were detected. Indigenous strains of S. cerevisiae isolated from grapes of the São Francisco Valley can be further tested as potential starters for wine production.

  9. Co-cultivation of non-conventional yeast with Saccharomyces cerevisiae to increase the aroma complexity of fermented beverages

    NARCIS (Netherlands)

    Rijswijck, van Irma M.H.

    2017-01-01

    Yeast are used as workhorses to convert hopped wort into beer. Conventionally, such yeasts belong to the genus Saccharomyces and most research on fermentation of wort for the production of beer has focussed on the species Saccharomyces cerevisiae and Saccharomyces

  10. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Science.gov (United States)

    2010-04-01

    ...) antibody (ASCA) test systems. 866.5785 Section 866.5785 Food and Drugs FOOD AND DRUG ADMINISTRATION... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  11. Economic Considerations for Selecting an Amine Donor in Biocatalytic Transamination

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Nordblad, Mathias; Krühne, Ulrich

    2015-01-01

    the process, in particular the choice of amine donor. This paper discusses these constraints and demonstrates, through simple thermodynamic and economic models, the process targets that need to be set and achieved for a process dependent on allowed process costs and quality targets....... in industry. The technology has been demonstrated in a few selected cases, but widespread implementation and for a broader range of target molecules requires a deeper understanding of the underlying thermodynamic as well as economic constraints for the different choices that can be made in designing...

  12. Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur.

    Science.gov (United States)

    Naseeb, Samina; James, Stephen A; Alsammar, Haya; Michaels, Christopher J; Gini, Beatrice; Nueno-Palop, Carmen; Bond, Christopher J; McGhie, Henry; Roberts, Ian N; Delneri, Daniela

    2017-06-01

    Two strains, D5088T and D5095, representing a novel yeast species belonging to the genus Saccharomyces were isolated from oak tree bark and surrounding soil located at an altitude of 1000 m above sea level in Saint Auban, France. Sequence analyses of the internal transcribed spacer (ITS) region and 26S rRNA D1/D2 domains indicated that the two strains were most closely related to Saccharomyces mikatae and Saccharomyces paradoxus. Genetic hybridization analyses showed that both strains are reproductively isolated from all other Saccharomyces species and, therefore, represent a distinct biological species. The species name Saccharomyces jurei sp. nov. is proposed to accommodate these two strains, with D5088T (=CBS 14759T=NCYC 3947T) designated as the type strain.

  13. Construction of killer industrial yeast Saccharomyces cerevisiae HAU-1 and its fermentation performance

    Directory of Open Access Journals (Sweden)

    Bijender K. Bajaj

    2010-06-01

    Full Text Available Saccharomyces cerevisiae HAU-1, a time tested industrial yeast possesses most of the desirable fermentation characteristics like fast growth and fermentation rate, osmotolerance, high ethanol tolerance, ability to ferment molasses, and to ferment at elevated temperatures etc. However, this yeast was found to be sensitive against the killer strains of Saccharomyces cerevisiae. In the present study, killer trait was introduced into Saccharomyces cerevisiae HAU-1 by protoplast fusion with Saccharomyces cerevisiae MTCC 475, a killer strain. The resultant fusants were characterized for desirable fermentation characteristics. All the technologically important characteristics of distillery yeast Saccharomyces cerevisiae HAU-1 were retained in the fusants, and in addition the killer trait was also introduced into them. Further, the killer activity was found to be stably maintained during hostile conditions of ethanol fermentations in dextrose or molasses, and even during biomass recycling.

  14. On cycles in the transcription network of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Berman Piotr

    2008-01-01

    Full Text Available Abstract Background We investigate the cycles in the transcription network of Saccharomyces cerevisiae. Unlike a similar network of Escherichia coli, it contains many cycles. We characterize properties of these cycles and their place in the regulatory mechanism of the cell. Results Almost all cycles in the transcription network of Saccharomyces cerevisiae are contained in a single strongly connected component, which we call LSCC (L for "largest", except for a single cycle of two transcription factors. The fact that LSCC includes almost all cycles is well explained by the properties of a random graph with the same in- and out-degrees of the nodes. Among different physiological conditions, cell cycle has the most significant relationship with LSCC, as the set of 64 transcription interactions that are active in all phases of the cell cycle has overlap of 27 with the interactions of LSCC (of which there are 49. Conversely, if we remove the interactions that are active in all phases of the cell cycle (25% of interactions to transcription factors, the LSCC would have only three nodes and 5 edges, many fewer than expected. This subgraph of the transcription network consists mostly of interactions that are active only in the stress response subnetwork. We also characterize the role of LSCC in the topology of the network. We show that LSCC can be used to define a natural hierarchy in the network and that in every physiological subnetwork LSCC plays a pivotal role. Conclusion Apart from those well-defined conditions, the transcription network of Saccharomyces cerevisiae is devoid of cycles. It was observed that two conditions that were studied and that have no cycles of their own are exogenous: diauxic shift and DNA repair, while cell cycle and sporulation are endogenous. We claim that in a certain sense (slow recovery stress response is endogenous as well.

  15. Removal of Pyrimethanil and Fenhexamid from Saccharomyces cerevisiae Liquid Cultures

    Directory of Open Access Journals (Sweden)

    Etjen Bizaj

    2011-01-01

    Full Text Available The capacity for the removal of pyrimethanil and fenhexamid, two fungicides commonly used for the control of Botrytis cinerea in vineyards, has been evaluated during an alcoholic fermentation process in batch system. Commercial and wild strains of Saccharomyces cerevisiae were used. Batch fermentations were carried out in yeast extract-malt extract medium (YM with 18.0 % (by mass glucose, and the fungicides were added separately at three concentrations: 0.1, 1.0 and 10.0 mg/L. The removal capacity of yeast strains was also examined in stationary phase cultures of Saccharomyces cerevisiae. Stationary assays were performed with yeast biomass harvested from the stationary phase of an anaerobic fermentation process, with separate additions of 0.1, 1.0 and 10.0 mg/L of both fungicides. Removal studies with stationary phase cells were performed with viable and non-viable cells inactivated with sodium azide. This study clearly shows that both Saccharomyces cerevisiae strains were able to remove fenhexamid and pyrimethanil in stationary and fermentative assays. The removal potential is shown to be strain dependent in stationary but not in fermentative assays. However, the removal potential is dependent on the type of fungicide in both stationary and fermentative assays. In stationary phase cultures no significant difference in fungicide removal potential between viable and non-viable cells was observed, indicating that both pesticides were not degraded by metabolically active cells. However, the presence of both pesticides influenced fermentation kinetics and only pyrimethanil at 10.0 mg/L increased the production of volatile acidity of both strains.

  16. Protein expression of saccharomyces cerevisiae in response to uranium exposure

    International Nuclear Information System (INIS)

    Sakamoto, Fuminori; Nankawa, Takuya; Kozai, Naofumi; Ohnuki, Toshihiko; Fujii, Tsutomu; Iefuji, Haruyuki; Francis, A.J.

    2007-01-01

    Protein expression of Saccharomyces cerevisiae grown in the medium containing 238 U (VI) and 233 U (VI) was examined by two-dimensional gel electrophoresis. Saccharomyces cerevisiae of BY4743 was grown in yeast nitrogen base medium containing glucose and glycerol 2-phosphate and 238 U of 0, 2.0, and 5.0 x 10 -4 M or 233 U of 2.5 x 10 -6 M (radioactivity was higher by 350 times than 2.0 x 10 -4 M 238 U) and 5.0 x 10 -6 M for 112 h at 30 degC. The growth of Saccharomyces cerevisiae was monitored by measuring OD 600 at 112 h after the inoculation. Uranium concentrations in the media also were measured by radiometry using a liquid scintillation counter. The growths of the yeast grown in the above media were in the following order: control>2.5 x 10 -6 M 233 U>2.0 x 10 -4 M 238 U>5.0 x 10 -6 M 233 U>5.0 x 10 -4 M 238 U. This result indicated that not only radiological but also chemical effect of U reduced the growth of the yeast. The concentrations of U in the medium containing 238 U or 233 U decreased, suggesting U accumulation by the yeast cells. The 2-D gel electrophoresis analysis showed the appearance of several spots after exposure to 238 U or to 233 U but not in the control containing no uranium. These results show that the yeast cells exposed to U express several specific proteins. (author)

  17. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  18. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Lages, Nuno; Oldiges, M.

    2009-01-01

    to induce widespread changes in metabolism. We present a detailed analysis of the impact of perturbations in redox cofactors in the cytosol or mitochondria on glucose and energy metabolism in Saccharomyces cerevisiae to aid metabolic engineering decisions that involve cofactor engineering. We enhanced NADH...... oxidation by introducing NADH oxidase or alternative oxidase, its ATP-mediated conversion to NADPH using NADH kinase as well as the interconversion of NADH and NADPH independent of ATP by the soluble, non-proton-translocating bacterial transhydrogenase. Decreasing cytosolic NADH level lowered glycerol...

  19. Studies of the Saccharomyces cerevisiae Cultivation under Oscillatory Mixing Conditions

    Directory of Open Access Journals (Sweden)

    M?ris Rikmanis

    2005-12-01

    Full Text Available Saccharomyces cerevisiae was cultivated under non-aerated conditions in a 5 l laboratory bioreactor. Using the experimental data and the regression analysis method, some mathematical correlations for stirrer rotational speed oscillation frequency and the reaction of the yeast were established. It has been found that different growth parameters are influenced variously by stirrer rotational speed and stirrer rotational speed oscillation frequency. Stirring oscillations can be among the methods for stimulation of biotechnological processes. The obtained results can be used for designing bioreactors and optimizing working conditions.

  20. mRNA decapping enzyme from ribosomes of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Stevens, A.

    1980-01-01

    By use of [ 3 H]methyl-5'-capped [ 14 C]mRNA from yeast as a substrate, a decapping enzyme activity has been detected in enzyme fractions derived from a high salt wash of ribosomes of Saccharomyces cerevisiae. The product of the decapping reaction is [ 3 H]m 7 GDP. That the enzyme is not a non-specific pyrophosphatase is suggested by the finding that the diphosphate product, m 7 GpppA(G), and UDP-glucose are not hydrolyzed

  1. Magnetically altered ethanol fermentation capacity of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Galonja-Corghill Tamara

    2009-01-01

    Full Text Available We studied the effect of static magnetic fields on ethanol production by yeast Saccharomyces cerevisiae 424A (LNH-ST using sugar cane molasses during the fermentation in an enclosed bioreactor. Two static NdFeB magnets were attached to a cylindrical tube reactor with their opposite poles (north to south, creating 150 mT magnetic field inside the reactor. Comparable differences emerged between the results of these two experimental conditions. We found ethanol productivity to be 15% higher in the samples exposed to 150 mT magnetic field.

  2. How Saccharomyces cerevisiae copes with toxic metals and metalloids.

    Science.gov (United States)

    Wysocki, Robert; Tamás, Markus J

    2010-11-01

    Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.

  3. ISOTERMAS DE ADSORÇÃO DE CÁDMIO POR Saccharomyces cerevisiae ISOTHERMS OF CADMIUM ADSORPTION BY Saccharomyces cerevisae

    Directory of Open Access Journals (Sweden)

    Silvana ALBERTINI

    2001-08-01

    Full Text Available Com o objetivo de determinar as isotermas de adsorção de cádmio por Saccharomyces cerevisiae, foram utilizados os sais cloreto e nitrato de cádmio nas concentrações de 5, 10, 20, 40, 60, 80 e 100mg L-1. A biomassa foi produzida a partir de uma cultura "starter"de Saccharomyces cerevisiae IZ 1904. Após o contato de 16h entre o microrganismo e as soluções em estudo, a biomassa foi separada por centrifugação e o teor de cádmio residual foi determinado no sobrenadante por espectrofotometria de absorção atômica. Para os dois sais empregados foi observado um acúmulo crescente de cádmio nas concentrações de 5, 10, 20 e 40mg L-1. Nas concentrações de 60, 80 e 100mg L-1 foi observado que a levedura acumulou teores menores do metal, evidenciando danos na parede celular, nem sempre acompanhados de iguais danos da membrana citoplasmática, tais alterações da parede visualizadas por microscopia eletrônica de varredura.With the objective of determining the isotherms of cadmium the adsorption by Saccharomyces cerevisiae, the chloride and nitrate salts were used in the concentrations of 5, 10, 20, 40, 60, 80, and 100mg L-1. The biomass was produced from a starter culture of Saccharomyces cerevisiae IZ 1904. After a 16h contact between the microrganism and solutions of study the biomass was separated by a centrifuge and the cadmium residue content was determined at the supernatant by atomic adsorption spectrophotometry. For the two salts used a growing accumulation of cadmium was observed at concentrations of 5, 10, 20, and 40mg L-1. In the concentrations of 60, 80 and 100mg L-1 a decreasing of the accumulation of the metal was observed, evidencing damages of the cellular wall, which they're not accompanied always by damages of the citoplasmatic membrane, visualized by scanning electron microscopy.

  4. Data on dynamic study of cytoophidia in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-09-01

    Full Text Available The data in this paper are related to the research article entitled “Filamentation of metabolic enzymes in Saccharomyces cerevisiae” Q.J. Shen et al. (2016 [1]. Cytoophidia are filamentous structures discovered in fruit flies (doi:10.1016/S1673-8527(0960046-1 J.L. Liu (2010 [2], bacteria (doi:10.1038/ncb2087 M. Ingerson-Mahar et al. (2010 [3], yeast (doi:10.1083/jcb.201003001; doi:10.1242/bio.20149613 C. Noree et al. (2010 and J. Zhang, L. Hulme, J.L. Liu (2014 [4,5] and human cells (doi:10.1371/journal.pone.0029690; doi:10.1016/j.jgg.2011.08.004 K. Chen et al. (2011 and W.C. Carcamo et al. (2011 ( [6,7]. However, there is little research on the motility of the cytoophidia. Here we selected cytoophidia formed by 6 filament-forming proteins in the budding yeast S. cerevisiae, and performed living-cell imaging of cells expressing the proteins fused with GFP. The dynamic features of the six types of cytoophidia were analyzed. In the data, both raw movies and analysed results of the dynamics of cytoophidia are presented. Keywords: Saccharomyces cerevisiae, CTP synthase, Cytoophidium, Metabolism, Filamentation

  5. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  6. Characterization of an MMS sensitive mutant of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Martin, P.S.

    1979-01-01

    We have characterized a methyl methanesulfonate sensitive mutant of the yeast Saccharomyces cerevisiae in order to learn more about DNA repair and mutagenesis in this organism. The mutation, designated mms3-1, also confers sensitivity to ultraviolet light and to ethyl methanesulfonate in both haploids and homozygous diploids. Its effect on γ-ray sensitivity, however, is a function of the ploidy of the cell and its effect on induced mutation is a function of both the ploidy of the cell and the nature of the inducing agent. Our major findings are discussed. Our data indicate that: (1) Saccharomyces cerevisiae has an error prone pathway for the repair of uv damage controlled by the MMS3 gene product operating in and only in, and possibly induced by conditions present only in, a/α diploids; (2) in diploids, at least, there exists at least one step in the error prone repair of uv induced damage which is different from a step in the error prone repair of EMS induced damage; (3) a/α mms3-1/mms3-1 diploids may be defective in a step common to the repair of mutagenic lesions following uv irradiation and lethal lesions following γ irradiation; and (4) there are steps in the repair of MMS induced lethal damage that are different from steps in the repair of EMS induced lethal damage

  7. Mitochondrial introgression suggests extensive ancestral hybridization events among Saccharomyces species.

    Science.gov (United States)

    Peris, David; Arias, Armando; Orlić, Sandi; Belloch, Carmela; Pérez-Través, Laura; Querol, Amparo; Barrio, Eladio

    2017-03-01

    Horizontal gene transfer (HGT) in eukaryotic plastids and mitochondrial genomes is common, and plays an important role in organism evolution. In yeasts, recent mitochondrial HGT has been suggested between S. cerevisiae and S. paradoxus. However, few strains have been explored given the lack of accurate mitochondrial genome annotations. Mitochondrial genome sequences are important to understand how frequent these introgressions occur, and their role in cytonuclear incompatibilities and fitness. Indeed, most of the Bateson-Dobzhansky-Muller genetic incompatibilities described in yeasts are driven by cytonuclear incompatibilities. We herein explored the mitochondrial inheritance of several worldwide distributed wild Saccharomyces species and their hybrids isolated from different sources and geographic origins. We demonstrated the existence of several recombination points in mitochondrial region COX2-ORF1, likely mediated by either the activity of the protein encoded by the ORF1 (F-SceIII) gene, a free-standing homing endonuclease, or mostly facilitated by A+T tandem repeats and regions of integration of GC clusters. These introgressions were shown to occur among strains of the same species and among strains of different species, which suggests a complex model of Saccharomyces evolution that involves several ancestral hybridization events in wild environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Quality control of fifteen probiotic products containing Saccharomyces boulardii.

    Science.gov (United States)

    Vanhee, L M E; Goemé, F; Nelis, H J; Coenye, T

    2010-11-01

    The yeast Saccharomyces boulardii is used as a probiotic for the prevention and treatment of diarrhoea. In this study, the quality of 15 probiotic products containing S. boulardii was verified. Using microsatellite typing, the identity of all Saccharomyces strains in the products was confirmed as S. boulardii. Additionally, solid-phase cytometry (SPC) and a plate method were used to enumerate S. boulardii cells. SPC was not only able to produce results more rapidly than plating (4h compared to 48h) but the cell counts obtained with SPC were significantly higher than the plate counts. Finally, we found that boulardii cells survived 120min in gastric conditions and storage for 3months at 40°C with 75% relative humidity. We developed a SPC method for the quantification of viable S. boulardii cells in probiotics. Additionally, we demonstrated that gastric conditions and storage have a marked effect on the viability of the yeast cells.   To our knowledge, this is the first time SPC is used for the quality control of probiotics with S. boulardii. Additionally, we demonstrated the need for gastric protection and accurate storage. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  9. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    Directory of Open Access Journals (Sweden)

    Zhang Tingting

    2012-12-01

    Full Text Available Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products. Results We developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice. Conclusions Establishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.

  10. Functional Analysis of the FZF1 Genes of Saccharomyces uvarum

    Directory of Open Access Journals (Sweden)

    Xiaozhen Liu

    2018-02-01

    Full Text Available Being a sister species of Saccharomyces cerevisiae, Saccharomyces uvarum shows great potential regarding the future of the wine industry. The sulfite tolerance of most S. uvarum strains is poor, however. This is a major flaw that limits its utility in the wine industry. In S. cerevisiae, FZF1 plays a positive role in the transcription of SSU1, which encodes a sulfite efflux transport protein that is critical for sulfite tolerance. Although FZF1 has previously been shown to play a role in sulfite tolerance in S. uvarum, there is little information about its action mechanism. To assess the function of FZF1, two over-expression vectors that contained different FZF1 genes, and one FZF1 silencing vector, were constructed and introduced into a sulfite-tolerant S. uvarum strain using electroporation. In addition, an FZF1-deletion strain was constructed. Both of the FZF1-over-expressing strains showed an elevated tolerance to sulfite, and the FZF1-deletion strain showed the opposite effect. Repression of FZF1 transcription failed, however, presumably due to the lack of alleles of DCR1 and AGO. The qRT-PCR analysis was used to examine changes in transcription in the strains. Surprisingly, neither over-expressing strain promoted SSU1 transcription, although MET4 and HAL4 transcripts significantly increased in both sulfite-tolerance increased strains. We conclude that FZF1 plays a different role in the sulfite tolerance of S. uvarum compared to its role in S. cerevisiae.

  11. 'Yeast mail': a novel Saccharomyces application (NSA) to encrypt messages.

    Science.gov (United States)

    Rosemeyer, Helmut; Paululat, Achim; Heinisch, Jürgen J

    2014-09-01

    The universal genetic code is used by all life forms to encode biological information. It can also be used to encrypt semantic messages and convey them within organisms without anyone but the sender and recipient knowing, i.e., as a means of steganography. Several theoretical, but comparatively few experimental, approaches have been dedicated to this subject, so far. Here, we describe an experimental system to stably integrate encrypted messages within the yeast genome using a polymerase chain reaction (PCR)-based, one-step homologous recombination system. Thus, DNA sequences encoding alphabetical and/or numerical information will be inherited by yeast propagation and can be sent in the form of dried yeast. Moreover, due to the availability of triple shuttle vectors, Saccharomyces cerevisiae can also be used as an intermediate construction device for transfer of information to either Drosophila or mammalian cells as steganographic containers. Besides its classical use in alcoholic fermentation and its modern use for heterologous gene expression, we here show that baker's yeast can thus be employed in a novel Saccharomyces application (NSA) as a simple steganographic container to hide and convey messages. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  12. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile

    Science.gov (United States)

    Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé

    2017-01-01

    Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for some of the

  13. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile

    Directory of Open Access Journals (Sweden)

    Antoine Gobert

    2017-11-01

    Full Text Available Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available. We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for

  14. The adsorption of Sr(II) and Cs(I) ions by irradiated Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Yiming Tan; Jundong Feng; Liang Qiu; Zhentian Zhao; Xiaohong Zhang; Haiqian Zhang

    2017-01-01

    Adsorption behavior and mechanism of Sr(II) and Cs(I) in single and binary solutions using irradiated Saccharomyces cerevisiae was investigated. The effects of several environmental factors on Sr(II) and Cs(I) adsorption to irradiated Saccharomyces cerevisiae was determined. The equilibrium experimental data were simulated by different kinetic models and isotherm models. The combined effect of Sr(II) and Cs(I) on Saccharomyces cerevisiae is generally antagonistic. SEM and EDS analyses indicate that crystals formed on the cell surface are precipitate of Sr(II) and Cs(I), respectively. (author)

  15. Uranium removal from acidic aqueous solutions by Saccharomyces cerevisiae, Debaryomyces hansenii, Kluyveromyces marxianus and Candida colliculosa

    International Nuclear Information System (INIS)

    Sarri, S.; Misaelides, P.; Papanikolaou, M.; Zamboulis, D.

    2009-01-01

    The sorption of uranium from acidic aqueous solutions (pH 4.5, C init = 10 to 1000 mg U/L) by Saccharomyces cerevisiae, Debaryomyces hansenii, Kluyveromyces marxianus and Candida colliculosa was investigated using a batch technique. The U-sorption onto Saccharomyces cerevisiae and Debaryomyces hansenii followed a Langmuir, while that onto Kluyveromyces marxianus and Candida colliculosa a Freundlich isotherm. The results demonstrated that all investigated biomasses could effectively remove uranium from acidic aqueous solutions. From all sorbents, Saccharomyces cerevisiae appeared to be the most effective with a maximum sorption capacity of 127.7 mg U/g dry biomass. (author)

  16. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains.

    Science.gov (United States)

    van der Aa Kühle, Alis; Skovgaard, Kerstin; Jespersen, Lene

    2005-05-01

    The probiotic potential of 18 Saccharomyces cerevisiae strains used for production of foods or beverages or isolated from such, and eight strains of Saccharomyces cerevisiae var. boulardii, was investigated. All strains included were able to withstand pH 2.5 and 0.3% Oxgall. Adhesion to the nontumorigenic porcine jejunal epithelial cell line (IPEC-J2) was investigated by incorporation of 3H-methionine into the yeast cells and use of liquid scintillation counting. Only few of the food-borne S. cerevisiae strains exhibited noteworthy adhesiveness with the strongest levels of adhesion (13.6-16.8%) recorded for two isolates from blue veined cheeses. Merely 25% of the S. cerevisiae var. boulardii strains displayed good adhesive properties (16.2-28.0%). The expression of the proinflammatory cytokine IL-1alpha decreased strikingly in IPEC-J2 cells exposed to a Shiga-like toxin 2e producing Escherichia coli strain when the cells were pre- and coincubated with S. cerevisiae var. boulardii even though this yeast strain was low adhesive (5.4%), suggesting that adhesion is not a mandatory prerequisite for such a probiotic effect. A strain of S. cerevisiae isolated from West African sorghum beer exerted similar effects hence indicating that food-borne strains of S. cerevisiae may possess probiotic properties in spite of low adhesiveness.

  17. Bioethanol production by a flocculent hybrid, CHFY0321 obtained by protoplast fusion between Saccharomyces cerevisiae and Saccharomyces bayanus

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gi-Wook; Kang, Hyun-Woo; Kim, Yule [Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., LTD, Palbok-Dong 829, Dukjin-Gu, Jeonju 561-203 (Korea); Um, Hyun-Ju; Kim, Mina; Kim, Yang-Hoon [Department of Microbiology, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju 361-763 (Korea)

    2010-08-15

    Fusion hybrid yeast, CHFY0321, was obtained by protoplast fusion between non-flocculent-high ethanol fermentative Saccharomyces cerevisiae CHY1011 and flocculent-low ethanol fermentative Saccharomyces bayanus KCCM12633. The hybrid yeast was used together with the parental strains to examine ethanol production in batch fermentation. Under the conditions tested, the fusion hybrid CHFY0321 flocculated to the highest degree and had the capacity to ferment well at pH 4.5 and 32 C. Simultaneous saccharification and fermentation for ethanol production was carried out using a cassava (Manihot esculenta) powder hydrolysate medium containing 19.5% (w v{sup -1}) total sugar in a 5 l lab scale jar fermenter at 32 C for 65 h with an agitation speed of 2 Hz. Under these conditions, CHFY0321 showed the highest flocculating ability and the best fermentation efficiency for ethanol production compared with those of the wild-type parent strains. CHFY0321 gave a final ethanol concentration of 89.8 {+-} 0.13 g l{sup -1}, a volumetric ethanol productivity of 1.38 {+-} 0.13 g l{sup -1} h{sup -1}, and a theoretical yield of 94.2 {+-} 1.58%. These results suggest that CHFY0321 exhibited the fermentation characteristics of S. cerevisiae CHY1011 and the flocculent ability of S. bayanus KCCM12633. Therefore, the strong highly flocculent ethanol fermentative CHFY0321 has potential for improving biotechnological ethanol fermentation processes. (author)

  18. Bioethanol production by a flocculent hybrid, CHFY0321 obtained by protoplast fusion between Saccharomyces cerevisiae and Saccharomyces bayanus

    International Nuclear Information System (INIS)

    Choi, Gi-Wook; Um, Hyun-Ju; Kang, Hyun-Woo; Kim, Yule; Kim, Mina; Kim, Yang-Hoon

    2010-01-01

    Fusion hybrid yeast, CHFY0321, was obtained by protoplast fusion between non-flocculent-high ethanol fermentative Saccharomyces cerevisiae CHY1011 and flocculent-low ethanol fermentative Saccharomyces bayanus KCCM12633. The hybrid yeast was used together with the parental strains to examine ethanol production in batch fermentation. Under the conditions tested, the fusion hybrid CHFY0321 flocculated to the highest degree and had the capacity to ferment well at pH 4.5 and 32 o C. Simultaneous saccharification and fermentation for ethanol production was carried out using a cassava (Manihot esculenta) powder hydrolysate medium containing 19.5% (w v -1 ) total sugar in a 5 l lab scale jar fermenter at 32 o C for 65 h with an agitation speed of 2 Hz. Under these conditions, CHFY0321 showed the highest flocculating ability and the best fermentation efficiency for ethanol production compared with those of the wild-type parent strains. CHFY0321 gave a final ethanol concentration of 89.8 ± 0.13 g l -1 , a volumetric ethanol productivity of 1.38 ± 0.13 g l -1 h -1 , and a theoretical yield of 94.2 ± 1.58%. These results suggest that CHFY0321 exhibited the fermentation characteristics of S. cerevisiae CHY1011 and the flocculent ability of S. bayanus KCCM12633. Therefore, the strong highly flocculent ethanol fermentative CHFY0321 has potential for improving biotechnological ethanol fermentation processes.

  19. Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes

    DEFF Research Database (Denmark)

    Albergaria, Helena; Arneborg, Nils

    2016-01-01

    Winemaking, brewing and baking are some of the oldest biotechnological processes. In all of them, alcoholic fermentation is the main biotransformation and Saccharomyces cerevisiae the primary microorganism. Although a wide variety of microbial species may participate in alcoholic fermentation and...

  20. Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Milne, N.; Luttik, M.A.H.; Cueto Rojas, H.F.; Wahl, A.; Van Maris, A.J.A.; Pronk, J.T.; Daran, J.G.

    2015-01-01

    In microbial processes for production of proteins, biomass and nitrogen-containing commodity chemicals, ATP requirements for nitrogen assimilation affect product yields on the energy producing substrate. In Saccharomyces cerevisiae, a current host for heterologous protein production and potential

  1. Effect of menadione and hydrogen peroxide on catalase activity in Saccharomyces yeast strains

    Directory of Open Access Journals (Sweden)

    Nadejda EFREMOVA

    2013-05-01

    Full Text Available It has been studied the possibility of utilization of two important oxidant factors as regulators of catalase activity in Saccharomyces yeasts. In this paper results of the screening of some Saccharomyces yeast strains for potential producers of catalase are presented. Results of the screening for potential catalase producer have revealed that Saccharomyces cerevisiae CNMN-Y-11 strain possesses the highest catalase activity (2900 U/mg protein compared with other samples. Maximum increase of catalase activity with 50-60% compared to the reference sample was established in the case of hydrogen peroxide and menadione utilization in optimal concentrations of 15 and 10 mM. This research has been demonstrated the potential benefits of application of hydrogen peroxide and menadione as stimulatory factors of catalase activity in Saccharomyces yeasts.

  2. Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains

    NARCIS (Netherlands)

    Baleiras Couto, M.M.; Eijsma, B.; Hofstra, H.; Huis in 't Veld, J.H.J.; Vossen, J.M.B.M. van der

    1996-01-01

    Discrimination of strains within the species Saccharomyces cerevisiae was demonstrated by the use of four different techniques to type 15 strains isolated from spoiled wine and beer. Random amplified polymorphic DNA with specific oligonucleotides and PCR fingerprinting with the microsatellite

  3. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Background: The limited xylose utilizing ability of native Saccharomyces cerevisiae has been a major obstacle for efficient cellulosic ethanol production from lignocellulosic materials. Haploid laboratory strains of S. cerevisiae are commonly used for genetic engineering to enable its xylose utiliza...

  4. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Hubmann, Georg; Thevelein, Johan M; Nevoigt, Elke

    2014-01-01

    The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker's yeast has

  5. Reconstruction of the biosynthetic pathway for the core fungal polyketide scaffold rubrofusarin in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rugbjerg, Peter; Naesby, Michael; Mortensen, Uffe Hasbro

    2013-01-01

    production in easily fermentable and genetically engineerable organisms, such as Saccharomyces cerevisiae and Escherichia coli are desirable. Rubrofusarin is an orange polyketide pigment that is a common intermediate in many different fungal biosynthetic pathways. RESULTS: In this study, we established...

  6. Multiplexed CRISPR/Cas9 Genome Editing and Gene Regulation Using Csy4 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Ferreira, Raphael; Skrekas, Christos; Nielsen, Jens

    2018-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) technology has greatly accelerated the field of strain engineering. However, insufficient efforts have been made toward developing robust multiplexing tools in Saccharomyces cerevisiae. Here, we exploit the RNA processing capacity...

  7. Saccharomyces boulardii fungaemia in an intensive care unit patient treated with caspofungin

    Science.gov (United States)

    Lolis, Nikolaos; Veldekis, Dimitrios; Moraitou, Hellen; Kanavaki, Sofia; Velegraki, Aristea; Triandafyllidis, Charis; Tasioudis, Chronis; Pefanis, Angellos; Pneumatikos, Ioannis

    2008-01-01

    We describe a case of Saccharomyces boulardii fugaemia in a critically ill patient with septic shock treated with a probiotic agent containing this yeast. We attributed this fugaemia to gut translocation. Our use of caspofugin yielded excellent results. PMID:18423057

  8. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Vemuri, Goutham; Eiteman, M.A; McEwen, J.E

    2007-01-01

    effect is due to limited respiratory capacity or is caused by glucose-mediated repression of respiration. When respiration in S. cerevisiae was increased by introducing a heterologous alternative oxidase, we observed reduced aerobic ethanol formation. In contrast, increasing nonrespiratory NADH oxidation...... Crabtree effect.’’ The yeast Saccharomyces cerevisiae has served as an important model organism for studying the Crabtree effect. When subjected to increasing glycolytic fluxes under aerobic conditions, there is a threshold value of the glucose uptake rate at which the metabolism shifts from purely...... respiratory to mixed respiratory and fermentative. It is well known that glucose repression of respiratory pathways occurs at high glycolytic fluxes, resulting in a decrease in respiratory capacity. Despite many years of detailed studies on this subject, it is not known whether the onset of the Crabtree...

  9. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    Science.gov (United States)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  10. Mechanisms and Regulation of Mitotic Recombination in Saccharomyces cerevisiae

    Science.gov (United States)

    Symington, Lorraine S.; Rothstein, Rodney; Lisby, Michael

    2014-01-01

    Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell. PMID:25381364

  11. Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols

    DEFF Research Database (Denmark)

    Ferreira, Raphael; Teixeira, Paulo Goncalves; Gossing, Michael

    2018-01-01

    Triacylglycerols (TAGs) are valuable versatile compounds that can be used as metabolites for nutrition and health, as well as feedstocks for biofuel production. Although Saccharomyces cerevisiae is the favored microbial cell factory for industrial production of biochemicals, it does not produce...... large amounts of lipids and TAGs comprise only ~1% of its cell dry weight. Here, we engineered S. cerevisiae to reorient its metabolism for overproduction of TAGs, by regulating lipid droplet associated-proteins involved in TAG synthesis and hydrolysis. We implemented a push-and-pull strategy...... PXA1 led to accumulation of  254 mg∙gCDW−1. The TAG levels achieved here are the highest titer reported in S. cerevisiae, reaching 27.4% of the maximum theoretical yield in minimal medium with 2% glucose. This work shows the potential of using an industrially established and robust yeast species...

  12. Functional expression and evaluation of heterologous phosphoketolases in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bergman, Alexandra; Siewers, Verena; Nielsen, Jens

    2016-01-01

    Phosphoketolases catalyze an energy-and redox-independent cleavage of certain sugar phosphates. Hereby, the two-carbon (C2) compound acetyl-phosphate is formed, which enzymatically can be converted into acetyl-CoA-a key precursor in central carbon metabolism. Saccharomyces cerevisiae does...... not demonstrate efficient phosphoketolase activity naturally. In this study, we aimed to compare and identify efficient heterologous phosphoketolase enzyme candidates that in yeast have the potential to reduce carbon loss compared to the native acetyl-CoA producing pathway by redirecting carbon flux directly from...... C5 and C6 sugars towards C2-synthesis. Nine phosphoketolase candidates were expressed in S. cerevisiae of which seven produced significant amounts of acetyl-phosphate after provision of sugar phosphate substrates in vitro. The candidates showed differing substrate specificities, and some...

  13. Radioimmunoassay for yeast killer toxin from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Siddiqui, F.A.; Bussey, H.

    1981-01-01

    A radioimmunoassay was developed for the K1 killer toxin from strain T158C/S14a of Saccharomyces cerevisiae. Iodine 125-labelled toxin was made to a specific activity of 100 μCi/mg of protein. Antibody to purified toxin was prepared in rabbits using toxin cross-linked to itself. These antibodies, partially purified by 50 percent ammonium sulfate precipitation and Sepharose CL-6B column chromatography, produced one precipitation band with killer toxin and bound 125 I-labelled toxin in a radioimmunoassay. The antibody preparation also bound with the toxins from another K1 killer, A364A, and three chromosomal superkiller mutants derived from it. (auth)

  14. Division of labour in the yeast: Saccharomyces cerevisiae.

    Science.gov (United States)

    Wloch-Salamon, Dominika M; Fisher, Roberta M; Regenberg, Birgitte

    2017-10-01

    Division of labour between different specialized cell types is a central part of how we describe complexity in multicellular organisms. However, it is increasingly being recognized that division of labour also plays an important role in the lives of predominantly unicellular organisms. Saccharomyces cerevisiae displays several phenotypes that could be considered a division of labour, including quiescence, apoptosis and biofilm formation, but they have not been explicitly treated as such. We discuss each of these examples, using a definition of division of labour that involves phenotypic variation between cells within a population, cooperation between cells performing different tasks and maximization of the inclusive fitness of all cells involved. We then propose future research directions and possible experimental tests using S. cerevisiae as a model organism for understanding the genetic mechanisms and selective pressures that can lead to the evolution of the very first stages of a division of labour. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Higher-order structure of Saccharomyces cerevisiae chromatin

    International Nuclear Information System (INIS)

    Lowary, P.T.; Widom, J.

    1989-01-01

    We have developed a method for partially purifying chromatin from Saccharomyces cerevisiae (baker's yeast) to a level suitable for studies of its higher-order folding. This has required the use of yeast strains that are free of the ubiquitous yeast killer virus. Results from dynamic light scattering, electron microscopy, and x-ray diffraction show that the yeast chromatin undergoes a cation-dependent folding into 30-nm filaments that resemble those characteristic of higher-cell chromatin; moreover, the packing of nucleosomes within the yeast 30-nm filaments is similar to that of higher cells. These results imply that yeast has a protein or protein domain that serves the role of the histone H 1 found in higher cells; physical and genetic studies of the yeast activity could help elucidate the structure and function of H 1. Images of the yeast 30-nm filaments can be used to test crossed-linker models for 30-nm filament structure

  16. Improvement of ethanol-tolerance of haploid Saccharomyces diastaticus

    International Nuclear Information System (INIS)

    Song, S.H.; Kim, K.; Lee, M.W.

    1994-01-01

    Several mutation procedures have been compared to obtain an ethanol-tolerant Saccharomyces diastaticus strain secreting glucoamylase. These procedures include spontaneous mutation, EMS treatment, UV irradiation, and combination of EMS treatment and UV irradiation. All these methods were followed by adaptation of the yeast cells to gradually higher ethanol concentration. Among these procedures, the combined method of EMS treatment and UV irradiation gave the promising result, i.e. the ethanol tolerance of the yeast increased from 11.5%(v/v) to 14.0%(v/v). Respiratory deficient petite mutants of industrial and ethanol-tolerant yeast strains have been isolated and hybridized with haploid S. diastaticus strains. The resulting hybrids showed increased ethanol tolerance and starch-fermentability

  17. Jeast (Saccharomyces cerevisial) mutants with enhanced induced mutagenesis

    International Nuclear Information System (INIS)

    Ivanov, E.L.; Koval'tsova, S.V.; Korolev, V.G.

    1987-01-01

    The influence of him1-1, him2-1, him3-1 and himX mutations on induction frequency and specificity of UV-induced adenine-dependent mutations in the yeast Saccharomyces cerevisiae has been. Him mutations do not render haploid cells more sensitive to the lethal action of UV-light; however, in him strains adeine-dependent mutations (ade, ade2) were induced more frequently (1.5-2-fold), as compared to the HIM strain. An analysis of the molecular nature of ade2 mutants revealed than him1-1, him2-1, and himX mutations increase specifically the yield of transitions (AT-GC and GC→AT), whereas in the him3-1, strain the yield of transversions was enhanced as well. We suggest him mutations analysed to affect specific repair pathway for mismatch correction

  18. Radiation induced formation of giant cells (Saccharomyces uvarum). Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Baumstark-Khan, C; Schnitzler, L; Rink, H

    1984-02-01

    X-irradiated yeast cells (Saccharomyces uvarum) grown in liquid media stop mitosis and form giant cells. Chitin ring formation, being a prerequisite for cell separation, was studied by fluorescence microscopy using Calcofluor White, a chitin specific dye. Experiments with inhibitors of DNA synthesis (hydroxyurea) and chitin synthesis (polyoxin D) demonstrate chitin ring formation to be dependent on DNA synthesis, whereas bud formation is independent of DNA synthesis and chitin ring formation respectively. Basing on these results the formation of X-ray induced giant cells implies one DNA replication which in turn induces the formation of only one chitin ring between mother cell and giant bud. Obviously no septum can be formed. Thus cell separation does not occur, but the bud already formed, produces another bud demonstrating that bud formation itself is independent of DNA synthesis.

  19. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Österlund, Tobias; Liu, Zihe

    2013-01-01

    The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often low due to limitations of the host strain. Heat shock response (HSR) is an inducible, global, cellular...... stress response, which facilitates the cell recovery from many forms of stress, e.g., heat stress. In S. cerevisiae, HSR is regulated mainly by the transcription factor heat shock factor (Hsf1p) and many of its targets are genes coding for molecular chaperones that promote protein folding and prevent...... the accumulation of mis-folded or aggregated proteins. In this work, we over-expressed a mutant HSF1 gene HSF1-R206S which can constitutively activate HSR, so the heat shock response was induced at different levels, and we studied the impact of HSR on heterologous protein secretion. We found that moderate and high...

  20. Interaction among Saccharomyces cerevisiae pheromone receptors during endocytosis

    Directory of Open Access Journals (Sweden)

    Chien-I Chang

    2014-03-01

    Full Text Available This study investigates endocytosis of Saccharomyces cerevisiae α-factor receptor and the role that receptor oligomerization plays in this process. α-factor receptor contains signal sequences in the cytoplasmic C-terminal domain that are essential for ligand-mediated endocytosis. In an endocytosis complementation assay, we found that oligomeric complexes of the receptor undergo ligand-mediated endocytosis when the α-factor binding site and the endocytosis signal sequences are located in different receptors. Both in vitro and in vivo assays suggested that ligand-induced conformational changes in one Ste2 subunit do not affect neighboring subunits. Therefore, recognition of the endocytosis signal sequence and recognition of the ligand-induced conformational change are likely to be two independent events.

  1. ACTIVITY OF SUPEROXIDE DISMUTASE ENZYME IN YEAST SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Blažena Lavová

    2014-02-01

    Full Text Available Reactive oxygen species (ROS with reactive nitrogen species (RNS are known to play dual role in biological systems, they can be harmful or beneficial to living systems. ROS can be important mediators of damage to cell structures, including proteins, lipids and nucleic acids termed as oxidative stress. The antioxidant enzymes protect the organism against the oxidative damage caused by active oxygen forms. The role of superoxide dismutase (SOD is to accelerate the dismutation of the toxic superoxide radical, produced during oxidative energy processes, to hydrogen peroxide and molecular oxygen. In this study, SOD activity of three yeast strains Saccharomyces cerevisiae was determined. It was found that SOD activity was the highest (23.7 U.mg-1 protein in strain 612 after 28 hours of cultivation. The lowest SOD activity from all tested strains was found after 56 hours of cultivation of strain Gyöng (0.7 U.mg-1 protein.

  2. PROBİYOTİK MAYA : SACCHAROMYCES BOULARDİİ

    OpenAIRE

    Alkan, Rezan

    2013-01-01

    Probiyotikler uygun miktarlarda kullanıldığında konakçı sağlığı üzerinde yararları olan, bağırsakta canlı kalabilen ,sindirime dirençli bakteri ve maya gibi canlı mikroorganizmalar olarak tanımlanmaktadır. Saccharomyces boulardii  patojen olmayan bir maya olup, tedavi edici olarak kullanılmaktadır. Kontrollü olarak yapılan klinik çalışmalarda S.boulardii’nin çeşitli bağırsak hastalıklarının önlenmesi ve ...

  3. Energy-dependent effects of resveratrol in Saccharomyces cerevisiae.

    Science.gov (United States)

    Madrigal-Perez, Luis Alberto; Canizal-Garcia, Melina; González-Hernández, Juan Carlos; Reynoso-Camacho, Rosalia; Nava, Gerardo M; Ramos-Gomez, Minerva

    2016-06-01

    The metabolic effects induced by resveratrol have been associated mainly with the consumption of high-calorie diets; however, its effects with standard or low-calorie diets remain unclear. To better understand the interactions between resveratrol and cellular energy levels, we used Saccharomyces cerevisiae as a model. Herein it is shown that resveratrol: (a) decreased cell viability in an energy-dependent manner; (b) lessening of cell viability occurred specifically when cells were under cellular respiration; and (c) inhibition of oxygen consumption in state 4 occurred at low and standard energy levels, whereas at high energy levels oxygen consumption was promoted. These findings indicate that the effects of resveratrol are dependent on the cellular energy status and linked to metabolic respiration. Importantly, our study also revealed that S. cerevisiae is a suitable and useful model to elucidate the molecular targets of resveratrol under different nutritional statuses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Radiation induced formation of giant cells (Saccharomyces uvarum). Pt. 1

    International Nuclear Information System (INIS)

    Baumstark-Khan, C.; Schnitzler, L.; Rink, H.

    1984-01-01

    X-irradiated yeast cells (Saccharomyces uvarum) grown in liquid media stop mitosis and form giant cells. Chitin ring formation, being a prerequisite for cell separation, was studied by fluorescence microscopy using Calcofluor White, a chitin specific dye. Experiments with inhibitors of DNA synthesis (hydroxyurea) and chitin synthesis (polyoxin D) demonstrate chitin ring formation to be dependent on DNA synthesis, whereas bud formation is independent of DNA synthesis and chitin ring formation respectively. Basing on these results the formation of X-ray induced giant cells implies one DNA replication which in turn induces the formation of only one chitin ring between mother cell and giant bud. Obviously no septum can be formed. Thus cell separation does not occur, but the bud already formed, produces another bud demonstrating that bud formation itself is independent of DNA synthesis. (orig.)

  5. Properties of promoters cloned randomly from the Saccharomyces cerevisiae genome.

    Science.gov (United States)

    Santangelo, G M; Tornow, J; McLaughlin, C S; Moldave, K

    1988-01-01

    Promoters were isolated at random from the genome of Saccharomyces cerevisiae by using a plasmid that contains a divergently arrayed pair of promoterless reporter genes. A comprehensive library was constructed by inserting random (DNase I-generated) fragments into the intergenic region upstream from the reporter genes. Simple in vivo assays for either reporter gene product (alcohol dehydrogenase or beta-galactosidase) allowed the rapid identification of promoters from among these random fragments. Poly(dA-dT) homopolymer tracts were present in three of five randomly cloned promoters. With two exceptions, each RNA start site detected was 40 to 100 base pairs downstream from a TATA element. All of the randomly cloned promoters were capable of activating reporter gene transcription bidirectionally. Interestingly, one of the promoter fragments originated in a region of the S. cerevisiae rDNA spacer; regulated divergent transcription (presumably by RNA polymerase II) initiated in the same region. Images PMID:2847031

  6. Diversity and adaptive evolution of Saccharomyces wine yeast: a review

    Science.gov (United States)

    Marsit, Souhir; Dequin, Sylvie

    2015-01-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. PMID:26205244

  7. Repair of UV-damaged incoming plasmid DNA in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Keszenman-Pereyra, David

    1990-01-01

    A whole-cell transformation assay was used for the repair of UV-damaged plasma DNA in highly-transformable haploid strains of Saccharomyces cerevisiae having different repair capabilities. The experiments described demonstrate that three epistasis groups (Friedberg 1988) are involved in the repair of UV-incoming DNA and that the repair processes act less efficiently on incoming DNA than they do on chromosomal DNA. The implications of these findings for UV repair in Saccharomyces cerevisiae are discussed. (author)

  8. Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts.

    Science.gov (United States)

    Magyar, Ildikó; Nyitrai-Sárdy, Diána; Leskó, Annamária; Pomázi, Andrea; Kállay, Miklós

    2014-05-16

    Organic acid production under oxygen-limited conditions has been thoroughly studied in the Saccharomyces species, but practically never investigated in Candida zemplinina, which seems to be an acidogenic species under oxidative laboratory conditions. In this study, several strains of C. zemplinina were tested for organic acid metabolism, in comparison with Saccharomyces cerevisiae, Saccharomyces uvarum and Candida stellata, under fermentative conditions. Only C. stellata produced significantly higher acidity in simple minimal media (SM) with low sugar content and two different nitrogen sources (ammonia or glutamic acid) at low level. However, the acid profile differed largely between the Saccharomyces and Candida species and showed inverse types of N-dependence in some cases. Succinic acid production was strongly enhanced on glutamic acid in Saccharomyces species, but not in Candida species. 2-oxoglutarate production was strongly supported on ammonium nitrogen in Candida species, but remained low in Saccharomyces. Candida species, C. stellata in particular, produced more pyruvic acid regardless of N-sources. From the results, we concluded that the anaerobic organic acid metabolisms of C. zemplinina and C. stellata are different from each other and also from that of the Saccharomyces species. In the formation of succinic acid, the oxidative pathway from glutamic acid seems to play little or no role in C. zemplinina. The reductive branch of the TCA cycle, however, produces acidic intermediates (malic, fumaric, and succinic acid) in a level comparable with the production of the Saccharomyces species. An unidentified organic acid, which was produced on glutamic acid only by the Candida species, needs further investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae.

    OpenAIRE

    Enyenihi, Akon H; Saunders, William S

    2003-01-01

    We have used a single-gene deletion mutant bank to identify the genes required for meiosis and sporulation among 4323 nonessential Saccharomyces cerevisiae annotated open reading frames (ORFs). Three hundred thirty-four sporulation-essential genes were identified, including 78 novel ORFs and 115 known genes without previously described sporulation defects in the comprehensive Saccharomyces Genome (SGD) or Yeast Proteome (YPD) phenotype databases. We have further divided the uncharacterized sp...

  10. Global mapping of DNA conformational flexibility on Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Giulia Menconi

    2015-04-01

    Full Text Available In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3'UTR, a region affecting mRNA translation, localization and stability. (TAn repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TAn repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3'-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in

  11. Global mapping of DNA conformational flexibility on Saccharomyces cerevisiae.

    Science.gov (United States)

    Menconi, Giulia; Bedini, Andrea; Barale, Roberto; Sbrana, Isabella

    2015-04-01

    In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3'UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3'-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a

  12. Phenotypic characterisation of Saccharomyces spp. for tolerance to 1-butanol.

    Science.gov (United States)

    Zaki, A M; Wimalasena, T T; Greetham, D

    2014-11-01

    Biofuels are expected to play a role in replacing crude oil as a liquid transportation fuel, and research into butanol has highlighted the importance of this alcohol as a fuel. Butanol has a higher energy density than ethanol, butanol-gasoline blends do not separate in the presence of water, and butanol is miscible with gasoline (Szulczyk, Int J Energy Environ 1(1):2876-2895, 40). Saccharomyces cerevisiae has been used as a fermentative organism in the biofuel industry producing ethanol from glucose derived from starchy plant material; however, it typically cannot tolerate butanol concentrations greater than 2 % (Luong, Biotechnol Bioeng 29 (2):242-248, 27). 90 Saccharomyces spp. strains were screened for tolerance to 1-butanol via a phenotypic microarray assay and we observed significant variation in response with the most tolerant strains (S. cerevisiae DBVPG1788, S. cerevisiae DBVPG6044 and S. cerevisiae YPS128) exhibiting tolerance to 4 % 1-butanol compared with S. uvarum and S. castelli strains, which were sensitive to 3 % 1-butanol. Response to butanol was confirmed using traditional yeast methodologies such as growth; it was observed that fermentations in the presence of butanol, when using strains with a tolerant background, were significantly faster. Assessing for genetic rationale for tolerance, it was observed that 1-butanol-tolerant strains, when compared with 1-butanol-sensitive strains, had an up-regulation of RPN4, a transcription factor which regulates proteasome genes. Analysing for the importance of RPN4, we observed that a Δrpn4 strain displayed a reduced rate of fermentation in the presence of 1-butanol when compared with the BY4741 background strain. This data will aid the development of breeding programmes to produce better strains for future bio-butanol production.

  13. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation

    Science.gov (United States)

    Liu, Ling-ling; Jia, Bo; Zhao, Fang; Huang, Wei-dong; Zhan, Ji-cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. PMID:26030864

  14. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation.

    Directory of Open Access Journals (Sweden)

    Xiang-Yu Sun

    Full Text Available At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China's stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress.

  15. Evidence for Divergent Evolution of Growth Temperature Preference in Sympatric Saccharomyces Species

    Science.gov (United States)

    Gonçalves, Paula; Valério, Elisabete; Correia, Cláudia; de Almeida, João M. G. C. F.; Sampaio, José Paulo

    2011-01-01

    The genus Saccharomyces currently includes eight species in addition to the model yeast Saccharomyces cerevisiae, most of which can be consistently isolated from tree bark and soil. We recently found sympatric pairs of Saccharomyces species, composed of one cryotolerant and one thermotolerant species in oak bark samples of various geographic origins. In order to contribute to explain the occurrence in sympatry of Saccharomyces species, we screened Saccharomyces genomic data for protein divergence that might be correlated to distinct growth temperature preferences of the species, using the dN/dS ratio as a measure of protein evolution rates and pair-wise species comparisons. In addition to proteins previously implicated in growth at suboptimal temperatures, we found that glycolytic enzymes were among the proteins exhibiting higher than expected divergence when one cryotolerant and one thermotolerant species are compared. By measuring glycolytic fluxes and glycolytic enzymatic activities in different species and at different temperatures, we subsequently show that the unusual divergence of glycolytic genes may be related to divergent evolution of the glycolytic pathway aligning its performance to the growth temperature profiles of the different species. In general, our results support the view that growth temperature preference is a trait that may have undergone divergent selection in the course of ecological speciation in Saccharomyces. PMID:21674061

  16. Inheritance and organisation of the mitochondrial genome differ between two Saccharomyces yeasts

    DEFF Research Database (Denmark)

    Petersen, Randi Føns; Langkjær, Rikke Breinhold; Hvidtfeldt, J.

    2002-01-01

    Petite-positive Saccharomyces yeasts can be roughly divided into the sensu stricto, including Saccharomyces cerevisiae, and sensu lato group, including Saccharomyces castellii; the latter was recently studied for transmission and the organisation of its mitochondrial genome. S. castellii mitochon......Petite-positive Saccharomyces yeasts can be roughly divided into the sensu stricto, including Saccharomyces cerevisiae, and sensu lato group, including Saccharomyces castellii; the latter was recently studied for transmission and the organisation of its mitochondrial genome. S. castellii...... mitochondrial molecules (mtDNA) carrying point mutations, which confer antibiotic resistance, behaved in genetic crosses as the corresponding point mutants of S. cerevisiae. While S. castellii generated spontaneous petite mutants in a similar way as S. cerevisiae, the petites exhibited a different inheritance...... pattern. In crosses with the wild type strains a majority of S. castellii petites was neutral, and the suppressivity in suppressive petites was never over 50%. The two yeasts also differ in organisation of their mtDNA molecules. The 25,753 bp sequence of S. castellii mtDNA was determined and the coding...

  17. PRODUKSI ETANOL DARI TETES TEBU OLEH Saccharomyces cerevisiae PEMBENTUK FLOK (NRRL – Y 265 (Ethanol Production from Cane Molasses by Flocculant Saccharomyces cerevisiae (NRRL – Y 265

    Directory of Open Access Journals (Sweden)

    Agustin Krisna Wardani

    2013-08-01

    Full Text Available The potential use of sugar cane molasses by flocculant Saccharomyces cerevisiae in ethanol production was investigated. In order to minimize the negative effect of calcium on yeast growth, pretreated sugar cane molasses with dilute acid was performed. The influence of process parameters such as sugar concentration and inoculum concentration were evaluated for enhancing bioethanol production. Result showed that maximum ethanol concentration of 8,792% (b/v was obtained at the best condition of inoculum concentration 10% (v/v and sugar concentration 15% (b/v. Based on the experimental data, maximum yield of ethanol production of 65% was obtained. This result demonstrated the potential of molasses as promising biomass resources for ethanol production. Keywords: Ethanol, preteated cane molasses, flocculant Saccharomyces cerevisiae, fermentation   ABSTRAK Efisiensi produksi bioetanol diperoleh melalui ketepatan pemilihan jenis mikroorganisme, bahan baku, dan kontrol proses fermentasi. Alternatif proses untuk meminimalisasi biaya produksi etanol adalah dengan mengeliminasi tahap pemisahan sentrifugasi sel dari produk karena memerlukan biaya instalasi dan biaya perawatan yang tinggi. Proses sentrifugasi merupakan tahapan penting untuk memisahkan sel mikroba dari medium fermentasi pada produksi bioetanol. Untuk meminimalisir biaya produksi akibat proses tersebut digunakan inokulum Saccharomyces cerevisiae pembentuk flok dan tetes tebu sebagai sumber gula. Penelitian ini bertujuan untuk mendapatkan konsentrasi penambahan inokulum Saccharomyces cerevisiae pembentuk flok dan konsentrasi sumber gula dalam tetes tebu yang tepat dalam produksi etanol yang maksimum. Saccharomyces cerevisiae sebanyak 5%, 10%, dan 15% (v/v diinokulasikan pada medium tetes tebu hasil pretreatment dengan kandungan gula 15%, 20%, dan 25% (b/v pada pH 5. Fermentasi dilakukan pada suhu 30°C dan agitasi 100 rpm selama 72 jam. Etanol tertinggi didapat pada kondisi konsentrasi inokulum

  18. METHOD FOR THE PRODUCTION OF HETEROLOGOUS POLYPEPTIDES IN TRANSFORMED YEAST CELLS

    DEFF Research Database (Denmark)

    2000-01-01

    The invention describes industrial fermentation of a $i(Saccharomyces) yeast species for production of a heterologous product encoded by a plasmid or DNA contained in said $i(Saccharomyces) yeast species with method utilizes the substrate more efficiently and without fermentative metabolism...... resulting in formation of ethanol and other unwanted primary products of fermentative activity whereby high yields of the heterologous product are obtained. The $i(Saccharomyces) yeast species is preferably a Crabtree negative $i(Saccharomyces species) in particular $i(Saccharomyces kluyveri)....

  19. Co-cultivation of non-conventional yeast with Saccharomyces cerevisiae to increase the aroma complexity of fermented beverages

    OpenAIRE

    Rijswijck, van, Irma M.H.

    2017-01-01

    Yeast are used as workhorses to convert hopped wort into beer. Conventionally, such yeasts belong to the genus Saccharomyces and most research on fermentation of wort for the production of beer has focussed on the species Saccharomyces cerevisiae and Saccharomyces pastorianus. Recently, there is an increasing interest in unravelling features of non-conventional yeast species for beer innovation. In this thesis, features of yeast isolates belonging to the species: Cyberlindnera fabianii, Pichi...

  20. Xylose isomerase improves growth and ethanol production rates from biomass sugars for both Saccharomyces pastorianus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Miller, Kristen P; Gowtham, Yogender Kumar; Henson, J Michael; Harcum, Sarah W

    2012-01-01

    The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  1. Phenotypic and genetic diversity of Saccharomyces contaminants isolated from lager breweries and their phylogenetic relationship with brewing yeasts

    DEFF Research Database (Denmark)

    Jespersen, Lene; Kühle, Alis Van der Aa; Petersen, Kamilla M.

    2000-01-01

    -amplified intergenic transcribed spacer (ITS) regions. Chromosome length polymorphism (CLP) was evident among the Saccharomyces brewing contaminants with chromosome profiles typical of Saccharomyces sensu stricto. Based upon cluster analysis of their chromosome profiles the majority of the brewing contaminants could...... be grouped as either S. cerevisiae or S. pastorianus/S. bayanus. Further, the technique was able to differentiate between almost all brewing contaminants and to separate them from any specific lager brewing yeast. The diversity of the Saccharomyces brewing contaminants clearly demonstrated by their CLP...... in the SaccharomYces brewing contaminants indicate their adaptation to a maltose-enriched environment....

  2. Comportamento celular e resposta antioxidante diferenciados de Saccharomyces cerevisiae e de Saccharomyces chevalieri ao metavanadato de amónio Different cellular behaviour and antioxidant response of Saccharomyces cerevisiae and Saccharomyces chevalieri growing in presence of ammonium metavanadate

    Directory of Open Access Journals (Sweden)

    R. Ferreira

    2007-01-01

    Full Text Available A fermentação do vinho é um processo microbiológico complexo que requere a presença de leveduras adaptadas a condições de stresse. No ambiente celular de organismos aeróbios ocorrem naturalmente espécies reactivas de oxigénio (ROS como subprodutos da respiração mitocondrial. A elevada reactividade destas espécies químicas pode gerar danos moleculares que, em alguns casos, levam à morte celular. Em condições fisiológicas normais ou como resposta ao stresse oxidativo, a célula pode desencadear respostas adaptativas que envolvem mecanismos antioxidantes como os enzimas glutationo redutase (GR; EC 1.6.4.2 e catalases T (CAT T; EC 1.11.1.6 e A (CAT A; EC 1.11.1.6. O vanádio, um metal pesado presente em alguns fitofármacos, pode também com portar-se como um gerador de ROS, alterando o estado redox intracelular e exercendo efeitos nocivos em leveduras expostas a quantidade excessiva deste elemento. O principal objectivo deste trabalho foi comparar o efeito do metavanadato de amónio (NH4VO3, um sal pentavalente de vanádio, na viabilidade celular e nas actividades enzimáticas GR, CAT T e CAT A das leveduras vínicas Saccharomyces cerevisiae UE-ME3 e Saccharomyces chevalieri UE-ME1. Os resultados obtidos mostram que S. chevalieri UE-ME1 revelou menor tolerância ao NH4VO3 do que S. cerevisiae UE-ME3, uma vez que culturas de S. chevalieri não sobreviveram para valores de concentração do sal de vanádio superiores a 7,5 mM enquanto que células de S. cerevisiae mantiveram-se viáveis em presença de metavanadato de amónio 75 mM. As actividades enzimáticas estudadas apresentaram em S. chevalieri valores muito inferiores aos que foram determinados em S. cerevisiae embora em ambas as espécies de levedura o NH4VO3 pareça comportarse como um indutor de stresse oxidativo ao provocar um decréscimo significativo da actividade GR (PThe fermentation of wine is a complex microbiological process which requires yeast adaptation to stress

  3. Non-Saccharomyces in Wine: Effect Upon Oenococcus oeni and Malolactic Fermentation.

    Science.gov (United States)

    Balmaseda, Aitor; Bordons, Albert; Reguant, Cristina; Bautista-Gallego, Joaquín

    2018-01-01

    This work is a short review of the interactions between oenological yeasts and lactic acid bacteria (LAB), especially Oenococcus oeni , the main species carrying out the malolactic fermentation (MLF). The emphasis has been placed on non- Saccharomyces effects due to their recent increased interest in winemaking. Those interactions are variable, ranging from inhibitory, to neutral and stimulatory and are mediated by some known compounds, which will be discussed. One phenomena responsible of inhibitory interactions is the media exhaustion by yeasts, and particularly a decrease in L-malic acid by some non- Saccharomyces . Clearly ethanol is the main inhibitory compound of LAB produced by S. cerevisiae , but non- Saccharomyces can be used to decrease it. Sulfur dioxide and medium chain fatty acids (MCFAs) produced by yeasts can exhibit inhibitory effect upon LAB or even result lethal. Interestingly mixed fermentations with non- Saccharomyces present less MCFA concentration. Among organic acids derived as result of yeast metabolism, succinic acid seems to be the most related with MLF inhibition. Several protein factors produced by S. cerevisiae inhibiting O. oeni have been described, but they have not been studied in non- Saccharomyces . According to the stimulatory effects, the use of non- Saccharomyces can increase the concentration of favorable mediators such as citric acid, pyruvic acid, or other compounds derived of yeast autolysis such as peptides, glucans, or mannoproteins. The emergence of non- Saccharomyces in winemaking present a new scenario in which MLF has to take place. For this reason, new tools and approaches should be explored to better understand this new winemaking context.

  4. Non-Saccharomyces in Wine: Effect Upon Oenococcus oeni and Malolactic Fermentation

    Directory of Open Access Journals (Sweden)

    Aitor Balmaseda

    2018-03-01

    Full Text Available This work is a short review of the interactions between oenological yeasts and lactic acid bacteria (LAB, especially Oenococcus oeni, the main species carrying out the malolactic fermentation (MLF. The emphasis has been placed on non-Saccharomyces effects due to their recent increased interest in winemaking. Those interactions are variable, ranging from inhibitory, to neutral and stimulatory and are mediated by some known compounds, which will be discussed. One phenomena responsible of inhibitory interactions is the media exhaustion by yeasts, and particularly a decrease in L-malic acid by some non-Saccharomyces. Clearly ethanol is the main inhibitory compound of LAB produced by S. cerevisiae, but non-Saccharomyces can be used to decrease it. Sulfur dioxide and medium chain fatty acids (MCFAs produced by yeasts can exhibit inhibitory effect upon LAB or even result lethal. Interestingly mixed fermentations with non-Saccharomyces present less MCFA concentration. Among organic acids derived as result of yeast metabolism, succinic acid seems to be the most related with MLF inhibition. Several protein factors produced by S. cerevisiae inhibiting O. oeni have been described, but they have not been studied in non-Saccharomyces. According to the stimulatory effects, the use of non-Saccharomyces can increase the concentration of favorable mediators such as citric acid, pyruvic acid, or other compounds derived of yeast autolysis such as peptides, glucans, or mannoproteins. The emergence of non-Saccharomyces in winemaking present a new scenario in which MLF has to take place. For this reason, new tools and approaches should be explored to better understand this new winemaking context.

  5. Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production.

    Science.gov (United States)

    Peris, David; Moriarty, Ryan V; Alexander, William G; Baker, EmilyClare; Sylvester, Kayla; Sardi, Maria; Langdon, Quinn K; Libkind, Diego; Wang, Qi-Ming; Bai, Feng-Yan; Leducq, Jean-Baptiste; Charron, Guillaume; Landry, Christian R; Sampaio, José Paulo; Gonçalves, Paula; Hyma, Katie E; Fay, Justin C; Sato, Trey K; Hittinger, Chris Todd

    2017-01-01

    Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae . Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to

  6. Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance.

    Science.gov (United States)

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2013-05-01

    Aerobic organisms have devised several enzymatic and non-enzymatic antioxidant defenses to deal with reactive oxygen species (ROS) produced by cellular metabolism. To combat such stress, cells induce ROS scavenging enzymes such as catalase, peroxidase, superoxide dismutase (SOD) and glutathione reductase. In the present research, we have used a double staining technique of SOD and catalase enzymes in the same polyacrylamide gel to analyze the different antioxidant enzymatic activities and protein isoforms present in Saccharomyces and non-Saccharomyces yeast species. Moreover, we used a technique to differentially detect Sod1p and Sod2p on gel by immersion in NaCN, which specifically inhibits the Sod1p isoform. We observed unique SOD and catalase zymogram profiles for all the analyzed yeasts and we propose this technique as a new approach for Saccharomyces and non-Saccharomyces yeast strains differentiation. In addition, we observed functional correlations between SOD and catalase enzyme activities, accumulation of essential metabolites, such as glutathione and trehalose, and the fermentative performance of different yeasts strains with industrial relevance.

  7. Evaluation of cytochrome P-450 concentration in Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Míriam Cristina Sakuragui Matuo

    2010-09-01

    Full Text Available Saccharomyces cerevisiae has been widely used in mutagenicity tests due to the presence of a cytochrome P-450 system, capable of metabolizing promutagens to active mutagens. There are a large number of S. cerevisiae strains with varying abilities to produce cytochrome P-450. However, strain selection and ideal cultivation conditions are not well defined. We compared cytochrome P-450 levels in four different S. cerevisiae strains and evaluated the cultivation conditions necessary to obtain the highest levels. The amount of cytochrome P-450 produced by each strain varied, as did the incubation time needed to reach the maximum level. The highest cytochrome P-450 concentrations were found in media containing fermentable sugars. The NCYC 240 strain produced the highest level of cytochrome P-450 when grown in the presence of 20 % (w/v glucose. The addition of ethanol to the media also increased cytochrome P-450 synthesis in this strain. These results indicate cultivation conditions must be specific and well-established for the strain selected in order to assure high cytochrome P-450 levels and reliable mutagenicity results.Linhagens de Saccharomyces cerevisiae tem sido amplamente empregadas em testes de mutagenicidade devido à presença de um sistema citocromo P-450 capaz de metabolizar substâncias pró-mutagênicas à sua forma ativa. Devido à grande variedade de linhagens de S. cerevisiae com diferentes capacidades de produção de citocromo P-450, torna-se necessária a seleção de cepas, bem como a definição das condições ideais de cultivo. Neste trabalho, foram comparados os níveis de citocromo P-450 em quatro diferentes linhagens de S. cerevisiae e avaliadas as condições de cultivo necessárias para obtenção de altas concentrações deste sistema enzimático. O maior nível enzimático foi encontrado na linhagem NCYC 240 em presença de 20 % de glicose (p/v. A adição de etanol ao meio de cultura também produziu um aumento na s

  8. Genetic and phenotypic characterization of Saccharomyces spp. strains isolated in distillery plants.

    Science.gov (United States)

    Úbeda, Juan F; Chacón-Ocaña, Maria; Díaz-Hellín, Patricia; Ramírez-Pérez, Hector; Briones, Ana

    2016-06-01

    In this study, the biodiversity and some interesting phenotypic properties of Saccharomyces wild yeasts isolated in distilleries, at least 100 years old, located in La Mancha (Spain), were determined. Strains were genetically characterized by RFLP-mtDNA, which confirmed a great genetic biodiversity with 73% of strains with different mtDNA profiles, highlighting the large variability found in sweet and fermented piquette substrata. The predominant species identified was S. cerevisiae, followed by S. paradoxus and S. bayanus Due to the residual sugar-alcohol extraction process using warm water, a great number of thermophilic Saccharomyces strains with a great cell vitality were found to have potential use as starters in distillery plants. Interesting technological properties such as cell vitality and growth rate at different temperatures were studied. The thermal washing process for the extraction of alcohol and reducing sugars of some raw materials contributes to the presence of Saccharomyces strains with technologically interesting properties, especially in terms of vitality and resistance to high temperatures. Due to the fact that fermentation is spontaneous, the yeast biota of these environments, Saccharomyces and non-Saccharomyces, is very varied so these ecological niches are microbial reserves of undoubted biotechnological interest. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Therapeutic activity of a Saccharomyces cerevisiae-based probiotic and inactivated whole yeast on vaginal candidiasis.

    Science.gov (United States)

    Pericolini, Eva; Gabrielli, Elena; Ballet, Nathalie; Sabbatini, Samuele; Roselletti, Elena; Cayzeele Decherf, Amélie; Pélerin, Fanny; Luciano, Eugenio; Perito, Stefano; Jüsten, Peter; Vecchiarelli, Anna

    2017-01-02

    Vulvovaginal candidiasis is the most prevalent vaginal infection worldwide and Candida albicans is its major agent. Vulvovaginal candidiasis is characterized by disruption of the vaginal microbiota composition, as happens following large spectrum antibiotic usage. Recent studies support the effectiveness of oral and local probiotic treatment for prevention of recurrent vulvovaginal candidiasis. Saccharomyces cerevisiae is a safe yeast used as, or for, the production of ingredients for human nutrition and health. Here, we demonstrate that vaginal administration of probiotic Saccharomyces cerevisiae live yeast (GI) and, in part, inactivated whole yeast Saccharomyces cerevisiae (IY), used as post-challenge therapeutics, was able to positively influence the course of vaginal candidiasis by accelerating the clearance of the fungus. This effect was likely due to multiple interactions of Saccharomyces cerevisiae with Candida albicans. Both live and inactivated yeasts induced coaggregation of Candida and consequently inhibited its adherence to epithelial cells. However, only the probiotic yeast was able to suppress some major virulence factors of Candida albicans such as the ability to switch from yeast to mycelial form and the capacity to express several aspartyl proteases. The effectiveness of live yeast was higher than that of inactivated whole yeast suggesting that the synergy between mechanical effects and biological effects were dominant over purely mechanical effects. The protection of epithelial cells to Candida-induced damage was also observed. Overall, our data show for the first time that Saccharomyces cerevisiae-based ingredients, particularly the living cells, can exert beneficial therapeutic effects on a widespread vaginal mucosal infection.

  10. Screening and evaluation of the glucoside hydrolase activity in Saccharomyces and Brettanomyces brewing yeasts.

    Science.gov (United States)

    Daenen, L; Saison, D; Sterckx, F; Delvaux, F R; Verachtert, H; Derdelinckx, G

    2008-02-01

    The aim of this study was to select and examine Saccharomyces and Brettanomyces brewing yeasts for hydrolase activity towards glycosidically bound volatile compounds. A screening for glucoside hydrolase activity of 58 brewing yeasts belonging to the genera Saccharomyces and Brettanomyces was performed. The studied Saccharomyces brewing yeasts did not show 1,4-beta-glucosidase activity, but a strain dependent beta-glucanase activity was observed. Some Brettanomyces species did show 1,4-beta-glucosidase activity. The highest constitutive activity was found in Brettanomyces custersii. For the most interesting strains the substrate specificity was studied and their activity was evaluated in fermentation experiments with added hop glycosides. Fermentations with Br. custersii led to the highest release of aglycones. Pronounced exo-beta-glucanase activity in Saccharomyces brewing yeasts leads to a higher release of certain aglycones. Certain Brettanomyces brewing yeasts, however, are more interesting for hydrolysis of glycosidically bound volatiles of hops. The release of flavour active compounds from hop glycosides opens perspectives for the bioflavouring and product diversification of beverages like beer. The release can be enhanced by using Saccharomyces strains with high exo-beta-glucanase activity. Higher activities can be found in Brettanomyces species with beta-glucosidase activity.

  11. Role of Saccharomyces boulardii in Reduction of Neonatal Hyperbilirubinemia.

    Science.gov (United States)

    Suganthi, V; Das, A Gokul

    2016-11-01

    Probiotics are known to reduce the severity of hyperbilirubinemia. This study was done to evaluate the effect of probiotic on neonatal hyperbilirubinemia in term neonates. A total of 181 healthy term neonates after birth were divided into a control group (n=95) and a treatment group (n=86) randomly and treated with placebo and probiotic ( Saccharomyces boulardii ) respectively. A total of two doses were given orally in the first two consecutive days. The serum bilirubin levels were detected on day three of life. Babies were exclusively breastfed, clinical outcome was recorded. Comparison between groups was made by the non-parametric Mann-Whitney test. Analysis of Variance (ANOVA) was used to assess the quantitative variables. A p-value of jaundice is 6.5mg% and in the treatment group is 5mg%. In patient with clinical jaundice, it is 13.6mg% in control group and 10.7mg% in the treatment group. The p-value was found to be Probiotics lowered the serum bilirubin level of healthy neonate with jaundice safely and significantly without any adverse reaction.

  12. Efficient Sporulation of Saccharomyces cerevisiae in a 96 Multiwell Format.

    Science.gov (United States)

    Paulissen, Scott M; Huang, Linda S

    2016-09-17

    During times of nutritional stress, Saccharomyces cerevisiae undergoes gametogenesis, known as sporulation. Diploid yeast cells that are starved for nitrogen and carbon will initiate the sporulation process. The process of sporulation includes meiosis followed by spore formation, where the haploid nuclei are packaged into environmentally resistant spores. We have developed methods for the efficient sporulation of budding yeast in 96 multiwell plates, to increase the throughput of screening yeast cells for sporulation phenotypes. These methods are compatible with screening with yeast containing plasmids requiring nutritional selection, when appropriate minimal media is used, or with screening yeast with genomic alterations, when a rich presporulation regimen is used. We find that for this method, aeration during sporulation is critical for spore formation, and have devised techniques to ensure sufficient aeration that are compatible with the 96 multiwell plate format. Although these methods do not achieve the typical ~80% level of sporulation that can be achieved in large-volume flask based experiments, these methods will reliably achieve about 50-60% level of sporulation in small-volume multiwell plates.

  13. Sucrose fermentation by Saccharomyces cerevisiae lacking hexose transport.

    Science.gov (United States)

    Batista, Anderson S; Miletti, Luiz C; Stambuk, Boris U

    2004-01-01

    Sucrose is the major carbon source used by Saccharomyces cerevisiae during production of baker's yeast, fuel ethanol and several distilled beverages. It is generally accepted that sucrose fermentation proceeds through extracellular hydrolysis of the sugar, mediated by the periplasmic invertase, producing glucose and fructose that are transported into the cells and metabolized. In the present work we analyzed the contribution to sucrose fermentation of a poorly characterized pathway of sucrose utilization by S. cerevisiae cells, the active transport of the sugar through the plasma membrane and its intracellular hydrolysis. A yeast strain that lacks the major hexose transporters (hxt1-hxt7 and gal2) is incapable of growing on or fermenting glucose or fructose. Our results show that this hxt-null strain is still able to ferment sucrose due to direct uptake of the sugar into the cells. Deletion of the AGT1 gene, which encodes a high-affinity sucrose-H(+) symporter, rendered cells incapable of sucrose fermentation. Since sucrose is not an inducer of the permease, expression of the AGT1 must be constitutive in order to allow growth of the hxt-null strain on sucrose. The molecular characterization of active sucrose transport and fermentation by S. cerevisiae cells opens new opportunities to optimize yeasts for sugarcane-based industrial processes.

  14. Dynamics of the Saccharomyces cerevisiae Transcriptome during Bread Dough Fermentation

    Science.gov (United States)

    Aslankoohi, Elham; Zhu, Bo; Rezaei, Mohammad Naser; Voordeckers, Karin; De Maeyer, Dries; Marchal, Kathleen; Dornez, Emmie

    2013-01-01

    The behavior of yeast cells during industrial processes such as the production of beer, wine, and bioethanol has been extensively studied. In contrast, our knowledge about yeast physiology during solid-state processes, such as bread dough, cheese, or cocoa fermentation, remains limited. We investigated changes in the transcriptomes of three genetically distinct Saccharomyces cerevisiae strains during bread dough fermentation. Our results show that regardless of the genetic background, all three strains exhibit similar changes in expression patterns. At the onset of fermentation, expression of glucose-regulated genes changes dramatically, and the osmotic stress response is activated. The middle fermentation phase is characterized by the induction of genes involved in amino acid metabolism. Finally, at the latest time point, cells suffer from nutrient depletion and activate pathways associated with starvation and stress responses. Further analysis shows that genes regulated by the high-osmolarity glycerol (HOG) pathway, the major pathway involved in the response to osmotic stress and glycerol homeostasis, are among the most differentially expressed genes at the onset of fermentation. More importantly, deletion of HOG1 and other genes of this pathway significantly reduces the fermentation capacity. Together, our results demonstrate that cells embedded in a solid matrix such as bread dough suffer severe osmotic stress and that a proper induction of the HOG pathway is critical for optimal fermentation. PMID:24056467

  15. Saccharomyces cerevisiae Fermentation Effects on Pollen: Archaeological Implications

    Directory of Open Access Journals (Sweden)

    Crystal A. Dozier

    2016-03-01

    Full Text Available Pollen is the reproductive agent of flowering plants; palynology is utilized by archaeologists because sporopollenin, a major component in the exine of pollen grains, is resistant to decay and morphologically distinctive. Wine, beer, and mead have been identified in the archaeological record by palynological assessment due to indicator species or due to a pollen profile similar to that recovered from honey, a common source of sugar in a variety of fermented beverages. While most palynologists have assumed that pollen grains are resistant to alcoholic fermentation, a recent study in food science implies that pollen is a yeast nutrient because pollen-enriched meads produce more alcohol. The experiment presented here explores the potential distortion of the pollen record through fermentation by brewing a traditional, pollen-rich mead with Saccharomyces cerevisiae. In this experiment, the pollen grains did not undergo any discernible morphological changes nor were distorted in the pollen profile. Any nutrition that the yeast garners from the pollen therefore leaves sporopollenin intact. These results support palynological research on residues of alcoholic beverages and confirms that the fermentation process does not distort the pollen profile of the original substance. The paper concludes with the potential and limits of palynological study to assess fermentation within the archaeological record.

  16. Saccharomyces cerevisiae in the Production of Fermented Beverages

    Directory of Open Access Journals (Sweden)

    Graeme M Walker

    2016-11-01

    Full Text Available Alcoholic beverages are produced following the fermentation of sugars by yeasts, mainly (but not exclusively strains of the species, Saccharomyces cerevisiae. The sugary starting materials may emanate from cereal starches (which require enzymatic pre-hydrolysis in the case of beers and whiskies, sucrose-rich plants (molasses or sugar juice from sugarcane in the case of rums, or from fruits (which do not require pre-hydrolysis in the case of wines and brandies. In the presence of sugars, together with other essential nutrients such as amino acids, minerals and vitamins, S. cerevisiae will conduct fermentative metabolism to ethanol and carbon dioxide (as the primary fermentation metabolites as the cells strive to make energy and regenerate the coenzyme NAD+ under anaerobic conditions. Yeasts will also produce numerous secondary metabolites which act as important beverage flavour congeners, including higher alcohols, esters, carbonyls and sulphur compounds. These are very important in dictating the final flavour and aroma characteristics of beverages such as beer and wine, but also in distilled beverages such as whisky, rum and brandy. Therefore, yeasts are of vital importance in providing the alcohol content and the sensory profiles of such beverages. This Introductory Chapter reviews, in general, the growth, physiology and metabolism of S. cerevisiae in alcoholic beverage fermentations.

  17. Functional relevance of water and glycerol channels in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sabir, Farzana; Loureiro-Dias, Maria C; Soveral, Graça; Prista, Catarina

    2017-05-01

    Our understanding of the functional relevance of orthodox aquaporins and aquaglyceroporins in Saccharomyces cerevisiae is essentially based on phenotypic variations obtained by expression/overexpression/deletion of these major intrinsic proteins in selected strains. These water/glycerol channels are considered crucial during various life-cycle phases, such as sporulation and mating and in some life processes such as rapid freeze-thaw tolerance, osmoregulation and phenomena associated with cell surface. Despite their putative functional roles not only as channels but also as sensors, their underlying mechanisms and their regulation are still poorly understood. In the present review, we summarize and discuss the physiological relevance of S. cerevisiae aquaporins (Aqy1 and Aqy2) and aquaglyceroporins (Fps1 and Yfl054c). In particular, the fact that most S. cerevisiae laboratory strains harbor genes coding for non-functional aquaporins, while wild and industrial strains possess at least one functional aquaporin, suggests that aquaporin activity is required for cell survival under more harsh conditions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Global gene response in Saccharomyces cerevisiae exposed to silver nanoparticles.

    Science.gov (United States)

    Niazi, Javed H; Sang, Byoung-In; Kim, Yeon Seok; Gu, Man Bock

    2011-08-01

    Silver nanoparticles (AgNPs), exhibiting a broad size range and morphologies with highly reactive facets, which are widely applicable in real-life but not fully verified for biosafety and ecotoxicity, were subjected to report transcriptome profile in yeast Saccharomyces cerevisiae. A large number of genes accounted for ∼3% and ∼5% of the genome affected by AgNPs and Ag-ions, respectively. Principal component and cluster analysis suggest that the different physical forms of Ag were the major cause in differential expression profile. Among 90 genes affected by both AgNPs and Ag-ions, metalloprotein mediating high resistance to copper (CUP1-1 and CUP1-2) were strongly induced by AgNPs (∼45-folds) and Ag-ions (∼22-folds), respectively. A total of 17 genes, responsive to chemical stimuli, stress, and transport processes, were differentially induced by AgNPs. The differential expression was also seen with Ag-ions that affected 73 up- and 161 down-regulating genes, and most of these were involved in ion transport and homeostasis. This study provides new information on the knowledge for impact of nanoparticles on living microorganisms that can be extended to other nanoparticles.

  19. Habitat Predicts Levels of Genetic Admixture in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Viranga Tilakaratna

    2017-09-01

    Full Text Available Genetic admixture can provide material for populations to adapt to local environments, and this process has played a crucial role in the domestication of plants and animals. The model yeast, Saccharomyces cerevisiae, has been domesticated multiple times for the production of wine, sake, beer, and bread, but the high rate of admixture between yeast lineages has so far been treated as a complication for population genomic analysis. Here, we make use of the low recombination rate at centromeres to investigate admixture in yeast using a classic Bayesian approach and a locus-by-locus phylogenetic approach. Using both approaches, we find that S. cerevisiae from stable oak woodland habitats are less likely to show recent genetic admixture compared with those isolated from transient habitats such as fruits, wine, or human infections. When woodland yeast strains do show recent genetic admixture, the degree of admixture is lower than in strains from other habitats. Furthermore, S. cerevisiae populations from oak woodlands are genetically isolated from each other, with only occasional migration between woodlands and local fruit habitats. Application of the phylogenetic approach suggests that there is a previously undetected population in North Africa that is the closest outgroup to the European S. cerevisiae, including the domesticated Wine population. Careful testing for admixture in S. cerevisiae leads to a better understanding of the underlying population structure of the species and will be important for understanding the selective processes underlying domestication in this economically important species.

  20. Habitat Predicts Levels of Genetic Admixture in Saccharomyces cerevisiae.

    Science.gov (United States)

    Tilakaratna, Viranga; Bensasson, Douda

    2017-09-07

    Genetic admixture can provide material for populations to adapt to local environments, and this process has played a crucial role in the domestication of plants and animals. The model yeast, Saccharomyces cerevisiae , has been domesticated multiple times for the production of wine, sake, beer, and bread, but the high rate of admixture between yeast lineages has so far been treated as a complication for population genomic analysis. Here, we make use of the low recombination rate at centromeres to investigate admixture in yeast using a classic Bayesian approach and a locus-by-locus phylogenetic approach. Using both approaches, we find that S. cerevisiae from stable oak woodland habitats are less likely to show recent genetic admixture compared with those isolated from transient habitats such as fruits, wine, or human infections. When woodland yeast strains do show recent genetic admixture, the degree of admixture is lower than in strains from other habitats. Furthermore, S. cerevisiae populations from oak woodlands are genetically isolated from each other, with only occasional migration between woodlands and local fruit habitats. Application of the phylogenetic approach suggests that there is a previously undetected population in North Africa that is the closest outgroup to the European S. cerevisiae , including the domesticated Wine population. Careful testing for admixture in S. cerevisiae leads to a better understanding of the underlying population structure of the species and will be important for understanding the selective processes underlying domestication in this economically important species. Copyright © 2017 Tilakaratna and Bensasson.

  1. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history.

    Science.gov (United States)

    Legras, Jean-Luc; Merdinoglu, Didier; Cornuet, Jean-Marie; Karst, Francis

    2007-05-01

    Fermented beverages and foods have played a significant role in most societies worldwide for millennia. To better understand how the yeast species Saccharomyces cerevisiae, the main fermenting agent, evolved along this historical and expansion process, we analysed the genetic diversity among 651 strains from 56 different geographical origins, worldwide. Their genotyping at 12 microsatellite loci revealed 575 distinct genotypes organized in subgroups of yeast types, i.e. bread, beer, wine, sake. Some of these groups presented unexpected relatedness: Bread strains displayed a combination of alleles intermediate between beer and wine strains, and strains used for rice wine and sake were most closely related to beer and bread strains. However, up to 28% of genetic diversity between these technological groups was associated with geographical differences which suggests local domestications. Focusing on wine yeasts, a group of Lebanese strains were basal in an F(ST) tree, suggesting a Mesopotamia-based origin of most wine strains. In Europe, migration of wine strains occurred through the Danube Valley, and around the Mediterranean Sea. An approximate Bayesian computation approach suggested a postglacial divergence (most probable period 10,000-12,000 bp). As our results suggest intimate association between man and wine yeast across centuries, we hypothesize that yeast followed man and vine migrations as a commensal member of grapevine flora.

  2. Dynamics of the Saccharomyces cerevisiae transcriptome during bread dough fermentation.

    Science.gov (United States)

    Aslankoohi, Elham; Zhu, Bo; Rezaei, Mohammad Naser; Voordeckers, Karin; De Maeyer, Dries; Marchal, Kathleen; Dornez, Emmie; Courtin, Christophe M; Verstrepen, Kevin J

    2013-12-01

    The behavior of yeast cells during industrial processes such as the production of beer, wine, and bioethanol has been extensively studied. In contrast, our knowledge about yeast physiology during solid-state processes, such as bread dough, cheese, or cocoa fermentation, remains limited. We investigated changes in the transcriptomes of three genetically distinct Saccharomyces cerevisiae strains during bread dough fermentation. Our results show that regardless of the genetic background, all three strains exhibit similar changes in expression patterns. At the onset of fermentation, expression of glucose-regulated genes changes dramatically, and the osmotic stress response is activated. The middle fermentation phase is characterized by the induction of genes involved in amino acid metabolism. Finally, at the latest time point, cells suffer from nutrient depletion and activate pathways associated with starvation and stress responses. Further analysis shows that genes regulated by the high-osmolarity glycerol (HOG) pathway, the major pathway involved in the response to osmotic stress and glycerol homeostasis, are among the most differentially expressed genes at the onset of fermentation. More importantly, deletion of HOG1 and other genes of this pathway significantly reduces the fermentation capacity. Together, our results demonstrate that cells embedded in a solid matrix such as bread dough suffer severe osmotic stress and that a proper induction of the HOG pathway is critical for optimal fermentation.

  3. Nuclear mitochondrial DNA activates replication in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Laurent Chatre

    Full Text Available The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in.

  4. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Eichenberger, Michael; Hansson, Anders; Fischer, David; Dürr, Lara; Naesby, Michael

    2018-06-01

    Anthocyanins (ACNs) are plant secondary metabolites responsible for most of the red, purple and blue colors of flowers, fruits and vegetables. They are increasingly used in the food and beverage industry as natural alternative to artificial colorants. Production of these compounds by fermentation of microorganisms would provide an attractive alternative. In this study, Saccharomyces cerevisiae was engineered for de novo production of the three basic anthocyanins, as well as the three main trans-flavan-3-ols. Enzymes from different plant sources were screened and efficient variants found for most steps of the biosynthetic pathway. However, the anthocyanidin synthase was identified as a major obstacle to efficient production. In yeast, this enzyme converts the majority of its natural substrates leucoanthocyanidins into the off-pathway flavonols. Nonetheless, de novo biosynthesis of ACNs was shown for the first time in yeast and for the first time in a single microorganism. It provides a framework for optimizing the activity of anthocyanidin synthase and represents an important step towards sustainable industrial production of these highly relevant molecules in yeast.

  5. Antimutators of mitochodrial and nuclear DNA in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Bianchi, L.; Foury, F.

    1982-01-01

    In Saccharomyces cerevisiae ten antimutator mutants have been isolated. The spontaneous occurrence of mitochondrial mutants resistant to erythromycin, oligomycin, and diuron is decreased 2-60-fold in these strains. The rate of forward and reverse spontaneous mutations of the nuclear genome is also reduced. The meiotic progenies arising from the crosses of seven mutants (LB 1 , LB 2 , LB 4 , LB 5 , LB 6 , LB 7 , LB 10 ) with an isogenic parental strain exhibit 2:2 segregations and therefore are the result of mutations in a single nuclear gene. The six mutants LB 1 , LB 2 , LB 4 , LB 6 , LB 7 , LB 10 are semidominant and determine six complementation groups. The mutant LB 5 is dominant and therefore cannot be assigned to any complementation group. The mutants. LB 1 , LB 4 and LB 1 0 are gamma-ray sensitive and, by tetrad analysis, it has been shown that gamma-ray sensitivity and spontaneous antimutability are the result of a single nuclear gene mutation. The other three mutants LB 3 , LB 8 and LB 9 exhibit complex tetrad segregations, typical of cytoplasmic inheritance and do not complement each other. However, although the mutations are semidominant, it has not been possible to detect any antimutator cytoductant among some 500 cytoductants carrying the karl 1-1 nucleus. (orig./AJ)

  6. Spontaneous and radiation induced gene conversion in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Rao, B.S.; Murthy, M.S.S.

    1977-01-01

    Spontaneous and radiation induced gene conversion to arginine independence was studied in a heteroallelic diploid strain of yeast Saccharomyces cerevisiae BZ 34. When stationary phase cells were incubated in phosphate buffer (pH 7 ) at 30 0 C under aerated condition for 48 hours, the conversion frequency increased by a factor of about 1000 times the background. This was found to be so even when the cells were incubated in saline (0.85%) or distilled water. Various conditions influencing this enhancement have been investigated. Conversion frequency enhancement was not significant under anoxic conditions and was absent at low temperatures and in log phase cells. Caffeine could inhibit this enhancement when present in the suspension medium. These results can be explained on the basis of the induction of meiosis in cells held in buffer. Microscopic examination confirmed this view. Under conditions not favourable for the onset of meiosis there is no significant enhancement in conversion frequency. In stationary phase cells exposed to series of gamma doses, the conversion frequency increases with dose. Post irradiation incubation in buffer further increases the conversion frequency. However, the increase expressed as the ratio of the conversion frequency on buffer holding to that on immediate plating decreased with increasing dose. This decrease in enhancement with increasing dose may be due to the dose dependent inhibition of meiosis. (author)

  7. Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress

    Directory of Open Access Journals (Sweden)

    Rafael A. de Sá

    2013-09-01

    Full Text Available Propolis is a natural product widely used for humans. Due to its complex composition, a number of applications (antimicrobial, antiinflammatory, anesthetic, cytostatic and antioxidant have been attributed to this substance. Using Saccharomyces cerevisiae as a eukaryotic model we investigated the mechanisms underlying the antioxidant effect of propolis from Guarapari against oxidative stress. Submitting a wild type (BY4741 and antioxidant deficient strains (ctt1∆, sod1∆, gsh1∆, gtt1∆ and gtt2∆ either to 15 mM menadione or to 2 mM hydrogen peroxide during 60 min, we observed that all strains, except the mutant sod1∆, acquired tolerance when previously treated with 25 µg/mL of alcoholic propolis extract. Such a treatment reduced the levels of ROS generation and of lipid peroxidation, after oxidative stress. The increase in Cu/Zn-Sod activity by propolis suggests that the protection might be acting synergistically with Cu/Zn-Sod.

  8. The evolution of gene expression QTL in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    James Ronald

    2007-08-01

    Full Text Available Understanding the evolutionary forces that influence patterns of gene expression variation will provide insights into the mechanisms of evolutionary change and the molecular basis of phenotypic diversity. To date, studies of gene expression evolution have primarily been made by analyzing how gene expression levels vary within and between species. However, the fundamental unit of heritable variation in transcript abundance is the underlying regulatory allele, and as a result it is necessary to understand gene expression evolution at the level of DNA sequence variation. Here we describe the evolutionary forces shaping patterns of genetic variation for 1206 cis-regulatory QTL identified in a cross between two divergent strains of Saccharomyces cerevisiae. We demonstrate that purifying selection against mildly deleterious alleles is the dominant force governing cis-regulatory evolution in S. cerevisiae and estimate the strength of selection. We also find that essential genes and genes with larger codon bias are subject to slightly stronger cis-regulatory constraint and that positive selection has played a role in the evolution of major trans-acting QTL.

  9. Water-Transfer Slows Aging in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Aviv Cohen

    Full Text Available Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR, the unfolded protein response (UPR and the endoplasmic reticulum-associated protein degradation (ERAD, was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process.

  10. Water-Transfer Slows Aging in Saccharomyces cerevisiae.

    Science.gov (United States)

    Cohen, Aviv; Weindling, Esther; Rabinovich, Efrat; Nachman, Iftach; Fuchs, Shai; Chuartzman, Silvia; Gal, Lihi; Schuldiner, Maya; Bar-Nun, Shoshana

    2016-01-01

    Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR), the unfolded protein response (UPR) and the endoplasmic reticulum-associated protein degradation (ERAD), was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process.

  11. Irradiation effects on the alcohol fermentation ability of saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Sadi, Suharni

    1987-01-01

    Irradiation effects on the alcohol fermentation ability of saccharomyces cerevisiae. S. cerevisiae suspensions of 1.5x10 8 clls/ml were exposed to single and fractionated doses of gamma irradiation, i.e. 0; 0.30; 0.60; 0.90; and 1.20 kGy in aerobic condition at dose rate of 1.63 kGy/hour. The fractionated doses were given with time interval of 15, 30 and 45 minutes. The fermentation was held at 30 0 C for 40 hours. It is seen that an increase of alcohol production was obtained when cells were irradiated at 0.60 kGy, although the result has no significant difference statistically with control. At the dose of 1.20 kGy the alcohol fermentation ability of S. cerevisiae decreased drastically as compared to control. Irradiation using single or fractionated doses with time interval of 15-45 minutes did not influence the alcohol production. Comparing the time interval of 45 minutes at 0.60 kGy and at 1.20 kGy, it appeared that the yield of alcohol was different. (author). 17 refs.; 4 figs

  12. Saccharomyces cerevisiae proteinase A excretion and wine making.

    Science.gov (United States)

    Song, Lulu; Chen, Yefu; Du, Yongjing; Wang, Xibin; Guo, Xuewu; Dong, Jian; Xiao, Dongguang

    2017-11-09

    Proteinase A (PrA), the major protease in Saccharomyces cerevisiae, plays an essential role in zymogen activation, sporulation, and other physiological processes in vivo. The extracellular secretion of PrA often occurs during alcoholic fermentation, especially in the later stages when the yeast cells are under stress conditions, and affects the quality and safety of fermented products. Thus, the mechanism underlying PrA excretion must be explored to improve the quality and safety of fermented products. This paper briefly introduces the structure and physiological function of PrA. Two transport routes of PrA, namely, the Golgi-to-vacuole pathway and the constitutive Golgi-to-plasma membrane pathway, are also discussed. Moreover, the research history and developments on the mechanism of extracellular PrA secretion are described. In addition, it is briefly discussed that calcium homeostasis plays an important role in the secretory pathway of proteins, implying that the regulation of PrA delivery to the plasma membrane requires the involvement of calcium ion. Finally, this review focuses on the effects of PrA excretion on wine making (including Chinese rice wine, grape wine, and beer brewage) and presents strategies to control PrA excretion.

  13. Asynchronous spore germination in isogenic natural isolates of Saccharomyces paradoxus.

    Science.gov (United States)

    Stelkens, Rike B; Miller, Eric L; Greig, Duncan

    2016-05-01

    Spores from wild yeast isolates often show great variation in the size of colonies they produce, for largely unknown reasons. Here we measure the colonies produced from single spores from six different wild Saccharomyces paradoxus strains. We found remarkable variation in spore colony sizes, even among spores that were genetically identical. Different strains had different amounts of variation in spore colony sizes, and variation was not affected by the number of preceding meioses, or by spore maturation time. We used time-lapse photography to show that wild strains also have high variation in spore germination timing, providing a likely mechanism for the variation in spore colony sizes. When some spores from a laboratory strain make small colonies, or no colonies, it usually indicates a genetic or meiotic fault. Here, we demonstrate that in wild strains spore colony size variation is normal. We discuss and assess potential adaptive and non-adaptive explanations for this variation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Conrad, Michaela; Schothorst, Joep; Kankipati, Harish Nag; Van Zeebroeck, Griet; Rubio-Texeira, Marta; Thevelein, Johan M

    2014-01-01

    The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth. PMID:24483210

  15. Mating-Type Genes and MAT Switching in Saccharomyces cerevisiae

    Science.gov (United States)

    Haber, James E.

    2012-01-01

    Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break. PMID:22555442

  16. Saccharomyces pastorianus: genomic insights inspiring innovation for industry.

    Science.gov (United States)

    Gibson, Brian; Liti, Gianni

    2015-01-01

    A combination of biological and non-biological factors has led to the interspecific hybrid yeast species Saccharomyces pastorianus becoming one of the world's most important industrial organisms. This yeast is used in the production of lager-style beers, the fermentation of which requires very low temperatures compared to other industrial fermentation processes. This group of organisms has benefited from both the whole-genome duplication in its ancestral lineage and the subsequent hybridization event between S. cerevisiae and S. eubayanus, resulting in strong fermentative ability. The hybrid has key traits, such as cold tolerance and good maltose- and maltotriose-utilizing ability, inherited either from the parental species or originating from genetic interactions between the parent genomes. Instability in the nascent allopolyploid hybrid genome may have contributed to rapid evolution of the yeast to tolerate conditions prevalent in the brewing environment. The recent discovery of S. eubayanus has provided new insights into the evolutionary history of S. pastorianus and may offer new opportunities for generating novel industrially-beneficial lager yeast strains. Copyright © 2014 John Wiley & Sons, Ltd.

  17. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  18. Biosynthesis of diphthamide in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Chen, J.Y.C.

    1985-01-01

    Inactivation of EF-2 by diphtheria toxin requires the presence of a posttranslationally synthesized amino acid residue, diphthamide. The present work was undertaken to study the biosynthetic mechanism of diphthamide synthesis in the yeast Saccharomyces cerevisiae in order to gain better understanding of the biological roles of this unique amino acid residue. Thirty-one haploid ADP-ribosylation-negative mutants, comprising 5 complementation groups, were obtained. One of these mutants contains a toxin-resistant form of EF-2 which can be converted to a toxin-sensitive form through the methylation reaction catalyzed by a S-AdoMet:EF-2 methyltransferase enzyme which is present in other yeast strains. The [ 3 He]methylated residue in the EF-2 modified by the methyltransferase in the presence of S-Ado-L-[ 3 H-methyl]-Met has been analyzed chromatographically following both acid and enzymatic hydrolysis. At the conclusion of the reaction, all of the radiolabel was recovered as diphthine (the unamidated form of diphthamide). The authors conclude that the S-AdoMet:EF-2-methyltransferase is specific for the addition of at least the last two of the three methyl groups present in diphthine

  19. [Saccharomyces cerevisiae invasive infection: The first reported case in Morocco].

    Science.gov (United States)

    Maleb, A; Sebbar, E; Frikh, M; Boubker, S; Moussaoui, A; El Mekkaoui, A; Khannoussi, W; Kharrasse, G; Belefquih, B; Lemnouer, A; Ismaili, Z; Elouennass, M

    2017-06-01

    Saccharomyces cerevisiae is a cosmopolitan yeast, widely used in agro-alimentary and pharmaceutical industry. Its impact in human pathology is rare, but maybe still underestimated compared to the real situation. This yeast is currently considered as an emerging and opportunistic pathogen. Risk factors are immunosuppression and intravascular device carrying. Fungemias are the most frequent clinical forms. We report the first case of S. cerevisiae invasive infection described in Morocco, and to propose a review of the literature cases of S. cerevisiae infections described worldwide. A 77-year-old patient, with no notable medical history, who was hospitalized for a upper gastrointestinal stenosis secondary to impassable metastatic gastric tumor. Its history was marked by the onset of septic shock, with S. cerevisiae in his urine and in his blood, with arguments for confirmation of invasion: the presence of several risk factors in the patient, positive direct microbiological examination, abundant and exclusive culture of S. cerevisiae from clinical samples. Species identification was confirmed by the study of biochemical characteristics of the isolated yeast. Confirmation of S. cerevisiae infection requires a clinical suspicion in patients with risk factors, but also a correct microbiological diagnosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Lydie Michaillat

    Full Text Available The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property.

  1. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae.

    Science.gov (United States)

    Duan, Lijin; Ding, Wentao; Liu, Xiaonan; Cheng, Xiaozhi; Cai, Jing; Hua, Erbing; Jiang, Huifeng

    2017-09-26

    Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. Firstly, a high efficient flavonol synthases (FLS) from Populus deltoides was introduced into the biosynthetic pathway of kaempferol. Secondly, a S. cerevisiae recombinant was constructed for de novo synthesis of kaempferol, which generated about 6.97 mg/L kaempferol from glucose. To further promote kaempferol production, the acetyl-CoA biosynthetic pathway was overexpressed and p-coumarate was supplied as substrate, which improved kaempferol titer by about 23 and 120%, respectively. Finally, a fed-batch process was developed for better kaempferol fermentation performance, and the production reached 66.29 mg/L in 40 h. The titer of kaempferol in our engineered yeast is 2.5 times of the highest reported titer. Our study provides a possible strategy to produce kaempferol using microbial cell factory.

  2. Sucrose and Saccharomyces cerevisiae: a relationship most sweet.

    Science.gov (United States)

    Marques, Wesley Leoricy; Raghavendran, Vijayendran; Stambuk, Boris Ugarte; Gombert, Andreas Karoly

    2016-02-01

    Sucrose is an abundant, readily available and inexpensive substrate for industrial biotechnology processes and its use is demonstrated with much success in the production of fuel ethanol in Brazil. Saccharomyces cerevisiae, which naturally evolved to efficiently consume sugars such as sucrose, is one of the most important cell factories due to its robustness, stress tolerance, genetic accessibility, simple nutrient requirements and long history as an industrial workhorse. This minireview is focused on sucrose metabolism in S. cerevisiae, a rather unexplored subject in the scientific literature. An analysis of sucrose availability in nature and yeast sugar metabolism was performed, in order to understand the molecular background that makes S. cerevisiae consume this sugar efficiently. A historical overview on the use of sucrose and S. cerevisiae by humans is also presented considering sugarcane and sugarbeet as the main sources of this carbohydrate. Physiological aspects of sucrose consumption are compared with those concerning other economically relevant sugars. Also, metabolic engineering efforts to alter sucrose catabolism are presented in a chronological manner. In spite of its extensive use in yeast-based industries, a lot of basic and applied research on sucrose metabolism is imperative, mainly in fields such as genetics, physiology and metabolic engineering. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Proteasome dynamics between proliferation and quiescence stages of Saccharomyces cerevisiae.

    Science.gov (United States)

    Yedidi, Ravikiran S; Fatehi, Amatullah K; Enenkel, Cordula

    The ubiquitin-proteasome system (UPS) plays a critical role in cellular protein homeostasis and is required for the turnover of short-lived and unwanted proteins, which are targeted by poly-ubiquitination for degradation. Proteasome is the key protease of UPS and consists of multiple subunits, which are organized into a catalytic core particle (CP) and a regulatory particle (RP). In Saccharomyces cerevisiae, proteasome holo-enzymes are engaged in degrading poly-ubiquitinated substrates and are mostly localized in the nucleus during cell proliferation. While in quiescence, the RP and CP are sequestered into motile and reversible storage granules in the cytoplasm, called proteasome storage granules (PSGs). The reversible nature of PSGs allows the proteasomes to be transported back into the nucleus upon exit from quiescence. Nuclear import of RP and CP through nuclear pores occurs via the canonical pathway that includes the importin-αβ heterodimer and takes advantage of the Ran-GTP gradient across the nuclear membrane. Dependent on the growth stage, either inactive precursor complexes or mature holo-enzymes are imported into the nucleus. The present review discusses the dynamics of proteasomes including their assembly, nucleo-cytoplasmic transport during proliferation and the sequestration of proteasomes into PSGs during quiescence. [Formula: see text].

  4. Osmo-, thermo- and ethanol- tolerances of Saccharomyces cerevisiae S1

    Directory of Open Access Journals (Sweden)

    Sandrasegarampillai Balakumar

    2012-03-01

    Full Text Available Saccharomyces cerevisiae S1, which is a locally isolated and improved strain showed viability at 40, 45 and 50ºC and produced ethanol at 40, 43 and 45ºC. When the cells were given heat shock at 45ºC for 30min and grown at 40ºC, 100% viability was observed for 60h, and addition of 200gl-1 ethanol has led to complete cell death at 30h. Heat shock given at 45ºC (for 30min has improved the tolerance to temperature induced ethanol shock leading to 37% viability at 30h. when the cells were subjected to ethanol (200gl-1 for 30 min and osmotic shock (sorbitol 300gl-1, trehalose contents in the cells were increased. The heat shocked cells showed better viability in presence of added ethanol. Soy flour supplementation has improved the viability of S. cerevisiae S1 to 80% in presence of 100gl-1 added ethanol and to 60% in presence of 300gl-1 sorbitol. In presence of sorbitol (200gl-1 and ethanol (50gl-1 at 40ºC, 46% viability was retained by S. cerevisiae S1 at 48h and it was improved to 80% by soy flour supplementation.

  5. Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Gilon, T; Chomsky, O; Kulka, R G

    1998-01-01

    Combinations of different ubiquitin-conjugating (Ubc) enzymes and other factors constitute subsidiary pathways of the ubiquitin system, each of which ubiquitinates a specific subset of proteins. There is evidence that certain sequence elements or structural motifs of target proteins are degradation signals which mark them for ubiquitination by a particular branch of the ubiquitin system and for subsequent degradation. Our aim was to devise a way of searching systematically for degradation signals and to determine to which ubiquitin system subpathways they direct the proteins. We have constructed two reporter gene libraries based on the lacZ or URA3 genes which, in Saccharomyces cerevisiae, express fusion proteins with a wide variety of C-terminal extensions. From these, we have isolated clones producing unstable fusion proteins which are stabilized in various ubc mutants. Among these are 10 clones whose products are stabilized in ubc6, ubc7 or ubc6ubc7 double mutants. The C-terminal extensions of these clones, which vary in length from 16 to 50 amino acid residues, are presumed to contain degradation signals channeling proteins for degradation via the UBC6 and/or UBC7 subpathways of the ubiquitin system. Some of these C-terminal tails share similar sequence motifs, and a feature common to almost all of these sequences is a highly hydrophobic region such as is usually located inside globular proteins or inserted into membranes. PMID:9582269

  6. Ubiquitin regulates TORC1 in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Hu, Kejin; Guo, Shuguang; Yan, Gonghong; Yuan, Wenjie; Zheng, Yin; Jiang, Yu

    2016-04-01

    In the yeast Saccharomyces cerevisiae the TOR complex 1 (TORC1) controls many growth-related cellular processes and is essential for cell growth and proliferation. Macrolide antibiotic rapamycin, in complex with a cytosol protein named FKBP12, specifically inhibits TORC1, causing growth arrest. The FKBP12-rapamycin complex interferes with TORC1 function by binding to the FRB domain of the TOR proteins. In an attempt to understand the role of the FRB domain in TOR function, we identified a single point mutation (Tor2(W2041R) ) in the FRB domain of Tor2 that renders yeast cells rapamycin resistant and temperature sensitive. At the permissive temperature, the Tor2 mutant protein is partially defective for binding with Kog1 and TORC1 is impaired for membrane association. At the restrictive temperature, Kog1 but not the Tor2 mutant protein, is rapidly degraded. Overexpression of ubiquitin stabilizes Kog1 and suppresses the growth defect associated with the tor2 mutant at the nonpremissive temperature. We find that ubiquitin binds non-covalently to Kog1, prevents Kog1 from degradation and stabilizes TORC1. Our data reveal a unique role for ubiquitin in regulation of TORC1 and suggest that Kog1 requires association with the Tor proteins for stabilization. © 2016 John Wiley & Sons Ltd.

  7. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Flis, Vid V; Fankl, Ariane; Ramprecht, Claudia; Zellnig, Günther; Leitner, Erich; Hermetter, Albin; Daum, Günther

    2015-01-01

    In the yeast Saccharomyces cerevisiae, phosphatidylcholine (PC), the major phospholipid (PL) of all organelle membranes, is synthesized via two different pathways. Methylation of phosphatidylethanolamine (PE) catalyzed by the methyl transferases Cho2p/Pem1p and Opi3p/Pem2p as well as incorporation of choline through the CDP (cytidine diphosphate)-choline branch of the Kennedy pathway lead to PC formation. To determine the contribution of these two pathways to the supply of PC to peroxisomes (PX), yeast mutants bearing defects in the two pathways were cultivated under peroxisome inducing conditions, i.e. in the presence of oleic acid, and subjected to biochemical and cell biological analyses. Phenotype studies revealed compromised growth of both the cho20Δopi3Δ (mutations in the methylation pathway) and the cki1Δdpl1Δeki1Δ (mutations in the CDP-choline pathway) mutant when grown on oleic acid. Analysis of peroxisomes from the two mutant strains showed that both pathways produce PC for the supply to peroxisomes, although the CDP-choline pathway seemed to contribute with higher efficiency than the methylation pathway. Changes in the peroxisomal lipid pattern of mutants caused by defects in the PC biosynthetic pathways resulted in changes of membrane properties as shown by anisotropy measurements with fluorescent probes. In summary, our data define the origin of peroxisomal PC and demonstrate the importance of PC for peroxisome membrane formation and integrity.

  8. Damage-induced ectopic recombination in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kupiec, M; Steinlauf, R

    1997-06-09

    Mitotic recombination in the yeast Saccharomyces cerevisiae is induced when cells are irradiated with UV or X-rays, reflecting the efficient repair of damage by recombinational repair mechanisms. We have used multiply marked haploid strains that allow the simultaneous detection of several types of ectopic recombination events. We show that inter-chromosomal ectopic conversion of lys2 heteroalleles and, to a lesser extent, direct repeat recombination (DRR) between non-tandem repeats, are increased by DNA-damaging agents; in contrast, ectopic recombination of the naturally occurring Ty element is not induced. We have tested several hypotheses that could explain the preferential lack of induction of Ty recombination by DNA-damaging agents. We have found that the lack of induction cannot be explained by a cell cycle control or by an effect of the mating-type genes. We also found no role for the flanking long terminal repeats (LTRs) of the Ty in preventing the induction. Ectopic conversion, DRR, and forward mutation of artificial repeats show different kinetics of induction at various positions of the cell cycle, reflecting different mechanisms of recombination. We discuss the mechanistic and evolutionary aspects of these results.

  9. Modifications of Saccharomyces pastorianus cell wall polysaccharides with brewing process.

    Science.gov (United States)

    Bastos, Rita; Coelho, Elisabete; Coimbra, Manuel A

    2015-06-25

    The cell wall polysaccharides of brewers spent yeast Saccharomyces pastorianus (BSY) and the inoculum yeast (IY) were studied in order to understand the changes induced by the brewing process. The hot water and alkali extractions performed solubilized mainly mannoproteins, more branched for BSY than those of IY. Also, (31)P solid state NMR showed that the BSY mannoproteins were 3 times more phosphorylated. By electron microscopy it was observed that the final residues of alkali sequential extraction until 4M KOH preserved the yeast three-dimensional structure. The final residues, composed mainly by glucans (92%), showed that the BSY, when compared with IY, contained higher amount of (1→4)-linked Glc (43% for BSY and 16% for IY) and lower (1→3)-linked Glc (17% for BSY and 42% for IY). The enzymatic treatment of final residue showed that both BSY and IY had (α1→4)-linked Glc and (β1→4)-linked Glc, in a 2:1 ratio, showing that S. pastorianus increases their cellulose-like linkages with the brewing process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Hana Šuranská

    2016-03-01

    Full Text Available Abstract In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines.

  11. Effects of low X-ray doses in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Jordan, A.; Laskowski, W.

    1987-01-01

    Three strains of Saccharomyces cerevisiae with different capacities for repair of radiation damage (RAD, rad18, and rad52) have been tested for their colony forming ability (CFA) and growth rates after application of small X-ray doses from 3.8 mGy to 40 Gy. There was no reproducible increase in CFA observable after application of doses between 3.8 mGy and 4.7 Gy.X-ray doses of 40 Gy causing an inactivation of CFA from 90% to 50%, depending on the repair capacity of the strains used, caused a reduced increase in optical density during 2 h buffer treatment in comparison to unirradiated cells. This reduction however, is reversible as soon as the cells are transferred into nutrient medium. One hour after transfer into growh medium the portions of cells with large buds (Gs and M phase) and cells with small buds (S phase) are drastically different in irradiated cells from those obtained in unirradiated cells. The time necessary for separation of mother and daughter cells is prolonged by X-ray irradiation and the formation of new buds is retarded. (orig.)

  12. Early manifestations of replicative aging in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maksim I. Sorokin

    2014-01-01

    Full Text Available The yeast Saccharomyces cerevisiae is successfully used as a model organism to find genes responsible for lifespan control of higher organisms. As functional decline of higher eukaryotes can start as early as one quarter of the average lifespan, we asked whether S. cerevisiae can be used to model this manifestation of aging. While the average replicative lifespan of S. cerevisiae mother cells ranges between 15 and 30 division cycles, we found that resistances to certain stresses start to decrease much earlier. Looking into the mechanism, we found that knockouts of genes responsible for mitochondriato-nucleus (retrograde signaling, RTG1 or RTG3, significantly decrease the resistance of cells that generated more than four daughters, but not of the younger ones. We also found that even young mother cells frequently contain mitochondria with heterogeneous transmembrane potential and that the percentage of such cells correlates with replicative age. Together, these facts suggest that retrograde signaling starts to malfunction in relatively young cells, leading to accumulation of heterogeneous mitochondria within one cell. The latter may further contribute to a decline in stress resistances.

  13. Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose.

    Science.gov (United States)

    Liu, Jing-Jing; Zhang, Guo-Chang; Oh, Eun Joong; Pathanibul, Panchalee; Turner, Timothy L; Jin, Yong-Su

    2016-09-20

    Lactose is an inevitable byproduct of the dairy industry. In addition to cheese manufacturing, the growing Greek yogurt industry generates excess acid whey, which contains lactose. Therefore, rapid and efficient conversion of lactose to fuels and chemicals would be useful for recycling the otherwise harmful acid whey. Saccharomyces cerevisiae, a popular metabolic engineering host, cannot natively utilize lactose. However, we discovered that an engineered S. cerevisiae strain (EJ2) capable of fermenting cellobiose can also ferment lactose. This finding suggests that a cellobiose transporter (CDT-1) can transport lactose and a β-glucosidase (GH1-1) can hydrolyze lactose by acting as a β-galactosidase. While the lactose fermentation by the EJ2 strain was much slower than the cellobiose fermentation, a faster lactose-fermenting strain (EJ2e8) was obtained through serial subcultures on lactose. The EJ2e8 strain fermented lactose with a consumption rate of 2.16g/Lh. The improved lactose fermentation by the EJ2e8 strain was due to the increased copy number of cdt-1 and gh1-1 genes. Looking ahead, the EJ2e8 strain could be exploited for the production of other non-ethanol fuels and chemicals from lactose through further metabolic engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Seven cases of Saccharomyces fungaemia related to use of probiotics.

    Science.gov (United States)

    Roy, Ujjwayini; Jessani, Laxman G; Rudramurthy, Shivaprakash M; Gopalakrishnan, Ram; Dutta, Soma; Chakravarty, Chandrashish; Jillwin, Joseph; Chakrabarti, Arunaloke

    2017-06-01

    Probiotics are increasingly used in critically ill patients without enough safety data. The aim of the present study was to determine the association of probiotics with Saccharomyces cerevisiae fungaemia. Seven patients with S. cerevisiae fungaemia were reported at two hospitals in India between July 2014 and September 2015. Detailed clinical history of patients was recorded. Besides the seven patient isolates, three probiotics sachets used in those patients and five unrelated clinical isolates were used for association study by Fluorescent amplified fragment length polymorphism (FAFLP). Antifungal susceptibility testing was performed by broth microdilution technique of CLSI (M27-A3) and interpreted according to CLSI (M27S4). Two patients were premature neonates and five were adults. They were admitted in intensive care unit and were on probiotics containing S. boulardii (except one adult patient). FAFLP analysis showed 96.4-99.7% similarity between blood and corresponding probiotic isolates. Of the three AFLP types (group I, II, II) identified, all the probiotic isolates clustered in group I (major cluster) including majority of the blood isolates. The isolates were susceptible to all antifungal agents tested. Five patients, who could be evaluated, responded promptly to echinocandins or voriconazole. As the prescription of probiotic containing S. boulardii in critically ill patient's leads to the fungaemia, we recommend avoiding this probiotic in those patients. © 2017 Blackwell Verlag GmbH.

  15. Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall

    Science.gov (United States)

    Orlean, Peter

    2012-01-01

    The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins. PMID:23135325

  16. Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural.

    Science.gov (United States)

    Jung, Young Hoon; Kim, Sooah; Yang, Jungwoo; Seo, Jin-Ho; Kim, Kyoung Heon

    2017-03-01

    Furfural, one of the most common inhibitors in pre-treatment hydrolysates, reduces the cell growth and ethanol production of yeast. Evolutionary engineering has been used as a selection scheme to obtain yeast strains that exhibit furfural tolerance. However, the response of Saccharomyces cerevisiae to furfural at the metabolite level during evolution remains unknown. In this study, evolutionary engineering and metabolomic analyses were applied to determine the effects of furfural on yeasts and their metabolic response to continuous exposure to furfural. After 50 serial transfers of cultures in the presence of furfural, the evolved strains acquired the ability to stably manage its physiological status under the furfural stress. A total of 98 metabolites were identified, and their abundance profiles implied that yeast metabolism was globally regulated. Under the furfural stress, stress-protective molecules and cofactor-related mechanisms were mainly induced in the parental strain. However, during evolution under the furfural stress, S. cerevisiae underwent global metabolic allocations to quickly overcome the stress, particularly by maintaining higher levels of metabolites related to energy generation, cofactor regeneration and recovery from cellular damage. Mapping the mechanisms of furfural tolerance conferred by evolutionary engineering in the present study will be led to rational design of metabolically engineered yeasts. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects

    Directory of Open Access Journals (Sweden)

    Danuza Nogueira Moysés

    2016-02-01

    Full Text Available Many years have passed since the first genetically modified Saccharomyces cerevisiae strains capable of fermenting xylose were obtained with the promise of an environmentally sustainable solution for the conversion of the abundant lignocellulosic biomass to ethanol. Several challenges emerged from these first experiences, most of them related to solving redox imbalances, discovering new pathways for xylose utilization, modulation of the expression of genes of the non-oxidative pentose phosphate pathway, and reduction of xylitol formation. Strategies on evolutionary engineering were used to improve fermentation kinetics, but the resulting strains were still far from industrial application. Lignocellulosic hydrolysates proved to have different inhibitors derived from lignin and sugar degradation, along with significant amounts of acetic acid, intrinsically related with biomass deconstruction. This, associated with pH, temperature, high ethanol, and other stress fluctuations presented on large scale fermentations led the search for yeasts with more robust backgrounds, like industrial strains, as engineering targets. Some promising yeasts were obtained both from studies of stress tolerance genes and adaptation on hydrolysates. Since fermentation times on mixed-substrate hydrolysates were still not cost-effective, the more selective search for new or engineered sugar transporters for xylose are still the focus of many recent studies. These challenges, as well as under-appreciated process strategies, will be discussed in this review.

  18. Mead production: selection and characterization assays of Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Pereira, Ana Paula; Dias, Teresa; Andrade, João; Ramalhosa, Elsa; Estevinho, Letícia M

    2009-08-01

    Mead is a traditional drink, which results from the alcoholic fermentation of diluted honey carried out by yeasts. However, when it is produced in a homemade way, mead producers find several problems, namely, the lack of uniformity in the final product, delayed and arrested fermentations, and the production of "off-flavours" by the yeasts. These problems are usually associated with the inability of yeast strains to respond and adapt to unfavourable and stressful growth conditions. The main objectives of this work were to evaluate the capacity of Saccharomyces cerevisiae strains, isolated from honey of the Trás-os-Montes (Northeast Portugal), to produce mead. Five strains from honey, as well as one laboratory strain and one commercial wine strain, were evaluated in terms of their fermentation performance under ethanol, sulphur dioxide and osmotic stress. All the strains showed similar behaviour in these conditions. Two yeasts strains isolated from honey and the commercial wine strain were further tested for mead production, using two different honey (a dark and a light honey), enriched with two supplements (one commercial and one developed by the research team), as fermentation media. The results obtained in this work show that S. cerevisiae strains isolated from honey, are appropriate for mead production. However it is of extreme importance to take into account the characteristics of the honey, and supplements used in the fermentation medium formulation, in order to achieve the best results in mead production.

  19. Genomic Evolution of Saccharomyces cerevisiae under Chinese Rice Wine Fermentation

    Science.gov (United States)

    Li, Yudong; Zhang, Weiping; Zheng, Daoqiong; Zhou, Zhan; Yu, Wenwen; Zhang, Lei; Feng, Lifang; Liang, Xinle; Guan, Wenjun; Zhou, Jingwen; Chen, Jian; Lin, Zhenguo

    2014-01-01

    Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains. PMID:25212861

  20. Metabolic engineering of Saccharomyces cerevisiae for caffeine and theobromine production.

    Directory of Open Access Journals (Sweden)

    Lu Jin

    Full Text Available Caffeine (1, 3, 7-trimethylxanthine and theobromine (3, 7-dimethylxanthine are the major purine alkaloids in plants, e.g., tea (Camellia sinensis and coffee (Coffea arabica. Caffeine is a major component of coffee and is used widely in food and beverage industries. Most of the enzymes involved in the caffeine biosynthetic pathway have been reported previously. Here, we demonstrated the biosynthesis of caffeine (0.38 mg/L by co-expression of Coffea arabica xanthosine methyltransferase (CaXMT and Camellia sinensis caffeine synthase (TCS in Saccharomyces cerevisiae. Furthermore, we endeavored to develop this production platform for making other purine-based alkaloids. To increase the catalytic activity of TCS in an effort to increase theobromine production, we identified four amino acid residues based on structural analyses of 3D-model of TCS. Two TCS1 mutants (Val317Met and Phe217Trp slightly increased in theobromine accumulation and simultaneously decreased in caffeine production. The application and further optimization of this biosynthetic platform are discussed.

  1. Metabolic engineering of Saccharomyces cerevisiae for caffeine and theobromine production.

    Science.gov (United States)

    Jin, Lu; Bhuiya, Mohammad Wadud; Li, Mengmeng; Liu, XiangQi; Han, Jixiang; Deng, WeiWei; Wang, Min; Yu, Oliver; Zhang, Zhengzhu

    2014-01-01

    Caffeine (1, 3, 7-trimethylxanthine) and theobromine (3, 7-dimethylxanthine) are the major purine alkaloids in plants, e.g., tea (Camellia sinensis) and coffee (Coffea arabica). Caffeine is a major component of coffee and is used widely in food and beverage industries. Most of the enzymes involved in the caffeine biosynthetic pathway have been reported previously. Here, we demonstrated the biosynthesis of caffeine (0.38 mg/L) by co-expression of Coffea arabica xanthosine methyltransferase (CaXMT) and Camellia sinensis caffeine synthase (TCS) in Saccharomyces cerevisiae. Furthermore, we endeavored to develop this production platform for making other purine-based alkaloids. To increase the catalytic activity of TCS in an effort to increase theobromine production, we identified four amino acid residues based on structural analyses of 3D-model of TCS. Two TCS1 mutants (Val317Met and Phe217Trp) slightly increased in theobromine accumulation and simultaneously decreased in caffeine production. The application and further optimization of this biosynthetic platform are discussed.

  2. ORGANIC ACIDS CONCENTRATION IN WINE STOCKS AFTER Saccharomyces cerevisiae FERMENTATION

    Directory of Open Access Journals (Sweden)

    V. N. Bayraktar

    2013-04-01

    Full Text Available The biochemical constituents in wine stocks that influence the flavor and quality of wine are investigated in the paper. The tested parameters consist of volume fraction of ethanol, residual sugar, phenolic compounds, tartaric, malic, citric, lactic, acetic acids, titratable acidity and volatile acids. The wine stocks that were received from white and red grape varieties Tairov`s selection were tested. There was a correlation between titratable acidity and volatile acids in the wine stocks from white and red grape varieties. High correlation was also found between lactic and acetic acids, between volatile acids, acetic acid and sugar. It was determined that wine stocks with a high concentration of ethanol originated from those yeast strains of Saccharomyces cerevisiae, in a fermented grape must of high speed of enzyme activity. The taste of wine stocks correlated with the ratio of tartaric to malic acid. Analysis showed significant differences between the varieties of white and red wine stocks in concentrations of organic acids, phenolic compounds, residual sugar, and volume fraction of ethanol. Positive correlation was indicated for both studied groups for volatile acids and acetic acid, tartaric, malic, lactic acids and total sugar. Prospective yeast cultures with high productivity of alcohol (ethanol were selected for winemaking biotechnology.

  3. Anti-hypercholesterolemic effect of Saccharomyces boulardii in the hamster.

    Science.gov (United States)

    Girard, Philippe; Pansart, Yannick; Verleye, Marc

    2014-01-01

    Hypercholesterolemia is a major risk factor for coronary artery disease and probiotics have been suggested as tools to manage elevated cholesterol levels. The present study investigated the ability of the biotherapeutic agent Saccharomyces boulardii (Sb-Biocodex) to reduce the hypercholesterolemia induced by a 0.1% cholesterol-enriched diet in the hamster. In a first experiment, chronic oral treatment with S. boulardii at 12 × 10(10) CFU/kg (3 g/kg) twice a day was started from the beginning of the cholesterol diet and continued for 14 days ('preventive protocol'). In the second experiment, S. boulardii was given 14 days after the beginning of the cholesterol diet when hypercholesterolemia had developed and continued for an additional 14 days ('curative protocol'). In the preventive protocol, administration of the yeast significantly reduced hypercholesterolemia (14%) induced by the cholesterol-enriched diet compared to the group receiving only the cholesterol diet. In the curative protocol, S. boulardii significantly reduced hypercholesterolemia (12%) induced by the cholesterol-enriched diet, too. Moreover, the yeast significantly decreased the serum triglyceride increase by 39%. S. boulardii possesses anti-hypercholesterolemic properties in the hamster worthy of further evaluation in clinical studies. © 2014 S. Karger AG, Basel.

  4. Saccharomyces boulardii interferes with Shigella pathogenesis by postinvasion signaling events

    Science.gov (United States)

    Mumy, Karen L.; Chen, Xinhua; Kelly, Ciarán P.; McCormick, Beth A.

    2011-01-01

    Saccharomyces boulardii is gaining in popularity as a treatment for a variety of diarrheal diseases as well as inflammatory bowel disease. This study was designed to examine the effect of this yeast on infection by Shigella flexneri, a highly infectious and human host-adapted enteric pathogen. We investigated key interactions between the bacteria and host cells in the presence of the yeast in addition to a number of host responses including proinflammatory events and markers. Although the presence of the yeast during infection did not alter the number of bacteria that was able to attach or invade human colon cancer-derived T-84 cells, it did positively impact the tight junction protein zonula occluden-2 and significantly increase the barrier integrity of model epithelia. The yeast also decreased ERK, JNK, and NF-κB activation in response to S. flexneri, events likely responsible for the observed reductions in IL-8 secretion and the transepithelial migration of polymorphonuclear leukocytes across T-84 monolayers. These results, suggesting that the yeast allowed for a dampened inflammatory response, were confirmed in vivo utilizing a highly relevant model of human fetal colonic tissue transplanted into scid mice. Furthermore, a cell-free S. boulardii culture supernatant was also capable of reducing IL-8 secretion by infected T-84 cells. These data suggest that although the use of S. boulardii during infection with S. flexneri may alleviate symptoms associated with the inflammatory response of the host, it would not prevent infection. PMID:18032477

  5. Treatment of acute diarrhea with Saccharomyces boulardii in infants.

    Science.gov (United States)

    Corrêa, Naflesia B O; Penna, Francisco J; Lima, Fátima M L S; Nicoli, Jacques R; Filho, Luciano A P

    2011-11-01

    The aim of the study was to determine whether an oral treatment with a commercial pharmaceutical product containing Saccharomyces boulardii would reduce the duration of diarrhea in infants with acute diarrhea. In the present double-blind, placebo-controlled study, 186 infants, 6 to 48 months old and hospitalized within 72 hours after the onset of acute diarrhea in 2 hospitals in Goiânia, Goiás, Brazil, were randomly assigned to receive twice per day for 5 days 200 mg of a commercial pharmaceutical product containing 4 × 10 viable cells of S boulardii or a placebo. Stool samples were submitted to search for rotavirus. Among the 176 infants who completed the trial, those treated with S boulardii (90) showed a reduction in diarrhea duration (P boulardii was given to children within 72 hours after the onset of acute diarrhea. The present study suggests a complementary treatment of acute diarrhea in infants with daily oral doses of S boulardii.

  6. Calcium dependence of eugenol tolerance and toxicity in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Stephen K Roberts

    Full Text Available Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.

  7. Ethylene production in relation to nitrogen metabolism in Saccharomyces cerevisiae.

    Science.gov (United States)

    Johansson, Nina; Persson, Karl O; Quehl, Paul; Norbeck, Joakim; Larsson, Christer

    2014-11-01

    We have previously shown that ethylene production in Saccharomyces cerevisiae expressing the ethylene-forming enzyme (EFE) from Pseudomonas syringae is strongly influenced by variations in the mode of cultivation as well as the choice of nitrogen source. Here, we have studied the influence of nitrogen metabolism on the production of ethylene further. Using ammonium, glutamate, glutamate/arginine, and arginine as nitrogen sources, it was found that glutamate (with or without arginine) correlates with a high ethylene production, most likely linked to an observed increase in 2-oxoglutarate levels. Arginine as a sole nitrogen source caused a reduced ethylene production. A reduction of arginine levels, accomplished using an arginine auxotrophic ARG4-deletion strain in the presence of limiting amounts of arginine or through CAR1 overexpression, did however not correlate with an increased ethylene production. As expected, arginine was necessary for ethylene production as ethylene production in the ARG4-deletion strain ceased at the time when arginine was depleted. In conclusion, our data suggest that high levels of 2-oxoglutarate and a limited amount of arginine are required for successful ethylene production in yeast. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Saccharomyces cerevisiae in the Production of Whisk(ey

    Directory of Open Access Journals (Sweden)

    Graeme M. Walker

    2016-12-01

    Full Text Available Whisk(ey is a major global distilled spirit beverage. Whiskies are produced from cereal starches that are saccharified, fermented and distilled prior to spirit maturation. The strain of Saccharomyces cerevisiae employed in whisky fermentations is crucially important not only in terms of ethanol yields, but also for production of minor yeast metabolites which collectively contribute to development of spirit flavour and aroma characteristics. Distillers must therefore pay very careful attention to the strain of yeast exploited to ensure consistency of fermentation performance and spirit congener profiles. In the Scotch whisky industry, initiatives to address sustainability issues facing the industry (for example, reduced energy and water usage have resulted in a growing awareness regarding criteria for selecting new distilling yeasts with improved efficiency. For example, there is now a desire for Scotch whisky distilling yeasts to perform under more challenging conditions such as high gravity wort fermentations. This article highlights the important roles of S. cerevisiae strains in whisky production (with particular emphasis on Scotch and describes key fermentation performance attributes sought in distiller’s yeast, such as high alcohol yields, stress tolerance and desirable congener profiles. We hope that the information herein will be useful for whisky producers and yeast suppliers in selecting new distilling strains of S. cerevisiae, and for the scientific community to stimulate further research in this area.

  9. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity

    Science.gov (United States)

    Padilla, Beatriz; Gil, José V.; Manzanares, Paloma

    2016-01-01

    It is well established that non-Saccharomyces wine yeasts, considered in the past as undesired or spoilage yeasts, can enhance the analytical composition, and aroma profile of the wine. The contribution of non-Saccharomyces yeasts, including the ability to secret enzymes and produce secondary metabolites, glycerol and ethanol, release of mannoproteins or contributions to color stability, is species- and strain-specific, pointing out the key importance of a clever strain selection. The use of mixed starters of selected non-Saccharomyces yeasts with strains of Saccharomyces cerevisiae represents an alternative to both spontaneous and inoculated wine fermentations, taking advantage of the potential positive role that non-Saccharomyces wine yeast species play in the organoleptic characteristics of wine. In this context mixed starters can meet the growing demand for new and improved wine yeast strains adapted to different types and styles of wine. With the aim of presenting old and new evidences on the potential of non-Saccharomyces yeasts to address this market trend, we mainly review the studies focused on non-Saccharomyces strain selection and design of mixed starters directed to improve primary and secondary aroma of wines. The ability of non-Saccharomyces wine yeasts to produce enzymes and metabolites of oenological relevance is also discussed. PMID:27065975

  10. Transcriptomic analysis of Saccharomyces cerevisiae x Saccharomyces kudriavzevii hybrids during low temperature winemaking [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jordi Tronchoni

    2017-09-01

    Full Text Available Background: Although Saccharomyces cerevisiae is the most frequently isolated species in wine fermentation, and the most studied species, other species and interspecific hybrids have greatly attracted the interest of researchers in this field in the last few years, given their potential to solve new winemaking industry challenges. S. cerevisiae x S. kudriavzevii hybrids exhibit good fermentative capabilities at low temperatures, and produce wines with smaller alcohol quantities and larger glycerol quantities, which can be very useful to solve challenges in the winemaking industry such as the necessity to enhance the aroma profile. Methods: In this study, we performed a transcriptomic study of S. cerevisiae x S. kudriavzevii hybrids in low temperature winemaking conditions. Results: The results revealed that the hybrids have acquired both fermentative abilities and cold adaptation abilities, attributed to S. cerevisiae and S. kudriavzevii parental species, respectively, showcasing their industrially relevant characteristics. For several key genes, we also studied the contribution to gene expression of each of the alleles of S. cerevisiae and S. kudriavzevii in the S. cerevisiae x S. kudriavzevii hybrids. From the results, it is not clear how important the differential expression of the specific parental alleles is to the phenotype of the hybrids. Conclusions: This study shows that the fermentative abilities of S. cerevisiae x S. kudriavzevii hybrids at low temperatures do not seem to result from differential expression of specific parental alleles of the key genes involved in this phenotype.

  11. [High gene conversion frequency between genes encoding 2-deoxyglucose-6-phosphate phosphatase in 3 Saccharomyces species].

    Science.gov (United States)

    Piscopo, Sara-Pier; Drouin, Guy

    2014-05-01

    Gene conversions are nonreciprocal sequence exchanges between genes. They are relatively common in Saccharomyces cerevisiae, but few studies have investigated the evolutionary fate of gene conversions or their functional impacts. Here, we analyze the evolution and impact of gene conversions between the two genes encoding 2-deoxyglucose-6-phosphate phosphatase in S. cerevisiae, Saccharomyces paradoxus and Saccharomyces mikatae. Our results demonstrate that the last half of these genes are subject to gene conversions among these three species. The greater similarity and the greater percentage of GC nucleotides in the converted regions, as well as the absence of long regions of adjacent common converted sites, suggest that these gene conversions are frequent and occur independently in all three species. The high frequency of these conversions probably result from the fact that they have little impact on the protein sequences encoded by these genes.

  12. Use of non-saccharomyces Torulaspora delbrueckii yeast strains in winemaking and brewing

    Directory of Open Access Journals (Sweden)

    Tataridis Panagiotis

    2013-01-01

    Full Text Available Selected Saccharomyces yeast strains have been used for more than 150 years in brewing and for several decades in winemaking. They are necessary in brewing because of the boiling of the wort, which results in the death of all yeast cells, with the exception of some Belgian style beers (ex. Lambic, where the wort is left to be colonized by indigenous yeast and bacteria from the environment and ferment naturally. In winemaking their use is also pertinent because they provide regular and timely fermentations, inhibit the growth of indigenous spoilage microorganisms and contribute to the desired sensory characters. Even though the use of selected Saccharomyces strains provides better quality assurance in winemaking in comparison to the unknown microbial consortia in the must, it has been debated for a long time now whether the use of selected industrial Saccharomyces strains results in wines with less sensory complexity and “terroir” character. In previous decades, non-Saccharomyces yeasts were mainly considered as spoilage/problematic yeast, since they exhibited low fermentation ability and other negative traits. In the last decades experiments have shown that there are some non-Saccharomyces strains (Candida, Pichia, Kluyveromyces, Torulaspora, etc which, even though they are not able to complete the fermentation they can still be used in sequential inoculation-fermentation with Saccharomyces to increase sensory complexity of the wines. Through fermentation in a laboratory scale, we have observed that the overall effects of selected Torulaspora delbrueckii yeast strains, is highly positive, leading to products with pronounced sensory complexity and floral/fruity aroma in winemaking and brewing.

  13. Sequential fermentation using non-Saccharomyces yeasts for the reduction of alcohol content in wine

    Directory of Open Access Journals (Sweden)

    Ciani Maurizio

    2014-01-01

    Full Text Available Over the last few decades there has been a progressive increase in wine ethanol content due to global climate change and modified wine styles that involved viticulture and oenology practices. Among the different approaches and strategies to reduce alcohol content in wine we propose a sequential fermentation using immobilized non-Saccharomyces wine yeasts. Preliminary results showed that sequential fermentations with Hanseniaspora osmophila, Hanseniaspora uvarum, Metschnikowia pulcherrima, Starmerella bombicola and Saccharomyces cerevisiae strains showed an ethanol reduction when compared with pure S. cerevisiae fermentation trials.

  14. Incorporating Protein Biosynthesis into the Saccharomyces cerevisiae Genome-scale Metabolic Model

    DEFF Research Database (Denmark)

    Olivares Hernandez, Roberto

    Based on stoichiometric biochemical equations that occur into the cell, the genome-scale metabolic models can quantify the metabolic fluxes, which are regarded as the final representation of the physiological state of the cell. For Saccharomyces Cerevisiae the genome scale model has been construc......Based on stoichiometric biochemical equations that occur into the cell, the genome-scale metabolic models can quantify the metabolic fluxes, which are regarded as the final representation of the physiological state of the cell. For Saccharomyces Cerevisiae the genome scale model has been...

  15. The efficiency of functional mitochondrial replacement in Saccharomyces species has directional character

    DEFF Research Database (Denmark)

    Sulo, P.; Spirek, M.; Soltesova, A.

    2003-01-01

    into mutants devoid of mitochondrial DNA (rho(0)). Recently we have reported that the mitochondria transferred from Saccharomyces paradoxus restored partially the respiration in Saccharomyces cerevisiae rho(0) mutants. Here we present evidence that the S. cerevisiae mitochondria completely salvage from...... respiration deficiency, not only in conspecific isolates but also in S. paradoxus. The respiratory capacity in less-related species can be recovered exclusively in the presence of S. cerevisiae chromosomes. The efficiency of the re-established oxidative phosphorylation did not rely on the presence of introns...

  16. Probiotic Activity of Saccharomyces cerevisiae var. boulardii Against Human Pathogens

    Directory of Open Access Journals (Sweden)

    Katarzyna Rajkowska

    2012-01-01

    Full Text Available Infectious diarrhoea is associated with a modification of the intestinal microflora and colonization of pathogenic bacteria. Tests were performed for seven probiotic yeast strains of Saccharomyces cerevisiae var. boulardii, designated for the prevention and treatment of diarrhoea. To check their possible effectiveness against diarrhoea of different etiologies, the activity against a variety of human pathogenic or opportunistic bacteria was investigated in vitro. In mixed cultures with S. cerevisiae var. boulardii, a statistically significant reduction was observed in the number of cells of Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus, by even 55.9 % in the case of L. monocytogenes compared with bacterial monocultures. The influence of yeasts was mostly associated with the shortening of the bacterial lag phase duration, more rapid achievement of the maximum growth rates, and a decrease by 4.4–57.1 % (L. monocytogenes, P. aeruginosa, or an increase by 1.4–70.6 % (Escherichia coli, Enterococcus faecalis, Salmonella Typhimurium in the exponential growth rates. Another issue included in the research was the ability of S. cerevisiae var. boulardii to bind pathogenic bacteria to its cell surface. Yeasts have shown binding capacity of E. coli, S. Typhimurium and additionally of S. aureus, Campylobacter jejuni and E. faecalis. However, no adhesion of L. monocytogenes and P. aeruginosa to the yeast cell wall was noted. The probiotic activity of S. cerevisiae var. boulardii against human pathogens is related to a decrease in the number of viable and active cells of bacteria and the binding capacity of yeasts. These processes may limit bacterial invasiveness and prevent bacterial adherence and translocation in the human intestines.

  17. Exploring the Saccharomyces cerevisiae Volatile Metabolome: Indigenous versus Commercial Strains

    Science.gov (United States)

    Alves, Zélia; Melo, André; Figueiredo, Ana Raquel; Coimbra, Manuel A.; Gomes, Ana C.; Rocha, Sílvia M.

    2015-01-01

    Winemaking is a highly industrialized process and a number of commercial Saccharomyces cerevisiae strains are used around the world, neglecting the diversity of native yeast strains that are responsible for the production of wines peculiar flavours. The aim of this study was to in-depth establish the S. cerevisiae volatile metabolome and to assess inter-strains variability. To fulfill this objective, two indigenous strains (BT2652 and BT2453 isolated from spontaneous fermentation of grapes collected in Bairrada Appellation, Portugal) and two commercial strains (CSc1 and CSc2) S. cerevisiae were analysed using a methodology based on advanced multidimensional gas chromatography (HS-SPME/GC×GC-ToFMS) tandem with multivariate analysis. A total of 257 volatile metabolites were identified, distributed over the chemical families of acetals, acids, alcohols, aldehydes, ketones, terpenic compounds, esters, ethers, furan-type compounds, hydrocarbons, pyrans, pyrazines and S-compounds. Some of these families are related with metabolic pathways of amino acid, carbohydrate and fatty acid metabolism as well as mono and sesquiterpenic biosynthesis. Principal Component Analysis (PCA) was used with a dataset comprising all variables (257 volatile components), and a distinction was observed between commercial and indigenous strains, which suggests inter-strains variability. In a second step, a subset containing esters and terpenic compounds (C10 and C15), metabolites of particular relevance to wine aroma, was also analysed using PCA. The terpenic and ester profiles express the strains variability and their potential contribution to the wine aromas, specially the BT2453, which produced the higher terpenic content. This research contributes to understand the metabolic diversity of indigenous wine microflora versus commercial strains and achieved knowledge that may be further exploited to produce wines with peculiar aroma properties. PMID:26600152

  18. Effects of ultraviolet radiation on saccharomyces uvarum metabolism

    International Nuclear Information System (INIS)

    Luciano, J.Z.; Hix, C.

    1987-01-01

    The objective of this study was to measure the effect of UV radiation on the metabolism of Saccharomcyes uvarum in wort used in beer production. Pure yeast cultures were exposed to a Westinghouse G8T5 germicidal lamp for 10, 20, 30 and 40 minutes and added to fresh wort. The cultures were allowed to ferment for 96 hours at 130 C and fermentation products were assayed at 24 hour intervals and analyzed on a SCABA BEER ANALYZER. Metabolic parameters measured were balling, alcohol and cell count. Percent alcohol (V/V %) increased significantly at all exposures, but as the UV dosage increased, alcohol levels showed a significant decline with longer exposures. The assimilation of sugars or balling levels dropped at each exposure level among samples. The ability for the yeast to assimilate sugars decreased as UV exposure was increased although pitching rates fluctuated. (Pitching rates are the cell count readings at inoculation). None of the samples showed a logarithmic growth pattern, except for the controls which did not exhibit a lag phase. All other samples decreased cell counts as exposure levels increased, without peaks. Substrate availability was not a factor in the metabolism of Saccharomyces uvarum. Cell count levels at each exposure could have possibly affected the metabolic parameters because of excessive cell killing. Viabilities at the exposure levels studied show that the number of live cells available for nutrient uptake was lower at each level. However, the peak levels of the parameters measured were very close to the controls. Although the availability of cells was low, metabolic rates could have been altered by the UV light

  19. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts.

    Science.gov (United States)

    Barbosa, Catarina; Lage, Patrícia; Vilela, Alice; Mendes-Faia, Arlete; Mendes-Ferreira, Ana

    2014-01-01

    Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase.

  20. The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Angelina Huseinovic

    Full Text Available Acetaminophen (APAP, although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI is clearly linked to liver toxicity, toxicity of APAP is also found without drug metabolism of APAP to NAPQI. To get more insight into mechanisms of APAP toxicity, a genome-wide screen in Saccharomyces cerevisiae for APAP-resistant deletion strains was performed. In this screen we identified genes related to the DNA damage response. Next, we investigated the link between genotype and APAP-induced toxicity or resistance by performing a more detailed screen with a library containing mutants of 1522 genes related to nuclear processes, like DNA repair and chromatin remodelling. We identified 233 strains that had an altered growth rate relative to wild type, of which 107 showed increased resistance to APAP and 126 showed increased sensitivity. Gene Ontology analysis identified ubiquitin homeostasis, regulation of transcription of RNA polymerase II genes, and the mitochondria-to-nucleus signalling pathway to be associated with APAP resistance, while histone exchange and modification, and vesicular transport were connected to APAP sensitivity. Indeed, we observed a link between ubiquitin levels and APAP resistance, whereby ubiquitin deficiency conferred resistance to APAP toxicity while ubiquitin overexpression resulted in sensitivity. The toxicity profile of various chemicals, APAP, and its positional isomer AMAP on a series of deletion strains with ubiquitin deficiency showed a unique resistance pattern for APAP. Furthermore, exposure to APAP increased the level of free ubiquitin and influenced the ubiquitination of proteins. Together, these results uncover a role for ubiquitin homeostasis in APAP-induced toxicity.

  1. Saccharomyces cerevisiae as a model organism: a comparative study.

    Directory of Open Access Journals (Sweden)

    Hiren Karathia

    Full Text Available BACKGROUND: Model organisms are used for research because they provide a framework on which to develop and optimize methods that facilitate and standardize analysis. Such organisms should be representative of the living beings for which they are to serve as proxy. However, in practice, a model organism is often selected ad hoc, and without considering its representativeness, because a systematic and rational method to include this consideration in the selection process is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: In this work we propose such a method and apply it in a pilot study of strengths and limitations of Saccharomyces cerevisiae as a model organism. The method relies on the functional classification of proteins into different biological pathways and processes and on full proteome comparisons between the putative model organism and other organisms for which we would like to extrapolate results. Here we compare S. cerevisiae to 704 other organisms from various phyla. For each organism, our results identify the pathways and processes for which S. cerevisiae is predicted to be a good model to extrapolate from. We find that animals in general and Homo sapiens in particular are some of the non-fungal organisms for which S. cerevisiae is likely to be a good model in which to study a significant fraction of common biological processes. We validate our approach by correctly predicting which organisms are phenotypically more distant from S. cerevisiae with respect to several different biological processes. CONCLUSIONS/SIGNIFICANCE: The method we propose could be used to choose appropriate substitute model organisms for the study of biological processes in other species that are harder to study. For example, one could identify appropriate models to study either pathologies in humans or specific biological processes in species with a long development time, such as plants.

  2. Metabolism and Regulation of Glycerolipids in the Yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Henry, Susan A.; Kohlwein, Sepp D.; Carman, George M.

    2012-01-01

    Due to its genetic tractability and increasing wealth of accessible data, the yeast Saccharomyces cerevisiae is a model system of choice for the study of the genetics, biochemistry, and cell biology of eukaryotic lipid metabolism. Glycerolipids (e.g., phospholipids and triacylglycerol) and their precursors are synthesized and metabolized by enzymes associated with the cytosol and membranous organelles, including endoplasmic reticulum, mitochondria, and lipid droplets. Genetic and biochemical analyses have revealed that glycerolipids play important roles in cell signaling, membrane trafficking, and anchoring of membrane proteins in addition to membrane structure. The expression of glycerolipid enzymes is controlled by a variety of conditions including growth stage and nutrient availability. Much of this regulation occurs at the transcriptional level and involves the Ino2–Ino4 activation complex and the Opi1 repressor, which interacts with Ino2 to attenuate transcriptional activation of UASINO-containing glycerolipid biosynthetic genes. Cellular levels of phosphatidic acid, precursor to all membrane phospholipids and the storage lipid triacylglycerol, regulates transcription of UASINO-containing genes by tethering Opi1 to the nuclear/endoplasmic reticulum membrane and controlling its translocation into the nucleus, a mechanism largely controlled by inositol availability. The transcriptional activator Zap1 controls the expression of some phospholipid synthesis genes in response to zinc availability. Regulatory mechanisms also include control of catalytic activity of glycerolipid enzymes by water-soluble precursors, products and lipids, and covalent modification of phosphorylation, while in vivo function of some enzymes is governed by their subcellular location. Genome-wide genetic analysis indicates coordinate regulation between glycerolipid metabolism and a broad spectrum of metabolic pathways. PMID:22345606

  3. Overproduction of Geranylgeraniol by Metabolically Engineered Saccharomyces cerevisiae▿

    Science.gov (United States)

    Tokuhiro, Kenro; Muramatsu, Masayoshi; Ohto, Chikara; Kawaguchi, Toshiya; Obata, Shusei; Muramoto, Nobuhiko; Hirai, Masana; Takahashi, Haruo; Kondo, Akihiko; Sakuradani, Eiji; Shimizu, Sakayu

    2009-01-01

    (E, E, E)-Geranylgeraniol (GGOH) is a valuable starting material for perfumes and pharmaceutical products. In the yeast Saccharomyces cerevisiae, GGOH is synthesized from the end products of the mevalonate pathway through the sequential reactions of farnesyl diphosphate synthetase (encoded by the ERG20 gene), geranylgeranyl diphosphate synthase (the BTS1 gene), and some endogenous phosphatases. We demonstrated that overexpression of the diacylglycerol diphosphate phosphatase (DPP1) gene could promote GGOH production. We also found that overexpression of a BTS1-DPP1 fusion gene was more efficient for producing GGOH than coexpression of these genes separately. Overexpression of the hydroxymethylglutaryl-coenzyme A reductase (HMG1) gene, which encodes the major rate-limiting enzyme of the mevalonate pathway, resulted in overproduction of squalene (191.9 mg liter−1) rather than GGOH (0.2 mg liter−1) in test tube cultures. Coexpression of the BTS1-DPP1 fusion gene along with the HMG1 gene partially redirected the metabolic flux from squalene to GGOH. Additional expression of a BTS1-ERG20 fusion gene resulted in an almost complete shift of the flux to GGOH production (228.8 mg liter−1 GGOH and 6.5 mg liter−1 squalene). Finally, we constructed a diploid prototrophic strain coexpressing the HMG1, BTS1-DPP1, and BTS1-ERG20 genes from multicopy integration vectors. This strain attained 3.31 g liter−1 GGOH production in a 10-liter jar fermentor with gradual feeding of a mixed glucose and ethanol solution. The use of bifunctional fusion genes such as the BTS1-DPP1 and ERG20-BTS1 genes that code sequential enzymes in the metabolic pathway was an effective method for metabolic engineering. PMID:19592534

  4. High level secretion of cellobiohydrolases by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ahlgren Simon

    2011-09-01

    Full Text Available Abstract Background The main technological impediment to widespread utilization of lignocellulose for the production of fuels and chemicals is the lack of low-cost technologies to overcome its recalcitrance. Organisms that hydrolyze lignocellulose and produce a valuable product such as ethanol at a high rate and titer could significantly reduce the costs of biomass conversion technologies, and will allow separate conversion steps to be combined in a consolidated bioprocess (CBP. Development of Saccharomyces cerevisiae for CBP requires the high level secretion of cellulases, particularly cellobiohydrolases. Results We expressed various cellobiohydrolases to identify enzymes that were efficiently secreted by S. cerevisiae. For enhanced cellulose hydrolysis, we engineered bimodular derivatives of a well secreted enzyme that naturally lacks the carbohydrate-binding module, and constructed strains expressing combinations of cbh1 and cbh2 genes. Though there was significant variability in the enzyme levels produced, up to approximately 0.3 g/L CBH1 and approximately 1 g/L CBH2 could be produced in high cell density fermentations. Furthermore, we could show activation of the unfolded protein response as a result of cellobiohydrolase production. Finally, we report fermentation of microcrystalline cellulose (Avicel™ to ethanol by CBH-producing S. cerevisiae strains with the addition of beta-glucosidase. Conclusions Gene or protein specific features and compatibility with the host are important for efficient cellobiohydrolase secretion in yeast. The present work demonstrated that production of both CBH1 and CBH2 could be improved to levels where the barrier to CBH sufficiency in the hydrolysis of cellulose was overcome.

  5. Molecular Mechanism of Terbinafine Resistance in Saccharomyces cerevisiae

    Science.gov (United States)

    Leber, Regina; Fuchsbichler, Sandra; Klobučníková, Vlasta; Schweighofer, Natascha; Pitters, Eva; Wohlfarter, Kathrin; Lederer, Mojca; Landl, Karina; Ruckenstuhl, Christoph; Hapala, Ivan; Turnowsky, Friederike

    2003-01-01

    Ten mutants of the yeast Saccharomyces cerevisiae resistant to the antimycotic terbinafine were isolated after chemical or UV mutagenesis. Molecular analysis of these mutants revealed single base pair exchanges in the ERG1 gene coding for squalene epoxidase, the target of terbinafine. The mutants did not show cross-resistance to any of the substrates of various pleiotropic drug resistance efflux pumps tested. The ERG1 mRNA levels in the mutants did not differ from those in the wild-type parent strains. Terbinafine resistance was transmitted with the mutated alleles in gene replacement experiments, proving that single amino acid substitutions in the Erg1 protein were sufficient to confer the resistance phenotype. The amino acid changes caused by the point mutations were clustered in two regions of the Erg1 protein. Seven mutants carried the amino acid substitutions F402L (one mutant), F420L (one mutant), and P430S (five mutants) in the C-terminal part of the protein; and three mutants carried an L251F exchange in the central part of the protein. Interestingly, all exchanges identified involved amino acids which are conserved in the squalene epoxidases of yeasts and mammals. Two mutations that were generated by PCR mutagenesis of the ERG1 gene and that conferred terbinafine resistance mapped in the same regions of the Erg1 protein, with one resulting in an L251F exchange and the other resulting in an F433S exchange. The results strongly indicate that these regions are responsible for the interaction of yeast squalene epoxidase with terbinafine. PMID:14638499

  6. Ecological and Genetic Barriers Differentiate Natural Populations of Saccharomyces cerevisiae.

    Science.gov (United States)

    Clowers, Katie J; Heilberger, Justin; Piotrowski, Jeff S; Will, Jessica L; Gasch, Audrey P

    2015-09-01

    How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causal genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae.

    Science.gov (United States)

    Jongedijk, Esmer; Cankar, Katarina; Ranzijn, Jorn; van der Krol, Sander; Bouwmeester, Harro; Beekwilder, Jules

    2015-01-01

    Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a (+)-limonene synthase from Citrus limon. Both proteins were expressed either with their native plastid targeting signal or in a truncated form in which the plastidial sorting signal was removed. The yeast host strain for expression was AE9 K197G, which expresses a mutant Erg20 enzyme. This enzyme catalyses the formation of geranyl diphosphate, which is the precursor for monoterpenes. Several methods were tested to capture limonene produced by the yeast. Extraction from the culture medium by pentane, or by the addition of CaCl2 followed by solid-phase micro-extraction, did not lead to detectable limonene, indicating that limonene is rapidly lost from the culture medium. Volatile terpenes such as limonene may also be trapped in a dodecane phase added to the medium during fermentation. This method resulted in recovery of 0.028 mg/l (+)-limonene and 0.060 mg/l (-)-limonene in strains using the truncated Citrus and Perilla synthases, respectively. Trapping the headspace during culture of the limonene synthase-expressing strains resulted in higher titres, at 0.12 mg/l (+)-limonene and 0.49 mg/l (-)-limonene. These results show that the volatile properties of the olefins produced require specific methods for efficient recovery of these molecules from biotechnological production systems. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Efficacy and safety of Saccharomyces boulardii for acute diarrhea.

    Science.gov (United States)

    Feizizadeh, Sahar; Salehi-Abargouei, Amin; Akbari, Vajihe

    2014-07-01

    The efficacy of Saccharomyces boulardii for treatment of childhood diarrhea remains unclear. Our objective was to systematically review data on the effect of S. boulardii on acute childhood diarrhea. Our data sources included Medline, Embase, CINAHL, Scopus, and The Cochrane Library up to September 2013 without language restrictions. Randomized controlled trials and non-randomized trials that evaluated effectiveness of S. boulardii for treatment of acute diarrhea in children were included. Two reviewers independently evaluated studies for eligibility and quality and extracted the data. In total, 1248 articles were identified, of which 22 met the inclusion criteria. Pooling data from trials showed that S. boulardii significantly reduced the duration of diarrhea (mean difference [MD], -19.7 hours; 95% confidence interval [CI], -26.05 to -13.34), stool frequency on day 2 (MD, -0.74; 95% CI, -1.38 to -0.10) and day 3 (MD, -1.24; 95% CI, -2.13 to -0.35), the risk for diarrhea on day 3 (risk ratio [RR], 0.41; 95% CI, 0.27 to 0.60) and day 4 (RR, 0.38; 95% CI, 0.24 to 0.59) after intervention compared with control. The studies included in this review were varied in the definition of diarrhea, the termination of diarrhea, inclusion and exclusion criteria, and their methodological quality. This review and meta-analysis show that S. boulardii is safe and has clear beneficial effects in children who have acute diarrhea. However, additional studies using head-to-head comparisons are needed to define the best dosage of S. boulardii for diarrhea with different causes. Copyright © 2014 by the American Academy of Pediatrics.

  9. Effectiveness and safety of Saccharomyces boulardii for acute infectious diarrhea.

    Science.gov (United States)

    Dinleyici, Ener Cagri; Eren, Makbule; Ozen, Metehan; Yargic, Zeynel Abidin; Vandenplas, Yvan

    2012-04-01

    Acute diarrhea continues to be a leading cause of morbidity, hospitalization and mortality worldwide and probiotics have been proposed as a complementary therapy in the treatment of acute diarrhea. Regarding the treatment of acute diarrhea, a few probiotics including Saccharomyces boulardii seem to be promising therapeutic agents. We performed a systematic review and meta-analysis regarding the use of S. boulardii in the treatment of acute infectious diarrhea with relevant studies that searched with the PubMed, Embase, Scopus, Google Scholar, the Cochrane Controlled Trials Library, and the Cochrane Database of Systematic Reviews through October 2011. This review describes the effects of S. boulardii on the duration of diarrhea, the risk of diarrhea during the treatment (especially at the third day) and duration of hospitalization in patients with acute infectious diarrhea. This review also focused on the potential effects of S. boulardii for acute infectious diarrhea due to different etiological causes. S. boulardii significantly reduced the duration of diarrhea approximately 24 h and that of hospitalization approximately 20 h. S. boulardii shortened the initial phase of watery stools; mean number of stools started to decrease at day 2; moreover, a significant reduction was reported at days 3 and 4. This systematic review and meta-analysis of the efficacy of S. boulardii in the treatment of acute infectious diarrhea show that there is strong evidence that this probiotic has a clinically significant benefit, whatever the cause, including in developing countries. Therefore, with S. boulardii, the shortened duration of diarrhea and the reduction in hospital stay result in social and economic benefits.

  10. Saccharomyces boulardii does not prevent relapse of Crohn's disease.

    Science.gov (United States)

    Bourreille, Arnaud; Cadiot, Guillaume; Le Dreau, Gérard; Laharie, David; Beaugerie, Laurent; Dupas, Jean-Louis; Marteau, Philippe; Rampal, Patrick; Moyse, Dominique; Saleh, Ashraf; Le Guern, Marie-Emmanuelle; Galmiche, Jean-Paul

    2013-08-01

    Saccharomyces boulardii is a probiotic yeast that has been shown to have beneficial effects on the intestinal epithelial barrier and digestive immune system. There is preliminary evidence that S boulardii could be used to treat patients with Crohn's disease (CD). We performed a randomized, placebo-controlled trial to evaluate the effects of S boulardii in patients with CD who underwent remission during therapy with steroids or aminosalicylates. We performed a prospective study of 165 patients who achieved remission after treatment with steroids or salicylates; they were randomly assigned to groups given S boulardii (1 g/day) or placebo for 52 weeks. The primary end point was the percentage of patients in remission at week 52. Time to relapse, Crohn's disease activity index scores, and changes in parameters of inflammation were secondary end points. CD relapsed in 80 patients, 38 in the S boulardii group (47.5%) and 42 in the placebo group (53.2%, a nonsignificant difference). The median time to relapse did not differ significantly between patients given S boulardii (40.7 weeks) vs placebo (39.0 weeks). There were no significant differences between groups in mean Crohn's disease activity index scores or erythrocyte sedimentation rates or in median levels of C-reactive protein. In a post hoc analysis, nonsmokers given S boulardii were less likely to experience a relapse of CD than nonsmokers given placebo, but this finding requires confirmation. Although the probiotic yeast S boulardii is safe and well tolerated, it does not appear to have any beneficial effects for patients with CD in remission after steroid or salicylate therapies. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Genomic evolution of Saccharomyces cerevisiae under Chinese rice wine fermentation.

    Science.gov (United States)

    Li, Yudong; Zhang, Weiping; Zheng, Daoqiong; Zhou, Zhan; Yu, Wenwen; Zhang, Lei; Feng, Lifang; Liang, Xinle; Guan, Wenjun; Zhou, Jingwen; Chen, Jian; Lin, Zhenguo

    2014-09-10

    Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Studies of anaerobic and aerobic glycolysis in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    den Hollander, J.A.; Ugurbil, K.; Brown, T.R.; Bednar, M.; Redfield, C.; Shulman, R.G.

    1986-01-01

    Glucose metabolism was followed in suspensions of Saccharomyces cerevisiae by using 13C NMR and 14C radioactive labeling techniques and by Warburg manometer experiments. These experiments were performed for cells grown with various carbon sources in the growth medium, so as to evaluate the effect of catabolite repression. The rate of glucose utilization was most conveniently determined by the 13C NMR experiments, which measured the concentration of [1-13C]glucose, whereas the distribution of end products was determined from the 13C and the 14C experiments. By combining these measurements the flows into the various pathways that contribute to glucose catabolism were estimated, and the effect of oxygen upon glucose catabolism was evaluated. From these measurements, the Pasteur quotient (PQ) for glucose catabolism was calculated to be 2.95 for acetate-grown cells and 1.89 for cells grown on glucose into saturation. The Warburg experiments provided an independent estimate of glucose catabolism. The PQ estimated from Warburg experiments was 2.9 for acetate-grown cells in excellent agreement with the labeled carbon experiments and 4.6 for cells grown into saturation, which did not agree. Possible explanations of these differences are discussed. From these data an estimate is obtained of the net flow through the Embden-Meyerhof-Parnas pathway. The backward flow through fructose-1,6-bisphosphatase (Fru-1,6-P2-ase) was calculated from the scrambling of the 13C label of [1-13C]glucose into the C1 and C6 positions of trehalose. Combining these data allowed us to calculate the net flux through phosphofructokinase (PFK). For acetate-grown cells we found that the relative flow through PFK is a factor of 1.7 faster anaerobically than aerobically

  13. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Hahn-Hägerdal Bärbel

    2010-03-01

    Full Text Available Abstract Background Baker's yeast (Saccharomyces cerevisiae has been engineered for xylose utilization to enable production of fuel ethanol from lignocellulose raw material. One unresolved challenge is that S. cerevisiae lacks a dedicated transport system for pentose sugars, which means that xylose is transported by non-specific Hxt transporters with comparatively low transport rate and affinity for xylose. Results In this study, we compared three heterologous xylose transporters that have recently been shown to improve xylose uptake under different experimental conditions. The transporters Gxf1, Sut1 and At5g59250 from Candida intermedia, Pichia stipitis and Arabidopsis thaliana, respectively, were expressed in isogenic strains of S. cerevisiae and the transport kinetics and utilization of xylose was evaluated. Expression of the Gxf1 and Sut1 transporters led to significantly increased affinity and transport rates of xylose. In batch cultivation at 4 g/L xylose concentration, improved transport kinetics led to a corresponding increase in xylose utilization, whereas no correlation could be demonstrated at xylose concentrations greater than 15 g/L. The relative contribution of native sugar transporters to the overall xylose transport capacity was also estimated during growth on glucose and xylose. Conclusions Kinetic characterization and aerobic batch cultivation of strains expressing the Gxf1, Sut1 and At5g59250 transporters showed a direct relationship between transport kinetics and xylose growth. The Gxf1 transporter had the highest transport capacity and the highest xylose growth rate, followed by the Sut1 transporter. The range in which transport controlled the growth rate was determined to between 0 and 15 g/L xylose. The role of catabolite repression in regulation of native transporters was also confirmed by the observation that xylose transport by native S. cerevisiae transporters increased significantly during cultivation in xylose and

  14. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Kwak, Suryang; Kim, Soo Rin; Xu, Haiqing; Zhang, Guo-Chang; Lane, Stephan; Kim, Heejin; Jin, Yong-Su

    2017-11-01

    Saccharomyces cerevisiae has limited capabilities for producing fuels and chemicals derived from acetyl-CoA, such as isoprenoids, due to a rigid flux partition toward ethanol during glucose metabolism. Despite numerous efforts, xylose fermentation by engineered yeast harboring heterologous xylose metabolic pathways was not as efficient as glucose fermentation for producing ethanol. Therefore, we hypothesized that xylose metabolism by engineered yeast might be a better fit for producing non-ethanol metabolites. We indeed found that engineered S. cerevisiae on xylose showed higher expression levels of the enzymes involved in ethanol assimilation and cytosolic acetyl-CoA synthesis than on glucose. When genetic perturbations necessary for overproducing squalene and amorphadiene were introduced into engineered S. cerevisiae capable of fermenting xylose, we observed higher titers and yields of isoprenoids under xylose than glucose conditions. Specifically, co-overexpression of a truncated HMG1 (tHMG1) and ERG10 led to substantially higher squalene accumulation under xylose than glucose conditions. In contrast to glucose utilization producing massive amounts of ethanol regardless of aeration, xylose utilization allowed much less amounts of ethanol accumulation, indicating ethanol is simultaneously re-assimilated with xylose consumption and utilized for the biosynthesis of cytosolic acetyl-CoA. In addition, xylose utilization by engineered yeast with overexpression of tHMG1, ERG10, and ADS coding for amorphadiene synthase, and the down-regulation of ERG9 resulted in enhanced amorphadiene production as compared to glucose utilization. These results suggest that the problem of the rigid flux partition toward ethanol production in yeast during the production of isoprenoids and other acetyl-CoA derived chemicals can be bypassed by using xylose instead of glucose as a carbon source. Biotechnol. Bioeng. 2017;114: 2581-2591. © 2017 Wiley Periodicals, Inc. © 2017 Wiley

  15. Immobilization of Saccharomyces Cerevisiae in Rice Hulls for Ethanol Production

    Directory of Open Access Journals (Sweden)

    Edita Martini

    2011-05-01

    Full Text Available The whole cell immobilization in ethanol fermentation can be done by using natural carriers or through synthetic carriers. All of these methods have the same purpose of retaining high cell concentrations within a certain defined region of space which leads to higher ethanol productivity. Lignocellulosic plant substance represents one of highly potential sources in ethanol production. Some studies have found that cellulosic substances substances can also be used as a natural carrier in cell immobilization by re-circulating pre-culture medium into a reactor. In this experiment, rice hulls without any treatment were used to immobilize Saccharomyces cerevisiae through semi solid state incubation combined with re-circulating pre-culture medium. The scanning electron microscopy (SEM pictures of the carrier show that the yeast cells are absorbed and embedded to the rice hull pore. In liquid batch fermentation system with an initial sugar concentration of 50 g/L, nearly 100% total sugar was consumed after 48 hours. This resulted in an ethanol yield of 0.32 g ethanol/g glucose, which is 62.7% of the theoretical value. Ethanol productivity of 0.59 g/(L.h is 2.3 fold higher than that of free cells which is 0.26 g/(L.h. An effort to reuse the immobilized cells in liquid fermentation system showed poor results due to cell desorption in the first batch which led to high sugar concentration inhibitory effect in the second batch fermentation. This might be solved by using semi solid fermentation process in the future work.

  16. Predicting functional upstream open reading frames in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Kristiansson Erik

    2009-12-01

    Full Text Available Abstract Background Some upstream open reading frames (uORFs regulate gene expression (i.e., they are functional and can play key roles in keeping organisms healthy. However, how uORFs are involved in gene regulation is not yet fully understood. In order to get a complete view of how uORFs are involved in gene regulation, it is expected that a large number of experimentally verified functional uORFs are needed. Unfortunately, wet-experiments to verify that uORFs are functional are expensive. Results In this paper, a new computational approach to predicting functional uORFs in the yeast Saccharomyces cerevisiae is presented. Our approach is based on inductive logic programming and makes use of a novel combination of knowledge about biological conservation, Gene Ontology annotations and genes' responses to different conditions. Our method results in a set of simple and informative hypotheses with an estimated sensitivity of 76%. The hypotheses predict 301 further genes to have 398 novel functional uORFs. Three (RPC11, TPK1, and FOL1 of these 301 genes have been hypothesised, following wet-experiments, by a related study to have functional uORFs. A comparison with another related study suggests that eleven of the predicted functional uORFs from genes LDB17, HEM3, CIN8, BCK2, PMC1, FAS1, APP1, ACC1, CKA2, SUR1, and ATH1 are strong candidates for wet-lab experimental studies. Conclusions Learning based prediction of functional uORFs can be done with a high sensitivity. The predictions made in this study can serve as a list of candidates for subsequent wet-lab verification and might help to elucidate the regulatory roles of uORFs.

  17. Catheter-related Saccharomyces cerevisiae Fungemia Following Saccharomyces boulardii Probiotic Treatment: In a child in intensive care unit and review of the literature

    Directory of Open Access Journals (Sweden)

    Serkan Atıcı

    2017-03-01

    Full Text Available Although Saccharomyces boulardii is usually a non-pathogenic fungus, in rare occasions it can cause invasive infection in children. We present the case of an 8-year-old patient in pediatric surgical intensive care unit who developed S. cerevisiae fungemia following probiotic treatment containing S. boulardii. Caspofungin was not effective in this case and he was treated with amphotericin B. We want to emphasize that physicians should be careful about probiotic usage in critically ill patients.

  18. Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts.

    Science.gov (United States)

    Sadoudi, Mohand; Tourdot-Maréchal, Raphaëlle; Rousseaux, Sandrine; Steyer, Damien; Gallardo-Chacón, Joan-Josep; Ballester, Jordi; Vichi, Stefania; Guérin-Schneider, Rémi; Caixach, Josep; Alexandre, Hervé

    2012-12-01

    There has been increasing interest in the use of selected non-Saccharomyces yeasts in co-culture with Saccharomyces cerevisiae. The main reason is that the multistarter fermentation process is thought to simulate indigenous fermentation, thus increasing wine aroma complexity while avoiding the risks linked to natural fermentation. However, multistarter fermentation is characterised by complex and largely unknown interactions between yeasts. Consequently the resulting wine quality is rather unpredictable. In order to better understand the interactions that take place between non-Saccharomyces and Saccharomyces yeasts during alcoholic fermentation, we analysed the volatile profiles of several mono-culture and co-cultures. Candida zemplinina, Torulaspora delbrueckii and Metschnikowia pulcherrima were used to conduct fermentations either in mono-culture or in co-culture with S. cerevisiae. Up to 48 volatile compounds belonging to different chemical families were quantified. For the first time, we show that C. zemplinina is a strong producer of terpenes and lactones. We demonstrate by means of multivariate analysis that different interactions exist between the co-cultures studied. We observed a synergistic effect on aromatic compound production when M. pulcherrima was in co-culture with S. cerevisiae. However a negative interaction was observed between C. zemplinina and S. cerevisiae, which resulted in a decrease in terpene and lactone content. These interactions are independent of biomass production. The aromatic profiles of T. delbrueckii and S. cerevisiae in mono-culture and in co-culture are very close, and are biomass-dependent, reflecting a neutral interaction. This study reveals that a whole family of compounds could be altered by such interactions. These results suggest that the entire metabolic pathway is affected by these interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Catheter-related Saccharomyces cerevisiae Fungemia Following Saccharomyces boulardii Probiotic Treatment: In a child in intensive care unit and review of the literature.

    Science.gov (United States)

    Atıcı, Serkan; Soysal, Ahmet; Karadeniz Cerit, Kıvılcım; Yılmaz, Şerife; Aksu, Burak; Kıyan, Gürsu; Bakır, Mustafa

    2017-03-01

    Although Saccharomyces boulardii is usually a non-pathogenic fungus, in rare occasions it can cause invasive infection in children. We present the case of an 8-year-old patient in pediatric surgical intensive care unit who developed S. cerevisiae fungemia following probiotic treatment containing S. boulardii . Caspofungin was not effective in this case and he was treated with amphotericin B. We want to emphasize that physicians should be careful about probiotic usage in critically ill patients.

  20. Impact of adding Saccharomyces strains on fermentation, aerobic stability, nutritive value, and select lactobacilli populations in corn silage.

    Science.gov (United States)

    Duniere, L; Jin, L; Smiley, B; Qi, M; Rutherford, W; Wang, Y; McAllister, T

    2015-05-01

    Bacterial inoculants can improve the conservation and nutritional quality of silages. Inclusion of the yeast Saccharomyces in the diet of dairy cattle has also been reported to be beneficial. The present study assessed the ability of silage to be used as a means of delivering Saccharomyces strains to ruminants. Two strains of Saccharomyces cerevisiae (strain 1 and 3)and 1 strain of Saccharomyces paradoxus (strain 2) were inoculated (10(3) cfu/g) individually onto corn forage that was ensiled in mini silos for 90 d. Fermentation characteristics, aerobic stability, and nutritive value of silages were determined and real-time quantitative PCR (RT-qPCR) was used to quantify S. cerevisiae, S.paradoxus, total Saccharomyces, fungal, and bacterial populations. Fermentation characteristics of silage inoculated with S1 were similar to control silage. Although strain 3 inoculation increased ash and decreased OM contents of silage (P = 0.017), no differences were observed in nutrient composition or fermentation profiles after 90 d of ensiling. Inoculation with Saccharomyces had no detrimental effect on the aerobic stability of silage. In vitro DM disappearance, gas production, and microbial protein synthesis were not affected by yeast inoculation.Saccharomyces strain 1 was quantified throughout ensiling, whereas strain 2 was detected only immediately after inoculation. Saccharomyces cerevisiae strain 3 was quantified until d 7 and detectable 90 d after ensiling. All inoculants were detected and quantified during aerobic exposure. Inoculation with Saccharomyces did not alter lactobacilli populations. Saccharomycetales were detected by RT-qPCR throughout ensiling in all silages. Both S. cerevisiae and S. paradoxus populations increased during aerobic exposure, demonstrating that the density of these yeast strains would increase between the time that silage was removed from storage and the time it was fed.

  1. Ethanol production from corn cobs by co-culture of Saccharomyces ...

    African Journals Online (AJOL)

    Saccharomyces cerevisiae and Aspergillus niger were used in a co-culture for the simultaneous saccharification and fermentation (SSF) of 1% and 10% (w/v) dry pre-treated corn cobs to ethanol. Positive controls of glucose of same concentrations in a synthetic medium were also fermented. At 1% substrate concentration, ...

  2. Genome-wide transcription survey on flavour production in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Schoondermark-Stolk, Sung A.; Jansen, Michael; Verkleij, Arie J.; Verrips, C. Theo; Euverink, Gert-Jan W.; Dijkhuizen, Lubbert; Boonstra, Johannes

    2006-01-01

    The yeast Saccharomyces cerevisiae is widely used as aroma producer in the preparation of fermented foods and beverages. During food fermentations, secondary metabolites like 3-methyl-1-butanol, 4-methyl-2-oxopentanoate, 3-methyl-2-oxobutanoate and 3-methylbutyrate emerge. These four compounds have

  3. Saccharomyces cerevisiae Mixed Culture of Blackberry (Rubus ulmifolius L.) Juice: Synergism in the Aroma Compounds Production

    Science.gov (United States)

    Ragazzo-Sánchez, Juan Arturo; Ortiz-Basurto, Rosa Isela; Luna-Solano, Guadalupe; Calderón-Santoyo, Montserrat

    2014-01-01

    Blackberry (Rubus sp.) juice was fermented using four different strains of Saccharomyces cerevisiae (Vitilevure-CM4457, Enoferm-T306, ICV-K1, and Greroche Rhona-L3574) recognized because of their use in the wine industry. A medium alcoholic graduation spirit (component analysis (PCA), and factorial discriminant analysis (DFA) permit to demonstrate the synergism between the strains. PMID:25506606

  4. Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: a prospective study

    NARCIS (Netherlands)

    Surawicz, C. M.; Elmer, G. W.; Speelman, P.; McFarland, L. V.; Chinn, J.; van Belle, G.

    1989-01-01

    Saccharomyces boulardii, a nonpathogenic yeast, has been widely used in Europe to prevent antibiotic-associated diarrhea (AAD). We performed a prospective double-blind controlled study to investigate AAD in hospitalized patients and to evaluate the effect of S. boulardii, a living yeast, given in

  5. Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Silljé, H H; Paalman, J W; ter Schure, E G; Olsthoorn, S Q; Verkleij, A J; Boonstra, Johannes; Verrips, C T

    Trehalose and glycogen accumulate in Saccharomyces cerevisiae when growth conditions deteriorate. It has been suggested that aside from functioning as storage factors and stress protectants, these carbohydrates may be required for cell cycle progression at low growth rates under carbon limitation.

  6. A novel esterase from Saccharomyces carlsbergensis, a possible function for the yeast TIP1 gene

    DEFF Research Database (Denmark)

    Horsted, M W; Dey, E S; Holmberg, S

    1998-01-01

    An extracellular esterase was isolated from the brewer's yeast, Saccharomyces carlsbergensis. Inhibition by diisopropyl fluorophosphate shows that the enzyme has a serine active site. By mass spectrometry, the molecular weight of the enzyme was 16.9 kDa. The optimal pH for activity was in the range...

  7. Evolutionary engineering in chemostat cultures for improved maltotriose fermentation kinetics in saccharomyces pastorianus lager brewing yeast

    NARCIS (Netherlands)

    Brickwedde, A.; van den Broek, M.A.; Geertman, Jan Maarten A.; Magalhães, Frederico; Kuijpers, Niels G.A.; Gibson, Brian; Pronk, J.T.; Daran, J.G.

    2017-01-01

    The lager brewing yeast Saccharomyces pastorianus, an interspecies hybrid of S. eubayanus and S. cerevisiae, ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion ("attenuation") of maltotriose by industrial S.

  8. Physiological impact and context dependency of transcriptional responses : A chemostat study in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Tai, S.L.

    2007-01-01

    This thesis is a compilation of a four-year PhD project on bakers' yeast (Saccharomyces cerevisiae). Since the entire S. cerevisiae genome sequence became available in 1996, DNA-microarray analysis has become a popular high-information-density tool for analyzing gene expression in this important

  9. Identification and regulation of genes involved in anaerobic growth of Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Snoek, Isidora Sophia Ishtar

    2007-01-01

    Saccharomyces cerevisiae is one of the few yeast species that can grow equally well without molecular oxygen (anaerobic) as with this compound present (aerobic). This property has made it one of the most abundantly used yeasts in industry, since anaerobic incubation plays a major part in alcohol and

  10. Induction of mitotic recombination by UV and diepoxybutane and its enhancement by hydroxyurea in Saccharomyces cerevisae

    Energy Technology Data Exchange (ETDEWEB)

    Zaborowska, D.; Swietlinska, Z.; Zuk, J. (Polska Akademia Nauk, Warsaw. Inst. Biochemii i Biofizyki)

    1983-04-01

    Mitotic inter- and intra-genic recombination was induced by UV-irradiation and treatment with diepoxybutane (DEB) in 2 heteroallelic diploid strains of Saccharomyces cerevisiae SBTD and D7. Induction of the events tested was strongly potentiated by plating of mutagen-treated cells on growth media containing 0.03 M hydroxyurea (HU).

  11. Pathways for Holliday Junction Processing during Homologous Recombination in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Ashton, Thomas M; Mankouri, Hocine W; Heidenblut, Anna

    2011-01-01

    The Saccharomyces cerevisiae Rmi1 protein is a component of the highly conserved Sgs1-Top3-Rmi1 complex. Deletion of SGS1, TOP3, or RMI1 is synthetically lethal when combined with the loss of the Mus81-Mms4 or Slx1-Slx4 endonucleases, which have been implicated in Holliday junction (HJ) resolutio...

  12. Lipid Raft-Based Membrane Compartmentation of a Plant Transport Protein Expressed in Saccharomyces cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Grossmann, Q.; Opekarová, Miroslava; Nováková, L.; Stolz, J.; Tanner, W.

    2006-01-01

    Roč. 5, č. 6 (2006), s. 945-953 ISSN 1535-9778 R&D Projects: GA MŠk LC545 Institutional research plan: CEZ:AV0Z50200510 Keywords : saccharomyces cerevisiae * plant transport protein * hup1 Subject RIV: EE - Microbiology, Virology Impact factor: 3.707, year: 2006

  13. Saccharomyces cerevisiae of palm wine-enhanced ethanol production by using mutagens

    International Nuclear Information System (INIS)

    Uma, V.; Polasa, H.

    1990-01-01

    The newly isolated Saccharomyces cerevisiae of palm wine produced enhanced amounts of ethanol when cells were UV-irradiated and treated with N-methyl-N-nitro-N-nitrosoguanidine. A further increase of ethanol was observed in yeast extract, peptone, dextrose medium fortified with yeast extract, skimmed milk and soya flour. (author). 9 refs

  14. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis

    Czech Academy of Sciences Publication Activity Database

    Laun, P.; Pichová, Alena; Madeo, F.; Fuchs, J.; Ellinger, A.; Kohlwein, S.; Dawes, I.; Fröhlich, K. U.; Breitenbach, M.

    2001-01-01

    Roč. 39, č. 5 (2001), s. 1166-1173 ISSN 0950-382X R&D Projects: GA ČR GA204/97/0541 Institutional research plan: CEZ:AV0Z5020903 Keywords : Saccharomyces cerevisiae * genetic changes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.398, year: 2001

  15. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose

    Science.gov (United States)

    Haiying Ni; Jose M. Laplaza; Thomas W. Jeffries

    2007-01-01

    Saccharomyces cerevisiae L2612 transformed with genes for xylose reductase and xylitol dehydrogenase (XYL1 and XYL2) grows well on glucose but very poorly on D-xylose. When a gene for D-xylulokinase (XYL3 or XKS1) is overexpressed, growth on glucose is unaffected, but growth on xylose is blocked. Spontaneous or chemically induced mutants of this engineered yeast that...

  16. Invertase SUC2 Is the Key Hydrolase for Inulin Degradation in Saccharomyces cerevisiae

    OpenAIRE

    Wang, Shi-An; Li, Fu-Li

    2013-01-01

    Specific Saccharomyces cerevisiae strains were recently found to be capable of efficiently utilizing inulin, but genetic mechanisms of inulin hydrolysis in yeast remain unknown. Here we report functional characteristics of invertase SUC2 from strain JZ1C and demonstrate that SUC2 is the key enzyme responsible for inulin metabolism in S. cerevisiae.

  17. Suppression by Saccharomyces boulardii of toxigenic Clostridium difficile overgrowth after vancomycin treatment in hamsters.

    Science.gov (United States)

    Elmer, G W; McFarland, L V

    1987-01-01

    Saccharomyces boulardii prevented the development of high counts of Clostridium difficile, high titers of toxin B, and positive latex agglutination tests after cessation of vancomycin treatment for hamsters. The protocol used was designed to stimulate relapse of human C. difficile-associated colitis. S. boulardii was protective in this model. PMID:3566236

  18. Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Novák, Jan; Strašák, Luděk; Fojt, Lukáš; Slaninová, I.; Vetterl, Vladimír

    2007-01-01

    Roč. 70, č. 1 (2007), s. 115-121 ISSN 1567-5394 R&D Projects: GA AV ČR(CZ) IAA4004404; GA AV ČR(CZ) IBS5004107 Institutional research plan: CEZ:AV0Z50040702 Keywords : low-frequency electromagnetic field * yeast * Saccharomyces cerevisiae Subject RIV: BO - Biophysics Impact factor: 2.992, year: 2007

  19. Hyper- and hyporesponsive mutant forms of the Saccharomyces cerevisiae Ssy1 amino acid sensor

    DEFF Research Database (Denmark)

    Poulsen, Peter; Gaber, Richard F.; Kielland-Brandt, Morten

    2008-01-01

    The Saccharomyces cerevisiae integral membrane protein Ssy1p functions with Ssy5p and Ptr3p to sense extracellular amino acids. Signal transduction leads to processing and nuclear localization of Stp1p and Stp2p, transcriptional activators of many amino acid transporter genes. Ssy1p is structural...

  20. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.

    Science.gov (United States)

    Oshoma, Cyprian E; Greetham, Darren; Louis, Edward J; Smart, Katherine A; Phister, Trevor G; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.

  1. Rad52 multimerization is important for its nuclear localization in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Plate, Iben; Albertsen, Line; Lisby, Michael

    2008-01-01

    Rad52 is essential for all homologous recombination and DNA double strand break repair events in Saccharomyces cerevisiae. This protein is multifunctional and contains several domains that allow it to interact with DNA as well as with different repair proteins. However, it has been unclear how Rad...

  2. Creation of a synthetic xylose-inducible promoter for Saccharomyces cerevisiae

    Science.gov (United States)

    Saccharomyces cerevisiae is currently used to produce ethanol from glucose, but it cannot utilize five-carbon sugars contained in the hemicellulose component of biomass feedstocks. S. cerevisiae strains engineered for xylose fermentation have been made using constitutive promoters to express the req...

  3. Phenotypic characterization of glucose repression mutants of Saccharomyce cerevisiae usinge experiments with C-13-labelled glucose

    DEFF Research Database (Denmark)

    Vijayendran, Raghevendran; Gombert, A.K.; Christensen, B.

    2004-01-01

    techniques, which do not provide information about the integrated response a specific genetic modification has on the cellular function. In this study we have performed phenotypic characterization of several mutants of the yeast Saccharomyces cerevisiae through the use of experiments with C-13-labelled...

  4. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis

    DEFF Research Database (Denmark)

    Nissen, Torben Lauesgaard; Hamann, Claus Wendelboe; Kielland-Brandt, M. C.

    2000-01-01

    Glycerol is formed as a by-product in production of ethanol and baker's yeast during fermentation of Saccharomyces cerevisiae under anaerobic and aerobic growth conditions, respectively. One physiological role of glycerol formation by yeast is to reoxidize NADH, formed in synthesis of biomass...

  5. Intracellular pH distribution as a cell health indicator in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Aabo, Thomas; Glückstad, Jesper; Siegumfeldt, Henrik

    2011-01-01

    .d.(pHint)) to describe the internal pH distributions. The cellular pH distributional response to external stress such as heat has not previously been determined. In this study, the intracellular pH (pHi) and the s.d.(pHint) of Saccharomyces cerevisiae cells exposed to supralethal temperatures were measured using...

  6. In vivo dynamics of galactose metabolism in Saccharomyces cerevisiae: Metabolic fluxes and metabolite levels

    DEFF Research Database (Denmark)

    Østergaard, Simon; Olsson, Lisbeth; Nielsen, Jens

    2001-01-01

    The dynamics of galactose metabolism in Saccharomyces cerevisiae was studied by analyzing the metabolic response of the CEN.PK 113-7D wild-type strain when exposed to a galactose pulse during aerobic growth in a galactose-limited steady-state cultivation at a dilution rate of 0.097 h(-1). A fast...

  7. A synthetic hybrid promoter for xylose-regulated control of gene expression in Saccharomyces yeasts

    Science.gov (United States)

    Metabolism of non-glucose carbon sources is often highly regulated at the transcriptional and post-translational levels. This level of regulation is lacking in Saccharomyces cerevisiae strains engineered to metabolize xylose. To better control transcription in S. cerevisiae, the xylose-dependent, DN...

  8. Optimization of ordered plasmid assembly by gap repair in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Pedersen, Mette Louise; Krogh, Berit Olsen

    2012-01-01

    Combinatorial genetic libraries are powerful tools for diversifying and optimizing biomolecules. The process of library assembly is a major limiting factor for library complexity and quality. Gap repair by homologous recombination in Saccharomyces cerevisiae can facilitate in vivo assembly of DNA...

  9. Modulation of the acute phase response in feedlot steers supplemented with Saccharomyces cerevisiae

    Science.gov (United States)

    This study was designed to determine the effect of supplementing feedlot steers with Saccharomyces cerevisiae CNCM I-1079 (SC) on the acute phase response to a lipopolysaccharide (LPS) challenge. Steers (n = 18; 266 ± 4 kilograms body weight) were separated into three treatment groups (n = 6/treatm...

  10. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering

    DEFF Research Database (Denmark)

    Asadollahi, Mohammadali; Maury, Jerome; Patil, Kiran Raosaheb

    2009-01-01

    A genome-scale metabolic model was used to identify new target genes for enhanced biosynthesis of sesquiterpenes in the yeast Saccharomyces cerevisiae. The effect of gene deletions on the flux distributions in the metabolic model of S. cerevisiae was assessed using OptGene as the modeling framework...

  11. Survival of Saccharomyces cerevisiae after treatment with the restriction endonuclease Alu I

    International Nuclear Information System (INIS)

    Winckler, K.; Bach, B.; Obe, G.

    1988-01-01

    Treatment of yeast cells proficient in the repair of radiation damage (Saccharomyces cervisiae) with the restriction endonuclease Alu I leads to a positive dose-effect relationship between inactivation level and enzyme concentration. The data suggest an uptake of the active restriction enzyme into the cells and a relationship between induction of DNA double-strand breaks and cell killing. (author)

  12. Benchmark data for identifying N6-methyladenosine sites in the Saccharomyces cerevisiae genome

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2015-12-01

    Full Text Available This data article contains the benchmark dataset for training and testing iRNA-Methyl, a web-server predictor for identifying N6-methyladenosine sites in RNA (Chen et al., 2015 [15]. It can also be used to develop other predictors for identifying N6-methyladenosine sites in the Saccharomyces cerevisiae genome.

  13. Increased xylose affinity of Hxt2 through gene shuffling of hexose transporters in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Nijland, Jeroen G; Shin, Hyun Yong; de Waal, Paul P; Klaassen, Paul; Driessen, Arnold J M

    AIMS: Optimizing D-xylose transport in Saccharomyces cerevisiae is essential for efficient bioethanol production from cellulosic materials. We have used a gene shuffling approach of hexose (Hxt) transporters in order to increase the affinity for D-xylose. METHODS AND RESULTS: Various libraries were

  14. Alternative Glycerol Balance Strategies among Saccharomyces Species in Response to Winemaking Stress

    Czech Academy of Sciences Publication Activity Database

    Pérez-Torrado, R.; Oliveira, B. M.; Zemančíková, Jana; Sychrová, Hana; Querol, A.

    2016-01-01

    Roč. 7, Mar 31 (2016), s. 435 ISSN 1664-302X R&D Projects: GA ČR(CZ) GA15-03708S EU Projects: European Commission(XE) 264717 - CORNUCOPIA Institutional support: RVO:67985823 Keywords : Saccharomyces * stress tolerance * glycerol * gene expression Subject RIV: EE - Microbiology, Virology Impact factor: 4.076, year: 2016

  15. Engineering of Saccharomyces cerevisiae for Efficient Anaerobic Alcoholic Fermentation of L-Arabinose

    NARCIS (Netherlands)

    Wisselink, H.W.; Toirkens, M.J.; Del Rosario Franco Berriel, M.; Winkler, A.A.; Van Dijken, J.P.; Pronk, J.T.; Van Maris, A.J.A.

    2007-01-01

    For cost-effective and efficient ethanol production from lignocellulosic fractions of plant biomass, the conversion of not only major constituents, such as glucose and xylose, but also less predominant sugars, such as L-arabinose, is required. Wild-type strains of Saccharomyces cerevisiae, the

  16. Induction of mitotic recombination by UV and diepoxybutane and its enhancement by hydroxyurea in Saccharomyces cerevisae

    International Nuclear Information System (INIS)

    Zaborowska, D.; Swietlinska, Z.; Zuk, J.

    1983-01-01

    Mitotic inter- and intra-genic recombination was induced by UV-irradiation and treatment with diepoxybutane (DEB) in 2 heteroallelic diploid strains of Saccharomyces cerevisiae SBTD and D7. Induction of the events tested was strongly potentiated by plating of mutagen-treated cells on growth media containing 0.03 M hydroxyurea (HU). (orig.)

  17. Saccharomyces cerevisiae Mixed Culture of Blackberry (Rubus ulmifolius L.) Juice: Synergism in the Aroma Compounds Production

    OpenAIRE

    Bautista-Rosales, Pedro Ulises; Ragazzo-Sánchez, Juan Arturo; Ruiz-Montañez, Gabriela; Ortiz-Basurto, Rosa Isela; Luna-Solano, Guadalupe; Calderón-Santoyo, Montserrat

    2014-01-01

    Blackberry (Rubus sp.) juice was fermented using four different strains of Saccharomyces cerevisiae (Vitilevure-CM4457, Enoferm-T306, ICV-K1, and Greroche Rhona-L3574) recognized because of their use in the wine industry. A medium alcoholic graduation spirit (

  18. Novel Pathway for Alcoholic Fermentation of 8-Gluconolactone in the Yeast Saccharomyces bulderi

    NARCIS (Netherlands)

    Dijken, van J.P.; Tuijl, van A.; Luttik, M.A.H.; Middelhoven, W.J.; Pronk, J.T.

    2002-01-01

    Under anaerobic conditions, the yeast Saccharomyces bulderi rapidly ferments -gluconolactone to ethanol and carbon dioxide. We propose that a novel pathway for -gluconolactone fermentation operates in this yeast. In this pathway, -gluconolactone is first reduced to glucose via an NADPH-dependent

  19. Saccharomyces cerevisiae strains tor second-generation ethanol production : from academie exploration to industrial implementation

    NARCIS (Netherlands)

    Jansen, Mickel L.A.; Bracher, J.M.; Papapetridis, I.; Verhoeven, M.D.; de Bruijn, J.A.; de Waal, P.; van Maris, A.J.A.; Klaassen, P; Pronk, J.T.

    2017-01-01

    The recent start-up of several full-scale ‘second generation’ ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these

  20. Genomic Sequence of Saccharomyces cerevisiae BAW-6, a Yeast Strain Optimal for Brewing Barley Shochu.

    Science.gov (United States)

    Kajiwara, Yasuhiro; Mori, Kazuki; Tashiro, Kosuke; Higuchi, Yujiro; Takegawa, Kaoru; Takashita, Hideharu

    2018-04-05

    Here, we report the draft genome sequence of Saccharomyces cerevisiae strain BAW-6, which is used for the production of barley shochu, a traditional Japanese spirit. This genomic information can be used to elucidate the genetic basis underlying the high alcohol production capacity and citric acid tolerance of shochu yeast. Copyright © 2018 Kajiwara et al.

  1. Efficient screening of environmental isolates for Saccharomyces cerevisiae strains that are suitable for brewing.

    Science.gov (United States)

    Fujihara, Hidehiko; Hino, Mika; Takashita, Hideharu; Kajiwara, Yasuhiro; Okamoto, Keiko; Furukawa, Kensuke

    2014-01-01

    We developed an efficient screening method for Saccharomyces cerevisiae strains from environmental isolates. MultiPlex PCR was performed targeting four brewing S. cerevisiae genes (SSU1, AWA1, BIO6, and FLO1). At least three genes among the four were amplified from all S. cerevisiae strains. The use of this method allowed us to successfully obtain S. cerevisiae strains.

  2. Development of Efficient Xylose Fermentation in Saccharomyces cerevisiae : Xylose Isomerase as a Key Component

    NARCIS (Netherlands)

    Van Maris, A.J.A.; Winkler, A.A.; Kuyper, M.; De Laat, W.T.; Van Dijken, J.P.; Pronk, J.T.

    2007-01-01

    Metabolic engineering of Saccharomyces cerevisiae for ethanol production from d-xylose, an abundant sugar in plant biomass hydrolysates, has been pursued vigorously for the past 15 years. Whereas wild-type S. cerevisiae cannot ferment d-xylose, the ketoisomer d-xylulose can be metabolised slowly.

  3. Induction and catabolite repression of α-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis

    NARCIS (Netherlands)

    Wijk, R. van; Ouwehand, J.; Bos, T. van den; Koningsberger, V.V.

    1969-01-01

    1. 1. Kinetic data on the repression, the derepression and the induction of α-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis suggested that some site other than the stereospecific site for the induction by maltose was involved in the repression by glucose. 2. 2. A study of the

  4. An in vitro assay for (1-->6)-beta-D-glucan synthesis in Saccharomyces cerevisiae.

    NARCIS (Netherlands)

    Vink, E.; Rodriguez-Suarez, R.J.; Gerard-Vincent, M.; Ribas, J.C.; de Nobel, J.G.; van den Ende, H.; Duran, A.; Klis, F.M.; Bussey, H.

    2004-01-01

    (1 --> 6)-beta-D-glucan is a key cell wall component of Saccharomyces cerevisiae and Candida albicans. Many genes are known to affect the levels or structure of this glucan, but their roles and a molecular description of the synthesis of (1 --> 6)-beta-D-glucan remain to be established and a method

  5. Prokaryotic diversity of the Saccharomyces cerevisiae Atx1p-mediated copper pathway.

    NARCIS (Netherlands)

    Bakel, H. van; Huynen, M.A.; Wijmenga, C.

    2004-01-01

    MOTIVATION: Several genes involved in the cellular import of copper and its subsequent incorporation into the high-affinity iron transport complex in Saccharomyces cerevisiae are known to be conserved between eukaryotes and prokaryotes. However, the degree to which these genes share their functional

  6. Growth rate-regulated expression of the hexose transporter HXT5 in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Verwaal, René

    2003-01-01

    Glucose, which is the most preferred carbon source for the yeast Saccharomyces cerevisiae, is transported across the plasma membrane into cells by hexose transporter (Hxt) proteins. The Hxt proteins are encoded by a multigene family consisting of 20 members. It was shown previously that HXT1-4 and

  7. The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix

    DEFF Research Database (Denmark)

    Li, M; Phylip, L H; Lees, W E

    2000-01-01

    Aspartic proteinase A from yeast is specifically and potently inhibited by a small protein called IA3 from Saccharomyces cerevisiae. Although this inhibitor consists of 68 residues, we show that the inhibitory activity resides within the N-terminal half of the molecule. Structures solved at 2...

  8. Effect of citrus pulp on the viability of Saccharomyces boulardii in the presence of enteric pathogens

    Science.gov (United States)

    Saccharomyces cerevisiae subtype boulardii is frequently used as a dietary supplement to promote intestinal health and reduce the impact of growth of enteric pathogens in livestock, including cattle and swine. Citrus by-products are also fed as dietary supplements that have the additional benefit o...

  9. Saccharomyces boulardii improves humoral immune response to DNA vaccines against leptospirosis.

    Science.gov (United States)

    Silveira, Marcelle Moura; Conceição, Fabricio Rochedo; Mendonça, Marcelo; Moreira, Gustavo Marçal Schmidt Garcia; Da Cunha, Carlos Eduardo Pouey; Conrad, Neida Lucia; Oliveira, Patrícia Diaz de; Hartwig, Daiane Drawanz; De Leon, Priscila Marques Moura; Moreira, Ângela Nunes

    2017-02-01

    Saccharomyces boulardii may improve the immune response by enhancing the production of anti-inflammatory cytokines, T-cell proliferation and dendritic cell activation. The immunomodulator effect of this probiotic has never been tested with DNA vaccines, which frequently induce low antibody titers. This study evaluated the capacity of Saccharomyces boulardii to improve the humoral and cellular immune responses using DNA vaccines coding for the leptospiral protein fragments LigAni and LigBrep. BALB/c mice were fed with rodent-specific feed containing 108 c.f.u. of Saccharomycesboulardii per gram. Animals were immunized three times intramuscularly with 100 µg of pTARGET plasmids containing the coding sequences for the above mentioned proteins. Antibody titers were measured by indirect ELISA. Expression levels of IL-4, IL-10, IL-12, IL-17, IFN-γ and TGF-β were determined by quantitative real-time PCR from RNA extracted from whole blood, after an intraperitoneal boost with 50 µg of the recombinant proteins.Results/Key findings. Antibody titers increased significantly after the second and third application when pTARGET/ligAni and pTARGET/ligBrep were used to vaccinate the animals in comparison with the control group (PSaccharomyces boulardii. The results suggested that Saccharomyces boulardii has an immunomodulator effect in DNA vaccines, mainly by stimulating the humoral response, which is often limited in this kind of vaccine. Therefore, the use of Saccharomyces boulardii as immunomodulator represents a new alternative strategy for more efficient DNA vaccination.

  10. Saccharomyces boulardii probiotic-associated fungemia: questioning the safety of this preventive probiotic's use.

    Science.gov (United States)

    Martin, Isabella W; Tonner, Rita; Trivedi, Julie; Miller, Heather; Lee, Richard; Liang, Xinglun; Rotello, Leo; Isenbergh, Elena; Anderson, Jennifer; Perl, Trish; Zhang, Sean X

    2017-03-01

    We report a case of fungemia in an immunocompetent patient after administration of probiotic containing Saccharomyces boulardii. We demonstrated the strain relatedness of the yeast from the probiotic capsule and the yeast causing fungal infection using genomic and proteomic typing methods. Our study questions the safety of this preventative biotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Prevention of Clostridium difficile Infection with Saccharomyces boulardii: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Jennifer M Tung

    2009-01-01

    Full Text Available BACKGROUND: Clostridium difficile is a major cause of antibioticassociated diarrhea within the hospital setting. The yeast Saccharomyces boulardii has been found to have some effect in reducing the risk of C difficile infection (CDI; however, its role in preventive therapy has yet to be firmly established.

  12. Screening and identification of respiration deficiency mutants of yeasts (Saccharomyces Cerevisiae) induced by heavy ion irradiation

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei; Zhang Hong

    2006-01-01

    A screen of respiration deficiency mutants of Saccharomyces Cerevisiae induced by 5.19 MeV/u 22 Ne 5- ion irradiation is studied. Some respiration deficiency mutants, which are white colony phenotype in the selective culture of TTC medium, are obtained. The mutants are effectively identified by means of a new and simplified restriction analysis method. (authors)

  13. Mitochondrial genomic dysfunction causes dephosphorylation of Sch9 in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kawai, Shigeyuki; Urban, Jörg; Piccolis, Manuele; Panchaud, Nicolas; De Virgilio, Claudio; Loewith, Robbie

    2011-10-01

    TORC1-dependent phosphorylation of Saccharomyces cerevisiae Sch9 was dramatically reduced upon exposure to a protonophore or in respiration-incompetent ρ(0) cells but not in respiration-incompetent pet mutants, providing important insight into the molecular mechanisms governing interorganellar signaling in general and retrograde signaling in particular.

  14. Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Regenberg, Birgitte; Grotkjær, Thomas; Winther, Ole

    2006-01-01

    Growth rate is central to the development of cells in all organisms. However, little is known about the impact of changing growth rates. We used continuous cultures to control growth rate and studied the transcriptional program of the model eukaryote Saccharomyces cerevisiae, with generation time...

  15. Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Al-Saryi, Nadal A.; Al-Hejjaj, Murtakab Y.; van Roermund, Carlo W. T.; Hulmes, Georgia E.; Ekal, Lakhan; Payton, Chantell; Wanders, Ronald J. A.; Hettema, Ewald H.

    2017-01-01

    In Saccharomyces cerevisiae, peroxisomes are the sole site of fatty acid beta-oxidation. During this process, NAD(+) is reduced to NADH. When cells are grown on oleate medium, peroxisomal NADH is reoxidised to NAD(+) by malate dehydrogenase (Mdh3p) and reduction equivalents are transferred to the

  16. pH-Dependent Uptake of Fumaric Acid in Saccharomyces cerevisiae under Anaerobic Conditions

    NARCIS (Netherlands)

    Jamalzadeh, E.; Verheijen, P.J.; Heijnen, J.J.; Van Gulik, W.M.

    2011-01-01

    Microbial production of C4 dicarboxylic acids from renewable resources has gained renewed interest. The yeast Saccharomyces cerevisiae is known as a robust microorganism and is able to grow at low pH, which makes it a suitable candidate for biological production of organic acids. However, a

  17. Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion

    Science.gov (United States)

    Saccharomyces physiology and fermentation related properties vary broadly among industrial strains. In this study, six industrial strains of varied genetic background were engineered to ferment xylose. Aerobic growth rates on xylose were 0.040 h**-1 to 0.167 h**-1. Fermentation of xylose, glucose/xy...

  18. Ethanol-Independent Biofilm Formation by a Flor Wine Yeast Strain of Saccharomyces cerevisiae▿

    Science.gov (United States)

    Zara, Severino; Gross, Michael K.; Zara, Giacomo; Budroni, Marilena; Bakalinsky, Alan T.

    2010-01-01

    Flor strains of Saccharomyces cerevisiae form a biofilm on the surface of wine at the end of fermentation, when sugar is depleted and growth on ethanol becomes dependent on oxygen. Here, we report greater biofilm formation on glycerol and ethyl acetate and inconsistent formation on succinic, lactic, and acetic acids. PMID:20435772

  19. Ethanol-independent biofilm formation by a flor wine yeast strain of Saccharomyces cerevisiae.

    Science.gov (United States)

    Zara, Severino; Gross, Michael K; Zara, Giacomo; Budroni, Marilena; Bakalinsky, Alan T

    2010-06-01

    Flor strains of Saccharomyces cerevisiae form a biofilm on the surface of wine at the end of fermentation, when sugar is depleted and growth on ethanol becomes dependent on oxygen. Here, we report greater biofilm formation on glycerol and ethyl acetate and inconsistent formation on succinic, lactic, and acetic acids.

  20. Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae

    Science.gov (United States)

    Hyma, Katie E; Saerens, Sofie M; Verstrepen, Kevin J; Fay, Justin C

    2011-01-01

    The budding yeast Saccharomyces cerevisiae is the primary species used by wine makers to convert sugar into alcohol during wine fermentation. Saccharomyces cerevisiae is found in vineyards, but is also found in association with oak trees and other natural sources. Although wild strains of S. cerevisiae as well as other Saccharomyces species are also capable of wine fermentation, a genetically distinct group of S. cerevisiae strains is primarily used to produce wine, consistent with the idea that wine making strains have been domesticated for wine production. In this study, we demonstrate that humans can distinguish between wines produced using wine strains and wild strains of S. cerevisiae as well as its sibling species, Saccharomyces paradoxus. Wine strains produced wine with fruity and floral characteristics, whereas wild strains produced wine with earthy and sulfurous characteristics. The differences that we observe between wine and wild strains provides further evidence that wine strains have evolved phenotypes that are distinct from their wild ancestors and relevant to their use in wine production. PMID:22093681

  1. "Ant" and "grasshopper" life-history strategies in Saccharomyces cerevisiae.

    Science.gov (United States)

    Spor, Aymé; Wang, Shaoxiao; Dillmann, Christine; de Vienne, Dominique; Sicard, Delphine

    2008-02-13

    From the evolutionary and ecological points of view, it is essential to distinguish between the genetic and environmental components of the variability of life-history traits and of their trade-offs. Among the factors affecting this variability, the resource uptake rate deserves particular attention, because it depends on both the environment and the genetic background of the individuals. In order to unravel the bases of the life-history strategies in yeast, we grew a collection of twelve strains of Saccharomyces cerevisiae from different industrial and geographical origins in three culture media differing for their glucose content. Using a population dynamics model to fit the change of population size over time, we estimated the intrinsic growth rate (r), the carrying capacity (K), the mean cell size and the glucose consumption rate per cell. The life-history traits, as well as the glucose consumption rate, displayed large genetic and plastic variability and genetic-by-environment interactions. Within each medium, growth rate and carrying capacity were not correlated, but a marked trade-off between these traits was observed over the media, with high K and low r in the glucose rich medium and low K and high r in the other media. The cell size was tightly negatively correlated to carrying capacity in all conditions. The resource consumption rate appeared to be a clear-cut determinant of both the carrying capacity and the cell size in all media, since it accounted for 37% to 84% of the variation of those traits. In a given medium, the strains that consume glucose at high rate have large cell size and low carrying capacity, while the strains that consume glucose at low rate have small cell size but high carrying capacity. These two contrasted behaviors may be metaphorically defined as "ant" and "grasshopper" strategies of resource utilization. Interestingly, a strain may be "ant" in one medium and "grasshopper" in another. These life-history strategies are discussed

  2. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae.

    Science.gov (United States)

    Paramasivan, Kalaivani; Mutturi, Sarma

    2017-12-01

    Terpenes are natural products with a remarkable diversity in their chemical structures and they hold a significant market share commercially owing to their distinct applications. These potential molecules are usually derived from terrestrial plants, marine and microbial sources. In vitro production of terpenes using plant tissue culture and plant metabolic engineering, although receiving some success, the complexity in downstream processing because of the interference of phenolics and product commercialization due to regulations that are significant concerns. Industrial workhorses' viz., Escherichia coli and Saccharomyces cerevisiae have become microorganisms to produce non-native terpenes in order to address critical issues such as demand-supply imbalance, sustainability and commercial viability. S. cerevisiae enjoys several advantages for synthesizing non-native terpenes with the most significant being the compatibility for expressing cytochrome P450 enzymes from plant origin. Moreover, achievement of high titers such as 40 g/l of amorphadiene, a sesquiterpene, boosts commercial interest and encourages the researchers to envisage both molecular and process strategies for developing yeast cell factories to produce these compounds. This review contains a brief consideration of existing strategies to engineer S. cerevisiae toward the synthesis of terpene molecules. Some of the common targets for synthesis of terpenes in S. cerevisiae are as follows: overexpression of tHMG1, ERG20, upc2-1 in case of all classes of terpenes; repression of ERG9 by replacement of the native promoter with a repressive methionine promoter in case of mono-, di- and sesquiterpenes; overexpression of BTS1 in case of di- and tetraterpenes. Site-directed mutagenesis such as Upc2p (G888A) in case of all classes of terpenes, ERG20p (K197G) in case of monoterpenes, HMG2p (K6R) in case of mono-, di- and sesquiterpenes could be some generic targets. Efforts are made to consolidate various studies

  3. Prevalence reduction of pathogens in poultry fed with Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fanelli, A.

    2015-01-01

    Full Text Available Description of the subject. The growth of new antibiotic-resistant strains of pathogens represents a huge problem in poultry rearing. There is evidence that dietary yeast could be effective in the protection against a variety of pathogens that can affect poultry health and cause foodborne diseases in humans. Since still few or contradictory information are available for this topic. Objectives. The objective of this study was to investigate the effects of live yeast supplementation in broiler chickens on Salmonella enteritidis and Campylobacter jejuni content in feces, cecum, and skin. Method. Supplemented yeast consisted of Saccharomyces cerevisiae (Levucell® SB20, type boulardii I-1079, Lallemand, France and was administered at a rate of 1 x 106 CFU·g-1 of feed. On day ten of life, birds were orally challenged with S. enteritidis (1 x 105 CFU/bird and C. jejuni (3 x 105 CFU/bird. Growth performance, and coliforms, yeasts and lactobacilli enumeration were evaluated on day 0, 10, 20 and 38. Ten and eighteen days post infection (PI, 10 animals per replicate were slaughtered and pooled ceca content were analyzed for yeast enumeration and Salmonella and Campylobacter frequency and enumeration. The presence and the enumeration of Salmonella and Campylobacter in neck and breast skin were performed on one subject per replicate. Results. Dietary S. cerevisiae increased yeast and lactobacilli (p = 0.01 count, while Salmonella enumeration and frequency significantly decreased in neck (p = 0.03 and tended to decrease in cecum (p = 0.06, feces (p = 0.06, and breast (p = 0.08. On 10d PI Campylobacter presence was decreased in cecum (p = 0.01, feces (p < 0.01, breast skin (p = 0.04 and neck skin (p < 0.01, while the enumeration was found to be lower in feces (p < 0.01 and neck skin (p = 0.05. At the end of the trial the frequency of this pathogen was decreased in feces (p < 0.01, and breast skin (p = 0.02, while the enumeration was diminished in cecum (p

  4. Low doses effects of ionizing radiation on Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Durand, J.; Broock, M. van; Gillette, V.H.

    2000-01-01

    The exposure of living cells to low doses of ionizing radiation induce in response the activation of cellular protection mechanisms against subsequent larger doses of radiation. This cellular adaptive response may vary depending on radiation intensity and time of exposure, and also on the testing probes used whether they were mammalian cells, yeast, bacteria and other organisms or cell types. The mechanisms involved are the genome activation, followed by DNA repair enzymes synthesis. Due to the prompt cell response, the cell cycle can be delayed, and the secondary detoxification of free radicals and/or activation of membrane bound receptors may proceed. All these phenomena are submitted to intense scientific research nowadays, and their elucidation will depend on the complexity of the organism under study. In the present work, the effects of low doses of ionizing radiation (gamma rays) over a suspension of the yeast Saccharomyces cerevisiae (Baker's yeast) was studied, mainly in respect to survival rate and radio-adaptive response. At first, the yeast surviving curve was assessed towards increasing doses, and an estimation of Lethal Dose 50 (LD50) was made. The irradiation tests were performed at LINAC (electrons Linear Accelerator) where electron energy reached approximately 2.65 MeV, and gamma-radiation was produced for bremsstrahlung process over an aluminium screen target. A series of experiments of conditioning doses was performed and an increment surviving fraction was observed when the dose was 2.3 Gy and a interval time between this and a higher dose (challenging dose) of 27 Gy was 90 minutes. A value of 58 ± 4 Gy was estimated for LD50, at a dose rate of 0.44 ± 0.03 Gy/min These quantities must be optimized. Besides data obtained over yeast survival, an unusual increasing amount of tiny yeast colonies appeared on the agar plates after incubation, and this number increased as increasing the time exposure. Preliminary results indicate these colonies as

  5. Network hubs buffer environmental variation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Sasha F Levy

    2008-11-01

    Full Text Available Regulatory and developmental systems produce phenotypes that are robust to environmental and genetic variation. A gene product that normally contributes to this robustness is termed a phenotypic capacitor. When a phenotypic capacitor fails, for example when challenged by a harsh environment or mutation, the system becomes less robust and thus produces greater phenotypic variation. A functional phenotypic capacitor provides a mechanism by which hidden polymorphism can accumulate, whereas its failure provides a mechanism by which evolutionary change might be promoted. The primary example to date of a phenotypic capacitor is Hsp90, a molecular chaperone that targets a large set of signal transduction proteins. In both Drosophila and Arabidopsis, compromised Hsp90 function results in pleiotropic phenotypic effects dependent on the underlying genotype. For some traits, Hsp90 also appears to buffer stochastic variation, yet the relationship between environmental and genetic buffering remains an important unresolved question. We previously used simulations of knockout mutations in transcriptional networks to predict that many gene products would act as phenotypic capacitors. To test this prediction, we use high-throughput morphological phenotyping of individual yeast cells from single-gene deletion strains to identify gene products that buffer environmental variation in Saccharomyces cerevisiae. We find more than 300 gene products that, when absent, increase morphological variation. Overrepresented among these capacitors are gene products that control chromosome organization and DNA integrity, RNA elongation, protein modification, cell cycle, and response to stimuli such as stress. Capacitors have a high number of synthetic-lethal interactions but knockouts of these genes do not tend to cause severe decreases in growth rate. Each capacitor can be classified based on whether or not it is encoded by a gene with a paralog in the genome. Capacitors with a

  6. Redox balancing in recombinant strains of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Anderlund, M

    1998-09-01

    In metabolically engineered Saccharomyces cerevisiae expressing Pichia stipitis XYL1 and XYL2 genes, encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, xylitol is excreted as the major product during anaerobic xylose fermentation and only low yields of ethanol are produced. This has been interpreted as a result of the dual cofactor dependence of XR and the exclusive use of NAD{sup +} by XDH. The excretion of xylitol was completely stopped and the formation of glycerol and acetic acid were reduced in xylose utilising S. cerevisiae strains cultivated in oxygen-limited conditions by expressing lower levels of XR than of XDH. The expression level of XYL1 and XYL2 were controlled by changing the promoters and transcription directions of the genes. A new functional metabolic pathway was established when Thermus thermophilus xylA gene was expressed in S. cerevisiae. The recombinant strain was able to ferment xylose to ethanol when cultivated on a minimal medium containing xylose as only carbon source. In order to create a channeled metabolic transfer in the two first steps of the xylose metabolism, XYL1 and XYL2 were fused in-frame and expressed in S. cerevisiae. When the fusion protein, containing a linker of three amino acids, was co expressed together with native XR and XDH monomers, enzyme complexes consisting of chimeric and native subunits were formed. The total activity of these complexes exhibited 10 and 9 times higher XR and XDH activity, respectively, than the original conjugates, consisting of only chimeric subunits. This strain produced less xylitol and the xylitol yield was lower than with strains only expressing native XR and XDH monomers. In addition, more ethanol and less acetic acid were formed. A new gene encoding the cytoplasmic transhydrogenase from Azotobacter vinelandii was cloned. The enzyme showed high similarity to the family of pyridine nucleotide-disulphide oxidoreductase. To analyse the physiological effect of

  7. Comparative proteomics of mitosis and meiosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kumar, Ravinder; Dhali, Snigdha; Srikanth, Rapole; Ghosh, Santanu Kumar; Srivastava, Sanjeeva

    2014-09-23

    Precise and timely segregation of genetic material and conservation of ploidy are the two foremost requirements for survival of a eukaryotic organism. Two highly regulated cell division processes, namely mitosis and meiosis are central to achieve this objective. The modes of chromosome segregation are distinct in these two processes that generate progeny cells of equal ploidy and half the ploidy in mitosis and meiosis, respectively. Additionally, the nutritional requirement and intracellular processing of biological cue also differ in these two processes. From this, it can be envisaged that proteome of mitotic and meiotic cells will differ significantly. Therefore, identification of proteins that differ in their level of expression between mitosis and meiosis would further reveal the mechanistic detail of these processes. In the present study, we have investigated the protein expression profile of mitosis and meiosis by comparing proteome of budding yeast cultures arrested at mitotic metaphase and metaphase-I of meiosis using proteomic approach. Approximately 1000 and 2000 protein spots were visualized on 2-DE and 2D-DIGE gels respectively, out of which 14 protein spots were significant in 2-DE and 22 in 2D-DIGE (pmitosis, an up-regulation of actin cytoskeleton and its negative regulator occurs in meiosis. Mitosis and meiosis are two different types of cell division cycles with entirely different outcomes with definite biological implication for almost all eukaryotic species. In this work, we investigated, for the first time, the differential proteomic profile of Saccharomyces cerevisiae culture arrested at mitotic metaphase (M) and metaphase-I (MI) of meiosis using 2-DE and 2D-DIGE. Our findings of up-regulation of actin and its negative regulator cofilin during meiosis suggest that the rate of actin cytoskeleton turnover is more in meiosis and actin cytoskeleton may play more crucial role during meiosis compared to mitosis. Present study also suggests that actin

  8. PRODUCTION, PROPERTIES AND APPLICATION OF SACCHAROMYCES CEREVISIAE VGSH-2 INULINASE

    Directory of Open Access Journals (Sweden)

    G. P. Shuvaeva

    2014-01-01

    Full Text Available Summary. Experimental data on an acid and thermal inactivation of a high refined inulinase (2,1-β-D- fructanfructanohydrolase, KF 3.2.17, produced by the race of Saccharomyces cerevisiae VGSh-2 yeast are presented. The strain of S. cerevisiae VGSh-2 was produced by the method of the induced mutagenesis and deposited to the collection of pure cultures of the chair of biochemistry and biotechnology of Voronezh state university of engineering technologies. The cells of source culture (S. cerevisiae XII were affected step-by-step by the ultra-violet radiation (UFR and UFR in a complex with a chemical mutagen (etilenimine. The culture was grown up by the method of liquid-phase deep cultivation on a constant nutrient medium. Refining conditions for inulinase are sorted out. Activity of enzyme dependence on physical and chemical factors (рН and temperature is obtained and numerical values of the main kinetic constants – Km and Vmax are determined. The structure of enzyme molecule is studied by an infrared-spectroscopy method: the type and relative quantity of elements of secondary structure of protein are defined. Substrate binding groups of the active center of an inulinase are found. The comparative analysis of the ability to hydrolysis of inulin in several enzyme preparations from Jerusalem artichoke and to the subsequent their fermentation by the VGSh-2 and XI S. cerevisiae yeasts is carried out. Optimum conditions of enzyme hydrolysis of inulin are selected. Research of the fermentation process of starchcontaining raw materials by yeasts of VGSh-2 and XI races is done. It is established that the using of VGSh-2 S. cerevisiae yeast for a grain wort and the Jerusalem artichoke fermentation, allows to increase an extraction of ethyl alcohol comparing to control race, to improve its quality characteristics, and also allows to predict the using of new race in the food industry for production ethanol from grain raw materials and a fermentation of

  9. Switching the mode of sucrose utilization by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Miletti Luiz C

    2008-02-01

    Full Text Available Abstract Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by

  10. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Eleutherio Elis CA

    2001-07-01

    Full Text Available Abstract Background Living cells constantly sense and adapt to redox shifts by the induction of genes whose products act to maintain the cellular redox environment. In the eukaryote Saccharomyces cerevisiae, while stationary cells possess a degree of constitutive resistance towards oxidants, treatment of exponential phase cultures with sub-lethal stresses can lead to the transient induction of protection against subsequent lethal oxidant conditions. The sensors of oxidative stress and the corresponding transcription factors that activate gene expression under these conditions have not yet been completely identified. Results We report the role of SOD1, SOD2 and TPS1 genes (which encode the cytoplasmic Cu/Zn-superoxide dismutase, the mitochondrial Mn-isoform and trehalose-6-phosphate synthase, respectively in the development of resistance to oxidative stress. In all experimental conditions, the cultures were divided into two parts, one was immediately submitted to severe stress (namely: exposure to H2O2, heat shock or ethanol stress while the other was initially adapted to 40°C for 60 min. The deficiency in trehalose synthesis did not impair the acquisition of tolerance to H2O2, but this disaccharide played an essential role in tolerance against heat and ethanol stresses. We also verified that the presence of only one Sodp isoform was sufficient to improve cellular resistance to 5 mM H2O2. On the other hand, while the lack of Sod2p caused high cell sensitivity to ethanol and heat shock, the absence of Sod1p seemed to be beneficial to the process of acquisition of tolerance to these adverse conditions. The increase in oxidation-dependent fluorescence of crude extracts of sod1 mutant cells upon incubation at 40°C was approximately 2-fold higher than in sod2 and control strain extracts. Furthermore, in Western blots, we observed that sod mutants showed a different pattern of Hsp104p and Hsp26p expression also different from that in their control

  11. Micromechanical and surface adhesive properties of single saccharomyces cerevisiae cells

    Science.gov (United States)

    Farzi, Bahman; Cetinkaya, Cetin

    2017-09-01

    The adhesion and mechanical properties of a biological cell (e.g. cell membrane elasticity and adhesiveness) are often strong indicators for the state of its health. Many existing techniques for determining mechanical properties of cells require direct physical contact with a single cell or a group of cells. Physical contact with the cell can trigger complex mechanotransduction mechanisms, leading to cellular responses, and consequently interfering with measurement accuracy. In the current work, based on ultrasonic excitation and interferometric (optical) motion detection, a non-contact method for characterizing the adhesion and mechanical properties of single cells is presented. It is experimentally demonstrated that the rocking (rigid body) motion and internal vibrational resonance frequencies of a single saccharomyces cerevisiae (SC) (baker’s yeast) cell can be acquired with the current approach, and the Young’s modulus and surface tension of the cell membrane as well as surface adhesion energy can be extracted from the values of these acquired resonance frequencies. The detected resonance frequency ranges for single SC cells include a rocking (rigid body) frequency of 330  ±  70 kHz and two breathing resonance frequencies of 1.53  ±  0.12 and 2.02  ±  0.31 MHz. Based on these values, the average work-of-adhesion of SC cells on a silicon substrate in aqueous medium is extracted, for the first time, as WASC-Si=16.2+/- 3.8 mJ {{m}-2} . Similarly, the surface tension and the Young’s modulus of the SC cell wall are predicted as {{σ }SC}=0.16+/- 0.02 N {{m}-1} and {{E}SC}= 9.20  ±  2.80 MPa, respectively. These results are compared to those reported in the literature by utilizing various methods, and good agreements are found. The current approach eliminates the measurement inaccuracies associated with the physical contact. Exciting and detecting cell dynamics at micro-second time-scales is significantly faster than the

  12. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Quarterman, Josh; Skerker, Jeffrey M; Feng, Xueyang; Liu, Ian Y; Zhao, Huimin; Arkin, Adam P; Jin, Yong-Su

    2016-07-10

    In the important industrial yeast Saccharomyces cerevisiae, galactose metabolism requires energy production by respiration; therefore, this yeast cannot metabolize galactose under strict anaerobic conditions. While the respiratory dependence of galactose metabolism provides benefits in terms of cell growth and population stability, it is not advantageous for producing fuels and chemicals since a substantial fraction of consumed galactose is converted to carbon dioxide. In order to force S. cerevisiae to use galactose without respiration, a subunit (COX9) of a respiratory enzyme was deleted, but the resulting deletion mutant (Δcox9) was impaired in terms of galactose assimilation. Interestingly, after serial sub-cultures on galactose, the mutant evolved rapidly and was able to use galactose via fermentation only. The evolved strain (JQ-G1) produced ethanol from galactose with a 94% increase in yield and 6.9-fold improvement in specific productivity as compared to the wild-type strain. (13)C-metabolic flux analysis demonstrated a three-fold reduction in carbon flux through the TCA cycle of the evolved mutant with redirection of flux toward the fermentation pathway. Genome sequencing of the JQ-G1 strain revealed a loss of function mutation in a master negative regulator of the Leloir pathway (Gal80p). The mutation (Glu348*) in Gal80p was found to act synergistically with deletion of COX9 for efficient galactose fermentation, and thus the double deletion mutant Δcox9Δgal80 produced ethanol 2.4 times faster and with 35% higher yield than a single knockout mutant with deletion of GAL80 alone. When we introduced a functional COX9 cassette back into the JQ-G1 strain, the JQ-G1-COX9 strain showed a 33% reduction in specific galactose uptake rate and a 49% reduction in specific ethanol production rate as compared to JQ-G1. The wild-type strain was also subjected to serial sub-cultures on galactose but we failed to isolate a mutant capable of utilizing galactose without

  13. Switching the mode of sucrose utilization by Saccharomyces cerevisiae.

    Science.gov (United States)

    Badotti, Fernanda; Dário, Marcelo G; Alves, Sergio L; Cordioli, Maria Luiza A; Miletti, Luiz C; de Araujo, Pedro S; Stambuk, Boris U

    2008-02-27

    Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells

  14. "Ant" and "grasshopper" life-history strategies in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Aymé Spor

    Full Text Available From the evolutionary and ecological points of view, it is essential to distinguish between the genetic and environmental components of the variability of life-history traits and of their trade-offs. Among the factors affecting this variability, the resource uptake rate deserves particular attention, because it depends on both the environment and the genetic background of the individuals. In order to unravel the bases of the life-history strategies in yeast, we grew a collection of twelve strains of Saccharomyces cerevisiae from different industrial and geographical origins in three culture media differing for their glucose content. Using a population dynamics model to fit the change of population size over time, we estimated the intrinsic growth rate (r, the carrying capacity (K, the mean cell size and the glucose consumption rate per cell. The life-history traits, as well as the glucose consumption rate, displayed large genetic and plastic variability and genetic-by-environment interactions. Within each medium, growth rate and carrying capacity were not correlated, but a marked trade-off between these traits was observed over the media, with high K and low r in the glucose rich medium and low K and high r in the other media. The cell size was tightly negatively correlated to carrying capacity in all conditions. The resource consumption rate appeared to be a clear-cut determinant of both the carrying capacity and the cell size in all media, since it accounted for 37% to 84% of the variation of those traits. In a given medium, the strains that consume glucose at high rate have large cell size and low carrying capacity, while the strains that consume glucose at low rate have small cell size but high carrying capacity. These two contrasted behaviors may be metaphorically defined as "ant" and "grasshopper" strategies of resource utilization. Interestingly, a strain may be "ant" in one medium and "grasshopper" in another. These life

  15. Inheritance of brewing-relevant phenotypes in constructed Saccharomyces cerevisiae × Saccharomyces eubayanus hybrids.

    Science.gov (United States)

    Krogerus, Kristoffer; Seppänen-Laakso, Tuulikki; Castillo, Sandra; Gibson, Brian

    2017-04-21

    Interspecific hybridization has proven to be a potentially valuable technique for generating de novo lager yeast strains that possess diverse and improved traits compared to their parent strains. To further enhance the value of hybridization for strain development, it would be desirable to combine phenotypic traits from more than two parent strains, as well as remove unwanted traits from hybrids. One such trait, that has limited the industrial use of de novo lager yeast hybrids, is their inherent tendency to produce phenolic off-flavours; an undesirable trait inherited from the Saccharomyces eubayanus parent. Trait removal and the addition of traits from a third strain could be achieved through sporulation and meiotic recombination or further mating. However, interspecies hybrids tend to be sterile, which impedes this opportunity. Here we generated a set of five hybrids from three different parent strains, two of which contained DNA from all three parent strains. These hybrids were constructed with fertile allotetraploid intermediates, which were capable of efficient sporulation. We used these eight brewing strains to examine two brewing-relevant phenotypes: stress tolerance and phenolic off-flavour formation. Lipidomics and multivariate analysis revealed links between several lipid species and the ability to ferment in low temperatures and high ethanol concentrations. Unsaturated fatty acids, such as oleic acid, and ergosterol were shown to positively influence growth at high ethanol concentrations. The ability to produce phenolic off-flavours was also successfully removed from one of the hybrids, Hybrid T2, through meiotic segregation. The potential application of these strains in industrial fermentations was demonstrated in wort fermentations, which revealed that the meiotic segregant Hybrid T2 not only didn't produce any phenolic off-flavours, but also reached the highest ethanol concentration and consumed the most maltotriose. Our study demonstrates the

  16. A dynamic flux balance model and bottleneck identification of glucose, xylose, xylulose co-fermentation in Saccharomyces cerevisiae

    Science.gov (United States)

    Economically viable production of lignocellulosic ethanol requires efficient conversion of feedstock sugars to ethanol. Saccharomyces cerevisiae cannot ferment xylose, the main five-carbon sugars in biomass, but can ferment xylulose, an enzymatically derived isomer. Xylulose fermentation is slow rel...

  17. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech; Baker, A; Arneborg, Nils

    2015-01-01

    distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase....... In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability......). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. SIGNIFICANCE AND IMPACT...

  18. TREATMENT OF DIARRHEA-PREDOMINANT IRRITABLE BOWEL SYNDROME WITH MESALAZINE AND/OR SACCHAROMYCES BOULARDII

    Directory of Open Access Journals (Sweden)

    Mauro BAFUTTO

    2013-12-01

    Full Text Available Context Irritable bowel syndrome (IBS is a functional bowel disease characterized by abdominal pain and altered intestinal habits. The pathophysiology of IBS remains unclear. Recent studies have demonstrated that some IBS patients, especially in diarrhea-predominant IBS (IBS-D, display persistent signs of minor mucosal inflammation and a modified intestinal microflora. The mesalazine has known intestinal anti-inflammatory properties. Saccharomyces boulardii is a probiotic used for a long time in treatment of diarrhea, including infectious diarrhea. Objective Evaluate the effects of mesalazine alone, combined therapy of mesalazine with liophylised Saccharomyces boulardii or alone on symptoms of IBS-D patients. Methods Based on Rome III criteria, 53 IBS-D patients (18 year or more were included. To exclude organic diseases all patients underwent colonoscopy, stool culture, serum anti-endomisium antibody, lactose tolerance test and ova and parasite exam. Patients were divided in three groups: mesalazine group (MG - 20 patients received mesalazine 800 mg t.i.d. for 30 days; mesalazine and Saccharomyces boulardii group (MSbG - 21 patients received mesalazine 800 mg t.i.d. and Saccharomyces boulardii 200 mg t.i.d. for 30 days and; Saccharomyces boulardii group (SbG – 12 patients received Sb 200 mg t.i.d. for 30 days. Drugs that might have any effect on intestinal motility or secretion were not allowed. Symptom evaluations at baseline and after treatment were performed by means of a 4-point likert scale including: stool frequency, stool form and consistency (Bristol scale, abdominal pain and distension. Paired t test and Kruskal-Wallis test were used for statistical analyses. Results Compared to baseline, there were statistically significant reduction of symptom score after 30 th day therapy in all three groups: MG (P<0.0001; MSbG (P<0.0001 and in SbG (P = 0.003. There were statistically significant differences in the symptom score at 30 th day

  19. Antifungal modes of action of Saccharomyces and other biocontrol yeasts against fungi isolated from sour and grey rots.

    Science.gov (United States)

    Nally, M C; Pesce, V M; Maturano, Y P; Rodriguez Assaf, L A; Toro, M E; Castellanos de Figueroa, L I; Vazquez, F

    2015-07-02

    The aim of this study was to determine the putative modes of action of 59 viticultural yeasts (31 Saccharomyces and 28 non-Saccharomyces) that inhibited fungi isolated from sour and grey rot in grapes. Inhibition of fungal mycelial growth by metabolites, enzyme activities (laminarinases, chitinases), antifungal volatiles, competition for nutrients (siderophores, Niche Overlap Index (NOI)), inhibition of fungal spore germination and decreased germinal tube length and induction of resistance were assayed. Biofungicide yeasts were classified into "antifungal patterns", according to their mechanisms of action. Thirty isolates presented at least two of the mechanisms assayed. We propose that inhibition of fungal mycelial growth by metabolites, laminarinases, competition for nutrients, inhibition of fungal spore germination and decreased germinal tube length, and antifungal volatiles by Saccharomyces and non-Saccharomyces viticultural yeasts is used as putative biocontrol mechanisms against phytopathogenic fungi. Twenty-four different antifungal patterns were identified. Siderophore production (N)and a combination of siderophore production and NOI>0.92 (M)were the most frequent antifungal patterns observed in the biofungicide yeasts assayed. Elucidation of these mechanisms could be useful for optimization of an inoculum formulation, resulting in a more consistent control of grey and sour rot with Saccharomyces and non-Saccharomyces biocontrol yeasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex.

    Science.gov (United States)

    Sicard, Delphine; Legras, Jean-Luc

    2011-03-01

    Yeasts of the Saccharomyces sensu stricto species complex are able to convert sugar into ethanol and CO(2) via fermentation. They have been used for thousands years by mankind for fermenting food and beverages. In the Neolithic times, fermentations were probably initiated by naturally occurring yeasts, and it is unknown when humans started to consciously add selected yeast to make beer, wine or bread. Interestingly, such human activities gave rise to the creation of new species in the Saccharomyces sensu stricto complex by interspecies hybridization or polyploidization. Within the S. cerevisiae species, they have led to the differentiation of genetically distinct groups according to the food process origin. Although the evolutionary history of wine yeast populations has been well described, the histories of other domesticated yeasts need further investigation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  1. Gleaning evolutionary insights from the genome sequence of a probiotic yeast Saccharomyces boulardii.

    Science.gov (United States)

    Khatri, Indu; Akhtar, Akil; Kaur, Kamaldeep; Tomar, Rajul; Prasad, Gandham Satyanarayana; Ramya, Thirumalai Nallan Chakravarthy; Subramanian, Srikrishna

    2013-10-22

    The yeast Saccharomyces boulardii is used worldwide as a probiotic to alleviate the effects of several gastrointestinal diseases and control antibiotics-associated diarrhea. While many studies report the probiotic effects of S. boulardii, no genome information for this yeast is currently available in the public domain. We report the 11.4 Mbp draft genome of this probiotic yeast. The draft genome was obtained by assembling Roche 454 FLX + shotgun data into 194 contigs with an N50 of 251 Kbp. We compare our draft genome with all other Saccharomyces cerevisiae genomes. Our analysis confirms the close similarity of S. boulardii to S. cerevisiae strains and provides a framework to understand the probiotic effects of this yeast, which exhibits unique physiological and metabolic properties.

  2. Exploration of genetic and phenotypic diversity within Saccharomyces uvarum for driving strain improvement in winemaking.

    Science.gov (United States)

    Verspohl, Alexandra; Solieri, Lisa; Giudici, Paolo

    2017-03-01

    The selection and genetic improvement of wine yeast is an ongoing process, since yeast strains should match new technologies in winemaking to satisfy evolving consumer preferences. A large genetic background is the necessary starting point for any genetic improvement programme. For this reason, we collected and characterized a large number of strains belonging to Saccharomyces uvarum. In particular, 70 strains were isolated from cold-stored must samples: they were identified and compared to S. uvarum strains originating from different collections, regarding fermentation profile, spore viability and stress response. The results demonstrate a large biodiversity among the new isolates, with particular emphasis to fermentation performances, genotypes and high spore viability, making the isolates suitable for further genetic improvement programmes. Furthermore, few of them are competitive with Saccharomyces cerevisiae and per se, suitable for wine fermentation, due to their resistance to stress, short lag phase and fermentation by-products.

  3. Biological effectiveness of pulsed and continuous neutron radiation for cells of yeast Saccharomyces

    International Nuclear Information System (INIS)

    Tsyb, T.S.; Komarova, E.V.; Potetnya, V.I.; Obaturov, G.M.

    2001-01-01

    Data are presented on biological effectiveness of fast neutrons generated by BR-10 reactor (dose rate up to 3.8 Gy/s) in comparison with neutrons of pulsed BARS-6 reactor (dose rate ∼6x10 6 Gy/s) for yeast Saccharomyces vini cells of a wild type Menri 139-B and radiosensitive Saccharomyces cerevisiae (rad52/rad52; rad54/rad54) mutants which are defective over different systems of DNA reparation. Value of relative biological efficiency (RBE) of continuous radiation for wild stam is from 3.5 up to 2.5 when survival level being 75-10 %, and RBE of pulsed neutron radiation is in the limits of 2.0-1.7 at the same levels. For mutant stam the value of RBE (1.4-1.6) of neutrons is constant at all survival levels and does not depend on dose rate [ru

  4. A Gondwanan Imprint on Global Diversity and Domestication of Wine and Cider Yeast Saccharomyces uvarum

    Science.gov (United States)

    Almeida, Pedro; Gonçalves, Carla; Teixeira, Sara; Libkind, Diego; Bontrager, Martin; Masneuf-Pomarède, Isabelle; Albertin, Warren; Durrens, Pascal; Sherman, David; Marullo, Philippe; Hittinger, Chris Todd; Gonçalves, Paula; Sampaio, José Paulo

    2016-01-01

    In addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents. South American isolates contain more genetic diversity than that found in the Northern Hemisphere. Moreover, coalescence analyses suggest that a Patagonian sub-population gave rise to the Holarctic population through a recent bottleneck. Holarctic strains display multiple introgressions from other Saccharomyces species, those from S. eubayanus being prevalent in European strains associated with human-driven fermentations. These introgressions are absent in the large majority of wild strains and gene ontology analyses indicate that several gene categories relevant for wine fermentation are overrepresented. Such findings constitute a first indication of domestication in S. uvarum. PMID:24887054

  5. No evidence for extrinsic post-zygotic isolation in a wild Saccharomyces yeast system.

    Science.gov (United States)

    Charron, Guillaume; Landry, Christian R

    2017-06-01

    Although microorganisms account for the largest fraction of Earth's biodiversity, we know little about how their reproductive barriers evolve. Sexual microorganisms such as Saccharomyces yeasts rapidly develop strong intrinsic post-zygotic isolation, but the role of extrinsic isolation in the early speciation process remains to be investigated. We measured the growth of F 1 hybrids between two incipient species of Saccharomyces paradoxus to assess the presence of extrinsic post-zygotic isolation across 32 environments. More than 80% of hybrids showed either partial dominance of the best parent or over-dominance for growth, revealing no fitness defects in F 1 hybrids. Extrinsic reproductive isolation therefore likely plays little role in limiting gene flow between incipient yeast species and is not a requirement for speciation. © 2017 The Author(s).

  6. High-efficiency genome editing and allele replacement in prototrophic and wild strains of Saccharomyces.

    Science.gov (United States)

    Alexander, William G; Doering, Drew T; Hittinger, Chris Todd

    2014-11-01

    Current genome editing techniques available for Saccharomyces yeast species rely on auxotrophic markers, limiting their use in wild and industrial strains and species. Taking advantage of the ancient loss of thymidine kinase in the fungal kingdom, we have developed the herpes simplex virus thymidine kinase gene as a selectable and counterselectable marker that forms the core of novel genome engineering tools called the H: aploid E: ngineering and R: eplacement P: rotocol (HERP) cassettes. Here we show that these cassettes allow a researcher to rapidly generate heterogeneous populations of cells with thousands of independent chromosomal allele replacements using mixed PCR products. We further show that the high efficiency of this approach enables the simultaneous replacement of both alleles in diploid cells. Using these new techniques, many of the most powerful yeast genetic manipulation strategies are now available in wild, industrial, and other prototrophic strains from across the diverse Saccharomyces genus. Copyright © 2014 by the Genetics Society of America.

  7. Production of volatile and sulfur compounds by ten Saccharomyces cerevisiae strains inoculated in Trebbiano must

    Directory of Open Access Journals (Sweden)

    Francesca ePatrignani

    2016-03-01

    Full Text Available In wines, the presence of sulphur compounds is the resulting of several contributions among which yeast metabolism. The characterization of the starter Saccharomyces cerevisiae needs to be performed also taking into account this ability even if evaluated together with the overall metabolic profile. In this perspective, principal aim of this experimental research was the evaluation of the volatile profiles, throughout GC/MS technique coupled with solid phase micro extraction, of wines obtained throughout the fermentation of 10 strains of Saccharomyces cerevisiae. In addition, the production of sulphur compounds was further evaluated by using a gas-chromatograph coupled with a Flame Photometric Detector. Specifically, the ten strains were inoculated in Trebbiano musts and the fermentations were monitored for 19 days. In the produced wines, volatile and sulphur compounds as well as amino acid concentrations were investigated. Also the physico-chemical characteristics of the wines and their electronic nose profiles were evaluated.

  8. Genomic diversity of Saccharomyces cerevisiae yeasts associated with alcoholic fermentation of bacanora produced by artisanal methods.

    Science.gov (United States)

    Álvarez-Ainza, M L; Zamora-Quiñonez, K A; Moreno-Ibarra, G M; Acedo-Félix, E

    2015-03-01

    Bacanora is a spirituous beverage elaborated with Agave angustifolia Haw in an artisanal process. Natural fermentation is mostly performed with native yeasts and bacteria. In this study, 228 strains of yeast like Saccharomyces were isolated from the natural alcoholic fermentation on the production of bacanora. Restriction analysis of the amplified region ITS1-5.8S-ITS2 of the ribosomal DNA genes (RFLPr) were used to confirm the genus, and 182 strains were identified as Saccharomyces cerevisiae. These strains displayed high genomic variability in their chromosomes profiles by karyotyping. Electrophoretic profiles of the strains evaluated showed a large number of chromosomes the size of which ranged between 225 and 2200 kpb approximately.

  9. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering

    DEFF Research Database (Denmark)

    Sanchez, R.G.; Karhumaa, Kaisa; Fonseca, C.

    2010-01-01

    Background: Cost-effective fermentation of lignocellulosic hydrolysate to ethanol by Saccharomyces cerevisiae requires efficient mixed sugar utilization. Notably, the rate and yield of xylose and arabinose co-fermentation to ethanol must be enhanced. Results: Evolutionary engineering was used...... to improve the simultaneous conversion of xylose and arabinose to ethanol in a recombinant industrial Saccharomyces cerevisiae strain carrying the heterologous genes for xylose and arabinose utilization pathways integrated in the genome. The evolved strain TMB3130 displayed an increased consumption rate...... of our knowledge, this is the first report that characterizes the molecular mechanisms for improved mixed-pentose utilization obtained by evolutionary engineering of a recombinant S. cerevisiae strain. Increased transport of pentoses and increased activities of xylose converting enzymes contributed...

  10. Effect of topically applied Saccharomyces boulardii on the healing of acute porcine wounds: a preliminary study.

    Science.gov (United States)

    Partlow, Jessica; Blikslager, Anthony; Matthews, Charles; Law, Mac; Daniels, Joshua; Baker, Rose; Labens, Raphael

    2016-04-11

    Normal wound healing progresses through a series of interdependent physiological events: inflammation, angiogenesis, re-epithelialization, granulation tissue formation and extracellular matrix remodeling. Alterations in this process as well as the bacterial type and load on a wound may alter the wound healing rate. The purpose of this study was to evaluate the effect of topical Saccharomyces boulardii on the healing of acute cutaneous wounds, using a prospective, controlled, experimental study, with six purpose bred landrace pigs. All wounds healed without apparent complications. Comparison of the mean 3D and 2D wound surface area measurements showed no significant difference between treatment groups as wounds decreased similarly in size over the duration of the study. A significant reduction in wound surface area was identified sooner using 3D assessments (by day 9) compared to 2D assessments (by day 12) (P Saccharomyces boulardii does not hasten wound healing or change the wounds' microbiome under the conditions reported in this study.

  11. Amperometric Biosensor for Monitoring Respiration Activity of Saccharomyces cerevisiae in the Presence of Cobalt and Zinc

    Directory of Open Access Journals (Sweden)

    Miroslav Mikšaj

    2002-01-01

    Full Text Available For efficient control of heavy metal concentrations electrochemical methods, such as polarography and related techniques, are applied. Their advantages are simplicity, short analysis time and small quantities of samples needed. The presence of some heavy metals, such as zinc and cobalt, accelerates the growth of yeast. For the measurements of concentration changes, amperometric biosensor containing yeast Saccharomyces cerevisiae was used. The influence of zinc and cobalt on respiratory activity of the yeast Saccharomyces cerevisiae was estimated by measuring oxygen in the solution that was earlier enriched with cobalt or zinc. Measurements were performed using modified Clark’s oxygen electrode and the investigated concentrations of cobalt and zinc were up to 100 mg/L.

  12. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2014-01-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the deve......Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up...... the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology...

  13. UV inactivation: Combined effects of UV radiation and xenobiotics in two strains of Saccharomyces

    International Nuclear Information System (INIS)

    Lochmann, E.R.; Lochmann, G.

    1997-01-01

    The effects of eight chemicals on the inactivation rate of ultraviolet radiation on the colony building capabilities of two strains of Saccharomyces cervisae - a wild type strain and a mutant deficient in excision repair - were studied. The insecticide methoxychlor, the herbicide 2,4-dichlorophenoxyacetic acid, the fungicide pentachlorophenol and its metabolite tetrachlorohydroquinone, as well as the chemicals acrylonitrile and 2,3-dichloro-1-propene have no significant impact on the effects of UV radiation in Saccharomyces cerevisae. Depending on the concentration, trichloroethylene increases the sensitivity to UV radiation. The herbicide paraquat provides efficient protection against UV radiation at concentrations where a toxic effect cannot be observed even without UV. The results were rather similar for both strains. (orig.) [de

  14. Saccharomyces boulardii CNCM I-745 supplementation reduces gastrointestinal dysfunction in an animal model of IBS

    OpenAIRE

    Brun, Paola; Scarpa, Melania; Marchiori, Chiara; Sarasin, Gloria; Caputi, Valentina; Porzionato, Andrea; Giron, Maria Cecilia; Palù, Giorgio; Castagliuolo, Ignazio

    2017-01-01

    Background We evaluated the effect of Saccharomyces boulardii CNCM I-745 on intestinal neuromuscular anomalies in an IBS-type mouse model of gastrointestinal motor dysfunctions elicited by Herpes Simplex Virus type 1 (HSV-1) exposure. Methods Mice were inoculated intranasally with HSV-1 (102 PFU) or vehicle at time 0 and 4 weeks later by the intragastric (IG) route (108 PFU). Six weeks after IG inoculum, mice were randomly allocated to receive oral gavage with either S. boulardii (107 CFU/day...

  15. Investigation of the effect of water exposed to nonequilibrium contact plasma onto saccharomyces cerevisiae yeast

    Directory of Open Access Journals (Sweden)

    S. Mykolenko

    2015-05-01

    Full Text Available Introduction. Additional treatment of water by nonequilibrium contact plasma allows improving consumer characteristics of bakery goods considerably. Determination of the effect of plasma-chemically activated water on morphological, cultural and physiological properties of Saccharomyces cerevisiae yeast is important from the technological point of view. Materials and Methods. Experimental investigations were carried out in the conditions of bacteriological laboratory by seeding the culture of yeasts of ТМ “Lvivski” and “Kryvorizki” on Sabouraud dense liquid nutrient media. The quantity of viable cells of microorganisms was determined by the method of Gould sector seeds. Morphology of the yeast was investigated by phase-contrast microscopy. Biotechnological properties of yeasts were determined on Giss media. Results. The paper establishes the effect of water exposed to nonequilibrium contact plasma on the sensitivity of Saccharomyces cerevisiae and shows absence of suppressive action of treated water with regard to cultural properties of microorganisms. The experiments prove that with the use of plasma-chemically activated water morphological characteristics and biochemical properties of bakery yeasts produced by Lviv and Kryvyi Rig yeast plants are preserved. Culturing of Saccharomyces cerevisiae yeast on the nutrient media prepared with the use of water exposed to nonequilibrium contact plasm resulted in 6,5–15 times’ increase in quantity of viable microorganisms compared with the control on the mains drinking water. Conclusions. Physiological properties of Saccharomyces cerevisiae yeast improved owing to use water exposed to nonequilibrium contact plasma. Results of investigations are recommended for using in yeast production and bread making.

  16. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains

    OpenAIRE

    Samantha Fairbairn; Alexander McKinnon; Hannibal T. Musarurwa; António C. Ferreira; António C. Ferreira; Florian F. Bauer

    2017-01-01

    Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth p...

  17. Industrial Systems Biology of Saccharomyces cerevisiae Enables Novel Succinic Acid Cell Factory

    DEFF Research Database (Denmark)

    Otero, José Manuel; Cimini, Donatella; Patil, Kiran Raosaheb

    2013-01-01

    Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought......-direction of carbon fluxes in S. cerevisiae, and hence show proof of concept that this is a potentially attractive cell factory for over-producing different platform chemicals....

  18. Diversidad genética en las especies del complejo Saccharomyces sensu stricto de fermentaciones tradicionales.

    OpenAIRE

    Arias García, José Armando

    2008-01-01

    RESUMEN El género Saccharomyces incluye tanto especies naturales como especies de levaduras que se utilizan en fermentaciones industriales y tradicionales. Algunas bebidas fermentadas, como son el Pulque y la Chicha, se obtienen mediante un proceso tradicional desarrollado durante el Neolítico americano en las civilizaciones precolombinas mesoamericanas y andinas. Por ello, las levaduras que participan en estos procesos de fermentación han estado aisladas de las poblaciones vínicas del res...

  19. Efectes de les concentracions de glucosa i etanol inicials en el creixement de Saccharomyces cerevisiae

    OpenAIRE

    Cañadillas Castells, Jordi

    2014-01-01

    Saccharomyces cerevisiae Is one of the most used microorganisms to the alimentary industry. To optimise the process of fermentation is necessary to know the parameters that impact in his growth in order to modulate the specific speed in function of the biotechnological needs. They have described different parameters that impact in the growth of the yeast how are the concentration of sugars, of ethanol, pH, and temperature between others. The experimental work has for main aim study the kineti...

  20. Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats,

    OpenAIRE

    Sarvari Horvath, I; Franzén, C J; Taherzadeh, M J; Niklasson, C; Lidén, Gunnar

    2003-01-01

    Effects of furfural on the aerobic metabolism of the yeast Saccharomyces cerevisiae were studied by performing chemostat experiments, and the kinetics of furfural conversion was analyzed by performing dynamic experiments. Furfural, an important inhibitor present in lignocellulosic hydrolysates, was shown to have an inhibitory effect on yeast cells growing respiratively which was much greater than the inhibitory effect previously observed for anaerobically growing yeast cells. The residual fur...

  1. Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione.

    OpenAIRE

    Jamieson, D J

    1992-01-01

    Treatment of Saccharomyces cerevisiae cells with low concentrations of either hydrogen peroxide or menadione (a superoxide-generating agent) induces adaptive responses which protect cells from the lethal effects of subsequent challenge with higher concentrations of these oxidants. Pretreatment with menadione is protective against cell killing by hydrogen peroxide; however, pretreatment with hydrogen peroxide is unable to protect cells from subsequent challenge with menadione. This suggests th...

  2. Isolation of glutathione-deficient mutants of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kistler, M.; Eckardt, F.; Summer, K.-H.

    1986-01-01

    Glutathione-deficient (gsh - ) mutants of the yeast Saccharomyces cerevisiae were isolated after UV treatment using MNNG as selective agent. For genetic and biochemical characterization 5 mutant strains were chosen which exhibited considerably decreased residual GSH contents varying from 2 to 6% of the wild-type levels. All 5 isolates showed a 2:2 segregation of the gsh - :GSH + phenotypes alluding to a monogenic recessive mutation. Complementation analysis indicates that all gsh - mutants belong to one complementation group. (Auth.)

  3. A special cell morphology of saccharomyces cerevisiae induced by low-temperature plasma

    International Nuclear Information System (INIS)

    Ling Dajun; Cao Jinxiang

    2003-01-01

    A special cell morphology, cavity-like cells, was found in posterities of Saccharomyces cerevisiae treated by low-temperature air plasma with different powers. The feature of the special morphology indicates that the cavity-like cells may be formed by cellular mutation effect induced by the plasma, instead of direct cellular damage by the plasma. The results suggest that the cellular mutation effect of the low-temperature plasma is a complex process

  4. Photoreactivity in Saccharomyces cerevisiae cells after irradiation with 25 MeV electrons

    International Nuclear Information System (INIS)

    Tsyb, T.S.; Seleva, N.G.; Myasnik, M.N.; Kabakova, N.M.

    1986-01-01

    Significant photoreactivation was noted in radio- and UV-sensitive rad-mutants of Saccharomyces cerevisiae cells exposed to 25 MeV electrons. In order to make the photoreactivable damage be manifest anoxic conditions of irradiation should be chosen as optimal ones. It was shown that the low oxygen effect was partially associated with the photoreactivable damage involved in the lethal effect of ionizing radiation

  5. Enhanced enzymatic activity of glycerol-3-phosphate dehydrogenase from the cryophilic Saccharomyces kudriavzevii.

    Science.gov (United States)

    Oliveira, Bruno M; Barrio, Eladio; Querol, Amparo; Pérez-Torrado, Roberto

    2014-01-01

    During the evolution of the different species classified within the Saccharomyces genus, each one has adapted to live in different environments. One of the most important parameters that have influenced the evolution of Saccharomyces species is the temperature. Here we have focused on the study of the ability of certain species as Saccharomyces kudriavzevii to grow at low temperatures, in contrast to Saccharomyces cerevisiae. We observed that S. kudriavzevii strains isolated from several regions are able to synthesize higher amounts of glycerol, a molecule that has been shown to accumulate in response to freeze and cold stress. To explain this observation at the molecular level we studied the expression of glycerol biosynthetic pathway genes and we observed a higher expression of GPD1 gene in S. kudriavzevii compared to S. cerevisiae in micro-vinification conditions. We observed higher enzymatic activity of Gpd1p in S. kudriavzevii in response to osmotic and cold stress. Also, we determined that S. kudriavzevii Gpd1p enzyme presents increased catalytic properties that will contribute to increase glycerol production. Finally, we evaluated the glycerol production with S. cerevisiae, S. kudriavzevii or a recombinant Gpd1p variant in the same background and observed that the S. kudriavzevii enzyme produced increased glycerol levels at 12 or 28°C. This suggests that glycerol is increased in S. kudriavzevii mainly due to increased V max of the Gpd1p enzyme. All these differences indicate that S. kudriavzevii has changed the metabolism to promote the branch of the glycolytic pathway involved in glycerol production to adapt to low temperature environments and maintain the NAD(+)/NADH ratio in alcoholic fermentations. This knowledge is industrially relevant due to the potential use, for example, of S. cerevisiae-S. kudriavzevii hybrids in the wine industry where glycerol content is an important quality parameter.

  6. Decarboxilase activity and biosynthetic processes in Saccharomyces carlsbergenesis upon the action of light

    International Nuclear Information System (INIS)

    Chebotarev, L.N.; Shaburova, G.V.; Licyuk, G.M.

    1983-01-01

    It is established that visible light of 410-520 nm wave-- lengths stimulated decarboxylase activity, protein biosynthesis and increase in the number of cells in the Saccharomyces carlsbergenesis yeast culture. A limiting link of these yeast metabolism is decarboxylizing of pyuvate providing the formation of a substrate for functioning of the di- and pericarboxilic acid cycle. The light effect can activate this process thus eliminating substrate deficiency of the Krebs cycle which results in the increase of anabolic processes intensity

  7. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair.

    OpenAIRE

    Leem, S H; Ropp, P A; Sugino, A

    1994-01-01

    We identified and purified a new DNA polymerase (DNA polymerase IV), which is similar to mammalian DNA polymerase beta, from Saccharomyces cerevisiae and suggested that it is encoded by YCR14C (POLX) on chromosome III. Here, we provided a direct evidence that the purified DNA polymerase IV is indeed encoded by POLX. Strains harboring a pol4 deletion mutation exhibit neither mitotic growth defect nor a meiosis defect, suggesting that DNA polymerase IV participates in nonessential functions in ...

  8. Lack of cortical endoplasmic reticulum protein Ist2 alters sodium accumulation in Saccharomyces cerevisiae cells

    Czech Academy of Sciences Publication Activity Database

    Papoušková, Klára; Andršová, Markéta; Sychrová, Hana

    2017-01-01

    Roč. 17, č. 2 (2017), č. článku fox011. ISSN 1567-1356 R&D Projects: GA MŠk(CZ) LH14297 Institutional support: RVO:67985823 Keywords : Saccharomyces cerevisiae * Ist2 * alkali-metal- cation homeostasis * sodium tolerance * sodium uptake * alkali-metal- cation transporters Subject RIV: EE - Microbiology, Virology OBOR OECD: Mycology Impact factor: 3.299, year: 2016

  9. Specific distribution of the Saccharomyces cerevisiae linker histone homolog HHO1p in the chromatin

    OpenAIRE

    Freidkin, Ilya; Katcoff, Don J.

    2001-01-01

    In virtually all eukaryotic organisms, linker DNA between nucleosomes is associated with a histone termed linker histone or histone H1. In Saccharomyces cerevisiae, HHO1 encodes a putative linker histone with very significant homology to histone H1. The encoded protein is expressed in the nucleus, but has not been shown to affect global chromatin structure, nor has its deletion shown any detectable phenotype. In vitro chromatin assembly experiments with recombinant HHO1p have shown that it is...

  10. Genetic diversity and molecular characterization of Saccharomyces cerevisiae strains from winemaking environments

    OpenAIRE

    Schuller, Dorit Elisabeth

    2004-01-01

    Tese de doutoramento em Ciências The principal aim of the present work is to assess the genetic diversity of fermenting Saccharomyces cerevisiae strains found in vineyards belonging to the Vinho Verde Region in order to create a strain collection representing the region’s biodiversity wealth as a basis for future strain selection and improvement programs. Validation of molecular techniques for accurate genotyping is an indispensable prerequisite for biogeographical surveys. Molecular ty...

  11. Saccharomyces boulardii Stimulates Intestinal Immunoglobulin A Immune Response to Clostridium difficile Toxin A in Mice

    Science.gov (United States)

    Qamar, Amir; Aboudola, Samer; Warny, Michel; Michetti, Pierre; Pothoulakis, Charalabos; LaMont, J. Thomas; Kelly, Ciarán P.

    2001-01-01

    Saccharomyces boulardii is a nonpathogenic yeast that protects against antibiotic-associated diarrhea and recurrent Clostridium difficile colitis. The administration of C. difficile toxoid A by gavage to S. boulardii-fed BALB/c mice caused a 1.8-fold increase in total small intestinal immunoglobulin A levels (P = 0.003) and a 4.4-fold increase in specific intestinal anti-toxin A levels (P boulardii-mediated protection against diarrheal illnesses. PMID:11254650

  12. Saccharomyces boulardii Administration Changes Gut Microbiota and Attenuates D-Galactosamine-Induced Liver Injury

    OpenAIRE

    Yu, Lei; Zhao, Xue-ke; Cheng, Ming-liang; Yang, Guo-zhen; Wang, Bi; Liu, Hua-juan; Hu, Ya-xin; Zhu, Li-li; Zhang, Shuai; Xiao, Zi-wen; Liu, Yong-mei; Zhang, Bao-fang; Mu, Mao

    2017-01-01

    Growing evidence has shown that gut microbiome is a key factor involved in liver health. Therefore, gut microbiota modulation with probiotic bacteria, such as Saccharomyces boulardii, constitutes a promising therapy for hepatosis. In this study, we aimed to investigate the protective effects of S. boulardii on D-Galactosamine-induced liver injury in mice. Liver function test and histopathological analysis both suggested that the liver injury can be effectively attenuated by S. boulardii admin...

  13. Levels of acid-soluble polyphosphate in growing cultures of Saccharomyces cerevisiae.

    OpenAIRE

    Solimene, R; Guerrini, A M; Donini, P

    1980-01-01

    Short-chain acid-soluble polyphosphates were extracted from growing cultures of Saccharomyces cerevisiae, and the changes in the levels of these compounds were determined. The production of acid-soluble polyphosphates correlated with the mitochondrial activities since it occurred in two bursts in respiration-competent yeast cells and in only one burst in respiration-deficient yeast cells. The possible role of these compounds is discussed.

  14. Role of DNA damage in ultraviolet (313 nm) inactivation of yeasts Saccharomyces cerevisial

    International Nuclear Information System (INIS)

    Pospelov, M.E.; Ivanova, Eh.V.; Frajkin, G.Ya.

    1984-01-01

    Relative contribution of photoinhibition of cell respiration and DNA damage to lethal effect, caused by ultraviolet (UV) radiation of 313 m in certain yeast strains Saccharomyces cerevisiae, has been studied. It is shown that cell inactivation is mainly conditioned by DNA photodamage. When studying photoreactivation it has been established, that dimers of pyrimidine bases are the main lethal photoproducts, formed in DNA Under the effect of UV-radiation of 313 nm

  15. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-01-01

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture...

  16. Effect of aeration on the fermentative activity of Saccharomyces cerevisiae cultured in apple juice

    OpenAIRE

    Estela-Escalante, W.; Rychtera, M.; Melzoch, K.; Hatta-Sakoda, B.

    2012-01-01

    The influence of aeration on the fermentative activity of Saccharomyces cerevisiaeRTVE V 15-1-416 was studied in order to evaluate the synthesis of fermentation by-products. To achieve this, the strain was cultured in Erlenmeyer flasks and bioreactor containing sterilized and aroma removed apple juice. The chemical compounds produced during fermentations in shaken (200 min-¹) and static (without agitation) flasks and bioreactor, all in batch mode, were determined by GC and HPLC. The results s...

  17. Expansion and contraction of the DUP240 multigene family in Saccharomyces cerevisiae populations.

    OpenAIRE

    Leh-Louis, Véronique; Wirth, Bénédicte; Potier, Serge; Souciet, Jean-Luc; Despons, Laurence

    2004-01-01

    The influence of duplicated sequences on chromosomal stability is poorly understood. To characterize chromosomal rearrangements involving duplicated sequences, we compared the organization of tandem repeats of the DUP240 gene family in 15 Saccharomyces cerevisiae strains of various origins. The DUP240 gene family consists of 10 members of unknown function in the reference strain S288C. Five DUP240 paralogs on chromosome I and two on chromosome VII are arranged as tandem repeats that are highl...

  18. Effects of an unusual poison identify a lifespan role for Topoisomerase 2 in Saccharomyces cerevisiae

    OpenAIRE

    Tombline, Gregory; Millen, Jonathan I.; Polevoda, Bogdan; Rapaport, Matan; Baxter, Bonnie; Van Meter, Michael; Gilbertson, Matthew; Madrey, Joe; Piazza, Gary A.; Rasmussen, Lynn; Wennerberg, Krister; White, E. Lucile; Nitiss, John L.; Goldfarb, David S.

    2017-01-01

    A progressive loss of genome maintenance has been implicated as both a cause and consequence of aging. Here we present evidence supporting the hypothesis that an age-associated decay in genome maintenance promotes aging in Saccharomyces cerevisiae (yeast) due to an inability to sense or repair DNA damage by topoisomerase 2 (yTop2). We describe the characterization of LS1, identified in a high throughput screen for small molecules that shorten the replicative lifespan of yeast. LS1 accelerates...

  19. Relationship between solute permeability and osmotic remediability in a galactose-negative strain of Saccharomyces cerevisiae.

    Science.gov (United States)

    Bassel, J; Douglas, H C

    1970-11-01

    An osmotic remedial allele, gal 7-1, in the galactose pathway of Saccharomyces cerevisiae responds to either penetrating (ethylene glycol and diethylene glycol) or nonpenetrating (KCl, NaCl, and sorbitol) solutes in the growth medium. Extracts from cells grown under restrictive conditions gave no increase in enzyme activity (gal-1-phosphate, uridylyl transferase) when exposed to the penetrating solutes; thus protein synthesis or possibly polymer assembly is proposed as the critical step remedied by the addition of the solutes.

  20. Purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae

    OpenAIRE

    Elbing, Karin; McCartney, Rhonda R.; Schmidt, Martin C.

    2006-01-01

    Members of the Snf1/AMPK family of protein kinases are activated by distinct upstream kinases that phosphorylate a conserved threonine residue in the Snf1/AMPK activation loop. Recently, the identities of the Snf1- and AMPK-activating kinases have been determined. Here we describe the purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae. The identities of proteins associated with the Snf1-activating kinases were determined by peptide mass fingerpr...

  1. Anti-Saccharomyces cerevisiae autoantibodies in autoimmune diseases: from bread baking to autoimmunity.

    Science.gov (United States)

    Rinaldi, Maurizio; Perricone, Roberto; Blank, Miri; Perricone, Carlo; Shoenfeld, Yehuda

    2013-10-01

    Saccharomyces cerevisiae is best known as the baker's and brewer's yeast, but its residual traces are also frequent excipients in some vaccines. Although anti-S. cerevisiae autoantibodies (ASCAs) are considered specific for Crohn's disease, a growing number of studies have detected high levels of ASCAs in patients affected with autoimmune diseases as compared with healthy controls, including antiphospholipid syndrome, systemic lupus erythematosus, type 1 diabetes mellitus, and rheumatoid arthritis. Commensal microorganisms such as Saccharomyces are required for nutrition, proper development of Peyer's aggregated lymphoid tissue, and tissue healing. However, even the commensal nonclassically pathogenic microbiota can trigger autoimmunity when fine regulation of immune tolerance does not work properly. For our purposes, the protein database of the National Center for Biotechnology Information (NCBI) was consulted, comparing Saccharomyces mannan to several molecules with a pathogenetic role in autoimmune diseases. Thanks to the NCBI bioinformation technology tool, several overlaps in molecular structures (50-100 %) were identified when yeast mannan, and the most common autoantigens were compared. The autoantigen U2 snRNP B″ was found to conserve a superfamily protein domain that shares 83 % of the S. cerevisiae mannan sequence. Furthermore, ASCAs may be present years before the diagnosis of some associated autoimmune diseases as they were retrospectively found in the preserved blood samples of soldiers who became affected by Crohn's disease years later. Our results strongly suggest that ASCAs' role in clinical practice should be better addressed in order to evaluate their predictive or prognostic relevance.

  2. Crystallization and preliminary X-ray diffraction analysis of motif N from Saccharomyces cerevisiae Dbf4

    International Nuclear Information System (INIS)

    Matthews, Lindsay A.; Duong, Andrew; Prasad, Ajai A.; Duncker, Bernard P.; Guarné, Alba

    2009-01-01

    To understand the role of the Cdc7–Dbf4 complex in checkpoint responses, a fragment of Saccharomyces cerevisiae Dbf4 encompassing motif N was isolated, overproduced and crystallized. The Cdc7–Dbf4 complex plays an instrumental role in the initiation of DNA replication and is a target of replication-checkpoint responses in Saccharomyces cerevisiae. Cdc7 is a conserved serine/threonine kinase whose activity depends on association with its regulatory subunit, Dbf4. A conserved sequence near the N-terminus of Dbf4 (motif N) is necessary for the interaction of Cdc7–Dbf4 with the checkpoint kinase Rad53. To understand the role of the Cdc7–Dbf4 complex in checkpoint responses, a fragment of Saccharomyces cerevisiae Dbf4 encompassing motif N was isolated, overproduced and crystallized. A complete native data set was collected at 100 K from crystals that diffracted X-rays to 2.75 Å resolution and structure determination is currently under way

  3. Microencapsulation of Saccharomyces cerevisiae and its evaluation to protect in simulated gastric conditions.

    Science.gov (United States)

    Ghorbani-Choboghlo, Hassan; Zahraei-Salehi, Taghi; Ashrafi-Helan, Javad; Yahyaraeyat, Ramak; Pourjafar, Hadi; Nikaein, Donya; Balal, Asad; Khosravi, Ali-Reza

    2015-12-01

    Probiotic yeasts are used in production of functional foods and pharmaceutical products. They play an important role in promoting and maintaining human health. Until now, little work has been published on improving the survival of Saccharomyces in stimulated gastrointestinal condition. In this study the exposure of the yeast in the capsulate and free forms to artificial gastrointestinal conditions was assessed and the number of viable Saccharomyces cerevisiae cells during 0 to 120 mines in these conditions was evaluated by a pour plate method using sabouraud dextrose agar. Results showed the shape of the beads was generally spherical, sometimes elliptical with a mean diameter of about 50-90 μm. Also count of viable probiotic cells obtained for all the microcapsules were above the recommended levels for a probiotic food. Also decrease of approximately 4 logs was noted in the number of free cells after 2 h of incubation at pH 2 and 8, when compared to decreases of about 2 logs in the all microencapsulated S. cerevisiae under similar conditions. It is concluded that microencapsulation process was significantly able to increase the survival rate of Saccharomyces in a simulated gastrointestinal condition (p<0.05)..

  4. Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Cherlys Infante J.

    2014-06-01

    Full Text Available Objective. In this study the biomass of the yeast Saccharomyces cerevisiae was used to remove lead, mercury and nickel in the form of ions dissolved in water. Materials and methods. Synthetic solutions were prepared containing the three heavy metals, which were put in contact with viable microorganisms at different conditions of pH, temperature, aeration and agitation. Results. Both individual variables and the interaction effects influenced the biosorption process. Throughout the experimental framework it was observed that the biomass of Saccharomyces cerevisiae removed a higher percentage of lead (86.4% as compared to mercury and nickel (69.7 and 47.8% respectively. When the pH was set at a value of 5 the effect was positive for all three metals. Conclusions. pH was the variable that had a greater influence on the biosorption of lead on the biomass of Saccharomyces cerevisiae. The affinity of the heavy metals for the biomass followed the order Pb>Hg>Ni.

  5. Direct conversion of starch to ethanol using recombınant Saccharomyces cerevisiae containing glucoamylase gene

    Science.gov (United States)

    Purkan, P.; Baktir, A.; Puspaningsih, N. N. T.; Ni'mah, M.

    2017-09-01

    Saccharomyces cerevisiae is known for its high fermentative capacity, high ethanol yield and its high ethanol tolerance. The yeast is inability converting starch (relatively inexpensive substrate) into biofuel ethanol. Insertion of glucoamylase gene in yeast cell of Saccharomyces cerevisiae had been done to increase the yeast function in ethanol fermentation from starch. Transformation of yeast of S. cerevisiae with recombinant plasmid yEP-GLO1 carrying gene encoding glucoamylase (GLO1) produced the recombinant yeast which enable to degrade starch. Optimizing of bioconversion process of starch into ethanol by the yeast of recombinant Saccharomyces cerevisiae [yEP-GLO1] had been also done. Starch concentration which could be digested by recombinant yeast of S. cerevisiae [yEP-GLO1] was 10% (w/v). Bioconversion of starch having concentration 10% (b/v) using recombinant yeast of S. cerevisiae BY5207 [yEP-GLO1] could result ethanol as 20% (v/v) to alcoholmeter and 19,5% (v/v) to gas of chromatography. Otherwise, using recombinant yeast S. cerevisiae S. cerevisiae AS3324 [yEP-GLO1] resulted ethanol as 17% (v/v) to alcoholmeter and 17,5% (v/v) to gas of chromatography. The highest ethanol in starch bioconversion using both recombinant yeasts BY5207 and AS3324 could be resulted on 144 hours of fermentation time as well as in pH 5.

  6. Genetic characterization of strains of Saccharomyces uvarum from New Zealand wineries.

    Science.gov (United States)

    Zhang, Hanyao; Richards, Keith D; Wilson, Sandra; Lee, Soon A; Sheehan, Hester; Roncoroni, Miguel; Gardner, Richard C

    2015-04-01

    We present a genetic characterization of 65 isolates of Saccharomyces uvarum isolated from wineries in New Zealand, along with the complete nucleotide sequence of a single sulfite-tolerant isolate. The genome of the New Zealand isolate averaged 99.85% nucleotide identity to CBS7001, the previously sequenced strain of S. uvarum. However, three genomic segments (37-87 kb) showed 10% nucleotide divergence from CBS7001 but 99% identity to Saccharomyces eubayanus. We conclude that these three segments appear to have been introgressed from that species. The nucleotide sequence of the internal transcribed spacer (ITS) region from other New Zealand isolates were also very similar to that of CBS7001, and hybrids showed complete genetic compatibility for some strains, with tetrads giving four viable progeny that showed 2:2 segregations of marker genes. Some strains showed high tolerance to sulfite, with genetic analysis indicating linkage of this trait to the transcription factor FZF1, but not to SSU1, the sulfite efflux pump that it regulates in order to confer sulfite tolerance in Saccharomyces cerevisiae. The fermentation characteristics of selected strains of S. uvarum showed exceptionally good cold fermentation characteristics, superior to the best commercially available strains of S. cerevisiae. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A large set of newly created interspecific Saccharomyces hybrids increases aromatic diversity in lager beers.

    Science.gov (United States)

    Mertens, Stijn; Steensels, Jan; Saels, Veerle; De Rouck, Gert; Aerts, Guido; Verstrepen, Kevin J

    2015-12-01

    Lager beer is the most consumed alcoholic beverage in the world. Its production process is marked by a fermentation conducted at low (8 to 15°C) temperatures and by the use of Saccharomyces pastorianus, an interspecific hybrid between Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. Recent whole-genome-sequencing efforts revealed that the currently available lager yeasts belong to one of only two archetypes, "Saaz" and "Frohberg." This limited genetic variation likely reflects that all lager yeasts descend from only two separate interspecific hybridization events, which may also explain the relatively limited aromatic diversity between the available lager beer yeasts compared to, for example, wine and ale beer yeasts. In this study, 31 novel interspecific yeast hybrids were developed, resulting from large-scale robot-assisted selection and breeding between carefully selected strains of S. cerevisiae (six strains) and S. eubayanus (two strains). Interestingly, many of the resulting hybrids showed a broader temperature tolerance than their parental strains and reference S. pastorianus yeasts. Moreover, they combined a high fermentation capacity with a desirable aroma profile in laboratory-scale lager beer fermentations, thereby successfully enriching the currently available lager yeast biodiversity. Pilot-scale trials further confirmed the industrial potential of these hybrids and identified one strain, hybrid H29, which combines a fast fermentation, high attenuation, and the production of a complex, desirable fruity aroma. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration.

    Science.gov (United States)

    Quirós, Manuel; Rojas, Virginia; Gonzalez, Ramon; Morales, Pilar

    2014-07-02

    Respiration of sugars by non-Saccharomyces yeasts has been recently proposed for lowering alcohol levels in wine. Development of industrial fermentation processes based on such an approach requires, amongst other steps, the identification of yeast strains which are able to grow and respire under the relatively harsh conditions found in grape must. This work describes the characterization of a collection of non-Saccharomyces yeast strains in order to identify candidate yeast strains for this specific application. It involved the estimation of respiratory quotient (RQ) values under aerated conditions, at low pH and high sugar concentrations, calculation of yields of ethanol and other relevant metabolites, and characterization of growth responses to the main stress factors found during the first stages of alcoholic fermentation. Physiological features of some strains of Metschnikowia pulcherrima or two species of Kluyveromyces, suggest they are suitable for lowering ethanol yields by respiration. The unsuitability of Saccharomyces cerevisiae strains for this purpose was not due to ethanol yields (under aerated conditions they are low enough for a significant reduction in final ethanol content), but to the high acetic acid yields under these growth conditions. According to results from controlled aeration fermentations with one strain of M. pulcherrima, design of an aeration regime allowing for lowering ethanol yields though preserving grape must components from excessive oxidation, would be conceivable. Copyright © 2014. Published by Elsevier B.V.

  9. Controlled mixed fermentation at winery scale using Zygotorulaspora florentina and Saccharomyces cerevisiae.

    Science.gov (United States)

    Lencioni, Livio; Romani, Cristina; Gobbi, Mirko; Comitini, Francesca; Ciani, Maurizio; Domizio, Paola

    2016-10-03

    Over the last few years the use of multi-starter inocula has become an attractive biotechnological practice in the search for wine with high flavour complexity or distinctive characters. This has been possible through exploiting the particular oenological features of some non-Saccharomyces yeast strains, and the effects that derive from their specific interactions with Saccharomyces. In the present study, we evaluated the selected strain Zygotorulaspora florentina (formerly Zygosaccharomyces florentinus) in mixed culture fermentations with Saccharomyces cerevisiae, from the laboratory scale to the winery scale. The scale-up fermentation and substrate composition (i.e., white or red musts) influenced the analytical composition of the mixed fermentation. At the laboratory scale, mixed fermentation with Z. florentina exhibited an enhancement of polysaccharides and 2-phenylethanol content and a reduction of volatile acidity. At the winery scale, different fermentation characteristics of Z. florentina were observed. Using Sangiovese red grape juice, sequential fermentation trials showed a significantly higher concentration of glycerol and esters while the sensorial analysis of the resulting wines showed higher floral notes and lower perception of astringency. To our knowledge, this is the first time that this yeasts association has been evaluated at the winery scale indicating the potential use of this mixed culture in red grape varieties. Copyright © 2016. Published by Elsevier B.V.

  10. Anti-oxidant effects of pomegranate juice on Saccharomyces cerevisiae cell growth.

    Science.gov (United States)

    Aslan, Abdullah; Can, Muhammed İsmail; Boydak, Didem

    2014-01-01

    Pomegranate juice has a number of positive effects on both human and animal subjects. Four groups were used in this study. i: Control group, ii: H2O2 group, iii: Pomegranate juice (PJ) group and iv: PJ + H2O2 group. Following the sterilization method for pomegranate juice (10%) and H2O2 (6% v/v), Saccharomyces cerevisiae cultures were added and the cultivation incubated at 35°C for 72 hours. Fatty acids and vitamin concentrations were measured using HPLC and GC and the total protein bands profile were determined by SDS-PAGE. According to our results statistically significant differences have been determined among the study groups in terms of fatty acids and vitamin (pPomegranate juice increased vitamins, fatty acids and total protein expression in Saccharomyces cerevisiae in comparison with the control. Pomegranate juice has a positive effect on fatty acid, vitamin and protein synthesis by Saccharomyces cerevisiae. Accordingly, we believe that it has significantly decreased oxidative damage thereby making a positive impact on yeast development.

  11. The influence of nitrogen and biotin interactions on the performance of Saccharomyces in alcoholic fermentations.

    Science.gov (United States)

    Bohlscheid, J C; Fellman, J K; Wang, X D; Ansen, D; Edwards, C G

    2007-02-01

    To study the impact of assimilable nitrogen, biotin and their interaction on growth, fermentation rate and volatile formation by Saccharomyces. Fermentations of synthetic grape juice media were conducted in a factorial design with yeast assimilable nitrogen (YAN) (60 or 250 mg l(-1)) and biotin (0, 1 or 10 microg l(-1)) as variables. All media contained 240 g l(-1) glucose + fructose (1 : 1) and were fermented using biotin-depleted Saccharomyces cerevisiae strains EC1118 or UCD 522. Both strains exhibited weak growth and sluggish fermentation rates without biotin. Increased nitrogen concentration resulted in higher maximum fermentation rates, while adjusting biotin from 1 to 10 microg l(-1) had no effect. Nitrogen x biotin interactions influenced fermentation time, production of higher alcohols and hydrogen sulfide (H(2)S). Maximum H(2)S production occurred in the medium containing 60 mg l(-1) YAN and 1 microg l(-1) biotin. Nitrogen x biotin interactions affect fermentation time and volatile production by Saccharomyces depending on strain. Biotin concentrations sufficient to complete fermentation may affect the organoleptic impact of wine. This study demonstrates the necessity to consider nutrient interactions when diagnosing problem fermentations.

  12. Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts.

    Science.gov (United States)

    Schnierda, T; Bauer, F F; Divol, B; van Rensburg, E; Görgens, J F

    2014-05-01

    The impact of different nitrogen and carbon sources on biomass production of the non-Saccharomyces wine yeast species Lachancea thermotolerans, Metschnikowia pulcherrima and Issatchenkia orientalis was assessed. Using a molasses-based medium, yeast extract and corn steep liquor as well as ammonium sulphate and di-ammonium phosphate (DAP) as nitrogen sources were compared in shake-flask cultures. A medium with 20 g l⁻¹ sugar (diluted molasses) and 500 mg l⁻¹ total yeast assimilable nitrogen, from yeast extract, gave the highest biomass concentrations and yields. Invertase pretreatment was required for cultures of M. pulcherrima and I. orientalis, and respective biomass yields of 0.7 and 0.8 g g⁻¹ were achieved in aerobic bioreactor cultures. The absence of ethanol production suggested Crabtree-negative behaviour by these yeasts, whereas Crabtree-positive behaviour by L. thermotolerans resulted in ethanol and biomass concentrations of 5.5 and 11.1 g l⁻¹, respectively. Recent studies demonstrate that non-Saccharomyces yeasts confer positive attributes to the final composition of wine. However, optimal process conditions for their biomass production have not been described, thereby limiting commercial application. In this study, industrial media and methods of yeast cultivation were investigated to develop protocols for biomass production of non-Saccharomyces yeast starter cultures for the wine industry. © 2014 The Society for Applied Microbiology.

  13. Effectiveness of Saccharomyces boulardii in a rat model of colitis.

    Science.gov (United States)

    Soyturk, Mujde; Saygili, Saba Mukaddes; Baskin, Huseyin; Sagol, Ozgul; Yilmaz, Osman; Saygili, Fatih; Akpinar, Hale

    2012-11-28

    To investigate the effects of Saccharomyces boulardii (S. boulardii) in an experimental rat model of trinitrobenzene sulfonic acid (TNBS)-induced colitis. Thirty-two Wistar albino female rats were categorized into five groups. On the first day of the study, 50 mg TNBS was administered via a rectal catheter in order to induce colitis in all rats, except those in the control group. For 14 d, the rats were fed a standard diet, without the administration of any additional supplements to either the control or TNBS groups, in addition to 1 mg/kg per day S. boulardii to the S. boulardii group, 1 mg/kg per day methyl prednisolone (MP) to the MP group. The animals in the S. boulardii + MP group were coadministered these doses of S. boulardii and MP. During the study, weight loss, stool consistency, and the presence of obvious blood in the stool were evaluated, and the disease activity index (DAI) for colitis was recorded. The intestines were examined and colitis was macro- and microscopically scored. The serum and tissue levels of tumor necrosis factor-α (TNF-α) and nitric oxide (NO) were determined, and fungemia was evaluated in the blood samples. The mean DAI scores for the MP and S. boulardii + MP groups was significantly lower than the TNBS group (3.69 ± 0.61 vs 4.46 ± 0.34, P = 0.018 and 3.77 ± 0.73 vs 4.46 ± 0.34, P = 0.025, respectively). While no significant differences between the TNBS and the S. boulardii or MP groups could be determined in terms of serum NO levels, the level of serum NO in the S. boulardii + MP group was significantly higher than in the TNBS and S. boulardii groups (8.12 ± 4.25 μmol/L vs 3.18 ± 1.19 μmol/L, P = 0.013; 8.12 ± 4.25 μmol/L vs 3.47 ± 1.66 μmol/L, P = 0.012, respectively). The tissue NO levels in the S. boulardii, MP and S. boulardii + MP groups were significantly lower than the TNBS group (16.62 ± 2.27 μmol/L vs 29.72 ± 6.10 μmol/L, P = 0.002; 14.66 ± 5.18 μmol/L vs 29.72 ± 6.10 μmol/L, P = 0.003; 11.95 ± 2

  14. Loss of lager specific genes and subtelomeric regions define two different Saccharomyces cerevisiae lineages for Saccharomyces pastorianus Group I and II strains.

    Science.gov (United States)

    Monerawela, Chandre; James, Tharappel C; Wolfe, Kenneth H; Bond, Ursula

    2015-03-01

    Lager yeasts, Saccharomyces pastorianus, are interspecies hybrids between S. cerevisiae and S. eubayanus and are classified into Group I and Group II clades. The genome of the Group II strain, Weihenstephan 34/70, contains eight so-called 'lager-specific' genes that are located in subtelomeric regions. We evaluated the origins of these genes through bioinformatic and PCR analyses of Saccharomyces genomes. We determined that four are of cerevisiae origin while four originate from S. eubayanus. The Group I yeasts contain all four S. eubayanus genes but individual strains contain only a subset of the cerevisiae genes. We identified S. cerevisiae strains that contain all four cerevisiae 'lager-specific' genes, and distinct patterns of loss of these genes in other strains. Analysis of the subtelomeric regions uncovered patterns of loss in different S. cerevisiae strains. We identify two classes of S. cerevisiae strains: ale yeasts (Foster O) and stout yeasts with patterns of 'lager-specific' genes and subtelomeric regions identical to Group I and II S. pastorianus yeasts, respectively. These findings lead us to propose that Group I and II S. pastorianus strains originate from separate hybridization events involving different S. cerevisiae lineages. Using the combined bioinformatic and PCR data, we describe a potential classification map for industrial yeasts. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  15. Truncation of Gal4p explains the inactivation of the GAL/MEL regulon in both Saccharomyces bayanus and some Saccharomyces cerevisiae wine strains.

    Science.gov (United States)

    Dulermo, Rémi; Legras, Jean-Luc; Brunel, François; Devillers, Hugo; Sarilar, Véronique; Neuvéglise, Cécile; Nguyen, Huu-Vang

    2016-09-01

    In the past, the galactose-negative (Gal(-)) phenotype was a key physiological character used to distinguish Saccharomyces bayanus from S. cerevisiae In this work, we investigated the inactivation of GAL gene networks in S. bayanus, which is an S. uvarum/S. eubayanus hybrid, and in S. cerevisiae wine strains erroneously labelled 'S. bayanus'. We made an inventory of their GAL genes using genomes that were either available publicly, re-sequenced by us, or assembled from public data and completed with targeted sequencing. In the S. eubayanus/S. uvarum CBS 380(T) hybrid, the GAL/MEL network is composed of genes from both parents: from S. uvarum, an otherwise complete set that lacks GAL4, and from S. eubayanus, a truncated version of GAL4 and an additional copy of GAL3 and GAL80 Similarly, two different truncated GAL4 alleles were found in S. cerevisiae wine strains EC1118 and LalvinQA23. The lack of GAL4 activity in these strains was corrected by introducing a full-length copy of S. cerevisiae GAL4 on a CEN4/ARS plasmid. Transformation with this plasmid restored galactose utilisation in Gal(-) strains, and melibiose fermentation in strain CBS 380(T) The melibiose fermentation phenotype, formerly regarded as characteristic of S. uvarum, turned out to be widespread among Saccharomyces species. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines.

    Science.gov (United States)

    Sun, Shu Yang; Gong, Han Sheng; Jiang, Xiao Man; Zhao, Yu Ping

    2014-12-01

    This study examined the effect of mixed fermentation of non-Saccharomyces (Torulaspora delbrueckii ZYMAFLORE Alpha(TD n. Sacch) and Metschnikowia pulcherrima JS22) and Saccharomyces cerevisiae yeasts (D254 and EC1118) on the production of cherry wines, in comparison with commonly used mono-culture. Results obtained during AF demonstrated that negligible inhibitory effect was observed in S. cerevisiae/Alpha pair, whereas a strong antagonistic effect was detected between MJS22 and S. cerevisiae strain, resulting in an early death of MJS22. For volatile components determined, S. cerevisiae/MJS22 couple was found to significantly boost the production of most detected compounds, more particularly in higher alcohols, esters, acids and terpenes; while the characteristic of S. cerevisiae/Alpha pair is an increase in fruity esters, higher alcohols and decrease in acid production. Sensory evaluation revealed that S. cerevisiae/MJS22 pair reinforced sweet, green and fatty notes to the cherry wines, and S. cerevisiae/Alpha trial enhanced the fruity odour and reduced green note. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    Science.gov (United States)

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast

  18. Rekayasa Glukosa Dari Tandan Kosong Kelapa Sawit Melalui Proses Fermentasi Dengan Saccharomyces cerevisiae Menjadi Bioetanol

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2013-06-01

    Full Text Available This research aims to study the performance of Saccharomyces cerevisiae in glucose engineering into bioethanol. Glucose comes from palm oil empty fruit bunches that had been pretreated by delignification and fermentation. Glucose solution result from hydrolysis for each treatment of 500 ml was fermented with Saccharomyces cerevisiae (2, 4, 6 and 8 g, fermentation time (4, 6, 8 and 10 days. Result of fermentation was distilled at 75°C ± 5°C for 60 minutes. Bioethanol produced were tested including: specific gravity by using picnometer and acidity was tested by volumetric methods. The analysis showed that the best bioethanol produced in this experiment, followed by laboratory tests obtained from the interaction between treatments for time of hydrolysis by Aspergillus niger for 6 days, with 4 grams of Saccharomyces cerevisiae fermentation for 6 days. Based on the test results of bioethanol obtained density 0.9873 g/cm3, percentage of bioethanol 9.2889% (v/v and acid number value 1.820 mg/L.ABSTRAKPenelitian ini bertujuan untuk mempelajarai kinerja Saccharomyces cerevisiae  merekayasa glukosa menjadi bioetanol. Glukosa berasal dari tandan kosong kelapa sawit yang telah dilakukan pretreatment dengan cara delignifikasi dan fermentasi. Larutan glukosa hasil hidrolisis untuk masing-masing perlakuan sebanyak 500 mL difermentasi dengan S. cerevisiae (2; 4; 6 dan 8 g, waktu fermentasi (4; 6; 8 dan 10 hari. Hasil fermentasi didestilasi pada suhu 75oC ± 5oC selama 60 menit. Bioetanol yang dihasilkan diuji yang meliputi : berat jenis dengan mengunakan piknometer dan keasaman diuji dengan metode volumetri. Hasil analisis menunjukkan bioetanol yang terbaik berdasarkan hasil percobaan yang dilanjutkan dengan uji laboratorium didapatkan dari interaksi antar perlakuan untuk waktu hidrolisis dengan Aspergilus niger selama 6 hari, fermentasi dengan 4 gram Saccharomyces cerevisiae selama 6 hari. Berdasarkan hasil uji bioetanol untuk berat jenis 0,9873 g/cm3

  19. Treatment of diarrhea-predominant irritable bowel syndrome with mesalazine and/or Saccharomyces boulardii.

    Science.gov (United States)

    Bafutto, Mauro; Almeida, José Roberto de; Leite, Nayle Vilela; Costa, Michelle Bafutto Gomes; Oliveira, Enio Chaves de; Resende-Filho, Joffre

    2013-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disease characterized by abdominal pain and altered intestinal habits. The pathophysiology of IBS remains unclear. Recent studies have demonstrated that some IBS patients, especially in diarrhea-predominant IBS (IBS-D), display persistent signs of minor mucosal inflammation and a modified intestinal microflora. The mesalazine has known intestinal anti-inflammatory properties. Saccharomyces boulardii is a probiotic used for a long time in treatment of diarrhea, including infectious diarrhea. Evaluate the effects of mesalazine alone, combined therapy of mesalazine with liophylised Saccharomyces boulardii or alone on symptoms of IBS-D patients. Based on Rome III criteria, 53 IBS-D patients (18 year or more) were included. To exclude organic diseases all patients underwent colonoscopy, stool culture, serum anti-endomisium antibody, lactose tolerance test and ova and parasite exam. Patients were divided in three groups: mesalazine group (MG) - 20 patients received mesalazine 800 mg t.i.d. for 30 days; mesalazine and Saccharomyces boulardii group (MSbG) - 21 patients received mesalazine 800 mg t.i.d. and Saccharomyces boulardii 200 mg t.i.d. for 30 days and; Saccharomyces boulardii group (SbG) - 12 patients received Sb 200 mg t.i.d. for 30 days. Drugs that might have any effect on intestinal motility or secretion were not allowed. Symptom evaluations at baseline and after treatment were performed by means of a 4-point likert scale including: stool frequency, stool form and consistency (Bristol scale), abdominal pain and distension. Paired t test and Kruskal-Wallis test were used for statistical analyses. Compared to baseline, there were statistically significant reduction of symptom score after 30 th day therapy in all three groups: MG (PSaccharomyces boulardii alone or combined treatment with mesalasine and Saccaromyces boulardii improved IBS-D symptoms. The improvement of the symptom score was greater with mesalazine

  20. Peptide inhibitors of appressorium development in Glomerella cingulata.

    Science.gov (United States)

    Al-Samarrai, Taha H; Sullivan, Patrick A; Templeton, Matthew D; Farley, Peter C

    2002-04-09

    The phytopathogen Glomerella cingulata (anamorph: Colletotrichum gloeosporioides) infects host tissue by means of a specialised infection structure, the appressorium. The Saccharomyces cerevisiae alpha-mating factor pheromone, the Saccharomyces kluyveri alpha-mating factor pheromone and a hendecapeptide produced by G. cingulata inhibit appressorium development. The amino acid sequence of the G. cingulata peptide, GYFSYPHGNLF, is different from that of the mature pheromone peptides of other filamentous fungi. The peptide has sequence similarity with the Saccharomyces alpha-mating factor pheromones, but is unable to elicit growth arrest in S. cerevisiae.