WorldWideScience

Sample records for saccharomyces cerevisiae yeasts

  1. Molecular genetic diversity of the Saccharomyces yeasts in Taiwan: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii.

    Science.gov (United States)

    Naumov, Gennadi I; Lee, Ching-Fu; Naumova, Elena S

    2013-01-01

    Genetic hybridization, sequence and karyotypic analyses of natural Saccharomyces yeasts isolated in different regions of Taiwan revealed three biological species: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Intraspecies variability of the D1/D2 and ITS1 rDNA sequences was detected among S. cerevisiae and S. kudriavzevii isolates. According to molecular and genetic analyses, the cosmopolitan species S. cerevisiae and S. kudriavzevii contain local divergent populations in Taiwan, Malaysia and Japan. Six of the seven known Saccharomyces species are documented in East Asia: S. arboricola, S. bayanus, S. cerevisiae, S. kudriavzevii, S. mikatae, and S. paradoxus.

  2. Accumulation of gold using Baker's yeast, Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Roy, Kamalika; Lahiri, Susanta; Sinha, P.

    2006-01-01

    Authors have reported preconcentration of 152 Eu, a long-lived fission product, by yeast cells, Saccharomyces cerevisiae. Gold being a precious metal is used in electroplating, hydrogenation catalyst, etc. Heterogeneous composition of samples and low concentration offers renewed interest in its selective extraction of gold using various extractants. Gold can be recovered from different solutions using various chemical reagents like amines, organophosphorus compounds, and extractants containing sulphur as donor atom, etc. In the present work, two different strains of baker's yeast, Saccharomyces cerevisiae have been used to study the preconcentration of gold at various experimental conditions

  3. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Science.gov (United States)

    Bellon, Jennifer R; Schmid, Frank; Capone, Dimitra L; Dunn, Barbara L; Chambers, Paul J

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  4. Construction of killer industrial yeast Saccharomyces cerevisiae HAU-1 and its fermentation performance

    Directory of Open Access Journals (Sweden)

    Bijender K. Bajaj

    2010-06-01

    Full Text Available Saccharomyces cerevisiae HAU-1, a time tested industrial yeast possesses most of the desirable fermentation characteristics like fast growth and fermentation rate, osmotolerance, high ethanol tolerance, ability to ferment molasses, and to ferment at elevated temperatures etc. However, this yeast was found to be sensitive against the killer strains of Saccharomyces cerevisiae. In the present study, killer trait was introduced into Saccharomyces cerevisiae HAU-1 by protoplast fusion with Saccharomyces cerevisiae MTCC 475, a killer strain. The resultant fusants were characterized for desirable fermentation characteristics. All the technologically important characteristics of distillery yeast Saccharomyces cerevisiae HAU-1 were retained in the fusants, and in addition the killer trait was also introduced into them. Further, the killer activity was found to be stably maintained during hostile conditions of ethanol fermentations in dextrose or molasses, and even during biomass recycling.

  5. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Directory of Open Access Journals (Sweden)

    Jennifer R Bellon

    Full Text Available Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade, has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  6. Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae

    Science.gov (United States)

    Bellon, Jennifer R.; Schmid, Frank; Capone, Dimitra L.; Dunn, Barbara L.; Chambers, Paul J.

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment. PMID:23614011

  7. Studies of Saccharomyces cerevisiae and Non-Saccharomyces Yeasts during Alcoholic Fermentation

    DEFF Research Database (Denmark)

    Kemsawasd, Varongsiri

    The early death of non-Saccharomyces yeasts during mixed culture spontaneous wine fermentation has traditionally been attributed to the lower capacity of these yeast species to withstand high levels of ethanol, low pH, and other media properties that are a part of progressing fermentation. However......, other yeast-yeast interactions, such as cell-cell contact mediated growth arrest and/or toxininduced death may also be a significant factor in the relative fragility of these non-Saccharomyces yeasts in mixed culture fermentation. In the present work we evaluate the combined roles of cell-cell contact...... and/or antimicrobial peptides on the early death of Lachancea thermotolerans during mixed culture fermentations with Saccharomyces cerevisiae. Using a specially designed double compartment fermentation system, we established that both cell-to-cell contact and antimicrobial peptides contribute...

  8. [Urinary infection by Saccharomyces cerevisiae: Emerging yeast?].

    Science.gov (United States)

    Elkhihal, B; Elhalimi, M; Ghfir, B; Mostachi, A; Lyagoubi, M; Aoufi, S

    2015-12-01

    Saccharomyces cerevisiae is a commensal yeast of the digestive, respiratory and genito-urinary tract. It is widely used as a probiotic for the treatment of post-antibiotic diarrhea. It most often occurs in immunocompromised patients frequently causing fungemia. We report the case of an adult diabetic patient who had a urinary tract infection due to S. cerevisiae. The disease started with urination associated with urinary frequency burns without fever. The diagnosis was established by the presence of yeasts on direct examination and positivity of culture on Sabouraud-chloramphenicol three times. The auxanogramme gallery (Auxacolor BioRad(®)) allowed the identification of S. cerevisiae. The patient was put on fluconazole with good outcome. This observation points out that this is an opportunistic yeast in immunocompromised patients. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae.

    Science.gov (United States)

    Shekhawat, Kirti; Bauer, Florian F; Setati, Mathabatha E

    2017-03-01

    The sequential or co-inoculation of grape must with non-Saccharomyces yeast species and Saccharomyces cerevisiae wine yeast strains has recently become a common practice in winemaking. The procedure intends to enhance unique aroma and flavor profiles of wine. The extent of the impact of non-Saccharomyces strains depends on their ability to produce biomass and to remain metabolically active for a sufficiently long period. However, mixed-culture wine fermentations tend to become rapidly dominated by S. cerevisiae, reducing or eliminating the non-Saccharomyces yeast contribution. For an efficient application of these yeasts, it is therefore essential to understand the environmental factors that modulate the population dynamics of such ecosystems. Several environmental parameters have been shown to influence population dynamics, but their specific effect remains largely uncharacterized. In this study, the population dynamics in co-fermentations of S. cerevisiae and three non-Saccharomyces yeast species: Torulaspora delbrueckii, Lachancea thermotolerans, and Metschnikowia pulcherrima, was investigated as a function of oxygen availability. In all cases, oxygen availability strongly influenced population dynamics, but clear species-dependent differences were observed. Our data show that L. thermotolerans required the least oxygen, followed by T. delbrueckii and M. pulcherrima. Distinct species-specific chemical volatile profiles correlated in all cases with increased persistence of non-Saccharomyces yeasts, in particular increases in some higher alcohols and medium chain fatty acids. The results highlight the role of oxygen in regulating the succession of yeasts during wine fermentations and suggests that more stringent aeration strategies would be necessary to support the persistence of non-Saccharomyces yeasts in real must fermentations.

  10. Hybridization of Palm Wine Yeasts ( Saccharomyces Cerevisiae ...

    African Journals Online (AJOL)

    Haploid auxotrophic strains of Saccharomyces cerevisiae were selected from palm wine and propagated by protoplast fusion with Brewers yeast. Fusion resulted in an increase in both ethanol production and tolerance against exogenous ethanol. Mean fusion frequencies obtained for a mating types ranged between 8 x ...

  11. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.

    Science.gov (United States)

    Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-07-02

    Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2014-01-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the deve......Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up...... the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology...

  13. Saccharomyces cerevisiae: a sexy yeast with a prion problem.

    Science.gov (United States)

    Kelly, Amy C; Wickner, Reed B

    2013-01-01

    Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23-46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae.

  14. Therapeutic activity of a Saccharomyces cerevisiae-based probiotic and inactivated whole yeast on vaginal candidiasis.

    Science.gov (United States)

    Pericolini, Eva; Gabrielli, Elena; Ballet, Nathalie; Sabbatini, Samuele; Roselletti, Elena; Cayzeele Decherf, Amélie; Pélerin, Fanny; Luciano, Eugenio; Perito, Stefano; Jüsten, Peter; Vecchiarelli, Anna

    2017-01-02

    Vulvovaginal candidiasis is the most prevalent vaginal infection worldwide and Candida albicans is its major agent. Vulvovaginal candidiasis is characterized by disruption of the vaginal microbiota composition, as happens following large spectrum antibiotic usage. Recent studies support the effectiveness of oral and local probiotic treatment for prevention of recurrent vulvovaginal candidiasis. Saccharomyces cerevisiae is a safe yeast used as, or for, the production of ingredients for human nutrition and health. Here, we demonstrate that vaginal administration of probiotic Saccharomyces cerevisiae live yeast (GI) and, in part, inactivated whole yeast Saccharomyces cerevisiae (IY), used as post-challenge therapeutics, was able to positively influence the course of vaginal candidiasis by accelerating the clearance of the fungus. This effect was likely due to multiple interactions of Saccharomyces cerevisiae with Candida albicans. Both live and inactivated yeasts induced coaggregation of Candida and consequently inhibited its adherence to epithelial cells. However, only the probiotic yeast was able to suppress some major virulence factors of Candida albicans such as the ability to switch from yeast to mycelial form and the capacity to express several aspartyl proteases. The effectiveness of live yeast was higher than that of inactivated whole yeast suggesting that the synergy between mechanical effects and biological effects were dominant over purely mechanical effects. The protection of epithelial cells to Candida-induced damage was also observed. Overall, our data show for the first time that Saccharomyces cerevisiae-based ingredients, particularly the living cells, can exert beneficial therapeutic effects on a widespread vaginal mucosal infection.

  15. Saccharomyces cerevisiae and non-Saccharomyces yeasts in grape varieties of the São Francisco Valley

    Directory of Open Access Journals (Sweden)

    Camila M.P.B.S. de Ponzzes-Gomes

    2014-06-01

    Full Text Available The aims of this work was to characterise indigenous Saccharomyces cerevisiae strains in the naturally fermented juice of grape varieties Cabernet Sauvignon, Grenache, Tempranillo, Sauvignon Blanc and Verdejo used in the São Francisco River Valley, northeastern Brazil. In this study, 155 S. cerevisiae and 60 non-Saccharomyces yeasts were isolated and identified using physiological tests and sequencing of the D1/D2 domains of the large subunit of the rRNA gene. Among the non-Saccharomyces species, Rhodotorula mucilaginosa was the most common species, followed by Pichia kudriavzevii, Candida parapsilosis, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Kloeckera apis, P. manshurica, C. orthopsilosis and C. zemplinina. The population counts of these yeasts ranged among 1.0 to 19 x 10(5 cfu/mL. A total of 155 isolates of S. cerevisiae were compared by mitochondrial DNA restriction analysis, and five molecular mitochondrial DNA restriction profiles were detected. Indigenous strains of S. cerevisiae isolated from grapes of the São Francisco Valley can be further tested as potential starters for wine production.

  16. Analysis of the RNA Content of the Yeast "Saccharomyces Cerevisiae"

    Science.gov (United States)

    Deutch, Charles E.; Marshall, Pamela A.

    2008-01-01

    In this article, the authors describe an interconnected set of relatively simple laboratory experiments in which students determine the RNA content of yeast cells and use agarose gel electrophoresis to separate and analyze the major species of cellular RNA. This set of experiments focuses on RNAs from the yeast "Saccharomyces cerevisiae", a…

  17. Investigation of the effect of water exposed to nonequilibrium contact plasma onto saccharomyces cerevisiae yeast

    Directory of Open Access Journals (Sweden)

    S. Mykolenko

    2015-05-01

    Full Text Available Introduction. Additional treatment of water by nonequilibrium contact plasma allows improving consumer characteristics of bakery goods considerably. Determination of the effect of plasma-chemically activated water on morphological, cultural and physiological properties of Saccharomyces cerevisiae yeast is important from the technological point of view. Materials and Methods. Experimental investigations were carried out in the conditions of bacteriological laboratory by seeding the culture of yeasts of ТМ “Lvivski” and “Kryvorizki” on Sabouraud dense liquid nutrient media. The quantity of viable cells of microorganisms was determined by the method of Gould sector seeds. Morphology of the yeast was investigated by phase-contrast microscopy. Biotechnological properties of yeasts were determined on Giss media. Results. The paper establishes the effect of water exposed to nonequilibrium contact plasma on the sensitivity of Saccharomyces cerevisiae and shows absence of suppressive action of treated water with regard to cultural properties of microorganisms. The experiments prove that with the use of plasma-chemically activated water morphological characteristics and biochemical properties of bakery yeasts produced by Lviv and Kryvyi Rig yeast plants are preserved. Culturing of Saccharomyces cerevisiae yeast on the nutrient media prepared with the use of water exposed to nonequilibrium contact plasm resulted in 6,5–15 times’ increase in quantity of viable microorganisms compared with the control on the mains drinking water. Conclusions. Physiological properties of Saccharomyces cerevisiae yeast improved owing to use water exposed to nonequilibrium contact plasma. Results of investigations are recommended for using in yeast production and bread making.

  18. Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation.

    Science.gov (United States)

    Domizio, Paola; Romani, Cristina; Lencioni, Livio; Comitini, Francesca; Gobbi, Mirko; Mannazzu, Ilaria; Ciani, Maurizio

    2011-06-30

    The use of non-Saccharomyces yeasts that are generally considered as spoilage yeasts, in association with Saccharomyces cerevisiae for grape must fermentation was here evaluated. Analysis of the main oenological characteristics of pure cultures of 55 yeasts belonging to the genera Hanseniaspora, Pichia, Saccharomycodes and Zygosaccharomyces revealed wide biodiversity within each genus. Moreover, many of these non-Saccharomyces strains had interesting oenological properties in terms of fermentation purity, and ethanol and secondary metabolite production. The use of four non-Saccharomyces yeasts (one per genus) in mixed cultures with a commercial S. cerevisiae strain at different S. cerevisiae/non-Saccharomyces inoculum ratios was investigated. This revealed that most of the compounds normally produced at high concentrations by pure cultures of non-Saccharomyces, and which are considered detrimental to wine quality, do not reach threshold taste levels in these mixed fermentations. On the other hand, the analytical profiles of the wines produced by these mixed cultures indicated that depending on the yeast species and the S. cerevisiae/non-Saccharomyces inoculum ratio, these non-Saccharomyces yeasts can be used to increase production of polysaccharides and to modulate the final concentrations of acetic acid and volatile compounds, such as ethyl acetate, phenyl-ethyl acetate, 2-phenyl ethanol, and 2-methyl 1-butanol. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    Directory of Open Access Journals (Sweden)

    Zhang Tingting

    2012-12-01

    Full Text Available Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products. Results We developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice. Conclusions Establishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.

  20. Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bojsen, Rasmus K; Andersen, Kaj Scherz; Regenberg, Birgitte

    2012-01-01

    Microbial biofilms can be defined as multi-cellular aggregates adhering to a surface and embedded in an extracellular matrix (ECM). The nonpathogenic yeast, Saccharomyces cerevisiae, follows the common traits of microbial biofilms with cell-cell and cell-surface adhesion. S. cerevisiae is shown t...

  1. Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii.

    Science.gov (United States)

    Datta, Suprama; Timson, David J; Annapure, Uday S

    2017-07-01

    Saccharomyces cerevisiae var. boulardii is the only yeast species with probiotic properties. It is considered to have therapeutic significance in gastrointestinal disorders. In the present study, a comparative physiological study between this yeast and Saccharomyces cerevisiae (BY4742) was performed by evaluating two prominent traits of probiotic species, responses to different stress conditions and antioxidant capacity. A global metabolite profile was also developed aiming to identify which therapeutically important secondary metabolites are produced. Saccharomyces cerevisiae var. boulardii showed no significant difference in growth patterns but greater stress tolerance compared to S. cerevisiae. It also demonstrated a six- to 10-fold greater antioxidant potential (judged by the 1,1-diphenyl-2-picrylhydrazyl assay), with a 70-fold higher total phenolic content and a 20-fold higher total flavonoid content in the extracellular fraction. These features were clearly differentiated by principal component analysis and further indicated by metabolite profiling. The extracellular fraction of the S. cerevisiae var. boulardii cultures was found to be rich in polyphenolic metabolites: vanillic acid, cinnamic acid, phenyl ethyl alcohol (rose oil), erythromycin, amphetamine and vitamin B 6 , which results in the antioxidant capacity of this strain. The present study presents a new perspective for differentiating the two genetically related strains of yeast, S. cerevisiae and S. cerevisiae var. boulardii by assessing their metabolome fingerprints. In addition to the correlation of the phenotypic properties with the secretory metabolites of these two yeasts, the present study also emphasizes the potential to exploit S. cerevisiae var. boulardii in the industrial production of these metabolites. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Glucose repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kayikci, Omur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluc......Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration...

  3. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Hubmann, Georg; Thevelein, Johan M; Nevoigt, Elke

    2014-01-01

    The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker's yeast has

  4. Co-cultivation of non-conventional yeast with Saccharomyces cerevisiae to increase the aroma complexity of fermented beverages

    NARCIS (Netherlands)

    Rijswijck, van Irma M.H.

    2017-01-01

    Yeast are used as workhorses to convert hopped wort into beer. Conventionally, such yeasts belong to the genus Saccharomyces and most research on fermentation of wort for the production of beer has focussed on the species Saccharomyces cerevisiae and Saccharomyces

  5. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.

    Science.gov (United States)

    Borodina, Irina; Nielsen, Jens

    2014-05-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Cherlys Infante J.

    2014-06-01

    Full Text Available Objective. In this study the biomass of the yeast Saccharomyces cerevisiae was used to remove lead, mercury and nickel in the form of ions dissolved in water. Materials and methods. Synthetic solutions were prepared containing the three heavy metals, which were put in contact with viable microorganisms at different conditions of pH, temperature, aeration and agitation. Results. Both individual variables and the interaction effects influenced the biosorption process. Throughout the experimental framework it was observed that the biomass of Saccharomyces cerevisiae removed a higher percentage of lead (86.4% as compared to mercury and nickel (69.7 and 47.8% respectively. When the pH was set at a value of 5 the effect was positive for all three metals. Conclusions. pH was the variable that had a greater influence on the biosorption of lead on the biomass of Saccharomyces cerevisiae. The affinity of the heavy metals for the biomass followed the order Pb>Hg>Ni.

  7. Co-cultivation of non-conventional yeast with Saccharomyces cerevisiae to increase the aroma complexity of fermented beverages

    OpenAIRE

    Rijswijck, van, Irma M.H.

    2017-01-01

    Yeast are used as workhorses to convert hopped wort into beer. Conventionally, such yeasts belong to the genus Saccharomyces and most research on fermentation of wort for the production of beer has focussed on the species Saccharomyces cerevisiae and Saccharomyces pastorianus. Recently, there is an increasing interest in unravelling features of non-conventional yeast species for beer innovation. In this thesis, features of yeast isolates belonging to the species: Cyberlindnera fabianii, Pichi...

  8. The influence of sucrose and maltose on Saccharomyces cerevisiae yeast multiplication

    Directory of Open Access Journals (Sweden)

    O. I. Ponomareva

    2016-01-01

    Full Text Available The data on the influence of fermentable carbohydrates concentration on yeast multiplication are widely represented in the literature. This study presents the results of experiments showing an influence of sucrose and maltose concentration on Saccharomyces cerevisiae yeast multiplication. The objects of this research are bakery, beer, wine and alcohol yeast that are widely used in fermentation industry. Beet molasses and malt wort were chosen as nutrient medium for yeast breeding. Their basic sugars are mainly represented by sucrose and maltose. The concentration of sugars was 9, 12, 16 and 20%. The intensity of yeast multiplication was evaluated based on yeast cells concentration during their cultivation and the specific growth rate. Sugar concentrations causing an intensive accumulation of examined yeast strains were determined. This paper presents the experimental data that were received describing the influence of sucrose and maltose concentration on the duration of a lag phase period for different yeast strains. Specific growth rates of researched strains were determined for nutrient mediums with different glucose and maltose concentrations. It was found that the Crabtree effect, that is caused by high carbohydrates concentration in culture medium, is most pronounced when yeast cells grow on a sucrose medium. Brewer’s and baker's yeast are more adapted to high concentrations of carbohydrates. The obtained experimental data could be utilized to develop flow charts of growing a pure culture of Saccharomyces cerevisiae yeast to use at fermentation plants, including low power ones.

  9. Functional co-operation between the nuclei of Saccharomyces cerevisiae and mitochondria from other yeast species

    DEFF Research Database (Denmark)

    Spirek, M.; Horvath, A.; Piskur, Jure

    2000-01-01

    We elaborated a simple method that allows the transfer of mitochondria from collection yeasts to Saccharomyces cerevisiae. Protoplasts prepared from different yeasts were fused to the protoplasts of the ade2-1, ura3-52, kar1-1, rho (0) strain of S. cerevisiae and were selected for respiring cybrids....... italicus, S, oviformis, S. capensis and S. chevalieri) exhibited complete compatibility with S. cerevisiae nuclei. The closely related S. douglasii mitochondrial genome could also partially restore respiration-deficiency in rho (0) S. cerevisiae, whereas mitochondrial genomes from phylogenetically less...

  10. Phenotypic evaluation and characterization of 21 industrial Saccharomyces cerevisiae yeast strains.

    Science.gov (United States)

    Kong, In Iok; Turner, Timothy Lee; Kim, Heejin; Kim, Soo Rin; Jin, Yong-Su

    2018-02-01

    Microorganisms have been studied and used extensively to produce value-added fuels and chemicals. Yeasts, specifically Saccharomyces cerevisiae, receive industrial attention because of their well-known ability to ferment glucose and produce ethanol. Thousands of natural or genetically modified S. cerevisiae have been found in industrial environments for various purposes. These industrial strains are isolated from industrial fermentation sites, and they are considered as potential host strains for superior fermentation processes. In many cases, industrial yeast strains have higher thermotolerance, increased resistances towards fermentation inhibitors and increased glucose fermentation rates under anaerobic conditions when compared with laboratory yeast strains. Despite the advantages of industrial strains, they are often not well characterized. Through screening and phenotypic characterization of commercially available industrial yeast strains, industrial fermentation processes requiring specific environmental conditions may be able to select an ideal starting yeast strain to be further engineered. Here, we have characterized and compared 21 industrial S. cerevisiae strains under multiple conditions, including their tolerance to varying pH conditions, resistance to fermentation inhibitors, sporulation efficiency and ability to ferment lignocellulosic sugars. These data may be useful for the selection of a parental strain for specific biotechnological applications of engineered yeast. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.

  12. Effects of Saccharomyces cerevisiae or boulardii yeasts on acute stress induced intestinal dysmotility.

    Science.gov (United States)

    West, Christine; Stanisz, Andrew M; Wong, Annette; Kunze, Wolfgang A

    2016-12-28

    To investigate the capacity of Saccharomyces cerevisiae ( S. cerevisiae ) and Saccharomyces boulardii ( S. boulardii ) yeasts to reverse or to treat acute stress-related intestinal dysmotility. Adult Swiss Webster mice were stressed for 1 h in a wire-mesh restraint to induce symptoms of intestinal dysmotility and were subsequently killed by cervical dislocation. Jejunal and colon tissue were excised and placed within a tissue perfusion bath in which S. cerevisiae , S. boulardii , or their supernatants were administered into the lumen. Video recordings of contractility and gut diameter changes were converted to spatiotemporal maps and the velocity, frequency, and amplitude of propagating contractile clusters (PCC) were measured. Motility pre- and post-treatment was compared between stressed animals and unstressed controls. S. boulardii and S. cerevisiae helped to mediate the effects of stress on the small and large intestine. Restraint stress reduced jejunal transit velocity (mm/s) from 2.635 ± 0.316 to 1.644 ± 0.238, P boulardii helped to restore jejunal and colonic velocity towards the unstressed controls; 1.833 ± 0.688 to 2.627 ± 0.664, P boulardii or S. cerevisiae supernatants also helped to restore motility to unstressed values in similar capacity. There is a potential therapeutic role for S. cerevisiae and S. boulardii yeasts and their supernatants in the treatment of acute stress-related gut dysmotility.

  13. Regularities of ''rapid'' repair in radiosensitive mutants of diploid yeasts Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Glazunov, A.V.; Kapul'tsevich, Yu.G.

    1982-01-01

    A study was made of ''rapid'' repair in radiosensitive mutants of diploid yeast Saccharomyces cerevisiae after irradiation with ν-quanta and α-particles. It was shown that the capacity of ''rapid'' repair does not always correlate with the ability of ''slow'' postirradiation repair of viability of yeast cells. A conclusion is made that ''rapid'' and ''slow'' repair are independent processes. It was found that ''rapid'' repair of the studied strains of diploid yeast is more effective after exposure to ν-quanta than α-particles

  14. Functional expression of rat VPAC1 receptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, M.K.; Tams, J.W.; Fahrenkrug, Jan

    1999-01-01

    G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide......G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide...

  15. Sporulation in the Budding Yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Neiman, Aaron M.

    2011-01-01

    In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae. PMID:22084423

  16. Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system.

    Science.gov (United States)

    Duina, Andrea A; Miller, Mary E; Keeney, Jill B

    2014-05-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans.

  17. Isolation of glutathione-deficient mutants of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kistler, M.; Eckardt, F.; Summer, K.-H.

    1986-01-01

    Glutathione-deficient (gsh - ) mutants of the yeast Saccharomyces cerevisiae were isolated after UV treatment using MNNG as selective agent. For genetic and biochemical characterization 5 mutant strains were chosen which exhibited considerably decreased residual GSH contents varying from 2 to 6% of the wild-type levels. All 5 isolates showed a 2:2 segregation of the gsh - :GSH + phenotypes alluding to a monogenic recessive mutation. Complementation analysis indicates that all gsh - mutants belong to one complementation group. (Auth.)

  18. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    Science.gov (United States)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  19. Apoptosis - Triggering Effects: UVB-irradiation and Saccharomyces cerevisiae.

    Science.gov (United States)

    Behzadi, Payam; Behzadi, Elham

    2012-12-01

    The pathogenic disturbance of Saccharomyces cerevisiae is known as a rare but invasive nosocomial fungal infection. This survey is focused on the evaluation of apoptosis-triggering effects of UVB-irradiation in Saccharomyces cerevisiae. The well-growth colonies of Saccharomyces cerevisiae on Sabouraud Dextrose Agar (SDA) were irradiated within an interval of 10 minutes by UVB-light (302 nm). Subsequently, the harvested DNA molecules of control and UV-exposed yeast colonies were run through the 1% agarose gel electrophoresis comprising the luminescent dye of ethidium bromide. No unusual patterns including DNA laddering bands or smears were detected. The applied procedure for UV exposure was not effective for inducing apoptosis in Saccharomyces cerevisiae. So, it needs another UV-radiation protocol for inducing apoptosis phenomenon in Saccharomyces cerevisiae.

  20. The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mathias Klein

    2016-12-01

    Full Text Available Glycerol is an abundant by-product during biodiesel production and additionally has several assets compared to sugars when used as a carbon source for growing microorganisms in the context of biotechnological applications. However, most strains of the platform production organism Saccharomyces cerevisiae grow poorly in synthetic glycerol medium. It has been hypothesized that the uptake of glycerol could be a major bottleneck for the utilization of glycerol in S. cerevisiae. This species exclusively relies on an active transport system for glycerol uptake. This work demonstrates that the expression of predicted glycerol facilitators (Fps1 homologues from superior glycerol-utilizing yeast species such as Pachysolen tannophilus, Komagataella pastoris, Yarrowia lipolytica and Cyberlindnera jadinii significantly improves the growth performance on glycerol of the previously selected glycerol-consuming S. cerevisiae wild-type strain (CBS 6412-13A. The maximum specific growth rate increased from 0.13 up to 0.18 h−1 and a biomass yield coefficient of 0.56 gDW/gglycerol was observed. These results pave the way for exploiting the assets of glycerol in the production of fuels, chemicals and pharmaceuticals based on baker's yeast. Keywords: Yeast, Saccharomyces cerevisiae, Glycerol, Transport, Glycerol facilitator, Fps1, Stl1

  1. Primers-4-Yeast: a comprehensive web tool for planning primers for Saccharomyces cerevisiae.

    Science.gov (United States)

    Yofe, Ido; Schuldiner, Maya

    2014-02-01

    The budding yeast Saccharomyces cerevisiae is a key model organism of functional genomics, due to its ease and speed of genetic manipulations. In fact, in this yeast, the requirement for homologous sequences for recombination purposes is so small that 40 base pairs (bp) are sufficient. Hence, an enormous variety of genetic manipulations can be performed by simply planning primers with the correct homology, using a defined set of transformation plasmids. Although designing primers for yeast transformations and for the verification of their correct insertion is a common task in all yeast laboratories, primer planning is usually done manually and a tool that would enable easy, automated primer planning for the yeast research community is still lacking. Here we introduce Primers-4-Yeast, a web tool that allows primers to be designed in batches for S. cerevisiae gene-targeting transformations, and for the validation of correct insertions. This novel tool enables fast, automated, accurate primer planning for large sets of genes, introduces consistency in primer planning and is therefore suggested to serve as a standard in yeast research. Primers-4-Yeast is available at: http://www.weizmann.ac.il/Primers-4-Yeast Copyright © 2013 John Wiley & Sons, Ltd.

  2. Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Novák, Jan; Strašák, Luděk; Fojt, Lukáš; Slaninová, I.; Vetterl, Vladimír

    2007-01-01

    Roč. 70, č. 1 (2007), s. 115-121 ISSN 1567-5394 R&D Projects: GA AV ČR(CZ) IAA4004404; GA AV ČR(CZ) IBS5004107 Institutional research plan: CEZ:AV0Z50040702 Keywords : low-frequency electromagnetic field * yeast * Saccharomyces cerevisiae Subject RIV: BO - Biophysics Impact factor: 2.992, year: 2007

  3. Saccharomyces cerevisiae variety diastaticus friend or foe?-spoilage potential and brewing ability of different Saccharomyces cerevisiae variety diastaticus yeast isolates by genetic, phenotypic and physiological characterization.

    Science.gov (United States)

    Meier-Dörnberg, Tim; Kory, Oliver Ingo; Jacob, Fritz; Michel, Maximilian; Hutzler, Mathias

    2018-06-01

    Saccharomyces cerevisiae variety diastaticus is generally considered to be an obligatory spoilage microorganism and spoilage yeast in beer and beer-mixed beverages. Their super-attenuating ability causes increased carbon dioxide concentrations, beer gushing and potential bottle explosion along with changes in flavor, sedimentation and increased turbidity. This research shows clear differences in the super-attenuating properties of S. cerevisiae var. diastaticus yeast strains and their potential for industrial brewing applications. Nineteen unknown spoilage yeast cultures were obtained as isolates and characterized using a broad spectrum of genetic and phenotypic methods. Results indicated that all isolates represent genetically different S. cerevisiae var. diastaticus strains except for strain TUM PI BA 124. Yeast strains were screened for their super-attenuating ability and sporulation. Even if the STA1 gene responsible for super-attenuation by encoding for the enzyme glucoamylase could be verified by real-time polymerase chain reaction, no correlation to the spoilage potential could be demonstrated. Seven strains were further characterized focusing on brewing and sensory properties according to the yeast characterization platform developed by Meier-Dörnberg. Yeast strain TUM 3-H-2 cannot metabolize dextrin and soluble starch and showed no spoilage potential or super-attenuating ability even when the strain belongs to the species S. cerevisiae var. diastaticus. Overall, the beer produced with S. cerevisiae var. diastaticus has a dry and winey body with noticeable phenolic off-flavors desirable in German wheat beers.

  4. Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance.

    Science.gov (United States)

    Garcia Sanchez, Rosa; Solodovnikova, Natalia; Wendland, Jürgen

    2012-08-01

    Lager beer brewing relies on strains collectively known as Saccharomyces carlsbergensis, which are hybrids between S. cerevisiae and S. eubayanus-like strains. Lager yeasts are particularly adapted to low-temperature fermentations. Selection of new yeast strains for improved traits or fermentation performance is laborious, due to the allotetraploid nature of lager yeasts. Initially, we have generated new F1 hybrids by classical genetics, using spore clones of lager yeast and S. cerevisiae and complementation of auxotrophies of the single strains upon mating. These hybrids were improved on several parameters, including growth at elevated temperature and resistance against high osmolarity or high ethanol concentrations. Due to the uncertainty of chromosomal make-up of lager yeast spore clones, we introduced molecular markers to analyse mating-type composition by PCR. Based on these results, new hybrids between a lager and an ale yeast strain were isolated by micromanipulation. These hybrids were not subject to genetic modification. We generated and verified 13 hybrid strains. All of these hybrid strains showed improved stress resistance as seen in the ale parent, including improved survival at the end of fermentation. Importantly, some of the strains showed improved fermentation rates using 18° Plato at 18-25°C. Uniparental mitochondrial DNA inheritance was observed mostly from the S. cerevisiae parent. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    Science.gov (United States)

    Hoang, Don; Kopp, Artyom; Chandler, James Angus

    2015-01-01

    Yeasts play an important role in the biology of the fruit fly, Drosophila melanogaster. In addition to being a valuable source of nutrition, yeasts affect D. melanogaster behavior and interact with the host immune system. Most experiments investigating the role of yeasts in D. melanogaster biology use the baker's yeast, Saccharomyces cerevisiae. However, S. cerevisiae is rarely found with natural populations of D. melanogaster or other Drosophila species. Moreover, the strain of S. cerevisiae used most often in D. melanogaster experiments is a commercially and industrially important strain that, to the best of our knowledge, was not isolated from flies. Since disrupting natural host-microbe interactions can have profound effects on host biology, the results from D. melanogaster-S. cerevisiae laboratory experiments may not be fully representative of host-microbe interactions in nature. In this study, we explore the D. melanogaster-yeast relationship using five different strains of yeast that were isolated from wild Drosophila populations. Ingested live yeasts have variable persistence in the D. melanogaster gastrointestinal tract. For example, Hanseniaspora occidentalis persists relative to S. cerevisiae, while Brettanomyces naardenensis is removed. Despite these differences in persistence relative to S. cerevisiae, we find that all yeasts decrease in total abundance over time. Reactive oxygen species (ROS) are an important component of the D. melanogaster anti-microbial response and can inhibit S. cerevisiae growth in the intestine. To determine if sensitivity to ROS explains the differences in yeast persistence, we measured yeast growth in the presence and absence of hydrogen peroxide. We find that B. naardenesis is completely inhibited by hydrogen peroxide, while H. occidentalis is not, which is consistent with yeast sensitivity to ROS affecting persistence within the D. melanogaster gastrointestinal tract. We also compared the feeding preference of D

  6. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered.

    Science.gov (United States)

    Jolly, Neil P; Varela, Cristian; Pretorius, Isak S

    2014-03-01

    Saccharomyces cerevisiae and grape juice are 'natural companions' and make a happy wine marriage. However, this relationship can be enriched by allowing 'wild' non-Saccharomyces yeast to participate in a sequential manner in the early phases of grape must fermentation. However, such a triangular relationship is complex and can only be taken to 'the next level' if there are no spoilage yeast present and if the 'wine yeast' - S. cerevisiae - is able to exert its dominance in time to successfully complete the alcoholic fermentation. Winemakers apply various 'matchmaking' strategies (e.g. cellar hygiene, pH, SO2 , temperature and nutrient management) to keep 'spoilers' (e.g. Dekkera bruxellensis) at bay, and allow 'compatible' wild yeast (e.g. Torulaspora delbrueckii, Pichia kluyveri, Lachancea thermotolerans and Candida/Metschnikowia pulcherrima) to harmonize with potent S. cerevisiae wine yeast and bring the best out in wine. Mismatching can lead to a 'two is company, three is a crowd' scenario. More than 40 of the 1500 known yeast species have been isolated from grape must. In this article, we review the specific flavour-active characteristics of those non-Saccharomyces species that might play a positive role in both spontaneous and inoculated wine ferments. We seek to present 'single-species' and 'multi-species' ferments in a new light and a new context, and we raise important questions about the direction of mixed-fermentation research to address market trends regarding so-called 'natural' wines. This review also highlights that, despite the fact that most frontier research and technological developments are often focussed primarily on S. cerevisiae, non-Saccharomyces research can benefit from the techniques and knowledge developed by research on the former. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile

    Directory of Open Access Journals (Sweden)

    Antoine Gobert

    2017-11-01

    Full Text Available Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available. We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for

  8. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile

    Science.gov (United States)

    Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé

    2017-01-01

    Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for some of the

  9. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  10. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines.

    Science.gov (United States)

    Sun, Shu Yang; Gong, Han Sheng; Jiang, Xiao Man; Zhao, Yu Ping

    2014-12-01

    This study examined the effect of mixed fermentation of non-Saccharomyces (Torulaspora delbrueckii ZYMAFLORE Alpha(TD n. Sacch) and Metschnikowia pulcherrima JS22) and Saccharomyces cerevisiae yeasts (D254 and EC1118) on the production of cherry wines, in comparison with commonly used mono-culture. Results obtained during AF demonstrated that negligible inhibitory effect was observed in S. cerevisiae/Alpha pair, whereas a strong antagonistic effect was detected between MJS22 and S. cerevisiae strain, resulting in an early death of MJS22. For volatile components determined, S. cerevisiae/MJS22 couple was found to significantly boost the production of most detected compounds, more particularly in higher alcohols, esters, acids and terpenes; while the characteristic of S. cerevisiae/Alpha pair is an increase in fruity esters, higher alcohols and decrease in acid production. Sensory evaluation revealed that S. cerevisiae/MJS22 pair reinforced sweet, green and fatty notes to the cherry wines, and S. cerevisiae/Alpha trial enhanced the fruity odour and reduced green note. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-01-01

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture...

  12. Effect of Saccharomyces, Non-Saccharomyces Yeasts and Malolactic Fermentation Strategies on Fermentation Kinetics and Flavor of Shiraz Wines

    Directory of Open Access Journals (Sweden)

    Heinrich du Plessis

    2017-12-01

    Full Text Available The use of non-Saccharomyces yeasts to improve complexity and diversify wine style is increasing; however, the interactions between non-Saccharomyces yeasts and lactic acid bacteria (LAB have not received much attention. This study investigated the interactions of seven non-Saccharomyces yeast strains of the genera Candida, Hanseniaspora, Lachancea, Metschnikowia and Torulaspora in combination with S. cerevisiae and three malolactic fermentation (MLF strategies in a Shiraz winemaking trial. Standard oenological parameters, volatile composition and sensory profiles of wines were investigated. Wines produced with non-Saccharomyces yeasts had lower alcohol and glycerol levels than wines produced with S. cerevisiae only. Malolactic fermentation also completed faster in these wines. Wines produced with non-Saccharomyces yeasts differed chemically and sensorially from wines produced with S. cerevisiae only. The Candida zemplinina and the one L. thermotolerans isolate slightly inhibited LAB growth in wines that underwent simultaneous MLF. Malolactic fermentation strategy had a greater impact on sensory profiles than yeast treatment. Both yeast selection and MLF strategy had a significant effect on berry aroma, but MLF strategy also had a significant effect on acid balance and astringency of wines. Winemakers should apply the optimal yeast combination and MLF strategy to ensure fast completion of MLF and improve wine complexity.

  13. Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Ke; Tong, Mengmeng; Gao, Kehui; Di, Yanan; Wang, Pinmei; Zhang, Chunfang; Wu, Xuechang; Zheng, Daoqiong

    2015-02-01

    Baker's yeast (Saccharomyces cerevisiae) is the common yeast used in the fields of bread making, brewing, and bioethanol production. Growth rate, stress tolerance, ethanol titer, and byproducts yields are some of the most important agronomic traits of S. cerevisiae for industrial applications. Here, we developed a novel method of constructing S. cerevisiae strains for co-producing bioethanol and ergosterol. The genome of an industrial S. cerevisiae strain, ZTW1, was first reconstructed through treatment with an antimitotic drug followed by sporulation and hybridization. A total of 140 mutants were selected for ethanol fermentation testing, and a significant positive correlation between ergosterol content and ethanol production was observed. The highest performing mutant, ZG27, produced 7.9 % more ethanol and 43.2 % more ergosterol than ZTW1 at the end of fermentation. Chromosomal karyotyping and proteome analysis of ZG27 and ZTW1 suggested that this breeding strategy caused large-scale genome structural variations and global gene expression diversities in the mutants. Genetic manipulation further demonstrated that the altered expression activity of some genes (such as ERG1, ERG9, and ERG11) involved in ergosterol synthesis partly explained the trait improvement in ZG27.

  14. Potential application of Saccharomyces cerevisiae strains for the ...

    African Journals Online (AJOL)

    This paper aimed at evaluating the fermentation behavior of selected Saccharomyces cerevisiae strains in banana pulp and they were compared with commercial yeast (baker's yeast) for subsequent production of distilled spirits. Five types of microorganisms were used: Four yeast strains obtained from accredited ...

  15. Early manifestations of replicative aging in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maksim I. Sorokin

    2014-01-01

    Full Text Available The yeast Saccharomyces cerevisiae is successfully used as a model organism to find genes responsible for lifespan control of higher organisms. As functional decline of higher eukaryotes can start as early as one quarter of the average lifespan, we asked whether S. cerevisiae can be used to model this manifestation of aging. While the average replicative lifespan of S. cerevisiae mother cells ranges between 15 and 30 division cycles, we found that resistances to certain stresses start to decrease much earlier. Looking into the mechanism, we found that knockouts of genes responsible for mitochondriato-nucleus (retrograde signaling, RTG1 or RTG3, significantly decrease the resistance of cells that generated more than four daughters, but not of the younger ones. We also found that even young mother cells frequently contain mitochondria with heterogeneous transmembrane potential and that the percentage of such cells correlates with replicative age. Together, these facts suggest that retrograde signaling starts to malfunction in relatively young cells, leading to accumulation of heterogeneous mitochondria within one cell. The latter may further contribute to a decline in stress resistances.

  16. Direct conversion of starch to ethanol using recombınant Saccharomyces cerevisiae containing glucoamylase gene

    Science.gov (United States)

    Purkan, P.; Baktir, A.; Puspaningsih, N. N. T.; Ni'mah, M.

    2017-09-01

    Saccharomyces cerevisiae is known for its high fermentative capacity, high ethanol yield and its high ethanol tolerance. The yeast is inability converting starch (relatively inexpensive substrate) into biofuel ethanol. Insertion of glucoamylase gene in yeast cell of Saccharomyces cerevisiae had been done to increase the yeast function in ethanol fermentation from starch. Transformation of yeast of S. cerevisiae with recombinant plasmid yEP-GLO1 carrying gene encoding glucoamylase (GLO1) produced the recombinant yeast which enable to degrade starch. Optimizing of bioconversion process of starch into ethanol by the yeast of recombinant Saccharomyces cerevisiae [yEP-GLO1] had been also done. Starch concentration which could be digested by recombinant yeast of S. cerevisiae [yEP-GLO1] was 10% (w/v). Bioconversion of starch having concentration 10% (b/v) using recombinant yeast of S. cerevisiae BY5207 [yEP-GLO1] could result ethanol as 20% (v/v) to alcoholmeter and 19,5% (v/v) to gas of chromatography. Otherwise, using recombinant yeast S. cerevisiae S. cerevisiae AS3324 [yEP-GLO1] resulted ethanol as 17% (v/v) to alcoholmeter and 17,5% (v/v) to gas of chromatography. The highest ethanol in starch bioconversion using both recombinant yeasts BY5207 and AS3324 could be resulted on 144 hours of fermentation time as well as in pH 5.

  17. Dynamic study of yeast species and Saccharomyces cerevisiae strains during the spontaneous fermentations of Muscat blanc in Jingyang, China.

    Science.gov (United States)

    Wang, Chunxiao; Liu, Yanlin

    2013-04-01

    The evolution of yeast species and Saccharomyces cerevisiae genotypes during spontaneous fermentations of Muscat blanc planted in 1957 in Jingyang region of China was followed in this study. Using a combination of colony morphology on Wallerstein Nutrient (WLN) medium, sequence analysis of the 26S rDNA D1/D2 domain and 5.8S-ITS-RFLP analysis, a total of 686 isolates were identified at the species level. The six species identified were S. cerevisiae, Hanseniaspora uvarum, Hanseniaspora opuntiae, Issatchenkia terricola, Pichia kudriavzevii (Issatchenkia orientalis) and Trichosporon coremiiforme. This is the first report of T. coremiiforme as an inhabitant of grape must. Three new colony morphologies on WLN medium and one new 5.8S-ITS-RFLP profile are described. Species of non-Saccharomyces, predominantly H. opuntiae, were found in early stages of fermentation. Subsequently, S. cerevisiae prevailed followed by large numbers of P. kudriavzevii that dominated at the end of fermentations. Six native genotypes of S. cerevisiae were determined by interdelta sequence analysis. Genotypes III and IV were predominant. As a first step in exploring untapped yeast resources of the region, this study is important for monitoring the yeast ecology in native fermentations and screening indigenous yeasts that will produce wines with regional characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Transport and cytotoxicity of the anticancer drug 3-bromopyruvate in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Lis, Paweł; Zarzycki, Marek; Ko, Young H; Casal, Margarida; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2012-02-01

    We have investigated the cytotoxicity in Saccharomyces cerevisiae of the novel antitumor agent 3-bromopyruvate (3-BP). 3-BP enters the yeast cells through the lactate/pyruvate H(+) symporter Jen1p and inhibits cell growth at minimal inhibitory concentration of 1.8 mM when grown on non-glucose conditions. It is not submitted to the efflux pumps conferring Pleiotropic Drug Resistance in yeast. Yeast growth is more sensitive to 3-BP than Gleevec (Imatinib methanesulfonate) which in contrast to 3-BP is submitted to the PDR network of efflux pumps. The sensitivity of yeast to 3-BP is increased considerably by mutations or chemical treatment by buthionine sulfoximine that decrease the intracellular concentration of glutathione.

  19. Inheritance and organisation of the mitochondrial genome differ between two Saccharomyces yeasts

    DEFF Research Database (Denmark)

    Petersen, Randi Føns; Langkjær, Rikke Breinhold; Hvidtfeldt, J.

    2002-01-01

    Petite-positive Saccharomyces yeasts can be roughly divided into the sensu stricto, including Saccharomyces cerevisiae, and sensu lato group, including Saccharomyces castellii; the latter was recently studied for transmission and the organisation of its mitochondrial genome. S. castellii mitochon......Petite-positive Saccharomyces yeasts can be roughly divided into the sensu stricto, including Saccharomyces cerevisiae, and sensu lato group, including Saccharomyces castellii; the latter was recently studied for transmission and the organisation of its mitochondrial genome. S. castellii...... mitochondrial molecules (mtDNA) carrying point mutations, which confer antibiotic resistance, behaved in genetic crosses as the corresponding point mutants of S. cerevisiae. While S. castellii generated spontaneous petite mutants in a similar way as S. cerevisiae, the petites exhibited a different inheritance...... pattern. In crosses with the wild type strains a majority of S. castellii petites was neutral, and the suppressivity in suppressive petites was never over 50%. The two yeasts also differ in organisation of their mtDNA molecules. The 25,753 bp sequence of S. castellii mtDNA was determined and the coding...

  20. Looking for immunotolerance: a case of allergy to baker's yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Pajno, G B; Passalacqua, G; Salpietro, C; Vita, D; Caminiti, L; Barberio, G

    2005-09-01

    We describe one case of baker's yeast true allergy in a boy with previously diagnosed mite-allergy and atopic dermatitis. At the age of 6, being atopic dermatitis and rhinitis well controlled by drugs, he began to experience generalized urticaria and asthma after eating pizza and bread, but only fresh from the oven. The diagnostic workup revealed single sensitization to baker's yeast (Saccharomyces cerevisiae), and a severe systemic reaction also occurred during the prick-by-prick procedure. After discussing with parents, no special dietary restriction was suggested but the use of autoinjectable adrenaline and on demand salbutamol. A diary of symptoms was recorded by means of a visual-analog scale. During the subsequent 2 years, the severity of symptoms was progressively reduced, and presently urticaria has disappeared. Only cough persists, invariantly after eating just-baked and yeast-containing foods. If bread, pizza and cakes are ate more than one hour after preparation, no symptom occur at all. Baker's yeast is a common component of everyday diet and it usually acts as an allergen only by the inhalatory route. We speculate that the continuous exposure to saccharomyces in foods may have lead to an immunotolerance with a progressive reduction of symptoms, whereas why the allergens is active only in ready-baked foods remains unexplained.

  1. Characterisation of Saccharomyces cerevisiae hybrids selected for ...

    African Journals Online (AJOL)

    Wine yeasts (Saccharomyces cerevisiae) vary in their ability to develop the full aroma potential of Sauvignon blanc wine due to an inability to release volatile thiols. Subsequently, the use of 'thiolreleasing' wine yeasts (TRWY) has increased in popularity. However, anecdotal evidence suggests that some commercially ...

  2. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae

    Science.gov (United States)

    Yong-Su Jin; Thomas W. Jeffries

    2004-01-01

    Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast raditionally...

  3. L-histidine inhibits biofilm formation and FLO11-associated phenotypes in Saccharomyces cerevisiae flor yeasts.

    Science.gov (United States)

    Bou Zeidan, Marc; Zara, Giacomo; Viti, Carlo; Decorosi, Francesca; Mannazzu, Ilaria; Budroni, Marilena; Giovannetti, Luciana; Zara, Severino

    2014-01-01

    Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to Flo11p expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air-liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the Flo11p gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts [corrected].

  4. Fatal Saccharomyces Cerevisiae Aortic Graft Infection

    Science.gov (United States)

    Meyer, Michael (Technical Monitor); Smith, Davey; Metzgar, David; Wills, Christopher; Fierer, Joshua

    2002-01-01

    Saccharomyces cerevisiae is a yeast commonly used in baking and a frequent colonizer of human mucosal surfaces. It is considered relatively nonpathogenic in immunocompetent adults. We present a case of S. cerevisiae fungemia and aortic graft infection in an immunocompetent adult. This is the first reported case of S. cerevisiue fungemia where the identity of the pathogen was confirmed by rRNA sequencing.

  5. Genomic Sequence of Saccharomyces cerevisiae BAW-6, a Yeast Strain Optimal for Brewing Barley Shochu.

    Science.gov (United States)

    Kajiwara, Yasuhiro; Mori, Kazuki; Tashiro, Kosuke; Higuchi, Yujiro; Takegawa, Kaoru; Takashita, Hideharu

    2018-04-05

    Here, we report the draft genome sequence of Saccharomyces cerevisiae strain BAW-6, which is used for the production of barley shochu, a traditional Japanese spirit. This genomic information can be used to elucidate the genetic basis underlying the high alcohol production capacity and citric acid tolerance of shochu yeast. Copyright © 2018 Kajiwara et al.

  6. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains.

    Science.gov (United States)

    van der Aa Kühle, Alis; Skovgaard, Kerstin; Jespersen, Lene

    2005-05-01

    The probiotic potential of 18 Saccharomyces cerevisiae strains used for production of foods or beverages or isolated from such, and eight strains of Saccharomyces cerevisiae var. boulardii, was investigated. All strains included were able to withstand pH 2.5 and 0.3% Oxgall. Adhesion to the nontumorigenic porcine jejunal epithelial cell line (IPEC-J2) was investigated by incorporation of 3H-methionine into the yeast cells and use of liquid scintillation counting. Only few of the food-borne S. cerevisiae strains exhibited noteworthy adhesiveness with the strongest levels of adhesion (13.6-16.8%) recorded for two isolates from blue veined cheeses. Merely 25% of the S. cerevisiae var. boulardii strains displayed good adhesive properties (16.2-28.0%). The expression of the proinflammatory cytokine IL-1alpha decreased strikingly in IPEC-J2 cells exposed to a Shiga-like toxin 2e producing Escherichia coli strain when the cells were pre- and coincubated with S. cerevisiae var. boulardii even though this yeast strain was low adhesive (5.4%), suggesting that adhesion is not a mandatory prerequisite for such a probiotic effect. A strain of S. cerevisiae isolated from West African sorghum beer exerted similar effects hence indicating that food-borne strains of S. cerevisiae may possess probiotic properties in spite of low adhesiveness.

  7. Evaluation of different co-inoculation time of non-Saccharomyces/Saccharomyces yeasts in order to obtain reduced ethanol wines

    Directory of Open Access Journals (Sweden)

    Mestre María Victoria

    2016-01-01

    Full Text Available Decreasing ethanol content in wines has become one of the main objectives of winemakers in different areas of the world. The use of selected wine yeasts can be considered one of the most effective and simple tools. The aim of this study was to evaluate the effect of co-inoculation times of selected non-Saccharomyces/Saccharomyces yeasts on the reduction of ethanol levels in wines. Hanseniaspora uvarum BHu9, Starmerella bacillaris BSb55 and Candida membranaefasciens BCm71 were co-inoculate with Saccharomyces cerevisiae under fermentative conditions. Treatments assayed were: pure fermentations of S. cerevisiae BSc203 and non-Saccharomyces yeasts BHu9, BSb55 and BCm71; -co-fermentations: A-BHu9/BSc203; B-BSb55/BSc203 and C-BCm71/BSc203. These co-inoculations were carried out under mixed (simultaneous inoculation, and sequential conditions (non-Saccharomyces yeasts inoculated at initial time and S. cerevisiae at 48, 96 and 144 h. Lower fermentative efficiencies were registered when BHu9 and BSb55 remained pure more time. Conversely, the conversion efficiency was reduced in co-inocula of BCm71/BSc203, when both yeasts interact more time. Metabolites produced during all vinification processes were within acceptable concentration ranges according to the current legislations. Conclusion Time interaction during fermentation processes of non-Saccharomyces and Saccharomyces yeasts showed influence on ethanol production, and this effect would be dependent on the co-inoculated species.

  8. Genomic diversity of Saccharomyces cerevisiae yeasts associated with alcoholic fermentation of bacanora produced by artisanal methods.

    Science.gov (United States)

    Álvarez-Ainza, M L; Zamora-Quiñonez, K A; Moreno-Ibarra, G M; Acedo-Félix, E

    2015-03-01

    Bacanora is a spirituous beverage elaborated with Agave angustifolia Haw in an artisanal process. Natural fermentation is mostly performed with native yeasts and bacteria. In this study, 228 strains of yeast like Saccharomyces were isolated from the natural alcoholic fermentation on the production of bacanora. Restriction analysis of the amplified region ITS1-5.8S-ITS2 of the ribosomal DNA genes (RFLPr) were used to confirm the genus, and 182 strains were identified as Saccharomyces cerevisiae. These strains displayed high genomic variability in their chromosomes profiles by karyotyping. Electrophoretic profiles of the strains evaluated showed a large number of chromosomes the size of which ranged between 225 and 2200 kpb approximately.

  9. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    van der Aa Kuhle, Alis; Skovgaard, Kerstin; Jespersen, Lene

    2005-01-01

    .6-16.8%) recorded for two isolates from blue veined cheeses. Merely 25% of the S. cerevisiae var. boulardii strains displayed good adhesive properties (16.2-28.0%). The expression of the proinflammatory cytokine IL-1α decreased strikingly in IPEC-J2 cells exposed to a Shiga-like toxin 2e producing Escherichia coli...... strain when the cells were pre- and coincubated with S. cerevisiae var. boulardii even though this yeast strain was low adhesive (5.4%), suggesting that adhesion is not a mandatory prerequisite for such a probiotic effect. A strain of S. cerevisiae isolated from West African sorghum beer exerted similar......The probiotic potential of IS Saccharomyces cerevisiae strains used for production of foods or bevel-ages or isolated from such, and eight strains of Saccharomyces cerevisiae var. boulardii, was investigated. All strains included were able to withstand pH 2.5 and 0.3% Ox-all. Adhesion...

  10. Biosynthesis of diphthamide in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Chen, J.Y.C.

    1985-01-01

    Inactivation of EF-2 by diphtheria toxin requires the presence of a posttranslationally synthesized amino acid residue, diphthamide. The present work was undertaken to study the biosynthetic mechanism of diphthamide synthesis in the yeast Saccharomyces cerevisiae in order to gain better understanding of the biological roles of this unique amino acid residue. Thirty-one haploid ADP-ribosylation-negative mutants, comprising 5 complementation groups, were obtained. One of these mutants contains a toxin-resistant form of EF-2 which can be converted to a toxin-sensitive form through the methylation reaction catalyzed by a S-AdoMet:EF-2 methyltransferase enzyme which is present in other yeast strains. The [ 3 He]methylated residue in the EF-2 modified by the methyltransferase in the presence of S-Ado-L-[ 3 H-methyl]-Met has been analyzed chromatographically following both acid and enzymatic hydrolysis. At the conclusion of the reaction, all of the radiolabel was recovered as diphthine (the unamidated form of diphthamide). The authors conclude that the S-AdoMet:EF-2-methyltransferase is specific for the addition of at least the last two of the three methyl groups present in diphthine

  11. Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts.

    Science.gov (United States)

    Sadoudi, Mohand; Tourdot-Maréchal, Raphaëlle; Rousseaux, Sandrine; Steyer, Damien; Gallardo-Chacón, Joan-Josep; Ballester, Jordi; Vichi, Stefania; Guérin-Schneider, Rémi; Caixach, Josep; Alexandre, Hervé

    2012-12-01

    There has been increasing interest in the use of selected non-Saccharomyces yeasts in co-culture with Saccharomyces cerevisiae. The main reason is that the multistarter fermentation process is thought to simulate indigenous fermentation, thus increasing wine aroma complexity while avoiding the risks linked to natural fermentation. However, multistarter fermentation is characterised by complex and largely unknown interactions between yeasts. Consequently the resulting wine quality is rather unpredictable. In order to better understand the interactions that take place between non-Saccharomyces and Saccharomyces yeasts during alcoholic fermentation, we analysed the volatile profiles of several mono-culture and co-cultures. Candida zemplinina, Torulaspora delbrueckii and Metschnikowia pulcherrima were used to conduct fermentations either in mono-culture or in co-culture with S. cerevisiae. Up to 48 volatile compounds belonging to different chemical families were quantified. For the first time, we show that C. zemplinina is a strong producer of terpenes and lactones. We demonstrate by means of multivariate analysis that different interactions exist between the co-cultures studied. We observed a synergistic effect on aromatic compound production when M. pulcherrima was in co-culture with S. cerevisiae. However a negative interaction was observed between C. zemplinina and S. cerevisiae, which resulted in a decrease in terpene and lactone content. These interactions are independent of biomass production. The aromatic profiles of T. delbrueckii and S. cerevisiae in mono-culture and in co-culture are very close, and are biomass-dependent, reflecting a neutral interaction. This study reveals that a whole family of compounds could be altered by such interactions. These results suggest that the entire metabolic pathway is affected by these interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Hansen, Esben H; Møller, Birger Lindberg; Kock, Gertrud R; Bünner, Camilla M; Kristensen, Charlotte; Jensen, Ole R; Okkels, Finn T; Olsen, Carl E; Motawia, Mohammed S; Hansen, Jørgen

    2009-05-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin beta-D-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.

  13. Utilization of spent brewer’s yeast Saccharomyces cerevisiae for the production of yeast enzymatic hydrolysate

    Directory of Open Access Journals (Sweden)

    M Bayarjargal

    2014-09-01

    Full Text Available Spent brewer’s yeast (Saccharomyces cerevisiae is a rich source of protein, vitamins and widely used as a raw material for production of food supplements. The autolysis and enzymatic treatment of spent brewer’s yeast using Pancreatin (2.5% and Flavourzyme (2.5% were performed at 45 °C and 50 °C, respectively. The autolysis and hydrolysis processes were evaluated by determining a soluble solids, soluble protein concentration and α-amino nitrogen content in a reaction mixture. The yield of pancreatic digest and α-amino nitrogen content was high in comparison with autolysis and Flavourzyme treatment. The total solids recovery in dry Yeast hydrolysate was about 50%, a protein and α-amino nitrogen content was 55.9 and 4.8%, respectively. These results show the possibility of utilizing the spent brewer’s yeast as hydrolysate using hydrolytic enzymes and use it as a food supplement after biological experiments.DOI: http://dx.doi.org/10.5564/mjc.v12i0.179 Mongolian Journal of Chemistry Vol.12 2011: 88-91

  14. Performance evaluation of Pichia kluyveri, Kluyveromyces marxianus and Saccharomyces cerevisiae in industrial tequila fermentation.

    Science.gov (United States)

    Amaya-Delgado, L; Herrera-López, E J; Arrizon, Javier; Arellano-Plaza, M; Gschaedler, A

    2013-05-01

    Traditionally, industrial tequila production has used spontaneous fermentation or Saccharomyces cerevisiae yeast strains. Despite the potential of non-Saccharomyces strains for alcoholic fermentation, few studies have been performed at industrial level with these yeasts. Therefore, in this work, Agave tequilana juice was fermented at an industrial level using two non-Saccharomyces yeasts (Pichia kluyveri and Kluyveromyces marxianus) with fermentation efficiency higher than 85 %. Pichia kluyveri (GRO3) was more efficient for alcohol and ethyl lactate production than S. cerevisiae (AR5), while Kluyveromyces marxianus (GRO6) produced more isobutanol and ethyl-acetate than S. cerevisiae (AR5). The level of volatile compounds at the end of fermentation was compared with the tequila standard regulation. All volatile compounds were within the allowed range except for methanol, which was higher for S. cerevisiae (AR5) and K. marxianus (GRO6). The variations in methanol may have been caused by the Agave tequilana used for the tests, since this compound is not synthesized by these yeasts.

  15. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts.

    Science.gov (United States)

    Barbosa, Catarina; Lage, Patrícia; Vilela, Alice; Mendes-Faia, Arlete; Mendes-Ferreira, Ana

    2014-01-01

    Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase.

  16. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  17. Fatty acid metabolism in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    van Roermund, C. W. T.; Waterham, H. R.; IJlst, L.; Wanders, R. J. A.

    2003-01-01

    Peroxisomes are essential subcellular organelles involved in a variety of metabolic processes. Their importance is underlined by the identification of a large group of inherited diseases in humans in which one or more of the peroxisomal functions are impaired. The yeast Saccharomyces cerevisiae has

  18. Cell-surface display of enzymes by the yeast Saccharomyces cerevisiae for synthetic biology.

    Science.gov (United States)

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-02-01

    In yeast cell-surface displays, functional proteins, such as cellulases, are genetically fused to an anchor protein and expressed on the cell surface. Saccharomyces cerevisiae, which is often utilized as a cell factory for the production of fuels, chemicals, and proteins, is the most commonly used yeast for cell-surface display. To construct yeast cells with a desired function, such as the ability to utilize cellulose as a substrate for bioethanol production, cell-surface display techniques for the efficient expression of enzymes on the cell membrane need to be combined with metabolic engineering approaches for manipulating target pathways within cells. In this Minireview, we summarize the recent progress of biorefinery fields in the development and application of yeast cell-surface displays from a synthetic biology perspective and discuss approaches for further enhancing cell-surface display efficiency. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  19. PREPARATION OF ZINC ENRICHED YEAST (SACCHAROMYCES CEREVISIAE BY CULTIVATION WITH DIFFERENT ZINC SALTS

    Directory of Open Access Journals (Sweden)

    Ľuboš Harangozo

    2012-02-01

    Full Text Available The yeast Saccharomyces cerevisiae is the best known microorganism and therefore widely used in many branches of industry. This study aims to investigate the accumulation of three inorganic zinc salts. Our research presents the ability of this yeast to absorb zinc from liquid medium and such enriched biomass use as a potential source of microelements in animal and/or human nutrition. It was found that the addition of different zinc forms, i.e. zinc nitrate, zinc sulphate and zinc chloride in fixed concentrations of 0, 25, 50 and 100 mg.100 ml-1 did not affect the amount of dry yeast biomass yielded, i.e. 1.0 – 1.2 g of yeast cells from 100 ml of cultivation medium, while higher presence of zinc solutions caused significantly lower yield of yeast biomass. The highest amount of zinc in yeast cells was achieved when added in the form of zinc nitrate in concentration of 200 mg.100 ml-1 YPD medium. The increment of intracellular zinc was up to 18.5 mg.g-1 of yeast biomass.

  20. Tolerant industrial yeast Saccharomyces cerevisiae posses a more robust cell wall integrity signaling pathway against 2-furaldehyde and 5-(hydroxymethyl)-2-furaldehyde

    Science.gov (United States)

    Cell wall integrity signaling pathway in Saccharomyces cerevisiae is a conserved function for detecting and responding to cell stress conditions but less understood for industrial yeast. We dissected gene expression dynamics for a tolerant industrial yeast strain NRRL Y-50049 in response to challeng...

  1. Yeast ratio is a critical factor for sequential fermentation of papaya wine by Williopsis saturnus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Pin-Rou; Kho, Stephanie Hui Chern; Yu, Bin; Curran, Philip; Liu, Shao-Quan

    2013-07-01

    The growth kinetics and fermentation performance of Williopsis saturnus and Saccharomyces cerevisiae at ratios of 10:1, 1:1 and 1:10 (W.:S.) were studied in papaya juice with initial 7-day fermentation by W.saturnus, followed by S. cerevisiae. The growth kinetics of W. saturnus were similar at all ratios, but its maximum cell count decreased as the proportion of S. cerevisiae was increased. Conversely, there was an early death of S. cerevisiae at the ratio of 10:1. Williopsis saturnus was the dominant yeast at 10:1 ratio that produced papaya wine with elevated concentrations of acetate esters. On the other hand, 1:1 and 1:10 ratios allowed the coexistence of both yeasts which enabled the flavour-enhancing potential of W.saturnus as well as the ethyl ester and alcohol-producing abilities of S. cerevisiae. In particular, 1:1 and 1:10 ratios resulted in production of more ethyl esters, alcohols and 2-phenylethyl acetate. However, the persistence of both yeasts at 1:1 and 1:10 ratios led to formation of high levels of acetic acid. The findings suggest that yeast ratio is a critical factor for sequential fermentation of papaya wine by W.saturnus and S. cerevisiae as a strategy to modulate papaya wine flavour. © 2012 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe) and Baker's Yeast (Saccharomyces cerevisiae) ▿

    Science.gov (United States)

    Hansen, Esben H.; Møller, Birger Lindberg; Kock, Gertrud R.; Bünner, Camilla M.; Kristensen, Charlotte; Jensen, Ole R.; Okkels, Finn T.; Olsen, Carl E.; Motawia, Mohammed S.; Hansen, Jørgen

    2009-01-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin β-d-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity. PMID:19286778

  3. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Li, Mingji

    2015-01-01

    Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof...... biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae. We describe......-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic...

  4. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zadorsky, S P; Sopova, Y V; Andreichuk, D Y; Startsev, V A; Medvedeva, V P; Inge-Vechtomov, S G

    2015-06-01

    The SUP35 gene of the yeast Saccharomyces cerevisiae encodes the translation termination factor eRF3. Mutations in this gene lead to the suppression of nonsense mutations and a number of other pleiotropic phenotypes, one of which is impaired chromosome segregation during cell division. Similar effects result from replacing the S. cerevisiae SUP35 gene with its orthologues. A number of genetic and epigenetic changes that occur in the sup35 background result in partial compensation for this suppressor effect. In this study we showed that in S. cerevisiae strains in which the SUP35 orthologue from the yeast Pichia methanolica replaces the S. cerevisiae SUP35 gene, chromosome VIII disomy results in decreased efficiency of nonsense suppression. This antisuppressor effect is not associated with decreased stop codon read-through. We identified SBP1, a gene that localizes to chromosome VIII, as a dosage-dependent antisuppressor that strongly contributes to the overall antisuppressor effect of chromosome VIII disomy. Disomy of chromosome VIII also leads to a change in the yeast strains' tolerance of a number of transition metal salts. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Intracellular Signal Triggered by Cholera Toxin in Saccharomyces boulardii and Saccharomyces cerevisiae

    Science.gov (United States)

    Brandão, Rogelio L.; Castro, Ieso M.; Bambirra, Eduardo A.; Amaral, Sheila C.; Fietto, Luciano G.; Tropia, Maria José M.; Neves, Maria José; Dos Santos, Raquel G.; Gomes, Newton C. M.; Nicoli, Jacques R.

    1998-01-01

    As is the case for Saccharomyces boulardii, Saccharomyces cerevisiae W303 protects Fisher rats against cholera toxin (CT). The addition of glucose or dinitrophenol to cells of S. boulardii grown on a nonfermentable carbon source activated trehalase in a manner similar to that observed for S. cerevisiae. The addition of CT to the same cells also resulted in trehalase activation. Experiments performed separately on the A and B subunits of CT showed that both are necessary for activation. Similarly, the addition of CT but not of its separate subunits led to a cyclic AMP (cAMP) signal in both S. boulardii and S. cerevisiae. These data suggest that trehalase stimulation by CT probably occurred through the cAMP-mediated protein phosphorylation cascade. The requirement of CT subunit B for both the cAMP signal and trehalase activation indicates the presence of a specific receptor on the yeasts able to bind to the toxin, a situation similar to that observed for mammalian cells. This hypothesis was reinforced by experiments with 125I-labeled CT showing specific binding of the toxin to yeast cells. The adhesion of CT to a receptor on the yeast surface through the B subunit and internalization of the A subunit (necessary for the cAMP signal and trehalase activation) could be one more mechanism explaining protection against the toxin observed for rats treated with yeasts. PMID:9464394

  6. Signature gene expressions of cell wall integrity pathway concur with tolerance response of industrial yeast Saccharomyces cerevisiae against biomass pretreatment inhibitors

    Science.gov (United States)

    Traditional industrial ethanologenic yeast Saccharomyces cerevisiae has a robust performance under various environmental conditions and can be served as a candidate for the next-generation biocatalyst development for advanced biofuels production using lignocellulose mateials. Overcoming toxic compou...

  7. Glucose repression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kayikci, Ömur; Nielsen, Jens

    2015-09-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. © FEMS 2015.

  8. Oxygen availability and strain combination modulate yeast growth dynamics in mixed culture fermentations of grape must with Starmerella bacillaris and Saccharomyces cerevisiae.

    Science.gov (United States)

    Englezos, Vasileios; Cravero, Francesco; Torchio, Fabrizio; Rantsiou, Kalliopi; Ortiz-Julien, Anne; Lambri, Milena; Gerbi, Vincenzo; Rolle, Luca; Cocolin, Luca

    2018-02-01

    Starmerella bacillaris (synonym Candida zemplinina) is a non-Saccharomyces yeast that has been proposed as a co-inoculant of selected Saccharomyces cerevisiae strains in mixed culture fermentations to enhance the analytical composition of the wines. In order to acquire further knowledge on the metabolic interactions between these two species, in this study we investigated the impact of oxygen addition and combination of Starm. bacillaris with S. cerevisiae strains on the microbial growth and metabolite production. Fermentations were carried out under two different conditions of oxygen availability. Oxygen availability and strain combination clearly influenced the population dynamics throughout the fermentation. Oxygen concentration increased the survival time of Starm. bacillaris and decreased the growth rate of S. cerevisiae strains in mixed culture fermentations, whereas it did not affect the growth of the latter in pure culture fermentations. This study reveals new knowledge about the influence of oxygen availability on the successional evolution of yeast species during wine fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Intensification of the process of sorption of copper ions by yeast of Saccharomyces cerevisiae 1968 by means of a permanent magnetic field

    International Nuclear Information System (INIS)

    Gorobets, Svetlana; Gorobets, Oksana; Ukrainetz, Anatoliy; Kasatkina, Taisiya; Goyko, Irina

    2004-01-01

    Possibility to replace mechanical stirring by magnetic field-induced one was shown for intensification of yeast biosorption and cementation. Combined method of metal ion recover, including Cu ion sorption by yeast Saccharomyces cerevisiae and Cu cementation on a surface of a steel matrix, is tested in a case of magnetic field-induced stirring

  10. Loss of lager specific genes and subtelomeric regions define two different Saccharomyces cerevisiae lineages for Saccharomyces pastorianus Group I and II strains.

    Science.gov (United States)

    Monerawela, Chandre; James, Tharappel C; Wolfe, Kenneth H; Bond, Ursula

    2015-03-01

    Lager yeasts, Saccharomyces pastorianus, are interspecies hybrids between S. cerevisiae and S. eubayanus and are classified into Group I and Group II clades. The genome of the Group II strain, Weihenstephan 34/70, contains eight so-called 'lager-specific' genes that are located in subtelomeric regions. We evaluated the origins of these genes through bioinformatic and PCR analyses of Saccharomyces genomes. We determined that four are of cerevisiae origin while four originate from S. eubayanus. The Group I yeasts contain all four S. eubayanus genes but individual strains contain only a subset of the cerevisiae genes. We identified S. cerevisiae strains that contain all four cerevisiae 'lager-specific' genes, and distinct patterns of loss of these genes in other strains. Analysis of the subtelomeric regions uncovered patterns of loss in different S. cerevisiae strains. We identify two classes of S. cerevisiae strains: ale yeasts (Foster O) and stout yeasts with patterns of 'lager-specific' genes and subtelomeric regions identical to Group I and II S. pastorianus yeasts, respectively. These findings lead us to propose that Group I and II S. pastorianus strains originate from separate hybridization events involving different S. cerevisiae lineages. Using the combined bioinformatic and PCR data, we describe a potential classification map for industrial yeasts. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  11. Ubiquitin regulates TORC1 in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Hu, Kejin; Guo, Shuguang; Yan, Gonghong; Yuan, Wenjie; Zheng, Yin; Jiang, Yu

    2016-04-01

    In the yeast Saccharomyces cerevisiae the TOR complex 1 (TORC1) controls many growth-related cellular processes and is essential for cell growth and proliferation. Macrolide antibiotic rapamycin, in complex with a cytosol protein named FKBP12, specifically inhibits TORC1, causing growth arrest. The FKBP12-rapamycin complex interferes with TORC1 function by binding to the FRB domain of the TOR proteins. In an attempt to understand the role of the FRB domain in TOR function, we identified a single point mutation (Tor2(W2041R) ) in the FRB domain of Tor2 that renders yeast cells rapamycin resistant and temperature sensitive. At the permissive temperature, the Tor2 mutant protein is partially defective for binding with Kog1 and TORC1 is impaired for membrane association. At the restrictive temperature, Kog1 but not the Tor2 mutant protein, is rapidly degraded. Overexpression of ubiquitin stabilizes Kog1 and suppresses the growth defect associated with the tor2 mutant at the nonpremissive temperature. We find that ubiquitin binds non-covalently to Kog1, prevents Kog1 from degradation and stabilizes TORC1. Our data reveal a unique role for ubiquitin in regulation of TORC1 and suggest that Kog1 requires association with the Tor proteins for stabilization. © 2016 John Wiley & Sons Ltd.

  12. Formation and mobilization of neutral lipids in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Wagner, A; Daum, G

    2005-11-01

    Since energy storage is a basic metabolic process, the synthesis of neutral lipids occurs in all kingdoms of life. The yeast Saccharomyces cerevisiae, widely accepted as a model eukaryotic cell, contains two classes of neutral lipids, namely STEs (steryl esters) and TAGs (triacylglycerols). TAGs are synthesized through two pathways governed by the acyl-CoA diacylglycerol acyltransferase Dga1p and the phospholipid diacylglycerol acyltransferase Lro1p. STEs are formed by two STE synthases Are1p and Are2p, two enzymes with overlapping function, which also catalyse TAG formation, although to a minor extent. Neutral lipids are stored in the so-called lipid particles and can be utilized for membrane formation under conditions of lipid depletion. For this purpose, storage lipids have to be mobilized by TAG lipases and STE hydrolases. A TAG lipase named Tgl3p was identified as a major yeast TAG hydrolytic enzyme in lipid particles. Recently, a new family of hydrolases was detected which is required for STE mobilization in S. cerevisiae. These enzymes, named Yeh1p, Yeh2p and Tgl1p, are paralogues of the mammalian acid lipase family. The role of these proteins in biosynthesis and mobilization of TAG and STE, and the regulation of these processes will be discussed in this minireview.

  13. [Mitochondria inheritance in yeast saccharomyces cerevisiae].

    Science.gov (United States)

    Fizikova, A Iu

    2011-01-01

    The review is devoted to the main mechanisms of mitochondria inheritance in yeast Saccharonmyces cerevisiae. The genetic mechanisms of functionally active mitochondria inheritance in eukaryotic cells is one of the most relevant in modem researches. A great number of genetic diseases are associated with mitochondria dysfunction. Plasticity of eukaryotic cell metabolism according to the environmental changes is ensured by adequate mitochondria functioning by means of ATP synthesis coordination, reactive oxygen species accumulation, apoptosis regulation and is an important factor of cell adaptation to stress. Mitochondria participation in important for cell vitality processes masters the presence of accurate mechanisms of mitochondria functions regulation according to environment fluctuations. The mechanisms of mitochondria division and distribution are highly conserved. Baker yeast S. cerevisiae is an ideal model object for mitochondria researches due to energetic metabolism lability, ability to switch over respiration to fermentation, and petite-positive phenotype. Correction of metabolism according to the environmental changes is necessary for cell vitality. The influence of respiratory, carbon, amino acid and phosphate metabolism on mitochondria functions was shown. As far as the mechanisms that stabilize functions of mitochondria and mtDNA are highly conserve, we can project yeast regularities on higher eukaryotes systems. This makes it possible to approximate understanding the etiology and pathogenesis of a great number of human diseases.

  14. Reconstitution of an efficient thymidine salvage pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Vernis, L.; Piskur, Jure; Diffley, J.F.X.

    2003-01-01

    The budding yeast Saccharomyces cerevisiae is unable to incorporate exogenous nucleosides into DNA. We have made a number of improvements to existing strategies to reconstitute an efficient thymidine salvage pathway in yeast. We have constructed strains that express both a nucleoside kinase as well...

  15. Genome Sequences of Industrially Relevant Saccharomyces cerevisiae Strain M3707, Isolated from a Sample of Distillers Yeast and Four Haploid Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D.; Klingeman, Dawn M.; Johnson, Courtney M.; Clum, Alicia; Aerts, Andrea; Salamov, Asaf; Sharma, Aditi; Zane, Matthew; Barry, Kerrie; Grigoriev, Igor V.; Davison, Brian H.; Lynd, Lee R.; Gilna, Paul; Hau, Heidi; Hogsett, David A.; Froehlich, Allan C.

    2013-04-19

    Saccharomyces cerevisiae strain M3707 was isolated from a sample of commercial distillers yeast, and its genome sequence together with the genome sequences for the four derived haploid strains M3836, M3837, M3838, and M3839 has been determined. Yeasts have potential for consolidated bioprocessing (CBP) for biofuel production, and access to these genome sequences will facilitate their development.

  16. The different behaviors of three oxidative mediators in probing the redox activities of the yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jinsheng [Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059 (China); Wang Min [School of Medicine, Ehime University, Toon 791-0295 (Japan); Yang Zhenyu [Department of Chemistry, Nanchang University, Jiangxi 330047 (China); Wang Zhong [School of Medicine, Ehime University, Toon 791-0295 (Japan); Wang Huaisheng [Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059 (China); Yang Zhengyu [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100101 (China)

    2007-07-30

    The different behaviors of three lipophilic mediators including 2-methyl-1,4-naphthalenedione(menadione), 2,6-dichlorophenolindophenol (DCPIP) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in probing the redox activity of the yeast Saccharomyces cerevisiae were studied by several comparative factor-influencing experiments. Hydrophilic ferricyanide was employed as an extracellular electron acceptor, and constituted dual mediator system with each of three lipophilic mediators. Limiting-current microelectrode voltammetry was used to measure the quantity of ferrocyanide accumulations, giving a direct measure of the redox activity. It was found that under anaerobic condition, menadione interacts with anaerobic respiration pathway, whereas DCPIP and TMPD interact with fermentation pathway in the yeast. Based on the understanding of the interaction between the yeast and each of three mediators, three mediators were respectively employed in evaluating the toxicity of acetic acid on S. cerevisiae and, the results for the first showed that the mediators are complementary to each other when used as electron carriers in biotoxicity assay.

  17. The different behaviors of three oxidative mediators in probing the redox activities of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Zhao Jinsheng; Wang Min; Yang Zhenyu; Wang Zhong; Wang Huaisheng; Yang Zhengyu

    2007-01-01

    The different behaviors of three lipophilic mediators including 2-methyl-1,4-naphthalenedione(menadione), 2,6-dichlorophenolindophenol (DCPIP) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in probing the redox activity of the yeast Saccharomyces cerevisiae were studied by several comparative factor-influencing experiments. Hydrophilic ferricyanide was employed as an extracellular electron acceptor, and constituted dual mediator system with each of three lipophilic mediators. Limiting-current microelectrode voltammetry was used to measure the quantity of ferrocyanide accumulations, giving a direct measure of the redox activity. It was found that under anaerobic condition, menadione interacts with anaerobic respiration pathway, whereas DCPIP and TMPD interact with fermentation pathway in the yeast. Based on the understanding of the interaction between the yeast and each of three mediators, three mediators were respectively employed in evaluating the toxicity of acetic acid on S. cerevisiae and, the results for the first showed that the mediators are complementary to each other when used as electron carriers in biotoxicity assay

  18. ACTIVITY OF SUPEROXIDE DISMUTASE ENZYME IN YEAST SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Blažena Lavová

    2014-02-01

    Full Text Available Reactive oxygen species (ROS with reactive nitrogen species (RNS are known to play dual role in biological systems, they can be harmful or beneficial to living systems. ROS can be important mediators of damage to cell structures, including proteins, lipids and nucleic acids termed as oxidative stress. The antioxidant enzymes protect the organism against the oxidative damage caused by active oxygen forms. The role of superoxide dismutase (SOD is to accelerate the dismutation of the toxic superoxide radical, produced during oxidative energy processes, to hydrogen peroxide and molecular oxygen. In this study, SOD activity of three yeast strains Saccharomyces cerevisiae was determined. It was found that SOD activity was the highest (23.7 U.mg-1 protein in strain 612 after 28 hours of cultivation. The lowest SOD activity from all tested strains was found after 56 hours of cultivation of strain Gyöng (0.7 U.mg-1 protein.

  19. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network

    DEFF Research Database (Denmark)

    Förster, Jochen; Famili, I.; Fu, P.

    2003-01-01

    The metabolic network in the yeast Saccharomyces cerevisiae was reconstructed using currently available genomic, biochemical, and physiological information. The metabolic reactions were compartmentalized between the cytosol and the mitochondria, and transport steps between the compartments...

  20. Protein expression of saccharomyces cerevisiae in response to uranium exposure

    International Nuclear Information System (INIS)

    Sakamoto, Fuminori; Nankawa, Takuya; Kozai, Naofumi; Ohnuki, Toshihiko; Fujii, Tsutomu; Iefuji, Haruyuki; Francis, A.J.

    2007-01-01

    Protein expression of Saccharomyces cerevisiae grown in the medium containing 238 U (VI) and 233 U (VI) was examined by two-dimensional gel electrophoresis. Saccharomyces cerevisiae of BY4743 was grown in yeast nitrogen base medium containing glucose and glycerol 2-phosphate and 238 U of 0, 2.0, and 5.0 x 10 -4 M or 233 U of 2.5 x 10 -6 M (radioactivity was higher by 350 times than 2.0 x 10 -4 M 238 U) and 5.0 x 10 -6 M for 112 h at 30 degC. The growth of Saccharomyces cerevisiae was monitored by measuring OD 600 at 112 h after the inoculation. Uranium concentrations in the media also were measured by radiometry using a liquid scintillation counter. The growths of the yeast grown in the above media were in the following order: control>2.5 x 10 -6 M 233 U>2.0 x 10 -4 M 238 U>5.0 x 10 -6 M 233 U>5.0 x 10 -4 M 238 U. This result indicated that not only radiological but also chemical effect of U reduced the growth of the yeast. The concentrations of U in the medium containing 238 U or 233 U decreased, suggesting U accumulation by the yeast cells. The 2-D gel electrophoresis analysis showed the appearance of several spots after exposure to 238 U or to 233 U but not in the control containing no uranium. These results show that the yeast cells exposed to U express several specific proteins. (author)

  1. Improving the performance of the Granulosis virus of Codling moth (Lepidoptera: Tortricideae) by adding the yeast Saccharomyces cerevisiae with sugar

    Science.gov (United States)

    Studies evaluated the effectiveness of adding Saccharomyces cerevisiae with brown cane sugar (sugar) to the codling moth granulosis virus, CpGV, to improve larval control of Cydia pomonella (L.), on apple. Neither the use of the yeast or sugar alone caused larval mortality greater than the water con...

  2. Saccharomyces cerevisiae metabolism in ecological context

    OpenAIRE

    Jouhten, Paula; Ponomarova, Olga; González García, Ramón; Patil, Kiran R.

    2016-01-01

    The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype?metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype?phenotype relations may originate in the evolutionarily shaped cellular operating principles ...

  3. A reference model systesm of industrial yeasts Saccharomyces cerevisiae is needed for development of the next-generation biocatalyst toward advanced biofuels production

    Science.gov (United States)

    Diploid industrial yeast Saccharomyces cerevisiae has demonstrated distinct characteristics that differ from haploid laboratory model strains. However, as a workhorse for a broad range of fermentation-based industrial applications, it was poorly characterized at the genome level. Observations on the...

  4. Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains.

    Science.gov (United States)

    Eldarov, M A; Kishkovskaia, S A; Tanaschuk, T N; Mardanov, A V

    2016-12-01

    Saccharomyces yeasts have been used for millennia for the production of beer, wine, bread, and other fermented products. Long-term "unconscious" selection and domestication led to the selection of hundreds of strains with desired production traits having significant phenotypic and genetic differences from their wild ancestors. This review summarizes the results of recent research in deciphering the genomes of wine Saccharomyces strains, the use of comparative genomics methods to study the mechanisms of yeast genome evolution under conditions of artificial selection, and the use of genomic and postgenomic approaches to identify the molecular nature of the important characteristics of commercial wine strains of Saccharomyces. Succinctly, data concerning metagenomics of microbial communities of grapes and wine and the dynamics of yeast and bacterial flora in the course of winemaking is provided. A separate section is devoted to an overview of the physiological, genetic, and biochemical features of sherry yeast strains used to produce biologically aged wines. The goal of the review is to convince the reader of the efficacy of new genomic and postgenomic technologies as tools for developing strategies for targeted selection and creation of new strains using "classical" and modern techniques for improving winemaking technology.

  5. Global study of holistic morphological effectors in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Suzuki, Godai; Wang, Yang; Kubo, Karen; Hirata, Eri; Ohnuki, Shinsuke; Ohya, Yoshikazu

    2018-02-20

    The size of the phenotypic effect of a gene has been thoroughly investigated in terms of fitness and specific morphological traits in the budding yeast Saccharomyces cerevisiae, but little is known about gross morphological abnormalities. We identified 1126 holistic morphological effectors that cause severe gross morphological abnormality when deleted, and 2241 specific morphological effectors with weak holistic effects but distinctive effects on yeast morphology. Holistic effectors fell into many gene function categories and acted as network hubs, affecting a large number of morphological traits, interacting with a large number of genes, and facilitating high protein expression. Holistic morphological abnormality was useful for estimating the importance of a gene to morphology. The contribution of gene importance to fitness and morphology could be used to efficiently classify genes into functional groups. Holistic morphological abnormality can be used as a reproducible and reliable gene feature for high-dimensional morphological phenotyping. It can be used in many functional genomic applications.

  6. Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Martínez-Pastor, María Teresa; Perea-García, Ana; Puig, Sergi

    2017-04-01

    Iron is a redox active element that functions as an essential cofactor in multiple metabolic pathways, including respiration, DNA synthesis and translation. While indispensable for eukaryotic life, excess iron can lead to oxidative damage of macromolecules. Therefore, living organisms have developed sophisticated strategies to optimally regulate iron acquisition, storage and utilization in response to fluctuations in environmental iron bioavailability. In the yeast Saccharomyces cerevisiae, transcription factors Aft1/Aft2 and Yap5 regulate iron metabolism in response to low and high iron levels, respectively. In addition to producing and assembling iron cofactors, mitochondrial iron-sulfur (Fe/S) cluster biogenesis has emerged as a central player in iron sensing. A mitochondrial signal derived from Fe/S synthesis is exported and converted into an Fe/S cluster that interacts directly with Aft1/Aft2 and Yap5 proteins to regulate their transcriptional function. Various conserved proteins, such as ABC mitochondrial transporter Atm1 and, for Aft1/Aft2, monothiol glutaredoxins Grx3 and Grx4 are implicated in this iron-signaling pathway. The analysis of a wide range of S. cerevisiae strains of different geographical origins and sources has shown that yeast strains adapted to high iron display growth defects under iron-deficient conditions, and highlighted connections that exist in the response to both opposite conditions. Changes in iron accumulation and gene expression profiles suggest differences in the regulation of iron homeostasis genes.

  7. Construction of a novel kind of expression plasmid by homologous recombination in Saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xiangling

    2005-01-01

    [1]Brunelli, J. P., Pall, M. L., A series of yeast vectors for expression of cDNAs and other DNA sequences, Yeast, 1993, 9: 1299―1308.[2]Sikorski, R. S., Hieter, P., A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, 1989, 122: 19―27.[3]Bonneaud, N., Ozier-Kalogerogoulos, O., Li, G. et al., A family of low and high copy replicative, integrative and single-stranded S. cerevisiae /E. coli shuttle vector, Yeast, 1991, 7: 609―615.[4]Huo, K. K., Yu, L. L., Chen, X. J., Li, Y. Y., A stable vector for high-level expression and secretion of human interferon alpha A in yeast, Science in China, Ser. B, 1993, 36(5): 557―567.[5]Zhou, Z. X., Yuan, H. Y., He, W. et al., Expression of the modified HBsAg gene SA-28 directed by a constitutive promoter, Journal of Fudan university (Natural Science), 2000, 39(3): 264―268.[6]Paques, F., Haber, J. E., Multiple pathways of recombination induces by double-strand breaks in Saccharomyces cerevisiae, Microbiology and Molecular Biology Reviews, 1999, 63(2): 349―404.[7]Martin, K., Damage-induced recombination in the yeast Saccharomyces cerevisiae, Mutation Research, 2000, 451: 91―105.[8]Alira, S., Tomoko, O., Homologous recombination and the roles of double-strand breaks, TIBS, 1995, 20: 387―391.[9]Patrick, S., Kelly, M. T., Stephen, V. K., Recombination factor of Saccharomyces cerevisiae, Mutation Research, 2000, 451: 257―275.[10]Manivasakam, P., Weber, S. C., McElver, J., Schiestl, R. H., Micro-homology mediated PCR targeting in Saccharomyces cerevisiae, Nucleic Acids Res., 1995, 23(14): 2799―2800.[11]Baudin, A., Lacroute, F., Cullin, C., A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae, Nucleic Acids Res., 1993, 21(14): 3329―3330.[12]Hua, S. B., Qiu, M., Chan, E., Zhu, L., Luo, Y., Minimum length of sequence homology required for in vivo cloning by homolo-gous recombination in yeast, Plasmid, 1997, 38

  8. Industrial relevance of chromosomal copy number variation in Saccharomyces yeasts

    NARCIS (Netherlands)

    Gorter de Vries, A.R.; Pronk, J.T.; Daran, J.G.

    2017-01-01

    Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have

  9. Adsorption and Interfacial Electron Transfer of Saccharomyces Cerevisiae

    DEFF Research Database (Denmark)

    Hansen, Allan Glargaard; Boisen, Anja; Nielsen, Jens Ulrik

    2003-01-01

    We have studied the adsorption and electron-transfer dynamics of Saccharomyces cerevisiae (yeast) iso-l-cytochrome c adsorbed on Au(lll) electrodes in aqueous phosphate buffer media. This cytochrome possesses a thiol group dos e to the protein surface (Cysl02) suitable for linking the protein...

  10. Transcriptome-Based Characterization of Interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in Lactose-Grown Chemostat Cocultures

    NARCIS (Netherlands)

    Mendes, F.; Sieuwerts, S.; De Hulster, E.; Almering, M.J.; Luttik, M.A.; Pronk, J.T.; Smid, E.J.; Bron, P.A.; Daran-Lapujade, P.

    2013-01-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp.

  11. Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures

    NARCIS (Netherlands)

    Mendes, F.; Sieuwerts, S.; Hulster, de E.; Almering, M.J.; Luttik, M.A.H.; Pronk, J.T.; Smid, E.J.; Baron, P.A.; Daran-Lapujade, P.

    2013-01-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp.

  12. Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Germann, Susanne Manuela; Jacobsen, Simo Abdessamad; Schneider, Konstantin

    2016-01-01

    performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N-acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L-tryptophan hydroxylase...... accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co-factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L−1 in a 76h fermentation using simulated fed-batch medium with glucose as sole carbon source. Our study lays...

  13. Effects of Dietary Yeast (Saccharomyces cerevisia Supplementation in Practical Diets of Tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    José E. P. Cyrino

    2012-01-01

    Full Text Available A 51-day feeding trial was carried out to determine the effects of various dietary levels of brewer’s yeast, Saccharomyces cerevisiae, in the growth performance, body composition and nutrient utilization in Nile tilapia, Oreochromis niloticus, juveniles. Fish (7.6 ± 0.3 g were stocked into eighteen 1,000-L tanks (100 fish per tank; n = 3 and fed to apparent satiation six isonitrogenous (27% crude protein and isoenergetic (19 kJ/g diets, formulated to contain different dried yeast levels (0%, 10%, 15%, 20%, 30% or 40% diet in substitution to fishmeal. Body weight tripled at the end of the feeding trial for fish fed up to 20% dietary yeast incorporation. Daily growth coefficient (DGC, % body weight/day decreased with increasing dietary yeast level (P < 0.0001. Voluntary feed intake (VFI, %BW/day did not vary significantly with increasing yeast level. Fish fed 40% yeast showed significant reduction in protein efficiency rate, protein retention and nitrogen gain. Increasing levels of dietary yeast did not significantly affect protein or lipid digestibility. Dietary dried yeast was seemingly palatable to tilapia juveniles and was suitable up to 15% inclusion to promote growth and efficient diet utilization, without affecting body composition.

  14. Anti-Saccharomyces cerevisiae antibodies (ASCA) are associated with body fat mass and systemic inflammation, but not with dietary yeast consumption: a cross-sectional study.

    Science.gov (United States)

    Kvehaugen, Anne Stine; Aasbrenn, Martin; Farup, Per G

    2017-01-01

    Baker's/brewer's yeast, Saccharomyces cerevisiae , has been used as an alternative to antibiotic growth promoters to improve growth performance in animals. In humans, Saccharomyces cerevisiae is among the most commonly detected fungi in fecal samples and likely originates from food. Recently, an association between anti- Saccharomyces cerevisiae antibodies (ASCA) and obesity in humans was suggested, but the cause of the elevated ASCA levels is not clear. Our aim was to study ASCA in morbidly obese subjects and explore potential associations with anthropometrics, diet, co-morbidities and biomarkers of inflammation and gut permeability. Subjects with morbid obesity referred to a specialized hospital unit were included. Diet and clinical data were recorded with self-administered questionnaires. Main dietary sources of baker's/brewer's yeast (e.g. bread and beer) were used as a proxy for the intake of yeast. Laboratory analyses included ASCA, serum zonulin (reflecting gut permeability), C-reactive protein and a routine haematological and biochemical screening. One-hundred-and-forty subjects; 109 (78%) female, 98 with dietary records, mean age 43 years and BMI 42 kg/m 2 were included. The number of ASCA positive subjects was 31 (22%) for IgG, 4 (2.9%) for IgA and 3 (2.1%) for IgM. Age, body fat mass and C-reactive protein were significantly higher in IgG-positive compared to IgG-negative subjects ( P  yeast-containing food and ASCA IgG-positivity, or between yeast-containing food and fat mass. The findings indicate that ASCA IgG-positivity may be linked to the generalized inflammation commonly seen with increased adiposity, but not to dietary yeast intake. Other potential causes for the raised ASCA IgG concentrations, such as genetic predisposition, deviations in the gut microbiota and cross-reactivity of ASCA with other antigens, were not explored.

  15. Selection of yeast Saccharomyces cerevisiae promoters available for xylose cultivation and fermentation.

    Science.gov (United States)

    Nambu-Nishida, Yumiko; Sakihama, Yuri; Ishii, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2018-01-01

    To efficiently utilize xylose, a major sugar component of hemicelluloses, in Saccharomyces cerevisiae requires the proper expression of varied exogenous and endogenous genes. To expand the repertoire of promoters in engineered xylose-utilizing yeast strains, we selected promoters in S. cerevisiae during cultivation and fermentation using xylose as a carbon source. To select candidate promoters that function in the presence of xylose, we performed comprehensive gene expression analyses using xylose-utilizing yeast strains both during xylose and glucose fermentation. Based on microarray data, we chose 29 genes that showed strong, moderate, and weak expression in xylose rather than glucose fermentation. The activities of these promoters in a xylose-utilizing yeast strain were measured by lacZ reporter gene assays over time during aerobic cultivation and microaerobic fermentation, both in xylose and glucose media. In xylose media, P TDH3 , P FBA1 , and P TDH1 were favorable for high expression, and P SED1 , P HXT7 , P PDC1 , P TEF1 , P TPI1 , and P PGK1 were acceptable for medium-high expression in aerobic cultivation, and moderate expression in microaerobic fermentation. P TEF2 allowed moderate expression in aerobic culture and weak expression in microaerobic fermentation, although it showed medium-high expression in glucose media. P ZWF1 and P SOL4 allowed moderate expression in aerobic cultivation, while showing weak but clear expression in microaerobic fermentation. P ALD3 and P TKL2 showed moderate promoter activity in aerobic cultivation, but showed almost no activity in microaerobic fermentation. The knowledge of promoter activities in xylose cultivation obtained in this study will permit the control of gene expression in engineered xylose-utilizing yeast strains that are used for hemicellulose fermentation. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains.

    Science.gov (United States)

    Wang, Pin-Mei; Zheng, Dao-Qiong; Chi, Xiao-Qin; Li, Ou; Qian, Chao-Dong; Liu, Tian-Zhe; Zhang, Xiao-Yang; Du, Feng-Guang; Sun, Pei-Yong; Qu, Ai-Min; Wu, Xue-Chang

    2014-01-01

    The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Specificity of mutations induced by carbon ions in budding yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Matuo, Youichirou; Nishijima, Shigehiro; Hase, Yoshihiro; Sakamoto, Ayako; Tanaka, Atsushi; Shimizu, Kikuo

    2006-01-01

    To investigate the nature of mutations induced by accelerated ions in eukaryotic cells, the effects of carbon-ion irradiation were compared with those of γ-ray irradiation in the budding yeast Saccharomyces cerevisiae. The mutational effect and specificity of carbon-ion beams were studied in the URA3 gene of the yeast. Our experiments showed that the carbon ions generated more than 10 times the number of mutations induced by γ-rays, and that the types of base changes induced by carbon ions include transversions (68.7%), transitions (13.7%) and deletions/insertions (17.6%). The transversions were mainly G:C → T:A, and all the transitions were G:C → A:T. In comparison with the surrounding sequence context of mutational base sites, the C residues in the 5'-AC(A/T)-3' sequence were found to be easily changed. Large deletions and duplications were not observed, whereas ion-induced mutations in Arabidopsis thaliana were mainly short deletions and rearrangements. The remarkable feature of yeast mutations induced by carbon ions was that the mutation sites were localized near the linker regions of nucleosomes, whereas mutations induced by γ-ray irradiation were located uniformly throughout the gene

  18. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering

    DEFF Research Database (Denmark)

    Asadollahi, Mohammadali; Maury, Jerome; Patil, Kiran Raosaheb

    2009-01-01

    A genome-scale metabolic model was used to identify new target genes for enhanced biosynthesis of sesquiterpenes in the yeast Saccharomyces cerevisiae. The effect of gene deletions on the flux distributions in the metabolic model of S. cerevisiae was assessed using OptGene as the modeling framework...

  19. iTRAQ-based proteome profiling of Saccharomyces cerevisiae and cryotolerant species Saccharomyces uvarum and Saccharomyces kudriavzevii during low-temperature wine fermentation.

    Science.gov (United States)

    García-Ríos, Estéfani; Querol, Amparo; Guillamón, José Manuel

    2016-09-02

    Temperature is one of the most important parameters to affect the duration and rate of alcoholic fermentation and final wine quality. Some species of the Saccharomyces genus have shown better adaptation at low temperature than Saccharomyces cerevisiae, which was the case of cryotolerant yeasts Saccharomyces uvarum and Saccharomyces kudriavzevii. In an attempt to detect inter-specific metabolic differences, we characterized the proteomic landscape of these cryotolerant species grown at 12°C and 28°C, which we compared with the proteome of S. cerevisiae (poorly adapted at low temperature). Our results showed that the main differences among the proteomic profiling of the three Saccharomyces strains grown at 12°C and 28°C lay in translation, glycolysis and amino acid metabolism. Our data corroborate previous transcriptomic results, which suggest that S. kudriavzevii is better adapted to grow at low temperature as a result of enhanced more efficient translation. Fitter amino acid biosynthetic pathways can also be mechanisms that better explain biomass yield in cryotolerant strains. Yet even at low temperature, S. cerevisiae is the most fermentative competitive species. A higher concentration of glycolytic and alcoholic fermentation enzymes in the S. cerevisiae strain might explain such greater fermentation activity. Temperature is one of the main relevant environmental variables that microorganisms have to cope with and it is also a key factor in some industrial processes that involve microorganisms. However, we are still far from understanding the molecular and physiological mechanisms of adaptation at low temperatures. The results obtained in this study provided a global atlas of the proteome changes triggered by temperature in three different species of the genus Saccharomyces with different degree of cryotolerance. These results would facilitate a better understanding of mechanisms for how yeast could adapt at the low temperature of growth. Copyright © 2016

  20. Reducing the genetic complexity of glycolysis in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Solis Escalante, D.

    2015-01-01

    Glycolysis, a biochemical pathway that oxidizes glucose to pyruvate, is at the core of sugar metabolism in Saccharomyces cerevisiae (bakers’ yeast). Glycolysis is not only a catabolic route involved in energy conservation, but also provides building blocks for anabolism. From an applied perspective,

  1. Exploring the northern limit of the distribution of Saccharomyces cerevisiae and Saccharomyces paradoxus in North America.

    Science.gov (United States)

    Charron, Guillaume; Leducq, Jean-Baptiste; Bertin, Chloé; Dubé, Alexandre K; Landry, Christian R

    2014-03-01

    We examined the northern limit of Saccharomyces cerevisiae and Saccharomyces paradoxus in northeast America. We collected 876 natural samples at 29 sites and applied enrichment methods for the isolation of mesophilic yeasts. We uncovered a large diversity of yeasts, in some cases, associated with specific substrates. Sequencing of the ITS1, 5.8S and ITS2 loci allowed to assign 226 yeast strains at the species level, including 41 S. paradoxus strains. Our intensive sampling suggests that if present, S. cerevisiae is rare at these northern latitudes. Our sampling efforts spread across several months of the year revealed that successful sampling increases throughout the summer and diminishes significantly at the beginning of the fall. The data obtained on the ecological context of yeasts corroborate what was previously reported on Pichiaceae, Saccharomycodaceae, Debaryomycetaceae and Phaffomycetaceae yeast families. We identified 24 yeast isolates that could not be assigned to any known species and that may be of taxonomic, medical, or biotechnological importance. Our study reports new data on the taxonomic diversity of yeasts and new resources for studying the evolution and ecology of S. paradoxus. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Applied systems biology - vanillin production in Saccharomyces cerevisiae

    OpenAIRE

    Strucko, Tomas; Eriksen, Jens Christian; Nielsen, J.; Mortensen, Uffe Hasbro

    2012-01-01

    Vanillin is the most important aroma compound based on market value, and natural vanillin is extracted from the cured seed pods of the Vanilla orchid. Most of the world’s vanillin, however, is obtained by chemical synthesis from petrochemicals or wood pulp lignins. As an alternative, de novo biosynthesis of vanillin in baker’s yeast Saccharomyces cerevisiae was recently demonstrated by successfully introducing the metabolic pathway for vanillin production in yeast. Nevertheless, the amount of...

  3. An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Insuk Lee

    2007-10-01

    Full Text Available Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses regarding specific gene functions and associations.We report a significantly improved version (v. 2 of a probabilistic functional gene network of the baker's yeast, Saccharomyces cerevisiae. We describe our optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships. Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal subunit biogenesis.YeastNet v. 2, constructed using these optimizations together with additional data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among 5,483 yeast proteins (95% of the validated proteome. YeastNet is available from http://www.yeastnet.org.

  4. A Genetics Laboratory Module Involving Selection and Identification of Lysine Synthesis Mutants in the Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Jill B. Keeney

    2009-12-01

    Full Text Available We have developed a laboratory exercise, currently being used with college sophomores, which uses the yeast Saccharomyces cerevisiae to convey the concepts of amino acid biosynthesis, mutation, and gene complementation. In brief, selective medium is used to isolate yeast cells carrying a mutation in the lysine biosynthesis pathway. A spontaneous mutation in any one of three separate genetic loci will allow for growth on selective media; however, the frequency of mutations isolated from each locus differs. Following isolation of a mutated strain, students use complementation analysis to identify which gene contains the mutation. Since the yeast genome has been mapped and sequenced, students with access to the Internet can then research and develop hypotheses to explain the differences in frequencies of mutant genes obtained.

  5. On the origins and industrial applications of Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids.

    Science.gov (United States)

    Peris, David; Pérez-Torrado, Roberto; Hittinger, Chris Todd; Barrio, Eladio; Querol, Amparo

    2018-01-01

    Companies based on alcoholic fermentation products, such as wine, beer and biofuels, use yeasts to make their products. Each industrial process utilizes different media conditions, which differ in sugar content, the presence of inhibitors and fermentation temperature. Saccharomyces cerevisiae has traditionally been the main yeast responsible for most fermentation processes. However, the market is changing due to consumer demand and external factors such as climate change. Some processes, such as biofuel production or winemaking, require new yeasts to solve specific challenges, especially those associated with sustainability, novel flavours and altered alcohol content. One of the proposed solutions is the application of yeast hybrids. The lager beer market has been dominated by S. cerevisiae × S. eubayanus hybrids. However, several less thoroughly studied hybrids have been isolated from other diverse industrial processes. Here we focus on S. cerevisiae × S. kudriavzevii hybrids, which have been isolated from diverse industrial conditions that include wine, ale beer, cider and dietary supplements. Emerging data suggest an extended and complex story of adaptation of these hybrids to traditional industrial conditions. S. cerevisiae × S. kudriavzevii hybrids are also being explored for new industrial applications, such as biofuels. This review describes the past, present and future of S. cerevisiae × S. kudriavzevii hybrids. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii.

    Science.gov (United States)

    Douradinha, Bruno; Reis, Viviane C B; Rogers, Matthew B; Torres, Fernando A G; Evans, Jared D; Marques, Ernesto T A

    2014-01-01

    Saccharomyces boulardii (S. boulardii) is a probiotic yeast related to Saccharomyces cerevisiae (S. cerevisiae) but with distinct genetic, taxonomic and metabolic properties. S. cerevisiae has been used extensively in biotechnological applications. Currently, many strains are available, and multiple genetic tools have been developed, which allow the expression of several exogenous proteins of interest with applications in the fields of medicine, biofuels, the food industry, and scientific research, among others. Although S. boulardii has been widely studied due to its probiotic properties against several gastrointestinal tract disorders, very few studies addressed the use of this yeast as a vector for expression of foreign genes of interest with biotechnological applications. Here we show that, despite the similarity of the two yeasts, not all genetic tools used in S. cerevisiae can be applied in S. boulardii. While transformation of the latter could be obtained using a commercial kit developed for the former, consequent screening of successful transformants had to be optimized. We also show that several genes frequently used in genetic manipulation of S. cerevisiae (e.g., promoters and resistance markers) are present in S. boulardii. Sequencing revealed a high rate of homology (> 96%) between the orthologs of the two yeasts. However, we also observed some of them are not eligible to be targeted for transformation of S. boulardii. This work has important applications toward the potential of this probiotic yeast as an expression system for genes of interest.

  7. Gleaning evolutionary insights from the genome sequence of a probiotic yeast Saccharomyces boulardii.

    Science.gov (United States)

    Khatri, Indu; Akhtar, Akil; Kaur, Kamaldeep; Tomar, Rajul; Prasad, Gandham Satyanarayana; Ramya, Thirumalai Nallan Chakravarthy; Subramanian, Srikrishna

    2013-10-22

    The yeast Saccharomyces boulardii is used worldwide as a probiotic to alleviate the effects of several gastrointestinal diseases and control antibiotics-associated diarrhea. While many studies report the probiotic effects of S. boulardii, no genome information for this yeast is currently available in the public domain. We report the 11.4 Mbp draft genome of this probiotic yeast. The draft genome was obtained by assembling Roche 454 FLX + shotgun data into 194 contigs with an N50 of 251 Kbp. We compare our draft genome with all other Saccharomyces cerevisiae genomes. Our analysis confirms the close similarity of S. boulardii to S. cerevisiae strains and provides a framework to understand the probiotic effects of this yeast, which exhibits unique physiological and metabolic properties.

  8. Genetic Basis for Saccharomyces cerevisiae Biofilm in Liquid Medium

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz; Bojsen, Rasmus Kenneth; Gro Rejkjær Sørensen, Laura

    2014-01-01

    than free-living cells. We investigated the genetic basis for yeast, Saccharomyces cerevisiae, biofilm on solid surfaces in liquid medium by screening a comprehensive deletion mutant collection in the S1278b background and found 71 genes that were essential for biofilm development. Quantitative...

  9. Analysis of the secondary compounds produced by Saccharomyces cerevisiae and wild yeast strains during the production of "cachaça" Análise dos componentes secundários produzidos por Saccharomyces cerevisiae e leveduras selvagens durante a produção de cachaça

    Directory of Open Access Journals (Sweden)

    Maria Cecília Fachine Dato

    2005-03-01

    Full Text Available The aim of this study is to compare the composition of "cachaças" produced in 10 fermentation cycles by Saccharomyces cerevisiae (Sc and wild yeast strains [Pichia silvicola (Ps, Pichia anomala 1 (Pa1, Pichia anomala 2 (Pa2 and Dekkera bruxelensis (Db], isolated from distilleries in Jaboticabal - SP, Brazil. The secondary components of the heart fraction were determined by gas chromatography. The levels of secondary components were influenced by the wine pH, which varied among yeast strains. S. cerevisiae showed slightly more secondary components, whereas wild strains produced more higher alcohols. Wild yeast strains were shown to be adequate for the production of a high quality "cachaça".O presente trabalho visou estabelecer uma comparação entre composição de cachaças produzidas por Saccharomyces cerevisiae (Sc e estirpes de leveduras selvagens [Pichia silvicola (Ps, Pichia anomala 1 (Pa1, Pichia anomala 2 (Pa2 e Dekkera bruxelensis (Db], isoladas em destilarias da região de Jaboticabal-SP. Os componentes secundários da fração denominada coração foram determinados por cromatografia gasosa. Os níveis dos componentes secundários foram influenciados pelo pH dos respectivos vinhos, os quais dependem da estirpe de levedura empregada no processo fermentativo. A Saccharomyces cerevisiae apresentou valores ligeiramente superiores de componentes secundários, enquanto as estirpes selvagens produziram maiores teores de álcoois superiores. As estirpes selvagens de leveduras mostraram-se adequadas para obtenção de uma cachaça de boa qualidade.

  10. [Control levels of Sin3 histone deacetylase for spontaneous and UV-induced mutagenesis in yeasts Saccharomyces cerevisiae].

    Science.gov (United States)

    Lebovka, I Iu; Kozhina, T N; Fedorova, I V; Peshekhonov, V T; Evstiukhina, T A; Chernenkov, A Iu; Korolev, V G

    2014-01-01

    SIN3 gene product operates as a repressor for a huge amount of genes in Saccharomyces cerevisiae. Sin3 protein with a mass of about 175 kDa is a member of the RPD3 protein complex with an assessed mass of greater than 2 million Da. It was previously shownthat RPD3 gene mutations influence recombination and repair processes in S. cerevisiae yeasts. We studied the impacts of the sin3 mutation on UV-light sensitivity and UV-induced mutagenesis in budding yeast cells. The deletion ofthe SIN3 gene causes weak UV-sensitivity of mutant budding cells as compared to the wild-type strain. These results show that the sin3 mutation decreases both spontaneous and UV-induced levels of levels. This fact is hypothetically related to themalfunction of ribonucleotide reductase activity regulation, which leads to a decrease in the dNTP pool and the inaccurate error-prone damage bypass postreplication repair pathway, which in turn provokes a reduction in the incidence of mutations.

  11. Saccharomyces cerevisiae of palm wine-enhanced ethanol production by using mutagens

    International Nuclear Information System (INIS)

    Uma, V.; Polasa, H.

    1990-01-01

    The newly isolated Saccharomyces cerevisiae of palm wine produced enhanced amounts of ethanol when cells were UV-irradiated and treated with N-methyl-N-nitro-N-nitrosoguanidine. A further increase of ethanol was observed in yeast extract, peptone, dextrose medium fortified with yeast extract, skimmed milk and soya flour. (author). 9 refs

  12. Pyruvate decarboxylases from the petite-negative yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Langkjær, Rikke Breinhold; Nielsen, Jens

    2004-01-01

    was controlled by variations in the amount of mRNA. The mRNA level and the pyruvate decarboxylase activity responded to anaerobiosis and growth on different carbon sources in essentially the same fashion as in S. cerevisiae. This indicates that the difference in ethanol formation between these two yeasts...... is not due to differences in the regulation of pyruvate decarboxylase(s), but rather to differences in the regulation of the TCA cycle and the respiratory machinery. However, the PDC genes of Saccharomyces/Kluyveromyces yeasts differ in their genetic organization and phylogenetic origin. While S. cerevisiae...

  13. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Mingji; Borodina, Irina

    2015-02-01

    Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae We describe computational tools for the prediction of biochemical pathways, molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and finally approaches for optimizing performance of the introduced pathways. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  14. Genomic structural variation contributes to phenotypic change of industrial bioethanol yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Ke; Zhang, Li-Jie; Fang, Ya-Hong; Jin, Xin-Na; Qi, Lei; Wu, Xue-Chang; Zheng, Dao-Qiong

    2016-03-01

    Genomic structural variation (GSV) is a ubiquitous phenomenon observed in the genomes of Saccharomyces cerevisiae strains with different genetic backgrounds; however, the physiological and phenotypic effects of GSV are not well understood. Here, we first revealed the genetic characteristics of a widely used industrial S. cerevisiae strain, ZTW1, by whole genome sequencing. ZTW1 was identified as an aneuploidy strain and a large-scale GSV was observed in the ZTW1 genome compared with the genome of a diploid strain YJS329. These GSV events led to copy number variations (CNVs) in many chromosomal segments as well as one whole chromosome in the ZTW1 genome. Changes in the DNA dosage of certain functional genes directly affected their expression levels and the resultant ZTW1 phenotypes. Moreover, CNVs of large chromosomal regions triggered an aneuploidy stress in ZTW1. This stress decreased the proliferation ability and tolerance of ZTW1 to various stresses, while aneuploidy response stress may also provide some benefits to the fermentation performance of the yeast, including increased fermentation rates and decreased byproduct generation. This work reveals genomic characters of the bioethanol S. cerevisiae strain ZTW1 and suggests that GSV is an important kind of mutation that changes the traits of industrial S. cerevisiae strains. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Jongedijk, E.J.; Cankar, K.; Ranzijn, J.; Krol, van der A.R.; Bouwmeester, H.J.; Beekwilder, M.J.

    2015-01-01

    Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a

  16. Quality and Composition of Red Wine Fermented with Schizosaccharomyces pombe as Sole Fermentative Yeast, and in Mixed and Sequential Fermentations with Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Felipe Palomero

    2014-01-01

    Full Text Available This work examines the physiology of Schizosaccharomyces pombe (represented by strain 938 in the production of red wine, as the sole fermentative yeast, and in mixed and sequential fermentations with Saccharomyces cerevisiae 796. For further comparison, fermentations in which Saccharomyces cerevisiae was the sole fermentative yeast were also performed; in these fermentations a commercial lactic acid bacterium was used to perform malolactic fermentation once alcoholic fermentation was complete (unlike S. cerevisiae, the Sc. pombe performs maloalcoholic fermentation and therefore removes malic acid without such help. Relative density, acetic, malic and pyruvic acid concentrations, primary amino nitrogen and urea concentrations, and pH of the musts were measured over the entire fermentation period. In all fermentations in which Sc. pombe 938 was involved, nearly all the malic acid was consumed from an initial concentration of 5.5 g/L, and moderate acetic acid concentrations below 0.4 g/L were formed. The urea content of these wines was notably lower, showing a tenfold reduction when compared with those that were made with S. cerevisiae 796 alone. The sensorial properties of the different final wines varied widely. The wines fermented with Sc. pombe 938 had maximum aroma intensity and quality, and they were preferred by the tasters.

  17. Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non-Saccharomyces wine yeasts with poor performance in active dry yeast production

    Directory of Open Access Journals (Sweden)

    Esther Gamero-Sandemetrio

    2018-01-01

    Full Text Available Several yeast species, belonging to Saccharomyces and non-Saccharomyces genera, play fundamental roles during spontaneous must grape fermentation, and recent studies have shown that mixed fermentations, co-inoculated with S. cerevisiae and non-Saccharomyces strains, can improve wine organoleptic properties. During active dry yeast (ADY production, antioxidant systems play an essential role in yeast survival and vitality as both biomass propagation and dehydration cause cellular oxidative stress and negatively affect technological performance. Mechanisms for adaptation and resistance to desiccation have been described for S. cerevisiae, but no data are available on the physiology and oxidative stress response of non-Saccharomyces wine yeasts and their potential impact on ADY production. In this study we analyzed the oxidative stress response in several non-Saccharomyces yeast species by measuring the activity of reactive oxygen species (ROS scavenging enzymes, e.g., catalase and glutathione reductase, accumulation of protective metabolites, e.g., trehalose and reduced glutathione (GSH, and lipid and protein oxidation levels. Our data suggest that non-canonical regulation of glutathione and trehalose biosynthesis could cause poor fermentative performance after ADY production, as it corroborates the corrective effect of antioxidant treatments, during biomass propagation, with both pure chemicals and food-grade argan oil.

  18. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis

    DEFF Research Database (Denmark)

    Nissen, Torben Lauesgaard; Hamann, Claus Wendelboe; Kielland-Brandt, M. C.

    2000-01-01

    Glycerol is formed as a by-product in production of ethanol and baker's yeast during fermentation of Saccharomyces cerevisiae under anaerobic and aerobic growth conditions, respectively. One physiological role of glycerol formation by yeast is to reoxidize NADH, formed in synthesis of biomass...

  19. Identification and regulation of genes involved in anaerobic growth of Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Snoek, Isidora Sophia Ishtar

    2007-01-01

    Saccharomyces cerevisiae is one of the few yeast species that can grow equally well without molecular oxygen (anaerobic) as with this compound present (aerobic). This property has made it one of the most abundantly used yeasts in industry, since anaerobic incubation plays a major part in alcohol and

  20. Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function.

    Science.gov (United States)

    Shiroma, Shodai; Jayakody, Lahiru Niroshan; Horie, Kenta; Okamoto, Koji; Kitagaki, Hiroshi

    2014-02-01

    Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts.

  1. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Flis, Vid V; Fankl, Ariane; Ramprecht, Claudia; Zellnig, Günther; Leitner, Erich; Hermetter, Albin; Daum, Günther

    2015-01-01

    In the yeast Saccharomyces cerevisiae, phosphatidylcholine (PC), the major phospholipid (PL) of all organelle membranes, is synthesized via two different pathways. Methylation of phosphatidylethanolamine (PE) catalyzed by the methyl transferases Cho2p/Pem1p and Opi3p/Pem2p as well as incorporation of choline through the CDP (cytidine diphosphate)-choline branch of the Kennedy pathway lead to PC formation. To determine the contribution of these two pathways to the supply of PC to peroxisomes (PX), yeast mutants bearing defects in the two pathways were cultivated under peroxisome inducing conditions, i.e. in the presence of oleic acid, and subjected to biochemical and cell biological analyses. Phenotype studies revealed compromised growth of both the cho20Δopi3Δ (mutations in the methylation pathway) and the cki1Δdpl1Δeki1Δ (mutations in the CDP-choline pathway) mutant when grown on oleic acid. Analysis of peroxisomes from the two mutant strains showed that both pathways produce PC for the supply to peroxisomes, although the CDP-choline pathway seemed to contribute with higher efficiency than the methylation pathway. Changes in the peroxisomal lipid pattern of mutants caused by defects in the PC biosynthetic pathways resulted in changes of membrane properties as shown by anisotropy measurements with fluorescent probes. In summary, our data define the origin of peroxisomal PC and demonstrate the importance of PC for peroxisome membrane formation and integrity.

  2. K2 killer toxin-induced physiological changes in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Orentaite, Irma; Poranen, Minna M; Oksanen, Hanna M; Daugelavicius, Rimantas; Bamford, Dennis H

    2016-03-01

    Saccharomyces cerevisiae cells produce killer toxins, such as K1, K2 and K28, that can modulate the growth of other yeasts giving advantage for the killer strains. Here we focused on the physiological changes induced by K2 toxin on a non-toxin-producing yeast strain as well as K1, K2 and K28 killer strains. Potentiometric measurements were adjusted to observe that K2 toxin immediately acts on the sensitive cells leading to membrane permeability. This correlated with reduced respiration activity, lowered intracellular ATP content and decrease in cell viability. However, we did not detect any significant ATP leakage from the cells treated by killer toxin K2. Strains producing heterologous toxins K1 and K28 were less sensitive to K2 than the non-toxin producing one suggesting partial cross-protection between the different killer systems. This phenomenon may be connected to the observed differences in respiratory activities of the killer strains and the non-toxin-producing strain at low pH. This might also have practical consequences in wine industry; both as beneficial ones in controlling contaminating yeasts and non-beneficial ones causing sluggish fermentation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Specificity of mutations induced by carbon ions in budding yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Matuo, Youichirou [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 (Japan); Nishijima, Shigehiro [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 (Japan); Hase, Yoshihiro [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Sakamoto, Ayako [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Tanaka, Atsushi [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Shimizu, Kikuo [Radioisotope Research Center, Osaka University, Yamada-oka 2-4, Suita, Osaka 565-0871 (Japan)]. E-mail: shimizu@rirc.osaka-u.ac.jp

    2006-12-01

    To investigate the nature of mutations induced by accelerated ions in eukaryotic cells, the effects of carbon-ion irradiation were compared with those of {gamma}-ray irradiation in the budding yeast Saccharomyces cerevisiae. The mutational effect and specificity of carbon-ion beams were studied in the URA3 gene of the yeast. Our experiments showed that the carbon ions generated more than 10 times the number of mutations induced by {gamma}-rays, and that the types of base changes induced by carbon ions include transversions (68.7%), transitions (13.7%) and deletions/insertions (17.6%). The transversions were mainly G:C {sup {yields}} T:A, and all the transitions were G:C {sup {yields}} A:T. In comparison with the surrounding sequence context of mutational base sites, the C residues in the 5'-AC(A/T)-3' sequence were found to be easily changed. Large deletions and duplications were not observed, whereas ion-induced mutations in Arabidopsis thaliana were mainly short deletions and rearrangements. The remarkable feature of yeast mutations induced by carbon ions was that the mutation sites were localized near the linker regions of nucleosomes, whereas mutations induced by {gamma}-ray irradiation were located uniformly throughout the gene.

  4. Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae

    Science.gov (United States)

    Hyma, Katie E; Saerens, Sofie M; Verstrepen, Kevin J; Fay, Justin C

    2011-01-01

    The budding yeast Saccharomyces cerevisiae is the primary species used by wine makers to convert sugar into alcohol during wine fermentation. Saccharomyces cerevisiae is found in vineyards, but is also found in association with oak trees and other natural sources. Although wild strains of S. cerevisiae as well as other Saccharomyces species are also capable of wine fermentation, a genetically distinct group of S. cerevisiae strains is primarily used to produce wine, consistent with the idea that wine making strains have been domesticated for wine production. In this study, we demonstrate that humans can distinguish between wines produced using wine strains and wild strains of S. cerevisiae as well as its sibling species, Saccharomyces paradoxus. Wine strains produced wine with fruity and floral characteristics, whereas wild strains produced wine with earthy and sulfurous characteristics. The differences that we observe between wine and wild strains provides further evidence that wine strains have evolved phenotypes that are distinct from their wild ancestors and relevant to their use in wine production. PMID:22093681

  5. Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural

    OpenAIRE

    Jung, Young Hoon; Kim, Sooah; Yang, Jungwoo; Seo, Jin?Ho; Kim, Kyoung Heon

    2016-01-01

    Summary Furfural, one of the most common inhibitors in pre?treatment hydrolysates, reduces the cell growth and ethanol production of yeast. Evolutionary engineering has been used as a selection scheme to obtain yeast strains that exhibit furfural tolerance. However, the response of Saccharomyces cerevisiae to furfural at the metabolite level during evolution remains unknown. In this study, evolutionary engineering and metabolomic analyses were applied to determine the effects of furfural on y...

  6. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY) production.

    Science.gov (United States)

    Zheng, Daoqiong; Zhang, Ke; Gao, Kehui; Liu, Zewei; Zhang, Xing; Li, Ou; Sun, Jianguo; Zhang, Xiaoyang; Du, Fengguang; Sun, Peiyong; Qu, Aimin; Wu, Xuechang

    2013-01-01

    The application of active dry yeast (ADY) in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS) process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  7. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY production.

    Directory of Open Access Journals (Sweden)

    Daoqiong Zheng

    Full Text Available The application of active dry yeast (ADY in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  8. Removal of Pyrimethanil and Fenhexamid from Saccharomyces cerevisiae Liquid Cultures

    Directory of Open Access Journals (Sweden)

    Etjen Bizaj

    2011-01-01

    Full Text Available The capacity for the removal of pyrimethanil and fenhexamid, two fungicides commonly used for the control of Botrytis cinerea in vineyards, has been evaluated during an alcoholic fermentation process in batch system. Commercial and wild strains of Saccharomyces cerevisiae were used. Batch fermentations were carried out in yeast extract-malt extract medium (YM with 18.0 % (by mass glucose, and the fungicides were added separately at three concentrations: 0.1, 1.0 and 10.0 mg/L. The removal capacity of yeast strains was also examined in stationary phase cultures of Saccharomyces cerevisiae. Stationary assays were performed with yeast biomass harvested from the stationary phase of an anaerobic fermentation process, with separate additions of 0.1, 1.0 and 10.0 mg/L of both fungicides. Removal studies with stationary phase cells were performed with viable and non-viable cells inactivated with sodium azide. This study clearly shows that both Saccharomyces cerevisiae strains were able to remove fenhexamid and pyrimethanil in stationary and fermentative assays. The removal potential is shown to be strain dependent in stationary but not in fermentative assays. However, the removal potential is dependent on the type of fungicide in both stationary and fermentative assays. In stationary phase cultures no significant difference in fungicide removal potential between viable and non-viable cells was observed, indicating that both pesticides were not degraded by metabolically active cells. However, the presence of both pesticides influenced fermentation kinetics and only pyrimethanil at 10.0 mg/L increased the production of volatile acidity of both strains.

  9. Activation of waste brewer's yeast Saccharomyces cerevisiae for bread production

    OpenAIRE

    Popov Stevan D.; Dodić Siniša N.; Mastilović Jasna S.; Dodić Jelena M.; Popov-Raljić Jovanka V.

    2005-01-01

    The waste brewer's yeast S. cerevisiae (activated and non-activated) was compared with the commercial baker's yeast regarding the volume of developed gas in dough, volume and freshness stability of produced bread. The activation of waste brewer's yeast resulted in the increased volume of developed gas in dough by 100% compared to non-activated brewer's yeast, and the obtained bread is of more stable freshness compared to bread produced with baker's yeast. The activation of BY affects positive...

  10. Effect of live yeast culture Saccharomyces cerevisiae on milk production and some blood parameters

    Directory of Open Access Journals (Sweden)

    Judit Peter Szucs

    2013-05-01

    Full Text Available The aim of this study was to investigate the effect of live yeast culture (Saccharomyces cerevisiae Sc 47 on milk yield, milk composition and some blood parameters of dairy cows during their early lactation on farm conditions. The live yeast culture was given in the diet of heifers and cows (5 g day-1 solid Actisaf for 14 days before calving and exclusively for the treated cows 12 g day-1 dissolved in 500 ml of water, during 14 days after calving. The experiment took until 100th day of lactation on farm conditions. Yeast culture supplementation was the most effective for the performance of primiparous cows: It was advantageous for blod plasma parameters: decreased the beta-hydroxy butyrate (BHB content and free fatty acids (FFA which indicated the protection of the animals against ketosis or other metabolic disorders. Increased the daily milk production and the lactose /glucose content of the milk. The live yeast culture increased the lactose content of the milk and decreased the somatic cell count of multiparous cows. The listed parameters were not significant (P<0.05 compare to the results of positive control groups. The applied live yeast culture supplementation did not significant affect for other performance of the cows.

  11. Saccharomyces Boulardii

    Science.gov (United States)

    Saccharomyces boulardii is a yeast, which is a type of fungus. Saccharomyces boulardii was previously identified as a unique species of ... be a strain of Saccharomyces cerevisiae (baker's yeast). Saccharomyces boulardii is used as medicine. Saccharomyces boulardii is most ...

  12. Saccharomyces cerevisiae in the Production of Whisk(ey

    Directory of Open Access Journals (Sweden)

    Graeme M. Walker

    2016-12-01

    Full Text Available Whisk(ey is a major global distilled spirit beverage. Whiskies are produced from cereal starches that are saccharified, fermented and distilled prior to spirit maturation. The strain of Saccharomyces cerevisiae employed in whisky fermentations is crucially important not only in terms of ethanol yields, but also for production of minor yeast metabolites which collectively contribute to development of spirit flavour and aroma characteristics. Distillers must therefore pay very careful attention to the strain of yeast exploited to ensure consistency of fermentation performance and spirit congener profiles. In the Scotch whisky industry, initiatives to address sustainability issues facing the industry (for example, reduced energy and water usage have resulted in a growing awareness regarding criteria for selecting new distilling yeasts with improved efficiency. For example, there is now a desire for Scotch whisky distilling yeasts to perform under more challenging conditions such as high gravity wort fermentations. This article highlights the important roles of S. cerevisiae strains in whisky production (with particular emphasis on Scotch and describes key fermentation performance attributes sought in distiller’s yeast, such as high alcohol yields, stress tolerance and desirable congener profiles. We hope that the information herein will be useful for whisky producers and yeast suppliers in selecting new distilling strains of S. cerevisiae, and for the scientific community to stimulate further research in this area.

  13. Genome-wide transcription survey on flavour production in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Schoondermark-Stolk, Sung A.; Jansen, Michael; Verkleij, Arie J.; Verrips, C. Theo; Euverink, Gert-Jan W.; Dijkhuizen, Lubbert; Boonstra, Johannes

    2006-01-01

    The yeast Saccharomyces cerevisiae is widely used as aroma producer in the preparation of fermented foods and beverages. During food fermentations, secondary metabolites like 3-methyl-1-butanol, 4-methyl-2-oxopentanoate, 3-methyl-2-oxobutanoate and 3-methylbutyrate emerge. These four compounds have

  14. Effect of Temperature on the Prevalence of Saccharomyces Non cerevisiae Species against a S. cerevisiae Wine Strain in Wine Fermentation: Competition, Physiological Fitness, and Influence in Final Wine Composition

    Science.gov (United States)

    Alonso-del-Real, Javier; Lairón-Peris, María; Barrio, Eladio; Querol, Amparo

    2017-01-01

    Saccharomyces cerevisiae is the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional Saccharomyces species (such as S. uvarum or S. kudriavzevii) or their hybrids (S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii) can contribute to solve some of these challenges. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts. However, S. cerevisiae can competitively displace other yeast species from wine fermentations, therefore the use of these new starters requires an analysis of their behavior during competition with S. cerevisiae during wine fermentation. In the present study we analyzed the survival capacity of non-cerevisiae strains in competition with S. cerevisiae during fermentation of synthetic wine must at different temperatures. First, we developed a new method, based on QPCR, to quantify the proportion of different Saccharomyces yeasts in mixed cultures. This method was used to assess the effect of competition on the growth fitness. In addition, fermentation kinetics parameters and final wine compositions were also analyzed. We observed that some cryotolerant Saccharomyces yeasts, particularly S. uvarum, seriously compromised S. cerevisiae fitness during competences at lower temperatures, which explains why S. uvarum can replace S. cerevisiae during wine fermentations in European regions with oceanic and continental climates. From an enological point of view, mixed co-cultures between S. cerevisiae and S. paradoxus or S. eubayanus, deteriorated fermentation parameters and the final product composition compared to single S. cerevisiae inoculation. However, in co-inoculated synthetic must in which S. kudriavzevii or S. uvarum coexisted with S. cerevisiae, there were fermentation

  15. A set of haploid strains available for genetic studies of Saccharomyces cerevisiae flor yeasts.

    Science.gov (United States)

    Coi, Anna Lisa; Legras, Jean-Luc; Zara, Giacomo; Dequin, Sylvie; Budroni, Marilena

    2016-09-01

    Flor yeasts of Saccharomyces cerevisiae have been extensively studied for biofilm formation, however the lack of specific haploid model strains has limited the application of genetic approaches such as gene knockout, allelic replacement and Quantitative Trait Locus mapping for the deciphering of the molecular basis of velum formation under biological ageing. The aim of this work was to construct a set of flor isogenic haploid strains easy to manipulate genetically. The analysis of the allelic variations at 12 minisatellite loci of 174 Saccharomyces cerevisiae strains allowed identifying three flor parental strains with different phylogenic positions. These strains were characterized for sporulation efficiency, growth on galactose, adherence to polystyrene, agar invasion, growth on wine and ability to develop a biofilm. Interestingly, the inability to grow on galactose was found associated with a frameshift in GAL4 gene that seems peculiar of flor strains. From these wild flor strains, isogenic haploid strains were constructed by deleting HO gene with a loxP-KanMX-loxP cassette followed by the removal of the kanamycin cassette. Haploid strains obtained were characterized for their phenotypic and genetic properties and compared with the parental strains. Preliminary results showed that the haploid strains represent new tools for genetic studies and breeding programs on biofilm formation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Adaptive response of yeast cultures (Saccharomyces Cerevisiae) exposed to low dose of gamma radiation

    International Nuclear Information System (INIS)

    Kulcsar, Agnes; Savu, D.; Petcu, I.; Gherasim, Raluca

    2003-01-01

    The present study was planned as follows: (i) setting up of standard experimental conditions for investigation of radio-induced adaptive response in lower Eucaryotes; (ii) developing of procedures for synchronizing Saccharomyces cerevisiae X 310 D cell cultures and cell cycle stages monitoring; (iii) investigation of gamma (Co-60) and UV irradiation effects on the viability of synchronized and non-synchronized cell cultures of Saccharomyces cerevisiae; the effects were correlated with the cell density and cell cycle stage; (iv) study of the adaptive response induced by irradiation and setting up of the experimental conditions for which this response is optimized. The irradiations were performed by using a Co-60 with doses of 10 2 - 10 4 Gy and dose rates ranging from 2.2 x 10 2 Gy/h to 8.7 x 10 3 Gy/h. The study of radioinduced adaptive response was performed by applying a pre-irradiation treatment of 100-500 Gy, followed by challenge doses of 2-4 kGy delivered at different time intervals, ranging from 1 h to 4 h. The survival rate of synchronized and non-synchronized cultures as a function of exposure dose shows an exponential decay shape. No difference in viability of the cells occurred between synchronized and non-synchronized cultures. The pre-irradiation of cells with 100 and 200 Gy were most efficient to induce an adaptive response for the yeast cells. In this stage of work we proved the occurrence of the adaptive response in the case of synchronized yeast cultures exposed to gamma radiation. The results will be used in the future to investigate the dependence of this response on the cell cycle and the possibility to induce such a response by a low level electromagnetic field. (authors)

  17. Damage-induced ectopic recombination in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kupiec, M; Steinlauf, R

    1997-06-09

    Mitotic recombination in the yeast Saccharomyces cerevisiae is induced when cells are irradiated with UV or X-rays, reflecting the efficient repair of damage by recombinational repair mechanisms. We have used multiply marked haploid strains that allow the simultaneous detection of several types of ectopic recombination events. We show that inter-chromosomal ectopic conversion of lys2 heteroalleles and, to a lesser extent, direct repeat recombination (DRR) between non-tandem repeats, are increased by DNA-damaging agents; in contrast, ectopic recombination of the naturally occurring Ty element is not induced. We have tested several hypotheses that could explain the preferential lack of induction of Ty recombination by DNA-damaging agents. We have found that the lack of induction cannot be explained by a cell cycle control or by an effect of the mating-type genes. We also found no role for the flanking long terminal repeats (LTRs) of the Ty in preventing the induction. Ectopic conversion, DRR, and forward mutation of artificial repeats show different kinetics of induction at various positions of the cell cycle, reflecting different mechanisms of recombination. We discuss the mechanistic and evolutionary aspects of these results.

  18. Diversity and adaptive evolution of Saccharomyces wine yeast: a review

    Science.gov (United States)

    Marsit, Souhir; Dequin, Sylvie

    2015-01-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. PMID:26205244

  19. [Saccharomyces cerevisiae infections].

    Science.gov (United States)

    Souza Goebel, Cristine; de Mattos Oliveira, Flávio; Severo, Luiz Carlos

    2013-01-01

    Saccharomyces cerevisiae is an ubiquitous yeast widely used in industry and it is also a common colonizer of the human mucosae. However, the incidence of invasive infection by these fungi has significantly increased in the last decades. To evaluate the infection by S. cerevisiae in a hospital in southern Brazil during a period of 10 years (2000-2010). Review of medical records of patients infected by this fungus. In this period, 6 patients were found to be infected by S. cerevisiae. The age range of the patients was from 10 years to 84. Urine, blood, ascitic fluid, peritoneal dialysis fluid, and esophageal biopsy samples were analyzed. The predisposing factors were cancer, transplant, surgical procedures, renal failure, use of venous catheters, mechanical ventilation, hospitalization in Intensive Care Unit, diabetes mellitus, chemotherapy, corticosteroid use, and parenteral nutrition. Amphotericin B and fluconazole were the treatments of choice. Three of the patients died and the other 3 were discharged from hospital. We must take special precautions in emerging infections, especially when there are predisposing conditions such as immunosuppression or patients with serious illnesses. The rapid and specific diagnosis of S. cerevisiae infections is important for therapeutic decision. Furthermore, epidemiological and efficacy studies of antifungal agents are necessary for a better therapeutic approach. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  20. Improving the Performance of the Granulosis Virus of Codling Moth (Lepidoptera: Tortricidae) by Adding the Yeast Saccharomyces cerevisiae with Sugar.

    Science.gov (United States)

    Knight, Alan L; Basoalto, Esteban; Witzgall, Peter

    2015-04-01

    Studies were conducted with the codling moth granulosis virus (CpGV) to evaluate whether adding the yeast Saccharomyces cerevisiae Meyen ex E. C. Hansen with brown cane sugar could improve larval control of Cydia pomonella (L.). Larval mortalities in dipped-apple bioassays with S. cerevisiae or sugar alone were not significantly different from the water control. The addition of S. cerevisiae but not sugar with CpGV significantly increased larval mortality compared with CpGV alone. The combination of S. cerevisiae and sugar with CpGV significantly increased larval mortality compared with CpGV plus either additive alone. The addition of S. cerevisiae improved the efficacy of CpGV similarly to the use of the yeast Metschnikowia pulcherrima (isolated from field-collected larvae). The proportion of uninjured fruit in field trials was significantly increased with the addition of S. cerevisiae and sugar to CpGV compared with CpGV alone only in year 1, and from the controls in both years. In comparison, larval mortality was significantly increased in both years with the addition of S. cerevisiae and sugar with CpGV compared with CpGV alone or from the controls. The numbers of overwintering larvae on trees was significantly reduced from the control following a seasonal program of CpGV plus S. cerevisiae and sugar. The addition of a microencapsulated formulation of pear ester did not improve the performance of CpGV or CpGV plus S. cerevisiae and sugar. These data suggest that yeasts can enhance the effectiveness of the biological control agent CpGV, in managing and maintaining codling moth at low densities. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  1. Amperometric Biosensor for Monitoring Respiration Activity of Saccharomyces cerevisiae in the Presence of Cobalt and Zinc

    Directory of Open Access Journals (Sweden)

    Miroslav Mikšaj

    2002-01-01

    Full Text Available For efficient control of heavy metal concentrations electrochemical methods, such as polarography and related techniques, are applied. Their advantages are simplicity, short analysis time and small quantities of samples needed. The presence of some heavy metals, such as zinc and cobalt, accelerates the growth of yeast. For the measurements of concentration changes, amperometric biosensor containing yeast Saccharomyces cerevisiae was used. The influence of zinc and cobalt on respiratory activity of the yeast Saccharomyces cerevisiae was estimated by measuring oxygen in the solution that was earlier enriched with cobalt or zinc. Measurements were performed using modified Clark’s oxygen electrode and the investigated concentrations of cobalt and zinc were up to 100 mg/L.

  2. Physiological impact and context dependency of transcriptional responses : A chemostat study in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Tai, S.L.

    2007-01-01

    This thesis is a compilation of a four-year PhD project on bakers' yeast (Saccharomyces cerevisiae). Since the entire S. cerevisiae genome sequence became available in 1996, DNA-microarray analysis has become a popular high-information-density tool for analyzing gene expression in this important

  3. The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and Their Role in Human Tumorigenesis

    Science.gov (United States)

    Cazzanelli, Giulia; Francisco, Rita; Azevedo, Luísa; Carvalho, Patrícia Dias; Almeida, Ana; Côrte-Real, Manuela; Oliveira, Maria José; Lucas, Cândida; Sousa, Maria João

    2018-01-01

    The exploitation of the yeast Saccharomyces cerevisiae as a biological model for the investigation of complex molecular processes conserved in multicellular organisms, such as humans, has allowed fundamental biological discoveries. When comparing yeast and human proteins, it is clear that both amino acid sequences and protein functions are often very well conserved. One example of the high degree of conservation between human and yeast proteins is highlighted by the members of the RAS family. Indeed, the study of the signaling pathways regulated by RAS in yeast cells led to the discovery of properties that were often found interchangeable with RAS proto-oncogenes in human pathways, and vice versa. In this work, we performed an updated critical literature review on human and yeast RAS pathways, specifically highlighting the similarities and differences between them. Moreover, we emphasized the contribution of studying yeast RAS pathways for the understanding of human RAS and how this model organism can contribute to unveil the roles of RAS oncoproteins in the regulation of mechanisms important in the tumorigenic process, like autophagy. PMID:29463063

  4. Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Anthony Arlia-Ciommo

    2014-05-01

    Full Text Available A body of evidence supports the view that the signaling pathways governing cellular aging – as well as mechanisms of their modulation by longevity-extending genetic, dietary and pharmacological interventions - are conserved across species. The scope of this review is to critically analyze recent advances in our understanding of cell-autonomous mechanisms of chronological aging in the budding yeast Saccharomyces cerevisiae. Based on our analysis, we propose a concept of a biomolecular network underlying the chronology of cellular aging in yeast. The concept posits that such network progresses through a series of lifespan checkpoints. At each of these checkpoints, the intracellular concentrations of some key intermediates and products of certain metabolic pathways - as well as the rates of coordinated flow of such metabolites within an intricate network of intercompartmental communications - are monitored by some checkpoint-specific ′′master regulator′′ proteins. The concept envisions that a synergistic action of these master regulator proteins at certain early-life and late-life checkpoints modulates the rates and efficiencies of progression of such processes as cell metabolism, growth, proliferation, stress resistance, macromolecular homeostasis, survival and death. The concept predicts that, by modulating these vital cellular processes throughout lifespan (i.e., prior to an arrest of cell growth and division, and following such arrest, the checkpoint-specific master regulator proteins orchestrate the development and maintenance of a pro- or anti-aging cellular pattern and, thus, define longevity of chronologically aging yeast.

  5. Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Arlia-Ciommo, Anthony; Leonov, Anna; Piano, Amanda; Svistkova, Veronika; Titorenko, Vladimir I

    2014-05-27

    A body of evidence supports the view that the signaling pathways governing cellular aging - as well as mechanisms of their modulation by longevity-extending genetic, dietary and pharmacological interventions - are conserved across species. The scope of this review is to critically analyze recent advances in our understanding of cell-autonomous mechanisms of chronological aging in the budding yeast Saccharomyces cerevisiae . Based on our analysis, we propose a concept of a biomolecular network underlying the chronology of cellular aging in yeast. The concept posits that such network progresses through a series of lifespan checkpoints. At each of these checkpoints, the intracellular concentrations of some key intermediates and products of certain metabolic pathways - as well as the rates of coordinated flow of such metabolites within an intricate network of intercompartmental communications - are monitored by some checkpoint-specific "master regulator" proteins. The concept envisions that a synergistic action of these master regulator proteins at certain early-life and late-life checkpoints modulates the rates and efficiencies of progression of such processes as cell metabolism, growth, proliferation, stress resistance, macromolecular homeostasis, survival and death. The concept predicts that, by modulating these vital cellular processes throughout lifespan (i.e., prior to an arrest of cell growth and division, and following such arrest), the checkpoint-specific master regulator proteins orchestrate the development and maintenance of a pro- or anti-aging cellular pattern and, thus, define longevity of chronologically aging yeast.

  6. Towards the design of an optimal strategy for the production of ergosterol from Saccharomyces cerevisiae yeasts.

    Science.gov (United States)

    Náhlík, Jan; Hrnčiřík, Pavel; Mareš, Jan; Rychtera, Mojmír; Kent, Christopher A

    2017-05-01

    The total yield of ergosterol produced by the fermentation of the yeast Saccharomyces cerevisiae depends on the final amount of yeast biomass and the ergosterol content in the cells. At the same time ergosterol purity-defined as percentage of ergosterol in the total sterols in the yeast-is equally important for efficient downstream processing. This study investigated the development of both the ergosterol content and ergosterol purity in different physiological (metabolic) states of the microorganism S. cerevisiae with the aim of reaching maximal ergosterol productivity. To expose the yeast culture to different physiological states during fermentation an on-line inference of the current physiological state of the culture was used. The results achieved made it possible to design a new production strategy, which consists of two preferable metabolic states, oxidative-fermentative growth on glucose followed by oxidative growth on glucose and ethanol simultaneously. Experimental application of this strategy achieved a value of the total efficiency of ergosterol production (defined as product of ergosterol yield coefficient and volumetric productivity), 103.84 × 10 -6 g L -1 h -1 , more than three times higher than with standard baker's yeast fed-batch cultivations, which attained in average 32.14 × 10 -6 g L -1 h -1 . At the same time the final content of ergosterol in dry biomass was 2.43%, with a purity 86%. These results make the product obtained by the proposed control strategy suitable for effective down-stream processing. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:838-848, 2017. © 2017 American Institute of Chemical Engineers.

  7. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiae by cell-free nuclear extracts.

    Science.gov (United States)

    Yuan, Fenghua; Lai, Fangfang; Gu, Liya; Zhou, Wen; El Hokayem, Jimmy; Zhang, Yanbin

    2009-05-01

    Mismatch repair corrects biosynthetic errors generated during DNA replication, whose deficiency causes a mutator phenotype and directly underlies hereditary non-polyposis colorectal cancer and sporadic cancers. Because of remarkably high conservation of the mismatch repair machinery between the budding yeast (Saccharomyces cerevisiae) and humans, the study of mismatch repair in yeast has provided tremendous insights into the mechanisms of this repair pathway in humans. In addition, yeast cells possess an unbeatable advantage over human cells in terms of the easy genetic manipulation, the availability of whole genome deletion strains, and the relatively low cost for setting up the system. Although many components of eukaryotic mismatch repair have been identified, it remains unclear if additional factors, such as DNA helicase(s) and redundant nuclease(s) besides EXO1, participate in eukaryotic mismatch repair. To facilitate the discovery of novel mismatch repair factors, we developed a straightforward in vitro cell-free repair system. Here, we describe the practical protocols for preparation of yeast cell-free nuclear extracts and DNA mismatch substrates, and the in vitro mismatch repair assay. The validity of the cell-free system was confirmed by the mismatch repair deficient yeast strain (Deltamsh2) and the complementation assay with purified yeast MSH2-MSH6.

  8. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.

    Science.gov (United States)

    Oshoma, Cyprian E; Greetham, Darren; Louis, Edward J; Smart, Katherine A; Phister, Trevor G; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.

  9. Alpha-ketoglutarate enhances freeze-thaw tolerance and prevents carbohydrate-induced cell death of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Bayliak, Maria M; Hrynkiv, Olha V; Knyhynytska, Roksolana V; Lushchak, Volodymyr I

    2018-01-01

    Stress resistance and fermentative capability are important quality characteristics of baker's yeast. In the present study, we examined protective effects of exogenous alpha-ketoglutarate (AKG), an intermediate of the tricarboxylic acid cycle and amino acid metabolism, against freeze-thaw and carbohydrate-induced stresses in the yeast Saccharomyces cerevisiae. Growth on AKG-supplemented medium prevented a loss of viability and improved fermentative capacity of yeast cells after freeze-thaw treatment. The cells grown in the presence of AKG had higher levels of amino acids (e.g., proline), higher metabolic activity and total antioxidant capacity, and higher activities of catalase, NADP-dependent glutamate dehydrogenase and glutamine synthase compared to control ones. Both synthesis of amino acids and enhancement of antioxidant system capacity could be involved in AKG-improved freeze-thaw tolerance in S. cerevisiae. Cell viability dramatically decreased under incubation of stationary-phase yeast cells in 2% glucose or fructose solutions (in the absence of the other nutrients) as compared with incubation in distilled water or in 10 mM AKG solution. The decrease in cell viability was accompanied by acidification of the medium, and decrease in cellular respiration, aconitase activity, and levels of total protein and free amino acids. The supplementation with 10 mM AKG effectively prevented carbohydrate-induced yeast death. Protective mechanisms of AKG could be associated with the intensification of respiration and prevention of decreasing protein level as well as with direct antioxidant AKG action.

  10. Invertase SUC2 Is the Key Hydrolase for Inulin Degradation in Saccharomyces cerevisiae

    OpenAIRE

    Wang, Shi-An; Li, Fu-Li

    2013-01-01

    Specific Saccharomyces cerevisiae strains were recently found to be capable of efficiently utilizing inulin, but genetic mechanisms of inulin hydrolysis in yeast remain unknown. Here we report functional characteristics of invertase SUC2 from strain JZ1C and demonstrate that SUC2 is the key enzyme responsible for inulin metabolism in S. cerevisiae.

  11. From mannan to bioethanol: cell surface co-display of β-mannanase and β-mannosidase on yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Ishii, Jun; Okazaki, Fumiyoshi; Djohan, Apridah Cameliawati; Hara, Kiyotaka Y; Asai-Nakashima, Nanami; Teramura, Hiroshi; Andriani, Ade; Tominaga, Masahiro; Wakai, Satoshi; Kahar, Prihardi; Yopi; Prasetya, Bambang; Ogino, Chiaki; Kondo, Akihiko

    2016-01-01

    Mannans represent the largest hemicellulosic fraction in softwoods and also serve as carbohydrate stores in various plants. However, the utilization of mannans as sustainable resources has been less advanced in sustainable biofuel development. Based on a yeast cell surface-display technology that enables the immobilization of multiple enzymes on the yeast cell walls, we constructed a recombinant Saccharomyces cerevisiae strain that co-displays β-mannanase and β-mannosidase; this strain is expected to facilitate ethanol fermentation using mannan as a biomass source. Parental yeast S. cerevisiae assimilated mannose and glucose as monomeric sugars, producing ethanol from mannose. We constructed yeast strains that express tethered β-mannanase and β-mannosidase; co-display of the two enzymes on the cell surface was confirmed by immunofluorescence staining and enzyme activity assays. The constructed yeast cells successfully hydrolyzed 1,4-β-d-mannan and produced ethanol by assimilating the resulting mannose without external addition of enzymes. Furthermore, the constructed strain produced ethanol from 1,4-β-d-mannan continually during the third batch of repeated fermentation. Additionally, the constructed strain produced ethanol from ivory nut mannan; ethanol yield was improved by NaOH pretreatment of the substrate. We successfully displayed β-mannanase and β-mannosidase on the yeast cell surface. Our results clearly demonstrate the utility of the strain co-displaying β-mannanase and β-mannosidase for ethanol fermentation from mannan biomass. Thus, co-tethering β-mannanase and β-mannosidase on the yeast cell surface provides a powerful platform technology for yeast fermentation toward the production of bioethanol and other biochemicals from lignocellulosic materials containing mannan components.

  12. The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1

    Directory of Open Access Journals (Sweden)

    de Morais Marcos A

    2011-08-01

    Full Text Available Abstract Background Polyhexamethylene biguanide (PHMB is an antiseptic polymer that is mainly used for cleaning hospitals and pools and combating Acantamoeba infection. Its fungicide activity was recently shown by its lethal effect on yeasts that contaminate the industrial ethanol process, and on the PE-2 strain of Saccharomyces cerevisiae, one of the main fermenting yeasts in Brazil. This pointed to the need to know the molecular mechanism that lay behind the cell resistance to this compound. In this study, we examined the factors involved in PHMB-cell interaction and the mechanisms that respond to the damage caused by this interaction. To achieve this, two research strategies were employed: the expression of some genes by RT-qPCR and the analysis of mutant strains. Results Cell Wall integrity (CWI genes were induced in the PHMB-resistant Saccharomyces cerevisiae strain JP-1, although they are poorly expressed in the PHMB-sensitive Saccharomyces cerevisiae PE2 strain. This suggested that PHMB damages the glucan structure on the yeast cell wall. It was also confirmed by the observed sensitivity of the yeast deletion strains, Δslg1, Δrom2, Δmkk2, Δslt2, Δknr4, Δswi4 and Δswi4, which showed that the protein kinase C (PKC regulatory mechanism is involved in the response and resistance to PHMB. The sensitivity of the Δhog1 mutant was also observed. Furthermore, the cytotoxicity assay and gene expression analysis showed that the part played by YAP1 and CTT1 genes in cell resistance to PHMB is unrelated to oxidative stress response. Thus, we suggested that Yap1p can play a role in cell wall maintenance by controlling the expression of the CWI genes. Conclusion The PHMB treatment of the yeast cells activates the PKC1/Slt2 (CWI pathway. In addition, it is suggested that HOG1 and YAP1 can play a role in the regulation of CWI genes.

  13. Two mutations which confer temperature-sensitive radiation sensitivity in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ho, K.S.Y.; Mortimer, R.K.

    1975-01-01

    X-ray survival curves for two mutations, rad54 and rad55, in the yeast Saccharomyces cerevisiae are presented. These mutations confer temperature sensitive X-ray sensitivity; that is, rad54 and rad55 strains display a wild type X-ray survival response at permissive temperatures and a radiosensitive X-ray survival response at restrictive temperatures. The survival response of cells which were shifted from a permissive to a restrictive temperature or vice versa at various post-irradiation times indicates that repair and fixation of X-ray induced lesions is largely complete three hours after X-irradiation. Experiments to determine the utilization sequence of the rad54 and rad55 gene products in the repair of X-ray induced damage suggest that the two products are required in an interdependent manner

  14. Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts in sequential fermentations: Effect on phenolic acids of fermented Kei-apple (Dovyalis caffra L.) juice.

    Science.gov (United States)

    Minnaar, P P; Jolly, N P; Paulsen, V; Du Plessis, H W; Van Der Rijst, M

    2017-09-18

    Kei-apple (Dovyalis caffra) is an evergreen tree indigenous to Southern Africa. The fruit contains high concentrations of l-malic acid, ascorbic acid, and phenolic acids. Kei-apple juice was sequentially inoculated with Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts. A reference fermentation using only S. cerevisiae was included. The fermentation was monitored by recording mass loss. At the end of fermentation, twelve untrained judges conducted free choice aroma profiling on the fruit wines. The Kei-apple juice and wines were analysed for total titratable acidity, total soluble solids, pH, alcohol, l-malic acid, and phenolic acids. Total titratable acidity was ca. 70% lower in Kei-apple wines produced with S. pombe+S. cerevisiae than in Kei-apple juice. Kei-apple wines produced with S. pombe+S. cerevisiae showed substantially lower concentrations of l-malic acid than Kei-apple wines produced with S. cerevisiae only. Wines produced with S. cerevisiae only proved higher in phenolic acid concentrations than wines produced with S. pombe+S. cerevisiae. Chlorogenic acid was the most abundant phenolic acid measured in the Kei-apple wines, followed by protocatechuic acid. Judges described the Kei-apple wines produced with S. pombe+S. cerevisiae as having noticeable off-odours, while wines produced with S. cerevisiae were described as fresh and fruity. Kei-apple wines (S. pombe+S. cerevisiae and S. cerevisiae) were of comparable vegetative and organic character. Saccharomyces cerevisiae produced Kei-apple wine with increased caffeic, chlorogenic, protocatechuic, and sinapic acids, whereas S. pombe+S. cerevisiae produced Kei-apple wines with increased ferulic, and p-coumaric acids and low l-malic acid. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. [Saccharomyces cerevisiae invasive infection: The first reported case in Morocco].

    Science.gov (United States)

    Maleb, A; Sebbar, E; Frikh, M; Boubker, S; Moussaoui, A; El Mekkaoui, A; Khannoussi, W; Kharrasse, G; Belefquih, B; Lemnouer, A; Ismaili, Z; Elouennass, M

    2017-06-01

    Saccharomyces cerevisiae is a cosmopolitan yeast, widely used in agro-alimentary and pharmaceutical industry. Its impact in human pathology is rare, but maybe still underestimated compared to the real situation. This yeast is currently considered as an emerging and opportunistic pathogen. Risk factors are immunosuppression and intravascular device carrying. Fungemias are the most frequent clinical forms. We report the first case of S. cerevisiae invasive infection described in Morocco, and to propose a review of the literature cases of S. cerevisiae infections described worldwide. A 77-year-old patient, with no notable medical history, who was hospitalized for a upper gastrointestinal stenosis secondary to impassable metastatic gastric tumor. Its history was marked by the onset of septic shock, with S. cerevisiae in his urine and in his blood, with arguments for confirmation of invasion: the presence of several risk factors in the patient, positive direct microbiological examination, abundant and exclusive culture of S. cerevisiae from clinical samples. Species identification was confirmed by the study of biochemical characteristics of the isolated yeast. Confirmation of S. cerevisiae infection requires a clinical suspicion in patients with risk factors, but also a correct microbiological diagnosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Phosphorylation of protein synthesis initiation factor 2 (elF-2) in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Romero, D.P.

    1986-01-01

    Initiation Factor 2 (elF-2) in the yeast Saccharomyces cerevisiae is comprised of 3 subunits. The control of protein synthesis in mammalian cells have been shown to involve the phosphorylation of the small (alpha) subunit by a specific protein kinase. Phosphorylation results in an inhibition of protein synthesis. In order to determine whether or not an analogous system is operative in yeast, the phosphorylation state of the alpha subunit of elF-2 in Saccharomyces was determined during various growth and nongrowth conditions. Cells were radiolabelled with 32 P and 35 S, and the whole cell lysates were analyzed by two dimensional gel electrophoresis. These experiments revealed that the smallest subunit (alpha, M/sub r/ = 31,000) is a phosphoprotein in vivo under a variety of growth and nongrowth conditions. This is in direct contrast to the pattern exhibited in mammalian cells. The fact that the small subunit of elF-2 in yeast is phosphorylated under a variety of physiological conditions indicates that such a covalent modification is important for some aspects of elF-2 function. In order to investigate this problem further, a protein kinase that specifically labels the alpha subunit of elF-2 in vitro was isolated. The kinase is not autophosphorylating, utilizes ATP as a phosphate donor, phosphorylates an exogenous protein, casein, modifies serine residues in elF-2, is cyclic nucleotide-independent, and is strongly inhibited by heparin

  17. Microbially induced separation of quartz from calcite using Saccharomyces cerevisiae.

    Science.gov (United States)

    Padukone, S Usha; Natarajan, K A

    2011-11-01

    Cells of Saccharomyces cerevisiae and their metabolites were successfully utilized to achieve selective separation of quartz and calcite through microbially induced flotation and flocculation. S. cerevisiae was adapted to calcite and quartz minerals. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of yeast cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Higher-order structure of Saccharomyces cerevisiae chromatin

    International Nuclear Information System (INIS)

    Lowary, P.T.; Widom, J.

    1989-01-01

    We have developed a method for partially purifying chromatin from Saccharomyces cerevisiae (baker's yeast) to a level suitable for studies of its higher-order folding. This has required the use of yeast strains that are free of the ubiquitous yeast killer virus. Results from dynamic light scattering, electron microscopy, and x-ray diffraction show that the yeast chromatin undergoes a cation-dependent folding into 30-nm filaments that resemble those characteristic of higher-cell chromatin; moreover, the packing of nucleosomes within the yeast 30-nm filaments is similar to that of higher cells. These results imply that yeast has a protein or protein domain that serves the role of the histone H 1 found in higher cells; physical and genetic studies of the yeast activity could help elucidate the structure and function of H 1. Images of the yeast 30-nm filaments can be used to test crossed-linker models for 30-nm filament structure

  19. Levels of acid-soluble polyphosphate in growing cultures of Saccharomyces cerevisiae.

    OpenAIRE

    Solimene, R; Guerrini, A M; Donini, P

    1980-01-01

    Short-chain acid-soluble polyphosphates were extracted from growing cultures of Saccharomyces cerevisiae, and the changes in the levels of these compounds were determined. The production of acid-soluble polyphosphates correlated with the mitochondrial activities since it occurred in two bursts in respiration-competent yeast cells and in only one burst in respiration-deficient yeast cells. The possible role of these compounds is discussed.

  20. Prevalence and susceptibility of Saccharomyces cerevisiae causing vaginitis in Greek women.

    Science.gov (United States)

    Papaemmanouil, V; Georgogiannis, N; Plega, M; Lalaki, J; Lydakis, D; Dimitriou, M; Papadimitriou, A

    2011-12-01

    Saccharomyces cerevisiae is an ascomycetous yeast, that is traditionally used in wine bread and beer production. Vaginitis caused by S. cerevisiae is rare. The aim of this study was to evaluate the frequency of S. cerevisiae isolation from the vagina in two groups of women and determined the in vitro susceptibility of this fungus. Vaginal samples were collected from a total of 262 (asymptomatic and symptomatic) women with vaginitis attending the centre of family planning of General hospital of Piraeus. All blastomycetes that isolated from the vaginal samples were examined for microscopic morphological tests and identified by conventional methods: By API 20 C AUX and ID 32 C (Biomerieux). Antifungal susceptibility testing for amphotericin B,fluconazole itraconazole,voriconazole, posaconazole and caspofungin was performed by E -test (Ab BIODIKS SWEDEN) against S. cerevisiae. A total of 16 isolates of S. cerevisiae derived from vaginal sample of the referred women, average 6.10%. Susceptibility of 16 isolates of S. cerevisiae to a variety of antimycotic agents were obtained. So all isolates of S. cerevisiae were resistant to fluconazole, posaconazole and intraconazole, but they were sensitive to voriconazole caspofungin and Amphotericin B which were found sensitive (except 1/16 strains). None of the 16 patients had a history of occupational domestic use of baker's yeast. Vaginitis caused by S. cerevisiae occur, is rising and cannot be ignored. Treatment of Saccharomyces vaginitis constitutes a major challenge and may require selected and often prolonged therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Maximizing the concentrations of wheat grain fructans in bread by exploring strategies to prevent their yeast ( Saccharomyces cerevisiae )-mediated degradation.

    Science.gov (United States)

    Verspreet, Joran; Hemdane, Sami; Dornez, Emmie; Cuyvers, Sven; Delcour, Jan A; Courtin, Christophe M

    2013-02-13

    The degradation of endogenous wheat grain fructans, oligosaccharides with possible health-promoting potential, during wheat whole meal bread making was investigated, and several strategies to prevent their degradation were evaluated. Up to 78.4 ± 5.2% of the fructans initially present in wheat whole meal were degraded during bread making by the action of yeast ( Saccharomyces cerevisiae ) invertase. The addition of sucrose to dough delayed fructan degradation but had no effect on final fructan concentrations. However, yeast growth conditions and yeast genotype did have a clear impact. A 3-fold reduction of fructan degradation could be achieved when the commercial bread yeast strain was replaced by yeast strains with lower sucrose degradation activity. Finally, fructan degradation during bread making could be prevented completely by the use of a yeast strain lacking invertase. These results show that the nutritional profile of bread can be enhanced through appropriate yeast technology.

  2. Habitat Predicts Levels of Genetic Admixture in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Viranga Tilakaratna

    2017-09-01

    Full Text Available Genetic admixture can provide material for populations to adapt to local environments, and this process has played a crucial role in the domestication of plants and animals. The model yeast, Saccharomyces cerevisiae, has been domesticated multiple times for the production of wine, sake, beer, and bread, but the high rate of admixture between yeast lineages has so far been treated as a complication for population genomic analysis. Here, we make use of the low recombination rate at centromeres to investigate admixture in yeast using a classic Bayesian approach and a locus-by-locus phylogenetic approach. Using both approaches, we find that S. cerevisiae from stable oak woodland habitats are less likely to show recent genetic admixture compared with those isolated from transient habitats such as fruits, wine, or human infections. When woodland yeast strains do show recent genetic admixture, the degree of admixture is lower than in strains from other habitats. Furthermore, S. cerevisiae populations from oak woodlands are genetically isolated from each other, with only occasional migration between woodlands and local fruit habitats. Application of the phylogenetic approach suggests that there is a previously undetected population in North Africa that is the closest outgroup to the European S. cerevisiae, including the domesticated Wine population. Careful testing for admixture in S. cerevisiae leads to a better understanding of the underlying population structure of the species and will be important for understanding the selective processes underlying domestication in this economically important species.

  3. Habitat Predicts Levels of Genetic Admixture in Saccharomyces cerevisiae.

    Science.gov (United States)

    Tilakaratna, Viranga; Bensasson, Douda

    2017-09-07

    Genetic admixture can provide material for populations to adapt to local environments, and this process has played a crucial role in the domestication of plants and animals. The model yeast, Saccharomyces cerevisiae , has been domesticated multiple times for the production of wine, sake, beer, and bread, but the high rate of admixture between yeast lineages has so far been treated as a complication for population genomic analysis. Here, we make use of the low recombination rate at centromeres to investigate admixture in yeast using a classic Bayesian approach and a locus-by-locus phylogenetic approach. Using both approaches, we find that S. cerevisiae from stable oak woodland habitats are less likely to show recent genetic admixture compared with those isolated from transient habitats such as fruits, wine, or human infections. When woodland yeast strains do show recent genetic admixture, the degree of admixture is lower than in strains from other habitats. Furthermore, S. cerevisiae populations from oak woodlands are genetically isolated from each other, with only occasional migration between woodlands and local fruit habitats. Application of the phylogenetic approach suggests that there is a previously undetected population in North Africa that is the closest outgroup to the European S. cerevisiae , including the domesticated Wine population. Careful testing for admixture in S. cerevisiae leads to a better understanding of the underlying population structure of the species and will be important for understanding the selective processes underlying domestication in this economically important species. Copyright © 2017 Tilakaratna and Bensasson.

  4. Dynamics of Storage Carbohydrates Metabolism in Saccharomyces cerevisiae

    OpenAIRE

    Suarez-Mendez, C.A.

    2015-01-01

    Production of chemicals via biotechnological routes are becoming rapidly an alternative to oil-based processes. Several microorganisms including yeast, bacteria, fungi and algae can transform feedstocks into high-value molecules at industrial scale. Improvement of the bioprocess performance is a key factor for making this technology economically feasible. Despite the vast knowledge on microbial metabolism, some gaps still remain open. In Saccharomyces cerevisiae, metabolism of storage carbohy...

  5. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts

    Science.gov (United States)

    Gorter de Vries, Arthur R.; Pronk, Jack T.

    2017-01-01

    ABSTRACT Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyces strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. PMID:28341679

  6. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Naseri, Gita; Balazadeh, Salma; Machens, Fabian; Kamranfar, Iman; Messerschmidt, Katrin; Mueller-Roeber, Bernd

    2017-09-15

    Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.

  7. Comparison of the performances of Hanseniaspora vineae and Saccharomyces cerevisiae during winemaking

    Directory of Open Access Journals (Sweden)

    Jessica eLleixa

    2016-03-01

    Full Text Available Interest in the use of non-Saccharomyces yeasts in winemaking has been increasing due to their positive contributions to wine quality. The non-Saccharomyces yeast Hanseniaspora vineae is an apiculate yeast that has been associated with the production of wine with good aromatic properties. However, little is known about the fermentation dynamics of H. vineae in natural must and its interaction with autochthonous yeasts.In the present study, we performed semi industrial fermentations of Macabeo and Merlot musts inoculated with either H. vineae or S. cerevisiae. The yeast population dynamics were monitored by plate culturing, qPCR, PCR-DGGE and massive sequencing techniques. The results obtained with these techniques show that H. vineae was able dominate the autochthonous microbiota in Macabeo must but not in Merlot must, which exhibited a larger, more diverse yeast population. The presence of H. vineae throughout most of the Macabeo fermentation resulted in more fruity and flowery wine, as indicated by the chemical analysis of the final wines, which demonstrated a strong presence of phenethyl acetate at concentrations higher than the threshold of perception and approximately 50 times more than that produced in wines fermented with S. cerevisiae. This compound is associated with fruity, floral and honey aromas.

  8. Effects of fermentation by Saccharomyces cerevisiae and ...

    African Journals Online (AJOL)

    yassine

    2013-02-13

    Feb 13, 2013 ... Effect of Saccharomyces cerevisiae fermentation on the ... beetroot, fermentation, Saccharomyces cerevisiae, betalain compounds. ... by Saccharomyces cerevisiae strains (González et al., .... Both red and yellow pigments were influenced during S. .... in beverages such as white wine, grape fruit, and green.

  9. Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation.

    Science.gov (United States)

    Yamaoka, Chizuru; Kurita, Osamu; Kubo, Tomoko

    2014-12-01

    The influence of non-Saccharomyces yeast, Kluyveromyces lactis, on metabolite formation and the ethanol tolerance of Saccharomyces cerevisiae in mixed cultures was examined on synthetic minimal medium containing 20% glucose. In the late stage of fermentation after the complete death of K. lactis, S. cerevisiae in mixed cultures was more ethanol-tolerant than that in pure culture. The chronological life span of S. cerevisiae was shorter in pure culture than mixed cultures. The yeast cells of the late stationary phase both in pure and mixed cultures had a low buoyant density with no significant difference in the non-quiescence state between both cultures. In mixed cultures, the glycerol contents increased and the alanine contents decreased when compared with the pure culture of S. cerevisiae. The distinctive intracellular amino acid pool concerning its amino acid concentrations and its amino acid composition was observed in yeast cells with different ethanol tolerance in the death phase. Co-cultivation of K. lactis seems to prompt S. cerevisiae to be ethanol tolerant by forming opportune metabolites such as glycerol and alanine and/or changing the intracellular amino acid pool. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Evaluation of Lactobacillus plantarum and Saccharomyces cerevisiae in the Presence of Bifenthrin.

    Science.gov (United States)

    Đorđević, Tijana M; Đurović-Pejčev, Rada D

    2016-06-01

    This work describes the effect of insecticide bifenthrin on Lactobacillus plantarum and Saccharomyces cerevisiae. Growths of used microorganisms in growth media supplemented with pesticide were studied. Determination of bacterial and yeast fermentation efficiency in wheat supplemented with bifenthrin was conducted. Additionally, investigation of bifenthrin dissipation during microbiological activity was performed. Experiments applying bifenthrin in different concentrations highlighted a negligible impact of the pesticide on the growth of L. plantarum and S. cerevisiae. This insecticide overall negatively affected the yeast fermentation of wheat, while its presence in wheat had a slight negative impact on lactic acid fermentation. The results of bifenthrin dissipation during lactic acid and yeast fermentations of wheat showed that activities of L. plantarum and S. cerevisiae caused lower pesticide reductions. Average bifenthrin residue reduction within samples fermented with L. plantarum was 5.4 % (maximum ~16 %), while within samples fermented with S. cerevisiae, it was 11.6 % (maximum ~17 %).

  11. PRODUKSI ETANOL DARI TETES TEBU OLEH Saccharomyces cerevisiae PEMBENTUK FLOK (NRRL – Y 265 (Ethanol Production from Cane Molasses by Flocculant Saccharomyces cerevisiae (NRRL – Y 265

    Directory of Open Access Journals (Sweden)

    Agustin Krisna Wardani

    2013-08-01

    Full Text Available The potential use of sugar cane molasses by flocculant Saccharomyces cerevisiae in ethanol production was investigated. In order to minimize the negative effect of calcium on yeast growth, pretreated sugar cane molasses with dilute acid was performed. The influence of process parameters such as sugar concentration and inoculum concentration were evaluated for enhancing bioethanol production. Result showed that maximum ethanol concentration of 8,792% (b/v was obtained at the best condition of inoculum concentration 10% (v/v and sugar concentration 15% (b/v. Based on the experimental data, maximum yield of ethanol production of 65% was obtained. This result demonstrated the potential of molasses as promising biomass resources for ethanol production. Keywords: Ethanol, preteated cane molasses, flocculant Saccharomyces cerevisiae, fermentation   ABSTRAK Efisiensi produksi bioetanol diperoleh melalui ketepatan pemilihan jenis mikroorganisme, bahan baku, dan kontrol proses fermentasi. Alternatif proses untuk meminimalisasi biaya produksi etanol adalah dengan mengeliminasi tahap pemisahan sentrifugasi sel dari produk karena memerlukan biaya instalasi dan biaya perawatan yang tinggi. Proses sentrifugasi merupakan tahapan penting untuk memisahkan sel mikroba dari medium fermentasi pada produksi bioetanol. Untuk meminimalisir biaya produksi akibat proses tersebut digunakan inokulum Saccharomyces cerevisiae pembentuk flok dan tetes tebu sebagai sumber gula. Penelitian ini bertujuan untuk mendapatkan konsentrasi penambahan inokulum Saccharomyces cerevisiae pembentuk flok dan konsentrasi sumber gula dalam tetes tebu yang tepat dalam produksi etanol yang maksimum. Saccharomyces cerevisiae sebanyak 5%, 10%, dan 15% (v/v diinokulasikan pada medium tetes tebu hasil pretreatment dengan kandungan gula 15%, 20%, dan 25% (b/v pada pH 5. Fermentasi dilakukan pada suhu 30°C dan agitasi 100 rpm selama 72 jam. Etanol tertinggi didapat pada kondisi konsentrasi inokulum

  12. Harvesting yeast (Saccharomyces cerevisiae) at different physiological phases significantly affects its functionality in bread dough fermentation.

    Science.gov (United States)

    Rezaei, Mohammad N; Dornez, Emmie; Jacobs, Pieter; Parsi, Anali; Verstrepen, Kevin J; Courtin, Christophe M

    2014-05-01

    Fermentation of sugars into CO2, ethanol and secondary metabolites by baker's yeast (Saccharomyces cerevisiae) during bread making leads to leavening of dough and changes in dough rheology. The aim of this study was to increase our understanding of the impact of yeast on dough related aspects by investigating the effect of harvesting yeast at seven different points of the growth profile on its fermentation performance, metabolite production, and the effect on critical dough fermentation parameters, such as gas retention potential. The yeast cells harvested during the diauxic shift and post-diauxic growth phase showed a higher fermentation rate and, consequently, higher maximum dough height than yeast cells harvested in the exponential or stationary growth phase. The results further demonstrate that the onset of CO2 loss from fermenting dough is correlated with the fermentation rate of yeast, but not with the amount of CO2 that accumulated up to the onset point. Analysis of the yeast metabolites produced in dough yielded a possible explanation for this observation, as they are produced in different levels depending on physiological phase and in concentrations that can influence dough matrix properties. Together, our results demonstrate a strong effect of yeast physiology at the time of harvest on subsequent dough fermentation performance, and hint at an important role of yeast metabolites on the subsequent gas holding capacity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Conrad, Michaela; Schothorst, Joep; Kankipati, Harish Nag; Van Zeebroeck, Griet; Rubio-Texeira, Marta; Thevelein, Johan M

    2014-01-01

    The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth. PMID:24483210

  14. Production and Purification of the Native Saccharomyces cerevisiae Hsp12 in Escherichia coli.

    Science.gov (United States)

    Léger, Antoine; Hocquellet, Agnès; Dieryck, Wilfrid; Moine, Virginie; Marchal, Axel; Marullo, Philippe; Josseaume, Annabelle; Cabanne, Charlotte

    2017-09-20

    Hsp12 is a small heat shock protein produced in many organisms, including the yeast Saccharomyces cerevisiae. It has been described as an indicator of yeast stress rate and has also been linked to the sweetness sensation of wine. To obtain a sufficient amount of protein, we produced and purified Hsp12 without tag in Escherichia coli. A simple fast two-step process was developed using a microplate approach and a design of experiments. A capture step on an anion-exchange salt-tolerant resin was followed by size exclusion chromatography for polishing, leading to a purity of 97%. Thereafter, specific anti-Hsp12 antibodies were obtained by rabbit immunization. An ELISA was developed to quantify Hsp12 in various strains of Saccharomyces cerevisiae. The antibodies showed high specificity and allowed the quantitation of Hsp12 in the yeast. The quantities of Hsp12 measured in the strains differed in direct proportion to the level of expression found in previous studies.

  15. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2012-08-01

    The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consumption rates, and poor cell growth compared with an oxidoreductase pathway and, additionally, often require adaptive strain evolution. Here, we report on the directed evolution of the Piromyces sp. xylose isomerase (encoded by xylA) for use in yeast. After three rounds of mutagenesis and growth-based screening, we isolated a variant containing six mutations (E15D, E114G, E129D, T142S, A177T, and V433I) that exhibited a 77% increase in enzymatic activity. When expressed in a minimally engineered yeast host containing a gre3 knockout and tal1 and XKS1 overexpression, the strain expressing this mutant enzyme improved its aerobic growth rate by 61-fold and both ethanol production and xylose consumption rates by nearly 8-fold. Moreover, the mutant enzyme enabled ethanol production by these yeasts under oxygen-limited fermentation conditions, unlike the wild-type enzyme. Under microaerobic conditions, the ethanol production rates of the strain expressing the mutant xylose isomerase were considerably higher than previously reported values for yeast harboring a xylose isomerase pathway and were also comparable to those of the strains harboring an oxidoreductase pathway. Consequently, this study shows the potential to evolve a xylose isomerase pathway for more efficient xylose utilization.

  16. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    Science.gov (United States)

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Inorganic polyphosphate in the yeast Saccharomyces cerevisiae with a mutation disturbing the function of vacuolar ATPase.

    Science.gov (United States)

    Tomaschevsky, A A; Ryasanova, L P; Kulakovskaya, T V; Kulaev, I S

    2010-08-01

    A mutation in the vma2 gene disturbing V-ATPase function in the yeast Saccharomyces cerevisiae results in a five- and threefold decrease in inorganic polyphosphate content in the stationary and active phases of growth on glucose, respectively. The average polyphosphate chain length in the mutant cells is decreased. The mutation does not prevent polyphosphate utilization during cultivation in a phosphate-deficient medium and recovery of its level on reinoculation in complete medium after phosphate deficiency. The content of short chain acid-soluble polyphosphates is recovered first. It is supposed that these polyphosphates are less dependent on the electrochemical gradient on the vacuolar membrane.

  18. Acrolein-Induced Oxidative Stress and Cell Death Exhibiting Features of Apoptosis in the Yeast Saccharomyces cerevisiae Deficient in SOD1.

    Science.gov (United States)

    Kwolek-Mirek, Magdalena; Zadrąg-Tęcza, Renata; Bednarska, Sabina; Bartosz, Grzegorz

    2015-04-01

    The yeast Saccharomyces cerevisiae is a useful eukaryotic model to study the toxicity of acrolein, an important environmental toxin and endogenous product of lipid peroxidation. The study was aimed at elucidation of the cytotoxic effect of acrolein on the yeast deficient in SOD1, Cu, Zn-superoxide dismutase which is hypersensitive to aldehydes. Acrolein generated within the cell from its precursor allyl alcohol caused growth arrest and cell death of the yeast cells. The growth inhibition involved an increase in production of reactive oxygen species and high level of protein carbonylation. DNA condensation and fragmentation, exposition of phosphatidylserine at the cell surface as well as decreased dynamic of actin microfilaments and mitochondria disintegration point to the induction of apoptotic-type cell death besides necrotic cell death.

  19. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.

    Science.gov (United States)

    Bely, Marina; Stoeckle, Philippe; Masneuf-Pomarède, Isabelle; Dubourdieu, Denis

    2008-03-20

    Conventional wine yeasts produce high concentrations of volatile acidity, mainly acetic acid, during high-sugar fermentation. This alcoholic fermentation by-product is highly detrimental to wine quality and, in some cases, levels may even exceed legal limits. In this study, a non-conventional species, Torulaspora delbrueckii, was used, in pure cultures and mixed with Saccharomyces cerevisiae yeast, to ferment botrytized musts. Fermentation rate, biomass growth, and the formation of volatile acidity, acetaldehyde, and glycerol were considered. This study demonstrated that T. delbrueckii, often described as a low acetic producer under standard conditions, retained this quality even in a high-sugar medium. Unlike S. cerevisiae, this species did not respond to the hyper-osmotic medium by increasing acetic production as soon as it is inoculated into the must. Nevertheless, this yeast produced low ethanol and biomass yields, and the fermentation was sluggish. As a result, T. delbrueckii fermentations do not reach the required ethanol content (14%vol.), although this species can survive at this concentration. A mixed culture of T. delbrueckii and S. cerevisiae was the best combination for improving the analytical profile of sweet wine, particularly volatile acidity and acetaldehyde production. A mixed T. delbrueckii/S. cerevisiae culture at a 20:1 ratio produced 53% less in volatile acidity and 60% less acetaldehyde than a pure culture of S. cerevisiae. Inoculating S. cerevisiae after 5 days' fermentation by T. delbrueckii had less effect on volatile acidity and acetaldehyde production and resulted in stuck fermentation. These results contribute to a better understanding of the behaviour of non-Saccharomyces and their potential application in wine industry.

  20. Effect of menadione and hydrogen peroxide on catalase activity in Saccharomyces yeast strains

    Directory of Open Access Journals (Sweden)

    Nadejda EFREMOVA

    2013-05-01

    Full Text Available It has been studied the possibility of utilization of two important oxidant factors as regulators of catalase activity in Saccharomyces yeasts. In this paper results of the screening of some Saccharomyces yeast strains for potential producers of catalase are presented. Results of the screening for potential catalase producer have revealed that Saccharomyces cerevisiae CNMN-Y-11 strain possesses the highest catalase activity (2900 U/mg protein compared with other samples. Maximum increase of catalase activity with 50-60% compared to the reference sample was established in the case of hydrogen peroxide and menadione utilization in optimal concentrations of 15 and 10 mM. This research has been demonstrated the potential benefits of application of hydrogen peroxide and menadione as stimulatory factors of catalase activity in Saccharomyces yeasts.

  1. COMPARATIVE ASSESSMENT OF THE LABORATORY SELECTED AND ACTIVE DRIED SACCHAROMYCES CEREVISIAE YEAST CULTURE IN BIOTECHNOLOGY OF THE BRANDY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Bayraktar V.N.

    2015-04-01

    C and low temperature (+6°C, growth at low pH 2.6–3.0 (acid resistance, growth in the presence of 5, 10, and 15% ethanol (ethanol resistance, and growth in the presence of high concentration potassium bisulfite (bisulfite resistance. Hydrosulfide synthesis (H2S gassing production was studied in addition. Parameters of cellular metabolism in yeast suspension, such as concentration of nitrogen, protein, triglicerides, enzymatic activity and total sugar (which include glucose, fructose, and galactose were determined. Macro- and micro-element concentrations in fermented grape must, which contained pure yeast culture was determined and included: potassium, sodium, calcium, phosphorus, magnesium, iron, chlorides. In addition to identifying parameters of macro- and micro- element concentration in grape must during and following fermentation based on a principle of photometric analysis, carried out using a biochemical analyser Respons-920 (DiaSys Diagnostic Systems GmbH, Germany. Laboratory selected Saccharomyces cerevisiae wine yeast showed high enzymatic activity with short lag phase. Since of fermentation started on third day concentration of Triglicerides, Protein (total, Potassium and Sodium increased and then level of Protein (total on the 5th day of fermentation twice decreased. Trigliceride concentration on the 5th day of fermentation continued to increase. Concentration of Iron on the 5th day of fermentation increase in geometrical progression, concentration increase in 4-5 times. Contrary Chloride concentration on the 5th day of fermentation decreased in 3-4 times. Enzymatic activity on 3rd day of fermentation maximal for Lactate Dehydrogenase, Alanine aminotransferase, Aspartate aminotransferase, Phosphatase. Since of 5th day of fermentation Enzymatic activity for Lactate Dehydrogenase, Alanine aminotransferase, Aspartate aminotransferase 3-4 times. Especially level of Phosphatase activity very decreased in 6-7 times. Comparative assessment between our Laboratory

  2. Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae.

    OpenAIRE

    Enyenihi, Akon H; Saunders, William S

    2003-01-01

    We have used a single-gene deletion mutant bank to identify the genes required for meiosis and sporulation among 4323 nonessential Saccharomyces cerevisiae annotated open reading frames (ORFs). Three hundred thirty-four sporulation-essential genes were identified, including 78 novel ORFs and 115 known genes without previously described sporulation defects in the comprehensive Saccharomyces Genome (SGD) or Yeast Proteome (YPD) phenotype databases. We have further divided the uncharacterized sp...

  3. Mobilization of steryl esters from lipid particles of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Wagner, Andrea; Grillitsch, Karlheinz; Leitner, Erich; Daum, Günther

    2009-02-01

    In the yeast as in other eukaryotes, formation and hydrolysis of steryl esters (SE) are processes linked to lipid storage. In Saccharomyces cerevisiae, the three SE hydrolases Tgl1p, Yeh1p and Yeh2p contribute to SE mobilization from their site of storage, the lipid particles/droplets. Here, we provide evidence for enzymatic and cellular properties of these three hydrolytic enzymes. Using the respective single, double and triple deletion mutants and strains overexpressing the three enzymes, we demonstrate that each SE hydrolase exhibits certain substrate specificity. Interestingly, disturbance in SE mobilization also affects sterol biosynthesis in a type of feedback regulation. Sterol intermediates stored in SE and set free by SE hydrolases are recycled to the sterol biosynthetic pathway and converted to the final product, ergosterol. This recycling implies that the vast majority of sterol precursors are transported from lipid particles to the endoplasmic reticulum, where sterol biosynthesis is completed. Ergosterol formed through this route is then supplied to its subcellular destinations, especially the plasma membrane. Only a minor amount of sterol precursors are randomly distributed within the cell after cleavage from SE. Conclusively, SE storage and mobilization although being dispensable for yeast viability contribute markedly to sterol homeostasis and distribution.

  4. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts.

    Science.gov (United States)

    Kumari, Rajni; Pramanik, K

    2012-06-01

    The present research deals with the development of a hybrid yeast strain with the aim of converting pentose and hexose sugar components of lignocellulosic substrate to bioethanol by fermentation. Different fusant strains were obtained by fusing protoplasts of Saccharomyces cerevisiae and xylose-fermenting yeasts such as Pachysolen tannophilus, Candida shehatae and Pichia stipitis. The fusants were sorted by fluorescent-activated cell sorter and further confirmed by molecular characterization. The fusants were evaluated by fermentation of glucose-xylose mixture and the highest ethanol producing fusant was used for further study to ferment hydrolysates produced by acid pretreatment and enzymatic hydrolysis of cotton gin waste. Among the various fusant and parental strains used under present study, RPR39 was found to be stable and most efficient strain giving maximum ethanol concentration (76.8 ± 0.31 g L(-1)), ethanol productivity (1.06 g L(-1) h(-1)) and ethanol yield (0.458 g g(-1)) by fermentation of glucose-xylose mixture under test conditions. The fusant has also shown encouraging result in fermenting hydrolysates of cotton gin waste with ethanol concentration of 7.08 ± 0.142 g L(-1), ethanol yield of 0.44 g g(-1), productivity of 0.45 g L(-1) h(-1) and biomass yield of 0.40 g g(-1).

  5. Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Germann, Susanne M; Baallal Jacobsen, Simo A; Schneider, Konstantin; Harrison, Scott J; Jensen, Niels B; Chen, Xiao; Stahlhut, Steen G; Borodina, Irina; Luo, Hao; Zhu, Jiangfeng; Maury, Jérôme; Forster, Jochen

    2016-05-01

    Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N-acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L-tryptophan hydroxylase, a 5-hydroxy-L-tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O-methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We furthermore accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co-factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L(-1) in a 76h fermentation using simulated fed-batch medium with glucose as sole carbon source. Our study lays the basis for further developing a yeast cell factory for biological production of melatonin. © 2015 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Induction and isolation of DNA transformation mutants in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Hegerich, P.A.; Bruschi, C.V.

    1987-01-01

    The objective of this research was to induce and isolate mutants of the yeast Saccharomyces cerevisiae which have become transformable by purified plasmid DNA. Non-transformable yeast cells were mutagenized by ultraviolet light using a 65% lethal dose (480 ergs/mm 2 ). After a period of overnight liquid holding recovery, the irradiated cells were subjected to DNA transformation using our CaCl 2 protocol with the multi-marker shuttle plasmid pBB carrying the LEU 2 leucine gene. Following transformation the colonies that grew on selective leucineless medium were identified and subjected to further genetic analysis. From a total of 1 x 10 9 cells the authors have isolated 7 colonies deriving from putative mutants that have acquired the capability to uptake plasmid DNA. The transformants were cured from the plasmid by its mitotic loss on non-selective medium, then re-transformed to verify their genetic competence to give rise to a number of transformants comparable to transformable strains. We have identified and isolated one mutant, coded trs-1, which is able to reproduce a frequency of transformation comparable with the tranformable control. They, therefore, conclude that this mutant is specific for plasmid DNA transformation and that the mutation is mitotically stable

  7. Fate of patulin in the presence of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Moss, M O; Long, M T

    2002-04-01

    Patulin is known to become analytically non-detectable during the production of cider from contaminated apple juice. The fate of [14C]-labelled patulin during the alcoholic fermentation of apple juice was studied. Three commercial cider strains of Saccharomyces cerevisiae degraded patulin during active fermentative growth, but not when growing aerobically. The products of patulin degradation were more polar than patulin itself and remained in the clarified fermented cider. Patulin did not appear to bind to yeast cells or apple juice sediment in these model experiments. HPLC analysis of patulin-spiked fermentations showed the appearance of two major metabolites, one of which corresponded by both TLC and HPLC to E-ascladiol prepared by the chemical reduction of patulin using sodium borohydride. Using a diode array detector, both metabolites had a lambda(max) = 271 nm, identical to that of ascladiol. The nmr spectrum of a crude preparation of these metabolites showed signals corresponding to those of the E-ascladiol prepared chemically and a weaker set of signals corresponding to those reported in the literature for Z-ascladiol.

  8. Purification of Arp2/3 complex from Saccharomyces cerevisiae

    Science.gov (United States)

    Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.

    2014-01-01

    Summary Much of cellular control over actin dynamics comes through regulation of actin filament initiation. At the molecular level, this is accomplished through a collection of cellular protein machines, called actin nucleation factors, which position actin monomers to initiate a new actin filament. The Arp2/3 complex is a principal actin nucleation factor used throughout the eukaryotic family tree. The budding yeast Saccharomyces cerevisiae has proven to be not only an excellent genetic platform for the study of the Arp2/3 complex, but also an excellent source for the purification of endogenous Arp2/3 complex. Here we describe a protocol for the preparation of endogenous Arp2/3 complex from wild type Saccharomyces cerevisiae. This protocol produces material suitable for biochemical study, and yields milligram quantities of purified Arp2/3 complex. PMID:23868593

  9. Anti-oxidant effects of pomegranate juice on Saccharomyces cerevisiae cell growth.

    Science.gov (United States)

    Aslan, Abdullah; Can, Muhammed İsmail; Boydak, Didem

    2014-01-01

    Pomegranate juice has a number of positive effects on both human and animal subjects. Four groups were used in this study. i: Control group, ii: H2O2 group, iii: Pomegranate juice (PJ) group and iv: PJ + H2O2 group. Following the sterilization method for pomegranate juice (10%) and H2O2 (6% v/v), Saccharomyces cerevisiae cultures were added and the cultivation incubated at 35°C for 72 hours. Fatty acids and vitamin concentrations were measured using HPLC and GC and the total protein bands profile were determined by SDS-PAGE. According to our results statistically significant differences have been determined among the study groups in terms of fatty acids and vitamin (pPomegranate juice increased vitamins, fatty acids and total protein expression in Saccharomyces cerevisiae in comparison with the control. Pomegranate juice has a positive effect on fatty acid, vitamin and protein synthesis by Saccharomyces cerevisiae. Accordingly, we believe that it has significantly decreased oxidative damage thereby making a positive impact on yeast development.

  10. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Background: The limited xylose utilizing ability of native Saccharomyces cerevisiae has been a major obstacle for efficient cellulosic ethanol production from lignocellulosic materials. Haploid laboratory strains of S. cerevisiae are commonly used for genetic engineering to enable its xylose utiliza...

  11. Response of Saccharomyces cerevisiae to cadmium stress

    International Nuclear Information System (INIS)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C.; Rosa, Carlos Augusto

    2009-01-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K + and Na + ) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  12. Response of Saccharomyces cerevisiae to cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: luamatu@uol.com.br; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Ativacao Neutronica], e-mail: menezes@cdtn.br; Rosa, Carlos Augusto [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: carlrosa@icb.ufmg

    2009-07-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K{sup +} and Na{sup +}) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  13. Data on dynamic study of cytoophidia in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-09-01

    Full Text Available The data in this paper are related to the research article entitled “Filamentation of metabolic enzymes in Saccharomyces cerevisiae” Q.J. Shen et al. (2016 [1]. Cytoophidia are filamentous structures discovered in fruit flies (doi:10.1016/S1673-8527(0960046-1 J.L. Liu (2010 [2], bacteria (doi:10.1038/ncb2087 M. Ingerson-Mahar et al. (2010 [3], yeast (doi:10.1083/jcb.201003001; doi:10.1242/bio.20149613 C. Noree et al. (2010 and J. Zhang, L. Hulme, J.L. Liu (2014 [4,5] and human cells (doi:10.1371/journal.pone.0029690; doi:10.1016/j.jgg.2011.08.004 K. Chen et al. (2011 and W.C. Carcamo et al. (2011 ( [6,7]. However, there is little research on the motility of the cytoophidia. Here we selected cytoophidia formed by 6 filament-forming proteins in the budding yeast S. cerevisiae, and performed living-cell imaging of cells expressing the proteins fused with GFP. The dynamic features of the six types of cytoophidia were analyzed. In the data, both raw movies and analysed results of the dynamics of cytoophidia are presented. Keywords: Saccharomyces cerevisiae, CTP synthase, Cytoophidium, Metabolism, Filamentation

  14. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  15. Thermal resistance of Saccharomyces yeast ascospores in beers.

    Science.gov (United States)

    Milani, Elham A; Gardner, Richard C; Silva, Filipa V M

    2015-08-03

    The industrial production of beer ends with a process of thermal pasteurization. Saccharomyces cerevisiae and Saccharomyces pastorianus are yeasts used to produce top and bottom fermenting beers, respectively. In this research, first the sporulation rate of 12 Saccharomyces strains was studied. Then, the thermal resistance of ascospores of three S. cerevisiae strains (DSMZ 1848, DSMZ 70487, Ethanol Red(®)) and one strain of S. pastorianus (ATCC 9080) was determined in 4% (v/v) ethanol lager beer. D60 °C-values of 11.2, 7.5, 4.6, and 6.0 min and z-values of 11.7, 14.3, 12.4, and 12.7 °C were determined for DSMZ 1848, DSMZ 70487, ATCC 9080, and Ethanol Red(®), respectively. Lastly, experiments with 0 and 7% (v/v) beers were carried out to investigate the effect of ethanol content on the thermal resistance of S. cerevisiae (DSMZ 1848). D55 °C-values of 34.2 and 15.3 min were obtained for 0 and 7% beers, respectively, indicating lower thermal resistance in the more alcoholic beer. These results demonstrate similar spore thermal resistance for different Saccharomyces strains and will assist in the design of appropriate thermal pasteurization conditions for preserving beers with different alcohol contents. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Investigation of Arsenic-Stressed Yeast (Saccharomyces cerevisiae as a Bioassay in Homeopathic Basic Research

    Directory of Open Access Journals (Sweden)

    Tim Jäger

    2011-01-01

    Full Text Available This study investigated the response of arsenic-stressed yeast (Saccharomyces cerevisiae towards homeopathically potentized Arsenicum album, a duckweed nosode, and gibberellic acid. The three test substances were applied in five potency levels (17x, 18x, 24x, 28x, 30x and compared to controls (unsuccussed and succussed water with respect to influencing specific growth parameters. Five independent experiments were evaluated for each test substance. Additionally, five water control experiments were analyzed to investigate the stability of the experimental setup (systematic negative control experiments. All experiments were randomized and blinded. Yeast grew in microplates over a period of 38 h in either potentized substances or water controls with 250 mg/l arsenic(V added over the entire cultivation period. Yeast's growth kinetics (slope, Et50, and yield were measured photometrically. The test system exhibited a low coefficient of variation (slope 1.2%, Et50 0.3%, yield 2.7%. Succussed water did not induce any significant differences compared to unsuccussed water. Data from the control and treatment groups were both pooled to increase statistical power. In this study with yeast, no significant effects were found for any outcome parameter or any homeopathic treatment. Since in parallel experiments arsenic-stressed duckweed showed highly significant effects after application of potentized Arsenicum album and duckweed nosode preparations from the same batch as used in the present study, some specific properties of this experimental setup with yeast must be responsible for the lacking response.

  17. Sucrose fermentation by Saccharomyces cerevisiae lacking hexose transport.

    Science.gov (United States)

    Batista, Anderson S; Miletti, Luiz C; Stambuk, Boris U

    2004-01-01

    Sucrose is the major carbon source used by Saccharomyces cerevisiae during production of baker's yeast, fuel ethanol and several distilled beverages. It is generally accepted that sucrose fermentation proceeds through extracellular hydrolysis of the sugar, mediated by the periplasmic invertase, producing glucose and fructose that are transported into the cells and metabolized. In the present work we analyzed the contribution to sucrose fermentation of a poorly characterized pathway of sucrose utilization by S. cerevisiae cells, the active transport of the sugar through the plasma membrane and its intracellular hydrolysis. A yeast strain that lacks the major hexose transporters (hxt1-hxt7 and gal2) is incapable of growing on or fermenting glucose or fructose. Our results show that this hxt-null strain is still able to ferment sucrose due to direct uptake of the sugar into the cells. Deletion of the AGT1 gene, which encodes a high-affinity sucrose-H(+) symporter, rendered cells incapable of sucrose fermentation. Since sucrose is not an inducer of the permease, expression of the AGT1 must be constitutive in order to allow growth of the hxt-null strain on sucrose. The molecular characterization of active sucrose transport and fermentation by S. cerevisiae cells opens new opportunities to optimize yeasts for sugarcane-based industrial processes.

  18. Saccharomyces cerevisiae in the Production of Fermented Beverages

    Directory of Open Access Journals (Sweden)

    Graeme M Walker

    2016-11-01

    Full Text Available Alcoholic beverages are produced following the fermentation of sugars by yeasts, mainly (but not exclusively strains of the species, Saccharomyces cerevisiae. The sugary starting materials may emanate from cereal starches (which require enzymatic pre-hydrolysis in the case of beers and whiskies, sucrose-rich plants (molasses or sugar juice from sugarcane in the case of rums, or from fruits (which do not require pre-hydrolysis in the case of wines and brandies. In the presence of sugars, together with other essential nutrients such as amino acids, minerals and vitamins, S. cerevisiae will conduct fermentative metabolism to ethanol and carbon dioxide (as the primary fermentation metabolites as the cells strive to make energy and regenerate the coenzyme NAD+ under anaerobic conditions. Yeasts will also produce numerous secondary metabolites which act as important beverage flavour congeners, including higher alcohols, esters, carbonyls and sulphur compounds. These are very important in dictating the final flavour and aroma characteristics of beverages such as beer and wine, but also in distilled beverages such as whisky, rum and brandy. Therefore, yeasts are of vital importance in providing the alcohol content and the sensory profiles of such beverages. This Introductory Chapter reviews, in general, the growth, physiology and metabolism of S. cerevisiae in alcoholic beverage fermentations.

  19. In vitro studies on the translocation of acid phosphatase into the endoplasmic reticulum of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Krebs, H O; Hoffschulte, H K; Müller, M

    1989-05-01

    We demonstrate here the in vitro translocation of yeast acid phosphatase into rough endoplasmic reticulum. The precursor of the repressible acid phosphatase from Saccharomyces cerevisiae encoded by the PHO5 gene, was synthesized in a yeast lysate programmed with in vitro transcribed PHO5 mRNA. In the presence of yeast rough microsomes up to 16% of the acid phosphatase synthesized was found to be translocated into the microsomes, as judged by proteinase resistance, and fully core-glycosylated. The translocation efficiency however, decreased to 3% if yeast rough microsomes were added after synthesis of acid phosphatase had been terminated. When a wheat-germ extract was used for in vitro synthesis, the precursor of acid phosphatase was translocated into canine pancreatic rough microsomes and thereby core-glycosylated in a signal-recognition-particle-dependent manner. Replacing canine with yeast rough microsomes in the wheat-germ translation system, however, resulted in a significant decrease in the ability to translocate and glycosylate the precursor. Translocation and glycosylation were partially restored by a high-salt extract prepared from yeast ribosomes. The results presented here suggest that yeast-specific factors are needed to translocate and glycosylate acid phosphatase efficiently in vitro.

  20. Optimization of protein extraction from the yeast Saccharomyces cerevisiae/ Otimização da extração de proteínas da levedura Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Raul Jorge Hernan C. Gómez

    2005-06-01

    Full Text Available This work aimed to determine the optimum temperature, pH and sodium chloride sodium concentration for protein extraction of yeast cells during autolysis process. The cellular extract was obtained using commercial compressed baker’s yeast Saccharomyces cerevisiae and for statistical analysis and definition of the variation levels of temperature (32,0 to 52,0°C, pH (1,32 to 7,00 and NaCl (2,0 to 75% the Response Surface Analysis Methodology was used. The result obtained showed that the best extraction conditions were: temperature between 49,0 and 51,0°C combined with pH values between 3,8 and 5,0 and sodium chloride concentration between 10,0 and 12,0% (w/v, however, sodium chloride concentration higher than 12% was not recommended.Este trabalho objetivou determinar os melhores níveis de temperatura, pH e concentração de cloreto de sódio para a extração de proteínas de células de levedura pelo processo de autólise. O extrato celular foi obtido a partir da levedura comercial prensada Saccharomyces cerevisiae e para análise estatística e definição dos níveis das variáveis temperatura (32,0 a 52,0°C, pH (1,32 a 7,00 e NaCl (2,0 a 75,0% utilizou-se a metodologia da Análise de Superfície de Resposta. Os resultados obtidos por meio desta metodologia mostraram como melhores condições: temperaturas entre 49,0 e 51,0°C combinadas com valores de pH entre 3,8 e 5,0 e concentrações de cloreto de sódio entre 10,0 e 12,0% (p/v, entretanto, concentrações de NaCl superiores a 12,0% não se mostraram favoráveis.

  1. Application of Local Adsorbant From Southeast Sulawesi Clay Immobilized Saccharomyces Cerevisiae Bread’s Yeast Biomass for Adsorption Of Mn(Ii) Metal Ion

    Science.gov (United States)

    R, Halimahtussaddiyah; Mashuni; Budiarni

    2017-05-01

    Southeast Sulawesi has a great stock of clay. It is probably to use as a source of adsorbent. The adsorbent capacity of clay can be largered with teratment using bread’s yeast as biomass. At this research, study of analysis adsorption of Mn(II) metal ion on clay immobilized Saccharomyces cerevisiae bread’s yeast biomass adsorbent has been conducted. The aims of this research were to determine the effects of contact time, pH and concentration of Mn(II) metal ion and to determine the adsorption capacity of clay immobilized S. cerevisiae biomass for adsorbtion of Mn(II) metal ion. Activated clay was synthesized by reaction of clay with KMnO4, H2SO4 and HCl. S. cerevisiae biomass was result by bread’s yeast mashed. Immobilization of S. cerevisiae biomass into clay was done by mixing of ratio of S. cerevisiae bread’s yeast biomass and clay equal to 1:3 (mass of biomassa : mass of clay). The adsorption capacity was determined by using Freundlich and Langmuir adsorption isoterms. The results of FTIR spectrums showed that the functional groups of clay immobilized S. cerevisiae biomass were Si-OH (wave number 1643 cm-1), Si-O-Si (wave number 1033 cm-1), N-H (wave number 2337 cm-1), O-H (wave number 3441cm-1), and C-H (wave number 2931 cm-1). The result of adsorption capacity from Mn(II) metal ion of contact time optimum 120 minutes, pH optimun at 7 and concentration optimum 50 mg/L were 1,816 mg/g; 0,509 mg/g and 2,624mg/g respectively. The adsorption capacity of Mn(II) metal ion with ratio 1:3 (biomass : clay) was 0,1045 mg/g. Type of isothermal adsorption followed the Freunlich adsorption.

  2. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae

    OpenAIRE

    Duan, Lijin; Ding, Wentao; Liu, Xiaonan; Cheng, Xiaozhi; Cai, Jing; Hua, Erbing; Jiang, Huifeng

    2017-01-01

    Background Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. Methods In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. Results First...

  3. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Oud, B.; Flores, C.L.; Gancedo, C.; Zhang, X.; Trueheart, J.; Daran, J.M.; Pronk, J.T.; Van Maris, A.J.A.

    2012-01-01

    Background Pyruvate-decarboxylase negative (Pdc-) strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc-S. cerevisiae an interesting platform for efficient conversion of glucose towards

  5. Stress Tolerance in Doughs of Saccharomyces cerevisiae Trehalase Mutants Derived from Commercial Baker’s Yeast

    Science.gov (United States)

    Shima, Jun; Hino, Akihiro; Yamada-Iyo, Chie; Suzuki, Yasuo; Nakajima, Ryouichi; Watanabe, Hajime; Mori, Katsumi; Takano, Hiroyuki

    1999-01-01

    Accumulation of trehalose is widely believed to be a critical determinant in improving the stress tolerance of the yeast Saccharomyces cerevisiae, which is commonly used in commercial bread dough. To retain the accumulation of trehalose in yeast cells, we constructed, for the first time, diploid homozygous neutral trehalase mutants (Δnth1), acid trehalase mutants (Δath1), and double mutants (Δnth1 ath1) by using commercial baker’s yeast strains as the parent strains and the gene disruption method. During fermentation in a liquid fermentation medium, degradation of intracellular trehalose was inhibited with all of the trehalase mutants. The gassing power of frozen doughs made with these mutants was greater than the gassing power of doughs made with the parent strains. The Δnth1 and Δath1 strains also exhibited higher levels of tolerance of dry conditions than the parent strains exhibited; however, the Δnth1 ath1 strain exhibited lower tolerance of dry conditions than the parent strain exhibited. The improved freeze tolerance exhibited by all of the trehalase mutants may make these strains useful in frozen dough. PMID:10388673

  6. Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Franken, Jaco; Brandt, Bianca A; Tai, Siew L; Bauer, Florian F

    2013-01-01

    Levans are fructose polymers synthesized by a broad range of micro-organisms and a limited number of plant species as non-structural storage carbohydrates. In microbes, these polymers contribute to the formation of the extracellular polysaccharide (EPS) matrix and play a role in microbial biofilm formation. Levans belong to a larger group of commercially important polymers, referred to as fructans, which are used as a source of prebiotic fibre. For levan, specifically, this market remains untapped, since no viable production strategy has been established. Synthesis of levan is catalysed by a group of enzymes, referred to as levansucrases, using sucrose as substrate. Heterologous expression of levansucrases has been notoriously difficult to achieve in Saccharomyces cerevisiae. As a strategy, this study used an invertase (Δsuc2) null mutant and two separate, engineered, sucrose accumulating yeast strains as hosts for the expression of the levansucrase M1FT, previously cloned from Leuconostoc mesenteroides. Intracellular sucrose accumulation was achieved either by expression of a sucrose synthase (Susy) from potato or the spinach sucrose transporter (SUT). The data indicate that in both Δsuc2 and the sucrose accumulating strains, the M1FT was able to catalyse fructose polymerisation. In the absence of the predicted M1FT secretion signal, intracellular levan accumulation was significantly enhanced for both sucrose accumulation strains, when grown on minimal media. Interestingly, co-expression of M1FT and SUT resulted in hyper-production and extracellular build-up of levan when grown in rich medium containing sucrose. This study presents the first report of levan production in S. cerevisiae and opens potential avenues for the production of levan using this well established industrial microbe. Furthermore, the work provides interesting perspectives when considering the heterologous expression of sugar polymerizing enzymes in yeast.

  7. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    2015-12-01

    Full Text Available Fatty acid-derived fuels and chemicals have attracted a great deal of attention in recent decades, due to their following properties of high compatibility to gasoline-based fuels and existing infrastructure for their direct utilization, storage and distribution. The yeast Saccharomyces cerevisiae is the ideal biofuel producing candidate, based on the wealth of available genetic information and versatile tools designed to manipulate its metabolic pathways. Engineering the fatty acid metabolic pathways in S. cerevisiae is an effective strategy to increase its fatty acid biosynthesis and provide more pathway precursors for production of targeted products. This review summarizes the recent progress in metabolic engineering of yeast cells for fatty acids and fatty acid derivatives production, including the regulation of acetyl-CoA biosynthesis, NADPH production, fatty acid elongation, and the accumulation of activated precursors of fatty acids for converting enzymes. By introducing specific enzymes in the engineered strains, a powerful platform with a scalable, controllable and economic route for advanced biofuel production has been established. Keywords: Metabolic engineering, Fatty acid biosynthesis, Fatty acid derivatives, Saccharomyces cerevisiae

  8. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts.

    Science.gov (United States)

    Gorter de Vries, Arthur R; Pronk, Jack T; Daran, Jean-Marc G

    2017-06-01

    Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyce s strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. Copyright © 2017 Gorter de Vries et al.

  9. Mesurements of intracellular ATP provide new insight into the regulation of glycolysis in the yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Ytting, Cecilie Karkov; Fuglsang, Anja Thoe; Hiltunen, J. Kalervo

    2012-01-01

    Glycolysis in the yeast Saccharomyces cerevisiae exhibits temporal oscillation under anaerobic or semianaerobic conditions. Previous evidence indicated that at least two membrane-bound ATPases, the mitochondrial F0F1 ATPase and the plasma membrane P-type ATPase (Pma1p), were important in regulating...... of the temporal behaviour of intracellular ATP in a yeast strain with oscillating glycolysis showed that, in addition to oscillation in intracellular ATP, there is an overall slow decrease in intracellular ATP because the ATP consumption rate exceeds the ATP production in glycolysis. Measurements of the temporal...... activity is under strict control. In the absence of glucose ATPase activity is switched off, and the intracellular ATP concentration is high. When glucose is added to the cells the ATP concentration starts to decrease, because ATP consumption exceeds ATP production by glycolysis. Finally, when glucose...

  10. Effect of nagilactone E on cell morphology and glucan biosynthesis in budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Hayashi, Kengo; Yamaguchi, Yoshihiro; Ogita, Akira; Tanaka, Toshio; Kubo, Isao; Fujita, Ken-Ichi

    2018-05-14

    Nagilactones are norditerpene dilactones isolated from the root bark of Podocarpus nagi. Although nagilactone E has been reported to show antifungal activities, its activity is weaker than that of antifungals on the market. Nagilactone E enhances the antifungal activity of phenylpropanoids such as anethole and isosafrole against nonpathogenic Saccharomyces cerevisiae and pathogenic Candida albicans. However, the detailed mechanisms underlying the antifungal activity of nagilactone E itself have not yet been elucidated. Therefore, we investigated the antifungal mechanisms of nagilactone E using S. cerevisiae. Although nagilactone E induced lethality in vegetatively growing cells, it did not affect cell viability in non-growing cells. Nagilactone E-induced morphological changes in the cells, such as inhomogeneous thickness of the glucan layer and leakage of cytoplasm. Furthermore, a dose-dependent decrease in the amount of newly synthesized (1, 3)-β-glucan was detected in the membrane fractions of the yeast incubated with nagilactone E. These results suggest that nagilactone E exhibits an antifungal activity against S. cerevisiae by depending on cell wall fragility via the inhibition of (1, 3)-β-glucan biosynthesis. Additionally, we confirmed nagilactone E-induced morphological changes of a human pathogenic fungus Aspergillus fumigatus. Therefore, nagilactone E is a potential antifungal drug candidate with fewer adverse effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Central roles of iron in the regulation of oxidative stress in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Matsuo, Ryo; Mizobuchi, Shogo; Nakashima, Maya; Miki, Kensuke; Ayusawa, Dai; Fujii, Michihiko

    2017-10-01

    Oxygen is essential for aerobic organisms but causes cytotoxicity probably through the generation of reactive oxygen species (ROS). In this study, we screened for the genes that regulate oxidative stress in the yeast Saccharomyces cerevisiae, and found that expression of CTH2/TIS11 caused an increased resistance to ROS. CTH2 is up-regulated upon iron starvation and functions to remodel metabolism to adapt to iron starvation. We showed here that increased resistance to ROS by CTH2 would likely be caused by the decreased ROS production due to the decreased activity of mitochondrial respiration, which observation is consistent with the fact that CTH2 down-regulates the mitochondrial respiratory proteins. We also found that expression of CTH1, a paralog of CTH2, also caused an increased resistance to ROS. This finding supported the above view, because mitochondrial respiratory proteins are the common targets of CTH1 and CTH2. We further showed that supplementation of iron in medium augmented the growth of S. cerevisiae under oxidative stress, and expression of CTH2 and supplementation of iron collectively enhanced its growth under oxidative stress. Since CTH2 is regulated by iron, these findings suggested that iron played crucial roles in the regulation of oxidative stress in S. cerevisiae.

  12. Division of labour in the yeast: Saccharomyces cerevisiae.

    Science.gov (United States)

    Wloch-Salamon, Dominika M; Fisher, Roberta M; Regenberg, Birgitte

    2017-10-01

    Division of labour between different specialized cell types is a central part of how we describe complexity in multicellular organisms. However, it is increasingly being recognized that division of labour also plays an important role in the lives of predominantly unicellular organisms. Saccharomyces cerevisiae displays several phenotypes that could be considered a division of labour, including quiescence, apoptosis and biofilm formation, but they have not been explicitly treated as such. We discuss each of these examples, using a definition of division of labour that involves phenotypic variation between cells within a population, cooperation between cells performing different tasks and maximization of the inclusive fitness of all cells involved. We then propose future research directions and possible experimental tests using S. cerevisiae as a model organism for understanding the genetic mechanisms and selective pressures that can lead to the evolution of the very first stages of a division of labour. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network

    Directory of Open Access Journals (Sweden)

    Heavner Benjamin D

    2012-06-01

    Full Text Available Abstract Background Efforts to improve the computational reconstruction of the Saccharomyces cerevisiae biochemical reaction network and to refine the stoichiometrically constrained metabolic models that can be derived from such a reconstruction have continued since the first stoichiometrically constrained yeast genome scale metabolic model was published in 2003. Continuing this ongoing process, we have constructed an update to the Yeast Consensus Reconstruction, Yeast 5. The Yeast Consensus Reconstruction is a product of efforts to forge a community-based reconstruction emphasizing standards compliance and biochemical accuracy via evidence-based selection of reactions. It draws upon models published by a variety of independent research groups as well as information obtained from biochemical databases and primary literature. Results Yeast 5 refines the biochemical reactions included in the reconstruction, particularly reactions involved in sphingolipid metabolism; updates gene-reaction annotations; and emphasizes the distinction between reconstruction and stoichiometrically constrained model. Although it was not a primary goal, this update also improves the accuracy of model prediction of viability and auxotrophy phenotypes and increases the number of epistatic interactions. This update maintains an emphasis on standards compliance, unambiguous metabolite naming, and computer-readable annotations available through a structured document format. Additionally, we have developed MATLAB scripts to evaluate the model’s predictive accuracy and to demonstrate basic model applications such as simulating aerobic and anaerobic growth. These scripts, which provide an independent tool for evaluating the performance of various stoichiometrically constrained yeast metabolic models using flux balance analysis, are included as Additional files 1, 2 and 3. Additional file 1 Function testYeastModel.m.m. Click here for file Additional file 2 Function model

  14. Expression and secretion of Bacillus amyloliquefaciens alpha-amylase by using the yeast pheromone alpha-factor promoter and leader sequence in Saccharomyces cerevisiae.

    OpenAIRE

    Southgate, V J; Steyn, A J; Pretorius, I S; Van Vuuren, H J

    1993-01-01

    Replacement of the regulatory and secretory signals of the alpha-amylase gene (AMY) from Bacillus amylolique-faciens with the complete yeast pheromone alpha-factor prepro region (MF alpha 1p) resulted in increased levels of extracellular alpha-amylase production in Saccharomyces cerevisiae. However, the removal of the (Glu-Ala)2 peptide from the MF alpha 1 spacer region (Lys-Arg-Glu-Ala-Glu-Ala) yielded decreased levels of extracellular alpha-amylase.

  15. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations.

    Directory of Open Access Journals (Sweden)

    Yan-Lin Zheng

    Full Text Available The budding yeast Saccharomyces cerevisiae is a platform organism for bioethanol production from various feedstocks and robust strains are desirable for efficient fermentation because yeast cells inevitably encounter stressors during the process. Recently, diverse S. cerevisiae lineages were identified, which provided novel resources for understanding stress tolerance variations and related shaping factors in the yeast. This study characterized the tolerance of diverse S. cerevisiae strains to the stressors of high ethanol concentrations, temperature shocks, and osmotic stress. The results showed that the isolates from human-associated environments overall presented a higher level of stress tolerance compared with those from forests spared anthropogenic influences. Statistical analyses indicated that the variations of stress tolerance were significantly correlated with both ecological sources and geographical locations of the strains. This study provides guidelines for selection of robust S. cerevisiae strains for bioethanol production from nature.

  16. Improved bread-baking process using Saccharomyces cerevisiae displayed with engineered cyclodextrin glucanotransferase.

    Science.gov (United States)

    Shim, Jae-Hoon; Seo, Nam-Seok; Roh, Sun-Ah; Kim, Jung-Wan; Cha, Hyunju; Park, Kwan-Hwa

    2007-06-13

    A bread-baking process was developed using a potential novel enzyme, cyclodextrin glucanotransferase[3-18] (CGTase[3-18]), that had previously been engineered to have enhanced hydrolyzing activity with little cyclodextrin (CD) formation activity toward starch. CGTase[3-18] was primarily manipulated to be displayed on the cell surface of Saccharomyces cerevisiae. S. cerevisiae carrying pdeltaCGT integrated into the chromosome exhibited starch-hydrolyzing activity at the same optimal pH and temperature as the free enzyme. Volumes of the bread loaves and rice cakes prepared using S. cerevisiae/pdeltaCGT increased by 20% and 45%, respectively, with no detectable CD. Retrogradation rates of the bread and rice cakes decreased significantly during storage. In comparison to the wild type, S. cerevisiae/pdeltaCGT showed improved viability during four freeze-thaw cycles. The results indicated that CGTase[3-18] displayed on the surface of yeast hydrolyzed starch to glucose and maltose that can be used more efficiently for yeast fermentation. Therefore, display of an antistaling enzyme on the cell surface of yeast has potential for enhancing the baking process.

  17. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors.

    Science.gov (United States)

    Stribny, Jiri; Gamero, Amparo; Pérez-Torrado, Roberto; Querol, Amparo

    2015-07-16

    Higher alcohols and acetate esters are important flavour and aroma components in the food industry. In alcoholic beverages these compounds are produced by yeast during fermentation. Although Saccharomyces cerevisiae is one of the most extensively used species, other species of the Saccharomyces genus have become common in fermentation processes. This study analyses and compares the production of higher alcohols and acetate esters from their amino acidic precursors in three Saccharomyces species: Saccharomyces kudriavzevii, Saccharomyces uvarum and S. cerevisiae. The global volatile compound analysis revealed that S. kudriavzevii produced large amounts of higher alcohols, whereas S. uvarum excelled in the production of acetate esters. Particularly from phenylalanine, S. uvarum produced the largest amounts of 2-phenylethyl acetate, while S. kudriavzevii obtained the greatest 2-phenylethanol formation from this precursor. The present data indicate differences in the amino acid metabolism and subsequent production of flavour-active higher alcohols and acetate esters among the closely related Saccharomyces species. This knowledge will prove useful for developing new enhanced processes in fragrance, flavour, and food industries. Copyright © 2015. Published by Elsevier B.V.

  18. A simple microfluidic platform to study age-dependent protein abundance and localization changes in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Cabrera, Margarita; Novarina, Daniele; Rempel, Irina L; Veenhoff, Liesbeth M; Chang, Michael

    2017-01-01

    The budding yeast Saccharomyces cerevisiae divides asymmetrically, with a smaller daughter cell emerging from its larger mother cell. While the daughter lineage is immortal, mother cells age with each cell division and have a finite lifespan. The replicative ageing of the yeast mother cell has been

  19. Alterations in Phosphatidylcholine and Phosphatidylethanolamine Content During Fermentative Metabolism in Saccharomyces cerevisiae Brewer’s Yeast

    Directory of Open Access Journals (Sweden)

    Gordana Čanadi Jurešić

    2009-01-01

    Full Text Available During beer production and serial recycling, brewer’s yeasts are exposed to various stress factors that, overpowering the cellular defence mechanisms, can impair yeast growth and fermentation performance. It is well known that yeast cells acclimatize to stress conditions in part by changing the lipid composition of their membranes. The main focus of this study is the effect of stressful fermentation conditions on two phospholipid species, phosphatidylcholine (PtdCho and phosphatidylethanolamine (PtdEtn, in Saccharomyces cerevisiae bottom-fermenting brewer’s yeast. For this purpose the content and fatty acid profile of these major classes of phospholipids have been compared, as well as their ratio in the whole cells of the starter culture, non-stressed yeast population, and the first three recycled yeast generations. The stressed yeast generations showed an increased mass fraction of PtdCho and a decreased mass fraction of PtdEtn, which led to an increased PtdCho/PtdEtn ratio in the recycled cells as compared to the non-stressed yeast culture. The most pronounced variation of PtdCho/PtdEtn ratio was found in the second yeast generation, yielding a 78 % increase with respect to the starter culture. Variations in the content of both, PtdCho and PtdEtn, were accompanied by a higher mass fraction of unsaturated fatty acids in both phospholipid species (palmitoleic acid in PtdCho, and palmitoleic and oleic in PtdEtn and by the increased ratio of C16/C18 acids in PtdCho. The results suggest that both phospholipid species, including their fatty acids, are highly involved in the adaptation of brewer’s yeast to stressful fermentation conditions.

  20. The ecology and evolution of non-domesticated Saccharomyces species.

    Science.gov (United States)

    Boynton, Primrose J; Greig, Duncan

    2014-12-01

    Yeast researchers need model systems for ecology and evolution, but the model yeast Saccharomyces cerevisiae is not ideal because its evolution has been affected by domestication. Instead, ecologists and evolutionary biologists are focusing on close relatives of S. cerevisiae, the seven species in the genus Saccharomyces. The best-studied Saccharomyces yeast, after S. cerevisiae, is S. paradoxus, an oak tree resident throughout the northern hemisphere. In addition, several more members of the genus Saccharomyces have recently been discovered. Some Saccharomyces species are only found in nature, while others include both wild and domesticated strains. Comparisons between domesticated and wild yeasts have pinpointed hybridization, introgression and high phenotypic diversity as signatures of domestication. But studies of wild Saccharomyces natural history, biogeography and ecology are only beginning. Much remains to be understood about wild yeasts' ecological interactions and life cycles in nature. We encourage researchers to continue to investigate Saccharomyces yeasts in nature, both to place S. cerevisiae biology into its ecological context and to develop the genus Saccharomyces as a model clade for ecology and evolution. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  1. Sucrose and Saccharomyces cerevisiae: a relationship most sweet.

    Science.gov (United States)

    Marques, Wesley Leoricy; Raghavendran, Vijayendran; Stambuk, Boris Ugarte; Gombert, Andreas Karoly

    2016-02-01

    Sucrose is an abundant, readily available and inexpensive substrate for industrial biotechnology processes and its use is demonstrated with much success in the production of fuel ethanol in Brazil. Saccharomyces cerevisiae, which naturally evolved to efficiently consume sugars such as sucrose, is one of the most important cell factories due to its robustness, stress tolerance, genetic accessibility, simple nutrient requirements and long history as an industrial workhorse. This minireview is focused on sucrose metabolism in S. cerevisiae, a rather unexplored subject in the scientific literature. An analysis of sucrose availability in nature and yeast sugar metabolism was performed, in order to understand the molecular background that makes S. cerevisiae consume this sugar efficiently. A historical overview on the use of sucrose and S. cerevisiae by humans is also presented considering sugarcane and sugarbeet as the main sources of this carbohydrate. Physiological aspects of sucrose consumption are compared with those concerning other economically relevant sugars. Also, metabolic engineering efforts to alter sucrose catabolism are presented in a chronological manner. In spite of its extensive use in yeast-based industries, a lot of basic and applied research on sucrose metabolism is imperative, mainly in fields such as genetics, physiology and metabolic engineering. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats,

    OpenAIRE

    Sarvari Horvath, I; Franzén, C J; Taherzadeh, M J; Niklasson, C; Lidén, Gunnar

    2003-01-01

    Effects of furfural on the aerobic metabolism of the yeast Saccharomyces cerevisiae were studied by performing chemostat experiments, and the kinetics of furfural conversion was analyzed by performing dynamic experiments. Furfural, an important inhibitor present in lignocellulosic hydrolysates, was shown to have an inhibitory effect on yeast cells growing respiratively which was much greater than the inhibitory effect previously observed for anaerobically growing yeast cells. The residual fur...

  3. Heterologous expression of MlcE in Saccharomyces cerevisiae provides resistance to natural and semi-synthetic statins

    Directory of Open Access Journals (Sweden)

    Ana Ley

    2015-12-01

    Full Text Available Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the key enzyme in cholesterol biosynthesis. Their extensive use in treatment and prevention of cardiovascular diseases placed statins among the best selling drugs. Construction of Saccharomyces cerevisiae cell factory for the production of high concentrations of natural statins will require establishment of a non-destructive self-resistance mechanism to overcome the undesirable growth inhibition effects of statins. To establish active export of statins from yeast, and thereby detoxification, we integrated a putative efflux pump-encoding gene mlcE from the mevastatin-producing Penicillium citrinum into the S. cerevisiae genome. The resulting strain showed increased resistance to both natural statins (mevastatin and lovastatin and semi-synthetic statin (simvastatin when compared to the wild type strain. Expression of RFP-tagged mlcE showed that MlcE is localized to the yeast plasma and vacuolar membranes. We provide a possible engineering strategy for improvement of future yeast based production of natural and semi-synthetic statins. Keywords: Polyketide, Statins, Saccharomyces cerevisiae, Transport, Cell factory, Resistance

  4. Screening of respiration deficiency mutants of yeasts (Saccharomyces cerevisiae) induced by ion irradiation and the mtDNA restriction analysis

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei; Ma Qiufeng; Gu Ying

    2005-01-01

    Screening of the respiration deficiency mutants of Saccharomyces cerevisiae induced by 5.19 MeV/u 22 Ne 5+ ion irradiation is reported in this paper. Some respiration deficiency mutants of white colony phenotype, in a condition of selective culture of TTC medium, were obtained. A new and simplified method based on mtDNA restriction analysis is described. The authors found that there are many obvious differences in mtDNAs between wild yeasts and the respiration deficiency mutants. The mechanism of obtaining the respiration deficiency mutants induced by heavy ion irradiation is briefly discussed. (authors)

  5. Chronic action of gamma-radiation on growing cell population of the yeast Saccharomyces cerevisiae at various dose rates

    International Nuclear Information System (INIS)

    Zyuzikov, N.A.; Petin, V.G.

    1996-01-01

    Experimental data on the processes of division and death of haploid and diploid yeast Saccharomyces cerevisiae of wild type and of their radiosensitive mutants exposed under optimal for reproduction conditions to chronic gamma-radiation at various dose rates are presented. It is shown that the dependence of the integral division/death process in time was exponential for all the studied strains. With dose rate increasing, the duration of the lag period and the probability of cell inactivation increased, while the multiplication rate decreased. These processes, for equal dose rates, were more expressed for the radiosensitive mutants

  6. Sequential fermentation using non-Saccharomyces yeasts for the reduction of alcohol content in wine

    Directory of Open Access Journals (Sweden)

    Ciani Maurizio

    2014-01-01

    Full Text Available Over the last few decades there has been a progressive increase in wine ethanol content due to global climate change and modified wine styles that involved viticulture and oenology practices. Among the different approaches and strategies to reduce alcohol content in wine we propose a sequential fermentation using immobilized non-Saccharomyces wine yeasts. Preliminary results showed that sequential fermentations with Hanseniaspora osmophila, Hanseniaspora uvarum, Metschnikowia pulcherrima, Starmerella bombicola and Saccharomyces cerevisiae strains showed an ethanol reduction when compared with pure S. cerevisiae fermentation trials.

  7. Genes regulation encoding ADP/ATP carrier in yeasts Saccharomyces cerevisiae and Candida parapsilosis

    International Nuclear Information System (INIS)

    Nebohacova, M.

    2000-01-01

    Genes encoding a mitochondrial ADP/ATP carrier (AAC) in yeast Saccharomyces cerevisiae and Candida parapsilosis were investigated. AAC2 is coding for the major AAC isoform in S. cerevisiae. We suggest that AAC2 is a member of a syn-expression group of genes encoding oxidative phosphorylation proteins. Within our previous studies on the regulation of the AAC2 transcription an UAS (-393/-268) was identified that is essential for the expression of this gene. Two functional regulatory cis-elements are located within this UAS -binding sites for an ABFl factor and for HAP2/3/4/5 heteromeric complex. We examined relative contributions and mutual interactions of the ABFl and HAP2/3/4/5 factors in the activation of transcription from the UAS of the AAC2 gene. The whole UAS was dissected into smaller sub-fragments and tested for (i) the ability to form DNA-protein complexes with cellular proteins in vitro, (ii) the ability to confer heterologous expression using AAC3 gene lacking its own promoter, and (iii) the expression of AAC3-lacZ fusion instead of intact AAC3 gene. The obtained results demonstrated that: a) The whole UAS as well as sub-fragment containing only ABF1-binding site are able to form DNA-protein complexes with cellular proteins in oxygen- and heme- dependent manner. The experiments with antibody against the ABF1 showed that the ABF1 factor is one of the proteins binding to AAC2 promoter. We have been unsuccessful to prove the binding of cellular proteins to the HAP2/3/4/5-binding site. However, the presence of HAP2/3/4/5-binding site is necessary to drive a binding of cellular proteins to the ABF1-binding site in carbon source-dependent manner. b) The presence of both ABF1- and HAP2/3/4/5-binding sites and original spacing between them is necessary to confer the growth of Aaac2 mutant strain on non- fermentable carbon source when put in front of AAC3 gene introduced on centromeric vector to Aaac2 mutant strain. c) For the activation of AAC3-lacZ expression on

  8. Comportamento celular e resposta antioxidante diferenciados de Saccharomyces cerevisiae e de Saccharomyces chevalieri ao metavanadato de amónio Different cellular behaviour and antioxidant response of Saccharomyces cerevisiae and Saccharomyces chevalieri growing in presence of ammonium metavanadate

    Directory of Open Access Journals (Sweden)

    R. Ferreira

    2007-01-01

    Full Text Available A fermentação do vinho é um processo microbiológico complexo que requere a presença de leveduras adaptadas a condições de stresse. No ambiente celular de organismos aeróbios ocorrem naturalmente espécies reactivas de oxigénio (ROS como subprodutos da respiração mitocondrial. A elevada reactividade destas espécies químicas pode gerar danos moleculares que, em alguns casos, levam à morte celular. Em condições fisiológicas normais ou como resposta ao stresse oxidativo, a célula pode desencadear respostas adaptativas que envolvem mecanismos antioxidantes como os enzimas glutationo redutase (GR; EC 1.6.4.2 e catalases T (CAT T; EC 1.11.1.6 e A (CAT A; EC 1.11.1.6. O vanádio, um metal pesado presente em alguns fitofármacos, pode também com portar-se como um gerador de ROS, alterando o estado redox intracelular e exercendo efeitos nocivos em leveduras expostas a quantidade excessiva deste elemento. O principal objectivo deste trabalho foi comparar o efeito do metavanadato de amónio (NH4VO3, um sal pentavalente de vanádio, na viabilidade celular e nas actividades enzimáticas GR, CAT T e CAT A das leveduras vínicas Saccharomyces cerevisiae UE-ME3 e Saccharomyces chevalieri UE-ME1. Os resultados obtidos mostram que S. chevalieri UE-ME1 revelou menor tolerância ao NH4VO3 do que S. cerevisiae UE-ME3, uma vez que culturas de S. chevalieri não sobreviveram para valores de concentração do sal de vanádio superiores a 7,5 mM enquanto que células de S. cerevisiae mantiveram-se viáveis em presença de metavanadato de amónio 75 mM. As actividades enzimáticas estudadas apresentaram em S. chevalieri valores muito inferiores aos que foram determinados em S. cerevisiae embora em ambas as espécies de levedura o NH4VO3 pareça comportarse como um indutor de stresse oxidativo ao provocar um decréscimo significativo da actividade GR (PThe fermentation of wine is a complex microbiological process which requires yeast adaptation to stress

  9. Generation of 2-Furfurylthiol by Carbon-Sulfur Lyase from the Baijiu Yeast Saccharomyces cerevisiae G20.

    Science.gov (United States)

    Zha, Musu; Sun, Baoguo; Yin, Sheng; Mehmood, Arshad; Cheng, Lei; Wang, Chengtao

    2018-03-07

    2-Furfurylthiol is the representative aroma compound of Chinese sesame-flavored baijiu. Previous studies demonstrated that baijiu yeasts could generate 2-furfurylthiol using furfural and l-cysteine as precursors and that the Saccharomyces cerevisiae genes STR3 and CYS3 are closely related to 2-furfurylthiol biosynthesis. To confirm the mechanism of the STR3- and CYS3-gene products on 2-furfurylthiol biosynthesis, their encoded proteins were purified, and we confirmed their activities as carbon-sulfur lyases. Str3p and Cys3p were able to cleave the cysteine-furfural conjugate to release 2-furfurylthiol. Moreover, the characterization of the enzymatic properties of the purified proteins shows good thermal stabilities and wide pH tolerances, which enable their strong potential for various applications. These data provide direct evidence that yeast Str3p and Cys3p release 2-furfurylthiol in vitro, which can be applied to improve baijiu flavor.

  10. Molecular Basis for Saccharomyces cerevisiae Biofilm Development

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz

    In this study, I sought to identify genes regulating the global molecular program for development of sessile multicellular communities, also known as biofilm, of the eukaryotic microorganism, Saccharomyces cerevisiae (yeast). Yeast biofilm has a clinical interest, as biofilms can cause chronic...... infections in humans. Biofilm is also interesting from an evolutionary standpoint, as an example of primitive multicellularity. By using a genome-wide screen of yeast deletion mutants, I show that 71 genes are essential for biofilm formation. Two-thirds of these genes are required for transcription of FLO11......, but only a small subset is previously described as regulators of FLO11. These results reveal that the regulation of biofilm formation and FLO11 is even more complex than what has previously been described. I find that the molecular program for biofilm formation shares many essential components with two...

  11. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Science.gov (United States)

    2010-04-01

    ...) antibody (ASCA) test systems. 866.5785 Section 866.5785 Food and Drugs FOOD AND DRUG ADMINISTRATION... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  12. Secondary metabolites of the grapevine pathogen Eutypa lata inhibit mitochondrial respiration, based on a model bioassay using the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kim, Jong H; Mahoney, Noreen; Chan, Kathleen L; Molyneux, Russell J; Campbell, Bruce C

    2004-10-01

    Acetylenic phenols and a chromene isolated from the grapevine fungal pathogen Eutypa lata were examined for mode of toxicity. The compounds included eutypine (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzyl aldehyde), eutypinol (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzyl alcohol), eulatachromene, 2- isoprenyl-5-formyl-benzofuran, siccayne, and eulatinol. A bioassay using the yeast Saccharomyces cerevisiae showed that all compounds were either lethal or inhibited growth. A respiratory assay using 2,3,5-triphenyltetrazolium (TTC) indicated that eutypinol and eulatachromene inhibited mitochondrial respiration in wild-type yeast. Bioassays also showed that 2- isoprenyl-5-formyl-benzofuran and siccayne inhibited mitochondrial respiration in the S. cerevisiae deletion mutant vph2Delta, lacking a vacuolar type H (+) ATPase (V-ATPase) assembly protein. Cell growth of tsa1Delta, a deletion mutant of S. cerevisiae lacking a thioredoxin peroxidase (cTPx I), was greatly reduced when grown on media containing eutypinol or eulatachromene and exposed to hydrogen peroxide (H(2)O(2)) as an oxidative stress. This reduction in growth establishes the toxic mode of action of these compounds through inhibition of mitochondrial respiration.

  13. Drug resistance is conferred on the model yeast Saccharomyces cerevisiae by expression of full-length melanoma-associated human ATP-binding cassette transporter ABCB5.

    Science.gov (United States)

    Keniya, Mikhail V; Holmes, Ann R; Niimi, Masakazu; Lamping, Erwin; Gillet, Jean-Pierre; Gottesman, Michael M; Cannon, Richard D

    2014-10-06

    ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-β mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.

  14. Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield

    NARCIS (Netherlands)

    Papapetridis, I.; Goudriaan, M.; De Keijzer, Nikita A.; van den Broek, M.A.; van Maris, A.J.A.; Pronk, J.T.

    2018-01-01

    Background: Reduction or elimination of by-product formation is of immediate economic relevance in fermentation processes for industrial bioethanol production with the yeast Saccharomyces cerevisiae. Anaerobic cultures of wild-type S. cerevisiae require formation of glycerol to maintain the

  15. Terminal acidic shock inhibits sour beer bottle conditioning by Saccharomyces cerevisiae.

    Science.gov (United States)

    Rogers, Cody M; Veatch, Devon; Covey, Adam; Staton, Caleb; Bochman, Matthew L

    2016-08-01

    During beer fermentation, the brewer's yeast Saccharomyces cerevisiae experiences a variety of shifting growth conditions, culminating in a low-oxygen, low-nutrient, high-ethanol, acidic environment. In beers that are bottle conditioned (i.e., carbonated in the bottle by supplying yeast with a small amount of sugar to metabolize into CO2), the S. cerevisiae cells must overcome these stressors to perform the ultimate act in beer production. However, medium shock caused by any of these variables can slow, stall, or even kill the yeast, resulting in production delays and economic losses. Here, we describe a medium shock caused by high lactic acid levels in an American sour beer, which we refer to as "terminal acidic shock". Yeast exposed to this shock failed to bottle condition the beer, though they remained viable. The effects of low pH/high [lactic acid] conditions on the growth of six different brewing strains of S. cerevisiae were characterized, and we developed a method to adapt the yeast to growth in acidic beer, enabling proper bottle conditioning. Our findings will aid in the production of sour-style beers, a trending category in the American craft beer scene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase.

    Science.gov (United States)

    Moreno, Antonio D; Ibarra, David; Ballesteros, Ignacio; González, Alberto; Ballesteros, Mercedes

    2013-05-01

    In this study, the thermotolerant yeast Kluyveromyces marxianus CECT 10875 was compared to the industrial strain Saccharomyces cerevisiae Ethanol Red for lignocellulosic ethanol production. For it, whole slurry from steam-exploded wheat straw was used as raw material, and two process configurations, simultaneous saccharification and fermentation (SSF) and presaccharification and simultaneous saccharification and fermentation (PSSF), were evaluated. Compared to S. cerevisiae, which was able to produce ethanol in both process configurations, K. marxianus was inhibited, and neither growth nor ethanol production occurred during the processes. However, laccase treatment of the whole slurry removed specifically lignin phenols from the overall inhibitory compounds present in the slurry and triggered the fermentation by K. marxianus, attaining final ethanol concentrations and yields comparable to those obtained by S. cerevisiae. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Process for assembly and transformation into Saccharomyces cerevisiae of a synthetic yeast artificial chromosome containing a multigene cassette to express enzymes that enhance xylose utilization designed for an automated pla

    Science.gov (United States)

    A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system ...

  18. Impaired Uptake and/or Utilization of Leucine by Saccharomyces cerevisiae Is Suppressed by the SPT15-300 Allele of the TATA-Binding Protein Gene

    DEFF Research Database (Denmark)

    Baerends, RJ; Qiu, Jin-Long; Rasmussen, Simon

    2009-01-01

    Successful fermentations to produce ethanol require microbial strains that have a high tolerance to glucose and ethanol. Enhanced glucose/ethanol tolerance of the laboratory yeast Saccharomyces cerevisiae strain BY4741 under certain growth conditions as a consequence of the expression of a dominant...... us to examine the effect of expression of the SPT15-300 allele in various yeast species of industrial importance. Expression of SPT15-300 in leucine-prototrophic strains of S. cerevisiae, Saccharomyces bayanus, or Saccharomyces pastorianus (lager brewing yeast), however, did not improve tolerance...... to ethanol on complex rich medium (yeast extract-peptone-dextrose). The enhanced growth of the laboratory yeast strain BY4741 expressing the SPT15-300 mutant allele was seen only on defined media with low concentrations of leucine, indicating that the apparent improved growth in the presence of ethanol...

  19. Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System

    Science.gov (United States)

    Verghese, Jacob; Abrams, Jennifer; Wang, Yanyu

    2012-01-01

    Summary: The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast. PMID:22688810

  20. The PGM3 gene encodes the major phosphoribomutase in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Walther, Thomas; Baylac, Audrey; Alkim, Ceren; Vax, Amélie; Cordier, Hélène; François, Jean Marie

    2012-11-30

    The phosphoglucomutases (PGM) Pgm1, Pgm2, and Pgm3 of the yeast Saccharomyces cerevisiae were tested for their ability to interconvert ribose-1-phosphate and ribose-5-phosphate. The purified proteins were studied in vitro with regard to their kinetic properties on glucose-1-phosphate and ribose-1-phosphate. All tested enzymes were active on both substrates with Pgm1 exhibiting only residual activity on ribose-1-phosphate. The Pgm2 and Pgm3 proteins had almost equal kinetic properties on ribose-1-phosphate, but Pgm2 had a 2000 times higher preference for glucose-1-phosphate when compared to Pgm3. The in vivo function of the PGMs was characterized by monitoring ribose-1-phosphate kinetics following a perturbation of the purine nucleotide balance. Only mutants with a deletion of PGM3 hyper-accumulated ribose-1-phosphate. We conclude that Pgm3 functions as the major phosphoribomutase in vivo. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Substrate-Limited Saccharomyces cerevisiae Yeast Strains Allow Control of Fermentation during Bread Making.

    Science.gov (United States)

    Struyf, Nore; Laurent, Jitka; Verspreet, Joran; Verstrepen, Kevin J; Courtin, Christophe M

    2017-04-26

    Identification and use of yeast strains that are unable to consume one or more otherwise fermentable substrate types could allow a more controlled fermentation process with more flexibility regarding fermentation times. In this study, Saccharomyces cerevisiae strains with different capacities to consume substrates present in wheat were selected to investigate the impact of substrate limitation on dough fermentation and final bread volume. Results show that fermentation of dough with maltose-negative strains relies on the presence of fructan and sucrose as fermentable substrates and can be used for regular bread making. Levels of fructan and sucrose, endogenously present or added, hence determine the extent of fermentation and timing at the proofing stage. Whole meal is inherently more suitable for substrate-limited fermentation than white flour due to the presence of higher native levels of these substrates. Bread making protocols with long fermentation times are accommodated by addition of substrates such as sucrose.

  2. Purification and characterization of VDE, a site-specific endonuclease from the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gimble, F S; Thorner, J

    1993-10-15

    The 119-kDa primary translation product of the VMA1 gene of Saccharomyces cerevisiae undergoes a self-catalyzed rearrangement ("protein splicing") that excises an internal 50-kDa segment of the polypeptide and joins the amino-terminal and carboxyl-terminal segments to generate the 69-kDa subunit of the vacuolar membrane-associated H(+)-ATPase. We have shown previously that the internal segment is a site-specific endonuclease (Gimble, F. S., and Thorner, J. (1992) Nature 357, 301-306). Here we describe methods for the high level expression and purification to near homogeneity of both the authentic VMA1-derived endonuclease (or VDE) from yeast (yield 18%) and a recombinant form of VDE made in bacteria (yield 29%). Detailed characterization of these preparations demonstrated that the yeast-derived and bacterially produced enzymes were indistinguishable, as judged by: (a) behavior during purification; (b) apparent native molecular mass (50 kDa); (c) immunological reactivity; and (d) catalytic properties (specific activity; cleavage site recognition; and optima for pH, temperature, divalent cation and ionic strength). The minimal site required for VDE cleavage was delimited to a 30-base pair sequence within its specific substrate (the VMA1 delta vde allele).

  3. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-02-15

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture. Thereafter the concentration decreased, reaching zero at a late-stationary phase. When the yeast was grown on a medium that contained lactose or pentoses (L-arabinose, L-rhamnose, D-ribose and D-xylose), cytochrome P-450 did not occur. When a non-fermentable energy source (glycerol, lactate or ethanol) was used, no cytochrome P-450 was detectable. Transfer of cells from D-glucose medium to ethanol medium caused a slow disappearance of cytochrome P-450, although the amount of the haemoprotein still continued to increase in the control cultures. Cytochrome P-450 appeared thus to accumulate in conditions where the rate of growth was fast and fermentation occurred. Occurrence of this haemoprotein is not necessarily linked, however, with the repression of mitochondrial haemoprotein synthesis.

  4. Secretory Overexpression of Bacillus thermocatenulatus Lipase in Saccharomyces cerevisiae Using Combinatorial Library Strategy.

    Science.gov (United States)

    Kajiwara, Shota; Yamada, Ryosuke; Ogino, Hiroyasu

    2018-04-10

    Simple and cost-effective lipase expression host microorganisms are highly desirable. A combinatorial library strategy is used to improve the secretory expression of lipase from Bacillus thermocatenulatus (BTL2) in the culture supernatant of Saccharomyces cerevisiae. A plasmid library including expression cassettes composed of sequences encoding one of each 15 promoters, 15 secretion signals, and 15 terminators derived from yeast species, S. cerevisiae, Pichia pastoris, and Hansenula polymorpha, is constructed. The S. cerevisiae transformant YPH499/D4, comprising H. polymorpha GAP promoter, S. cerevisiae SAG1 secretion signal, and P. pastoris AOX1 terminator, is selected by high-throughput screening. This transformant expresses BTL2 extra-cellularly with a 130-fold higher than the control strain, comprising S. cerevisiae PGK1 promoter, S. cerevisiae α-factor secretion signal, and S. cerevisiae PGK1 terminator, after cultivation for 72 h. This combinatorial library strategy holds promising potential for application in the optimization of the secretory expression of proteins in yeast. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nutrient limitation leads to penetrative growth into agar and affects aroma formation in Pichia fabianii, P. kudriavzevii and Saccharomyces cerevisiae

    NARCIS (Netherlands)

    van Rijswijck, Irma M H; Dijksterhuis, Jan; Wolkers-Rooijackers, Judith C M; Abee, Tjakko; Smid, Eddy J

    Among fermentative yeast species, Saccharomyces cerevisiae is most frequently used as a model organism, although other yeast species may have special features that make them interesting candidates to apply in food-fermentation processes. In this study, we used three yeast species isolated from

  6. Nutrient limitation leads to penetrative growth into agar and affects aroma formation in Pichia fabianii, P. kudriavzevii and Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Rijswijck, van I.M.H.; Dijksterhuis, J.; Wolkers-Rooijackers, J.C.M.; Abee, T.; Smid, E.J.

    2015-01-01

    Among fermentative yeast species, Saccharomyces cerevisiae is most frequently used as a model organism, although other yeast species may have special features that make them interesting candidates to apply in food-fermentation processes. In this study, we used three yeast species isolated from

  7. Anti-Saccharomyces cerevisiae autoantibodies in autoimmune diseases: from bread baking to autoimmunity.

    Science.gov (United States)

    Rinaldi, Maurizio; Perricone, Roberto; Blank, Miri; Perricone, Carlo; Shoenfeld, Yehuda

    2013-10-01

    Saccharomyces cerevisiae is best known as the baker's and brewer's yeast, but its residual traces are also frequent excipients in some vaccines. Although anti-S. cerevisiae autoantibodies (ASCAs) are considered specific for Crohn's disease, a growing number of studies have detected high levels of ASCAs in patients affected with autoimmune diseases as compared with healthy controls, including antiphospholipid syndrome, systemic lupus erythematosus, type 1 diabetes mellitus, and rheumatoid arthritis. Commensal microorganisms such as Saccharomyces are required for nutrition, proper development of Peyer's aggregated lymphoid tissue, and tissue healing. However, even the commensal nonclassically pathogenic microbiota can trigger autoimmunity when fine regulation of immune tolerance does not work properly. For our purposes, the protein database of the National Center for Biotechnology Information (NCBI) was consulted, comparing Saccharomyces mannan to several molecules with a pathogenetic role in autoimmune diseases. Thanks to the NCBI bioinformation technology tool, several overlaps in molecular structures (50-100 %) were identified when yeast mannan, and the most common autoantigens were compared. The autoantigen U2 snRNP B″ was found to conserve a superfamily protein domain that shares 83 % of the S. cerevisiae mannan sequence. Furthermore, ASCAs may be present years before the diagnosis of some associated autoimmune diseases as they were retrospectively found in the preserved blood samples of soldiers who became affected by Crohn's disease years later. Our results strongly suggest that ASCAs' role in clinical practice should be better addressed in order to evaluate their predictive or prognostic relevance.

  8. Effect of Ethanol Stress on Fermentation Performance of Saccharomyces cerevisiae Cells Immobilized on Nypa fruticans Leaf Sheath Pieces

    Directory of Open Access Journals (Sweden)

    Hoang Phong Nguyen

    2015-01-01

    Full Text Available The yeast cells of Saccharomyces cerevisiae immobilized on Nypa fruticans leaf sheath pieces were tested for ethanol tolerance (0, 23.7, 47.4, 71.0 and 94.7 g/L. Increase in the initial ethanol concentration from 23.7 to 94.7 g/L decreased the average growth rate and concentration of ethanol produced by the immobilized yeast by 5.2 and 4.1 times, respectively. However, in the medium with initial ethanol concentration of 94.7 g/L, the average growth rate, glucose uptake rate and ethanol formation rate of the immobilized yeast were 3.7, 2.5 and 3.5 times, respectively, higher than those of the free yeast. The ethanol stress inhibited ethanol formation by Saccharomyces cerevisiae cells and the yeast responded to the stress by changing the fatty acid composition of cellular membrane. The adsorption of yeast cells on Nypa fruticans leaf sheath pieces of the growth medium increased the saturated fatty acid (C16:0 and C18:0 mass fraction in the cellular membrane and that improved alcoholic fermentation performance of the immobilized yeast.

  9. The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix

    DEFF Research Database (Denmark)

    Li, M; Phylip, L H; Lees, W E

    2000-01-01

    Aspartic proteinase A from yeast is specifically and potently inhibited by a small protein called IA3 from Saccharomyces cerevisiae. Although this inhibitor consists of 68 residues, we show that the inhibitory activity resides within the N-terminal half of the molecule. Structures solved at 2...

  10. pH-Dependent Uptake of Fumaric Acid in Saccharomyces cerevisiae under Anaerobic Conditions

    NARCIS (Netherlands)

    Jamalzadeh, E.; Verheijen, P.J.; Heijnen, J.J.; Van Gulik, W.M.

    2011-01-01

    Microbial production of C4 dicarboxylic acids from renewable resources has gained renewed interest. The yeast Saccharomyces cerevisiae is known as a robust microorganism and is able to grow at low pH, which makes it a suitable candidate for biological production of organic acids. However, a

  11. Low environmental radiation background impairs biological defence of the yeast Saccharomyces cerevisiae to chemical radiomimetic agents

    International Nuclear Information System (INIS)

    Satta, L.; Augusti-Tocco, G.; Ceccarelli, R.; Paggi, P.; Scarsella, G.; Esposito, A.; Fiore, M.; Poggesi, I.; Ricordy, R.; Cundari, E.

    1995-01-01

    Background radiation is likely to constitute one of the factors involved in biological evolution since radiations are able to affect biological processes. Therefore, it is possible to hypothesize that organisms are adapted to environmental background radiation and that this adaptation could increase their ability to respond to the harmful effects of ionizing radiations. In fact, adaptive responses to alkylating agents and to low doses of ionizing radiation have been found in many organisms. In order to test for effects of adaptation, cell susceptibility to treatments with high doses of radiomimetic chemical agents has been studied by growing them in a reduced environmental radiation background. The experiment has been performed by culturing yeast cells (Saccharomyces cerevisiae D7) in parallel in a standard background environment and in the underground Gran Sasso National Laboratory, with reduced environmental background radiation. After a conditioning period, yeast cells were exposed to recombinogenic doses of methyl methanesulfonate. The yeast cells grown in the Gran Sasso Laboratory showed a higher frequency of radiomimetic induced recombination as compared to those grown in the standard environment. This suggests that environmental radiation may act as a conditioning agent

  12. An insight into the complex prion-prion interaction network in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Du, Zhiqiang; Valtierra, Stephanie; Li, Liming

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI(+)]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI(+)] and [PIN(+)] ([RNQ(+)]) (Genetics, Vol. 197, 685-700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI(+)] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ(+)] or [SWI(+)]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI(+)] prion stabilizes. Our finding provides strong evidence supporting the "cross-seeding" model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes.

  13. Heterologous expression of the Crassostrea gigas (Pacific oyster) alternative oxidase in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Robertson, Aaron; Schaltz, Kyle; Neimanis, Karina; Staples, James F; McDonald, Allison E

    2016-10-01

    Alternative oxidase (AOX) is a terminal oxidase within the inner mitochondrial membrane (IMM) present in many organisms where it functions in the electron transport system (ETS). AOX directly accepts electrons from ubiquinol and is therefore capable of bypassing ETS Complexes III and IV. The human genome does not contain a gene coding for AOX, so AOX expression has been suggested as a gene therapy for a range of human mitochondrial diseases caused by genetic mutations that render Complex III and/or IV dysfunctional. An effective means of screening mutations amenable to AOX treatment remains to be devised. We have generated such a tool by heterologously expressing AOX from the Pacific oyster (Crassostrea gigas) in the yeast Saccharomyces cerevisiae under the control of a galactose promoter. Our results show that this animal AOX is monomeric and is correctly targeted to yeast mitochondria. Moreover, when expressed in yeast, Pacific oyster AOX is a functional quinol oxidase, conferring cyanide-resistant growth and myxothiazol-resistant oxygen consumption to yeast cells and isolated mitochondria. This system represents a high-throughput screening tool for determining which Complex III and IV genetic mutations in yeast will be amenable to AOX gene therapy. As many human genes are orthologous to those found in yeast, our invention represents an efficient and cost-effective way to evaluate viable research avenues. In addition, this system provides the opportunity to learn more about the localization, structure, and regulation of AOXs from animals that are not easily reared or manipulated in the lab.

  14. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains. Current state and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Matsushika, Akinori; Inoue, Hiroyuki; Sawayama, Shigeki [National Inst. of Advanced Industrial Science and Technology (AIST), Hiroshima (JP). Biomass Technology Research Center (BTRC); Kodaki, Tsutomu [Kyoto Univ. (Japan). Inst. of Advanced Energy

    2009-08-15

    Bioethanol production from xylose is important for utilization of lignocellulosic biomass as raw materials. The research on yeast conversion of xylose to ethanol has been intensively studied especially for genetically engineered Saccharomyces cerevisiae during the last 20 years. S. cerevisiae, which is a very safe microorganism that plays a traditional and major role in industrial bioethanol production, has several advantages due to its high ethanol productivity, as well as its high ethanol and inhibitor tolerance. However, this yeast cannot ferment xylose, which is the dominant pentose sugar in hydrolysates of lignocellulosic biomass. A number of different strategies have been applied to engineer yeasts capable of efficiently producing ethanol from xylose, including the introduction of initial xylose metabolism and xylose transport, changing the intracellular redox balance, and overexpression of xylulokinase and pentose phosphate pathways. In this review, recent progress with regard to these studies is discussed, focusing particularly on xylose-fermenting strains of S. cerevisiae. Recent studies using several promising approaches such as host strain selection and adaptation to obtain further improved xylose-utilizing S. cerevisiae are also addressed. (orig.)

  15. The effects of Saccharomyces cerevisiae on the morphological and biomechanical characteristics of the tibiotarsus in broiler chickens

    Directory of Open Access Journals (Sweden)

    B. Suzer

    2017-12-01

    Full Text Available The aim of this study is to examine the effects of different levels of the feed supplement Saccharomyces cerevisiae, a yeast metabolite, on broiler tibiotarsus traits and to reduce leg problems by identifying the pathological changes in leg skeletal system. Thus, reducing leg disorders due to the skeletal system, the cause of significant economic losses in our country (Turkey, was investigated by the supplementation of Saccharomyces cerevisiae in broiler feed. In the study, 300 male day-old, Ross 308 broiler chicks were used. Experiment groups were designed as follows: control; 0.1 % Saccharomyces cerevisiae; 0.2 % Saccharomyces cerevisiae; 0.4 % Saccharomyces cerevisiae. The experimental diets were chemically analyzed according to the methods of the Association of Official Analytical Chemists. Twelve groups were obtained, including three replicates for each experimental group. Each replicated group was comprised of 25 chicks, and thus 75 chicks were placed in each experimental group. After 42 days, broiler chickens were slaughtered. Tibiotarsi were weighed with a digital scale, and the lengths were measured with a digital caliper after the drying process. Cortical areas were measured with the ImageJ Image Processing and Analysis Program. A UTEST Model-7014 tension and compression machine and a Maxtest software were used to determine the bone strength of the tibiotarsus. The severity of the tibial dyschondroplasia lesion was evaluated as 0, +1, +2 and +3. Crude ash, calcium and phosphorus analyses were performed to determine the inorganic matter of tibiotarsi. For radiographic evaluations of epiphyseal growth plates, tibiotarsi from the right legs were photographed in lateral and craniocaudal positions and examined. Statistical analyses were performed with the SPSS statistics program. It was observed that the use of Saccharomyces cerevisiae as a feed supplement led to an increase in the bone traits of broiler chickens. Optimum

  16. Radioimmunoassay for yeast killer toxin from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Siddiqui, F.A.; Bussey, H.

    1981-01-01

    A radioimmunoassay was developed for the K1 killer toxin from strain T158C/S14a of Saccharomyces cerevisiae. Iodine 125-labelled toxin was made to a specific activity of 100 μCi/mg of protein. Antibody to purified toxin was prepared in rabbits using toxin cross-linked to itself. These antibodies, partially purified by 50 percent ammonium sulfate precipitation and Sepharose CL-6B column chromatography, produced one precipitation band with killer toxin and bound 125 I-labelled toxin in a radioimmunoassay. The antibody preparation also bound with the toxins from another K1 killer, A364A, and three chromosomal superkiller mutants derived from it. (auth)

  17. The Geographic Distribution of Saccharomyces cerevisiae Isolates within three Italian Neighboring Winemaking Regions Reveals Strong Differences in Yeast Abundance, Genetic Diversity and Industrial Strain Dissemination

    Directory of Open Access Journals (Sweden)

    Alessia Viel

    2017-08-01

    Full Text Available In recent years the interest for natural fermentations has been re-evaluated in terms of increasing the wine terroir and managing more sustainable winemaking practices. Therefore, the level of yeast genetic variability and the abundance of Saccharomyces cerevisiae native populations in vineyard are becoming more and more crucial at both ecological and technological level. Among the factors that can influence the strain diversity, the commercial starter release that accidentally occur in the environment around the winery, has to be considered. In this study we led a wide scale investigation of S. cerevisiae genetic diversity and population structure in the vineyards of three neighboring winemaking regions of Protected Appellation of Origin, in North-East of Italy. Combining mtDNA RFLP and microsatellite markers analyses we evaluated 634 grape samples collected over 3 years. We could detect major differences in the presence of S. cerevisiae yeasts, according to the winemaking region. The population structures revealed specificities of yeast microbiota at vineyard scale, with a relative Appellation of Origin area homogeneity, and transition zones suggesting a geographic differentiation. Surprisingly, we found a widespread industrial yeast dissemination that was very high in the areas where the native yeast abundance was low. Although geographical distance is a key element involved in strain distribution, the high presence of industrial strains in vineyard reduced the differences between populations. This finding indicates that industrial yeast diffusion it is a real emergency and their presence strongly interferes with the natural yeast microbiota.

  18. Microencapsulation of Saccharomyces cerevisiae and its evaluation to protect in simulated gastric conditions.

    Science.gov (United States)

    Ghorbani-Choboghlo, Hassan; Zahraei-Salehi, Taghi; Ashrafi-Helan, Javad; Yahyaraeyat, Ramak; Pourjafar, Hadi; Nikaein, Donya; Balal, Asad; Khosravi, Ali-Reza

    2015-12-01

    Probiotic yeasts are used in production of functional foods and pharmaceutical products. They play an important role in promoting and maintaining human health. Until now, little work has been published on improving the survival of Saccharomyces in stimulated gastrointestinal condition. In this study the exposure of the yeast in the capsulate and free forms to artificial gastrointestinal conditions was assessed and the number of viable Saccharomyces cerevisiae cells during 0 to 120 mines in these conditions was evaluated by a pour plate method using sabouraud dextrose agar. Results showed the shape of the beads was generally spherical, sometimes elliptical with a mean diameter of about 50-90 μm. Also count of viable probiotic cells obtained for all the microcapsules were above the recommended levels for a probiotic food. Also decrease of approximately 4 logs was noted in the number of free cells after 2 h of incubation at pH 2 and 8, when compared to decreases of about 2 logs in the all microencapsulated S. cerevisiae under similar conditions. It is concluded that microencapsulation process was significantly able to increase the survival rate of Saccharomyces in a simulated gastrointestinal condition (p<0.05)..

  19. High-frequency transformation of a methylotrophic yeast, Candida boidinii, with autonomously replicating plasmids which are also functional in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sakai, Y; Goh, T K; Tani, Y

    1993-06-01

    We have developed a transformation system which uses autonomous replicating plasmids for a methylotrophic yeast, Candida boidinii. Two autonomous replication sequences, CARS1 and CARS2, were newly cloned from the genome of C. boidinii. Plasmids having both a CARS fragment and the C. boidinii URA3 gene transformed C. boidinii ura3 cells to Ura+ phenotype at frequencies of up to 10(4) CFU/micrograms of DNA. From Southern blot analysis, CARS plasmids seemed to exist in polymeric forms as well as in monomeric forms in C. boidinii cells. The C. boidinii URA3 gene was overexpressed in C. boidinii on these CARS vectors. CARS1 and CARS2 were found to function as an autonomous replicating element in Saccharomyces cerevisiae as well. Different portions of the CARS1 sequence were needed for autonomous replicating activity in C. boidinii and S. cerevisiae. C. boidinii could also be transformed with vectors harboring a CARS fragment and the S. cerevisiae URA3 gene.

  20. Cellular viability of Saccharomyces cerevisiae cultivated in association with contaminates bacteria of alcoholic fermentation;Viabilidade celular de Saccharomyces cerevisiae cultivada em associacao com bacterias contaminantes da fermentacao alcoolica

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, Thais de Paula

    2005-07-01

    The aim of this work was to study the influence of the bacteria Bacillus and Lactobacillus, as well as their metabolic products, in reduction of cellular viability of Saccharomyces cerevisiae, when in mixed culture of yeast and active and treated bacteria. Also was to evaluated an alternative medium (MCC) for the cultivation of bacteria and yeast, constituted of sugarcane juice diluted to 5 deg Brix and supplemented with yeast extract and peptone. The bacteria Bacillus subtilis, Bacillus coagulans, Bacillus stearothermophilus, Lactobacillus fermentum and Lactobacillus plantarum were cultivated in association with yeast Saccharomyces cerevisiae (strain Y-904) for 72 h on 32 deg C, under agitation. The cellular viability, budding rate and population of S. cerevisiae, the total acidity, volatile acidity and pH of culture were determined from 0, 24, 48 e 72 h of mixed culture. Also were determined the initial and final of microorganism population across the pour plate method, in traditional culture medium (PCA for Bacillus, MRS-agar for Lactobacillus and YEPD-agar for yeast S. cerevisiae) and in medium constituted of sugarcane juice. The bacteria cultures were treated by heat sterilization (120 deg C for 20 minutes), antibacterial agent (Kamoran HJ in concentration 3,0 ppm) or irradiation (radiation gamma, with doses of 5,0 kGy for Lactobacillus and 15,0 kGy for Bacillus). The results of the present research showed that just the culture mediums more acids (with higher concentrations of total and volatile acidity, and smaller values of pH), contaminated with active bacteria L. fermentum and B. subtilis, caused reduction on yeast cellular viability. Except the bacteria B. subtilis treated with radiation, the others bacteria treated by different procedures (heat, radiation e antibacterial) did not cause reduction on yeast cellular viability and population, indicating that the isolated presence of the cellular metabolic of theses bacteria was not enough to reduce the

  1. In vivo 31P nuclear magnetic resonance saturation transfer measurements of phosphate exchange reactions in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Campbell, S.L.; Jones, K.A.; Schulman, R.G.

    1985-01-01

    31 P saturation transfer techniques have been used to measure phosphate kinetics in the yeast Saccharomyces cerevisiae. The phosphate comsumption rate observed in acetate grown mid-log cells was combined with measurements of O 2 consumption to yield P/O ratios of 2.2 and 2.9, for cells respiring on glucose and ethanol, respectively. However, no phosphate consumption activity was observed in saturation transfer experiments on anaerobic glucose fed cells. The phosphate consumption rates measured by saturation transfer in cells respiring on glucose and ethanol was attributed to the unidirectional rates of mitochondrial ATP synthesis. (Auth.)

  2. Growth rate-regulated expression of the hexose transporter HXT5 in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Verwaal, René

    2003-01-01

    Glucose, which is the most preferred carbon source for the yeast Saccharomyces cerevisiae, is transported across the plasma membrane into cells by hexose transporter (Hxt) proteins. The Hxt proteins are encoded by a multigene family consisting of 20 members. It was shown previously that HXT1-4 and

  3. Yeast Autolysis in Sparkling Wine Aging: Use of Killer and Sensitive Saccharomyces cerevisiae Strains in Co-Culture.

    Science.gov (United States)

    Lombardi, Silvia Jane; De Leonardis, Antonella; Lustrato, Giuseppe; Testa, Bruno; Iorizzo, Massimo

    2015-01-01

    Sparkling wines produced by traditional method owe their characteristics to secondary fermentation and maturation that occur during a slow ageing in bottles. Yeast autolysis plays an important role during the sparkling wine aging. Using a combination of killer and sensitive yeasts is possible to accelerate yeast autolysis and reduce maturing time. killer and sensitive Saccharomyces cerevisiae strains, separately and in co-cultures, were inoculated in base wine and bottled on pilot-plant scale. Commercial Saccaromyces bayanus strain was also investigated. Protein free amino acid and polysaccharides contents and sensory analysis were determined on the wine samples at 3, 6 and 9 months of aging. Yeast autolysis that occurs during the production of sparkling wines, obtained with co-cultures of killer and sensitive strains, has influenced free amino acids, total protein and polysaccharides content after 3 months aging time: sparkling wines, produced without the use of these yeasts, have reached the same results only after 9 months aging time. These results demonstrate that killer and sensitive yeasts in co-culture can accelerate the onset of autolysis in enological conditions, and has a positive effect on the quality of the aroma and flavor of sparkling wine. This paper offers an interesting biotechnological method to reduce production time of sparkling wine with economical benefits for the producers. We revised all patents relating to sparkling wine considering only those of interest for our study.

  4. Heterologous Expression of Membrane and Soluble Proteins Derepresses GCN4 mRNA Translation in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Steffensen, L.; Pedersen, P. A.

    2006-01-01

    -ATPase also induced GCN4 translation. Derepression of GCN4 translation required phosphorylation of eIF-2 , the tRNA binding domain of Gcn2p, and the ribosome-associated proteins Gcn1p and Gcn20p. The increase in Gcn4p density in response to heterologous expression did not induce transcription from the HIS4...... promoter, a traditional Gcn4p target.......This paper describes the first physiological response at the translational level towards heterologous protein production in Saccharomyces cerevisiae. In yeast, the phosphorylation of eukaryotic initiation factor 2 (eIF-2 ) by Gcn2p protein kinase mediates derepression of GCN4 mRNA translation. Gcn4...

  5. In vivo site-specific mutagenesis and gene collage using the delitto perfetto system in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Stuckey, Samantha; Mukherjee, Kuntal; Storici, Francesca

    2011-01-01

    Delitto perfetto is a site-specific in vivo mutagenesis system that has been developed to generate changes at will in the genome of the yeast Saccharomyces cerevisiae. Using this technique, it is possible to rapidly and efficiently engineer yeast strains without requiring several intermediate steps as it functions in only two steps, both of which rely on homologous recombination to drive the changes to the target DNA region. The first step involves the insertion of a cassette containing two markers at or near the locus to be altered. The second step involves complete removal of this cassette with oligonucleotides and/or other genetic material and transfer of the expected genetic modification(s) to the chosen DNA locus. Here we provide a detailed protocol of the delitto perfetto approach and present examples of the most common and useful applications for in vivo mutagenesis to generate base substitutions, deletions, insertions, as well as for precise in vivo assembly and integration of multiple genetic elements, or gene collage.

  6. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation

    Science.gov (United States)

    Liu, Ling-ling; Jia, Bo; Zhao, Fang; Huang, Wei-dong; Zhan, Ji-cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. PMID:26030864

  7. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation.

    Directory of Open Access Journals (Sweden)

    Xiang-Yu Sun

    Full Text Available At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China's stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress.

  8. Glucose-free fructose production from Jerusalem artichoke using a recombinant inulinase-secreting Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Yu, Jing; Jiang, Jiaxi; Ji, Wangming; Li, Yuyang; Liu, Jianping

    2011-01-01

    Using inulin (polyfructose) obtained from Jerusalen artichokes, we have produced fructose free of residual glucose using a recombinant inulinase-secreting strain of Saccharomyces cerevisiae in a one-step fermentation of Jerusalem artichoke tubers. For producing fructose from inulin, a recombinant inulinase-producing Saccharomyce cerevisiae strain was constructed with a deficiency in fructose uptake by disruption of two hexokinase genes hxk1 and hxk2. The inulinase gene introduced into S. cerevisiae was cloned from Kluyveromyces cicerisporus. Extracellular inulinase activity of the recombinant hxk-mutated S. cerevisiae strain reached 31 U ml(-1) after 96 h growth. When grown in a medium containing Jerusalem artichoke tubers as the sole component without any additives, the recombinant yeast accumulated fructose up to 9.2% (w/v) in the fermentation broth with only 0.1% (w/v) glucose left after 24 h.

  9. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity

    Science.gov (United States)

    Padilla, Beatriz; Gil, José V.; Manzanares, Paloma

    2016-01-01

    It is well established that non-Saccharomyces wine yeasts, considered in the past as undesired or spoilage yeasts, can enhance the analytical composition, and aroma profile of the wine. The contribution of non-Saccharomyces yeasts, including the ability to secret enzymes and produce secondary metabolites, glycerol and ethanol, release of mannoproteins or contributions to color stability, is species- and strain-specific, pointing out the key importance of a clever strain selection. The use of mixed starters of selected non-Saccharomyces yeasts with strains of Saccharomyces cerevisiae represents an alternative to both spontaneous and inoculated wine fermentations, taking advantage of the potential positive role that non-Saccharomyces wine yeast species play in the organoleptic characteristics of wine. In this context mixed starters can meet the growing demand for new and improved wine yeast strains adapted to different types and styles of wine. With the aim of presenting old and new evidences on the potential of non-Saccharomyces yeasts to address this market trend, we mainly review the studies focused on non-Saccharomyces strain selection and design of mixed starters directed to improve primary and secondary aroma of wines. The ability of non-Saccharomyces wine yeasts to produce enzymes and metabolites of oenological relevance is also discussed. PMID:27065975

  10. Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation.

    Science.gov (United States)

    Reis, Vanda Renata; Bassi, Ana Paula Guarnieri; da Silva, Jessica Carolina Gomes; Ceccato-Antonini, Sandra Regina

    2013-12-01

    Among the native yeasts found in alcoholic fermentation, rough colonies associated with pseudohyphal morphology belonging to the species Saccharomyces cerevisiae are very common and undesirable during the process. The aim of this work was to perform morphological and physiological characterisations of S. cerevisiae strains that exhibited rough and smooth colonies in an attempt to identify alternatives that could contribute to the management of rough colony yeasts in alcoholic fermentation. Characterisation tests for invasiveness in Agar medium, killer activity, flocculation and fermentative capacity were performed on 22 strains (11 rough and 11 smooth colonies). The effects of acid treatment at different pH values on the growth of two strains ("52"--rough and "PE-02"--smooth) as well as batch fermentation tests with cell recycling and acid treatment of the cells were also evaluated. Invasiveness in YPD Agar medium occurred at low frequency; ten of eleven rough yeasts exhibited flocculation; none of the strains showed killer activity; and the rough strains presented lower and slower fermentative capacities compared to the smooth strains in a 48-h cycle in a batch system with sugar cane juice. The growth of the rough strain was severely affected by the acid treatment at pH values of 1.0 and 1.5; however, the growth of the smooth strain was not affected. The fermentative efficiency in mixed fermentation (smooth and rough strains in the same cell mass proportion) did not differ from the efficiency obtained with the smooth strain alone, most likely because the acid treatment was conducted at pH 1.5 in a batch cell-recycle test. A fermentative efficiency as low as 60% was observed with the rough colony alone.

  11. Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex.

    Science.gov (United States)

    Sicard, Delphine; Legras, Jean-Luc

    2011-03-01

    Yeasts of the Saccharomyces sensu stricto species complex are able to convert sugar into ethanol and CO(2) via fermentation. They have been used for thousands years by mankind for fermenting food and beverages. In the Neolithic times, fermentations were probably initiated by naturally occurring yeasts, and it is unknown when humans started to consciously add selected yeast to make beer, wine or bread. Interestingly, such human activities gave rise to the creation of new species in the Saccharomyces sensu stricto complex by interspecies hybridization or polyploidization. Within the S. cerevisiae species, they have led to the differentiation of genetically distinct groups according to the food process origin. Although the evolutionary history of wine yeast populations has been well described, the histories of other domesticated yeasts need further investigation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  12. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    International Nuclear Information System (INIS)

    Sheng, Y.; Cabelli, D.; Stich, T.A.; Barnese, K.; Gralla, E.B.; Cascio, D.; Britt, R.D.; Valentine, J.S.

    2011-01-01

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O 2 - ). This behavior limits the amount of H 2 O 2 produced at high [O 2 - ]; its desirability can be explained by the multiple roles of H 2 O 2 in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy, and redox chemistry, and they both rest predominantly in the reduced state (unlike most other MnSODs). At high [O 2 - ], the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn 3+ species in yeast Mn 3+ SODs, including the well-characterized 5-coordinate Mn 3+ species and a 6-coordinate L-Mn 3+ species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O 2 - ].

  13. Activation of waste brewer's yeast Saccharomyces cerevisiae for bread production

    Directory of Open Access Journals (Sweden)

    Popov Stevan D.

    2005-01-01

    Full Text Available The waste brewer's yeast S. cerevisiae (activated and non-activated was compared with the commercial baker's yeast regarding the volume of developed gas in dough, volume and freshness stability of produced bread. The activation of waste brewer's yeast resulted in the increased volume of developed gas in dough by 100% compared to non-activated brewer's yeast, and the obtained bread is of more stable freshness compared to bread produced with baker's yeast. The activation of BY affects positively the quality of produced bread regarding bread volume. The volume of developed gas in dough prepared with the use of non-activated BY was not sufficient, therefore, it should not be used as fermentation agent, but only as an additive in bread production process for bread freshness preservation. Intense mixing of dough results in more compressible crumb 48 hrs after baking compared to high-speed mixing.

  14. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Henriksen, Peter; Wagner, Sebastian Alexander; Weinert, Brian Tate

    2012-01-01

    Post-translational modification of proteins by lysine acetylation plays important regulatory roles in living cells. The budding yeast Saccharomyces cerevisiae is a widely used unicellular eukaryotic model organism in biomedical research. S. cerevisiae contains several evolutionary conserved lysine...... acetyltransferases and deacetylases. However, only a few dozen acetylation sites in S. cerevisiae are known, presenting a major obstacle for further understanding the regulatory roles of acetylation in this organism. Here we use high resolution mass spectrometry to identify about 4000 lysine acetylation sites in S....... cerevisiae. Acetylated proteins are implicated in the regulation of diverse cytoplasmic and nuclear processes including chromatin organization, mitochondrial metabolism, and protein synthesis. Bioinformatic analysis of yeast acetylation sites shows that acetylated lysines are significantly more conserved...

  15. Deciphering the Origin, Evolution, and Physiological Function of the Subtelomeric Aryl-Alcohol Dehydrogenase Gene Family in the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Yang, Dong-Dong; de Billerbeck, Gustavo M; Zhang, Jin-Jing; Rosenzweig, Frank; Francois, Jean-Marie

    2018-01-01

    Homology searches indicate that Saccharomyces cerevisiae strain BY4741 contains seven redundant genes that encode putative aryl-alcohol dehydrogenases (AAD). Yeast AAD genes are located in subtelomeric regions of different chromosomes, and their functional role(s) remain enigmatic. Here, we show that two of these genes, AAD4 and AAD14 , encode functional enzymes that reduce aliphatic and aryl-aldehydes concomitant with the oxidation of cofactor NADPH, and that Aad4p and Aad14p exhibit different substrate preference patterns. Other yeast AAD genes are undergoing pseudogenization. The 5' sequence of AAD15 has been deleted from the genome. Repair of an AAD3 missense mutation at the catalytically essential Tyr 73 residue did not result in a functional enzyme. However, ancestral-state reconstruction by fusing Aad6 with Aad16 and by N-terminal repair of Aad10 restores NADPH-dependent aryl-alcohol dehydrogenase activities. Phylogenetic analysis indicates that AAD genes are narrowly distributed in wood-saprophyte fungi and in yeast that occupy lignocellulosic niches. Because yeast AAD genes exhibit activity on veratraldehyde, cinnamaldehyde, and vanillin, they could serve to detoxify aryl-aldehydes released during lignin degradation. However, none of these compounds induce yeast AAD gene expression, and Aad activities do not relieve aryl-aldehyde growth inhibition. Our data suggest an ancestral role for AAD genes in lignin degradation that is degenerating as a result of yeast's domestication and use in brewing, baking, and other industrial applications. IMPORTANCE Functional characterization of hypothetical genes remains one of the chief tasks of the postgenomic era. Although the first Saccharomyces cerevisiae genome sequence was published over 20 years ago, 22% of its estimated 6,603 open reading frames (ORFs) remain unverified. One outstanding example of this category of genes is the enigmatic seven-member AAD family. Here, we demonstrate that proteins encoded by two

  16. The number and transmission of [PSI] prion seeds (Propagons in the yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Lee J Byrne

    Full Text Available Yeast (Saccharomyces cerevisiae prions are efficiently propagated and the on-going generation and transmission of prion seeds (propagons to daughter cells during cell division ensures a high degree of mitotic stability. The reversible inhibition of the molecular chaperone Hsp104p by guanidine hydrochloride (GdnHCl results in cell division-dependent elimination of yeast prions due to a block in propagon generation and the subsequent dilution out of propagons by cell division.Analysing the kinetics of the GdnHCl-induced elimination of the yeast [PSI+] prion has allowed us to develop novel statistical models that aid our understanding of prion propagation in yeast cells. Here we describe the application of a new stochastic model that allows us to estimate more accurately the mean number of propagons in a [PSI+] cell. To achieve this accuracy we also experimentally determine key cell reproduction parameters and show that the presence of the [PSI+] prion has no impact on these key processes. Additionally, we experimentally determine the proportion of propagons transmitted to a daughter cell and show this reflects the relative cell volume of mother and daughter cells at cell division.While propagon generation is an ATP-driven process, the partition of propagons to daughter cells occurs by passive transfer via the distribution of cytoplasm. Furthermore, our new estimates of n(0, the number of propagons per cell (500-1000, are some five times higher than our previous estimates and this has important implications for our understanding of the inheritance of the [PSI+] and the spontaneous formation of prion-free cells.

  17. mRNA decapping enzyme from ribosomes of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Stevens, A.

    1980-01-01

    By use of [ 3 H]methyl-5'-capped [ 14 C]mRNA from yeast as a substrate, a decapping enzyme activity has been detected in enzyme fractions derived from a high salt wash of ribosomes of Saccharomyces cerevisiae. The product of the decapping reaction is [ 3 H]m 7 GDP. That the enzyme is not a non-specific pyrophosphatase is suggested by the finding that the diphosphate product, m 7 GpppA(G), and UDP-glucose are not hydrolyzed

  18. Probiotic Activity of Saccharomyces cerevisiae var. boulardii Against Human Pathogens

    Directory of Open Access Journals (Sweden)

    Katarzyna Rajkowska

    2012-01-01

    Full Text Available Infectious diarrhoea is associated with a modification of the intestinal microflora and colonization of pathogenic bacteria. Tests were performed for seven probiotic yeast strains of Saccharomyces cerevisiae var. boulardii, designated for the prevention and treatment of diarrhoea. To check their possible effectiveness against diarrhoea of different etiologies, the activity against a variety of human pathogenic or opportunistic bacteria was investigated in vitro. In mixed cultures with S. cerevisiae var. boulardii, a statistically significant reduction was observed in the number of cells of Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus, by even 55.9 % in the case of L. monocytogenes compared with bacterial monocultures. The influence of yeasts was mostly associated with the shortening of the bacterial lag phase duration, more rapid achievement of the maximum growth rates, and a decrease by 4.4–57.1 % (L. monocytogenes, P. aeruginosa, or an increase by 1.4–70.6 % (Escherichia coli, Enterococcus faecalis, Salmonella Typhimurium in the exponential growth rates. Another issue included in the research was the ability of S. cerevisiae var. boulardii to bind pathogenic bacteria to its cell surface. Yeasts have shown binding capacity of E. coli, S. Typhimurium and additionally of S. aureus, Campylobacter jejuni and E. faecalis. However, no adhesion of L. monocytogenes and P. aeruginosa to the yeast cell wall was noted. The probiotic activity of S. cerevisiae var. boulardii against human pathogens is related to a decrease in the number of viable and active cells of bacteria and the binding capacity of yeasts. These processes may limit bacterial invasiveness and prevent bacterial adherence and translocation in the human intestines.

  19. Induction of homologous recombination in Saccharomyces cerevisiae.

    Science.gov (United States)

    Simon, J R; Moore, P D

    1988-09-01

    We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.

  20. Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pizarra, Francisco J.; Jewett, Michael Christopher; Nielsen, Jens

    2008-01-01

    Laboratory strains of Saccharomyces cerevisiae have been widely used as a model for studying eukaryotic cells and mapping the molecular mechanisms of many different human diseases. Industrial wine yeasts, on the other hand, have been selected on the basis of their adaptation to stringent environm......Laboratory strains of Saccharomyces cerevisiae have been widely used as a model for studying eukaryotic cells and mapping the molecular mechanisms of many different human diseases. Industrial wine yeasts, on the other hand, have been selected on the basis of their adaptation to stringent...... environmental conditions and the organoleptic properties that they confer to wine. Here, we used a two-factor design to study the responses of a standard laboratory strain, CEN.PK113-7D, and an industrial wine yeast strain, EC1118, to growth temperatures of 15 degrees C and 30 degrees C in nitrogen......-limited, anaerobic, steady-state chemostat cultures. Physiological characterization revealed that the growth temperature strongly impacted the biomass yield of both strains. Moreover, we found that the wine yeast was better adapted to mobilizing resources for biomass production and that the laboratory yeast...

  1. The yeast culture Saccharomyces cerevisiae (Strain 47 as manipulator of rumen fermentation in postpartal period of dairy cows

    Directory of Open Access Journals (Sweden)

    Petr Doležal

    2005-01-01

    Full Text Available In the present study, examined was the effect of a yeast culture (Saccharomyces cerevisiae, Strain 47 on rumen fermentation of cows. Animals received a diet consisting of good maize silage with a higher dry matter content (16  kg, 16  kg of clovergrass haylage, 3  kg of meadow hay and 7.5  kg feed mixture. The yeast culture was added to the mixture in the dose 6  g/day and cow. The supplement of yeast culture showed a positive effect on VFA production in comparison with control (1.16±0.013B vs. 0.84±0.063A  g/ 100 ml, and lower production of lactic acid. The utilisation of ammonia was higher by cows in treated group (8.68±0.084A mmol/L. The difference in number of protozoa of cows in the control and experimental groups was significant (302.0±12.349A vs. 359.2±1.304B ths /1 ml of rumen fluid.

  2. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Madhavan, Anjali; Srivastava, Aradhana; Kondo, Akihiko; Bisaria, Virendra S

    2012-03-01

    Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.

  3. Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols

    DEFF Research Database (Denmark)

    Ferreira, Raphael; Teixeira, Paulo Goncalves; Gossing, Michael

    2018-01-01

    Triacylglycerols (TAGs) are valuable versatile compounds that can be used as metabolites for nutrition and health, as well as feedstocks for biofuel production. Although Saccharomyces cerevisiae is the favored microbial cell factory for industrial production of biochemicals, it does not produce...... large amounts of lipids and TAGs comprise only ~1% of its cell dry weight. Here, we engineered S. cerevisiae to reorient its metabolism for overproduction of TAGs, by regulating lipid droplet associated-proteins involved in TAG synthesis and hydrolysis. We implemented a push-and-pull strategy...... PXA1 led to accumulation of  254 mg∙gCDW−1. The TAG levels achieved here are the highest titer reported in S. cerevisiae, reaching 27.4% of the maximum theoretical yield in minimal medium with 2% glucose. This work shows the potential of using an industrially established and robust yeast species...

  4. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6

    NARCIS (Netherlands)

    Papapetridis, I.; van Dijk, M.; Dobbe, Arthur P A; Metz, B.; Pronk, J.T.; van Maris, A.J.A.

    2016-01-01

    Background: Acetic acid, an inhibitor of sugar fermentation by yeast, is invariably present in lignocellulosic hydrolysates which are used or considered as feedstocks for yeast-based bioethanol production. Saccharomyces cerevisiae strains have been constructed, in which anaerobic reduction of

  5. Acetate metabolism of Saccharomyces cerevisiae at different temperatures during lychee wine fermentation

    Directory of Open Access Journals (Sweden)

    Yu-hui Shang

    2016-05-01

    Full Text Available The yeast (Saccharomyces cerevisiae strain 2137 involved in lychee wine production was used to investigate acetate metabolism at different temperatures during lychee wine fermentation. Fermentation tests were conducted using lychee juice supplemented with acetic acid. The ability of yeast cells to metabolize acetic acid was stronger at 20 °C than at 25 °C or 30 °C. The addition of acetic acid suppressed the yeast cell growth at the tested temperatures. The viability was higher and the reactive oxygen species concentration was lower at 20 °C than at 30 °C; this result indicated that acid stress adaptation protects S. cerevisiae from acetic-acid-mediated programmed cell death. The acetic acid enhanced the thermal death of yeast at high temperatures. The fermentation temperature modified the metabolism of the yeasts and the activity of related enzymes during deacidification, because less acetaldehyde, less glycerol, more ethanol, more succinic acid and more malic acid were produced, with higher level of acetyl–CoA synthetase and isocitrate lyase activity, at 20 °C.

  6. Dicholesteroyl diselenide: cytotoxicity, genotoxicity and mutagenicity in the yeast Saccharomyces cerevisiae and in Chinese hamster lung fibroblasts.

    Science.gov (United States)

    de Oliveira, Iuri Marques; Degrandi, Tiago Hoerbe; Jorge, Patrícia Mendes; Saffi, Jenifer; Rosa, Renato Moreira; Guecheva, Temenouga Nikolova; Henriques, João Antonio Pêgas

    2014-03-15

    The organoselenium compound, dicholesteroyl diselenide (DCDS) is a structural analogue of diphenyl diselenide (DPDS) and may be considered as a promising antioxidant drug in vivo. Nevertheless, little is known about the toxicological properties of DCDS. In the present study we evaluated the cytotoxic, genotoxic and mutagenic properties of DCDS in Chinese hamster lung fibroblasts (V79) and in strains of the yeast Saccharomyces cerevisiae, proficient and deficient in several DNA-repair pathways. The results with V79 cells show that DCDS induced cytotoxicity, GSH depletion and elevation of lipid peroxidation at lower concentrations than did DPDS. DCDS also generated single- and double-strand DNA breaks in V79 cells, both in the presence and in the absence of metabolic activation, as revealed by alkaline and neutral comet assays. Moreover, the induction of oxidative DNA base-damage was demonstrated by means of a modified comet assay with formamidopyrimidine-DNA glycosylase and endonuclease III. Treatment with DCDS also induced micronucleus formation in V79 cells as well as point and frame-shift mutations in a haploid wild-type strain of S. cerevisiae. Yeast mutants defective in base excision-repair proteins were the most sensitive to DCDS. Pre-incubation with N-acetylcysteine reduced DCDS's oxidative, genotoxic and mutagenic effects in yeast and in V79 cells. Our findings indicate that the presence of cholesteroyl substituents in DCDS results in elevation of its cytotoxic and genotoxic potential compared with that of DPDS in yeast and in V79 cells. However, due to dose-dependent contrasting behaviour of organoselenium compounds and differences in their toxicity in in vitro and in vivo systems, further studies are needed in order to establish the non-toxic concentration range for treatment in mammals. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Toume, Moeko; Tani, Motohiro

    2014-09-01

    Syringomycin E is a cyclic lipodepsipeptide produced by strains of the plant bacterium Pseudomonas syringae pv. syringae. Genetic studies involving the yeast Saccharomyces cerevisiae have revealed that complex sphingolipids play important roles in the action of syringomycin E. Here, we found a novel mutation that confers resistance to syringomycin E on yeast; that is, a deletion mutant of ORM1 and ORM2, which encode negative regulators of serine palmitoyltransferase catalyzing the initial step of sphingolipid biosynthesis, exhibited resistance to syringomycin E. On the contrary, overexpression of Orm2 resulted in high sensitivity to the toxin. Moreover, overexpression of Lcb1 and Lcb2, catalytic subunits of serine palmitoyltransferase, causes resistance to the toxin, whereas partial repression of expression of Lcb1 had the opposite effect. Partial reduction of complex sphingolipids by repression of expression of Aur1, an inositol phosphorylceramide synthase, also resulted in high sensitivity to the toxin. These results suggested that an increase in sphingolipid biosynthesis caused by a change in the activity of serine palmitoyltransferase causes resistance to syringomycin E. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Raspberry wine fermentation with suspended and immobilized yeast cells of two strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Djordjević, Radovan; Gibson, Brian; Sandell, Mari; de Billerbeck, Gustavo M; Bugarski, Branko; Leskošek-Čukalović, Ida; Vunduk, Jovana; Nikićević, Ninoslav; Nedović, Viktor

    2015-01-01

    The objectives of this study were to assess the differences in fermentative behaviour of two different strains of Saccharomyces cerevisiae (EC1118 and RC212) and to determine the differences in composition and sensory properties of raspberry wines fermented with immobilized and suspended yeast cells of both strains at 15 °C. Analyses of aroma compounds, glycerol, acetic acid and ethanol, as well as the kinetics of fermentation and a sensory evaluation of the wines, were performed. All fermentations with immobilized yeast cells had a shorter lag phase and faster utilization of sugars and ethanol production than those fermented with suspended cells. Slower fermentation kinetics were observed in all the samples that were fermented with strain RC212 (suspended and immobilized) than in samples fermented with strain EC1118. Significantly higher amounts of acetic acid were detected in all samples fermented with strain RC212 than in those fermented with strain EC1118 (0.282 and 0.602 g/l, respectively). Slightly higher amounts of glycerol were observed in samples fermented with strain EC1118 than in those fermented with strain RC212. Copyright © 2014 John Wiley & Sons, Ltd.

  9. In-silico identification and characterization of organic and inorganic chemical stress responding genes in yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Barozai, Muhammad Younas Khan; Bashir, Farrukh; Muzaffar, Shafia; Afzal, Saba; Behlil, Farida; Khan, Muzaffar

    2014-10-15

    To study the life processes of all eukaryotes, yeast (Saccharomyces cerevisiae) is a significant model organism. It is also one of the best models to study the responses of genes at transcriptional level. In a living organism, gene expression is changed by chemical stresses. The genes that give response to chemical stresses will provide good source for the strategies in engineering and formulating mechanisms which are chemical stress resistant in the eukaryotic organisms. The data available through microarray under the chemical stresses like lithium chloride, lactic acid, weak organic acids and tomatidine were studied by using computational tools. Out of 9335 yeast genes, 388 chemical stress responding genes were identified and characterized under different chemical stresses. Some of these are: Enolases 1 and 2, heat shock protein-82, Yeast Elongation Factor 3, Beta Glucanase Protein, Histone H2A1 and Histone H2A2 Proteins, Benign Prostatic Hyperplasia, ras GTPase activating protein, Establishes Silent Chromatin protein, Mei5 Protein, Nondisjunction Protein and Specific Mitogen Activated Protein Kinase. Characterization of these genes was also made on the basis of their molecular functions, biological processes and cellular components. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Dominant Epistasis Between Two Quantitative Trait Loci Governing Sporulation Efficiency in Yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Bergman, Juraj; Mitrikeski, Petar T.

    2015-01-01

    Summary Sporulation efficiency in the yeast Saccharomyces cerevisiae is a well-established model for studying quantitative traits. A variety of genes and nucleotides causing different sporulation efficiencies in laboratory, as well as in wild strains, has already been extensively characterised (mainly by reciprocal hemizygosity analysis and nucleotide exchange methods). We applied a different strategy in order to analyze the variation in sporulation efficiency of laboratory yeast strains. Coupling classical quantitative genetic analysis with simulations of phenotypic distributions (a method we call phenotype modelling) enabled us to obtain a detailed picture of the quantitative trait loci (QTLs) relationships underlying the phenotypic variation of this trait. Using this approach, we were able to uncover a dominant epistatic inheritance of loci governing the phenotype. Moreover, a molecular analysis of known causative quantitative trait genes and nucleotides allowed for the detection of novel alleles, potentially responsible for the observed phenotypic variation. Based on the molecular data, we hypothesise that the observed dominant epistatic relationship could be caused by the interaction of multiple quantitative trait nucleotides distributed across a 60--kb QTL region located on chromosome XIV and the RME1 locus on chromosome VII. Furthermore, we propose a model of molecular pathways which possibly underlie the phenotypic variation of this trait. PMID:27904371

  11. Magnetically altered ethanol fermentation capacity of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Galonja-Corghill Tamara

    2009-01-01

    Full Text Available We studied the effect of static magnetic fields on ethanol production by yeast Saccharomyces cerevisiae 424A (LNH-ST using sugar cane molasses during the fermentation in an enclosed bioreactor. Two static NdFeB magnets were attached to a cylindrical tube reactor with their opposite poles (north to south, creating 150 mT magnetic field inside the reactor. Comparable differences emerged between the results of these two experimental conditions. We found ethanol productivity to be 15% higher in the samples exposed to 150 mT magnetic field.

  12. Switching the mode of sucrose utilization by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Miletti Luiz C

    2008-02-01

    Full Text Available Abstract Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by

  13. Switching the mode of sucrose utilization by Saccharomyces cerevisiae.

    Science.gov (United States)

    Badotti, Fernanda; Dário, Marcelo G; Alves, Sergio L; Cordioli, Maria Luiza A; Miletti, Luiz C; de Araujo, Pedro S; Stambuk, Boris U

    2008-02-27

    Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells

  14. Evaluation of Non-Saccharomyces Yeasts for the Reduction of Alcohol Content in Wine

    Science.gov (United States)

    Contreras, A.; Hidalgo, C.; Henschke, P. A.; Chambers, P. J.; Curtin, C.

    2014-01-01

    Over recent decades, the average ethanol concentration of wine has increased, largely due to consumer preference for wine styles associated with increased grape maturity; sugar content increases with grape maturity, and this translates into increased alcohol content in wine. However, high ethanol content impacts wine sensory properties, reducing the perceived complexity of flavors and aromas. In addition, for health and economic reasons, the wine sector is actively seeking technologies to facilitate the production of wines with lower ethanol content. Nonconventional yeast species, in particular, non-Saccharomyces yeasts, have shown potential for producing wines with lower alcohol content. These yeast species, which are largely associated with grapes preharvest, are present in the early stages of fermentation but, in general, are not capable of completing alcoholic fermentation. We have evaluated 50 different non-Saccharomyces isolates belonging to 24 different genera for their capacity to produce wine with a lower ethanol concentration when used in sequential inoculation regimes with a Saccharomyces cerevisiae wine strain. A sequential inoculation of Metschnikowia pulcherrima AWRI1149 followed by an S. cerevisiae wine strain was best able to produce wine with an ethanol concentration lower than that achieved with the single-inoculum, wine yeast control. Sequential fermentations utilizing AWRI1149 produced wines with 0.9% (vol/vol) and 1.6% (vol/vol) (corresponding to 7.1 g/liter and 12.6 g/liter, respectively) lower ethanol concentrations in Chardonnay and Shiraz wines, respectively. In Chardonnay wine, the total concentration of esters and higher alcohols was higher for wines generated from sequential inoculations, whereas the total concentration of volatile acids was significantly lower. In sequentially inoculated Shiraz wines, the total concentration of higher alcohols was higher and the total concentration of volatile acids was reduced compared with those in

  15. Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural.

    Science.gov (United States)

    Jung, Young Hoon; Kim, Sooah; Yang, Jungwoo; Seo, Jin-Ho; Kim, Kyoung Heon

    2017-03-01

    Furfural, one of the most common inhibitors in pre-treatment hydrolysates, reduces the cell growth and ethanol production of yeast. Evolutionary engineering has been used as a selection scheme to obtain yeast strains that exhibit furfural tolerance. However, the response of Saccharomyces cerevisiae to furfural at the metabolite level during evolution remains unknown. In this study, evolutionary engineering and metabolomic analyses were applied to determine the effects of furfural on yeasts and their metabolic response to continuous exposure to furfural. After 50 serial transfers of cultures in the presence of furfural, the evolved strains acquired the ability to stably manage its physiological status under the furfural stress. A total of 98 metabolites were identified, and their abundance profiles implied that yeast metabolism was globally regulated. Under the furfural stress, stress-protective molecules and cofactor-related mechanisms were mainly induced in the parental strain. However, during evolution under the furfural stress, S. cerevisiae underwent global metabolic allocations to quickly overcome the stress, particularly by maintaining higher levels of metabolites related to energy generation, cofactor regeneration and recovery from cellular damage. Mapping the mechanisms of furfural tolerance conferred by evolutionary engineering in the present study will be led to rational design of metabolically engineered yeasts. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Garaiová, Martina; Zambojová, Veronika; Simová, Zuzana; Griač, Peter; Hapala, Ivan

    2014-03-01

    Squalene is a valuable natural substance with several biotechnological applications. In the yeast Saccharomyces cerevisiae, it is produced in the isoprenoid pathway as the first precursor dedicated to ergosterol biosynthesis. The aim of this study was to explore the potential of squalene epoxidase encoded by the ERG1 gene as the target for manipulating squalene levels in yeast. Highest squalene levels (over 1000 μg squalene per 10(9)  cells) were induced by specific point mutations in ERG1 gene that reduced activity of squalene epoxidase and caused hypersensitivity to terbinafine. This accumulation of squalene in erg1 mutants did not significantly disturb their growth. Treatment with squalene epoxidase inhibitor terbinafine revealed a limit in squalene accumulation at 700 μg squalene per 10(9)  cells which was associated with pronounced growth defects. Inhibition of squalene epoxidase activity by anaerobiosis or heme deficiency resulted in relatively low squalene levels. These levels were significantly increased by ergosterol depletion in anaerobic cells which indicated feedback inhibition of squalene production by ergosterol. Accumulation of squalene in erg1 mutants and terbinafine-treated cells were associated with increased cellular content and aggregation of lipid droplets. Our results prove that targeted genetic manipulation of the ERG1 gene is a promising tool for increasing squalene production in yeast. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd.

  17. Atypical yeasts identified as Saccharomyces cerevisiae by MALDI-TOF MS and gene sequencing are the main responsible of fermentation of chicha, a traditional beverage from Peru.

    Science.gov (United States)

    Vallejo, Juan Andrés; Miranda, Patricia; Flores-Félix, José David; Sánchez-Juanes, Fernando; Ageitos, José M; González-Buitrago, José Manuel; Velázquez, Encarna; Villa, Tomás G

    2013-12-01

    Chicha is a drink prepared in several Andean countries from Inca's times by maize fermentation. Currently this fermentation is carried out in familiar artesanal "chicherías" that make one of the most known types of chicha, the "chicha de jora". In this study we isolate and identify the yeasts mainly responsible of the fermentation process in this type of chicha in 10 traditional "chicherías" in Cusco region in Peru. We applied by first time MALDI-TOF MS analysis for the identification of yeast of non-clinic origin and the results showed that all of yeast strains isolated belong to the species Saccharomyces cerevisiae. These results agree with those obtained after the analysis of the D1/D2 and 5.8S-ITS regions. However the chicha strains have a phenotypic profile that differed in more than 40% as compared to that of current S. cerevisiae strains. To the best of our knowledge this is the first report concerning the yeasts involved in chicha fermentation. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast.

    Science.gov (United States)

    Molon, Mateusz; Szajwaj, Monika; Tchorzewski, Marek; Skoczowski, Andrzej; Niewiadomska, Ewa; Zadrag-Tecza, Renata

    2016-02-01

    Despite many controversies, the yeast Saccharomyces cerevisiae continues to be used as a model organism for the study of aging. Numerous theories and hypotheses have been created for several decades, yet basic mechanisms of aging have remained unclear. Therefore, the principal aim of this work is to propose a possible mechanism leading to increased longevity in yeast. In this paper, we suggest for the first time that there is a link between decreased metabolic activity, fertility and longevity expressed as time of life in yeast. Determination of reproductive potential and total lifespan with the use of fob1Δ and sfp1Δ mutants allows us to compare the "longevity" presented as the number of produced daughters with the longevity expressed as the time of life. The results of analyses presented in this paper suggest the need for a change in the definition of longevity of yeast by taking into consideration the time parameter. The mutants that have been described as "long-lived" in the literature, such as the fob1Δ mutant, have an increased reproductive potential but live no longer than their standard counterparts. On the other hand, the sfp1Δ mutant and the wild-type strain produce a similar number of daughter cells, but the former lives much longer. Our results demonstrate a correlation between the decreased efficiency of the translational apparatus and the longevity of the sfp1Δ mutant. We suggest that a possible factor regulating the lifespan is the rate of cell metabolism. To measure the basic metabolism of the yeast cells, we used the isothermal microcalorimetry method. In the case of sfp1Δ, the flow of energy, ATP concentration, polysome profile and translational fitness are significantly lower in comparison with the wild-type strain and the fob1Δ mutant.

  19. Water-Transfer Slows Aging in Saccharomyces cerevisiae.

    Science.gov (United States)

    Cohen, Aviv; Weindling, Esther; Rabinovich, Efrat; Nachman, Iftach; Fuchs, Shai; Chuartzman, Silvia; Gal, Lihi; Schuldiner, Maya; Bar-Nun, Shoshana

    2016-01-01

    Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR), the unfolded protein response (UPR) and the endoplasmic reticulum-associated protein degradation (ERAD), was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process.

  20. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.

    Science.gov (United States)

    Turner, Timothy L; Kim, Heejin; Kong, In Iok; Liu, Jing-Jing; Zhang, Guo-Chang; Jin, Yong-Su

    To mitigate global climate change caused partly by the use of fossil fuels, the production of fuels and chemicals from renewable biomass has been attempted. The conversion of various sugars from renewable biomass into biofuels by engineered baker's yeast (Saccharomyces cerevisiae) is one major direction which has grown dramatically in recent years. As well as shifting away from fossil fuels, the production of commodity chemicals by engineered S. cerevisiae has also increased significantly. The traditional approaches of biochemical and metabolic engineering to develop economic bioconversion processes in laboratory and industrial settings have been accelerated by rapid advancements in the areas of yeast genomics, synthetic biology, and systems biology. Together, these innovations have resulted in rapid and efficient manipulation of S. cerevisiae to expand fermentable substrates and diversify value-added products. Here, we discuss recent and major advances in rational (relying on prior experimentally-derived knowledge) and combinatorial (relying on high-throughput screening and genomics) approaches to engineer S. cerevisiae for producing ethanol, butanol, 2,3-butanediol, fatty acid ethyl esters, isoprenoids, organic acids, rare sugars, antioxidants, and sugar alcohols from glucose, xylose, cellobiose, galactose, acetate, alginate, mannitol, arabinose, and lactose.

  1. Identification of auxotrophic mutants of the yeast Kluyveromyces marxianus by non-homologous end joining-mediated integrative transformation with genes from Saccharomyces cerevisiae.

    Science.gov (United States)

    Yarimizu, Tohru; Nonklang, Sanom; Nakamura, Junpei; Tokuda, Shuya; Nakagawa, Takaaki; Lorreungsil, Sasithorn; Sutthikhumpha, Surasit; Pukahuta, Charida; Kitagawa, Takao; Nakamura, Mikiko; Cha-Aim, Kamonchai; Limtong, Savitree; Hoshida, Hisashi; Akada, Rinji

    2013-12-01

    The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non-homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR-amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour-intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ-mediated integrative transformation with PCR-amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Clinical Saccharomyces cerevisiae isolates cannot cross the epithelial barrier in vitro

    DEFF Research Database (Denmark)

    Pérez-Torrado, Roberto; Llopis, Silvia; Jespersen, Lene

    2012-01-01

    Saccharomyces cerevisiae is generally considered to be a safe organism and is essential to produce many different kinds of foods as well as being widely used as a dietary supplement. However, several isolates, which are genetically related to brewing and baking yeasts, have shown virulent traits,...

  3. Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures.

    Science.gov (United States)

    Mendes, Filipa; Sieuwerts, Sander; de Hulster, Erik; Almering, Marinka J H; Luttik, Marijke A H; Pronk, Jack T; Smid, Eddy J; Bron, Peter A; Daran-Lapujade, Pascale

    2013-10-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the cocultures, five mechanisms of interaction were identified. (i) Lb. delbrueckii subsp. bulgaricus hydrolyzes lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by Lb. delbrueckii subsp. bulgaricus, is excreted and provides a carbon source for yeast. (ii) In pure cultures, Lb. delbrueckii subsp. bulgaricus grows only in the presence of increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. (iii) Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacterium. (iv) A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by Lb. delbrueckii subsp. bulgaricus. (v) Transcriptome analysis of Lb. delbrueckii subsp. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipid metabolism, suggesting either a competition of the two microorganisms for fatty acids or a response to the ethanol produced by S. cerevisiae. This study demonstrates that chemostat-based transcriptome analysis is a powerful tool to investigate microbial interactions in mixed populations.

  4. Utilização de diferentes níveis de levedura (Saccharomyces cerevisiae em dietas e seus efeitos no desempenho, rendimento da carcaça e gordura abdominal em frangos de cortes - DOI: 10.4025/actascianimsci.v25i2.2004 Use of different levels of yeast (Saccharomyces cerevisiae and its effects, on carcass and abdominal fat in broilers - DOI: 10.4025/actascianimsci.v25i2.2004

    Directory of Open Access Journals (Sweden)

    Alexandre Fernandes Galão

    2003-04-01

    Full Text Available O objetivo deste trabalho foi estudar o desempenho, o rendimento de carcaça, a gordura abdominal de frangos de corte alimentados com diferentes níveis de levedura (Saccharomyces cerevisiae. Utilizaram-se 288 pintos de um dia, distribuídos em delineamento de blocos casualizados, fatorial 3x2. (3 níveis levedura - 0%; 5% e 10% e dois sexos, 4 repetições, 12 aves por parcela. Não houve efeito significativo para o desempenho de frangos de corte com a inclusão de levedura na dieta até os 21 dias de idade, porém, na fase de engorda, no nível de 10% houve uma piora no ganho de peso e na conversão alimentar, concluindo-se que a inclusão de 10% de levedura (Saccharomyces cerevisiae às dietas de frango de corte afetou o desempenho, mas não foram afetados o rendimento da carcaça e a gordura abdominal.The objective of this work was to study performance, carcass yield and abdominal fat of cut chickens fed with different yeast levels (Saccharomyces cerevisiae. 288 one-year-old chickens were used, distributed in an outline of randomized blocks, factorial 3x2, (3 yeast levels - 0%; 5% and 10% and two sexes, four repetitions, 12 birds per portion. There was not any significant effect on the performance of cut chickens with the yeast inclusion in the diet until 21 days of age, however, in the fattening phase on the level of 10%, there was a worsening in weight earnings and in feeding conversion. At the end, the inclusion of 10% of yeast (Saccharomyces cerevisiae to in diets of cut chicken affected the performance. However, the carcass yield and the abdominal fat were not affected.

  5. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production.

    Science.gov (United States)

    López-Alvarez, Arnoldo; Díaz-Pérez, Alma Laura; Sosa-Aguirre, Carlos; Macías-Rodríguez, Lourdes; Campos-García, Jesús

    2012-05-01

    In tequila production, fermentation is an important step. Fermentation determines the ethanol productivity and organoleptic properties of the beverage. In this study, a yeast isolated from native residual agave must was identified as Kluyveromyces marxianus UMPe-1 by 26S rRNA sequencing. This yeast was compared with the baker's yeast Saccharomyces cerevisiae Pan1. Our findings demonstrate that the UMPe-1 yeast was able to support the sugar content of agave must and glucose up to 22% (w/v) and tolerated 10% (v/v) ethanol concentration in the medium with 50% cells survival. Pilot and industrial fermentation of agave must tests showed that the K. marxianus UMPe-1 yeast produced ethanol with yields of 94% and 96% with respect to fermentable sugar content (glucose and fructose, constituting 98%). The S. cerevisiae Pan1 baker's yeast, however, which is commonly used in some tequila factories, showed 76% and 70% yield. At the industrial level, UMPe-1 yeast shows a maximum velocity of fermentable sugar consumption of 2.27g·L(-1)·h(-1) and ethanol production of 1.38g·L(-1)·h(-1), providing 58.78g ethanol·L(-1) at 72h fermentation, which corresponds to 96% yield. In addition, the major and minor volatile compounds in the tequila beverage obtained from UMPe-1 yeast were increased. Importantly, 29 volatile compounds were identified, while the beverage obtained from Pan1-yeast contained fewer compounds and in lower concentrations. The results suggest that the K. marxianus UMPe-1 is a suitable yeast for agave must fermentation, showing high ethanol productivity and increased volatile compound content comparing with a S. cerevisiae baker's yeast used in tequila production. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe.

    Science.gov (United States)

    Adya, Ashok K; Canetta, Elisabetta; Walker, Graeme M

    2006-01-01

    Morphological changes in the cell surfaces of the budding yeast Saccharomyces cerevisiae (strain NCYC 1681), and the fission yeast Schizosaccharomyces pombe (strain DVPB 1354), in response to thermal and osmotic stresses, were investigated using an atomic force microscope. With this microscope imaging, together with measurements of culture viability and cell size, it was possible to relate topological changes of the cell surface at nanoscale with cellular stress physiology. As expected, when the yeasts were exposed to thermostress or osmostress, their viability together with the mean cell volume decreased in conjunction with the increase in thermal or osmotic shock. Nevertheless, the viability of cells stressed for up to 1 h remained relatively high. For example, viabilities were >50% and >90% for the thermostressed, and >60% and >70% for the osmostressed S. cerevisiae and Schiz. pombe, respectively. Mean cell volume measurements, and bearing and roughness analyses of atomic force microscope images of stressed yeasts indicate that Schiz. pombe may be more resistant to physical stresses than S. cerevisiae. Overall, this study has highlighted the usefulness of atomic force microscope in studies of yeast stress physiology.

  7. Indigenous Saccharomyces cerevisiae yeasts as a source of biodiversity for the selection of starters for specific fermentations

    Directory of Open Access Journals (Sweden)

    Capece Angela

    2014-01-01

    Full Text Available The long-time studies on wine yeasts have determined a wide diffusion of inoculated fermentations by commercial starters, mainly of Saccharomyces. Although the use of starter cultures has improved the reproducibility of wine quality, the main drawback to this practice is the lack of the typical traits of wines produced by spontaneous fermentation. These findings have stimulated wine-researchers and wine-makers towards the selection of autochthonous strains as starter cultures. The objective of this study was to investigate the biodiversity of 167 S. cerevisiae yeasts, isolated from spontaneous fermentation of grapes. The genetic variability of isolates was evaluated by PCR amplification of inter-δ region with primer pair δ2/δ12. The same isolates were investigated for characteristics of oenological interest, such as resistance to sulphur dioxide, ethanol and copper and hydrogen sulphide production. On the basis of technological and molecular results, 20 strains were chosen and tested into inoculated fermentations at laboratory scale. The experimental wines were analyzed for the content of some by-products correlated to wine aroma, such as higher alcohols, acetaldehyde, ethyl acetate and acetic acid. One selected strain was used as starter culture to perform fermentation at cellar level. The selection program followed during this research project represents an optimal combination between two different trends in modern winemaking: the use of S. cerevisiae as starter cultures and the starter culture selection for specific fermentations.

  8. Genome-wide screening of Saccharomyces cerevisiae genes regulated by vanillin.

    Science.gov (United States)

    Park, Eun-Hee; Kim, Myoung-Dong

    2015-01-01

    During pretreatment of lignocellulosic biomass, a variety of fermentation inhibitors, including acetic acid and vanillin, are released. Using DNA microarray analysis, this study explored genes of the budding yeast Saccharomyces cerevisiae that respond to vanillin-induced stress. The expression of 273 genes was upregulated and that of 205 genes was downregulated under vanillin stress. Significantly induced genes included MCH2, SNG1, GPH1, and TMA10, whereas NOP2, UTP18, FUR1, and SPR1 were down regulated. Sequence analysis of the 5'-flanking region of upregulated genes suggested that vanillin might regulate gene expression in a stress response element (STRE)-dependent manner, in addition to a pathway that involved the transcription factor Yap1p. Retardation in the cell growth of mutant strains indicated that MCH2, SNG1, and GPH1 are intimately involved in vanillin stress response. Deletion of the genes whose expression levels were decreased under vanillin stress did not result in a notable change in S. cerevisiae growth under vanillin stress. This study will provide the basis for a better understanding of the stress response of the yeast S. cerevisiae to fermentation inhibitors.

  9. Zinc oxide and silver nanoparticles toxicity in the baker's yeast, Saccharomyces cerevisiae.

    Science.gov (United States)

    Galván Márquez, Imelda; Ghiyasvand, Mergan; Massarsky, Andrey; Babu, Mohan; Samanfar, Bahram; Omidi, Katayoun; Moon, Thomas W; Smith, Myron L; Golshani, Ashkan

    2018-01-01

    Engineered nanomaterials (ENMs) are increasingly incorporated into a variety of commercial applications and consumer products; however, ENMs may possess cytotoxic properties due to their small size. This study assessed the effects of two commonly used ENMs, zinc oxide nanoparticles (ZnONPs) and silver nanoparticles (AgNPs), in the model eukaryote Saccharomyces cerevisiae. A collection of ≈4600 S. cerevisiae deletion mutant strains was used to deduce the genes, whose absence makes S. cerevisiae more prone to the cytotoxic effects of ZnONPs or AgNPs. We demonstrate that S. cerevisiae strains that lack genes involved in transmembrane and membrane transport, cellular ion homeostasis, and cell wall organization or biogenesis exhibited the highest sensitivity to ZnONPs. In contrast, strains that lack genes involved in transcription and RNA processing, cellular respiration, and endocytosis and vesicular transport exhibited the highest sensitivity to AgNPs. Secondary assays confirmed that ZnONPs affected cell wall function and integrity, whereas AgNPs exposure decreased transcription, reduced endocytosis, and led to a dysfunctional electron transport system. This study supports the use of S. cerevisiae Gene Deletion Array as an effective high-throughput technique to determine cellular targets of ENM toxicity.

  10. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries.

    Science.gov (United States)

    Hong, Kuk-Ki; Nielsen, Jens

    2012-08-01

    Metabolic engineering is the enabling science of development of efficient cell factories for the production of fuels, chemicals, pharmaceuticals, and food ingredients through microbial fermentations. The yeast Saccharomyces cerevisiae is a key cell factory already used for the production of a wide range of industrial products, and here we review ongoing work, particularly in industry, on using this organism for the production of butanol, which can be used as biofuel, and isoprenoids, which can find a wide range of applications including as pharmaceuticals and as biodiesel. We also look into how engineering of yeast can lead to improved uptake of sugars that are present in biomass hydrolyzates, and hereby allow for utilization of biomass as feedstock in the production of fuels and chemicals employing S. cerevisiae. Finally, we discuss the perspectives of how technologies from systems biology and synthetic biology can be used to advance metabolic engineering of yeast.

  11. Oral administration of myostatin-specific recombinant Saccharomyces cerevisiae vaccine in rabbit.

    Science.gov (United States)

    Liu, Zhongtian; Zhou, Gang; Ren, Chonghua; Xu, Kun; Yan, Qiang; Li, Xinyi; Zhang, Tingting; Zhang, Zhiying

    2016-04-29

    Yeast is considered as a simple and cost-effective host for protein expression, and our previous studies have proved that Saccharomyces cerevisiae can deliver recombinant protein and DNA into mouse dendritic cells and can further induce immune responses as novel vaccines. In order to know whether similar immune responses can be induced in rabbit by oral administration of such recombinant S. cerevisiae vaccine, we orally fed the rabbits with heat-inactivated myostatin-recombinant S. cerevisiae for 5 weeks, and then myostatin-specific antibody in serum was detected successfully by western blotting and ELISA assay. The rabbits treated with myostatin-recombinant S. cerevisiae vaccine grew faster and their muscles were much heavier than that of the control group. As a common experimental animal and a meat livestock with great economic value, rabbit was proved to be the second animal species that have been successfully orally immunized by recombinant S. cerevisiae vaccine after mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Study of the plant COPII vesicle coat subunits by functional complementation of yeast Saccharomyces cerevisiae mutants.

    Directory of Open Access Journals (Sweden)

    Johan-Owen De Craene

    Full Text Available The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat protein complex that was first identified in yeast Saccharomyces cerevisiae. The ER-associated Sec12 and the Sar1 GTPase initiate the COPII coat formation by recruiting the Sec23-Sec24 heterodimer following the subsequent recruitment of the Sec13-Sec31 heterotetramer. In yeast, there is usually one gene encoding each COPII protein and these proteins are essential for yeast viability, whereas the plant genome encodes multiple isoforms of all COPII subunits. Here, we used a systematic yeast complementation assay to assess the functionality of Arabidopsis thaliana COPII proteins. In this study, the different plant COPII subunits were expressed in their corresponding temperature-sensitive yeast mutant strain to complement their thermosensitivity and secretion phenotypes. Secretion was assessed using two different yeast cargos: the soluble α-factor pheromone and the membranous v-SNARE (vesicle-soluble NSF (N-ethylmaleimide-sensitive factor attachment protein receptor Snc1 involved in the fusion of the secretory vesicles with the plasma membrane. This complementation study allowed the identification of functional A. thaliana COPII proteins for the Sec12, Sar1, Sec24 and Sec13 subunits that could represent an active COPII complex in plant cells. Moreover, we found that AtSec12 and AtSec23 were co-immunoprecipitated with AtSar1 in total cell extract of 15 day-old seedlings of A. thaliana. This demonstrates that AtSar1, AtSec12 and AtSec23 can form a protein complex that might represent an active COPII complex in plant cells.

  13. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol.

    Science.gov (United States)

    Lee, Cho-Ryong; Sung, Bong Hyun; Lim, Kwang-Mook; Kim, Mi-Jin; Sohn, Min Jeong; Bae, Jung-Hoon; Sohn, Jung-Hoon

    2017-06-30

    To realize the economical production of ethanol and other bio-based chemicals from lignocellulosic biomass by consolidated bioprocessing (CBP), various cellulases from different sources were tested to improve the level of cellulase secretion in the yeast Saccharomyces cerevisiae by screening an optimal translational fusion partner (TFP) as both a secretion signal and fusion partner. Among them, four indispensable cellulases for cellulose hydrolysis, including Chaetomium thermophilum cellobiohydrolase (CtCBH1), Chrysosporium lucknowense cellobiohydrolase (ClCBH2), Trichoderma reesei endoglucanase (TrEGL2), and Saccharomycopsis fibuligera β-glucosidase (SfBGL1), were identified to be highly secreted in active form in yeast. Despite variability in the enzyme levels produced, each recombinant yeast could secrete approximately 0.6-2.0 g/L of cellulases into the fermentation broth. The synergistic effect of the mixed culture of the four strains expressing the essential cellulases with the insoluble substrate Avicel and several types of cellulosic biomass was demonstrated to be effective. Co-fermentation of these yeast strains produced approximately 14 g/L ethanol from the pre-treated rice straw containing 35 g/L glucan with 3-fold higher productivity than that of wild type yeast using a reduced amount of commercial cellulases. This process will contribute to the cost-effective production of bioenergy such as bioethanol and biochemicals from cellulosic biomass.

  14. Mitochondrial genomic dysfunction causes dephosphorylation of Sch9 in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kawai, Shigeyuki; Urban, Jörg; Piccolis, Manuele; Panchaud, Nicolas; De Virgilio, Claudio; Loewith, Robbie

    2011-10-01

    TORC1-dependent phosphorylation of Saccharomyces cerevisiae Sch9 was dramatically reduced upon exposure to a protonophore or in respiration-incompetent ρ(0) cells but not in respiration-incompetent pet mutants, providing important insight into the molecular mechanisms governing interorganellar signaling in general and retrograde signaling in particular.

  15. The Oenological Potential of Hanseniaspora uvarum in Simultaneous and Sequential Co-fermentation with Saccharomyces cerevisiae for Industrial Wine Production.

    Science.gov (United States)

    Tristezza, Mariana; Tufariello, Maria; Capozzi, Vittorio; Spano, Giuseppe; Mita, Giovanni; Grieco, Francesco

    2016-01-01

    In oenology, the utilization of mixed starter cultures composed by Saccharomyces and non-Saccharomyces yeasts is an approach of growing importance for winemakers in order to enhance sensory quality and complexity of the final product without compromising the general quality and safety of the oenological products. In fact, several non-Saccharomyces yeasts are already commercialized as oenological starter cultures to be used in combination with Saccharomyces cerevisiae, while several others are the subject of various studies to evaluate their application. Our aim, in this study was to assess, for the first time, the oenological potential of H. uvarum in mixed cultures (co-inoculation) and sequential inoculation with S. cerevisiae for industrial wine production. Three previously characterized H. uvarum strains were separately used as multi-starter together with an autochthonous S. cerevisiae starter culture in lab-scale micro-vinification trials. On the basis of microbial development, fermentation kinetics and secondary compounds formation, the strain H. uvarum ITEM8795 was further selected and it was co- and sequentially inoculated, jointly with the S. cerevisiae starter, in a pilot scale wine production. The fermentation course and the quality of final product indicated that the co-inoculation was the better performing modality of inoculum. The above results were finally validated by performing an industrial scale vinification The mixed starter was able to successfully dominate the different stages of the fermentation process and the H. uvarum strain ITEM8795 contributed to increasing the wine organoleptic quality and to simultaneously reduce the volatile acidity. At the best of our knowledge, the present report is the first study regarding the utilization of a selected H. uvarum strain in multi-starter inoculation with S. cerevisiae for the industrial production of a wine. In addition, we demonstrated, at an industrial scale, the importance of non-Saccharomyces in

  16. Phenotypic characterization of glucose repression mutants of Saccharomyce cerevisiae usinge experiments with C-13-labelled glucose

    DEFF Research Database (Denmark)

    Vijayendran, Raghevendran; Gombert, A.K.; Christensen, B.

    2004-01-01

    techniques, which do not provide information about the integrated response a specific genetic modification has on the cellular function. In this study we have performed phenotypic characterization of several mutants of the yeast Saccharomyces cerevisiae through the use of experiments with C-13-labelled...

  17. Stereochemistry of Furfural Reduction by a Saccharomyces cerevisiae Aldehyde Reductase That Contributes to In Situ Furfural Detoxification

    Science.gov (United States)

    Ari1p from Saccharomyces cerevisiae, recently identified as an intermediate subclass short-chain dehydrogenase/reductase, contributes in situ to the detoxification of furfural. Furfural inhibits efficient ethanol production by the yeast, particularly when the carbon source is acid-treated lignocell...

  18. Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae.

    NARCIS (Netherlands)

    van Maris, A.J.A.; Bakker, B.M.; Brandt, M.; Boorsma, A.; Teixeira de Mattos, M.J.; Grivell, L.A.; Pronk, J.T.

    2001-01-01

    The tendency of Saccharomyces cerevisiae to favor alcoholic fermentation over respiration is a complication in aerobic, biomass-directed applications of this yeast. Overproduction of Hap4p, a positive transcriptional regulator of genes involved in respiratory metabolism, has been reported to

  19. Isolation of beta-glucan from the cell wall of Saccharomyces cerevisiae.

    Science.gov (United States)

    Shokri, Hojjatollah; Asadi, Farzad; Khosravi, Ali Reza

    2008-03-20

    Beta-glucan, one of the major cell wall components of Saccharomyces cerevisiae (S. cerevisiae), has been found to enhance immune functions. At present study, we developed an optimal procedure to extract and purify beta-glucan. At first, yeast cells were grown in sabouraud dextrose agar and then cultured in yeast extract-peptone-glucose (YPG) broth. After incubation, cells were harvested, washed and disrupted by means of sonication method. The obtained cell walls were used to prepare alkali-soluble beta-glucan (glucan-S1). In this regard, 2% sodium hydroxide (NaOH) and 3% acetic acid were used in alkaline-acid extraction, respectively. This preparation contained 2.4% protein. In the next step, DEAE sephacel chromatography was used to remove remaining proteins (glucan-S2). Subsequently this preparation was applied into concanavalin-A sepharose column to remove manann. Finally, beta-glucan free of mannoprotein complexes was prepared (glucan-S3).

  20. Transcriptional response to deletion of the phosphatidylserine decarboxylase Psd1p in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gsell, Martina; Mascher, Gerald; Schuiki, Irmgard; Ploier, Birgit; Hrastnik, Claudia; Daum, Günther

    2013-01-01

    In the yeast, Saccharomyces cerevisiae, the synthesis of the essential phospholipid phosphatidylethanolamine (PE) is accomplished by a network of reactions which comprises four different pathways. The enzyme contributing most to PE formation is the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) which catalyzes conversion of phosphatidylserine (PS) to PE. To study the genome wide effect of an unbalanced cellular and mitochondrial PE level and in particular the contribution of Psd1p to this depletion we performed a DNA microarray analysis with a ∆psd1 deletion mutant. This approach revealed that 54 yeast genes were significantly up-regulated in the absence of PSD1 compared to wild type. Surprisingly, marked down-regulation of genes was not observed. A number of different cellular processes in different subcellular compartments were affected in a ∆psd1 mutant. Deletion mutants bearing defects in all 54 candidate genes, respectively, were analyzed for their growth phenotype and their phospholipid profile. Only three mutants, namely ∆gpm2, ∆gph1 and ∆rsb1, were affected in one of these parameters. The possible link of these mutations to PE deficiency and PSD1 deletion is discussed.

  1. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae.

    Science.gov (United States)

    Duan, Lijin; Ding, Wentao; Liu, Xiaonan; Cheng, Xiaozhi; Cai, Jing; Hua, Erbing; Jiang, Huifeng

    2017-09-26

    Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. Firstly, a high efficient flavonol synthases (FLS) from Populus deltoides was introduced into the biosynthetic pathway of kaempferol. Secondly, a S. cerevisiae recombinant was constructed for de novo synthesis of kaempferol, which generated about 6.97 mg/L kaempferol from glucose. To further promote kaempferol production, the acetyl-CoA biosynthetic pathway was overexpressed and p-coumarate was supplied as substrate, which improved kaempferol titer by about 23 and 120%, respectively. Finally, a fed-batch process was developed for better kaempferol fermentation performance, and the production reached 66.29 mg/L in 40 h. The titer of kaempferol in our engineered yeast is 2.5 times of the highest reported titer. Our study provides a possible strategy to produce kaempferol using microbial cell factory.

  2. Saccharomyces cerevisiae Boulardii Reduces the Deoxynivalenol-Induced Alteration of the Intestinal Transcriptome

    Directory of Open Access Journals (Sweden)

    Imourana Alassane-Kpembi

    2018-05-01

    Full Text Available Type B trichothecene mycotoxin deoxynivalenol (DON is one of the most frequently occurring food contaminants. By inducing trans-activation of a number of pro-inflammatory cytokines and increasing the stability of their mRNA, trichothecene can impair intestinal health. Several yeast products, especially Saccharomyces cerevisiae, have the potential for improving the enteric health of piglets, but little is known about the mechanisms by which the administration of yeast counteracts the DON-induced intestinal alterations. Using a pig jejunum explant model, a whole-transcriptome analysis was performed to decipher the early response of the small intestine to the deleterious effects of DON after administration of S. cerevisiae boulardii strain CNCM I-1079. Compared to the control condition, no differentially expressed gene (DE was observed after treatment by yeast only. By contrast, 3619 probes—corresponding to 2771 genes—were differentially expressed following exposure to DON, and 32 signaling pathways were identified from the IPA software functional analysis of the set of DE genes. When the intestinal explants were treated with S. cerevisiae boulardii prior to DON exposure, the number of DE genes decreased by half (1718 probes corresponding to 1384 genes. Prototypical inflammation signaling pathways triggered by DON, including NF-κB and p38 MAPK, were reversed, although the yeast demonstrated limited efficacy toward some other pathways. S. cerevisiae boulardii also restored the lipid metabolism signaling pathway, and reversed the down-regulation of the antioxidant action of vitamin C signaling pathway. The latter effect could reduce the burden of DON-induced oxidative stress. Altogether, the results show that S. cerevisiae boulardii reduces the DON-induced alteration of intestinal transcriptome, and point to new mechanisms for the healing of tissue injury by yeast.

  3. Saccharomyces cerevisiae Boulardii Reduces the Deoxynivalenol-Induced Alteration of the Intestinal Transcriptome.

    Science.gov (United States)

    Alassane-Kpembi, Imourana; Pinton, Philippe; Hupé, Jean-François; Neves, Manon; Lippi, Yannick; Combes, Sylvie; Castex, Mathieu; Oswald, Isabelle P

    2018-05-15

    Type B trichothecene mycotoxin deoxynivalenol (DON) is one of the most frequently occurring food contaminants. By inducing trans-activation of a number of pro-inflammatory cytokines and increasing the stability of their mRNA, trichothecene can impair intestinal health. Several yeast products, especially Saccharomyces cerevisiae , have the potential for improving the enteric health of piglets, but little is known about the mechanisms by which the administration of yeast counteracts the DON-induced intestinal alterations. Using a pig jejunum explant model, a whole-transcriptome analysis was performed to decipher the early response of the small intestine to the deleterious effects of DON after administration of S. cerevisiae boulardii strain CNCM I-1079. Compared to the control condition, no differentially expressed gene (DE) was observed after treatment by yeast only. By contrast, 3619 probes-corresponding to 2771 genes-were differentially expressed following exposure to DON, and 32 signaling pathways were identified from the IPA software functional analysis of the set of DE genes. When the intestinal explants were treated with S. cerevisiae boulardii prior to DON exposure, the number of DE genes decreased by half (1718 probes corresponding to 1384 genes). Prototypical inflammation signaling pathways triggered by DON, including NF-κB and p38 MAPK, were reversed, although the yeast demonstrated limited efficacy toward some other pathways. S. cerevisiae boulardii also restored the lipid metabolism signaling pathway, and reversed the down-regulation of the antioxidant action of vitamin C signaling pathway. The latter effect could reduce the burden of DON-induced oxidative stress. Altogether, the results show that S. cerevisiae boulardii reduces the DON-induced alteration of intestinal transcriptome, and point to new mechanisms for the healing of tissue injury by yeast.

  4. Systems Biology of Saccharomyces cerevisiae Physiology and its DNA Damage Response

    DEFF Research Database (Denmark)

    Fazio, Alessandro

    The yeast Saccharomyces cerevisiae is a model organism in biology, being widely used in fundamental research, the first eukaryotic organism to be fully sequenced and the platform for the development of many genomics techniques. Therefore, it is not surprising that S. cerevisiae has also been widely...... used in the field of systems biology during the last decade. This thesis investigates S. cerevisiae growth physiology and DNA damage response by using a systems biology approach. Elucidation of the relationship between growth rate and gene expression is important to understand the mechanisms regulating...... set of growth dependent genes by using a multi-factorial experimental design. Moreover, new insights into the metabolic response and transcriptional regulation of these genes have been provided by using systems biology tools (Chapter 3). One of the prerequisite of systems biology should...

  5. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose

    Science.gov (United States)

    Haiying Ni; Jose M. Laplaza; Thomas W. Jeffries

    2007-01-01

    Saccharomyces cerevisiae L2612 transformed with genes for xylose reductase and xylitol dehydrogenase (XYL1 and XYL2) grows well on glucose but very poorly on D-xylose. When a gene for D-xylulokinase (XYL3 or XKS1) is overexpressed, growth on glucose is unaffected, but growth on xylose is blocked. Spontaneous or chemically induced mutants of this engineered yeast that...

  6. How Saccharomyces cerevisiae copes with toxic metals and metalloids.

    Science.gov (United States)

    Wysocki, Robert; Tamás, Markus J

    2010-11-01

    Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.

  7. Ethanol-independent biofilm formation by a flor wine yeast strain of Saccharomyces cerevisiae.

    Science.gov (United States)

    Zara, Severino; Gross, Michael K; Zara, Giacomo; Budroni, Marilena; Bakalinsky, Alan T

    2010-06-01

    Flor strains of Saccharomyces cerevisiae form a biofilm on the surface of wine at the end of fermentation, when sugar is depleted and growth on ethanol becomes dependent on oxygen. Here, we report greater biofilm formation on glycerol and ethyl acetate and inconsistent formation on succinic, lactic, and acetic acids.

  8. [Intragenic mitotic recombination induced by ultraviolet and gamma rays in radiosensitive mutants of Saccharomyces cerevisiae yeasts].

    Science.gov (United States)

    Zakharov, I A; Kasinova, G V; Koval'tsova, S V

    1983-01-01

    The effect of UV- and gamma-irradiation on the survival and intragenic mitotic recombination (gene conversion) of 5 radiosensitive mutants was studied in comparison with the wild type. The level of spontaneous conversion was similar for RAD, rad2 and rad15, mutations xrs2 and xrs4 increasing and rad54 significantly decreasing it. The frequency of conversion induced by UV-light was greater in rad2, rad15 and xrs2 mutants and lower in xrs4, as compared to RAD. Gamma-irradiation caused induction of gene conversion with an equal frequency in RAD, rad2, rad15. Xrs2 and xrs4 mutations slightly decreased gamma-induced conversion. In rad54 mutant, UV-and gamma-induced conversion was practically absent. In the wild type yeast, a diploid strain is more resistant than a haploid, whereas in rad54 a diploid strain has the same or an increased sensitivity, as compared to a haploid strain (the "inverse ploidy effect"). This effect and also the block of induced mitotic recombination caused by rad54 indicate the presence in the yeast Saccharomyces cerevisiae of repair pathways of UV- and gamma-induced damages acting in diploid cells and realised by recombination. The data obtained as a result of many years' investigation of genetic effects in radiosensitive mutants of yeast are summarised and considered.

  9. Saccharomyces species in the Production of Beer

    Directory of Open Access Journals (Sweden)

    Graham G. Stewart

    2016-12-01

    Full Text Available The characteristic flavour and aroma of any beer is, in large part, determined by the yeast strain employed and the wort composition. In addition, properties such as flocculation, wort fermentation ability (including the uptake of wort sugars, amino acids, and peptides, ethanol and osmotic pressure tolerance together with oxygen requirements have a critical impact on fermentation performance. Yeast management between fermentations is also a critical brewing parameter. Brewer’s yeasts are mostly part of the genus Saccharomyces. Ale yeasts belong to the species Saccharomyces cerevisiae and lager yeasts to the species Saccharomyces pastorianus. The latter is an interspecies hybrid between S. cerevisiae and Saccharomyces eubayanus. Brewer’s yeast strains are facultative anaerobes—they are able to grow in the presence or absence of oxygen and this ability supports their property as an important industrial microorganism. This article covers important aspects of Saccharomyces molecular biology, physiology, and metabolism that is involved in wort fermentation and beer production.

  10. COCOA (Theobroma cacao) Polyphenol-Rich Extract Increases the Chronological Lifespan of Saccharomyces cerevisiae.

    Science.gov (United States)

    Baiges, I; Arola, L

    2016-01-01

    BACKGROUND: Saccharomyces cerevisiae is a model organism with conserved aging pathways. Yeast chronological lifespan experiments mimic the processes involved in human non-dividing tissues, such as the nervous system or skeletal muscle, and can speed up the search for biomolecules with potential anti-aging effects before proceeding to animal studies. OBJECTIVE: To test the effectiveness of a cocoa polyphenol-rich extract (CPE) in expanding the S. cerevisiae chronological lifespan in two conditions: in the stationary phase reached after glucose depletion and under severe caloric restriction. MEASUREMENTS: Using a high-throughput method, wild-type S. cerevisiae and its mitochondrial manganese-dependent superoxide dismutase null mutant (sod2Δ) were cultured in synthetic complete dextrose medium. After 2 days, 0, 5 and 20 mg/ml of CPE were added, and viability was measured throughout the stationary phase. The effects of the major components of CPE were also evaluated. To determine yeast lifespan under severe caloric restriction conditions, cultures were washed with water 24 h after the addition of 0 and 20 mg/ml of CPE, and viability was followed over time. RESULTS : CPE increased the chronological lifespan of S. cerevisiae during the stationary phase in a dose-dependent manner. A similar increase was also observed in (sod2Δ). None of the major CPE components (theobromine, caffeine, maltodextrin, (-)-epicatechin, (+)-catechin and procyanidin B2) was able to increase the yeast lifespan. CPE further increased the yeast lifespan under severe caloric restriction. CONCLUSION: CPE increases the chronological lifespan of S. cerevisiae through a SOD2-independent mechanism. The extract also extends yeast lifespan under severe caloric restriction conditions. The high-throughput assay used makes it possible to simply and rapidly test the efficacy of a large number of compounds on yeast aging, requiring only small amounts, and is thus a convenient screening assay to accelerate

  11. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Vemuri, Goutham; Eiteman, M.A; McEwen, J.E

    2007-01-01

    effect is due to limited respiratory capacity or is caused by glucose-mediated repression of respiration. When respiration in S. cerevisiae was increased by introducing a heterologous alternative oxidase, we observed reduced aerobic ethanol formation. In contrast, increasing nonrespiratory NADH oxidation...... Crabtree effect.’’ The yeast Saccharomyces cerevisiae has served as an important model organism for studying the Crabtree effect. When subjected to increasing glycolytic fluxes under aerobic conditions, there is a threshold value of the glucose uptake rate at which the metabolism shifts from purely...... respiratory to mixed respiratory and fermentative. It is well known that glucose repression of respiratory pathways occurs at high glycolytic fluxes, resulting in a decrease in respiratory capacity. Despite many years of detailed studies on this subject, it is not known whether the onset of the Crabtree...

  12. Cellular viability of Saccharomyces cerevisiae cultivated in association with contaminates bacteria of alcoholic fermentation

    International Nuclear Information System (INIS)

    Nobre, Thais de Paula

    2005-01-01

    The aim of this work was to study the influence of the bacteria Bacillus and Lactobacillus, as well as their metabolic products, in reduction of cellular viability of Saccharomyces cerevisiae, when in mixed culture of yeast and active and treated bacteria. Also was to evaluated an alternative medium (MCC) for the cultivation of bacteria and yeast, constituted of sugarcane juice diluted to 5 deg Brix and supplemented with yeast extract and peptone. The bacteria Bacillus subtilis, Bacillus coagulans, Bacillus stearothermophilus, Lactobacillus fermentum and Lactobacillus plantarum were cultivated in association with yeast Saccharomyces cerevisiae (strain Y-904) for 72 h on 32 deg C, under agitation. The cellular viability, budding rate and population of S. cerevisiae, the total acidity, volatile acidity and pH of culture were determined from 0, 24, 48 e 72 h of mixed culture. Also were determined the initial and final of microorganism population across the pour plate method, in traditional culture medium (PCA for Bacillus, MRS-agar for Lactobacillus and YEPD-agar for yeast S. cerevisiae) and in medium constituted of sugarcane juice. The bacteria cultures were treated by heat sterilization (120 deg C for 20 minutes), antibacterial agent (Kamoran HJ in concentration 3,0 ppm) or irradiation (radiation gamma, with doses of 5,0 kGy for Lactobacillus and 15,0 kGy for Bacillus). The results of the present research showed that just the culture mediums more acids (with higher concentrations of total and volatile acidity, and smaller values of pH), contaminated with active bacteria L. fermentum and B. subtilis, caused reduction on yeast cellular viability. Except the bacteria B. subtilis treated with radiation, the others bacteria treated by different procedures (heat, radiation e antibacterial) did not cause reduction on yeast cellular viability and population, indicating that the isolated presence of the cellular metabolic of theses bacteria was not enough to reduce the

  13. Yeast caspase-dependent apoptosis in Saccharomyces cerevisiae BY4742 induced by antifungal and potential antitumor agent clotrimazole.

    Science.gov (United States)

    Kavakçıoğlu, Berna; Tarhan, Leman

    2018-01-01

    Clotrimazole is an antifungal medication commonly used in the treatment of fungal infections. There is also promising research on using clotrimazole against other diseases such as malaria, beriberi, tineapedis and cancer. It was aimed to investigate the apoptotic phenotype in Saccharomyces cerevisiae induced by clotrimazole. The exposure of S. cerevisiae to 10 µM clotrimazole for 3, 6 and 9 h caused to decrease in cell viability by 24.82 ± 0.81, 56.00 ± 1.54 and 77.59 ± 0.53%, respectively. It was shown by Annexin V-PI assay that 110 µM clotrimazole treatment caused to death by 35.5 ± 2.48% apoptotic and only 13.1 ± 0.08% necrotic pathway within 30 min. The occurrence of DNA strand breaks and condensation could be visualised by the TUNEL and DAPI stainings, respectively. Yeast caspase activity was induced 12.34 ± 0.71-fold after 110 µM clotrimazole treatment for 30 min compared to the control. The dependency of clotrimazole-induced apoptosis to caspase was also shown using Δyca1 mutant.

  14. Water-Transfer Slows Aging in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Aviv Cohen

    Full Text Available Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR, the unfolded protein response (UPR and the endoplasmic reticulum-associated protein degradation (ERAD, was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process.

  15. Preliminary X-Ray Crystallographic Studies of the N-Terminal Domains of Hsp104 from Yeast Candida albicans and Saccharomyces cerevisiae

    Science.gov (United States)

    Wang, P.; Li, J.; Sha, B.

    2017-12-01

    Yeast Hsp104 is an ATP-dependent molecular chaperone, which can solublize and rescue denatured proteins from aggregates into active form by cooperating with Hsp70 and Hsp40 chaperones. Moreover, overexpression of Hsp104 of Saccharomyces cerevisiae (ScHsp104) cures the yeast [ PSI +] prion due to the completely dissolution of the prion seeds, demonstrating ScHsp104's potential to clear amyloid-like protein aggregates, thus making ScHsp104 a promising medication approach for human amyloidogenic neurodegenerative diseases. Because the working mechanisms for ScHsp104's activities have not been clearly elucidated yet, crystallographic determination of ScHsp104 stands for great significance. Here, the expression, purification and crystallization of the N-terminal domains of Hsp104 from yeast Candida albicans (CaHsp104N) and S. cerevisiae (ScHsp104N) are described. The CaHsp104N crystals diffracted to 1.54 Å and belonged to the sp. gr. P3221 or P3121, with unit cell parameters of a = 55.213 Å, c = 109.451 Å. The data of the ScHsp104N crystals were collected to the resolution of 2.53 Å in the sp. gr. C2, with unit cell parameters a = 148.587 Å, b = 66.255 Å, c = 74.577 Å, β = 107.369°. The phase of ScHsp104N is determined by the molecular replacement method using CaHsp104N as the search model.

  16. Genetic Approaches to Study Meiosis and Meiosis-Specific Gene Expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kassir, Yona; Stuart, David T

    2017-01-01

    The budding yeast Saccharomyces cerevisiae has a long history as a model organism for studies of meiosis and the cell cycle. The popularity of this yeast as a model is in large part due to the variety of genetic and cytological approaches that can be effectively performed with the cells. Cultures of the cells can be induced to synchronously progress through meiosis and sporulation allowing large-scale gene expression and biochemical studies to be performed. Additionally, the spore tetrads resulting from meiosis make it possible to characterize the haploid products of meiosis allowing investigation of meiotic recombination and chromosome segregation. Here we describe genetic methods for analysis progression of S. cerevisiae through meiosis and sporulation with an emphasis on strategies for the genetic analysis of regulators of meiosis-specific genes.

  17. Saccharomyces cerevisiae biofilm tolerance towards systemic antifungals depends on growth phase

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth; Regenberg, Birgitte; Folkesson, Sven Anders

    2014-01-01

    Background : Biofilm-forming Candida species cause infections that can be difficult to eradicate, possibly because of antifungal drug tolerance mechanisms specific to biofilms. In spite of decades of research, the connection between biofilm and drug tolerance is not fully understood. Results : We...... used Saccharomyces cerevisiae as a model for drug susceptibility of yeast biofilms. Confocal laser scanning microscopy showed that S. cerevisiae and C. glabrata form similarly structured biofilms and that the viable cell numbers were significantly reduced by treatment of mature biofilms...... with amphotericin B but not voriconazole, flucytosine, or caspofungin. We showed that metabolic activity in yeast biofilm cells decreased with time, as visualized by FUN-1 staining, and mature, 48-hour biofilms contained cells with slow metabolism and limited growth. Time-kill studies showed that in exponentially...

  18. Participation of SRM5/CDC28, SRM8/NET1 and SRM12/HF11 genes in activation of checkpoints of Yeast Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Kadyshevskaya, E.Yu.; Koltovaya, N.A.

    2007-01-01

    It is known that there are about twenty checkpoint genes in yeast Saccharomyces cerevisiae. We study participation of SRM genes selected as genes affecting genetic stability and radiosensitivity. It has been shown that srm5/cdc28-srm, srm8/net1-srm, srm12/hfil-srm mutations prevent checkpoint activation by DNA damage, particularly G0/S-checkpoint (srm5, srm8), G1/S-checkpoint (srm5, srm8, srm12), S-checkpoint (srm5, srm12) and G2-checkpoint (srm5). These data indicate, at least in budding yeast, CDC28/SRM5, HF11/ADA1/SRM12 and NET1/SRM8 genes mediate cellular response induced by DNA damage including checkpoint control

  19. 'Yeast mail': a novel Saccharomyces application (NSA) to encrypt messages.

    Science.gov (United States)

    Rosemeyer, Helmut; Paululat, Achim; Heinisch, Jürgen J

    2014-09-01

    The universal genetic code is used by all life forms to encode biological information. It can also be used to encrypt semantic messages and convey them within organisms without anyone but the sender and recipient knowing, i.e., as a means of steganography. Several theoretical, but comparatively few experimental, approaches have been dedicated to this subject, so far. Here, we describe an experimental system to stably integrate encrypted messages within the yeast genome using a polymerase chain reaction (PCR)-based, one-step homologous recombination system. Thus, DNA sequences encoding alphabetical and/or numerical information will be inherited by yeast propagation and can be sent in the form of dried yeast. Moreover, due to the availability of triple shuttle vectors, Saccharomyces cerevisiae can also be used as an intermediate construction device for transfer of information to either Drosophila or mammalian cells as steganographic containers. Besides its classical use in alcoholic fermentation and its modern use for heterologous gene expression, we here show that baker's yeast can thus be employed in a novel Saccharomyces application (NSA) as a simple steganographic container to hide and convey messages. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  20. Implementation of communication-mediating domains for non-ribosomal peptide production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Siewers, Verena; San-Bento, Rita; Nielsen, Jens

    2010-01-01

    Saccharomyces cerevisiae has in several cases been proven to be a suitable host for the production of natural products and was recently exploited for the production of non-ribosomal peptides. Synthesis of non-ribosomal peptides (NRPs) is mediated by NRP synthetases (NRPSs), modular enzymes, which...... are often organized in enzyme complexes. In these complexes, partner NRPSs interact via communication-mediating domains (COM domains). In order to test whether functional interaction between separate NRPS modules is possible in yeast we constructed a yeast strain expressing two modules with compatible COM...

  1. Evolutionary engineering in chemostat cultures for improved maltotriose fermentation kinetics in saccharomyces pastorianus lager brewing yeast

    NARCIS (Netherlands)

    Brickwedde, A.; van den Broek, M.A.; Geertman, Jan Maarten A.; Magalhães, Frederico; Kuijpers, Niels G.A.; Gibson, Brian; Pronk, J.T.; Daran, J.G.

    2017-01-01

    The lager brewing yeast Saccharomyces pastorianus, an interspecies hybrid of S. eubayanus and S. cerevisiae, ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion ("attenuation") of maltotriose by industrial S.

  2. Attempt to stimulate cell division in Saccharomyces cerevisiae with weak ultraviolet light

    International Nuclear Information System (INIS)

    Quickenden, T.I.; Matich, A.J.; Pung, S.H.; Tilbury, R.N.

    1989-01-01

    Liquid cultures of the yeast Saccharomyces cerevisiae were irradiated with weak light having irradiances ranging from ca. 1 X 10(2) to 5 X 10(9) photons cm-2 s-1 and at wavelengths ranging from 200 to 700 nm. When particular care was taken to control the temperature of the cultures and the flow rate of oxygen, no evidence was obtained for stimulation of either yeast growth or division by the incident light. These results do not support the claims of early workers that very low intensity uv light can stimulate cell division in living organisms

  3. The oenological potential of Hanseniaspora uvarum in simultaneous and sequential co-fermentation with Saccharomyces cerevisiae for the industrial wine production

    Directory of Open Access Journals (Sweden)

    Mariana eTristezza

    2016-05-01

    Full Text Available In oenology, the utilization of mixed starter cultures composed by Saccharomyces and non-Saccharomyces yeasts is an approach of growing importance for winemakers in order to enhance sensory quality and complexity of the final product without compromising the general quality and safety of the oenological products. In fact, several non-Saccharomyces yeasts are already commercialized as oenological starter cultures to be used in combination with Saccharomyces cerevisiae, while several others are the subject of various studies to evaluate their application. Our aim, in this study was to assess, for the first time, the oenological potential of H. uvarum in mixed cultures (co-inoculation and sequential inoculation with S. cerevisiae for industrial wine production. Three previously characterized H. uvarum strains were separately used as multi-starter together with an autochthonous S. cerevisiae starter culture in lab-scale micro-vinification trials. On the basis of microbial development, fermentation kinetics and secondary compounds formation, the strain H. uvarum ITEM8795 was further selected and it was co- and sequentially inoculated, jointly with the S. cerevisiae starter, in a pilot scale wine production. The fermentation course and the quality of final product indicated that the co-inoculation was the better performing modality of inoculum. The above results were finally validated by performing an industrial scale vinification The mixed starter was able to successfully dominate the different stages of the fermentation process and the H. uvarum strain ITEM8795 contributed to increasing the wine organoleptic quality and to simultaneously reduce the volatile acidity. At the best of our knowledge, the present report is the first study regarding the utilization of a selected H. uvarum strain in multi-starter inoculation with S. cerevisiae for the industrial production of a wine. In addition, we demonstrated, at an industrial scale, the importance of

  4. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Enzymatic activities produced by mixed Saccharomyces and non-Saccharomyces cultures: relationship with wine volatile composition.

    Science.gov (United States)

    Maturano, Yolanda Paola; Assof, Mariela; Fabani, María Paula; Nally, María Cristina; Jofré, Viviana; Rodríguez Assaf, Leticia Anahí; Toro, María Eugenia; Castellanos de Figueroa, Lucía Inés; Vazquez, Fabio

    2015-11-01

    During certain wine fermentation processes, yeasts, and mainly non-Saccharomyces strains, produce and secrete enzymes such as β-glucosidases, proteases, pectinases, xylanases and amylases. The effects of enzyme activity on the aromatic quality of wines during grape juice fermentation, using different co-inoculation strategies of non-Saccharomyces and Saccharomyces cerevisiae yeasts, were assessed in the current study. Three strains with appropriate enological performance and high enzymatic activities, BSc562 (S. cerevisiae), BDv566 (Debaryomyces vanrijiae) and BCs403 (Candida sake), were assayed in pure and mixed Saccharomyces/non-Saccharomyces cultures. β-Glucosidase, pectinase, protease, xylanase and amylase activities were quantified during fermentations. The aromatic profile of pure and mixed cultures was determined at the end of each fermentation. In mixed cultures, non-Saccharomyces species were detected until day 4-5 of the fermentation process, and highest populations were observed in MSD2 (10% S. cerevisiae/90% D. vanrijiae) and MSC1 (1% S. cerevisiae/99% C. sake). According to correlation and multivariate analysis, MSD2 presented the highest concentrations of terpenes and higher alcohols which were associated with pectinase, amylase and xylanase activities. On the other hand, MSC1 high levels of β-glucosidase, proteolytic and xylanolytic activities were correlated to esters and fatty acids. Our study contributes to a better understanding of the effect of enzymatic activities by yeasts on compound transformations that occur during wine fermentation.

  6. [Cloning of cDNA for RNA polymerase subunit from the fission yeast Schizosaccharomyces pombe by heterospecific complementation in Saccharomyces cerevisiae].

    Science.gov (United States)

    Shpakovskiĭ, G V; Lebedenko, E N; Thuriaux, P

    1997-02-01

    The rpb10 cDNA of the fission yeast Schizosaccharomyces pombe, encoding one of the five small subunits common to all three nuclear DNA-dependent RNA polymerases, was isolated from an expression cDNA library by two independent approaches: PCR-based screening and direct suppression by means of heterospecific complementation of a temperature-sensitive mutant defective in the corresponding gene of Saccharomyces cerevisiae. The cloned Sz. pombe cDNA encodes a protein Rpb10 of 71 amino acids with an M of 8,275 Da, sharing 51 amino acids (71% identity) with the subunit ABC10 beta of RNA polymerases I-III from S. cerevisiae. All eukaryotic members of this protein family have the same general organization featuring two highly conserved motifs (RCFT/SCGK and RYCCRRM) around an atypical zinc finger and an additional invariant HVDLIEK motif toward the C-terminal end. The last motif is only characteristics for homologs from eukaryotes. In keeping with this remarkable structural conservation, the Sz. pombe cDNA also fully complemented a S. cerevisiae deletion mutant lacking subunit ABC10 beta (null allele rpb10-delta 1::HIS3).

  7. PRODUCTION, PROPERTIES AND APPLICATION OF SACCHAROMYCES CEREVISIAE VGSH-2 INULINASE

    Directory of Open Access Journals (Sweden)

    G. P. Shuvaeva

    2014-01-01

    Full Text Available Summary. Experimental data on an acid and thermal inactivation of a high refined inulinase (2,1-β-D- fructanfructanohydrolase, KF 3.2.17, produced by the race of Saccharomyces cerevisiae VGSh-2 yeast are presented. The strain of S. cerevisiae VGSh-2 was produced by the method of the induced mutagenesis and deposited to the collection of pure cultures of the chair of biochemistry and biotechnology of Voronezh state university of engineering technologies. The cells of source culture (S. cerevisiae XII were affected step-by-step by the ultra-violet radiation (UFR and UFR in a complex with a chemical mutagen (etilenimine. The culture was grown up by the method of liquid-phase deep cultivation on a constant nutrient medium. Refining conditions for inulinase are sorted out. Activity of enzyme dependence on physical and chemical factors (рН and temperature is obtained and numerical values of the main kinetic constants – Km and Vmax are determined. The structure of enzyme molecule is studied by an infrared-spectroscopy method: the type and relative quantity of elements of secondary structure of protein are defined. Substrate binding groups of the active center of an inulinase are found. The comparative analysis of the ability to hydrolysis of inulin in several enzyme preparations from Jerusalem artichoke and to the subsequent their fermentation by the VGSh-2 and XI S. cerevisiae yeasts is carried out. Optimum conditions of enzyme hydrolysis of inulin are selected. Research of the fermentation process of starchcontaining raw materials by yeasts of VGSh-2 and XI races is done. It is established that the using of VGSh-2 S. cerevisiae yeast for a grain wort and the Jerusalem artichoke fermentation, allows to increase an extraction of ethyl alcohol comparing to control race, to improve its quality characteristics, and also allows to predict the using of new race in the food industry for production ethanol from grain raw materials and a fermentation of

  8. Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Kaushik Raj

    2018-06-01

    Full Text Available Adipic acid is an important industrial chemical used in the synthesis of nylon-6,6. The commercial synthesis of adipic acid uses petroleum-derived benzene and releases significant quantities of greenhouse gases. Biocatalytic production of adipic acid from renewable feedstocks could potentially reduce the environmental damage and eliminate the need for fossil fuel precursors. Recently, we have demonstrated the first enzymatic hydrogenation of muconic acid to adipic acid using microbial enoate reductases (ERs - complex iron-sulfur and flavin containing enzymes. In this work, we successfully expressed the Bacillus coagulans ER in a Saccharomyces cerevisiae strain producing muconic acid and developed a three-stage fermentation process enabling the synthesis of adipic acid from glucose. The ability to express active ERs and significant acid tolerance of S. cerevisiae highlight the applicability of the developed yeast strain for the biocatalytic production of adipic acid from renewable feedstocks. Keywords: Biosynthesis, Renewable resources, Yeast, Adipic acid, Synthetic biology

  9. Determination of carbohydrates present in Saccharomyces cerevisiae using mid-infrared spectroscopy and partial least squares regression

    OpenAIRE

    Plata, Maria R.; Koch, Cosima; Wechselberger, Patrick; Herwig, Christoph; Lendl, Bernhard

    2013-01-01

    A fast and simple method to control variations in carbohydrate composition of Saccharomyces cerevisiae, baker's yeast, during fermentation was developed using mid-infrared (mid-IR) spectroscopy. The method allows for precise and accurate determinations with minimal or no sample preparation and reagent consumption based on mid-IR spectra and partial least squares (PLS) regression. The PLS models were developed employing the results from reference analysis of the yeast cells. The reference anal...

  10. Brewer’s Yeast, Saccharomyces cerevisiae, Enhances Attraction of Two Invasive Yellowjackets (Hymenoptera: Vespidae) to Dried Fruit and Fruit Powder

    Science.gov (United States)

    Gries, Regine; Borden, John; Palmero, Luis; Mattiacci, Analía; Masciocchi, Maité; Corley, Juan; Gries, Gerhard

    2017-01-01

    Abstract The German yellowjacket, Vespula germanica F., and common yellowjacket, Vespula vulgaris L. (Hymenoptera: Vespidae), are pests of significant economic, environmental, and medical importance in many countries. There is a need for the development and improvement of attractive baits that can be deployed in traps to capture and kill these wasps in areas where they are a problem. Yellowjackets are known to feed on fermenting fruit, but this resource is seldom considered as a bait due to its ephemeral nature and its potential attractiveness to nontarget species. We analyzed the headspace volatiles of dried fruit and fruit powder baits with and without Brewer’s yeast, Saccharomyces cerevisiae, using gas chromatography–mass spectrometry, and we field tested these baits for their attractiveness to yellowjackets in Argentina. The addition of yeast to dried fruit and fruit powder changed the volatile compositions, increasing the number of alcohols and acids and decreasing the number of aldehydes. Dried fruit and fruit powder baits on their own were hardly attractive to yellowjackets, but the addition of yeast improved their attractiveness by 9- to 50-fold and surpassed the attractiveness of a commercial heptyl butyrate-based wasp lure. We suggest that further research be done to test additional varieties and species of yeasts. A dried fruit or fruit powder bait in combination with yeast could become a useful tool in the management of yellowjackets. PMID:28922898

  11. Iron enriched Saccharomyces cerevisiae maintains its fermenting power and bakery properties

    Directory of Open Access Journals (Sweden)

    Fernanda Gaensly

    2011-12-01

    Full Text Available Iron is an essential micronutrient in the metabolism of almost all living organisms; however, its deficiency is well documented especially in pregnant women and in children. Iron salts as a dietary supplement have low bioavailability and can cause gastrointestinal discomforts. Iron enriched yeasts can provide a supplementation of this micronutrient to the diet because this mineral has a better bioavailability when bonded to yeast cell macromolecules. These yeasts can be used as feed supplement for human and animals and also as baker's yeast. Baker's yeast Saccharomyces cerevisiae was cultivated in a reactor employing yeast media supplemented with 497 mg ferrous sulfate.L-1, and the resultant biomass incorporated 8 mg Fe.g-1 dry matter. This biomass maintained its fermenting power regarding both water displace measurement through carbonic dioxide production and bakery characteristics. The bread produced using the yeast obtained by cultivation in yeast media supplemented with iron presented six times more iron than the bread produced using the yeast obtained by cultivation without iron supplementation.

  12. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jared W Wenger

    2010-05-01

    Full Text Available Fermentation of xylose is a fundamental requirement for the efficient production of ethanol from lignocellulosic biomass sources. Although they aggressively ferment hexoses, it has long been thought that native Saccharomyces cerevisiae strains cannot grow fermentatively or non-fermentatively on xylose. Population surveys have uncovered a few naturally occurring strains that are weakly xylose-positive, and some S. cerevisiae have been genetically engineered to ferment xylose, but no strain, either natural or engineered, has yet been reported to ferment xylose as efficiently as glucose. Here, we used a medium-throughput screen to identify Saccharomyces strains that can increase in optical density when xylose is presented as the sole carbon source. We identified 38 strains that have this xylose utilization phenotype, including strains of S. cerevisiae, other sensu stricto members, and hybrids between them. All the S. cerevisiae xylose-utilizing strains we identified are wine yeasts, and for those that could produce meiotic progeny, the xylose phenotype segregates as a single gene trait. We mapped this gene by Bulk Segregant Analysis (BSA using tiling microarrays and high-throughput sequencing. The gene is a putative xylitol dehydrogenase, which we name XDH1, and is located in the subtelomeric region of the right end of chromosome XV in a region not present in the S288c reference genome. We further characterized the xylose phenotype by performing gene expression microarrays and by genetically dissecting the endogenous Saccharomyces xylose pathway. We have demonstrated that natural S. cerevisiae yeasts are capable of utilizing xylose as the sole carbon source, characterized the genetic basis for this trait as well as the endogenous xylose utilization pathway, and demonstrated the feasibility of BSA using high-throughput sequencing.

  13. Brewer's Yeast, Saccharomyces cerevisiae, Enhances Attraction of Two Invasive Yellowjackets (Hymenoptera: Vespidae) to Dried Fruit and Fruit Powder.

    Science.gov (United States)

    Babcock, Tamara; Gries, Regine; Borden, John; Palmero, Luis; Mattiacci, Analía; Masciocchi, Maité; Corley, Juan; Gries, Gerhard

    2017-09-01

    The German yellowjacket, Vespula germanica F., and common yellowjacket, Vespula vulgaris L. (Hymenoptera: Vespidae), are pests of significant economic, environmental, and medical importance in many countries. There is a need for the development and improvement of attractive baits that can be deployed in traps to capture and kill these wasps in areas where they are a problem. Yellowjackets are known to feed on fermenting fruit, but this resource is seldom considered as a bait due to its ephemeral nature and its potential attractiveness to nontarget species. We analyzed the headspace volatiles of dried fruit and fruit powder baits with and without Brewer's yeast, Saccharomyces cerevisiae, using gas chromatography-mass spectrometry, and we field tested these baits for their attractiveness to yellowjackets in Argentina. The addition of yeast to dried fruit and fruit powder changed the volatile compositions, increasing the number of alcohols and acids and decreasing the number of aldehydes. Dried fruit and fruit powder baits on their own were hardly attractive to yellowjackets, but the addition of yeast improved their attractiveness by 9- to 50-fold and surpassed the attractiveness of a commercial heptyl butyrate-based wasp lure. We suggest that further research be done to test additional varieties and species of yeasts. A dried fruit or fruit powder bait in combination with yeast could become a useful tool in the management of yellowjackets. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  14. Radio protective effects of calcium channel blockers (Deltiazem) on survival of Saccharomyces cerevisiae cells irradiated with different doses of gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Alya, G; Shamma, M; Sharabi, N [Atomic Energy Commission, Damascus (Syrian Arab Republic), Dept. of Molecular Biology and Biotechnology

    2007-03-15

    Investigations of radioprotective effects of Deltiazem (as one of the commonly used calcium channel blockers, which is used in the treatment of acute and chronic angina and spasmo angina, in addition to the treatment of different types of essential hypertension) has been carried on Saccharomyces Cerevisiae cells. Cells cultures of the most famous yeast Saccharomyces Cerevisiae (bakers yeast) were irradiated with different doses of gamma rays. Results revealed that the necessary dose of gamma rays that leads to 10% of survived cellular population (D10 value) was about 256 Gy. This irradiation dose was used then in all irradiation experiments on culture of S. Cerevisiae cells in which different concentrations of Deltiazem (55, 110, 165 mg/Kg medium) were added before and after irradiation in order to study the radio protective effect of Deltiazem. Results showed that Deltiazem enhances survival percentage of irradiated S. Cerevisiae cultures in a concentration dependent manner. This study confirmed our previous works, which had demonstrated that Deltiazem protects lethally and supralethally irradiated rats, and enhances survival of pre-irradiated Deltiazem treated animals.(author)

  15. Radio protective effects of calcium channel blockers (Deltiazem) on survival of Saccharomyces cerevisiae cells irradiated with different doses of gamma rays

    International Nuclear Information System (INIS)

    Alya, G.; Shamma, M.; Sharabi, N.

    2007-03-01

    Investigations of radioprotective effects of Deltiazem (as one of the commonly used calcium channel blockers, which is used in the treatment of acute and chronic angina and spasmo angina, in addition to the treatment of different types of essential hypertension) has been carried on Saccharomyces Cerevisiae cells. Cells cultures of the most famous yeast Saccharomyces Cerevisiae (bakers yeast) were irradiated with different doses of gamma rays. Results revealed that the necessary dose of gamma rays that leads to 10% of survived cellular population (D10 value) was about 256 Gy. This irradiation dose was used then in all irradiation experiments on culture of S. Cerevisiae cells in which different concentrations of Deltiazem (55, 110, 165 mg/Kg medium) were added before and after irradiation in order to study the radio protective effect of Deltiazem. Results showed that Deltiazem enhances survival percentage of irradiated S. Cerevisiae cultures in a concentration dependent manner. This study confirmed our previous works, which had demonstrated that Deltiazem protects lethally and supralethally irradiated rats, and enhances survival of pre-irradiated Deltiazem treated animals.(author)

  16. The yeast Saccharomyces cerevisiae Pdr16p restricts changes in ergosterol biosynthesis caused by the presence of azole antifungals.

    Science.gov (United States)

    Šimová, Zuzana; Poloncová, Katarína; Tahotná, Dana; Holič, Roman; Hapala, Ivan; Smith, Adam R; White, Theodore C; Griač, Peter

    2013-06-01

    Pdr16p belongs to the family of phosphatidylinositol transfer proteins in yeast. The absence of Pdr16p results in enhanced susceptibility to azole antifungals in Saccharomyces cerevisiae. In the major fungal human pathogen Candida albicans, CaPDR16 is a contributing factor to clinical azole resistance. The current study was aimed at better understanding the function of Pdr16p, especially in relation to azole resistance in S. cerevisiae. We show that deletion of the PDR16 gene increased susceptibility of S. cerevisiae to azole antifungals that are used in clinical medicine and agriculture. Significant differences in the inhibition of the sterol biosynthetic pathway were observed between the pdr16Δ strain and its corresponding wild-type (wt) strain when yeast cells were challenged by sub-inhibitory concentrations of the azoles miconazole or fluconazole. The increased susceptibility to azoles, and enhanced changes in sterol biosynthesis upon exposure to azoles of the pdr16Δ strain compared to wt strain, are not the results of increased intracellular concentration of azoles in the pdr16Δ cells. We also show that overexpression of PDR17 complemented the azole susceptible phenotype of the pdr16Δ strain and corrected the enhanced sterol alterations in pdr16Δ cells in the presence of azoles. Pdr17p was found previously to be an essential part of a complex required for intermembrane transport of phosphatidylserine at regions of membrane apposition. Based on these observations, we propose a hypothesis that Pdr16p assists in shuttling sterols or their intermediates between membranes or, alternatively, between sterol biosynthetic enzymes or complexes. Copyright © 2013 John Wiley & Sons, Ltd.

  17. The essential DNA polymerases δ and ε are involved in repair of UV-damaged DNA in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Halas, A.; Policinska, Z.; Baranowska, H.; Jachymczyk, W.J.

    1999-01-01

    We have studied the ability of yeast DNA polymerases to carry out repair of lesions caused by UV irradiation in Saccharomyces cerevisiae. By the analysis of postirradiation relative molecular mass changes in cellular DNA of different DNA polymerases mutant strains, it was established that mutations in DNA polymerases δ and ε showed accumulation of single-strand breaks indicating defective repair. Mutations in other DNA polymerase genes exhibited no defects in DNA repair. Thus, the data obtained suggest that DNA polymerases δ and ε are both necessary for DNA replication and for repair of lesions caused by UV irradiation. The results are discussed in the light of current concepts concerning the specificity of DNA polymerases in DNA repair. (author)

  18. Engineering a Saccharomyces cerevisiae wine yeast that exhibits reduced ethanol production during fermentation under controlled microoxygenation conditions.

    Science.gov (United States)

    Heux, Stéphanie; Sablayrolles, Jean-Marie; Cachon, Rémy; Dequin, Sylvie

    2006-09-01

    We recently showed that expressing an H(2)O-NADH oxidase in Saccharomyces cerevisiae drastically reduces the intracellular NADH concentration and substantially alters the distribution of metabolic fluxes in the cell. Although the engineered strain produces a reduced amount of ethanol, a high level of acetaldehyde accumulates early in the process (1 g/liter), impairing growth and fermentation performance. To overcome these undesirable effects, we carried out a comprehensive analysis of the impact of oxygen on the metabolic network of the same NADH oxidase-expressing strain. While reducing the oxygen transfer rate led to a gradual recovery of the growth and fermentation performance, its impact on the ethanol yield was negligible. In contrast, supplying oxygen only during the stationary phase resulted in a 7% reduction in the ethanol yield, but without affecting growth and fermentation. This approach thus represents an effective strategy for producing wine with reduced levels of alcohol. Importantly, our data also point to a significant role for NAD(+) reoxidation in controlling the glycolytic flux, indicating that engineered yeast strains expressing an NADH oxidase can be used as a powerful tool for gaining insight into redox metabolism in yeast.

  19. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Kwak, Suryang; Kim, Soo Rin; Xu, Haiqing; Zhang, Guo-Chang; Lane, Stephan; Kim, Heejin; Jin, Yong-Su

    2017-11-01

    Saccharomyces cerevisiae has limited capabilities for producing fuels and chemicals derived from acetyl-CoA, such as isoprenoids, due to a rigid flux partition toward ethanol during glucose metabolism. Despite numerous efforts, xylose fermentation by engineered yeast harboring heterologous xylose metabolic pathways was not as efficient as glucose fermentation for producing ethanol. Therefore, we hypothesized that xylose metabolism by engineered yeast might be a better fit for producing non-ethanol metabolites. We indeed found that engineered S. cerevisiae on xylose showed higher expression levels of the enzymes involved in ethanol assimilation and cytosolic acetyl-CoA synthesis than on glucose. When genetic perturbations necessary for overproducing squalene and amorphadiene were introduced into engineered S. cerevisiae capable of fermenting xylose, we observed higher titers and yields of isoprenoids under xylose than glucose conditions. Specifically, co-overexpression of a truncated HMG1 (tHMG1) and ERG10 led to substantially higher squalene accumulation under xylose than glucose conditions. In contrast to glucose utilization producing massive amounts of ethanol regardless of aeration, xylose utilization allowed much less amounts of ethanol accumulation, indicating ethanol is simultaneously re-assimilated with xylose consumption and utilized for the biosynthesis of cytosolic acetyl-CoA. In addition, xylose utilization by engineered yeast with overexpression of tHMG1, ERG10, and ADS coding for amorphadiene synthase, and the down-regulation of ERG9 resulted in enhanced amorphadiene production as compared to glucose utilization. These results suggest that the problem of the rigid flux partition toward ethanol production in yeast during the production of isoprenoids and other acetyl-CoA derived chemicals can be bypassed by using xylose instead of glucose as a carbon source. Biotechnol. Bioeng. 2017;114: 2581-2591. © 2017 Wiley Periodicals, Inc. © 2017 Wiley

  20. Effect of 905 MHz microwave radiation on colony growth of the yeast Saccharomyces cerevisiae strains FF18733, FF1481 and D7

    International Nuclear Information System (INIS)

    Vrhovac, Ivana; Hrascan, Reno; Franekic, Jasna

    2010-01-01

    The aim of this study was to evaluate the effect of weak radiofrequency microwave (RF/MW) radiation emitted by mobile phones on colony growth of the yeast Saccharomyces cerevisiae. S. cerevisiae strains FF18733 (wild-type), FF1481 (rad1 mutant) and D7 (commonly used to detect reciprocal and nonreciprocal mitotic recombinations) were exposed to a 905 MHz electromagnetic field that closely matched the Global System for Mobile Communication (GSM) pulse modulation signals for mobile phones at a specific absorption rate (SAR) of 0.12 W/kg. Following 15-, 30- and 60-minutes exposure to RF/MW radiation, strain FF18733 did not show statistically significant changes in colony growth compared to the control sample. The irradiated strains FF1481 and D7 demonstrated statistically significant reduction of colony growth compared to non-irradiated strains after all exposure times. Furthermore, strain FF1481 was more sensitive to RF/MW radiation than strain D7. The findings indicate that pulsed RF/MW radiation at a low SAR level can affect the rate of colony growth of different S. cerevisiae strains

  1. Effects of an unusual poison identify a lifespan role for Topoisomerase 2 in Saccharomyces cerevisiae

    OpenAIRE

    Tombline, Gregory; Millen, Jonathan I.; Polevoda, Bogdan; Rapaport, Matan; Baxter, Bonnie; Van Meter, Michael; Gilbertson, Matthew; Madrey, Joe; Piazza, Gary A.; Rasmussen, Lynn; Wennerberg, Krister; White, E. Lucile; Nitiss, John L.; Goldfarb, David S.

    2017-01-01

    A progressive loss of genome maintenance has been implicated as both a cause and consequence of aging. Here we present evidence supporting the hypothesis that an age-associated decay in genome maintenance promotes aging in Saccharomyces cerevisiae (yeast) due to an inability to sense or repair DNA damage by topoisomerase 2 (yTop2). We describe the characterization of LS1, identified in a high throughput screen for small molecules that shorten the replicative lifespan of yeast. LS1 accelerates...

  2. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast

    NARCIS (Netherlands)

    A.J. van Maris; J.M. Geertman; A. Vermeulen; M.K. Groothuizen; A.A. Winkler; M.D. Piper; J.P. van Dijken; J.T. Pronk

    2004-01-01

    textabstractThe absence of alcoholic fermentation makes pyruvate decarboxylase-negative (Pdc(-)) strains of Saccharomyces cerevisiae an interesting platform for further metabolic engineering of central metabolism. However, Pdc(-) S. cerevisiae strains have two growth defects:

  3. Yield improvement of heterologous peptides expressed in yps1-disrupted Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Egel-Mitani; Andersen; Diers; Hach; Thim; Hastrup; Vad

    2000-06-01

    Heterologous protein expression levels in Saccharomyces cerevisiae fermentations are highly dependent on the susceptibility to endogenous yeast proteases. Small peptides, such as glucagon and glucagon-like-peptides (GLP-1 and GLP-2), featuring an open structure are particularly accessible for proteolytic degradation during fermentation. Therefore, homogeneous products cannot be obtained. The most sensitive residues are found at basic amino acid residues in the peptide sequence. These heterologous peptides are degraded mainly by the YPS1-encoded aspartic protease, yapsin1, when produced in the yeast. In this article, distinct degradation products were analyzed by HPLC and mass spectrometry, and high yield of the heterologous peptide production has been achieved by the disruption of the YPS1 gene (previously called YAP3). By this technique, high yield continuous fermentation of glucagon in S. cerevisiae is now possible.

  4. Molecular cloning and expression in Saccharomyces cerevisiae and Neurospora crassa of the invertase gene from Neurospora crassa.

    Science.gov (United States)

    Carú, M; Cifuentes, V; Pincheira, G; Jiménez, A

    1989-10-01

    A plasmid (named pCN2) carrying a 7.6 kb BamHI DNA insert was isolated from a Neurospora crassa genomic library raised in the yeast vector YRp7. Saccharomyces cerevisiae suco and N. crassa inv strains transformed with pNC2 were able to grow on sucrose-based media and expressed invertase activity. Saccharomyces cerevisiae suco (pNC2) expressed a product which immunoreacted with antibody raised against purified invertase from wild type N. crassa, although S. cerevisiae suc+ did not. The cloned DNA hybridized with a 7.6 kb DNA fragment from BamHI-restricted wild type N. crassa DNA. Plasmid pNC2 transformed N. crassa Inv- to Inv+ by integration either near to the endogenous inv locus (40% events) or at other genomic sites (60% events). It appears therefore that the cloned DNA piece encodes the N. crassa invertase enzyme. A 3.8 kb XhoI DNA fragment, derived from pNC2, inserted in YRp7, in both orientation, was able to express invertase activity in yeast, suggesting that it contains an intact invertase gene which is not expressed from a vector promoter.

  5. Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae.

    Science.gov (United States)

    Milne, N; Luttik, M A H; Cueto Rojas, H F; Wahl, A; van Maris, A J A; Pronk, J T; Daran, J M

    2015-07-01

    In microbial processes for production of proteins, biomass and nitrogen-containing commodity chemicals, ATP requirements for nitrogen assimilation affect product yields on the energy producing substrate. In Saccharomyces cerevisiae, a current host for heterologous protein production and potential platform for production of nitrogen-containing chemicals, uptake and assimilation of ammonium requires 1 ATP per incorporated NH3. Urea assimilation by this yeast is more energy efficient but still requires 0.5 ATP per NH3 produced. To decrease ATP costs for nitrogen assimilation, the S. cerevisiae gene encoding ATP-dependent urease (DUR1,2) was replaced by a Schizosaccharomyces pombe gene encoding ATP-independent urease (ure2), along with its accessory genes ureD, ureF and ureG. Since S. pombe ure2 is a Ni(2+)-dependent enzyme and Saccharomyces cerevisiae does not express native Ni(2+)-dependent enzymes, the S. pombe high-affinity nickel-transporter gene (nic1) was also expressed. Expression of the S. pombe genes into dur1,2Δ S. cerevisiae yielded an in vitro ATP-independent urease activity of 0.44±0.01 µmol min(-1) mg protein(-1) and restored growth on urea as sole nitrogen source. Functional expression of the Nic1 transporter was essential for growth on urea at low Ni(2+) concentrations. The maximum specific growth rates of the engineered strain on urea and ammonium were lower than those of a DUR1,2 reference strain. In glucose-limited chemostat cultures with urea as nitrogen source, the engineered strain exhibited an increased release of ammonia and reduced nitrogen content of the biomass. Our results indicate a new strategy for improving yeast-based production of nitrogen-containing chemicals and demonstrate that Ni(2+)-dependent enzymes can be functionally expressed in S. cerevisiae. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Expression of a Dianthus flavonoid glucosyltransferase in Saccharomyces cerevisiae for whole-cell biocatalysis.

    Science.gov (United States)

    Werner, Sean R; Morgan, John A

    2009-07-15

    Glycosyltransferases are promising biocatalysts for the synthesis of small molecule glycosides. In this study, Saccharomyces cerevisiae expressing a flavonoid glucosyltransferase (GT) from Dianthus caryophyllus (carnation) was investigated as a whole-cell biocatalyst. Two yeast expression systems were compared using the flavonoid naringenin as a model substrate. Under in vitro conditions, naringenin-7-O-glucoside was formed and a higher specific glucosyl transfer activity was found using a galactose inducible expression system compared to a constitutive expression system. However, S. cerevisiae expressing the GT constitutively was significantly more productive than the galactose inducible system under in vivo conditions. Interestingly, the glycosides were recovered directly from the culture broth and did not accumulate intracellularly. A previously uncharacterized naringenin glycoside formed using the D. caryophyllus GT was identified as naringenin-4'-O-glucoside. It was found that S. cerevisiae cells hydrolyze naringenin-7-O-glucoside during whole-cell biocatalysis, resulting in a low final glycoside titer. When phloretin was added as a substrate to the yeast strain expressing the GT constitutively, the natural product phlorizin was formed. This study demonstrates S. cerevisiae is a promising whole-cell biocatalyst host for the production of valuable glycosides.

  7. Self-organization of magnetite nanoparticles in providing Saccharomyces cerevisiae Yeasts with magnetic properties

    International Nuclear Information System (INIS)

    Gorobets, S.V.; Yu, Gorobets O.; Demianenko, I.V.; Nikolaenko, R.N.

    2013-01-01

    The compared analyze of four methods of the magnetic nanoparticles clusters parameters estimation were developed and performed, such as, method, which takes into account two magneto-force scans of surface for calculation, geometry distance measurement between two centers of clusters in chains using the functions of NOVA-program, which is the standard computer equipment for scanning probe microscopy SOLVER PRO-M and the model, which takes into account the table meaning of magnetite magnetization and atomic-force microscopy. The magnetically-controllable biosorbent based on the culture of Saccharomyces cerevisiae was used as a model object for adequacy analyze of these models. As the result of the work we get the information about the depth of clusters penetration inside biomembrane, the typical sizes of clusters and the dispersion of magnetic clusters sizes. This analyze shows that all four methods can be used for single magnetic clusters, but for clusters, which lay in chains with small distance between their centers, the mode, which takes into account the table meaning of magnetite magnetization, cannot be used, because this model does not take into account the nearest neighbors contribution of interaction of magnetic fields dipole with magnetic probe. - Highlights: ► We have developed a mathematical model to determine the localization of magnetic phase in the vicinity of the membrane. ► We tried out this model on magnetically-based biosorbent yeast S. cerevisiae. ► We used magnetic force microscopy for the detection of magnetic phase in the biosorbent. ► As a result, it was shown that the magnetic phase is located on the membrane surface, which in turn allows us to estimate its size

  8. Studies of the Saccharomyces cerevisiae Cultivation under Oscillatory Mixing Conditions

    Directory of Open Access Journals (Sweden)

    M?ris Rikmanis

    2005-12-01

    Full Text Available Saccharomyces cerevisiae was cultivated under non-aerated conditions in a 5 l laboratory bioreactor. Using the experimental data and the regression analysis method, some mathematical correlations for stirrer rotational speed oscillation frequency and the reaction of the yeast were established. It has been found that different growth parameters are influenced variously by stirrer rotational speed and stirrer rotational speed oscillation frequency. Stirring oscillations can be among the methods for stimulation of biotechnological processes. The obtained results can be used for designing bioreactors and optimizing working conditions.

  9. Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments

    DEFF Research Database (Denmark)

    Santos, Maria Margarida M. dos; Vijayendran, Raghevendran; Kotter, P.

    2004-01-01

    The yeast Saccharomyces cerevisiae is an attractive cell factory, but in many cases there are constraints related with balancing the formation and consumption of redox cofactors. In this work, we studied the effect of having an additional source of NADPH in the cell. In order to do this, two...

  10. Functional expression and evaluation of heterologous phosphoketolases in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bergman, Alexandra; Siewers, Verena; Nielsen, Jens

    2016-01-01

    Phosphoketolases catalyze an energy-and redox-independent cleavage of certain sugar phosphates. Hereby, the two-carbon (C2) compound acetyl-phosphate is formed, which enzymatically can be converted into acetyl-CoA-a key precursor in central carbon metabolism. Saccharomyces cerevisiae does...... not demonstrate efficient phosphoketolase activity naturally. In this study, we aimed to compare and identify efficient heterologous phosphoketolase enzyme candidates that in yeast have the potential to reduce carbon loss compared to the native acetyl-CoA producing pathway by redirecting carbon flux directly from...... C5 and C6 sugars towards C2-synthesis. Nine phosphoketolase candidates were expressed in S. cerevisiae of which seven produced significant amounts of acetyl-phosphate after provision of sugar phosphate substrates in vitro. The candidates showed differing substrate specificities, and some...

  11. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Eichenberger, Michael; Hansson, Anders; Fischer, David; Dürr, Lara; Naesby, Michael

    2018-06-01

    Anthocyanins (ACNs) are plant secondary metabolites responsible for most of the red, purple and blue colors of flowers, fruits and vegetables. They are increasingly used in the food and beverage industry as natural alternative to artificial colorants. Production of these compounds by fermentation of microorganisms would provide an attractive alternative. In this study, Saccharomyces cerevisiae was engineered for de novo production of the three basic anthocyanins, as well as the three main trans-flavan-3-ols. Enzymes from different plant sources were screened and efficient variants found for most steps of the biosynthetic pathway. However, the anthocyanidin synthase was identified as a major obstacle to efficient production. In yeast, this enzyme converts the majority of its natural substrates leucoanthocyanidins into the off-pathway flavonols. Nonetheless, de novo biosynthesis of ACNs was shown for the first time in yeast and for the first time in a single microorganism. It provides a framework for optimizing the activity of anthocyanidin synthase and represents an important step towards sustainable industrial production of these highly relevant molecules in yeast.

  12. Effect of supplementing a diet with monensin sodium and Saccharomyces Cerevisiae on reproductive performance of Ghezel ewes.

    Science.gov (United States)

    Ahmadzadeh, Leila; Hosseinkhani, Ali; Daghigh Kia, Hossein

    2018-01-01

    Effect of supplementing a diet, in an attempt to enhance reproduction, with monensin sodium and Saccharomyces cerevisiae yeast on reproductive performance was investigated during the breeding season using 44 Ghezel ewes (body weight 56.97±7.47kg, age 2-5 years and body condition score (BCS) 2.5) which were allocated randomly in equal numbers to the four dietary treatments as follows: 1) Basal diet plus supplemental feed (450g/ewe/d) plus monensin sodium (30mg/ewe/d) (MS); 2) Basal diet plus supplemental feed (450 g/ewe/d) plus Saccharomyces cerevisiae yeast (4×10 9 CFU/ewe/d) (SC); 3) Basal diet plus supplemental feed (450g/ewe/d) (FG); 4) Basal diet (only grazing on pasture, Control; G). Estrous synchronization of all ewes was done using controlled internal drug release (CIDR) and all ewes were mated with purebred Ghezel rams after CIDR removal. The results indicated that MS and SC treatments with 15 lambs had greater number of lambs than ewes of the other two treatment groups. Ewes in MS group with 50% twining rate had the greatest value followed by the FG, SC and G treatment groups (Pewes in MS and SC groups were heavier in weight than those in FG and G treatments (Pewes in MS and SC groups had greater concentrations of 17β-estradiol (E2), progesterone (P4), blood urea nitrogen (Pewes of the other groups. These results indicated that using a diet for enhancing reproduction, including monensin sodium and Saccharomyces cerevisiae yeast in the breeding season could have beneficial effects on reproductive performance of Ghezel ewes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains.

    Science.gov (United States)

    Chigira, Yuko; Oka, Takuji; Okajima, Tetsuya; Jigami, Yoshifumi

    2008-04-01

    Development of a heterologous system for the production of homogeneous sugar structures has the potential to elucidate structure-function relationships of glycoproteins. In the current study, we used an artificial O-glycosylation pathway to produce an O-fucosylated epidermal growth factor (EGF) domain in Saccharomyces cerevisiae. The in vivo O-fucosylation system was constructed via expression of genes that encode protein O-fucosyltransferase 1 and the EGF domain, along with genes whose protein products convert cytoplasmic GDP-mannose to GDP-fucose. This system allowed identification of an endogenous ability of S. cerevisiae to transport GDP-fucose. Moreover, expression of EGF domain mutants in this system revealed the different contribution of three disulfide bonds to in vivo O-fucosylation. In addition, lectin blotting revealed differences in the ability of fucose-specific lectin to bind the O-fucosylated structure of EGF domains from human factors VII and IX. Further introduction of the human fringe gene into yeast equipped with the in vivo O-fucosylation system facilitated the addition of N-acetylglucosamine to the EGF domain from factor IX but not from factor VII. The results suggest that engineering of an O-fucosylation system in yeast provides a powerful tool for producing proteins with homogenous carbohydrate chains. Such proteins can be used for the analysis of substrate specificity and the production of antibodies that recognize O-glycosylated EGF domains.

  14. Saccharomyces cerevisiae var. boulardii fungemia following probiotic treatment

    Directory of Open Access Journals (Sweden)

    Marcelo C. Appel-da-Silva

    2017-12-01

    Full Text Available Probiotics are commonly prescribed as an adjuvant in the treatment of antibiotic-associated diarrhea caused by Clostridium difficile. We report the case of an immunocompromised 73-year-old patient on chemotherapy who developed Saccharomyces cerevisiae var. boulardii fungemia in a central venous catheter during treatment of antibiotic-associated pseudomembranous colitis with the probiotic Saccharomyces cerevisiae var. boulardii. Fungemia was resolved after interruption of probiotic administration without the need to replace the central venous line. Keywords: Saccharomyces, Probiotics, Fungemia, Critical illness, Clostridium difficile

  15. Efficient Sporulation of Saccharomyces cerevisiae in a 96 Multiwell Format.

    Science.gov (United States)

    Paulissen, Scott M; Huang, Linda S

    2016-09-17

    During times of nutritional stress, Saccharomyces cerevisiae undergoes gametogenesis, known as sporulation. Diploid yeast cells that are starved for nitrogen and carbon will initiate the sporulation process. The process of sporulation includes meiosis followed by spore formation, where the haploid nuclei are packaged into environmentally resistant spores. We have developed methods for the efficient sporulation of budding yeast in 96 multiwell plates, to increase the throughput of screening yeast cells for sporulation phenotypes. These methods are compatible with screening with yeast containing plasmids requiring nutritional selection, when appropriate minimal media is used, or with screening yeast with genomic alterations, when a rich presporulation regimen is used. We find that for this method, aeration during sporulation is critical for spore formation, and have devised techniques to ensure sufficient aeration that are compatible with the 96 multiwell plate format. Although these methods do not achieve the typical ~80% level of sporulation that can be achieved in large-volume flask based experiments, these methods will reliably achieve about 50-60% level of sporulation in small-volume multiwell plates.

  16. Metabolomic comparison of Saccharomyces cerevisiae and the cryotolerant species S. bayanus var. uvarum and S. kudriavzevii during wine fermentation at low temperature.

    Directory of Open Access Journals (Sweden)

    María López-Malo

    Full Text Available Temperature is one of the most important parameters affecting the length and rate of alcoholic fermentation and final wine quality. Wine produced at low temperature is often considered to have improved sensory qualities. However, there are certain drawbacks to low temperature fermentations such as reduced growth rate, long lag phase, and sluggish or stuck fermentations. To investigate the effects of temperature on commercial wine yeast, we compared its metabolome growing at 12 °C and 28 °C in a synthetic must. Some species of the Saccharomyces genus have shown better adaptation at low temperature than Saccharomyces cerevisiae. This is the case of the cryotolerant yeasts Saccharomyces bayanus var. uvarum and Saccharomyces kudriavzevii. In an attempt to detect inter-specific metabolic differences, we characterized the metabolome of these species growing at 12°C, which we compared with the metabolome of S. cerevisiae (not well adapted at low temperature at the same temperature. Our results show that the main differences between the metabolic profiling of S. cerevisiae growing at 12 °C and 28 °C were observed in lipid metabolism and redox homeostasis. Moreover, the global metabolic comparison among the three species revealed that the main differences between the two cryotolerant species and S. cerevisiae were in carbohydrate metabolism, mainly fructose metabolism. However, these two species have developed different strategies for cold resistance. S. bayanus var. uvarum presented elevated shikimate pathway activity, while S. kudriavzevii displayed increased NAD(+ synthesis.

  17. Dosage Effects of Salt and pH Stresses on Saccharomyces cerevisiae as Monitored via Metabolites by Using Two Dimensional NMR Spectroscopy

    International Nuclear Information System (INIS)

    Chae, Young Kee; Kim, Seol Hyun; Ellinger, James E.; Markley, John L.

    2013-01-01

    Saccharomyces cerevisiae, which is a common species of yeast, is by far the most extensively studied model of a eukaryote because although it is one of the simplest eukaryotes, its basic cellular processes resemble those of higher organisms. In addition, yeast is a commercially valuable organism for ethanol production. Since the yeast data can be extrapolated to the important aspects of higher organisms, many researchers have studied yeast metabolism under various conditions. In this report, we analyzed and compared metabolites of Saccharomyces cerevisiae under salt and pH stresses of various strengths by using two-dimensional NMR spectroscopy. A total of 31 metabolites were identified for most of the samples. The levels of many identified metabolites showed gradual or drastic increases or decreases depending on the severity of the stresses involved. The statistical analysis produced a holistic outline: pH stresses were clustered together, but salt stresses were spread out depending on the severity. This work could provide a link between the metabolite profiles and mRNA or protein profiles under representative and well studied stress conditions

  18. Glycerol positive promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Ho, Ping-Wei; Klein, Mathias; Futschik, Matthias; Nevoigt, Elke

    2018-05-01

    Glycerol offers several advantages as a substrate for biotechnological applications. An important step toward using the popular production host Saccharomyces cerevisiae for glycerol-based bioprocesses has been the fact that in recent studies commonly used S. cerevisiae strains were engineered to grow in synthetic medium containing glycerol as the sole carbon source. For metabolic engineering projects of S. cerevisiae growing on glycerol, characterized promoters are missing. In the current study, we used transcriptome analysis and a yECitrine-based fluorescence reporter assay to select and characterize 25 useful promoters. The promoters of the genes ALD4 and ADH2 showed 4.2-fold and 3-fold higher activities compared to the well-known strong TEF1 promoter. Moreover, the collection contains promoters with graded activities in synthetic glycerol medium and different degrees of glucose repression. To demonstrate the general applicability of the promoter collection, we successfully used a subset of the characterized promoters with graded activities in order to optimize growth on glycerol in an engineered derivative of CEN.PK, in which glycerol catabolism exclusively occurs via a non-native DHA pathway.

  19. Genetic relationship and biological status of the industrially important yeast Saccharomyces eubayanus Sampaio et al.

    Science.gov (United States)

    Naumov, G I

    2017-03-01

    The genomes of the recently discovered yeast Saccharomyces eubayanus and traditional S. cerevisiae are known to be found in the yeast S. pastorianus (syn. S. carlsbergensis), which are essential for brewing. The cryotolerant yeast S. bayanus var. uvarum is of great importance for production of some wines. Based on ascospore viability and meiotic recombination of the control parental markers in hybrids, we have shown that there is no complete interspecies post-zygotic isolation between the yeasts S. eubayanus, S. bayanus var. bayanus and S. bayanus var. uvarum. The genetic data presented indicate that all of the three taxa belong to the same species.

  20. Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Kanchana R. Kildegaard

    2015-12-01

    Full Text Available Biomass, the most abundant carbon source on the planet, may in the future become the primary feedstock for production of fuels and chemicals, replacing fossil feedstocks. This will, however, require development of cell factories that can convert both C6 and C5 sugars present in lignocellulosic biomass into the products of interest. We engineered Saccharomyces cerevisiae for production of 3-hydroxypropionic acid (3HP, a potential building block for acrylates, from glucose and xylose. We introduced the 3HP biosynthetic pathways via malonyl-CoA or β-alanine intermediates into a xylose-consuming yeast. Using controlled fed-batch cultivation, we obtained 7.37±0.17 g 3HP L−1 in 120 hours with an overall yield of 29±1% Cmol 3HP Cmol−1 xylose. This study is the first demonstration of the potential of using S. cerevisiae for production of 3HP from the biomass sugar xylose. Keywords: Metabolic engineering, Biorefineries, 3-hydroxypropionic acid, Saccharomyces cerevisiae, Xylose utilization

  1. Yeast β-1,6-glucan is a primary target for the Saccharomyces cerevisiae K2 toxin.

    Science.gov (United States)

    Lukša, Juliana; Podoliankaitė, Monika; Vepštaitė, Iglė; Strazdaitė-Žielienė, Živilė; Urbonavičius, Jaunius; Servienė, Elena

    2015-04-01

    Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of β-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-β-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the β-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that β-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Interactions of checkpoint-genes RAD9, RAD17, RAD24 and RAD53 determining radioresistance of Yeast Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Koltovaya, N.A.; Nikulushkina, Yu.V.; Roshchina, M.P.; Devin, A.B.

    2007-01-01

    The mechanisms of genetic control of progress through the division cell cycle (checkpoint-control) in yeast Saccharomyces cerevisiae have been studied intensively. To investigate the role of checkpoint-genes RAD9, RAD17, RAD24, RAD53 in cell radioresistance we have investigated cell sensitivity of double mutants to γ-ray. Double mutants involving various combinations with rad9Δ show epistatic interactions, i.e. the sensitivity of the double mutants to γ-ray was no greater than that of more sensitive of the two single mutants. This suggests that all these genes govern the same pathway. This group of genes was named RAD9-epistasis group. It is interesting to note that the genes RAD9 and RAD53 have positive effect but RAD17 and RAD24 have negative effect on radiosensitivity of yeast cells. Interactions between mutations may differ depending on the agent γ-ray or UV-light, for example mutations rad9Δ and rad24Δ show additive effect for γ-ray and epistatic effect for UV-light

  3. Metabolism and Regulation of Glycerolipids in the Yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Henry, Susan A.; Kohlwein, Sepp D.; Carman, George M.

    2012-01-01

    Due to its genetic tractability and increasing wealth of accessible data, the yeast Saccharomyces cerevisiae is a model system of choice for the study of the genetics, biochemistry, and cell biology of eukaryotic lipid metabolism. Glycerolipids (e.g., phospholipids and triacylglycerol) and their precursors are synthesized and metabolized by enzymes associated with the cytosol and membranous organelles, including endoplasmic reticulum, mitochondria, and lipid droplets. Genetic and biochemical analyses have revealed that glycerolipids play important roles in cell signaling, membrane trafficking, and anchoring of membrane proteins in addition to membrane structure. The expression of glycerolipid enzymes is controlled by a variety of conditions including growth stage and nutrient availability. Much of this regulation occurs at the transcriptional level and involves the Ino2–Ino4 activation complex and the Opi1 repressor, which interacts with Ino2 to attenuate transcriptional activation of UASINO-containing glycerolipid biosynthetic genes. Cellular levels of phosphatidic acid, precursor to all membrane phospholipids and the storage lipid triacylglycerol, regulates transcription of UASINO-containing genes by tethering Opi1 to the nuclear/endoplasmic reticulum membrane and controlling its translocation into the nucleus, a mechanism largely controlled by inositol availability. The transcriptional activator Zap1 controls the expression of some phospholipid synthesis genes in response to zinc availability. Regulatory mechanisms also include control of catalytic activity of glycerolipid enzymes by water-soluble precursors, products and lipids, and covalent modification of phosphorylation, while in vivo function of some enzymes is governed by their subcellular location. Genome-wide genetic analysis indicates coordinate regulation between glycerolipid metabolism and a broad spectrum of metabolic pathways. PMID:22345606

  4. RNAseq-based transcriptome comparison of Saccharomyces cerevisiae strains isolated from diverse fermentative environments.

    Science.gov (United States)

    Ibáñez, Clara; Pérez-Torrado, Roberto; Morard, Miguel; Toft, Christina; Barrio, Eladio; Querol, Amparo

    2017-09-18

    Transcriptome analyses play a central role in unraveling the complexity of gene expression regulation in Saccharomyces cerevisiae. This species, one of the most important microorganisms for humans given its industrial applications, shows an astonishing degree of genetic and phenotypic variability among different strains adapted to specific environments. In order to gain novel insights into the Saccharomyces cerevisiae biology of strains adapted to different fermentative environments, we analyzed the whole transcriptome of three strains isolated from wine, flor wine or mezcal fermentations. An RNA-seq transcriptome comparison of the different yeasts in the samples obtained during synthetic must fermentation highlighted the differences observed in the genes that encode mannoproteins, and in those involved in aroma, sugar transport, glycerol and alcohol metabolism, which are important under alcoholic fermentation conditions. These differences were also observed in the physiology of the strains after mannoprotein and aroma determinations. This study offers an essential foundation for understanding how gene expression variations contribute to the fermentation differences of the strains adapted to unequal fermentative environments. Such knowledge is crucial to make improvements in fermentation processes and to define targets for the genetic improvement or selection of wine yeasts. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Investigation of autonomous cell cycle oscillation in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, Morten Skov

    2007-01-01

    Autonome Oscillationer i kontinuert kultivering af Saccharomyces cerevisiae Udgangspunktet for dette Ph.d. projekt var at søge at forstå, hvad der gør det muligt at opnå multiple statiske tilstande ved kontinuert kultivering af Saccharomyces cerevisiae med glukose som begrænsende substrat...

  6. Ethanol fermentation of molasses by Saccharomyces cerevisiae cells immobilized onto sugar beet pulp

    Directory of Open Access Journals (Sweden)

    Vučurović Vesna M.

    2012-01-01

    Full Text Available Natural adhesion of Saccharomyces cerevisiae onto sugar beet pulp (SBP is a very simple and cheap immobilization method for retaining high cells density in the ethanol fermentation system. In the present study, yeast cells were immobilized by adhesion onto SBP suspended in the synthetic culture media under different conditions such as: glucose concentration (100, 120 and 150 g/l, inoculum concentration (5, 10 and 15 g/l dry mass and temperature (25, 30, 35 and 40°C. In order to estimate the optimal immobilization conditions the yeast cells retention (R, after each immobilization experiment was analyzed. The highest R value of 0.486 g dry mass yeast /g dry mass SBP was obtained at 30°C, glucose concentration of 150 g/l, and inoculum concentration of 15 g/l. The yeast immobilized under these conditions was used for ethanol fermentation of sugar beet molasses containing 150.2 g/l of reducing sugar. Efficient ethanol fermentation (ethanol concentration of 70.57 g/l, fermentation efficiency 93.98% of sugar beet molasses was achieved using S. cerevisiae immobilized by natural adhesion on SBP. [Projekat Ministarstva nauke Republike Srbije, br. TR-31002

  7. The use of genetically modified Saccharomyces cerevisiae strains in the wine industry.

    Science.gov (United States)

    Schuller, Dorit; Casal, Margarida

    2005-08-01

    In recent decades, science and food technology have contributed at an accelerated rate to the introduction of new products to satisfy nutritional, socio-economic and quality requirements. With the emergence of modern molecular genetics, the industrial importance of Saccharomyces cerevisiae, is continuously extended. The demand for suitable genetically modified (GM) S. cerevisiae strains for the biofuel, bakery and beverage industries or for the production of biotechnological products (e.g. enzymes, pharmaceutical products) will continuously grow in the future. Numerous specialised S. cerevisiae wine strains were obtained in recent years, possessing a wide range of optimised or novel oenological properties, capable of satisfying the demanding nature of modern winemaking practise. The unlocking of transcriptome, proteome and metabolome complexities will contribute decisively to the knowledge about the genetic make-up of commercial yeast strains and will influence wine strain improvement via genetic engineering. The most relevant advances regarding the importance and implications of the use of GM yeast strains in the wine industry are discussed in this mini-review. In this work, various aspects are considered including the strategies used for the construction of strains with respect to current legislation requirements, the environmental risk evaluations concerning the deliberate release of genetically modified yeast strains, the methods for detection of recombinant DNA and protein that are currently under evaluation, and the reasons behind the critical public perception towards the application of such strains.

  8. Saccharomyces cerevisiae var. boulardii fungemia following probiotic treatment

    OpenAIRE

    Appel-da-Silva, Marcelo C.; Narvaez, Gabriel A.; Perez, Leandro R.R.; Drehmer, Laura; Lewgoy, Jairo

    2017-01-01

    Probiotics are commonly prescribed as an adjuvant in the treatment of antibiotic-associated diarrhea caused by Clostridium difficile. We report the case of an immunocompromised 73-year-old patient on chemotherapy who developed Saccharomyces cerevisiae var. boulardii fungemia in a central venous catheter during treatment of antibiotic-associated pseudomembranous colitis with the probiotic Saccharomyces cerevisiae var. boulardii. Fungemia was resolved after interruption of probiotic administrat...

  9. Enrichment of Circular Code Motifs in the Genes of the Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Christian J. Michel

    2017-12-01

    Full Text Available A set X of 20 trinucleotides has been found to have the highest average occurrence in the reading frame, compared to the two shifted frames, of genes of bacteria, archaea, eukaryotes, plasmids and viruses. This set X has an interesting mathematical property, since X is a maximal C 3 self-complementary trinucleotide circular code. Furthermore, any motif obtained from this circular code X has the capacity to retrieve, maintain and synchronize the original (reading frame. Since 1996, the theory of circular codes in genes has mainly been developed by analysing the properties of the 20 trinucleotides of X , using combinatorics and statistical approaches. For the first time, we test this theory by analysing the X motifs, i.e., motifs from the circular code X , in the complete genome of the yeast Saccharomyces cerevisiae. Several properties of X motifs are identified by basic statistics (at the frequency level, and evaluated by comparison to R motifs, i.e., random motifs generated from 30 different random codes R . We first show that the frequency of X motifs is significantly greater than that of R motifs in the genome of S. cerevisiae. We then verify that no significant difference is observed between the frequencies of X and R motifs in the non-coding regions of S. cerevisiae, but that the occurrence number of X motifs is significantly higher than R motifs in the genes (protein-coding regions. This property is true for all cardinalities of X motifs (from 4 to 20 and for all 16 chromosomes. We further investigate the distribution of X motifs in the three frames of S. cerevisiae genes and show that they occur more frequently in the reading frame, regardless of their cardinality or their length. Finally, the ratio of X genes, i.e., genes with at least one X motif, to non- X genes, in the set of verified genes is significantly different to that observed in the set of putative or dubious genes with no experimental evidence. These results, taken together

  10. Enrichment of Circular Code Motifs in the Genes of the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Michel, Christian J; Ngoune, Viviane Nguefack; Poch, Olivier; Ripp, Raymond; Thompson, Julie D

    2017-12-03

    A set X of 20 trinucleotides has been found to have the highest average occurrence in the reading frame, compared to the two shifted frames, of genes of bacteria, archaea, eukaryotes, plasmids and viruses. This set X has an interesting mathematical property, since X is a maximal C3 self-complementary trinucleotide circular code. Furthermore, any motif obtained from this circular code X has the capacity to retrieve, maintain and synchronize the original (reading) frame. Since 1996, the theory of circular codes in genes has mainly been developed by analysing the properties of the 20 trinucleotides of X, using combinatorics and statistical approaches. For the first time, we test this theory by analysing the X motifs, i.e., motifs from the circular code X, in the complete genome of the yeast Saccharomyces cerevisiae . Several properties of X motifs are identified by basic statistics (at the frequency level), and evaluated by comparison to R motifs, i.e., random motifs generated from 30 different random codes R. We first show that the frequency of X motifs is significantly greater than that of R motifs in the genome of S. cerevisiae . We then verify that no significant difference is observed between the frequencies of X and R motifs in the non-coding regions of S. cerevisiae , but that the occurrence number of X motifs is significantly higher than R motifs in the genes (protein-coding regions). This property is true for all cardinalities of X motifs (from 4 to 20) and for all 16 chromosomes. We further investigate the distribution of X motifs in the three frames of S. cerevisiae genes and show that they occur more frequently in the reading frame, regardless of their cardinality or their length. Finally, the ratio of X genes, i.e., genes with at least one X motif, to non-X genes, in the set of verified genes is significantly different to that observed in the set of putative or dubious genes with no experimental evidence. These results, taken together, represent the first

  11. An apoptotic cell cycle mutant in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Villadsen, Ingrid

    1996-01-01

    The simple eukaryote Saccharomyces cerevisiae has proved to be a useful organism for elucidating the mechanisms that govern cell cycle progression in eukaryotic cells. The excellent in vivo system permits a cell cycle study using temperature sensitive mutants. In addition, it is possible to study...... many genes and gene products from higher eukaryotes in Saccharomyces cerevisiae because many genes and biological processes are homologous or similar in lower and in higher eukaryotes. The highly developed methods of genetics and molecular biology greatly facilitates studies of higher eukaryotic...... processes.Programmmed cell death with apoptosis plays a major role in development and homeostatis in most, if not all, animal cells. Apoptosis is a morphologically distinct form of death, that requires the activation of a highly regulated suicide program. Saccharomyces cerevisiae provides a new system...

  12. Effects of feedstock and co-culture of Lactobacillus fermentum and wild Saccharomyces cerevisiae strain during fuel ethanol fermentation by the industrial yeast strain PE-2.

    Science.gov (United States)

    Reis, Vanda R; Bassi, Ana Paula G; Cerri, Bianca C; Almeida, Amanda R; Carvalho, Isis G B; Bastos, Reinaldo G; Ceccato-Antonini, Sandra R

    2018-02-16

    Even though contamination by bacteria and wild yeasts are frequently observed during fuel ethanol fermentation, our knowledge regarding the effects of both contaminants together is very limited, especially considering that the must composition can vary from exclusively sugarcane juice to a mixture of molasses and juice, affecting the microbial development. Here we studied the effects of the feedstock (sugarcane juice and molasses) and the co-culture of Lactobacillus fermentum and a wild Saccharomyces cerevisiae strain (rough colony and pseudohyphae) in single and multiple-batch fermentation trials with an industrial strain of S. cerevisiae (PE-2) as starter yeast. The results indicate that in multiple-cycle batch system, the feedstock had a minor impact on the fermentation than in single-cycle batch system, however the rough yeast contamination was more harmful than the bacterial contamination in multiple-cycle batch fermentation. The inoculation of both contaminants did not potentiate the detrimental effect in any substrate. The residual sugar concentration in the fermented broth had a higher concentration of fructose than glucose for all fermentations, but in the presence of the rough yeast, the discrepancy between fructose and glucose concentrations were markedly higher, especially in molasses. The biggest problem associated with incomplete fermentation seemed to be the lower consumption rate of sugar and the reduced fructose preference of the rough yeast rather than the lower invertase activity. Lower ethanol production, acetate production and higher residual sugar concentration are characteristics strongly associated with the rough yeast strain and they were not potentiated with the inoculation of L. fermentum.

  13. Mead production: selection and characterization assays of Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Pereira, Ana Paula; Dias, Teresa; Andrade, João; Ramalhosa, Elsa; Estevinho, Letícia M

    2009-08-01

    Mead is a traditional drink, which results from the alcoholic fermentation of diluted honey carried out by yeasts. However, when it is produced in a homemade way, mead producers find several problems, namely, the lack of uniformity in the final product, delayed and arrested fermentations, and the production of "off-flavours" by the yeasts. These problems are usually associated with the inability of yeast strains to respond and adapt to unfavourable and stressful growth conditions. The main objectives of this work were to evaluate the capacity of Saccharomyces cerevisiae strains, isolated from honey of the Trás-os-Montes (Northeast Portugal), to produce mead. Five strains from honey, as well as one laboratory strain and one commercial wine strain, were evaluated in terms of their fermentation performance under ethanol, sulphur dioxide and osmotic stress. All the strains showed similar behaviour in these conditions. Two yeasts strains isolated from honey and the commercial wine strain were further tested for mead production, using two different honey (a dark and a light honey), enriched with two supplements (one commercial and one developed by the research team), as fermentation media. The results obtained in this work show that S. cerevisiae strains isolated from honey, are appropriate for mead production. However it is of extreme importance to take into account the characteristics of the honey, and supplements used in the fermentation medium formulation, in order to achieve the best results in mead production.

  14. Biotechnological production of high specific activity L-35S-cysteine and L-35S-methionine by using a diploid yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Gajendiran, N.; Jayachandran, N.; Unny, V.K.P.; Thyagarajan, S.; Rao, B.S.

    1994-01-01

    High specific activity L- 3 5 S-cysteine and L- 35 S-methionine were synthesised by using a wild type diploid strain of baker's yeast-Saccharomyces cerevisiae. Yeast cells were grown in a sulphur depleted synthetic medium in which Na 2 3 5 SO 4 (50 mCi/ml) was supplemented as the sole sulphur source. The level of incorporation was 60% on an average. The protein hydrolysate of the cultured cells was subjected to paper and column chromatographic separations to get the individual L- 3 5 S-aminoacids. The radiochemical yields of cysteine and methionine were 6-7% and 18-20% respectively. The radiochemical purity of the products was >95%. The highest specific activity for the products obtained by employing this method was 1100 Ci/mmole from the starting material, Na 2 35 SO 4 , with a specific activity of 1350 Ci/mmole. (Author)

  15. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.

    Science.gov (United States)

    Dong, Shi-Jun; Lin, Xiang-Hua; Li, Hao

    2015-11-01

    During the industrial bioethanol fermentation, Saccharomyces cerevisiae cells are often stressed by bacterial contaminants, especially lactic acid bacteria. Generally, lactic acid bacteria contamination can inhibit S. cerevisiae cell growth through secreting lactic acid and competing with yeast cells for micronutrients and living space. However, whether are there still any other influences of lactic acid bacteria on yeast or not? In this study, Lactobacillus plantarum ATCC 8014 was co-cultivated with S. cerevisiae S288c to mimic the L. plantarum contamination in industrial bioethanol fermentation. The contaminative L. plantarum-associated expression changes of genes involved in carbohydrate and energy related metabolisms in S. cerevisiae cells were determined by quantitative real-time polymerase chain reaction to evaluate the influence of L. plantarum on carbon source utilization and energy related metabolism in yeast cells during bioethanol fermentation. Contaminative L. plantarum influenced the expression of most of genes which are responsible for encoding key enzymes involved in glucose related metabolisms in S. cerevisiae. Specific for, contaminated L. plantarum inhibited EMP pathway but promoted TCA cycle, glyoxylate cycle, HMP, glycerol synthesis pathway, and redox pathway in S. cerevisiae cells. In the presence of L. plantarum, the carbon flux in S. cerevisiae cells was redistributed from fermentation to respiratory and more reducing power was produced to deal with the excess NADH. Moreover, L. plantarum contamination might confer higher ethanol tolerance to yeast cells through promoting accumulation of glycerol. These results also highlighted our knowledge about relationship between contaminative lactic acid bacteria and S. cerevisiae during bioethanol fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Improved Xylose Metabolism by a CYC8 Mutant of Saccharomyces cerevisiae.

    Science.gov (United States)

    Nijland, Jeroen G; Shin, Hyun Yong; Boender, Leonie G M; de Waal, Paul P; Klaassen, Paul; Driessen, Arnold J M

    2017-06-01

    Engineering Saccharomyces cerevisiae for the utilization of pentose sugars is an important goal for the production of second-generation bioethanol and biochemicals. However, S. cerevisiae lacks specific pentose transporters, and in the presence of glucose, pentoses enter the cell inefficiently via endogenous hexose transporters (HXTs). By means of in vivo engineering, we have developed a quadruple hexokinase deletion mutant of S. cerevisiae that evolved into a strain that efficiently utilizes d-xylose in the presence of high d-glucose concentrations. A genome sequence analysis revealed a mutation (Y353C) in the general corepressor CYC8 , or SSN6 , which was found to be responsible for the phenotype when introduced individually in the nonevolved strain. A transcriptome analysis revealed altered expression of 95 genes in total, including genes involved in (i) hexose transport, (ii) maltose metabolism, (iii) cell wall function (mannoprotein family), and (iv) unknown functions (seripauperin multigene family). Of the 18 known HXTs, genes for 9 were upregulated, especially the low or nonexpressed HXT10 , HXT13 , HXT15 , and HXT16 Mutant cells showed increased uptake rates of d-xylose in the presence of d-glucose, as well as elevated maximum rates of metabolism ( V max ) for both d-glucose and d-xylose transport. The data suggest that the increased expression of multiple hexose transporters renders d-xylose metabolism less sensitive to d-glucose inhibition due to an elevated transport rate of d-xylose into the cell. IMPORTANCE The yeast Saccharomyces cerevisiae is used for second-generation bioethanol formation. However, growth on xylose is limited by pentose transport through the endogenous hexose transporters (HXTs), as uptake is outcompeted by the preferred substrate, glucose. Mutant strains were obtained with improved growth characteristics on xylose in the presence of glucose, and the mutations mapped to the regulator Cyc8. The inactivation of Cyc8 caused increased

  17. Phylogenetic relationship and Fourier-transform infrared spectroscopy-derived lipid determinants of lifespan parameters in the Saccharomyces cerevisiae yeast.

    Science.gov (United States)

    Molon, Mateusz; Zebrowski, Jacek

    2017-06-01

    Yeast ageing has been gaining much attention in gerontology research, yet the process itself is still not entirely clear. One of the constraints related to the use of the Saccharomyces cerevisiae yeast in studies is the ambiguity of the results concerning ageing determinants for different genetic backgrounds. In this paper, we compare reproductive potentials and lifespans of seven widely used haploid laboratory strains differing in daughter cells production capabilities and highlight the importance of choosing an appropriate genotype for the studies on ageing. Moreover, we show here links between post-reproductive lifespan and lipid metabolism, as well as between reproductive potential, reproductive lifespan and phylogenetic relationship. Using FTIR spectroscopy that generated a biochemical fingerprint of cells, coupled with chemometrics, we found that the band of carbonyl (C = O) stretching vibration discriminates the strains according to post-reproductive lifespan. The results indicated that prolonged post-reproductive lifespan was associated with relatively lower amount of fatty acids esterified to phospholipids compared to a free acid pool, thus implying phospholipid metabolism for the post-reproductive lifespan of yeast. In addition, phylogenetic analysis showed a correlation between nucleotide similarity and the reproductive potential or reproductive lifespan, but not to the longevity expressed in time units. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Functional expression of amine oxidase from Aspergillus niger (AO-I) in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kolaríková, Katerina; Galuszka, Petr; Sedlárová, Iva; Sebela, Marek; Frébort, Ivo

    2009-01-01

    The aim of this work was to prepare recombinant amine oxidase from Aspergillus niger after overexpressing in yeast. The yeast expression vector pDR197 that includes a constitutive PMA1 promoter was used for the expression in Saccharomyces cerevisiae. Recombinant amine oxidase was extracted from the growth medium of the yeast, purified to homogeneity and identified by activity assay and MALDI-TOF peptide mass fingerprinting. Similarity search in the newly published A. niger genome identified six genes coding for copper amine oxidase, two of them corresponding to the previously described enzymes AO-I a methylamine oxidase and three other genes coding for FAD amine oxidases. Thus, A. niger possesses an enormous metabolic gear to grow on amine compounds and thus support its saprophytic lifestyle.

  19. The impact of respiration and oxidative stress response on recombinant α-amylase production by Saccharomyces cerevisiae.

    Science.gov (United States)

    Martínez, José L; Meza, Eugenio; Petranovic, Dina; Nielsen, Jens

    2016-12-01

    Studying protein production is important for fundamental research on cell biology and applied research for biotechnology. Yeast Saccharomyces cerevisiae is an attractive workhorse for production of recombinant proteins as it does not secrete many endogenous proteins and it is therefore easy to purify a secreted product. However, recombinant production at high rates represents a significant metabolic burden for the yeast cells, which results in oxidative stress and ultimately affects the protein production capacity. Here we describe a method to reduce the overall oxidative stress by overexpressing the endogenous HAP1 gene in a S. cerevisiae strain overproducing recombinant α-amylase. We demonstrate how Hap1p can activate a set of oxidative stress response genes and meanwhile contribute to increase the metabolic rate of the yeast strains, therefore mitigating the negative effect of the ROS accumulation associated to protein folding and hence increasing the production capacity during batch fermentations.

  20. Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient, nitrogen-limited fermentative conditions.

    Science.gov (United States)

    Orellana, Marcelo; Aceituno, Felipe F; Slater, Alex W; Almonacid, Leonardo I; Melo, Francisco; Agosin, Eduardo

    2014-05-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump-over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump-over operation. With this aim, an impulse of dissolved oxygen was added to carbon-sufficient, nitrogen-limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in 'making or breaking wines'. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Farinha de mandioca enriquecida com bioproteínas (Saccharomyces cerevisiae, em associação ao feijão e arroz, na dieta de ratos em crescimento Cassava flour enriched with yeast (Saccharomyces cerevisiae protein, in association with beans and rice, in the diet of growing rats

    Directory of Open Access Journals (Sweden)

    Anastácia Cavalcanti Metri

    2003-01-01

    Full Text Available Avaliou-se o efeito da mistura de feijão, arroz e farinha de mandioca enriquecida com bioproteína (Saccharomyces cerevisiae, em ratos wistar machos recém-desmamados (n=60, durante 28 dias. Foram utilizadas as seguintes dietas: experimentais (feijão, arroz e farinha de mandioca enriquecida com leveduras; feijão, arroz e farinha de mandioca comum; controle (farinha de mandioca enriquecida com levedura; e padrão (caseína. Determinaram-se os testes biológicos. Os orgãos foram removidos para análise de pesos úmido e seco (rim esquerdo, baço e amostras do fígado e cérebro, teor de proteína (fígado e cérebro e histopatologia (fígado, coração e rim direito. Foram ainda quantificados os lipídios totais da carcaça dos animais. Os dados foram estatisticamente avaliados pelo teste Não Paramétrico de Kruskal-Wallis e pelo teste de Comparações Múltiplas (pThe effect of a mixture of beans, rice and cassava flour enriched with yeast (Saccharomyces cerevisiae protein was assessed in weanling male Wistar rats (n=60, during 28 days. The following diets were used: experimental (beans, rice and manioc flour with yeast protein; beans, rice and cassava flour without yeast protein; control (cassava flour with yeast protein; and standard (casein. The biological test were determined. The organs were removed for evaluation of wet and dry weights (left kidney, spleen and liver and brain samples, protein levels (liver and brain, and histopathology (heart, right kidney and liver. Carcass total lipids were also recorded. Results were statistically analyzed by the Nonparametric Test of Kruskal-Wallis and the Test of Multiple Comparisons (p<0.05. The highest values for all investigated parameters were found in the casein-fed group, followed by the experimental groups. Data suggest that flour enriched with yeast protein can be recommended as a dietary supplement to eradicate the nutritional deficiency in the poor population.

  2. Bioethanol production by a flocculent hybrid, CHFY0321 obtained by protoplast fusion between Saccharomyces cerevisiae and Saccharomyces bayanus

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gi-Wook; Kang, Hyun-Woo; Kim, Yule [Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., LTD, Palbok-Dong 829, Dukjin-Gu, Jeonju 561-203 (Korea); Um, Hyun-Ju; Kim, Mina; Kim, Yang-Hoon [Department of Microbiology, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju 361-763 (Korea)

    2010-08-15

    Fusion hybrid yeast, CHFY0321, was obtained by protoplast fusion between non-flocculent-high ethanol fermentative Saccharomyces cerevisiae CHY1011 and flocculent-low ethanol fermentative Saccharomyces bayanus KCCM12633. The hybrid yeast was used together with the parental strains to examine ethanol production in batch fermentation. Under the conditions tested, the fusion hybrid CHFY0321 flocculated to the highest degree and had the capacity to ferment well at pH 4.5 and 32 C. Simultaneous saccharification and fermentation for ethanol production was carried out using a cassava (Manihot esculenta) powder hydrolysate medium containing 19.5% (w v{sup -1}) total sugar in a 5 l lab scale jar fermenter at 32 C for 65 h with an agitation speed of 2 Hz. Under these conditions, CHFY0321 showed the highest flocculating ability and the best fermentation efficiency for ethanol production compared with those of the wild-type parent strains. CHFY0321 gave a final ethanol concentration of 89.8 {+-} 0.13 g l{sup -1}, a volumetric ethanol productivity of 1.38 {+-} 0.13 g l{sup -1} h{sup -1}, and a theoretical yield of 94.2 {+-} 1.58%. These results suggest that CHFY0321 exhibited the fermentation characteristics of S. cerevisiae CHY1011 and the flocculent ability of S. bayanus KCCM12633. Therefore, the strong highly flocculent ethanol fermentative CHFY0321 has potential for improving biotechnological ethanol fermentation processes. (author)

  3. Bioethanol production by a flocculent hybrid, CHFY0321 obtained by protoplast fusion between Saccharomyces cerevisiae and Saccharomyces bayanus

    International Nuclear Information System (INIS)

    Choi, Gi-Wook; Um, Hyun-Ju; Kang, Hyun-Woo; Kim, Yule; Kim, Mina; Kim, Yang-Hoon

    2010-01-01

    Fusion hybrid yeast, CHFY0321, was obtained by protoplast fusion between non-flocculent-high ethanol fermentative Saccharomyces cerevisiae CHY1011 and flocculent-low ethanol fermentative Saccharomyces bayanus KCCM12633. The hybrid yeast was used together with the parental strains to examine ethanol production in batch fermentation. Under the conditions tested, the fusion hybrid CHFY0321 flocculated to the highest degree and had the capacity to ferment well at pH 4.5 and 32 o C. Simultaneous saccharification and fermentation for ethanol production was carried out using a cassava (Manihot esculenta) powder hydrolysate medium containing 19.5% (w v -1 ) total sugar in a 5 l lab scale jar fermenter at 32 o C for 65 h with an agitation speed of 2 Hz. Under these conditions, CHFY0321 showed the highest flocculating ability and the best fermentation efficiency for ethanol production compared with those of the wild-type parent strains. CHFY0321 gave a final ethanol concentration of 89.8 ± 0.13 g l -1 , a volumetric ethanol productivity of 1.38 ± 0.13 g l -1 h -1 , and a theoretical yield of 94.2 ± 1.58%. These results suggest that CHFY0321 exhibited the fermentation characteristics of S. cerevisiae CHY1011 and the flocculent ability of S. bayanus KCCM12633. Therefore, the strong highly flocculent ethanol fermentative CHFY0321 has potential for improving biotechnological ethanol fermentation processes.

  4. Biogenesis of the Saccharomyces cerevisiae Pheromone a-Factor, from Yeast Mating to Human Disease

    Science.gov (United States)

    Barrowman, Jemima

    2012-01-01

    Summary: The mating pheromone a-factor secreted by Saccharomyces cerevisiae is a farnesylated and carboxylmethylated peptide and is unusually hydrophobic compared to other extracellular signaling molecules. Mature a-factor is derived from a precursor with a C-terminal CAAX motif that directs a series of posttranslational reactions, including prenylation, endoproteolysis, and carboxylmethylation. Historically, a-factor has served as a valuable model for the discovery and functional analysis of CAAX-processing enzymes. In this review, we discuss the three modules comprising the a-factor biogenesis pathway: (i) the C-terminal CAAX-processing steps carried out by Ram1/Ram2, Ste24 or Rce1, and Ste14; (ii) two sequential N-terminal cleavage steps, mediated by Ste24 and Axl1; and (iii) export by a nonclassical mechanism, mediated by the ATP binding cassette (ABC) transporter Ste6. The small size and hydrophobicity of a-factor present both challenges and advantages for biochemical analysis, as discussed here. The enzymes involved in a-factor biogenesis are conserved from yeasts to mammals. Notably, studies of the zinc metalloprotease Ste24 in S. cerevisiae led to the discovery of its mammalian homolog ZMPSTE24, which cleaves the prenylated C-terminal tail of the nuclear scaffold protein lamin A. Mutations that alter ZMPSTE24 processing of lamin A in humans cause the premature-aging disease progeria and related progeroid disorders. Intriguingly, recent evidence suggests that the entire a-factor pathway, including all three biogenesis modules, may be used to produce a prenylated, secreted signaling molecule involved in germ cell migration in Drosophila. Thus, additional prenylated signaling molecules resembling a-factor, with as-yet-unknown roles in metazoan biology, may await discovery. PMID:22933563

  5. Fermentação de trealose e glicogênio endógenos em Saccharomyces cerevisiae Fermentation of endogenous trehalose and glycogen by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    L.V. FERREIRA

    1999-01-01

    Full Text Available As linhagens PE-2 e VR-1 de Saccharomyces cerevisiae foram submetidas à fermentação das reservas endógenas na temperatura de 40oC. No intervalo de 0 a 24 horas foram recolhidas as amostras para a determinação de etanol, nitrogênio no fermento e no vinho, bem como os carboidratos de reserva (trealose e glicogênio e a viabilidade celular. A trealose foi esgotada durante 24 horas. Os teores de glicogênio sofreram muitas oscilações ao longo do tempo, entre a mobilização e a síntese e embora não esgotado, deve ter contribuído significativamente para a formação de álcool na suspensão. Foi observada a relação proporcional entre a mobilização de trealose e a queda da viabilidade celular. No transcorrer da fermentação das reservas de carboidratos houve aumento nos teores de nitrogênio no fermento até 6 e 8 horas, sendo tal incremento afetado pela linhagem de levedura. No prosseguimento da fermentação ocorreu a autólise celular, que foi percebida pelo aumento brusco de nitrogênio no vinho (de 200 para 1500mg/L e pela queda da viabilidade celular. O ganho alcançado com a fermentação endógena foi de 40 e 68 litros de álcool por tonelada de levedura seca com incremento de 25 e 27% de proteína no fermento para as linhagens PE-2 e VR-1, respectivamente. Este resultado tem reflexos positivos quando da comercialização da levedura seca como proteína microbiana.Two Saccharomyces cerevisiae strains (PE-2 and VR-1 were subjected to fermentation of its carbohidrate reserve (Trehalose and glycogen at 40oC. During a 24 hours interval samples were collected for determination of ethanol, yeast and wine nitrogen, yeast trehalose, glycogen and cell viability. Trehalose was completely exhausted after 24 hours. Glycogen was not completely consumed, but probably contributes for ethanol formation. As trehalose is consumed yeast cell viability decreases, while yeast nitrogen content increase, reaching a maximum between 6 and 8 hours

  6. Phenotypic and genetic diversity of Saccharomyces contaminants isolated from lager breweries and their phylogenetic relationship with brewing yeasts

    DEFF Research Database (Denmark)

    Jespersen, Lene; Kühle, Alis Van der Aa; Petersen, Kamilla M.

    2000-01-01

    -amplified intergenic transcribed spacer (ITS) regions. Chromosome length polymorphism (CLP) was evident among the Saccharomyces brewing contaminants with chromosome profiles typical of Saccharomyces sensu stricto. Based upon cluster analysis of their chromosome profiles the majority of the brewing contaminants could...... be grouped as either S. cerevisiae or S. pastorianus/S. bayanus. Further, the technique was able to differentiate between almost all brewing contaminants and to separate them from any specific lager brewing yeast. The diversity of the Saccharomyces brewing contaminants clearly demonstrated by their CLP...... in the SaccharomYces brewing contaminants indicate their adaptation to a maltose-enriched environment....

  7. A YEAST SPECIFIC INSERTION AMIDST OBG FOLD IS CRITICAL FOR THE MITOCHONDRIAL FUNCTION OF Mtg2p IN SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Upasana Mehra

    2017-06-01

    Full Text Available Protein expression in mitochondria is carried out by ribosomes that are distinct from their cytosolic counterpart. Mitochondrial ribosomes are made of individual proteins having distinct lineages: those with clear bacterial orthologues, those conserved in eukaryotes only and proteins that are species specific. MTG2 is the mitochondrial member of the universally conserved Obg family of GTPases in Saccharomyces cerevisiae which associates with and regulates mitochondrial large ribosomal subunit assembly. In this study we demonstrate that MTG2, in addition to the universally conserved OBG and GTPase domains, has an essential yeast specific insertion domain positioned within the N terminal OBG fold. Cells expressing mtg2∆201-294, deleted for the insertion domain are not able to support cellular respiration. In addition, we show that large stretches of amino acids can be inserted into MTG2 at the end of the yeast specific insertion domain and the OBG fold without perturbing its cellular functions, consistent with the insertion domain folding into a species specific protein binding platform.

  8. Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Moore, Destaye M; Karlin, Justin; González-Barrera, Sergio

    2009-01-01

    In the yeast Saccharomyces cerevisiae, the Rad1-Rad10 protein complex participates in nucleotide excision repair (NER) and homologous recombination (HR). During HR, the Rad1-Rad10 endonuclease cleaves 3' branches of DNA and aberrant 3' DNA ends that are refractory to other 3' processing enzymes. ...

  9. Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry.

    Science.gov (United States)

    Mendes-Ferreira, A; Mendes-Faia, A; Leão, C

    2004-01-01

    To study the effects of assimilable nitrogen concentration on growth profile and on fermentation kinetics of Saccharomyces cerevisiae. Saccharomyces cerevisiae was grown in batch in a defined medium with glucose (200 g l(-1)) as the only carbon and energy source, and nitrogen supplied as ammonium sulphate or phosphate forms under different concentrations. The initial nitrogen concentration in the media had no effect on specific growth rates of the yeast strain PYCC 4072. However, fermentation rate and the time required for completion of the alcoholic fermentation were strongly dependent on nitrogen availability. At the stationary phase, the addition of ammonium was effective in increasing cell population, fermentation rate and ethanol. The yeast strain required a minimum of 267 mg N l(-1) to attain complete dryness of media, within the time considered for the experiments. Lower levels were enough to support growth, although leading to sluggish or stuck fermentation. The findings reported here contribute to elucidate the role of nitrogen on growth and fermentation performance of wine yeast. This information might be useful to the wine industry where excessive addition of nitrogen to prevent sluggish or stuck fermentation might have a negative impact on wine stability and quality. Copyright 2004 The Society for Applied Microbiology

  10. Pectic enzymes secreted by two species of penicilium and saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Younis, N.A.

    2005-01-01

    When allowing Penicillium italicum, Penicillium digitalum and Saccharomyces cerevisiae to grow on grounded peels of Mediterranean mandarin (Citrus reticulata) under solid state fermentation (SSF), percentage of reduction in viscosity of citrus pectin by polygalacturonase (PG) reached the maximum values of 82.1 , 54.9 , 53.9 , respectively, at 50 % substrate concentration after 15 days of incubation period for both Penicillium species and after 5 days at 1% substrate concentration for the yeast after one hour of reaction time for all. However, pectin methyl esterase (PME) was not detected in culture filtrate of both fungi and yeast at all substrate concentrations used in the study. After 8 days incubation period at 50 % substrate concentration, gamma rays at dose 0.1 KGy recorded maximum PG activity for Penicillium italicum after one hour of reaction time and PME could not be detected in culture filtrate of the irradiated fungus, while pectin lyase (PL) activity was increased with all doses used. As for Saccharomyces cerevisiae and, after 4 days incubation period at 1% substrate concentration, also the dose 0.1 KGy recorded maximum PG activity after one hour of reaction time and neither PME nor PL were found in the culture filtrate of the yeast after irradiation at all doses under investigation. Partial purification for PG secreted by Penicillium italicum was investigated through acetone precipitation and Sephadex G-100 and the peak of activity was occurred between fractions 11-13. The specific enzyme activity was 28.73 U / mg protein and the purification fold was 2.63. The purified enzyme could effectively hydrolyze citrus pectin and was stable up to 70 degree C with maximum value at 20 degree C and was stable in the ph range of 3-7 at 25 degree C

  11. Study On Ethanol Production From Sugar Cane Molasses By Using Irradiated Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Botros, H.W.; Armed, A.S.; Farag, S.S.; Hassan, L.A.

    2012-01-01

    In commercial ethanol production procedures often use sugar cane molasses as a raw material due to- their abundance and low costs. The most employed microorganisms used for fermentation is Saccharomyces cerevisiae yeasts due to their ability to hydrolyze sucrose from sugar cane molasses into glucose and fructose; two easily assimilable hexoses. The aim of this study was to evaluate the effect of gamma irradiation on the activity of S. cerevisiae in the ethanol production yeast cells exposed to different doses of gamma rays (0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 KGy. The sugar cane substrate was optimized after maintaining deferent levels of sugar concentrations (12-21%), medium ph (4.0-5.5), incubation temperature (25-40 degree C) and rate of fermentation (24-168 h). The data showed that the rate of ethanol production reached its maximum by using the irradiated S. cerevisiae cells at 0.1 kGy dose at fermentation conditions as 15% sugar concentration, ph 4.5, incubation temperature 30 degree C, fermentation time 96 h at a fermentation medium volume 250 ml found in 500 ml Erlenmeyer flasks.

  12. Role of DNA damage in ultraviolet (313 nm) inactivation of yeasts Saccharomyces cerevisial

    International Nuclear Information System (INIS)

    Pospelov, M.E.; Ivanova, Eh.V.; Frajkin, G.Ya.

    1984-01-01

    Relative contribution of photoinhibition of cell respiration and DNA damage to lethal effect, caused by ultraviolet (UV) radiation of 313 m in certain yeast strains Saccharomyces cerevisiae, has been studied. It is shown that cell inactivation is mainly conditioned by DNA photodamage. When studying photoreactivation it has been established, that dimers of pyrimidine bases are the main lethal photoproducts, formed in DNA Under the effect of UV-radiation of 313 nm

  13. Influence of physiological state of inoculum on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation

    Directory of Open Access Journals (Sweden)

    Marina Bely

    2005-12-01

    Full Text Available An approach consisting of controlling yeast inoculum to minimize volatile acidity production by Saccharomyces cerevisiae during the alcoholic fermentation of botrytized must was investigated. Direct inoculation of rehydrated active dry yeasts produced the most volatile acidity, while a yeast preparation pre-cultured for 24 hours reduced the final production by up to 23 %. Using yeasts collected from a fermenting wine as a starter must also reduced volatile acidity production. The conditions for preparing the inoculum affected the fermentation capacity of the first generation yeasts: fermentation duration, sugar to ethanol ratio, and wine composition. A pre-culture medium with a low sugar concentration (< 220 g/L is essential to limit volatile acidity production in high sugar fermentations.

  14. The effect of Saccharomyces cerevisiae on the stability of the herbicide glyphosate during bread leavening.

    Science.gov (United States)

    Low, F L; Shaw, I C; Gerrard, J A

    2005-01-01

    To investigate the ability of baker's yeast (Saccharomyces cerevisiae) to degrade the herbicide glyphosate during the fermentation cycle of the breadmaking process. Aqueous glyphosate was added to bread ingredients and kneaded by commercially available breadmaking equipment into dough cultures. Cultures were incubated in the breadmaker throughout the fermentation cycle. The recovery of glyphosate levels following fermentation was determined, thus allowing an estimation of glyphosate degradation by yeast. It was shown, for the first time, that S. cerevisiae plays a role in metabolizing glyphosate during the fermentation stages of breadmaking. Approximately 21% was degraded within 1 h. As a result of projected increases in the glyphosate use on wheat and the role of bread as a dietary staple, this may contribute to more informed decisions being made relating to the use of glyphosate on glyphosate-resistant wheat, from a public health/regulatory perspective.

  15. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts

    Science.gov (United States)

    Baker, EmilyClare; Wang, Bing; Bellora, Nicolas; Peris, David; Hulfachor, Amanda Beth; Koshalek, Justin A.; Adams, Marie; Libkind, Diego; Hittinger, Chris Todd

    2015-01-01

    The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae (S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts have experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. Our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions. PMID:26269586

  16. Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae and Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Shuvashish; Mohanty, Rama Chandra [Department of Botany, Utkal University, Vanivihar, Bhubaneswar 751004, Orissa (India); Ray, Ramesh Chandra [Microbiology Laboratory, Central Tuber Crops Research Institute (Regional Centre), Bhubaneswar 751019, Orissa (India)

    2010-07-15

    Mahula (Madhuca latifolia L.) flower is a suitable alternative cheaper carbohydrate source for production of bio-ethanol. Recent production of bio-ethanol by microbial fermentation as an alternative energy source has renewed research interest because of the increase in the fuel price. Saccharomyces cerevisiae (yeast) and Zymomonas mobilis (bacteria) are two most widely used microorganisms for ethanol production. In this study, experiments were carried out to compare the potential of the yeast S. cerevisiae (CTCRI strain) with the bacterium Z. mobilis (MTCC 92) for ethanol fermentation from mahula flowers. The ethanol production after 96 h fermentation was 149 and 122.9 g kg{sup -1} flowers using free cells of S. cerevisiae and Z. mobilis, respectively. The S. cerevisiae strain showed 21.2% more final ethanol production in comparison to Z. mobilis. Ethanol yield (Yx/s), volumetric product productivity (Qp), sugar to ethanol conversion rate (%) and microbial biomass concentration (X) obtained by S. cerevisiae were found to be 5.2%, 21.1%, 5.27% and 134% higher than Z. mobilis, respectively after 96 h of fermentation. (author)

  17. Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae and Zymomonas mobilis

    International Nuclear Information System (INIS)

    Behera, Shuvashish; Mohanty, Rama Chandra; Ray, Ramesh Chandra

    2010-01-01

    Mahula (Madhuca latifolia L.) flower is a suitable alternative cheaper carbohydrate source for production of bio-ethanol. Recent production of bio-ethanol by microbial fermentation as an alternative energy source has renewed research interest because of the increase in the fuel price. Saccharomyces cerevisiae (yeast) and Zymomonas mobilis (bacteria) are two most widely used microorganisms for ethanol production. In this study, experiments were carried out to compare the potential of the yeast S. cerevisiae (CTCRI strain) with the bacterium Z. mobilis (MTCC 92) for ethanol fermentation from mahula flowers. The ethanol production after 96 h fermentation was 149 and 122.9 g kg -1 flowers using free cells of S. cerevisiae and Z. mobilis, respectively. The S. cerevisiae strain showed 21.2% more final ethanol production in comparison to Z. mobilis. Ethanol yield (Yx/s), volumetric product productivity (Qp), sugar to ethanol conversion rate (%) and microbial biomass concentration (X) obtained by S. cerevisiae were found to be 5.2%, 21.1%, 5.27% and 134% higher than Z. mobilis, respectively after 96 h of fermentation. (author)

  18. Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Lane, Stephan; Dong, Jia; Jin, Yong-Su

    2018-07-01

    The substantial research efforts into lignocellulosic biofuels have generated an abundance of valuable knowledge and technologies for metabolic engineering. In particular, these investments have led to a vast growth in proficiency of engineering the yeast Saccharomyces cerevisiae for consuming lignocellulosic sugars, enabling the simultaneous assimilation of multiple carbon sources, and producing a large variety of value-added products by introduction of heterologous metabolic pathways. While microbial conversion of cellulosic sugars into large-volume low-value biofuels is not currently economically feasible, there may still be opportunities to produce other value-added chemicals as regulation of cellulosic sugar metabolism is quite different from glucose metabolism. This review summarizes these recent advances with an emphasis on employing engineered yeast for the bioconversion of lignocellulosic sugars into a variety of non-ethanol value-added products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Systems biology and pathway engineering enable Saccharomyces cerevisiae to utilize C-5 and C-6 sugars simultaneously for cellulosic ethanol production

    Science.gov (United States)

    Saccharomyces cerevisiae is a traditional industrial workhorse for ethanol production. However, conventional ethanologenic yeast is superior in fermentation of hexose sugars (C-6) such as glucose but unable to utilize pentose sugars (C-5) such as xylose richly embedded in lignocellulosic biomass. In...

  20. Characterization of an MMS sensitive mutant of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Martin, P.S.

    1979-01-01

    We have characterized a methyl methanesulfonate sensitive mutant of the yeast Saccharomyces cerevisiae in order to learn more about DNA repair and mutagenesis in this organism. The mutation, designated mms3-1, also confers sensitivity to ultraviolet light and to ethyl methanesulfonate in both haploids and homozygous diploids. Its effect on γ-ray sensitivity, however, is a function of the ploidy of the cell and its effect on induced mutation is a function of both the ploidy of the cell and the nature of the inducing agent. Our major findings are discussed. Our data indicate that: (1) Saccharomyces cerevisiae has an error prone pathway for the repair of uv damage controlled by the MMS3 gene product operating in and only in, and possibly induced by conditions present only in, a/α diploids; (2) in diploids, at least, there exists at least one step in the error prone repair of uv induced damage which is different from a step in the error prone repair of EMS induced damage; (3) a/α mms3-1/mms3-1 diploids may be defective in a step common to the repair of mutagenic lesions following uv irradiation and lethal lesions following γ irradiation; and (4) there are steps in the repair of MMS induced lethal damage that are different from steps in the repair of EMS induced lethal damage

  1. Influence of organic acids and organochlorinated insecticides on metabolism of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2005-01-01

    Full Text Available Saccharomyces cerevisiae is exposed to different stress factors during the production: osmotic, temperature, oxidative. The response to these stresses is the adaptive mechanism of cells. The raw materials Saccharomyces cerevisiae is produced from, contain metabolism products of present microorganisms and protective agents used during the growth of sugar beet for example the influence of acetic and butyric acid and organochlorinated insecticides, lindan and heptachlor, on the metabolism of Saccharomyces cerevisiae was investigated and presented in this work. The mentioned compounds affect negatively the specific growth rate, yield, content of proteins, phosphorus, total ribonucleic acids. These compounds influence the increase of trechalose and glycogen content in the Saccharomyces cerevisiae cells.

  2. The cellular response of Saccharomyces cerevisiae to multi-walled carbon nanotubes (MWCNTs

    Directory of Open Access Journals (Sweden)

    Chantelle L. Phillips

    2015-03-01

    Full Text Available Nanoparticles (NPs especially those of carbon nanotubes (CNTs have remarkable properties that are very desirable in various biological and biomedical applications. This has necessitated the rapid study of CNT toxicities, to augment their safe use, particularly, in yeast cells. The yeast cell; Saccharomyces cerevisiae is a widely used industrial and biological organism with very limited data regarding their cellular behaviour in NPs. The current study examines the cellular response of S. cerevisiae to MWCNTs. The CNTs were produced by the swirled floating catalytic chemical vapour deposition (SFCCVD method and covalently functionalised using 1,3-dipolar cycloaddition. The CNT properties such as size, surface area, quality and surface vibrations were characterized using TEM, SEM, BET, TGA and Raman spectroscopy, respectively. The cellular uptake was confirmed with a FITC functionalised MWCNTs using 1H NMR, SEM and TEM. The CNT concentrations of 2–40 μg/ml were used to determine the cellular response through cell growth phases and cell viability characteristics. The TEM and SEM analyses showed the production of MWCNTs with an average diameter of 53 ± 12 nm and a length of 2.5 ± 0.5 μm. The cellular uptake of FITC-MWCNTs showed 100% internalisation in the yeast cells. The growth curve responses to the MWCNT doses showed no significant differences at P > 0.05 on the growth rate and viability of the S. cerevisiae cells.

  3. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Österlund, Tobias; Liu, Zihe

    2013-01-01

    The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often low due to limitations of the host strain. Heat shock response (HSR) is an inducible, global, cellular...... stress response, which facilitates the cell recovery from many forms of stress, e.g., heat stress. In S. cerevisiae, HSR is regulated mainly by the transcription factor heat shock factor (Hsf1p) and many of its targets are genes coding for molecular chaperones that promote protein folding and prevent...... the accumulation of mis-folded or aggregated proteins. In this work, we over-expressed a mutant HSF1 gene HSF1-R206S which can constitutively activate HSR, so the heat shock response was induced at different levels, and we studied the impact of HSR on heterologous protein secretion. We found that moderate and high...

  4. Use of Saccharomyces cerevisiae yeasts in the chemo selective bioreduction of (1E,4E)-1,5-bis(4-methoxyphenyl)-1,4-pentadien-3-one in biphasic system

    International Nuclear Information System (INIS)

    Schaefer, Cesar A.; Silva, Vanessa D.; Nascimento, Maria da G.; Stambuk, Boris U.

    2013-01-01

    This work describes the chemoselective bioreduction of (1E,4E)-1,5-bis(4-methoxyphenyl)- 1,4-pentadien-3-one (1) mediated by baker’s yeast (BY, Saccharomyces cerevisiae cells) in an aqueous/organic solvent biphasic system. The biotransformation of this compound was chemoselective and formed only the corresponding saturated ketone 1,5-bis(4-methoxyphenyl)- 3-pentanone (2). The influence of various factors which may alter the bioreduction of 1, such as the type and percentage of co-solvents, use of six different S. cerevisiae yeast samples (four commercial and two industrial), variations in the substrate and yeast concentrations, temperature, pH and volume of aqueous and organic phases, was investigated. The best reaction conditions were 66.7 g L −1 of Fleischmann BY, 8.3 × 10 −3 mol L −1 of substrate, pH 6.5 at 35 deg C in the presence of 2.5% (v/v) of N,N-dimethyl sulfoxide (DMSO) as an additive and a V aq /V org ratio of 70/30. Under these conditions, the product 2 was recovered in conversions of 82% in 5 h reaction. (author)

  5. Use of Saccharomyces cerevisiae yeasts in the chemo selective bioreduction of (1E,4E)-1,5-bis(4-methoxyphenyl)-1,4-pentadien-3-one in biphasic system

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Cesar A.; Silva, Vanessa D.; Nascimento, Maria da G., E-mail: maria.nascimento@ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis-SC (Brazil); Stambuk, Boris U. [Departamento de Bioquimica, Universidade Federal de Santa Catarina, Florianopolis-SC (Brazil)

    2013-07-15

    This work describes the chemoselective bioreduction of (1E,4E)-1,5-bis(4-methoxyphenyl)- 1,4-pentadien-3-one (1) mediated by baker's yeast (BY, Saccharomyces cerevisiae cells) in an aqueous/organic solvent biphasic system. The biotransformation of this compound was chemoselective and formed only the corresponding saturated ketone 1,5-bis(4-methoxyphenyl)- 3-pentanone (2). The influence of various factors which may alter the bioreduction of 1, such as the type and percentage of co-solvents, use of six different S. cerevisiae yeast samples (four commercial and two industrial), variations in the substrate and yeast concentrations, temperature, pH and volume of aqueous and organic phases, was investigated. The best reaction conditions were 66.7 g L{sup -1} of Fleischmann BY, 8.3 Multiplication-Sign 10{sup -3} mol L{sup -1} of substrate, pH 6.5 at 35 deg C in the presence of 2.5% (v/v) of N,N-dimethyl sulfoxide (DMSO) as an additive and a V{sub aq}/V{sub org} ratio of 70/30. Under these conditions, the product 2 was recovered in conversions of 82% in 5 h reaction. (author)

  6. Evaluation of Saccharomyces cerevisiae as an antiaflatoxicogenic agent in broiler feedstuffs.

    Science.gov (United States)

    Pizzolitto, R P; Armando, M R; Salvano, M A; Dalcero, A M; Rosa, C A

    2013-06-01

    Aflatoxins (AF) are the most important mycotoxins produced by toxigenic strains of various Aspergillus spp. Biological decontamination of mycotoxins using microorganisms is a well-known strategy for the management of mycotoxins in feeds. Saccharomyces cerevisiae strains have been reported to bind aflatoxin B1 (AFB1). The aim of this study was to evaluate the ability of S. cerevisiae CECT 1891 in counteracting the deleterious effects of AFB1 in broiler chicks. Experimental aflatoxicosis was induced in 6-d-old broilers by feeding them 1.2 mg of AFB1/kg of feed for 3 wk, and the yeast strain was administrated in feed (10(10) cells/kg), in the drinking water (5 × 10(9) cells/L), or a combination of both treatments. A total of 160 chicks were randomly divided into 8 treatments (4 repetitions per treatment). Growth performance was measured weekly from d 7 to 28, and serum biochemical parameters, weights, and histopathological examination of livers were determined at d 28. The AFB1 significantly decreased the BW gain, feed intake, and impaired feed conversion rate. Moreover, AFB1 treatment decreased serum protein concentration and increased liver damage. The addition of S. cerevisiae strain to drinking water, to diets contaminated with AFB1, showed a positive protection effect on the relative weight of the liver, histopathology, and biochemical parameters. Furthermore, dietary addition of the yeast strain to drinking water alleviated the negative effects of AFB1 on growth performance parameters. In conclusion, this study suggests that in feed contaminated with AFB1, the use of S. cerevisiae is an alternative method to reduce the adverse effects of aflatoxicosis. Thus, apart from its excellent nutritional value, yeast can also be used as a mycotoxin adsorbent.

  7. Effects of fermentation by Saccharomyces cerevisiae and ...

    African Journals Online (AJOL)

    yassine

    2013-02-13

    Feb 13, 2013 ... Full Length Research Paper. Effect of Saccharomyces cerevisiae fermentation on the ... 2003). Besides, several alcoholic beverages such as wine or liqueurs are obtained from fruit juices fermented by Saccharomyces ..... (2003). Kinetics of pigment release from hairy root cultures of Beta vulgaris under the ...

  8. Comparative proteomics analysis of engineered Saccharomyces cerevisiae with enhanced biofuel precursor production.

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    Full Text Available The yeast Saccharomyces cerevisiae was metabolically modified for enhanced biofuel precursor production by knocking out genes encoding mitochondrial isocitrate dehydrogenase and over-expression of a heterologous ATP-citrate lyase. A comparative iTRAQ-coupled 2D LC-MS/MS analysis was performed to obtain a global overview of ubiquitous protein expression changes in S. cerevisiae engineered strains. More than 300 proteins were identified. Among these proteins, 37 were found differentially expressed in engineered strains and they were classified into specific categories based on their enzyme functions. Most of the proteins involved in glycolytic and pyruvate branch-point pathways were found to be up-regulated and the proteins involved in respiration and glyoxylate pathway were however found to be down-regulated in engineered strains. Moreover, the metabolic modification of S. cerevisiae cells resulted in a number of up-regulated proteins involved in stress response and differentially expressed proteins involved in amino acid metabolism and protein biosynthesis pathways. These LC-MS/MS based proteomics analysis results not only offered extensive information in identifying potential protein-protein interactions, signal pathways and ubiquitous cellular changes elicited by the engineered pathways, but also provided a meaningful biological information platform serving further modification of yeast cells for enhanced biofuel production.

  9. Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae.

    Science.gov (United States)

    Elbing, Karin; Larsson, Christer; Bill, Roslyn M; Albers, Eva; Snoep, Jacky L; Boles, Eckhard; Hohmann, Stefan; Gustafsson, Lena

    2004-09-01

    The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeast's glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which has distinct glucose transport characteristics. The strains display a range of decreasing glycolytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycolysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations.

  10. Determination of carbohydrates present in Saccharomyces cerevisiae using mid-infrared spectroscopy and partial least squares regression.

    Science.gov (United States)

    Plata, Maria R; Koch, Cosima; Wechselberger, Patrick; Herwig, Christoph; Lendl, Bernhard

    2013-10-01

    A fast and simple method to control variations in carbohydrate composition of Saccharomyces cerevisiae, baker's yeast, during fermentation was developed using mid-infrared (mid-IR) spectroscopy. The method allows for precise and accurate determinations with minimal or no sample preparation and reagent consumption based on mid-IR spectra and partial least squares (PLS) regression. The PLS models were developed employing the results from reference analysis of the yeast cells. The reference analyses quantify the amount of trehalose, glucose, glycogen, and mannan in S. cerevisiae. The selection and optimization of pretreatment steps of samples such as the disruption of the yeast cells and the hydrolysis of mannan and glycogen to obtain monosaccharides were carried out. Trehalose, glucose, and mannose were determined using high-performance liquid chromatography coupled with a refractive index detector and total carbohydrates were measured using the phenol-sulfuric method. Linear concentration range, accuracy, precision, LOD and LOQ were examined to check the reliability of the chromatographic method for each analyte.

  11. Effects of aeration on formation and localization of the acetyl coenzyme A synthetases of Saccharomyces cerevisiae

    Science.gov (United States)

    Klein, H. P.; Jahnke, L.

    1979-01-01

    Previous studies on the yeast Saccharomyces cerevisiae have shown that two different forms of the enzyme acetyl coenzyme A synthetase (ACS) are present, depending on the conditions under which the cells are grown. The paper evaluates the usefulness of a method designed to assay both synthetases simultaneously in yeast homogenates. The data presented confirm the possibility of simultaneous detection and estimation of the amount of both ACSs of S. cerevisiae in crude homogenates of this strain, making possible the study of physiological factors involved in the formation of these isoenzymes. One important factor for specifying which of the two enzymes is found in these yeast cells is the presence or absence of oxygen in their environment. Aeration not only affects the ratio of the two ACSs but also appears to affect the cellular distribution of these enzymes. Most of the data presented suggest the possibility that the nonaerobic ACS may serve as a precursor to the aerobic form.

  12. Controlled mixed fermentation at winery scale using Zygotorulaspora florentina and Saccharomyces cerevisiae.

    Science.gov (United States)

    Lencioni, Livio; Romani, Cristina; Gobbi, Mirko; Comitini, Francesca; Ciani, Maurizio; Domizio, Paola

    2016-10-03

    Over the last few years the use of multi-starter inocula has become an attractive biotechnological practice in the search for wine with high flavour complexity or distinctive characters. This has been possible through exploiting the particular oenological features of some non-Saccharomyces yeast strains, and the effects that derive from their specific interactions with Saccharomyces. In the present study, we evaluated the selected strain Zygotorulaspora florentina (formerly Zygosaccharomyces florentinus) in mixed culture fermentations with Saccharomyces cerevisiae, from the laboratory scale to the winery scale. The scale-up fermentation and substrate composition (i.e., white or red musts) influenced the analytical composition of the mixed fermentation. At the laboratory scale, mixed fermentation with Z. florentina exhibited an enhancement of polysaccharides and 2-phenylethanol content and a reduction of volatile acidity. At the winery scale, different fermentation characteristics of Z. florentina were observed. Using Sangiovese red grape juice, sequential fermentation trials showed a significantly higher concentration of glycerol and esters while the sensorial analysis of the resulting wines showed higher floral notes and lower perception of astringency. To our knowledge, this is the first time that this yeasts association has been evaluated at the winery scale indicating the potential use of this mixed culture in red grape varieties. Copyright © 2016. Published by Elsevier B.V.

  13. ACÚMULO DE CÁDMIO POR Saccharomyces cerevisiae FERMENTANDO MOSTO DE CALDO DE CANA ACCUMULATION OF CADMIUM BY Saccharomyces cerevisiae FERMENTING MUST OF SUGAR-CANE

    Directory of Open Access Journals (Sweden)

    S.M.G. da SILVA

    1998-10-01

    Full Text Available O presente trabalho estudou o acúmulo de cádmio (Cd por Saccharomyces cerevisiae, fermentando mosto de caldo de cana com contaminações controladas, em níveis sub-tóxicos, do citado metal. O ensaio de fermentação foi conduzido em erlenmayers de 500 mL, acondicionados em estufa B.O.D. O mosto, não esterilizado, continha 12% de açúcares redutores totais (ART e pH 4,5. Para a contaminação controlada empregou-se cloreto de cádmio em quatro níveis de contaminações: 0,5; 1,0; 2,0 e 5,0 mg Cd kg-1 mosto. A inoculação do mosto foi executada com fermento de panificação (10% p/p. Após a fermentação (4 horas foram determinados, porcentagem de fermento no vinho centrifugado e teor alcoólico do mesmo. Na levedura separada por centrifugação, foram determinados peso úmido, matéria seca, proteína bruta e teores de cádmio por espectrofotometria de absorção atômica. Em todos os níveis de contaminação estudados houve acúmulo de Cd pela levedura.The aim of this paper is to study the absorption and cadmium (Cd concentration by Saccharomyces cerevisiae, fermenting must of sugar-cane, with control contamination, under toxic levels of cadmium (mg Cd kg-1 must. The fermentation was performed in 500 mL erlemmayers. Non-sterilized must showed 12% of total reducing sugar (w/w e pH 4,5. For the control contamination, was applied cadmium chloride, with four levels of contamination: 0,5; 1,0; 2,0 and 5,0 mg Cd kg-1 must. The inoculation of must was carried out with bread yeast (10% w/w. After fermentation (4 hours, samples were colected to evaluate cellular viability and yeast percentage. Fermenting mid was centrifuged and analysis of mid without yeast and raw yeast were performed. The alcohol content was measured , as well as the total humid weight for the yeast material, raw protein and heavy metal by atomic absorption spectroscopy. Watch all level studied have accumulation of cadmium at yeast.

  14. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae

    KAUST Repository

    Aouida, Mustapha; Li, Lixin; Mahjoub, Ali; Alshareef, Sahar; Ali, Zahir; Piatek, Agnieszka Anna; Mahfouz, Magdy M.

    2015-01-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S.cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S.cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production. © 2015 The Society for Biotechnology, Japan.

  15. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae

    KAUST Repository

    Aouida, Mustapha

    2015-04-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S.cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S.cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production. © 2015 The Society for Biotechnology, Japan.

  16. Effects of dietary yeast autolysate (Saccharomyces cerevisiae) on performance, egg traits, egg cholesterol content, egg yolk fatty acid composition and humoral immune response of laying hens.

    Science.gov (United States)

    Yalçin, Sakine; Yalçin, Suzan; Cakin, Kemal; Eltan, Onder; Dağaşan, Levent

    2010-08-15

    The objective of this study was to determine the effects of dietary yeast autolysate on performance, egg traits, egg cholesterol content, egg yolk fatty acid composition, lipid oxidation of egg yolk, some blood parameters and humoral immune response of laying hens during a 16 week period. A total of 225 Hyline Brown laying hens, 22 weeks of age, were allocated equally to one control group and four treatment groups. Yeast autolysate (Saccharomyces cerevisiae, InteWall) was used at levels of 1, 2, 3 and 4 g kg(-1) in the diets of the first, second, third and fourth treatment groups respectively. Dietary treatments did not significantly affect body weight, feed intake and egg traits. Yeast autolysate supplementation increased egg production (P Yeast autolysate at levels of 2, 3 and 4 g kg(-1) decreased egg yolk cholesterol level as mg g(-1) yolk (P yeast autolysate supplementation. Dietary yeast autolysate at levels of 2, 3 and 4 g kg(-1) had beneficial effects on performance, egg cholesterol content and humoral immune response. It is concluded that 2 g kg(-1) yeast autolysate will be enough to have beneficial effects in laying hens. Copyright (c) 2010 Society of Chemical Industry.

  17. Evaluating the probiotic and therapeutic potentials of Saccharomyces cerevisiae strain (OBS2) isolated from fermented nectar of toddy palm.

    Science.gov (United States)

    Srinivas, Banoth; Rani, Ganapathiwar Swarupa; Kumar, Bhukya Kiran; Chandrasekhar, Banoth; Krishna, Kommalapati Vamsi; Devi, Tangutur Anjana; Bhima, Bhukya

    2017-12-01

    The purpose of this study is to evaluate the probiotic characteristics of 15 yeast strains isolated from nectar of toddy palm. Initially, the collected samples were inoculated on yeast extract peptone dextrose agar plates and the colonies so obtained were culturally and morphologically characterized. Commercial probiotic yeast, Saccharomyces boulardii served as the control in these experiments. Of the 15 yeast strains, the isolates that were resistant to antibiotics and worked synergistically with other cultures were considered for further evaluation. Selected isolates were evaluated in vitro for tolerance to simulated gastrointestinal conditions such as temperature, pH, bile and gastric juice. Further the yeast isolates were evaluated for their pathogenicity and adherence to intestinal epithelial cells. The 2 yeast isolates with efficient probiotic properties were finally characterized by sequencing their 5.8 S rRNA and partial sequences of internal transcribed spacer 1 and 2. The sequences were BLAST searched in the National Center for Biotechnology Information, nucleic acid database for sequence similarity of organisms and phylogenetic evolutionary analysis was carried out. Based on maximum similarity of basic local alignment search tool results, organisms were characterized as Pichia kudriavzevii OBS1 (100%) and Saccharomyces cerevisiae OBS2 (96%) and sequences were finally deposited in the GenBank data library. Among these two isolates, S. cerevisiae OBS2 displayed slight/moderate antioxidant and anticancer property. Hence, strain OBS2 can be utilized and explored as a potential probiotic for therapeutic applications.

  18. Fungal genomics beyond Saccharomyces cerevisiae?

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Mcintyre, Mhairi; Nielsen, Jens

    2003-01-01

    Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious...

  19. Evidence for the presence of phospholipase A1 in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Watanabe, Yasuo; Murakami, Masako; Takakuwa, Masayoshi

    1983-01-01

    The cause of the autolysis of pressed Baker's yeast was examined. Softened pressed yeast cells (Saccharomyces cerevisiae), after about 10 days of storage at 30 deg C, was subjected to a series of extraction: the extraction with acetone was made to the supernatant after the centrifugation of the water-suspended yeast cell at 1000 x g for 10 min, and the obtained precipitation was mechanically (with a Potter teflon homogenizer) homogenized. After removing the residues by centrifugation, the protein was salted out with ammonium sulfate up to 0.6 saturation. An enzyme, phospholipase A 1 was thus obtained from the softened yeast cells. The activity of the enzyme thus obtained was assayed using L-α-phosphatidylethanolamine as the substrate. It was previously found that 14 C-labelled free fatty acids liberated from phosphatidylcholine (PC) accumulated in the softened yeast packed cake. The enzyme was identified as phospholipase A 1 having the optimal pH at around 8. Another evidence, obtained previously, together with the present finding suggest that the softening of the pressed Baker's yeast may be caused by the degradation of phospholipid by the combined action of phospholipase A 1 and lysophospholipase L 2 . (Yamashita, S.)

  20. Metabolic link between phosphatidylethanolamine and triacylglycerol metabolism in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Horvath, Susanne E; Wagner, Andrea; Steyrer, Ernst; Daum, Günther

    2011-12-01

    In the yeast Saccharomyces cerevisiae triacylglycerols (TAG) are synthesized by the acyl-CoA dependent acyltransferases Dga1p, Are1p, Are2p and the acyl-CoA independent phospholipid:diacylglycerol acyltransferase (PDAT) Lro1p which uses phosphatidylethanolamine (PE) as a preferred acyl donor. In the present study we investigated a possible link between TAG and PE metabolism by analyzing the contribution of the four different PE biosynthetic pathways to TAG formation, namely de novo PE synthesis via Psd1p and Psd2p, the CDP-ethanolamine (CDP-Etn) pathway and lyso-PE acylation by Ale1p. In cells grown on the non-fermentable carbon source lactate supplemented with 5mM ethanolamine (Etn) the CDP-Etn pathway contributed most to the cellular TAG level, whereas mutations in the other pathways displayed only minor effects. In cki1∆dpl1∆eki1∆ mutants bearing defects in the CDP-Etn pathway both the cellular and the microsomal levels of PE were markedly decreased, whereas in other mutants of PE biosynthetic routes depletion of this aminoglycerophospholipid was less pronounced in microsomes. This observation is important because Lro1p similar to the enzymes of the CDP-Etn pathway is a component of the ER. We conclude from these results that in cki1∆dpl1∆eki1∆ insufficient supply of PE to the PDAT Lro1p was a major reason for the strongly reduced TAG level. Moreover, we found that Lro1p activity was markedly decreased in cki1∆dpl1∆eki1∆, although transcription of LRO1 was not affected. Our findings imply that (i) TAG and PE syntheses in the yeast are tightly linked; and (ii) TAG formation by the PDAT Lro1p strongly depends on PE synthesis through the CDP-Etn pathway. Moreover, it is very likely that local availability of PE in microsomes is crucial for TAG synthesis through the Lro1p reaction. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Identification of a 450-bp region of human papillomavirus type 1 that promotes episomal replication in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Chattopadhyay, Anasuya; Schmidt, Martin C.; Khan, Saleem A.

    2005-01-01

    Human papillomaviruses (HPVs) replicate as nuclear plasmids in infected cells. Since the DNA replication machinery is generally conserved between humans and Saccharomyces cerevisiae, we studied whether HPV-1 DNA can replicate in yeast. Plasmids containing a selectable marker (with or without a yeast centromere) and either the full-length HPV-1 genome or various regions of the viral long control region (LCR) and the 3' end of the L1 gene were introduced into S. cerevisiae and their ability to replicate episomally was investigated. Our results show that HPV-1 sequences promote episomal replication of plasmids although the yeast centromere is required for plasmid retention. We have mapped the autonomously replicating sequence activity of HPV-1 DNA to a 450 base-pair sequence (HPV-1 nt 6783-7232) that includes 293 nucleotides from the 5' region of the viral LCR and 157 nucleotides from the 3' end of the L1 gene. The HPV-1 ARS does not include the binding sites for the viral E1 and E2 proteins, and these proteins are dispensable for replication in S. cerevisiae

  2. Adsorption of Saccharomyces cerevisiae onto cellulose and ecteola-cellulose films for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Lueng, K.L.; Joshi, S.; Yamazaki, H.

    1983-05-01

    Epichlorohydrin-triethanolamine (ECTEOLA)-cellulose films (paper and cloth) have been found to bind Saccharomyces cerevisiae cells which were able to develop metabolically active colonies on the surface of the films. Umodified cellulose films also bound the yeast but to a lesser extent. Film fermenters were constructed by coiling a double layer of the cloth and copper screen and vertically placing the resulting cartridge into a column. These film fermenters were able to convert the sugars (14%) in the hydrolysate of a Jerusalem artichoke tuber into ethanol, with 90% of the theoretical yield after 6 hours of fermentation. The bound yeast produced ethanol at a specific rate of 1.0 g ethanol per g cell per hour. (Refs. 4).

  3. Nitrogen and carbon source balance determines longevity, independently of fermentative or respiratory metabolism in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Santos, Júlia; Leitão-Correia, Fernanda; Sousa, Maria João; Leão, Cecília

    2016-04-26

    Dietary regimens have proven to delay aging and age-associated diseases in several eukaryotic model organisms but the input of nutritional balance to longevity regulation is still poorly understood. Here, we present data on the role of single carbon and nitrogen sources and their interplay in yeast longevity. Data demonstrate that ammonium, a rich nitrogen source, decreases chronological life span (CLS) of the prototrophic Saccharomyces cerevisiae strain PYCC 4072 in a concentration-dependent manner and, accordingly, that CLS can be extended through ammonium restriction, even in conditions of initial glucose abundance. We further show that CLS extension depends on initial ammonium and glucose concentrations in the growth medium, as long as other nutrients are not limiting. Glutamine, another rich nitrogen source, induced CLS shortening similarly to ammonium, but this effect was not observed with the poor nitrogen source urea. Ammonium decreased yeast CLS independently of the metabolic process activated during aging, either respiration or fermentation, and induced replication stress inhibiting a proper cell cycle arrest in G0/G1 phase. The present results shade new light on the nutritional equilibrium as a key factor on cell longevity and may contribute for the definition of interventions to promote life span and healthy aging.

  4. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Bonde, Ida; Herrgard, Markus

    2015-01-01

    CRISPR/Cas9 is a simple and efficient tool for targeted and marker-free genome engineering. Here, we report the development and successful application of a multiplex CRISPR/Cas9 system for genome engineering of up to 5 different genomic loci in one transformation step in baker's yeast Saccharomyces...... cerevisiae. To assess the specificity of the tool we employed genome re-sequencing to screen for off-target sites in all single knock-out strains targeted by different gRNAs. This extensive analysis identified no more genome variants in CRISPR/Cas9 engineered strains compared to wild-type reference strains...

  5. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering.

    Science.gov (United States)

    Chen, Yan; Xiao, Wenhai; Wang, Ying; Liu, Hong; Li, Xia; Yuan, Yingjin

    2016-06-21

    Microbial production of lycopene, a commercially and medically important compound, has received increasing concern in recent years. Saccharomyces cerevisiae is regarded as a safer host for lycopene production than Escherichia coli. However, to date, the lycopene yield (mg/g DCW) in S. cerevisiae was lower than that in E. coli and did not facilitate downstream extraction process, which might be attributed to the incompatibility between host cell and heterologous pathway. Therefore, to achieve lycopene overproduction in S. cerevisiae, both host cell and heterologous pathway should be delicately engineered. In this study, lycopene biosynthesis pathway was constructed by integration of CrtE, CrtB and CrtI in S. cerevisiae CEN.PK2. When YPL062W, a distant genetic locus, was deleted, little acetate was accumulated and approximately 100 % increase in cytosolic acetyl-CoA pool was achieved relative to that in parental strain. Through screening CrtE, CrtB and CrtI from diverse species, an optimal carotenogenic enzyme combination was obtained, and CrtI from Blakeslea trispora (BtCrtI) was found to have excellent performance on lycopene production as well as lycopene proportion in carotenoid. Then, the expression level of BtCrtI was fine-tuned and the effect of cell mating types was also evaluated. Finally, potential distant genetic targets (YJL064W, ROX1, and DOS2) were deleted and a stress-responsive transcription factor INO2 was also up-regulated. Through the above modifications between host cell and carotenogenic pathway, lycopene yield was increased by approximately 22-fold (from 2.43 to 54.63 mg/g DCW). Eventually, in fed-batch fermentation, lycopene production reached 55.56 mg/g DCW, which is the highest reported yield in yeasts. Saccharomyces cerevisiae was engineered to produce lycopene in this study. Through combining host engineering (distant genetic loci and cell mating types) with pathway engineering (enzyme screening and gene fine-tuning), lycopene yield was

  6. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation

    Science.gov (United States)

    Jansen, Mickel L. A.; Bracher, Jasmine M.; Papapetridis, Ioannis; Verhoeven, Maarten D.; de Bruijn, Hans; de Waal, Paul P.; van Maris, Antonius J. A.; Klaassen, Paul

    2017-01-01

    Abstract The recent start-up of several full-scale ‘second generation’ ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application. Fermentation performance of current engineered industrial S. cerevisiae strains is no longer a bottleneck in efforts to achieve the projected outputs of the first large-scale second-generation ethanol plants. Academic and industrial yeast research will continue to strengthen the economic value position of second-generation ethanol production by further improving fermentation kinetics, product yield and cellular robustness under process conditions. PMID:28899031

  7. A Novel Saccharomyces cerevisiae Killer Strain Secreting the X Factor Related to Killer Activity and Inhibition of S. cerevisiae K1, K2 and K28 Killer Toxins.

    Science.gov (United States)

    Melvydas, Vytautas; Bružauskaitė, Ieva; Gedminienė, Genovaitė; Šiekštelė, Rimantas

    2016-09-01

    It was determined that Kx strains secrete an X factor which can inhibit all known Saccharomyces cerevisiae killer toxins (K1, K2, K28) and some toxins of other yeast species-the phenomenon not yet described in the scientific literature. It was shown that Kx type yeast strains posess a killer phenotype producing small but clear lysis zones not only on the sensitive strain α'1 but also on the lawn of S. cerevisiae K1, K2 and K28 type killer strains at temperatures between 20 and 30 °C. The pH at which killer/antikiller effect of Kx strain reaches its maximum is about 5.0-5.2. The Kx yeast were identified as to belong to S. cerevisiae species. Another newly identified S. cerevisiae killer strain N1 has killer activity but shows no antikilller properties against standard K1, K2 and K28 killer toxins. The genetic basis for Kx killer/antikiller phenotype was associated with the presence of M-dsRNA which is bigger than M-dsRNA of standard S. cerevisiae K1, K2, K28 type killer strains. Killer and antikiller features should be encoded by dsRNA. The phenomenon of antikiller (inhibition) properties was observed against some killer toxins of other yeast species. The molecular weight of newly identified killer toxins which produces Kx type strains might be about 45 kDa.

  8. Viabilidade celular de Saccharomyces cerevisiae cultivada em associação com bactérias contaminantes da fermentação alcoólica Cellular viability of Saccharomyces cerevisiae cultivated in association with contaminant bacteria of alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Thais de Paula Nobre

    2007-03-01

    Full Text Available O objetivo deste trabalho foi estudar a influência de bactérias dos gêneros Bacillus e Lactobacillus, bem como de seus produtos metabólicos, na redução da viabilidade celular de leveduras Saccharomyces cerevisiae. As bactérias Bacillus subtilis, Bacillus coagulans, Bacillus stearothermophilus, Lactobacillus fermentum e Lactobacillus plantarum foram cultivadas em associação com a levedura S. cerevisiae (cepa Y-904 por 72 horas a 32 °C, sob agitação. A viabilidade celular, a taxa de brotamento e a população de células de S. cerevisiae e a acidez total, a acidez volátil e o pH dos meios de cultivos foram determinados às 0, 24, 48 e 72 horas do cultivo misto. As culturas de bactérias foram tratadas através do calor, de agente antimicrobiano e de irradiação. Os resultados mostraram que apenas os meios de cultivo mais acidificados, contaminados com as bactérias ativas L. fermentum e B. subtilis, provocaram redução na viabilidade celular de S. cerevisiae. Excetuando a bactéria B. subtilis tratada com radiação gama, as demais bactérias tratadas pelos diferentes processos (calor, irradiação e antimicrobiano não causaram diminuição da viabilidade celular e da população de S. cerevisiae, indicando que a presença isolada dos metabólitos celulares dessas bactérias não foi suficiente para reduzir a porcentagem de células vivas de S. cerevisiae.The aim of this project was to study the influence of the bacteria Bacillus and Lactobacillus, as well as their metabolic products to decrease the cellular viability of the yeast Saccharomyces cerevisiae. The bacteria Bacillus subtilis, Bacillus coagulans, Bacillus stearothermophilus, Lactobacillus fermentum and Lactobacillus plantarum were cultivated in association with yeast S. cerevisiae (strain Y-904 for 72 hours at 32 ºC under agitation. The cellular viability, budding rate and population of S. Cerevisiae and the total acidity, volatile acidity and pH of culture medium were

  9. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Hana Šuranská

    2016-03-01

    Full Text Available Abstract In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines.

  10. Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing.

    Science.gov (United States)

    Izawa, Shingo; Ikeda, Kayo; Miki, Takeo; Wakai, Yoshinori; Inoue, Yoshiharu

    2010-09-01

    Although ethanol and osmotic stress affect the vacuolar morphology of Saccharomyces cerevisiae, little information is available about changes in vacuolar morphology during the processes of wine making and Japanese sake (rice wine) brewing. Here, we elucidated changes in the morphology of yeast vacuoles using Zrc1p-GFP, a vacuolar membrane protein, so as to better understand yeast physiology during the brewing process. Wine yeast cells (OC-2 and EC1118) contained highly fragmented vacuoles in the sake mash (moromi) as well as in the grape must. Although sake yeast cells (Kyokai no. 9 and no. 10) also contained highly fragmented vacuoles during the wine-making process, they showed quite a distinct vacuolar morphology during sake brewing. Since the environment surrounding sake yeast cells in the sake mash did not differ much from that surrounding wine yeast cells, the difference in vacuolar morphology during sake brewing between wine yeast and sake yeast was likely caused by innate characters.

  11. Impact of Commercial Strain Use on Saccharomyces cerevisiae Population Structure and Dynamics in Pinot Noir Vineyards and Spontaneous Fermentations of a Canadian Winery.

    Directory of Open Access Journals (Sweden)

    Jonathan T Martiniuk

    Full Text Available Wine is produced by one of two methods: inoculated fermentation, where a commercially-produced, single Saccharomyces cerevisiae (S. cerevisiae yeast strain is used; or the traditional spontaneous fermentation, where yeast present on grape and winery surfaces carry out the fermentative process. Spontaneous fermentations are characterized by a diverse succession of yeast, ending with one or multiple strains of S. cerevisiae dominating the fermentation. In wineries using both fermentation methods, commercial strains may dominate spontaneous fermentations. We elucidate the impact of the winery environment and commercial strain use on S. cerevisiae population structure in spontaneous fermentations over two vintages by comparing S. cerevisiae populations in aseptically fermented grapes from a Canadian Pinot Noir vineyard to S. cerevisiae populations in winery-conducted fermentations of grapes from the same vineyard. We also characterize the vineyard-associated S. cerevisiae populations in two other geographically separate Pinot Noir vineyards farmed by the same winery. Winery fermentations were not dominated by commercial strains, but by a diverse number of strains with genotypes similar to commercial strains, suggesting that a population of S. cerevisiae derived from commercial strains is resident in the winery. Commercial and commercial-related yeast were also identified in the three vineyards examined, although at a lower frequency. There is low genetic differentiation and S. cerevisiae population structure between vineyards and between the vineyard and winery that persisted over both vintages, indicating commercial yeast are a driver of S. cerevisiae population structure. We also have evidence of distinct and persistent populations of winery and vineyard-associated S. cerevisiae populations unrelated to commercial strains. This study is the first to characterize S. cerevisiae populations in Canadian vineyards.

  12. Impact of Commercial Strain Use on Saccharomyces cerevisiae Population Structure and Dynamics in Pinot Noir Vineyards and Spontaneous Fermentations of a Canadian Winery.

    Science.gov (United States)

    Martiniuk, Jonathan T; Pacheco, Braydon; Russell, Gordon; Tong, Stephanie; Backstrom, Ian; Measday, Vivien

    2016-01-01

    Wine is produced by one of two methods: inoculated fermentation, where a commercially-produced, single Saccharomyces cerevisiae (S. cerevisiae) yeast strain is used; or the traditional spontaneous fermentation, where yeast present on grape and winery surfaces carry out the fermentative process. Spontaneous fermentations are characterized by a diverse succession of yeast, ending with one or multiple strains of S. cerevisiae dominating the fermentation. In wineries using both fermentation methods, commercial strains may dominate spontaneous fermentations. We elucidate the impact of the winery environment and commercial strain use on S. cerevisiae population structure in spontaneous fermentations over two vintages by comparing S. cerevisiae populations in aseptically fermented grapes from a Canadian Pinot Noir vineyard to S. cerevisiae populations in winery-conducted fermentations of grapes from the same vineyard. We also characterize the vineyard-associated S. cerevisiae populations in two other geographically separate Pinot Noir vineyards farmed by the same winery. Winery fermentations were not dominated by commercial strains, but by a diverse number of strains with genotypes similar to commercial strains, suggesting that a population of S. cerevisiae derived from commercial strains is resident in the winery. Commercial and commercial-related yeast were also identified in the three vineyards examined, although at a lower frequency. There is low genetic differentiation and S. cerevisiae population structure between vineyards and between the vineyard and winery that persisted over both vintages, indicating commercial yeast are a driver of S. cerevisiae population structure. We also have evidence of distinct and persistent populations of winery and vineyard-associated S. cerevisiae populations unrelated to commercial strains. This study is the first to characterize S. cerevisiae populations in Canadian vineyards.

  13. Production of volatile and sulfur compounds by ten Saccharomyces cerevisiae strains inoculated in Trebbiano must

    Directory of Open Access Journals (Sweden)

    Francesca ePatrignani

    2016-03-01

    Full Text Available In wines, the presence of sulphur compounds is the resulting of several contributions among which yeast metabolism. The characterization of the starter Saccharomyces cerevisiae needs to be performed also taking into account this ability even if evaluated together with the overall metabolic profile. In this perspective, principal aim of this experimental research was the evaluation of the volatile profiles, throughout GC/MS technique coupled with solid phase micro extraction, of wines obtained throughout the fermentation of 10 strains of Saccharomyces cerevisiae. In addition, the production of sulphur compounds was further evaluated by using a gas-chromatograph coupled with a Flame Photometric Detector. Specifically, the ten strains were inoculated in Trebbiano musts and the fermentations were monitored for 19 days. In the produced wines, volatile and sulphur compounds as well as amino acid concentrations were investigated. Also the physico-chemical characteristics of the wines and their electronic nose profiles were evaluated.

  14. Yeast Population Dynamics in Spontaneous and Inoculated Alcoholic Fermentations of Zametovka Must

    Directory of Open Access Journals (Sweden)

    Franc Cus

    2002-01-01

    Full Text Available Inoculated fermentations, which are more rapid and more reliable than spontaneous fermentations, and assure predictable wine quality, are nowadays prevalent in Slovenia’s large-scale wine production. However, spontaneous fermentation strengthens local characteristics of wine and offers opportunities for technological innovation. In the 1999 vintage, spontaneous and inoculated fermentations of Zametovka (Vitis vinifera grape must were studied. Zametovka is the main red variety in production of traditional Slovene red blend wine, Cvicek. The diversity of yeast species and strains in both of the investigated fermentations was determined by molecular and traditional identification methods. The outset of alcoholic fermentation, yeast growth kinetics, and yeast population dynamics presents the main differences between the examined fermentations. Yeast population diversity was higher in the spontaneous process. Dominant yeast isolates from spontaneous fermentation were identified as Candida stellata, Hanseniaspora uvarum and Saccharomyces cerevisiae; whereas Saccharomyces bayanus, Pichia kluyveri, Pichia membranifaciens and Torulaspora delbrueckiim were found less frequently. Dominant species in the inoculated fermentation was Saccharomyces cerevisiae; other species found in smaller numbers were Candida stellata, Hanseniaspora uvarum and Debaryomyces hansenii var. hansenii. Using PFGE, we were able to distinguish among 15 different Saccharomyces cerevisiae strains and three different Saccharomyces bayanus strains isolated from spontaneous fermentation, whereas, in the case of inoculated fermentation, only two Saccharomyces cerevisiae strains were found. Their chromosomal patterns coincide with the chromosomal patterns of the starter culture strains.

  15. Identification of Two Suppressors of CSG2 Calcium Sensitivity, SCS7 and SUR2, as Genes Encoding Hydroxylases of the Sphingolipid Biosynthetic Pathway of Saccharomyces cerevisiae

    National Research Council Canada - National Science Library

    Haak, Dale A

    1997-01-01

    .... The biochemical significance of much of this structural variability is not well understood. The sphingolipids of the yeast Saccharomyces cerevisiae undergo the a-hydroxylation of the very long chain fatty acid (VLCFA...

  16. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Koopman Frank

    2012-12-01

    Full Text Available Abstract Background Flavonoids comprise a large family of secondary plant metabolic intermediates that exhibit a wide variety of antioxidant and human health-related properties. Plant production of flavonoids is limited by the low productivity and the complexity of the recovered flavonoids. Thus to overcome these limitations, metabolic engineering of specific pathway in microbial systems have been envisaged to produce high quantity of a single molecules. Result Saccharomyces cerevisiae was engineered to produce the key intermediate flavonoid, naringenin, solely from glucose. For this, specific naringenin biosynthesis genes from Arabidopsis thaliana were selected by comparative expression profiling and introduced in S. cerevisiae. The sole expression of these A. thaliana genes yielded low extracellular naringenin concentrations ( Conclusion The results reported in this study demonstrate that S. cerevisiae is capable of de novo production of naringenin by coexpressing the naringenin production genes from A. thaliana and optimization of the flux towards the naringenin pathway. The engineered yeast naringenin production host provides a metabolic chassis for production of a wide range of flavonoids and exploration of their biological functions.

  17. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae

    Science.gov (United States)

    Li, Gui-yin; Zhou, Zhi-de; Li, Yuan-jian; Huang, Ke-long; Zhong, Ming

    2010-12-01

    A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe 3O 4/KCTS) as support. The magnetic Fe 3O 4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe 3O 4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe 3O 4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 °C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.

  18. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains

    OpenAIRE

    Samantha Fairbairn; Alexander McKinnon; Hannibal T. Musarurwa; António C. Ferreira; António C. Ferreira; Florian F. Bauer

    2017-01-01

    Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth p...

  19. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts.

    Science.gov (United States)

    Baker, EmilyClare; Wang, Bing; Bellora, Nicolas; Peris, David; Hulfachor, Amanda Beth; Koshalek, Justin A; Adams, Marie; Libkind, Diego; Hittinger, Chris Todd

    2015-11-01

    The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae (S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts have experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. Our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Modelling of Ethanol Production from Red Beet Juice by Saccharomyces cerevisiae under Thermal and Acid Stress Conditions

    Directory of Open Access Journals (Sweden)

    Donaji Jiménez-Islas

    2014-01-01

    Full Text Available In this work the effects of pH and temperature on ethanol production from red beet juice by the strains Saccharomyces cerevisiae ITD00196 and S. cerevisiae ATCC 9763 are studied. Logistic, Pirt, and Luedeking-Piret equations were used to describe quantitatively the microbial growth, substrate consumption, and ethanol production, respectively. The two S. cerevisiae strains used in this study were able to produce ethanol with high yield and volumetric productivity under acid and thermal stress conditions. The equations used to model the fermentation kinetics fit very well with the experimental data, thus establishing that ethanol production was growth associated under the evaluated conditions. The yeast S. cerevisiae ITD00196 had the best fermentative capacity and could be considered as an interesting option to develop bioprocesses for ethanol production.

  1. Genetically engineered yeast

    DEFF Research Database (Denmark)

    2014-01-01

    A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate semialde......A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate...... semialdehyde. The yeast may also express a 3-hydroxyisobutyrate dehydrogenase (HIBADH) and a 3-hydroxypropanoate dehydrogenase (3-HPDH) and aspartate 1-decarboxylase. Additionally the yeast may express pyruvate carboxylase and aspartate aminotransferase....

  2. Effect of diet supplementation with live yeast Saccharomyces cerevisiae on growth performance, caecal ecosystem and health of growing rabbits

    Directory of Open Access Journals (Sweden)

    T. Belhassen

    2016-09-01

    Full Text Available The aim of this study was to determine the effect of the live yeast Saccharomyces cerevisiae on the growth performance, caecal ecosystem and overall health of growing rabbits. A control diet was formulated (crude protein: 15.9%; neutral detergent fibre: 31.6% and another diet obtained by supplementing the control diet with 1 g of Saccharomyces cerevisiae (6.5×109 colony-forming units per kg of diet. Ninety 35-d old rabbits were allotted into 3 groups: TT (rabbits offered the supplemented diet from 17 d of age onwards, CT (rabbits offered supplemented diet from 35 d and CC (rabbits fed non-supplemented diet. Body weight (BW and feed intake were measured weekly and mortality was controlled daily. At 35, 42 and 77 d of age, 6 rabbits from each group were slaughtered and digestive physiological traits, serum clinical chemistry parameters, fermentation traits, and the composition of caecal microbiota examined. At 42 and 56 d of age, 10 rabbits from each group were injected intraperitoneally with 100 μg/animal of ovalbumin and blood samples were collected for examination of plasma immunological parameters. Throughout the experiment (5-11 wk, weight gain and feed intake (37.8 and 112.6 g/d, on av. were not affected by yeast, except for weight gain in the first week after weaning, which was the highest in TT animals among the 3 groups (48.1 vs. 43.9 and 44.2 g/d for TT, CC and CT, respectively; P=0.012. This may be due to the increased trend in feed intake (P=0.072 in the TT group (96.4 g/d compared to the others. Mortality (5/90 was low and did not differ among the 3 groups. Treatments had no effect on slaughter traits at the 3 sampling dates (35, 42 and 77 d. Only the weight of the empty caecum (% BW was higher (P=0.02 in CC (2.2% and CT (2.3% than in TT group (1.8% at 77 d of age. Treatments did not overtly affect the caecal microbiota, although the number of total anaerobic bacteria and Bacteroides were lower (108 and 107/g caecal digesta

  3. Effects of metal salt catalysts on yeast cell growth in ethanol conversion

    Science.gov (United States)

    Chung-Yun Hse; Yin Lin

    2009-01-01

    The effects of the addition of metal salts and metal salt-catalyzed hydrolyzates on yeast cell growth in ethanol fermentation were investigated. Four yeast strains (Saccharomyces cerevisiae WT1, Saccharomyces cerevisiae MT81, Candida sp. 1779, and Klumaromyces fragilis), four metal salts (CuCl2, FeCl3, AgNO3, and I2), two metal salt-catalyzed hydrolyzates (...

  4. Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation in Aspergillus fumigatus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Fujita, Ken-Ichi; Tatsumi, Miki; Ogita, Akira; Kubo, Isao; Tanaka, Toshio

    2014-02-01

    trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum, and antimicrobial activity that is weaker than that of other antibiotics on the market. When combined with polygodial, nagilactone E, and n-dodecanol, anethole has been shown to possess significant synergistic antifungal activity against a budding yeast, Saccharomyces cerevisiae, and a human opportunistic pathogenic yeast, Candida albicans. However, the antifungal mechanism of anethole has not been completely determined. We found that anethole stimulated cell death of a human opportunistic pathogenic fungus, Aspergillus fumigatus, in addition to S. cerevisiae. The anethole-induced cell death was accompanied by reactive oxygen species production, metacaspase activation, and DNA fragmentation. Several mutants of S. cerevisiae, in which genes related to the apoptosis-initiating execution signals from mitochondria were deleted, were resistant to anethole. These results suggest that anethole-induced cell death could be explained by oxidative stress-dependent apoptosis via typical mitochondrial death cascades in fungi, including A. fumigatus and S. cerevisiae. © 2014 FEBS.

  5. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history.

    Science.gov (United States)

    Legras, Jean-Luc; Merdinoglu, Didier; Cornuet, Jean-Marie; Karst, Francis

    2007-05-01

    Fermented beverages and foods have played a significant role in most societies worldwide for millennia. To better understand how the yeast species Saccharomyces cerevisiae, the main fermenting agent, evolved along this historical and expansion process, we analysed the genetic diversity among 651 strains from 56 different geographical origins, worldwide. Their genotyping at 12 microsatellite loci revealed 575 distinct genotypes organized in subgroups of yeast types, i.e. bread, beer, wine, sake. Some of these groups presented unexpected relatedness: Bread strains displayed a combination of alleles intermediate between beer and wine strains, and strains used for rice wine and sake were most closely related to beer and bread strains. However, up to 28% of genetic diversity between these technological groups was associated with geographical differences which suggests local domestications. Focusing on wine yeasts, a group of Lebanese strains were basal in an F(ST) tree, suggesting a Mesopotamia-based origin of most wine strains. In Europe, migration of wine strains occurred through the Danube Valley, and around the Mediterranean Sea. An approximate Bayesian computation approach suggested a postglacial divergence (most probable period 10,000-12,000 bp). As our results suggest intimate association between man and wine yeast across centuries, we hypothesize that yeast followed man and vine migrations as a commensal member of grapevine flora.

  6. Genetic and phenotypic diversity of autochthonous cider yeasts in a cellar from Asturias.

    Science.gov (United States)

    Pando Bedriñana, R; Querol Simón, A; Suárez Valles, B

    2010-06-01

    This paper analyses yeast diversity and dynamics during the production of Asturian cider. Yeasts were isolated from apple juice and at different stages of fermentation in a cellar in Villaviciosa during two Asturian cider-apple harvests. The species identified by ITS-RFLP corresponded to Hanseniaspora valbyensis, Hanseniaspora uvarum, Metschnikowia pulcherrima, Pichia guilliermondii, Candida parapsilosis, Saccharomyces cerevisiae and Saccharomyces bayanus/Saccharomyces pastorianus/Saccharomyces kudriavzevii/Saccharomyces mikatae. The species C. parapsilosis is reported here for the first time in cider. The analysis of Saccharomyces mtDNA patterns showed great diversity, sequential substitution and the presence of a small number of yeast patterns (up to 8), present in both harvests. Killer (patterns nos. 22' and 47), sensitive (patterns nos. 12, 15, 33 and 61) and neutral phenotypes were found among the S. cerevisiae isolates. The detection of beta-glucosidase activity, with arbutin as the sole carbon source, allowed two S. cerevisiae strains (patterns nos. 3' and 19') to be differentiated by means of this enzymatic activity. Yeast strains producing the killer toxin or with beta-glucosidase activity are reported for the first time in autochthonous cider yeasts. 2009 Elsevier Ltd. All rights reserved.

  7. A population study of killer viruses reveals different evolutionary histories of two closely related Saccharomyces sensu stricto yeasts.

    Science.gov (United States)

    Chang, Shang-Lin; Leu, Jun-Yi; Chang, Tien-Hsien

    2015-08-01

    Microbes have evolved ways of interference competition to gain advantage over their ecological competitors. The use of secreted killer toxins by yeast cells through acquiring double-stranded RNA viruses is one such prominent example. Although the killer behaviour has been well studied in laboratory yeast strains, our knowledge regarding how killer viruses are spread and maintained in nature and how yeast cells co-evolve with viruses remains limited. We investigated these issues using a panel of 81 yeast populations belonging to three Saccharomyces sensu stricto species isolated from diverse ecological niches and geographic locations. We found that killer strains are rare among all three species. In contrast, killer toxin resistance is widespread in Saccharomyces paradoxus populations, but not in Saccharomyces cerevisiae or Saccharomyces eubayanus populations. Genetic analyses revealed that toxin resistance in S. paradoxus is often caused by dominant alleles that have independently evolved in different populations. Molecular typing identified one M28 and two types of M1 killer viruses in those killer strains. We further showed that killer viruses of the same type could lead to distinct killer phenotypes under different host backgrounds, suggesting co-evolution between the viruses and hosts in different populations. Taken together, our data suggest that killer viruses vary in their evolutionary histories even within closely related yeast species. © 2015 John Wiley & Sons Ltd.

  8. Pichia pastoris versus Saccharomyces cerevisiae: a case study on the recombinant production of human granulocyte-macrophage colony-stimulating factor.

    Science.gov (United States)

    Tran, Anh-Minh; Nguyen, Thanh-Thao; Nguyen, Cong-Thuan; Huynh-Thi, Xuan-Mai; Nguyen, Cao-Tri; Trinh, Minh-Thuong; Tran, Linh-Thuoc; Cartwright, Stephanie P; Bill, Roslyn M; Tran-Van, Hieu

    2017-04-04

    Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) is a glycoprotein that has been approved by the FDA for the treatment of neutropenia and leukemia in combination with chemotherapies. Recombinant hGM-CSF is produced industrially using the baker's yeast, Saccharomyces cerevisiae, by large-scale fermentation. The methylotrophic yeast, Pichia pastoris, has emerged as an alternative host cell system due to its shorter and less immunogenic glycosylation pattern together with higher cell density growth and higher secreted protein yield than S. cerevisiae. In this study, we compared the pipeline from gene to recombinant protein in these two yeasts. Codon optimization in silico for both yeast species showed no difference in frequent codon usage. However, rhGM-CSF expressed from S. cerevisiae BY4742 showed a significant discrepancy in molecular weight from those of P. pastoris X33. Analysis showed purified rhGM-CSF species with molecular weights ranging from 30 to more than 60 kDa. Fed-batch fermentation over 72 h showed that rhGM-CSF was more highly secreted from P. pastoris than S. cerevisiae (285 and 64 mg total secreted protein/L, respectively). Ion exchange chromatography gave higher purity and recovery than hydrophobic interaction chromatography. Purified rhGM-CSF from P. pastoris was 327 times more potent than rhGM-CSF from S. cerevisiae in terms of proliferative stimulating capacity on the hGM-CSF-dependent cell line, TF-1. Our data support a view that the methylotrophic yeast P. pastoris is an effective recombinant host for heterologous rhGM-CSF production.

  9. Repair of UV-irradiated plasmid DNA in excision repair deficient mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ikai, K.; Tano, K.; Ohnishi, T.; Nozu, K.

    1985-01-01

    The repair of UV-irradiated DNA of plasmid YEp13 was studied in the incision defective strains by measurement of cell transformation frequency. In Saccharomyces cerevisiae, rad1,2,3 and 4 mutants could repair UV-damaged plasmid DNA. In Escherichia coli, uvrA mutant was unable to repair UV-damaged plasmid DNA; however, pretreatment of the plasmid with Micrococcus luteus endonuclease increased repair. It was concluded that all the mutations of yeast were probably limited only to the nuclear DNA. (author)

  10. A review on sustainable yeast biotechnological processes and applications

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Srivastava, R. K.

    2018-01-01

    Yeast is very well known eukaryotic organism for its remarkable biodiversity and extensive industrial applications. Saccharomyces cerevisiae is one of the most widely used microorganisms in biotechnology with successful applications in the biochemical production. Biological conversion with the fo......Yeast is very well known eukaryotic organism for its remarkable biodiversity and extensive industrial applications. Saccharomyces cerevisiae is one of the most widely used microorganisms in biotechnology with successful applications in the biochemical production. Biological conversion...... with the focus on the different utilization of renewable feedstocks into fuels and chemicals has been intensively investigated due to increasing concerns on sustainability issues worldwide. Compared with its counterparts, Saccharomyces cerevisiae, the baker's yeast, is more industrially relevant due to known...... genetic and physiological background, the availability of a large collection of genetic tools, the compatibility of high-density and large-scale fermentation, and optimize the pathway for variety of products. Therefore, S. cerevisiae is one of the most popular cell factories and has been successfully used...

  11. Significant competitive advantage conferred by meiosis and syngamy in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Birdsell, J; Wills, C

    1996-01-01

    The presumed advantages of genetic recombinations are difficult to demonstrate directly. To investigate the effects of recombination and background heterozygosity on competitive ability, we have performed serial-transfer competition experiments between isogenic sexual and asexual strains of the yeast Saccharomyces cerevisiae. The members of these diploid pairs of strains differed only in being heterozygous (sexual) or homozygous (asexual) at the mating type or MAT locus. Competing pairs had either a completely homozygous or a heterozygous genetic background, the latter being heterozygous at many different loci throughout the genome. A round of meiotic recombination (automixis) conferred a large and statistically significant enhancement of competitive ability on sexual strains with a heterozygous genetic background. By contrast, in homozygous background competitions, meiosis decreased the sexual strains' initial relative competitive ability. In all cases, however, the sexual strains outcompeted their isogenic asexual counterparts, whether meiotic recombination had occurred or not. In some genetic backgrounds, this was due in part to an overdominance effect on competitive advantage of heterozygosity at the MAT locus. The advantage of the sexual strains also increased significantly during the course of the homozygous background competitions, particularly when meiosis had occurred. This latter effect either did not occur or was very weak in heterozygous background competitions. Overall, sexual strains with heterozygous genetic backgrounds had a significantly higher initial relative competitive ability than those with homozygous backgrounds. The advantage of mating type heterozygosity in this organism extends far beyond the ability to recombine meiotically. PMID:8570658

  12. Analysis of the biological effects of a non-thermal plasma on saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Park, Gyung S.; Baik, Ku Y.; Kim, Jung G.; Kim, Yun J.; Lee, Kyung A.; Jung, Ran J.; Cho, Guang S.

    2012-01-01

    The cellular and the molecular responses of eukaryotic yeast (Saccharomyces cerevisiae) to a non-thermal plasma at atmospheric pressure are analyzed. A plasma device with a dielectric barrier discharge is used in order to understand the mechanisms of the plasma action on eukaryotic microbes. When the yeast cells are exposed to a plasma (at a 2-mm distance) and then cultured on a YPD (yeast extract, peptone, and dextrose) - agar plate, the number of surviving cells is reduced over exposure time. More than a 50% reduction in number is observed after two exposures of 5 minutes' duration. In addition, very small whitish colonies appear after the two exposures. The microscopic analysis indicates that the yeast cells treated with this plasma exposure have rough and shrunken shapes in comparison to the oval shapes with smooth surfaces of the control cells. The profile of proteins analyzed by using 2-dimentional electrophoresis demonstrates that the level of proteins with high molecular weights is increased in plasma-treated cells.

  13. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    Science.gov (United States)

    Cartwright, Stephanie P; Bill, Roslyn M; Hipkiss, Alan R

    2012-01-01

    The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  14. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    Directory of Open Access Journals (Sweden)

    Stephanie P Cartwright

    Full Text Available The dipeptide L-carnosine (β-alanyl-L-histidine has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose, 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol, L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  15. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae.

    Science.gov (United States)

    Da Silva, Nancy A; Srikrishnan, Sneha

    2012-03-01

    Metabolic pathway engineering in the yeast Saccharomyces cerevisiae leads to improved production of a wide range of compounds, ranging from ethanol (from biomass) to natural products such as sesquiterpenes. The introduction of multienzyme pathways requires precise control over the level and timing of expression of the associated genes. Gene number and promoter strength/regulation are two critical control points, and multiple studies have focused on modulating these in yeast. This MiniReview focuses on methods for introducing genes and controlling their copy number and on the many promoters (both constitutive and inducible) that have been successfully employed. The advantages and disadvantages of the methods will be presented, and applications to pathway engineering will be highlighted. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Influence of Saccharomyces cerevisiae Strains on General Composition and Sensorial Properties of White Wines Made from Vitis vinifera cv. Albariño

    Directory of Open Access Journals (Sweden)

    Mar Vilanova

    2005-01-01

    Full Text Available Yeast strains contribute to the oenological and sensorial characteristics of the wines they produce. The present study was performed to determine the influence of Saccharomyces cerevisiae strains on the composition and sensorial properties of Albariño wine. The must obtained from Albariño grapes was inoculated with 12 different yeast strains isolated from a single winery in Galicia, Spain. Chemical and sensorial analyses were performed on the final wines, which differed depending on the yeast strain used.

  17. Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice.

    Science.gov (United States)

    Ramirez-Córdova, Jesús; Drnevich, Jenny; Madrigal-Pulido, Jaime Alberto; Arrizon, Javier; Allen, Kirk; Martínez-Velázquez, Moisés; Alvarez-Maya, Ikuri

    2012-08-01

    During ethanol fermentation, yeast cells are exposed to stress due to the accumulation of ethanol, cell growth is altered and the output of the target product is reduced. For Agave beverages, like tequila, no reports have been published on the global gene expression under ethanol stress. In this work, we used microarray analysis to identify Saccharomyces cerevisiae genes involved in the ethanol response. Gene expression of a tequila yeast strain of S. cerevisiae (AR5) was explored by comparing global gene expression with that of laboratory strain S288C, both after ethanol exposure. Additionally, we used two different culture conditions, cells grown in Agave tequilana juice as a natural fermentation media or grown in yeast-extract peptone dextrose as artificial media. Of the 6368 S. cerevisiae genes in the microarray, 657 genes were identified that had different expression responses to ethanol stress due to strain and/or media. A cluster of 28 genes was found over-expressed specifically in the AR5 tequila strain that could be involved in the adaptation to tequila yeast fermentation, 14 of which are unknown such as yor343c, ylr162w, ygr182c, ymr265c, yer053c-a or ydr415c. These could be the most suitable genes for transforming tequila yeast to increase ethanol tolerance in the tequila fermentation process. Other genes involved in response to stress (RFC4, TSA1, MLH1, PAU3, RAD53) or transport (CYB2, TIP20, QCR9) were expressed in the same cluster. Unknown genes could be good candidates for the development of recombinant yeasts with ethanol tolerance for use in industrial tequila fermentation.

  18. ABOUT A CHOICE OF MATHEMATICAL MODELS OF KINETICS OF CULTIVATION OF SACCHAROMYCES CEREVISIAE YEAST IN THE CONDITIONS OF DEFICIENCY OF OXYGEN

    Directory of Open Access Journals (Sweden)

    V. B. Tishin

    2015-01-01

    Full Text Available Summary. In the production technology of many foods microbiological processes are crucial to the economic indicators of enterprises and the quality of the products manufactured. The examples of this are the production, where the biomass is the end product. For example, the production of various strains of the yeast Saccharomyces for different branches of the food industry: baking, brewing, winemaking, as well as for the pharmaceutical industry. The development of mathematical models of microbial cells is one of the greatest challenges of microbiology. The need to search for mathematical models is dictated by the continuous development of microbiological industry, increases in the requirements for the production design, maintenance and predictions of the processes depending on the change of process parameters. However, this requires knowledge of the laws governing material and energy exchange between the culture medium and the cell and the availability of mathematical models describing them. This knowledge cannot be obtained without studying the biological processes kinetics. Kinetic regularities of microbial growth is largely determined by the selection method of the microbiological process and the type of equipment in which these processes occur. Many biological processes can be described with a simple mathematical model, but there are kinetic regularities of biological processes that can only be described by equations of more complex type. Culturing yeast kinetic models, reflecting the complexity of the biological processes occurring during the cultivation were obtained. According to the analysis of experimental data on the Saccharomyces cerevisiae yeast culturing with a batch process, a system of equations (mathematical model, giving a functional relationship of biomass growth and cells consumption of carbohydrates with their different initial values in a culture medium under conditions of oxygen deficiency without stirring is obtained.

  19. Endonuclease α from Saccharomyces cerevisiae shows increased activity on ultraviolet irradiated native DNA

    International Nuclear Information System (INIS)

    Bryant, D.W.; Haynes, R.H.

    1978-01-01

    Endonuclease α isolated from the nucleus of the yeast Saccharomyces cerevisiae is a DNA endonuclease which has been shown to act preferentially on denatured T7 DNA. The purified enzyme is more active with UV-irradiated native T7 DNA than with unirradiated substrate. The relation between damage, measured by pyrimidine dimer concentration, and excess endonuclease activity is most readily explained by local denaturation caused by the presence of pyrimidine dimers. When three radiation sensitive mutants of yeast were tested for the level of endonuclease α present, none were found lacking the enzyme. However, nuclei of strain rad 1-1, a mutant that may be defective in heteroduplex repair as well as excision repair, were found to contain reduced levels of the endonuclease. (orig./AJ) [de

  20. Growth on Alpha-Ketoglutarate Increases Oxidative Stress Resistance in the Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maria Bayliak

    2017-01-01

    Full Text Available Alpha-ketoglutarate (AKG is an important intermediate in cell metabolism, linking anabolic and catabolic processes. The effect of exogenous AKG on stress resistance in S. cerevisiae cells was studied. The growth on AKG increased resistance of yeast cells to stresses, but the effects depended on AKG concentration and type of stressor. Wild-type yeast cells grown on AKG were more resistant to hydrogen peroxide, menadione, and transition metal ions (Fe2+ and Cu2+ but not to ethanol and heat stress as compared with control ones. Deficiency in SODs or catalases abolished stress-protective effects of AKG. AKG-supplemented growth led to higher values of total metabolic activity, level of low-molecular mass thiols, and activities of catalase and glutathione reductase in wild-type cells compared with the control. The results suggest that exogenous AKG may enhance cell metabolism leading to induction of mild oxidative stress. It turn, it results in activation of antioxidant system that increases resistance of S. cerevisiae cells to H2O2 and other stresses. The presence of genes encoding SODs or catalases is required for the expression of protective effects of AKG.